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Abstract

This thesis discusses the properties of cold quark matter as exists in the core
of massive neutron stars, with baryon densities several times of nuclear sat-
uration density, n0 ≈ 0.16 fm−3, at zero temperature. Specifically, we study
effective quark models, the symmetry pattern of different quark matter phases,
the collective modes associated with spontaneous chiral symmetry breaking, a
possible realization of quark-hadron continuity in the color-flavor locked (CFL)
quark superfluid, and the implications of these issues to quark matter equations
of state, and thus to neutron star structure including the mass-radius (M -R)
relation.

In Chapter 1, we present a general overview of quark matter described by
quantum chromodynamics (QCD) in the context of dense neutron star cores. We
discuss the physical motivation for studying quark matter, and how the funda-
mental symmetry and symmetry breaking patterns of QCD guide the construc-
tion of phenomenological quark models – in particular, the Nambu–Jona-Lasinio
(NJL) model. We briefly review the modern understanding of the QCD phase
diagram studied via such effective quark models, and give an overview of recent
progress in constructing quark-hadron crossover equation of states using quark
model and nuclear matter models, and how neutron star observations constrain
the parameter spaces, thus providing insight into quark matter.

After the introduction, we next focus on details of the NJL model and how
it can be made to reflect the QCD symmetries in Chapter 2. We describe
quark matter using effective local interactions, and demonstrate how the spon-
taneous breaking of chiral symmetry is realized through such interactions. We
work through a Hubbard-Stratonovich transformation and derive the effective
quark-meson theory in a vacuum with chiral condensate, and note its struc-
tural connection to the sigma model. We then describe diquark pairing in the
NJL model, which breaks chiral symmetry at high density as well. Lastly we
explore the problem of meson condensation in quark matter, which is relevant
to the both neutron star M -R relation and the cooling process; we show that
the physics of quark matter meson condensation is very tightly connected to
hadronic meson condensation studies, and discuss the criteria of condensation
instability caused by quark-meson interactions.

The next part of this thesis, Chapter 3, turns to the issue of connecting the
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chiral symmetry breaking in the vacuum and in high density color supercon-
ductors – the interplay of chiral and diquark condensates in the effective quark
model. By using a schematic NJL model, we solve the phase diagram at zero
temperature, and demonstrate a continuous evolution of the Goldstone bosons,
i.e., the pions, from their vacuum q̄q form to their diquark qq form. We identify
all the collective modes associated with the chiral and diquark condensates and
calculate the pion self-energy, deriving a generalized Gell-Mann–Oakes–Renner
(GMOR) relation. We thus establish a picture of continuous chiral symmetry
breaking from vacuum to high density quark matter, and discuss its implications
and connection to the quark-hadron continuity conjecture.

In Chapter 4 we focus on a possible realization of quark-hadron continu-
ity in the color-flavor-locked (CFL) superfluid phase, where the CFL diquark
condensates screen color charges of elementary excitations, a novel feature of
the SU(3) color-flavor structure. We construct the dressing scheme inspired by
the non-linear sigma model, and derive an effective theory in terms of baryons
and mesons, a gauge-invariant theory that originally started with quarks and
gluons. Such a mapping is a direct realization of the quark hadron continuity
in both the fermion sector and the boson sector, suggesting that we may study
the properties of CFL quark matter in an entirely gauge-invariant manner at
lower energies. The mapping scheme also brings up the relation between the
effective baryon-meson Lagrangian’s couplings, elementary excitations and col-
lective modes, and those of quark and nuclear matter as a potential research
topic, which contributes to our further understanding of the ground state of
dense matter at several times n0.

Finally, in Chapter 5 we turn back to the effective quark model and try to
connect it to both nuclear matter and the more fundamental QCD. We demon-
strate that the explicit single gluon exchange energy can help understanding
the magnitude and density dependence of the constrained value of the phe-
nomenological vector repulsion necessary to support massive neutron stars, with
a moderate strong coupling constant and gluon mass at some 5n0. We also es-
timate the effect of higher order effects of introducing quark chiral masses and
CFL pairing into the quark Green’s functions. Our calculation yields an ap-
proximately flavor-symmetric vector repulsion that is a monotonous decreasing
function of density, which we parametrize for use in future studies of neutron
star equations of state. We also discuss the potential connections of this calcu-
lation to the concept of quark-hadron continuity, based on the similarity of the
quark model to chiral baryon models.
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Chapter 1

Introduction

In this thesis we study the properties of cold, dense QCD matter beyond sev-
eral times nuclear saturation density, n0 ∼ 0.16 fm−3, where the description
of nuclear matter with its rich collections of hadrons is no longer valid. The
system should be described in terms of quarks and gluons instead. We focus on
four major topics. After introducing quark matter in dense QCD in the context
of neutron stars, we first study the Nambu-Jona-Lasinio (NJL) [1, 2] effective
quark model, its predicted phases of QCD, and the associated low energy col-
lective modes. Secondly, we study the possibility of a smooth crossover with
continuous chiral symmetry breaking from low to high density at zero temper-
ature, and construct a continuous spectrum of generalized Nambu-Goldstone
bosons. Thirdly, we discuss a potential realization of the quark-hadron continu-
ity: a possibility of a smooth transition from hadronic matter to quark matter,
with the help of the color-flavor-locked (CFL) diquark condensate, and the map-
ping of QCD into an effective low energy gauge-invariant theory. Finally, we
consider the connections of the energy density from effective fermion-fermion
vector repulsions between nuclear matter, NJL quark matter and QCD matter,
which improves our understanding of the effective NJL quark model via gluon
exchange.

We devote this Chapter to introducing the general background relevant to
the research topics presented in this thesis. The principal research reported
throughout Chapters 2 to 5 is organized as follows.

Chapter 2 includes a instructive review of spontaneous chiral symmetry
breaking realized in the NJL model via local quark interactions at mean field in
the absence of diquark pairing, and the identification of the Nambu-Goldstone
(NG) bosons as emergent collective modes. This review contains the chiral con-
densation in NJL at mean field and the mapping of the Hubbard-Stratonovich
transformed NJL model into a linear sigma model via renormalization, after
which the NG bosons appear as elementary degrees of freedom coupled to the
quarks. From this coupling we calculate the self-energy of the pions; in particu-
lar, we find that the pion self-energy match the form of s- and p-wave interaction
energies of pions and nucleons, suggesting that the NG boson sector of chirally
broken quark matter is qualitatively identical to the nuclear matter. If no first-
order phase transition exists between hadronic matter and quark matter, one
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can expect the possible meson condensates from both phases to smoothly con-
nect. At the end of the Chapter we show, in the context of quark matter, the
identification of pionic modes from the meson inverse propagator dressed by
pion-quark self-energies and the onset condition of a meson condensation, using
methods from similar studies of nuclear matter pion condensation [3].

Chapter 3 addresses the physics of diquark pairing introduced at high den-
sity, which plays a major role in quark matter chiral symmetry breaking. A brief
review of diquark pairing described by NJL at mean field is given in Sec. 3.1.
In Sec. 3.2, we apply a single color, single flavor Nf = Nc = 1 schematic NJL
model to study the chiral symmetry breaking due to the simultaneous existence
of chiral and diquark condensates, and how their interplay determines the mass,
decay constant and coupling with the quarks of the NG boson – the generalized
pion. After identifying the collective modes of the system, we demonstrate how
the vacuum pion, resulting from q̄q chiral condensate, and the diquark pion,
resulting from qq diquark condensate, form linearly independent combinations,
yielding the generalized pion and its unstable massive partner. We then derive a
generalized matrix form of the Gell-Mann–Oakes–Renner (GMOR) [4] relation,
expressing the pion mass matrix in powers of the current (bare) quark mass
mq. A continuous chiral symmetry breaking picture is obtained: as the system
smoothly transforms from the chirally broken vacuum to a high density color
superfluid, the generalized pion exhibits a continuous variation of its masses,
decay constants and coupling with the quarks. We conclude that the NG boson
sector in quark matter can well support the quark-hadron continuity.

Afterwards, in Sec. 3.3 and 3.4, we address the problem of calculating more
complicated GMOR relations in realistic quark models with Nf , Nc > 1. Firstly
in Sec. 3.4, we study the problem of calculating the inverse propagators of the
mesons self-consistently, using the method developed in Ref. [5] and [6]. Then in
Sec. 3.4, we develop a formalism of perturbing the meson’s inverse propagators
by vertex insertions into quark loop diagrams in order to derive the desired
GMOR relations, illustrated with a simple Nf = Nc = 1 example; the detailed
procedure of applying this formalism to realistic models is summarized at the
end of the section.

We turn to the general theory of quarks and gluons in color-flavor-locked
(CFL) superfluid phase in Chapter 4, and consider the quark-hadron continuity
from a more elementary QCD perspective. Based on the observation that the
CFL diquark condensates can screen color charges of elementary excitations
(a novel feature of the SU(3) color-flavor structure), we generalize a diquark-
dressing scheme from Ref. [7] to transform both quarks and gluons into color-
singlet “baryons” and “mesons,” mapping QCD into an effective gauge-invariant
theory. The construction of this mapping is similar to that of baryon-meson
chiral Lagrangians in the study of hadrons. We argue that such a mapping is
a direct realization of the quark hadron continuity in both the fermion sector
and the boson sector, suggesting that we may study the properties of CFL
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quark matter in an entirely gauge-invariant manner at some energy scale. We
then open questions regarding the relation between the effective baryon-meson
Lagrangian’s couplings, elementary excitations and collective modes, and those
of quark and nuclear matter; such research topics may help to advance our
understanding of how hadrons turn into quark matter at neutron star core
density.

In Chapter 5 we return to the NJL quark model, and try to understand the
effective quark-quark interactions from the underlying QCD. In particular, we
calculate explicit single gluon exchange between quarks in the vector channel,
and find that with non-perturbative massive gluon propagators and a moderate
strong coupling αs, an effective vector repulsion between quarks strong enough
to support two-solar-mass neutron stars can be obtained. We then estimate the
effect of higher order effects of introducing quark chiral masses and CFL pairing
into the quark Green’s functions, and arrive at a flavor-symmetric (to a good
approximation) vector repulsion which is a monotonous decreasing function of
density. We then propose a specific parametrization of a density dependent
vector repulsion for use in future studies of neutron star equations of state.
Finally, we discuss the potential connections of this calculation to quark-hadron
continuity, based on the similarity of the quark model to chiral baryon-meson
models.

Section 3.2 of Chapter 3 and the entire Chapter 5 are based on the au-
thor’s published work [8] and [9], the latter yet to be published at the time of
submission of this thesis.

1.1 Cold, dense quark matter: low energy QCD

beyond hadrons

QCD is the fundamental theory underlying the strong interaction, which governs
the behavior and interactions of the rich collection of hadrons such as protons,
neutrons, hyperons, and mesons found in nature. One of its great discoveries is
the fact that hadrons are not elementary particles, but composite states made
of more basic degrees of freedom – quarks, which come in different flavors, colors
and fractional charges, and gluons, which are non-abelian gauge bosons coupled
to the SU(3) color charges of quarks. However, due to confinement, one can
never isolate colored quarks out of color-neutral nuclear matter; all hadrons are
strictly color singlets, and any attempt to isolate color charges will only result
in pair production of quarks and antiquarks that immediately neutralize the
colors of both the isolated target and the mother medium. This confinement
phenomenon forces us to study strong interactions only as many-body systems.

Hadronic matter, being the phase of QCD at low energy scales, can be well
described in terms of hadronic degrees of freedom; interactions between baryons
are mediated by meson exchanges. The theory of hadrons is an effective theory

3



Figure 1.1: Conjectured QCD phase diagram in the temperature (T ) – baryon
chemical potential (µB) plane, adopted from Reference [51]. In the high-T limit,
the matter is a hot, deconfined quark-gluon plasma (QGP), which can be studied
in heavy ion collisions and lattice simulations. In the high-µB direction, i.e.,
dense quark matter, there is great uncertainty in the intermediate (gray) density
region, with many different possible color superfluid and meson condensation
phases. In ultrahigh density, the quark matter forms a color-flavor locked (CFL)
superconductor via diquark pairing, a unique feature for Nf = Nc = 3.

of QCD, where the dynamics of quarks and gluons (and in particular, how they
determine the QCD ground state properties) are not manifestly visible. The
situation changes as the density rises above ∼ 2n0: nucleons begin to severely
overlap and percolate, and there is no spatial separation inhibiting quarks from
hopping from one nucleon into another. At this point, the hadronic description
faces not only the issue of three or larger N-body forces becoming more impor-
tant – which makes the system untraceable in terms of its interactions – but also
loses its basic validity, since the quark and gluon wave functions are no longer
constrained within individual hadrons [10]. In such a case, the proper degrees of
freedom change to quarks and gluons, and their many-body properties become
manifest.

The phases of QCD in terms of quarks and gluons are extremely rich and
extensive in the temperature-baryon chemical potential (T−µB) plane, schemat-
ically shown in Fig. 1.1. Since QCD likely becomes weakly coupling only after
∼ 100n0, the quark matter that forms at a few times of n0 (corresponding to
the area with gray question mark in Fig. 1.1) is still strongly correlated, non-
perturbative and highly non-trivial. Understanding this regime has remained
very challenging in modern physics, both theoretically and experimentally.

From the theory perspective, the coupling constant for the strong interaction,
αs, is likely at least of order unity at such densities, making perturbation theories
powerless in resolving the low energy excitations [11]; many fundamental char-
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acteristics of the QCD ground state, such as confinement, spontaneous chiral
symmetry breaking and color superconductivity are inherently non-perturbative
phenomena. Only at very high energy scale, where the strong coupling αs be-
comes weak due to asymptotic freedom, can one study QCD perturbatively,
using techniques similar to those from perturbative quantum electrodynamics
(QED). Computation-wise, the simulations of QCD on a discretized space-time
grid, known as the lattice QCD, can only be employed at high temperature and
zero density regime; the (in)famous fermion sign problem [12, 13], which pro-
hibits the application of lattice QCD to dense quark matter. At present, only
some reduced models of QCD (such as two-color, commonly denoted “QC2D”)
support lattice calculations at finite density [11], but their results are at most
suggestive for three colors.

From the experiment perspective, it is only possible to recreate high tem-
perature QCD in a controlled laboratory environment at the moment, in the
form of ultrarelativistic heavy ion collisions [14]. Such collisions involves the
smashing of two counter-propagating heavy ion beams accelerated to near the
speed of light, provoking high momentum transfer between quarks and gluons
forming the traveling nucleons, which provides important information on high
temperature QCD. However, despite nucleons being naturally part of the QCD
ground state at finite density, the probe of ground state itself from these collision
experiments is very limited, since the process is not under strict thermodynamic
equilibrium; the temporarily dense region in the collision center expands rapidly,
and the debris quickly turns back into hadrons again while escaping.

As a result, the only realistic access to cold, dense quark matter is from
compact astrophysical objects – neutron stars. Neutron stars are supernova
remnants from one to above two solar masses and with typical radii of a dozen
kilometers; their compactness suggests a core density that can reach beyond
several n0, where nucleons would be squeezed deeply into each other, forming
matter positively beyond a hadronic description. Such a large density, combined
with the relatively low temperature resulting from cooling, makes neutron stars
excellent probes of cold, dense QCD; observations of e.g., the neutron star mass-
radius relationship, the cooling history and the maximum neutron star mass
before collapse into blackholes provide constraints on both the ground state
and the transport properties. In particular, modern observation of neutron
stars with masses close to or even exceeding two solar masses (e.g. J1614-2230
[15] at 1.928± 0.017M�, J0348+0432 [16] at 1.97± 0.04M�, and more recently
PSR J0740+6620 [17] at 2.17 ± 0.1M�) indicates the existence of stiff, dense
cores beyond ∼ 5n0, which can be explained by quark matter with reasonably
strong repulsive forces, even with strangeness.1

1The appearance of strangeness in nuclear matter in the form of hyperons, on the other
hand, faces severe softening issues due to the development of additional degrees of freedom,
making nuclear matter unlikely to support two solar mass neutron stars on their own, known
as the hyperon puzzle [18].
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1.2 Phenomenological quark models

Effective quark models without gluons – the NJL model in particular – are
popular methods to study dense quark matter. Due to the complication of the
non-abelian nature of the color SU(3) gauge, gluons are particularly hard to
understand at such density due to their self-interactions and thus anti-screening;
it is thus instructive to inspect the quark sector alone, since many important
symmetries other than the gauge symmetry only involve transformations of the
quark field (e.g., chiral symmetry). Such effective quark models are reasonably
expected to capture at least the major characteristics of the QCD ground state;
the gluon sector is kept implicit, and its physics is supposed to be contained in
effective quark-quark interactions and a “bag constant” in the vacuum.

1.2.1 Symmetries and symmetry breaking in QCD

The QCD symmetries and their breaking guides the construction of effective
quark models. We begin with the QCD Lagrangian,

L = q̄(i/∂ − m̂q)q − gq̄γµ
λα
2
Aαµq −

1

4
GαµνG

µν
α , (1.1)

where q is the quark field, m̂q is the current (bare) quark mass matrix, λα=1,...,8

are the SU(3) Gell-Mann matrices normalized to tr(λαλβ) = 2δαβ , g is the
gauge coupling (related to strong coupling αs by g2 = 4παs), Aαµ are the gluon
fields, and

Gαµν = ∂µA
α
ν − ∂νAαµ − gfαβγAβµAγν (1.2)

is the gluon field tensor, with fαβγ being the SU(3) structure constants defined
by

[λα, λβ ] = 2fαβγλγ . (1.3)

Aside from local gauge and Lorentz invariance, the Lagrangian (1.1) possesses
four additional global symmetries – flavor SU(3)L,R (if in the chiral limit m̂q =

0), baryon number U(1)B , and axial U(1)A, making a total symmetry group

SU(3)L ⊗ SU(3)R ⊗ SU(3)C ⊗ U(1)B ⊗ U(1)A. (1.4)

If we include electromagnetic interactions, the additional U(1)EM local gauge
invariance plus the photon field are there as well.

The (approximate, due to realistic m̂q 6= 0) chiral symmetry, corresponding
to the axial transformations of SU(3)L,R, is found to be spontaneously broken
in the vacuum by a chiral condensate, 〈q̄q〉 ≈ −245 MeV3, confirmed by hadron
spectroscopy and lattice QCD [19], and is believed to generate a major part
of the effective masses of the quarks (and thus the nucleons). This symmetry
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breaking can be summarized as

SU(3)L ⊗ SU(3)R → SU(3)V . (1.5)

According to Goldstone’s theorem, a total of 32−1 = 8 (nearly) massless Nambu-
Goldstone (NG) bosons exist in the spectrum, corresponding to the fluctuations
of the ground state towards nearby equivalent ground states via transformation
of the broken symmetry. These are the pseudoscalar mesons (the pions, kaons,
etc.), and are present in hadronic matter as well. In quark matter, they are
collective q̄q states similar to physical hadronic mesons, but they couple to
quarks manifestly instead of to baryons.

Chiral symmetry can also be spontaneously broken by diquarks, which are
BCS pairs of quarks formed by attractions in the color antisymmetric channel
[101]. In particular, a special type of diquark pairing, known as the color-flavor-
locking (CFL) [20], likely appears in Nf = Nc = 3 quark matter at very high
density. The CFL pairing is described by the diquark condensate

〈qiaq
j
b〉 = κS(δiaδ

j
b + δibδ

j
a) + κA(δiaδ

j
b − δ

i
bδ
j
a), (1.6)

where S and A are shorts for “symmetric” and “antisymmetric.” The CFL con-
densate is not invariant under individual vectorial flavor SU(3) nor color SU(3)

global transformations, but under a simultaneous vectorial SU(3) rotation of
flavor and color, thus the name. It is also not invariant under axial SU(3) flavor
rotations, thus breaking chiral symmetry as well. Overall, the CFL condensate
breaks the symmetry to

SU(3)L ⊗ SU(3)R ⊗ SU(3)C → SU(3)CFL. (1.7)

The breaking of the color SU(3) does not generate any NG bosons, but instead
gives the gluons effective masses via the Meissner mechanism. As a result, one
still ends up with 8 NG bosons, and since it is the axial part of SU(3) that is
broken, the eight NG bosons are still pseudoscalar. Thus, in the high density
quark matter, chiral symmetry is broken similarly to the vacuum; however, the
nature of these NG bosons depends on the specific condensates that break the
symmetries, which are 〈q̄q〉 and/or 〈qq〉, as we will study in details in Chapter
2 and 3.

The axial U(1)A symmetry, despite being respected at the classic level, is
explicitly broken by quantum (instanton) effects [21, 22]; this breaking is com-
monly known as the axial anomaly.
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1.2.2 The NJL model: a brief overview

The general NJL Lagrangian, based on the symmetries of QCD, is schematically
[23]

LNJL = q̄(i/∂ − m̂q)q + L4 + L6 (1.8)

which describes quarks with effective local four- and six- quark interactions
L4 and L6. The most straightforward way of constructing an L4 that respects
QCD symmetries is through single-gluon exchange, which yields a color current-
current interaction ∼ (q̄γµλαq)

2. Then, a re-arrangement of the fermion opera-
tors (known as a Fierz transformation) decomposes this interaction into specific
Dirac, flavor and color channels. The L6 interactions are specific to Nf ≥ 3,
and are constructed to explicit break the U(1)A symmetry in place of the in-
stantons.2

The NJL model study of quark matter usually proceeds in the following
manner [23]. Taking advantage of the Fierz decomposition, the NJL model is
then studied at mean field which realizes different symmetry-breaking conden-
sates 〈q̄Γq〉 where Γ is some Dirac, flavor or color matrix. After a mean field
approximation, the Lagrangian reduces to quadratic form in terms of quark
fields, which can then be used to compute the thermodynamic potential den-
sity Ω in terms of the mean fields; by minimizing Ω, a set of self-consistent gap
equations are obtained, which are then used to determine the values of the mean
fields. As the condensates represented by the mean fields characterize different
symmetry breaking, this procedure yields the NJL quark matter phase diagram
in the T − µ plane. For a homogeneous system, Ω is the negative of pressure
Ω = −P , giving the equation of state.

In general, the three basic schematic channels considered in L4 are: G(q̄q)2,
the attractive color-singlet scalar-isoscalar channel, describing spontaneous chi-
ral symmetry breaking via the chiral condensate 〈q̄q〉; H(qq)(q̄q̄), the attrac-
tive scalar channel of completely flavor-color-antisymmetric diquark pairing;
and gV (q̄γµq)2, the repulsive color-single, vector-isovector channel, necessary to
stiffen the equation of state to support massive neutron stars. The coupling
constants in the models, G,H and gV , together with the current (bare) quark
mass matrix m̂q and an ultraviolet cutoff ΛNJL are the parameters of the model.
Among them, G, m̂q and ΛNJL are fixed by fitting to vacuum pion phenomenol-
ogy. The diquark pairing coupling H and the vector repulsion gV are kept
as variables constrained by neutron star models via their appearances in the
equation of state.

2Confinement can also be included in the NJL model in the form of a Polyakov loop
[24, 25, 26] as the order parameter, which is out of the scope of our current discussion. In
general, including the Polyakov loop is unlikely to have significant effects on the the low
temperature phase diagram, since lattice simulation indicates a vanishing effective potential
for the Polyakov loop at zero temperature [27, 28].
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1.3 From quark matter to neutron stars:

QHC19

At Nf = Nc = 3 the NJL model has been recently employed in the construction
of a robust state-of-the-art Quark-Hadron Crossover equation of state (QHC19)
[10, 29], which can successfully explain over-two-solar-mass neutron stars within
reasonable parameter ranges, while also satisfying a number of physical con-
straints (to be discussed below). This achievement provides profound insight
into the effective couplings between quarks, and the results are very useful in
future studies of neutron star modeling and quark matter in general.

The NJL model used in QHC19 features the following four-quark interactions
in quark-antiquark and quark-quark channels:

L4 = G

8∑
a=1

[
2

3
(q̄q)

2
+ (q̄τaq)

2
+

2

3
(q̄iγ5q)

2
+ (q̄iγ5τaq)

2

]
+H

∑
a,A=2,5,7

[
|qTCiγ5τaλAq|2 + |qTCτaλAq|2

]
− gV (q̄γµq)2; (1.9)

here, τa, λA are the Gell-Mann matrices corresponding to the SU(3) flavor and
color, γ5 = iγ0γ1γ2γ3, and C = iγ2γ0 is the charge conjugate matrix. These
four-quark interactions describe spontaneous chiral symmetry breaking via the
G terms and diquark pairing via the H terms, plus a vector repulsion gV . The
six-quark interactions L6 are given by the Kobayashi-Maskawa-’t Hooft (KMT)
interactions [30, 22], which described axial anomaly by instanton effects:

L6 = −K [det (q̄(1 + γ5)q) + det (q̄(1− γq)q)]

+K ′
{
tr
[(
d†RdL

)
φ
]

+ h.c.
}
, (1.10)

where both the trace and the determinant are taken over the flavor indices; here,
the composite left/right diquark operators are defined by d†L,R = εijkεabcq

iaT
L CqjbL ,

and φij = q†RjqLi. Although the KMT interaction is important in the phase di-
agram, its effect on the equation of state is very limited, thus does not receive
strong constraints from neutron star observations. In the QHC19 study, the
following Hatsuda-Kunihiro (HK) [32] parameter set for the NJL model is used:

ΛNJL = 631.4MeV, mu,d = 5.5MeV, ms = 135.7MeV,

G = 1.835Λ−2
NJL, K = 9.29Λ−5

NJL; (1.11)

the diquark coupling H and vector repulsion gV are free parameters; K ′, whose
impact on the equation of state is tightly correlated to H and gV . As a result, it
is very difficult to constrain the value of K ′, since there exists a small null space
where one can simultaneously vary H, gV and K ′ but the resulting equation
of state remains almost the same. Furthermore, at several n0 the suppression
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Figure 1.2: Schematic description of a crossover from nuclear (hadronic) matter
to quark matter near neutron star core densities & 2n0 used in QHC19, adopted
from [10]. Below 2n0, a nuclear matter equation of state (EoS) is used. Above ∼
4−7n0, the NJL model is used. In between, a polynomial interpolation between
the two model EoS is performed, which is made to satisfy thermodynamic and
causality constraints.

of instanton effect comes into play, which will likely decrease K ′ significantly.
Considering these factors, the K ′ interaction is often not manifestly considered
in such studies.

In addition to L4 and L6, electric and color neutrality are enforced by in-
troducing electric µQ and color µ3,8 chemical potentials,3 with charged leptons
also added to the Lagrangian:

Lneutrality = µQ

q†Q̂q − ∑
l=e,µ

ψ†l ψl

+ µ3q
†λ3 + µ8q

†λ8q,

Llepton = ψ̄e(i/∂ −me)ψe + ψ̄µ(i/∂ −mµ)ψµ. (1.12)

The practical application of the NJL quark matter in QHC19 is schematically
summarized in Fig. 1.2. Below 2n0, the matter is reliably described by a nuclear
matter Togashi et al. equation of state [33]. At densities & 5 − 7n0, the NJL
model is used. Acknowledging the uncertainties in the transition from nuclear
matter to quark matter, the equation of state in between is given by a polynomial
interpolation to N -th order in pressure P as a function of baryon chemical
potential µ:

P (µ) =

N∑
n=0

Cnµ
n, (1.13)

where Cn are interpolation constants that depend on equations of state of both
nuclear matter and NJL quark matter. Achieving continuity in P (µ) and its
1st and 2nd order derivative requires N = 5 which ensures both baryon number
continuity and baryon number compressibility continuity, and is used in practice.

3By a proper selection of the color basis in the presence of diquark pairing, only 3 and 8
components of the color density remain possibly non-zero.
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In addition, P (µ) must also satisfy the thermodynamic stability condition

∂2P

∂µ2
=
∂n

∂µ
> 0, (1.14)

as well as the causality condition where the sound speed cs cannot exceed the
speed of light

c2s
c2

=
∂P

∂ε
=

1

c2
∂ lnµ

∂ lnn
≤ 1; (1.15)

here, ε = µn− P is the energy density (assuming zero temperature). Since the
Cn depend naturally on the NJL model parameters while the nuclear matter
end of the equation of state is well known, these two conditions restricts the
NJL free parameters H and gV . After interpolation, a QHC19 equation of state
P (ε) over the whole range up to ∼ 10n0 is obtained, and is ready to be used in
neutron star modeling.

To obtain the mass-radius relationship and the density distribution of the
neutron stars, one starts with the Tolman-Oppenheimer-Volkov (TOV) [34, 35],
which is the static, spherically symmetric solution to Einstein’s field equation
in general relativity:

∂P (r)

∂r
= −GN

ρ(r) + P (r)/c2

[r − 2GNm(r)/c2]r
[m(r) + 4πr3P (r)/c2], (1.16)

where GN is Newton’s gravitational constant, m(r) =
∫ r

0
4πr′ρ(r′)dr′ is the

mass within radius r, and ρ(r) = ε(r)/c2 is the mass density. Integrating the
TOV equation with the center pressure as the boundary condition yields the
mass distribution of the neutron star as a function of r, as well as the maximum
possible mass of a neutron star.

The QHC equation of state aligns well with the equation of state constraint
from neutron star observational data, as shown in Fig. 1.3, with a strong di-
quark pairing H = 1.5G and a vector repulsion strength gV = 0.8G. In general,
H ∼ 1.35 − 1.65G and gV ∼ 0.6 − 1.3G can produce neutron stars with above
2M�, while also satisfying the physical constraints discussed above (see Fig. 1.4
and 1.5). That is, quark matter at & 5n0 likely exhibits strong quark-quark cor-
relation and vector repulsion. The phase diagram associated with QHC19 also
suggests that quark matter might have already entered the color-flavor-locked
phase at 5n0 with approximate symmetry in flavor densities, which means 2M�

neutron stars likely have significant amount of strangeness in their cores. These
observations are particularly important to our discussion in all the following
Chapters, as we will elaborate with specific contexts in each of them.
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Figure 1.3: The QHC19 compared with 2σ confidence level in equation of state
derived from observed mass-radius relation of neutron stars. The Steiner et. al.
region is constructed in Ref. [36], and the Özel et.al. in [37]. Adopted from [29].

Figure 1.4: The constrained region of gV and H from maximum neutron star
mass. Adopted from [29].

.
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Figure 1.5: The constrained region of gV and H from causality requirement.
Adopted from [29].

.
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Chapter 2

Chiral symmetry breaking in
the NJL model without
diquark pairing
In this Chapter we study spontaneous chiral symmetry breaking in the Nambu–
Jona-Lasinio (NJL) model in the absence of diquark pairing. We start our
discussion with a simple two flavor Nf = 2, no-pairing model, demonstrate
the realization of chiral symmetry breaking, and compute physical properties of
the NG bosons in Sec. 2.1. We demonstrate in Sec. 2.2 that this NJL model,
after bosonization with a saddle point expansion, transforms into a linear sigma
model, an interacting theory of NG bosons (the pions) with the quarks. We
study how these properties may result in Bose-Einstein condensation of the NG
bosons, and make the connection to nuclear matter in Sec. 3.3.

2.1 Nf = 2 NJL model with spontaneous chiral

symmetry breaking

2.1.1 The Lagrangian, condensates and mean field
approximation

In this section we introduce how spontaneous chiral symmetry breaking is real-
ized in a simple NJL model.1 The simple Nf = 2, Nc = 3 NJL model with only
a four-quark interaction in the chiral channel is

L = q̄(i/∂ −mq + γ0µ)q +G
[
(q̄q)

2
+
(
q̄iγ5τaq

)2]
, (2.1)

where mq is the current (bare) quark mass matrix, µ the quark chemical poten-
tial, G the attractive four-quark coupling strength, and τa=1,2,3 are generators
of the isospin group SU(2), given by Pauli matrices. The Lagrangian (2.1)
respects, in the chiral limit mq = 0, the global symmetry group

SU(2)L ⊗ SU(2)R ⊗ SU(3)C ⊗ U(1)B ; (2.2)

the axial U(1) is explicitly broken.
To study the formation of symmetry breaking condensates, i.e. the chiral

condensate in this case, we use the mean field approximation. For any field
1For a more comprehensive discussion, see Ref. [23] and the references therein.
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operator s (which can be composite), we separate it into

s = (s− 〈s〉) + 〈s〉; (2.3)

the quantity inside the bracket corresponds to the fluctuations around the ex-
pectation value. When a condensate first forms, 〈s〉 6= 0, one may treat the
fluctuation as small and expand

s2 = [(s− 〈s〉) + 〈s〉]2

= 〈s〉2 + 2〈s〉(s− 〈s〉) + (s− 〈s〉)2

≈ 2〈s〉s− 〈s〉2. (2.4)

In our case, the chirally broken state is characterized by the chiral condensate
〈q̄q〉. Denoting the real expectation values

〈q̄q〉 = σ, 〈q̄iγ5τiq〉 = πi, i = 1, 2, 3, (2.5)

and σ̂, π̂i as their corresponding fluctuations, the NJL Lagrangian in mean field
is

L = q̄
(
iγµ∂µ + 2Gσ + 2Giγ5~τ · ~π

)
q −G

(
σ2 + ~π2

)
.

(2.6)

The πi condensates in terms of the charged and neutral pions, π± and π0, are

π =
1√
2

(π1 + iπ2) =
√

2i〈ūγ5d〉, π−;

π† =
1√
2

(π1 − iπ2) =
√

2i〈d̄γ5u〉, π+;

π0 = π3, π
0. (2.7)

The chiral and pion condensates are not invariant under chiral transforma-
tion, thus breaking the chiral symmetry. Indeed, under an axial SU(2) rotation,

q → e−
1
2 iγ

5~τ ·~θq =

[
cos

θ

2
− iγ5

(
~τ · θ̂

)
sin

θ

2

]
q,

q̄ → q̄

[
cos

θ

2
− iγ5

(
~τ · θ̂

)
sin

θ

2

]
, (2.8)
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so

q̄q → q̄

[
cos

θ

2
− iγ5

(
~τ · θ̂

)
sin

θ

2

]2

q = q̄
[
cos θ − iγ5

(
~τ · θ̂

)
sin θ

]
q

= q̄q cos θ − q̄iγ5~τq · θ̂ sin θ,

q̄iγ5
(
~τ · θ̂

)
q

→ q̄

[
cos

θ

2
− iγ5

(
~τ · θ̂

)
sin

θ

2

]
iγ5
(
~τ · θ̂

)[
cos

θ

2
− iγ5

(
~τ · θ̂

)
sin

θ

2

]
q

= q̄iγ5~τq · θ̂ cos θ + q̄q sin θ; (2.9)

therefore

σ → σ cos θ − ~π · θ̂ sin θ,

~π · θ̂ → ~π · θ̂ cos θ + σ sin θ. (2.10)

However, the combination, σ2 + ~π2, is invariant under chiral transformation.
When ~π = 0, the vacuum is in a scalar state since σ has positive parity;

other states with the same σ2 + ~π2 but different σ, ~π condensates are related
to the scalar state and each other via chiral transformations; states with ~π 6= 0

have pion condensation, and for now they have identical energies as the scalar
state.

The mean field Lagrangian (2.6) is quadratic in quark field and thus can
be integrated out analytically in the path integral formalism; the term 2Gσ

becomes the effective (chiral) mass of the quarks M = −2Gσ. The dressed
quark inverse propagator, G−1, is then

G−1 = G−1
0 − 2Gσ, G−1

0 = i/∂ + γ0µ. (2.11)

Further denoting V (σ, ~π) = G(σ2 + ~π)2, the generating functional Z is now

Z =

∫
D(q̄, q) exp i

∫
Ld4x

=

∫
D(q̄, q) exp

(
i

∫
d4x q̄G−1q − V

)
, (2.12)

where the time x0 is integrated over (0,−iβ), β = 1/T being the inverse tem-
perature. This analytic continuation into the imaginary time of the generating
functional Z is the partition function in quantum statistical mechanics; the
Fourier transform in the imaginary time is a sum of Matsubara frequencies:

G(t) =
1

−iβ
∑
ν

e−iωνtG(ων), (2.13)

where ων = πν/(−iβ), and ν runs over integers for bosons, and odd half-integers
for fermions. Throughout this thesis, all integrations over the frequency space,
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∫
dp0, are understood as Matsubara frequency sums, unless stated otherwise.
For simplicity we consider a homogeneous phase where σ(x) = 〈q̄(x)q(x)〉 =

σ(0). The grand thermodynamic potential density is then

Ω = −T
V

lnZ = V − T

V
tr lnG−1

= V − 2TNfNc

∫
d3k

(2π)3

[
ln
(

1 + eβ(εk−µ)
)

+ ln
(

1 + e−β(εk−µ)
)]
,

εk =
√
k2 +M2. (2.14)

The trace “tr” in this context runs over all space-time and quantum numbers.
The chiral condensate σ is found by minimizing ω with respect to σ, i,e. the
minimal energy configuration:

∂Ω

∂σ
= 0. (2.15)

Since σ is directly related to the effective quark mass, this equation is also called
the gap equation; this terminology applies to any mean fields. Evaluating (2.15)
with (2.14) we find

σ = 4NfNcGσ

∫
d3k

(2π)3

1− f(εk − µ)− f(εk + µ)

εk
, (2.16)

where f(x) = (1 + expβx)−1 is the Fermi-Dirac distribution function.
The gap equation (2.16) always has a trivial solution σ = 0 which corre-

sponds to a chirally invariant ground state. When the chirally broken state –
corresponding to a non-trivial solution σ 6= 0 – exists, the σ = 0 state becomes
metastable; the effective potential of σ takes on the famous “Mexican hat” shape
(see Fig. 2.1), and the system will have a chirally broken ground state. Since the
only dependence in the integral of (2.16) on σ is via M2 = 4Gσ2, the solutions
±|σ| are degenerate.

When mq 6= 0 explicitly breaks the chiral symmetry, the gap equation (2.15)
still yields (2.16), but with the effective quark mass

M = −2Gσ +mq; (2.17)

we can shift σ → σ +mq/2G to absorb mq to σ in the quark energies, but as a
trade-off the gap equation (2.16) becomes

σ +
mq

2G
= 4NfNcGσ

∫
d3k

(2π)3

1− f(εk − µ)− f(εk + µ)

εk
,

M = −2Gσ. (2.18)

In this case σ = 0 is no longer a solution; thus, the chiral condensate, however
small, will always exist in the presence of bare quark masses. In particular, the
original trivial solution σ = 0 will be deformed into σ ∼ mq. Also, the shifting
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Figure 2.1: The “Mexican hat” potential for the fluctuations in the σ-π plane,
typical of systems exhibiting spontaneous symmetry breaking. The red dot
corresponds to the scalar state configuration π = 0.

of the potential term for σ, V ∼ Gσ2 → G(σ + mq/2G)2, implies the negative
solution σ < 0 will be more energetically favorable than the σ > 0 solution, and
is thus the true ground state.

The gap equation (2.15) can be equivalently obtained via a self-consistent
equation, where we essentially “re-calculate” the chiral condensate using the
mean field quark propagator itself:

〈q̄(0)q(0)〉 = −iTr G(t = 0+,x = 0) = −i
∫
p

Tr G(p), (2.19)

and the result is identical. In later Chapters we will use this method to derive
gap equations in general, which avoids having to compute the thermodynamic
potentials.

2.1.2 Pion dispersion relation through quark-antiquark
T-matrix

Having reviewed the mean field results of the NJL model in terms of chiral
condensates, we now study the spectrum of the pions (the NG bosons) via the
quark-antiquark T-matrix.

In the chirally broken state the existence of the pions, the NG bosons, can
be demonstrated through the quark-antiquark scattering amplitude. Since the
pions are coupled to quark-antiquark pairs, they exist as intermediate states
in the T-matrix of quark-antiquark scattering in the right channel. For isospin
vector index a = 1, 2, 3, the T-matrix corresponding to an incoming state having
the same quantum number as q̄iγ5τaq with total momentum k under random
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Figure 2.2: Graphical representation of the T-matrix in random phase approxi-
mation, corresponding to the bubble chain diagrams: Ta = 2G+4GBaG+ · · · =
2G+ 2GBaTa.

phase approximation (RPA) in the NJL model [23] (see Fig. 2.2), is

Ta(k2) = 2G+ 2GBa(k2)Ta(k2), (2.20)

where the bubble is

Ba(k2) = i

∫
p

Tr (G(p)iγ5τaG(p− k)iγ5τa)

= NfNc4i

∫
p

(
1

p2 −M2
−

1
2k

2

(p2 −M2)((p− k)2 −M2)

)
≡ J1 +

1

2
k2J2(k2); (2.21)

here,

J1 = NfNc4i

∫
p

1

p2 −M2
,

J2(k2) = −NfNc4i
∫
p

1

(p2 −M2)((p− k)2 −M2)
;

(2.22)

by dimensional arguments one sees that J1 is quadratically ultraviolet divergent,
while J2 is logarithmically divergent.

Evaluating the imaginary frequency summation, one can show using the gap
equation (2.39) that,

J1 =
1

2G
− mq

2GM
. (2.23)
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The poles of Ta, equivalently the zeros of

T−1
a =

1

2G
−Ba(k2) =

1

2G
− J1 −

1

2
k2J2(k2) (2.24)

give the dispersion relations for the pions, as they show up as intermediate bound
states. Near the pion poles and in the long wavelength limit, the T-matrix can
be parametrized as

Ta ≈
−g2

k2 −m2
π

, (2.25)

where the residue g2 has the physical meaning of the square of the effective
coupling between the pion and the quarks. With this parametrization,

g−2 =
1

2
I2(0) +O(m2

q),

m2
π =

mq

GMI2(0)
+O(k2). (2.26)

We have assumed J2(k2) only weakly depends on k in the long wavelength limit.
In general, J2’s momentum dependence will make m2

π momentum-dependent;
such effect corresponds to self-energy modification due to pions interacting with
quarks. On the other hand, the pion decay constant fπ can be related to the
vacuum-to-axial-current transition amplitude of a pion state,

ikµfπδab = 〈0|Aµa |πb(k)〉 = −ig
∫
p

Tr
[
iγ5τaG(p)

τb
2
γµγ5G(p+ k)

]
, (2.27)

where the axial current is Aaµ = q̄τaγµγ5q/2. Evaluating the trace, we find

fπ =
1

2
MgI2(k2); (2.28)

combined with Eqs. (2.26), we obtain the Gell-Mann–Oaks–Renner relation at
leading order in mq:

f2
πm

2
π = mq ·

M

2G
+O(m2

q) = −mq〈q̄q〉+O(m2
q). (2.29)

2.1.3 Hubbard-Stratonovich transformation and effective
pion theory

We have so far only concerned ourselves with the quarks, and the pions only
implicitly through the T-matrix. To derive an effective theory of pions from
the quark-only Lagrangian, we need to bosonize the field fluctuations around
the chiral condensate and extract them as individual degrees of freedom; this
procedure is known as the Hubbard-Stratonovich transformation.
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Denoting σ̃ as a spin-0 boson field; we have the identity

1 =

∫
Dσ̃ exp

[
i

∫
d4x

(
Gσ̃2 +Gq̄qq̄q − 2Gσ̃q̄q

)]
, (2.30)

since this is nothing but a shifted Gaussian integral in σ̃. Then we can insert
this identity into the generating functional of the original NJL Lagrangian (2.1),
and note the canceling of the G(q̄q)2 interaction term; the resulting action, as
a functional of both the original quark fields and the new boson field, σ̃, is

S(σ̃, q, q̄) =

∫
d4x

{
q̄ (iγµ∂µ + 2Gσ̃) q +G

(
q̄iγ5~τq

)2 −Gσ̃2
}
. (2.31)

Performing the same procedure to the G(q̄iγ5τ q)
2 interaction with a new boson

field π̃, we arrive at

S(σ̃, π̃, q, q̄) =

∫
d4x

{
q̄ (iγµ∂µ + 2Gσ̃ + 2Giγ5τ · π̃) q −G

(
σ̃2 + π̃2

)}
; (2.32)

the theory now has explicit boson fields, and is equivalent to the original NJL
model. When the boson fields are replaced by their vacuum expectation values
and become mean fields, we retrieve the mean field NJL Lagrangian.

We now consider the fluctuations of the boson fields, i.e. the sigma particle
and the pions, around their vacuum expectation value:

σ̂ ≡ σ̃ − σ, π̂ ≡ π̃ − π. (2.33)

The action is

S(σ̃, π̃, q, q̄) =

∫
d4x

{
q̄
(
G−1 + 2Gσ̂ + 2iGγ5τ · π̂

)
q −G

[
(σ + σ̂)2 + π̂2

]}
≡

∫
d4x

{
q̄
(
G−1 + 2Gσ̂ + 2iGγ5τ · π̂

)
q − V (σ̂, π̂, σ)

}
(2.34)

Still quadratic in quark fields, we can perform the Gaussian integral, and then
re-exponentiate the determinant to obtain

S = −i ln det(G−1 + 2Gσ̂ + 2iGγ5τ · π̂)−
∫
d4xV (σ̂, π̂, σ)

= −itr ln(G−1 + 2Gσ̂ + 2iGγ5τ · π̂)−
∫
d4xV (σ̂, π̂, σ). (2.35)

Denoting the total fluctuation as x̂ = 2Gσ̂ + 2iGγ5τ · π̂; then, we can expand
the logarithm

tr ln
(
G−1 + x̂

)
= tr lnG−1 (1 + Gx̂)

= tr lnG−1 +

∞∑
n=1

(−1)n+1 tr(Gx̂)n

n
. (2.36)
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The tr lnG−1 corresponds to the mean field quark action; the series expansion
corresponds to the action of the bosons, up to infinite order.

Let us calculate the boson action term by term. The linear order term is

S(1) = −2iGtr (Gx̂) = −2Gi

∫
d4p

(2π)4
TrG0(p) [σ̂(p = 0) + iγ5τ · π̂(p = 0)]

= −2Gi

∫
d4x σ̂(x)

∫
d4p

(2π)4
Tr

4M

p2
0 − ε2k

= −8GMI1

∫
d4x σ̂(x), (2.37)

where we denote the four-integrals in momentum space as

In = (−1)n+1NfNci

∫
d4p

(2π)4

1

(p2
0 − ε2p)n

; (2.38)

we recall that the integration over frequency p0 is understood as the imaginary
Matsubara frequency summation. In addition, the V contribution to the action
at linear order in boson field is

∫
dx4 (−2Gσ)σ̂. Thus, the effective action for σ̂

at linear order is ∫
dx4 [−2Gσ − 8GMI1] σ̂, (2.39)

while there is no contribution at linear order in the pion fields π̂. On the other
hand, using the gap equation (2.16), one can show that

I1 = NfNc

∫
d3p

(2π)3

1− f(εk − µ)− f(εk + µ)

2εk

= − σ

4M
=

1

8G
, (2.40)

thus 2Gσ + 8GMI1 = 0. As a result, the action in linear order in bosons
vanishes; this is a consequence of our, by employing the gap equation, expanding
the action around the chirally broken phase, which is a local extremum of the
potential for σ and π.

The quadratic term will, in addition to producing potential terms for the
bosons, yield kinetic energy terms:

S(2) = i 1
2 tr [Gx̂]

2
= 2iG2 [tr (Gσ̂Gσ̂) + tr (Giγ5τ · π̂Giγ5τ · π̂)] . (2.41)

We first investigate the σ̂ part:

S(2)
σ = 2iG2tr (Gσ̂Gσ̂)

= 2iG2

[
Tr
∫
d4pd4q

(2π)8
G0(p)G0(q + p)σ(−q)σ(q)

]
≡ 2G2

∫
d4q

(2π)4
Π(q)σ(−q)σ(q), (2.42)
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where

Π(q) ≡ i
∫

d4p

(2π)4
Tr [G(p)G(p− q)] (2.43)

is the polarization operator. In the long wavelength limit, we may expand

Π(q) = Π(0) +
1

2

∂2Π(0)

∂qµ∂qν
qµqν + . . . (2.44)

In the zeroth order in momentum,

Π(0) = i4Tr
∫

d4p

(2π)4

p2
0 − ε2p + 2M2(
p2

0 − ε2p
)2 = 4iTr

∫
d4p

(2π)4

[
1

p2
0 − ε2p

+
2M2(

p2
0 − ε2p

)2
]

= 4I1 − 8M2I2. (2.45)

To compute the quadratic term, we first calculate

∂Π(q)

∂qµ
= 4iTr

∫
d4p

(2π)4

1

p2 −M2

[
pµ

(p+ q)2 −M2

− p2 + p · q +M2

[(p+ q)2 −M2]
2 · 2(p+ q)µ

]
,

(2.46)

and

1
2
∂2Π(0)
∂qµ∂qν q

µqν=iTr ∫ d4p

(2π)4
6p+M

p2
0−E

2
p

[
− 26q(p·q)

(p2−M2)2
+ 6p+M

(p2−M2)3
·4(p·q)2− 6p+M

(p2−M2)2
q2
]

=4itrfc
∫ d4p

(2π)4

[[
2

(p2−M2)3
+ 8M2

(p2−M2)4

]
(p·q)2−

(
1

(p2−M2)2 + 2M2

(p2−M2)3

)
q2

]
;

(2.47)

as a result2,

1

2

∂2Γ(0)

∂qµ∂qν
qµqν = iTr

∫
d4p

(2π)4

[
− 2

(p2 −M2)
2 +

2M2

(p2 −M2)3
+

8M4

(p2 −M2)4

]
=

(
2I2 + 2M2I3 − 8M4I4

)
q2. (2.49)

The effective Lagrangian in quadratic order of σ̂, from the calculations (2.41) –
2We have used, in Euclidean space,∫

d4p g(p2)(p · q)2 =

∫
d4p g(p2)

p2q2

4
(2.48)

for arbitrary function g(p2).
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(2.49), is then

L(2)
σ̂ = −Gσ̂2 + 2G2

(
4I1 − 8M2I2

)
σ̂2

+2G2
(
2I2 + 2M2I3 − 8M4I4

)
∂µσ̂∂

µσ̂

= −16G2M2I2σ̂
2 + 2G2

(
2I2 + 2M2I3 − 8M4I4

)
∂µσ̂∂

µσ̂. (2.50)

where we have again used the gap equation (2.16).
Similarly for the pion field,

S
(2)
π̂ = 2G2i

∫
d4p

(2π)4

d4q

(2π)4
Tr
[

1

6 p−M
iγ5τ · π(q)

1

6 p+ 6 q −M
iγ5τ · π(−q)

]
≡ 2G2

∫
d4q

(2π)4
Π′(q)π(q) · π(−q); (2.51)

we have used trτaτb = 2δab and the fact that quarks are diagonal in flavor space.
The polarization operator in the pseudoscalar channel is

Π′(q) = i

∫
d4p

(2π)4
Tr [G(p)iγ5G(q − p)iγ5] . (2.52)

Again expanding in long wavelength limit, using

Π′(0) = 4I1 (2.53)

and

1

2

∂2Π′(q)

∂qµ∂qν
qµqν = 2iNfNc

∫
d4p

(2π)4

[
− 2q2

(p2 −m2)2
+

4(p · q)2

(p2 −m2)3

]
=

(
2I2 + 2M2I3

)
q2; (2.54)

we find the Lagrangian for the pions at quadratic order is

L(2)
π̂ = 4G2

(
I2 +M2I3

)
∂µπ̂ · ∂µπ̂, (2.55)

where the non-derivative mass term has been cancelled out due to the gap
equation again; this confirms the Goldstone theorem which states that the pions
as the NG bosons should be massless.

As it turns out, the full structure of the effective action for σ̂ is only revealed
at higher orders. Thus, we compute the 3rd and 4th order terms for the σ field:

S
(3)
σ̂ = −i1

3
tr [G2Gσ̂]

3
= −i8

3
G3tr [Gσ̂]

3

= −i8
3
G3Tr

∫
d4pd4q1d

4q2

(2π)12
G(p)G(p− q1)G(p+ q2)σ̂(q1)σ̂(q2)σ̂(−q1 − q2);

(2.56)

at the point interaction level, i.e. neglecting momentum dependence from the

24



quark propagators, we have

S
(3)
σ̂ ≈ −i8

3
G3Tr

∫
d4p

(2π)4
G(p)3

∫
d4q1d

4q2

(2π)8
σ̂(q1)σ̂(q2)σ̂(−q1 − q2)

= −8

3
G3

∫
d4x σ̂(x)3iTr

∫
d4p

(2π)4
G(p)3. (2.57)

Using

iTr
∫

d4p

(2π)4
G(p)3 = iTr

∫
d4p

(2π)4

(
6 p+M

p2 −M2

)3

= 4iM

∫
d4p

(2π)4

[
3

(p2 −M2)2
+

4M2

(p2 −M2)3

]
= −12MI2 + 16M3I3, (2.58)

we have

L(3)
σ̂ = G3M

(
32I2 −

128

3
M2I3

)
σ̂3. (2.59)

In the 4th order,

S
(4)
σ̂ = i

1

4
tr [G2Gσ̂]

4

= 4G4

∫
d4xσ4(x)iTr

∫
d4p

(2π)4
G(p)4 + . . . ; (2.60)

using

iTr
∫

d4p

(2π)4
G(p)4

= 4iTr
∫

d4p

(2π)4

[
1

(p2 −M2)2
+

8M2

(p2 −M2)3
+

8M4

(p2 −M2)4

]
= −4I2 + 32M2I3 − 32M4I4 (2.61)

we have

L(4)
σ̂ = 4G4 ·

(
−4I2 + 32M2I3 − 32M4I4

)
σ̂4. (2.62)
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Summing over all contributions, the effective Lagrangian for the σ̂ and π̂ is

Lσ̂,π̂ =

4∑
i=1

L(i)
σ̂ +

2∑
i=1

L(i)
π̂

= −16G2M2I2σ̂
2 + 32G3MI2σ̂

3 − 16G4I2σ̂
4

+4G2
(
I2 +M2I3 − 4M4I4

)
∂µσ̂∂

µσ̂

+4G2
(
I2 +M2I3

)
∂µπ̂ · ∂µπ̂

= 4G2
(
I2 +M2I3 − 4M4I4

)
∂µσ̂∂

µσ̂ + 4G2
(
I2 +M2I3

)
∂µπ̂ · ∂µπ̂

−16I2G
4
(

(σ̂ + σ)
2 − σ2

)2

. (2.63)

Intriguingly, the coefficient in front of the kinetic energy terms for σ̂ and π̂ are
different. This is a result of expanding theory in a chirally broken state, i.e.
σ 6= 0; the isospin space is no longer isotropic in terms of energy cost of space-
dependent fluctuations. Nevertheless, the difference ∼ I4 is a finite quantity,
while in the renormalization of the field operators which we will introduce in
later sections involves absorbing the divergent quantity I2; as a result, the renor-
malized theory still has chirally invariant kinetic energy term. One can show
that if we chose a different ground state, e.g. π3 6= 0 while σ = π1 = π2 = 0,
then the kinetic energy coefficient for π3 will lose the I4 term, which will be
obtained by the σ instead.

A pattern of S(n)
σ̂,π̂ can be observed in terms of the coefficients in front of

Ins, if we re-arrange the terms in the Lagrangians according to Ins instead of
powers of σ̂ and π̂. In fact, if one computes S(n)

σ̂,π̂ even further, one finds that
the coefficient for each In will always be proportional to the nth power of

(σ̂ + σ)2 + π̂2 − σ2 = σ̂(σ̂ + 2σ) + π̂2 ≡ ε; (2.64)

the potential part of the boson Lagrangian is actually an expansion in powers
of ε. Computing up to eight power in σ̂ and π̂, one can verify that the potential
energy term (the point interactions) in the effective Lagrangian for the bosons
is

Lpotential
σ̂,π̂ =

(
8G2I1 −G

)
ε− 16G4I2ε

2 +
128

3
G6I3ε

3 − 128G8I4ε
4 + . . . (2.65)

where the linear term vanishes if we apply the gap equation. Thus, we are
essentially expanding around the extremum point of a Mexican hat potential
around the scalar state configuration (see Fig. 2.1) for σ̂, which grants a σ̂ mass
as expected; meanwhile, the NG boson modes, π̂, remain massless.

When the chiral symmetry is explicitly broken by a finite bare quark mass
mq, additional terms involving the mean fields will appear in the effective the-
ory. One can shift the mean field value σ by mq/2G to absorb it in the quark
inverse propagator. This shift will introduce a term linear in σ in the mean field
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potential term:

V = G[(σ̂ + σ)2 + (π̂ + π)2]→ G[(σ̂ + σ)2 + (π̂ + π)2] +mq(σ̂ + σ);

(2.66)

such a shift will modify the gap equation for σ into

σ +
mg

2G
= 8GI1σ. (2.67)

As a result, the linear term in ε will no longer vanish:

(8G2I1 −G)ε =
mq

2σ
ε. (2.68)

Since ε contains a quadratic term for the pions π̂, this linear term will grant
the pions a mass; this corresponds to the “tilting” of the Mexican hat potential
due to explicit chiral symmetry breaking. For mq > 0, the negative solution of
σ will be favored, since it reduces the extra potential energy caused by the mqσ

term.
The effective pion-σ̂ bosonized theory we have derived in this section is struc-

turally similar to the linear sigma model used in nuclear matter. We next show
that through renormalization, our bosonized theory can be exactly transformed
into a quark linear sigma model.

2.2 Deriving the linear sigma model for quark

matter

In this section we demonstrate how to transform the boson Lagrangian (2.63),
combined with the quark sector Lagrangian

Lq = q̄Gq, (2.69)

into the linear sigma model.3 So far, the bosonized theory obtained via the
Hubbard-Stratonovich transformation,

LHS = Lσ̂,π̂ + Lq, (2.70)

is not well-defined without a cutoff Λ in the momentum integration; the in-
tegrals, In, appearing in the kinetic and potential energies of the boson fields
in Lσ̂,π̂, are ultraviolet divergent for n = 1, 2. The I1, appearing in the gap
equation, is quadratically divergent ∼ Λ2, and I2 is logarithmically divergent
∼ ln Λ/M .

By renormalizing the boson fields and boson-quark coupling vertex, one
3For a more sophisticated formalism of this transformation in terms of renormalization

group, see Ref. [38].
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can absorb such divergences into field re-definitions, and arrive at a cutoff-
independent theory. To do so, we re-scale the boson fields into renormalized
fields σ̂R and π̂R:

2G
√

2I2σ̂ = −σ̂R, 2G
√

2I2π̂ = −π̂R; (2.71)

further more, define dimensionless coupling constants

g =
1√
2I2

, λ =
1

I2
, (2.72)

and the vacuum expectation value of the rescaled field

fπ = σR; (2.73)

ignoring all terms of order In≥3/I2, the HS Lagrangian then takes the form

L =
1

2
(∂π̂R)

2
+

1

2
(∂σ̂R)

2
+ q̄

(
i/∂ − g (σ̂R + iγ5τ · π̂R) + γ0µ

)
q

−λ
4

(
σ̂2
R + π̂2

R − σ2
R0

)2
+ fπm

2
πσ̂R. (2.74)

Here, we have shifted a mean field value σR back to σ̂R, and restored an explicit
coupling of σ̂R with the quark field; also

m2
π ≡ gmq

2Gfπ
,

σR0 ≡ f2
π −

m2
π

λ
. (2.75)

The Lagrangian (2.74) is precisely the linear sigma model for Nf = 2 quarks,
and contains the same physics as the bosonized NJL quark Lagrangian. The
quantities fπ and mπ are interpreted as the physical pion decay constant and
mass; they naturally obey the Gell-Mann–Oaks–Renner (GMOR) relation,

f2
πm

2
π =

gfπmq

2G
= −σmq = −〈q̄q〉mq; (2.76)

that is, the bare quark mass contributes linearly at leading order to the pion
mass squared. The nucleon linear sigma model can be obtained by simply
replacing the isospin doublet of quarks (u, d) by the nucleons (p, n).

The linear sigma model has been particularly useful in studying the pion
condensation in nuclear matter. In the following section, we use both the NJL
model and the quark linear sigma model to study possible pion condensation
in both the Dirac sea sector and the medium sector, to study the potential
connection of pion condensation in nuclear matter to that in quark matter.
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2.3 Pseudoscalar meson condensation: mean

field, self-energy, and connection with

nuclear matter pion condensation

The small masses of the pions combined with the fact that they are bosons
make them vulnerable to possible Bose-Einstein condensation, a macroscopic
occupation of the lowest energy state. The possible presence of such condensates
would have profound implications on the neutron star cooling process. In this
section we study two particular examples of possible pion condensation: the
dual chiral density wave (Sec. 2.3.1) [39] and the running wave charged pion
condensation (Sec. 2.3.2) [3] at the mean field level, demonstrating how they
effectively reduce the Dirac sea energy, thus becoming energetically favorable
compared to scalar state. We go beyond mean field at Sec. 2.3.3 for the running
wave charged pion condensate and consider the pion-quark interaction energy;
the resulting self-energy for the pions turns out to have the same structure as
pion-nucleon s- and p-wave interactions together.

A pion condensation can be characterized by an arbitrary configuration of
π 6= 0; it may point into any direction in the isospin space, and the condensate
can be either homogeneous or inhomogeneous. In ultradense matter, it is yet
uncertain what realistic condensation phase might appear. We may parametrize
the pion condensates on the isospin sphere in general as

π1 = κ sinψ sin θ sinφ,

π2 = κ sinψ sin θ cosφ,

π3 = κ sinψ cos θ,

σ = κ cosψ (2.77)

for ψ 6= 0; κ2 = σ2 + π2 is a chirally invariant order parameter for chiral
symmetry breaking, and simply κ = σ in the scalar state. Here, ψ, θ and φ are
isospin spherical coordinates that can be spatially dependent; there are many
different such possibilities. When θ, φ are constants, the pion condensation is
spatially homogeneous; the θ = 0 condensate will correspond to neutral π0

condensation, and θ = π, φ = −π/4 correspond to charged π− condensation,
etc. For spatially dependent condensates, we consider two popular possible
scenarios in this study. The first is a dual chiral density wave, featuring spatially
oscillating neutral pion condensation in the z direction with wave number gz:

σ(x) = κ cos 2gzz, π3(x) = κ sin 2gzz, π1 = π2 = 0; (2.78)

this corresponds to ψ = 2gzz, θ = φ = 0. The other case, the running wave
charged pion condensation with wave number k in z direction, assumes the
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condensation of charged pions instead:

σ(x) = κ cosψ, π1 = κ sinψ cos kz, π2 = κ sinψ sin kz, π3 = 0; (2.79)

this corresponds to ψ = constant, θ = π/2 and φ = π/2−kz. This running wave
condensate is still spatially homogeneous, since the magnitude corresponding to
the charged pion π1+iπ2 = π− is constant; only its phase is spatially dependent.

The physical arguments for the dual chiral density wave and the charged
pion running wave condensates are different. For the dual chiral density wave,
the oscillation of π3 component of the isospin periodically reduces the effective
mass gaps of some states, thus lowering the energy of the Dirac sea. For the
charged pion running wave condensate, it is caused by the p-wave attractive
interaction between the pions and the nucleons, plus the big isospin asymmetry
of the ground state. We discuss these two different possibilities in details in the
following sections, using the NJL quark model in mean field. For the running
wave condensate, we also connect it to the nuclear matter results, since the NJL
quark model is equivalent to a linear sigma model; the latter can be precisely
used to study pion condensation in nuclear matter.

2.3.1 Dual chiral density wave

The physics of the dual chiral density wave, corresponding to a spatially os-
cillating neutral pion condensation, can be studied using the mean field NJL
Lagrangian

L = q̄
(
iγµ∂µ + γ0µ+ 2Gσ + 2Giγ5τ3 · π3

)
q −G

(
σ2 + π2

3

)
≡ q̄G−1q −G

(
σ2 + π2

3

)
(2.80)

where we have set π1 = π2 = 0. The quark inverse propagator is diagonal in
isospin (flavor) space:

G−1 =

(
G−1
u 0

0 G−1
d

)
, (2.81)

where, in the Dirac basis,

G−1
u =

(
ω + 2Gσ −σ · p+ 2iGπ3

σ · p+ 2iGπ3 −ω + 2Gσ

)
,

G−1
d =

(
ω + 2Gσ −σ · p− 2iGπ3

σ · p− 2iGπ3 −ω + 2Gσ

)
. (2.82)

We first consider the homogeneous case where σ, π3 are constants. The energy
eigenvalues, ω(p), are obtained by solving

detG−1(ω(p),p) = 0; (2.83)
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the up and down quark energies in this case are degenerate:

ωu(p) = ωd(p) = ±
√

4G2 (σ2 + π2
3) + p2. (2.84)

This is expected, since the effective quark mass, a physical observable, can only
depend on the chirally invariant quantity σ2 + π2.

For a dual chiral density wave in k̂ = ẑ direction with wave number k = 2gz ẑ,
σ and π3 are functions of spatial coordinates as given by (2.78). We can also
write the condensate compactly as

σ(x) + iπ3(x) = κeik·x; (2.85)

then the action of this condensate on the quark field in the momentum space
is equivalent to a Lorentz boost in k direction. To use this interpretation,
we consider the equation of motion of the up quark field in the mean field
Lagrangian (we write q = (u, d)T ; the down quark case is identical but with
opposite sign in the γ5 term),

[iγµ∂µ + 2Gσ(x) + 2Giγ5π3(x)]u(t,x) = 0; (2.86)

in momentum space, this equation becomes

0 =

∫
d3q

(2π)3

[
iγ0∂t − γ · q +Gκ

(
eik·x + e−ik·x

)
+iγ5Gκ

(
eik·x − e−ik·x

)]
eiq·xu(t, q)

(2.87)

which further implies

[
iγ0∂t − γ · q

]
u(t, q) +Gκ [1 + iγ5]u (t, q − k)

+Gκ [1− iγ5]u (t, q + k) = 0.

(2.88)

The equation of motion, (2.88), is analogous to lattice solid state physics where
sites on the reciprocal lattice ψ(q) and ψ(q + Nk), N = 0,±1, . . . are coupled
to each other via interactions, and the wave vector k spans the space of the
solutions. We can thus use similar techniques to solid state physics to solve the
quasiparticle energies by boosting the fields; such a task is easier done in the
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chiral basis, where the up quark part of the Lagrangian reads

q̄G−1q

= ū

(
−2iGκ sink · x+ 2Gκ cosk · x ω + iσ · O

ω − iσ · O 2iGκ sink · x+ 2Gκ cosk · x

)
u

+d̄

(
−2iGκ sink · x− 2Gκ cosk · x ω + iσ · O

ω − iσ · O 2iGκ sink · x− 2Gκ cosk · x

)
d

=
(
u†L u†R

)( ω − iσ · O 2Gκeik·x

2Gκe−ik·x ω + iσ · O

)(
uL

uR

)

+
(
d†L dR†

)( ω − iσ · O 2Gκe−ik·x

2Gκeik·x ω + iσ · O

)(
dL

dR

)
. (2.89)

We apply the following boost to the quark fields,

q → q′ = ei
1
2γ5τ3k·xq; (2.90)

this corresponds to a boost differently to left and right handed fields for up
quarks(

uL

uR

)
→

(
e−i

1
2k·xuL

ei
1
2k·xuR

)
=

(
e−i

1
2k·x

ei
1
2k·x

)(
uL

uR

)
=

(
u′L
u′R

)
(2.91)

and down quarks(
dL

dR

)
→

(
ei

1
2k·xdL

e−i
1
2k·xdR

)
=

(
ei

1
2k·x

e−i
1
2k·x

)(
dL

dR

)
=

(
d′L
d′R

)
.

(2.92)

Under these transformations, since

σ = 〈q̄q〉 = 〈u†LuR + u†RuL + d†LdR + d†RdL〉,

π3 = 〈q̄iγ5τ3q〉 = i〈−u†RuL + u†LuR + d†RdL − d
†
LdR〉, (2.93)

we obtain

σ + iπ3 = 2〈u†RuL + d†LdR〉 → e−ik·x (σ + iπ3) ; (2.94)

this implies that the potential term ∼ σ2 + π2
3 is still invariant even under this

spatially dependent transformation.
The inverse propagators for the up and down quarks are

G−1
u,d(ω,p) =

(
ω + 2Gκ cos(k · x) −σ · p± 2iGκ sin(k · x)

σ · p± 2iGκ sin(k · x) −ω + 2Gκ cos(k · x)

)
, (2.95)
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where + is for up quark and − for down quark. The kinetic energy however will
produce extra terms due to this boost, as

u†LOuL = u
′†
L

(
O− i

2k
)
u′L,

u†ROuR = u
′†
R

(
O + i

2k
)
u′R. (2.96)

As a result, the final quark inverse propagators for the new fields q′ = (u′, d′)T

are

G−1
u (ω,p) =

(
ω + σ ·

(
p− 1

2k
)

2Gκ

2Gκ ω − σ ·
(
p+ 1

2k
) ) ,

G−1
d (ω,p) =

(
ω + σ ·

(
p+ 1

2k
)

2Gκ

2Gκ ω − σ ·
(
p− 1

2k
) ) . (2.97)

The inverse propagator for down quark is simply the same as that of the up
quark but with k → −k, so we can focus on the up quark only. After some
algebra, detG−1

u (ω,p) = 0 is

det

[(
ω + σ ·

(
p− 1

2
q

))(
ω − σ ·

(
p+

1

2
q

))
−M2

]
= 0, M ≡ −2Gκ.

(2.98)

Using (
ω + σ ·

(
p− 1

2
k

))(
ω − σ ·

(
p+

1

2
k

))
= ω2 − ωσ · k − p2 +

1

4
k2 − 1

2
[σ · p,σ · k]

= ω2 − ωσ · k − p2 +
1

4
k2 − i (p× k) · σ, (2.99)

the determinant equation further reduces to

det

(
ω2 − ωkz − ε2p + 1

4k
2 −i (p× k)x − (p× k)y

−i (p× k)x + (p× k)y ω2 + ωkz − ε2p + 1
4k

2

)
= 0,

where εp = (M2 + p2)1/2. Finally, using[
(p× k)y − i (p× k)x

] [
−i (p× k)x − (p× k)y

]
= − (p× k)

2
x − (p× k)

2
y

= − (p× k)
2

= (p · k)
2 − k2p2, (2.100)

we arrive at (
ω2 − ε2p +

1

4
k2

)2

− ω2k2 + k2p2 − (p · k)
2

= 0. (2.101)
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The solutions to (2.101) are

ω(p) = ±
√
ε2p + 1

4k
2 ±

√
k2M2 + (p · k)

2
, (2.102)

where the two “±” are independent of each other.
The quasiparticle energies (2.102) help us to understand why the dual chiral

density wave is more favorable than a mere homogeneous condensate. In the z
direction,

ω(p) = ±
√
ε2p + 1

4k
2 ±

√
k2M2 + (p · k)

2
, (2.103)

and in the transverse direction to z,

ω(px) = ±
√
M2 + p2

x +
1

4
k2
z ± kzM = ±

√(
M ± 1

2
kz

)2

+ p2
x. (2.104)

We can see that kz splits the energy levels, and acts as effective modifications
to the chiral mass M of the quasiparticles; such effects lower the energy of
the Dirac sea, making this dual chiral density wave state more energetically
favorable than the homogeneous scalar state. Indeed, in numerical studies the
dual chiral density wave is found to be more favorable than the scalar state at
intermediate density [40].

2.3.2 Running wave charged pion condensation

We now turn to the running wave charged pion condensate at mean field, char-
acterized by [3]

π(x) =
1√
2
κ sin θ eik·x, (2.105)

π0(x) = 0, (2.106)

σ(x) = κ cos θ. (2.107)

Like the chiral density wave, we can understand the origin of energy lowering
from the quasiparticle excitations; the techniques will be similar. The mean
field quark inverse propagator is now

G−1 = i/∂ + 2Gκ

(
cos θ + iγ5

(
0 e−ik·x sin θ

eik·x sin θ 0

))
= /p+ 2Gκ

[
cos θ + iγ5

(
τ+e
−ik·x + τ−e

ik·x) sin θ
]
, (2.108)

where the rising and lowering operators in isospin space are

τ± =
1

2
(τ1 ± iτ2) . (2.109)
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To simplify the calculation, we first perform a chiral boost along the τ3 axis

q(x)→ e−ik·x
1
2 τ3q(x) = q′(x); (2.110)

together with the properties

e−ik·x
1
2 τ3τ±e

ik·x 1
2 τ3 = τ±e

∓ik·x, (2.111)

we have

G−1 = i/∂ +
1

2
τ3γ · k + 2Gκeiγ5τ1θ. (2.112)

The axial phase angle along τ1 direction can be further rotated away by another
transformation

q → e−
1
2 iγ5τ1θq, q̄ → q̄e−

1
2 iγ5τ1θ; (2.113)

together with

e−
1
2 iγ5τ1θτ3γ · ke−

1
2 iγ5τ1θ

=

(
cos

θ

2
− iγ5τ1 sin

θ

2

)
τ3γ · k

(
cos

θ

2
− iγ5τ1 sin

θ

2

)
= τ3γ · k cos2 θ

2
+ τ1τ3τ1γ · k sin2 θ

2
− 1

2
i (τ3τ1γ · kγ5 + τ1τ3γ5γ · k) sin θ

= γ · k (τ3 cos θ + γ5τ2 sin θ) , (2.114)

we finally obtain

G−1 =

(
i/∂ + 1

2γ · k cos θ −M − i
2γ · kγ5 sin θ

i
2γ · kγ5 sin θ i/∂ − 1

2γ · k cos θ −M

)
, (2.115)

or, in chiral basis q = (uL, uR, dL, dR)T ,

G−1 =


ω + σ · p− M − i

2σ · k sin θ 0

M ω − σ · p− 0 − i
2σ · k sin θ

i
2σ · k sin θ 0 ω + σ · p+ M

0 i
2σ · k sin θ M ω − σ · p+

 ,

(2.116)

where p± ≡ p± 1
2k cos θ. The energy eigenvalues solved from detG−1 is then

ω = ±
√
ε2p +

1

4
k2 ±

√
(p · k)

2
+M2k2 sin2 θ, (2.117)

which is similar in form to the quasiparticle energies of the dual chiral density
wave (2.102). When θ = π/2, the two types of condensation have exactly
the same quasiparticle energies. This is a less obvious consequence of chiral
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symmetry. For θ = π/2, the running wave charged pion condensate moves on a
circle of radius κ on the 4-sphere in the (σ,π) space; this circle is the intersection
of the π1, π2 plane with the 4-sphere. The dual chiral density wave also moves
on a circle like this, but on the interaction of the σ, π3 plane with the 4-sphere
instead. When isospin symmetry is respected, these two “paths” are equivalent,
and one can go from one circle to the other by a rotation in the (σ,π) space.
When θ 6= π/2, the path of the running wave charged pion condensate on the
4-sphere is a circle with radius κ sin θ, and can no longer be transformed into
the other circle (the dual chiral density wave) which has a different radius.

So far we have only considered the reduction in Dirac sea energy due to the
condensates. We now consider medium effects. In the nuclear matter or quark
matter at low density, isospin symmetry is broken by charge neutrality. Since up
quarks carry charge 2/3 and down quarks -1/3, there are in general almost twice
many down quarks than up quarks (the amount of leptons in nuclear matter
up to 2n0 is usually small compared to quark density); the chemical potential
for charged pions µπ is equal to the electric charge chemical potential µQ –
the energy change to the system by increasing the total charge by unity. With
excessive down quarks, it can become energetically favorable for a down quark
to become an up quark via emitting a π− due to the difference in Fermi sea. If
such process yields more energy gain from moving a high momentum state to a
low momentum state in quark sector than the energy cost of producing a pion,
then the system will spontaneously generate pions; a pion condensate will be
formed. This energy consideration is a simple but useful criteria for the onset
of pion condensation. On the other hand, the neutral pion does not couple to
electric charges, and thus does not receive favors from isospin asymmetry.

2.3.3 Charged pions in dense matter beyond mean field

Having considered the Dirac sea effect of the dual chiral density wave and
charged pion running wave condensates, we now consider, beyond mean field,
charged pions π± in dense quark matter, and how their self-energy is affected
by interaction with the medium. We assume the system to be in a scalar state
π = 0.

In the bosonized theory, the effective action in quadratic order in π̂ ≡ π̂1 +

iπ̂)2 as computed in Sec. 2.1.3 yields the charged pion inverse propagator up to
a renormalization constant

G−1
π (k) = Bπ(k)− 1

2G
,

Bπ(k) = NfNci

∫
p

tr[Gu(p− k)iγ5Gd(p)iγ5]. (2.118)

The pion dispersion relation is again detG−1
π (ω,p) = 0. To solve this equation,
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we first compute the bubble (cf. Eq. (4.1))

Bπ(k) = 2NfNci

∫
p

[
1

(p0 + µu)2 − ε2p
+

1

(p0 + µd)2 − ε2p

− (k0 − µu + µd)
2 − k2[

(p0 − k0 + µu)2 − ε2p−k
] [

(p0 + µd)2 − ε2p
]


= J1 +
1

2
k2J2(k2). (2.119)

Evaluating J2(k2), we find

1

4NfNc
J2(k2)

= −i
∫
p

1[
(p0 − k0 + µu)2 − ε2p−k

] [
(p0 + µd)2 − ε2p

]
=

∫
p

T
∑
n

(iωn − k0 + µu − εp−k)
−1

(iωn − k0 + µu + εp−k)
−1

× (iωn + µd − εp)−1
(iωn + µd + εp)

−1

=

∫
p

T
∑
n

1

4εpεp−k

(
1

iωn − k0 + µu − εp−k
− 1

iωn − k0 + µu + εp−k

)
×
(

1

iωn + µd − εp
− 1

iωn + µd + εp

)
=

1

4NfNc
(Jpp + Jp̄p̄ + Jp̄p) , (2.120)

where the particle-particle (pp), antiparticle-antiparticle (p̄p̄), and particle- an-
tiparticle (p̄p) contributions are

Jpp = 4NfNc

∫
p

1

4εpεp−k

[
f(εp−k − µu)− f(εp − µd)

k0 + µπ + εp−k − εp

]
,

Jp̄p̄ = 4NfNc

∫
p

1

4εpεp−k

[
f(εp + µd)− f(εp−k + µu)

k0 + µπ − εp−k + εp

]
,

Jp̄p = 4NfNc

∫
p

1

4εpεp−k

[
−1− f(εp−k + µu)− f(εp − µd)

k0 + µπ − εp−k − εp

+
1− (εp + µd)− f(εp−k − µu)

k0 + µπ + εp−k + εp

]
;

(2.121)

the pion chemical potential is µπ = µd − µu. Together with the gap equation
(2.23), we find the dispersion equation

0 = k2 [Jp̄p(k) + Jpp(k) + Jp̄p̄(k)]− 2mq

GM
, (2.122)

The antiparticle term Jq̄q̄ vanishes at T = 0. The particle-antiparticle term,
Jp̄p, is made of a logarithmically divergent piece plus a finite medium term; in
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the vacuum, this term is absorbed during field renormalization, and is related
to the I2 term in Sec. 2.2 by

Jp̄p(0) = 4I2. (2.123)

Further more Jp̄p(k) only has a weak k-dependence, since the correction in
powers of k will be at most finite, compared to the logarithmically diverging
zeroth order term. Thus, we replace Jp̄p(k) by I2, which will be absorbed in the
renormalization procedure. Using g−2 = 2I2 and the GMOR relation derived
earlier, we find that the dispersion relation can be written as

0 = ω2 − k2 −m2
π −

g2

2

(
ω2 − k2

)
Jpp(k)

≡ ω2 − k2 −m2
π −Π(ω,k), (2.124)

where we use Π(ω = k0 + µπ,k) to denote the self-energy, a consequence of the
particle-particle term; it corresponds to the interaction between pion and the
quarks:

Π(ω,k) =
1

2
NfNc

∫
p

g2(ω2 − k2)

εpεp−k
× f(εp − µd)− f(εp−k − µu)

ω + εp−k − εp
. (2.125)

If we consider long wavelength limit k�M , then

Π(ω,k) ≈ 1

2
NfNc

∫
p

g2(ω2 − k2)

ε2p
× f(εp − µd)− f(εp − µu)

ω

= ωg2 1

2
NfNc

∫
p

fd − fu
ε2p

− k
2

ω
g2 1

2
NfNc

∫
p

fd − fu
ε2p

≡ Πs(ω,k) + Πp(ω,k), (2.126)

where we write fu,d(p) = f(εp − µu,d) for short. In the limit of heavy quarks
M →∞, the two parts of the self-energy become

Πs =
ω

2f2
π

(nd − nu), Πp = − k2

2ωf2
π

(nd − nu). (2.127)

The self-energies (2.127) are effectively the repulsive s-wave and attractive p-
wave interaction contribution to the pion self-energy in nuclear matter, as we
now demonstrate below.

In nuclear matter consisting of neutrons and protons, the p-wave pion-
nucleon interaction Hamiltonian is [3]

Hp−wave = −
√

2
f

mπ

∫
r

[
ψ+
nσ · Oπψp + h.c.

]
, (2.128)

where ψn,p are non-relativistic neutron/proton field operators, σ the Pauli
matrices, π the charged pion field, and the rationalized coupling constant f ,
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which is related to the fully renormalized π − N coupling constant gN by
f/mπ = gN/2mN ,mN being the nucleon mass. The dimensionless coupling
constant gA is defined to be gA = fπgN/mN , and has a numerical value ≈ 1.36

after renormalization of the nucleon axial current. The energy shift due to a
pion with momentum k added to the medium, ∆E(k) can be evaluated via
second-order perturbation theory:

∆E(k) =
∑
`

|〈`|Hp−wave|0〉|2

E0 − E`
, (2.129)

summed over all intermediate states labeled by `. In the nuclear medium two
processes can happen:

n+ π− → 2π− + p,

p+ π− → n. (2.130)

For the first process, the matrix element of a neutron decaying into a pion and
a proton is

〈π−p|Hp−wave|n〉 = −
√

2
f

mπ
s∗p

(
σ · −ik√

2ωkV

)
sn, (2.131)

where sn,p are the neutron/proton spinors, V is the 3-volume, and ωk = (m2
π +

k2)1/2 is the free pion energy; then the starting state energy is ωk + p2/2mN

(p is the neutron momentum), and the intermediate state energy is 2ωk + (p−
k)2/2mN . Thus the energy shift for this first process is

∆E1 =
2

ωkV

(
fk

mπ

)2∑
p

fn(p)(1− fp(p− k))

−ωk + p2

2mN
− (p−k)2

2mN

. (2.132)

Similarly, the contribution from the second process is

∆E2 =
2

ωkV

(
fk

mπ

)2∑
p

fp(p)(1− fn(p− k))

ωk − p2

2mN
+ (p−k)2

2mN

. (2.133)

The pion energy is then ω = ωk + ∆E, where ∆E = ∆E1 + ∆E2. At leading
order in k2, we find

ω2 = ω2
k + 2ω∆E +O(k2)

= ω2
k −

(
gAk

fπ

)2 ∫
p

fn(p)− fp(p− k)

ωk + Ep−k − Ep
≡ ω2

k + Π(N)
p (ωk,k). (2.134)

where the non-relativistic nucleon energies are Ep = p2/2MN and the nucleon
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distribution functions fp,n(p) = f(Ep − µp,n). The dispersion equation is then

0 = ω2 − k2 −m2
π −Π(N)

p (ωk,k). (2.135)

Equation (2.135) can be improved by using in-medium pion states instead of
free pion states. This is done by replacing the free pion energy in the self-energy
term ωk by the in-medium energy ω, resulting in a self-consistent description.

The s-wave repulsive interaction between nucleons and charged pion is

Hs−wave =
1

4f2
π

(
ψ†nψn − ψ†pψp

)
i
(
π†∂0π − ∂0π

†π
)
, (2.136)

resulting in additional self-energy

Π(N)
s (ω,p) =

ω

2f2
π

(nn − np). (2.137)

In total, the pion dispersion equation in non-relativistic nucleon medium is

0 = ω2 − k2 −m2
π −Π(N)

p (ω,k)−Π(N)
s (ω,k). (2.138)

If we take the heavy nucleon approximation MN →∞, then

Π(N)
p (ω,k) = −g

2
Ak

2

2ωf2
π

(nn − np). (2.139)

Compared with the quark matter result (2.127) and noticing nd−nu = nn−np,
we find that the pion self-energy is identical in quark and nuclear matter at
fixed baryon and isospin density, up to an axial current renormalization factor
gA 6= 1.4 This suggests that the pions described in nuclear matter are smoothly
connected to the quark matter pions across the transition from nuclear matter
to quark matter.

We next identify the pionic modes exhibited by the dispersion relation (2.124),
which is no longer trivial when the self-energies as functions of ω are taken into
account. Let us first consider the masses of the modes at k = 0, given by the
solutions of

m2
π = ω2

(
1− NfNcg

2

ω

∫
p

f(εp − µd)− f(εp − µu)

ε2p

)
≡ ω2

(
1− A(µu, µd)

ω

)
= ω2 −A(µu, µd)ω; (2.140)

4It remains an open question how the axial current renormalization of the quark-pion
coupling will modify gA, and how such renormalization differs in the nuclear matter. We
leave this problem to future research.
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there are two solutions,

ω =
1

2

(
A(µu, µd)±

√
A(µu, µd)2 + 4m2

π

)
(2.141)

= ±mπ +
1

2
A(µu, µd) +O(A2); (2.142)

thus, we still have two modes, π− and π+, but with split masses

mπ− = mπ +A(µu, µd),

mπ+ = mπ −A(µu.µd). (2.143)

In electrically neutral matter and in the heavy quark limit M → ∞, µd > µu,
and A(µu, µd) > 0; in this case the π− mass is increased, while the π+ mass is
decreased. This is expected, since creating a π− requires changing a u quark
into a d quark, which will cost more energy than in the vacuum since the d
quark Fermi sphere is significantly larger.

When k 6= 0, additional modes will appear. In this case we need to solve

m2
π =

(
ω2 − k2

)(
1− 1

2
NfNcg

2

∫
p

1

εpεp−k
· f(εp − µd)− f(εp−k − µu)

ω − εp + εp−k

)
≡

(
ω2 − k2

)(
1− A(µu, µd,k)

ω

)
, (2.144)

where the momentum dependence of A is now important. The dispersion equa-
tion is also now third order in ω, so there are potentially three modes instead
of two. This is easier seen by assuming mπ = 0; then, in addition to the two
“free” pion modes ω = ±|k|, we have another solution

ω = A(µu, µd,k). (2.145)

The function A is decreasing as k increases and starts at A(k = 0) > 0; as a
result, two solutions will intersect at A(k) = |k|. To identify the modes with
the presence of branch crossing, we need to look at the sign of the residues
of the pion inverse propagator near the corresponding poles, i.e. zeros of the
dispersion equation. At low momentum |k| < A(k), the residue for the pole at
ω = |k| is negative, in contrast to a positive residue without medium modifica-
tion A = 0; thus, this solution actually corresponds to a quantum number of π+

instead of π−, in addition to the already existing “free” π+ mode; the energy
of such excitation is the negative of the ω, thus −|k|. This mode, denoted as
π+
s , is known as the spin-isospin zero sound mode as in nuclear matter [41],

and describes a collective excitation featuring spatial locking of nucleon (quark)
spin and isospin. The π− mode in this regime is actually the ω = A(k) solu-
tion, describing a π− mode with a mass of A(0). The “free” π+ mode remains
unchanged and remains massless.

Above the spectrum crossing point |k| > A(k), the residues for the original
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Figure 2.3: Schematic plot of the ω(k) solutions and their corresponding pionic
modes. The crossing |k| = A(k) happens at some critical momentum kc, where
the π− and π+

s modes have exactly opposite energies equal in magnitude. This
critical momentum kc will be the wave vector of the charged pion running wave
condensate at onset.

branches of π− and π+
s switche sign; as a result, the π− mode now carries

energy +|k|, and the π+
s mode has energy −A(k). The ω(k) solutions and their

corresponding pionic modes are summarized in Fig. 2.3.
At the crossing point, the total energy of producing a pair of π+

s and π−

vanishes; it becomes energetically favorable for the system to spontaneously
produce such pairs. On the other hand, the system can also produce a u particle
and d hole (denoted as ud̄), which also costs negative energy; the total energy
cost of producing π− plus a ud̄ is reduced. These two processes correspond to
two possible pathways of π− condensation. When the total energy change of
such processes is negative

δE = E(π− + ud̄) or E(π− + π+
s ) ≤ 0, (2.146)

the system becomes unstable against spontaneous production of such pairs,
and the π− mode will be generated macroscopically, eventually forming a pion
condensate. This is the pion condensation onset criteria from the pion energy
perspective. Since µQ by definition is the lowest energy cost of increasing the
system’s electric charge by unity, we can equivalently state the condensation
threshold criteria as E(π−)− µQ = E(π−)− µπ ≤ 0.

The strategy outlined in this section is easily generalized to three flavors,
even with diquark pairing. By computing the dispersion relation, obtained
from the poles of meson propagators, we identify all the mesonic modes, some
of them being collective excitations in addition to the NG bosons (e.g., the π+

s
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mode). By calculating the mode energies, we find whether there are certain
quantum-number preserving productions of such modes. If any energetically
favorable channels appear, the meson condensation will emerge; this method
also suggests the type of meson condensation.

Our demonstration of this method is based on computing meson inverse
propagator in the scalar state. However, one can compute the meson inverse
propagator at any given mean field state, even those with existing meson conden-
sation. In this way, one can check the stability of any given meson condensation;
if the condensation turns out to be unstable, the mode analysis will point out
the direction of configuration (e.g., in the chiral (σ, π) plane) in which the insta-
bility develops. Specific application of this method for realistic Nf = 3 models
can be considered in future studies.
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Chapter 3

Chiral symmetry breaking at
high density: diquark pairing

The discussions of the last Chapter are mostly relevant at lower densities where
heavy strange quarks are largely absent. As the baryon chemical potential rises,
at some point the energy cost of adding more light quarks surpasses the large
strange quark mass, and strange quarks begin to accumulate. At high density,
all three quark flavors reach similar Fermi momenta, and diquark pairing begins
to develop. The study of chiral symmetry breaking and the Nambu-Goldstone
(NG) bosons at such high density must take the strange quarks as well as the
diquark condensates into account, as we discuss in this Chapter.

The introduction of diquarks, in addition to leading to gapped quasiparti-
cles (which we discussed in Sec. 3.1), modifies the quark structure of the NG
bosons. Specifically, the fluctuations of the diquark condensate result in q̄q̄qq-
type fluctuations in the NG boson wave function. While the NG bosons have
been studied in the limits of low density (non-BCS paired) q̄q condensed matter
[42, 43, 44, 45, 46] and high density pure-BCS qq paired matter [47, 48, 49, 50]
using the Nambu-Jona-Lasinio (NJL) model [1, 2, 23], a quantitative descrip-
tion of NG mesons at intermediate densities remains an open problem. Such
a description requires adopting specific models to describe the changing phase
structure with increasing density, itself an unresolved issue [51]. In Sec. 3.2 of
this Chapter, we study the chiral structure of a simplified single flavor, single
color NJL model that includes both scalar and pseudoscalar condensates. Such
a model has a single chiral NG mode, which we refer to as the generalized pion,1

πG, corresponding to simultaneous fluctuations of the 〈q̄q〉 and 〈qq〉 order pa-
rameters. The resulting phase diagram, with properly chosen model interaction
parameters, mimics the more realistic QCD phase diagram in terms of chiral
symmetry breaking by the low and high density condensates, which are here con-
nected smoothly by a coexistence region (for sophisticated NJL constructions of
QCD phase diagram, see e.g., [27, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]).
The generalized pion continuously evolves from the vacuum pion, π, in the low
density chirally broken phase to the diquark-condensate pion, πd, in the high
density BCS phase; its mass and decay constant are continuous functions of

1The name “generalized mesons” was used, e.g., in [64], to describe the q̄q̄qq modes corre-
sponding to fluctuations of the diquark condensates at high density. For clarity, we refer in
this paper to the NG modes (a combination of q̄q and q̄q̄qq modes) as “generalized mesons,”
the q̄q̄qq modes as “diquark-condensate mesons,” and the usual q̄q modes as “vacuum mesons.”
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quark density, and obey a generalized Gell-Mann–Oakes–Renner (GMOR) rela-
tion, which we calculate to second order in mq. Its coupling vertex to the quark
field also changes continuously with increasing density.

It is remarkable that diquark fluctuations in the form of q̄q̄qq can be smoothly
connected with the chiral fluctuations q̄q to form the generalized mesons; this
results from the Nf = Nc = 3 CFL diquarks, being totally antisymmetric in
spin, color and flavor; they form a 3̄⊗ 3̄ representation of flavor and color, and
thus, qq behaves like an antiquark q̄. In addition, in Chapter 5 we will directly
construct a gauge-invariant description of diquark mesons, which are formed
by diquark-dressed quarks, screened by the colored condensate; the locking of
colors and flavors effectively “transforms” color degrees of freedom into flavors in
the dressed theory. The colors carried by the diquark fluctuations, as a result,
poses no issues in the construction of eventually gauge-invariant NG bosons.

The study presented in this Chapter is a first step in understanding in detail
the density-dependent properties of the pseudoscalar mesons extrapolated into
high density quark matter, and is readily generalized to more realistic models
with multiple flavors and colors to quantitatively study the meson mass order-
ing reversal problem [65] (e.g., the kaons, originally heavier than the pions in
the vacuum, becomes the lightest meson in the CFL phase; the pion becomes
heavier due to strange quarks). In addition to clarifying the QCD phase dia-
gram in terms of generalized meson condensation, the study of the πG mode
also contributes to understanding the thermodynamics of dense matter, and
thus eventually the interiors and cooling of neutron stars [66].

This Chapter is organized as follows. We first give an introduction to the
diquark pairing described in NJL in Sec. 3.1, in particular the color-flavor-locked
(CFL) pairing and the two-flavor, two-color partial pairing (2SC), commonly
found in quark matter phase diagram studies. Then we use a schematic NJL
model to investigate spontaneous chiral symmetry breaking in the presence of
both chiral and diquark condensates in Sec. 3.2. We lay down the roadmap to
generalization to more realistic models in Sec. 3.3 and 3.4, by presenting a self-
consistent formalism of calculating generalized meson correlation functions, and
how to perturb those correlation functions by a current (bare) quark mass mq

in order to obtain generalized GMOR relations of NG boson masses expressed
in powers of mq, thus determining the spectrum of the low energy mesonic
excitations.

45



3.1 Diquark pairing in the NJL model

3.1.1 Diquark condensates: CFL and 2SC in the NJL
model

We first consider diquark pairing alone in the NJL model, described by

L = q̄(/p− m̂q + γ0µ̂)q +H
∑
A,A′

[
|qTCiγ5τAλA′q|2 + |qTCτAλA′q|2

]
,

µ̂ = diag(µu, µd, µs), (3.1)

where A,A′ = 2, 5, 7 correspond to antisymmetric flavor and color Gell-Mann
matrices; this model describes quarks with attractive interactions in the totally
antisymmetric channel in spin, flavor and color. Such an interaction takes inspi-
ration from magnetic single gluon exchange [23], which is attractive in the color
antisymmetric channel. The diquark mean fields in the scalar channels are

sAA′ = 2H〈q̄iγ5τAλA′Cq̄
T 〉 ≡ 2H〈q̄iγ5τAλA′q

C〉, (3.2)

where qC ≡ Cq̄T is the charge conjugate quark field and C = iγ2γ0 is the charge
conjugation matrix. The nine different pairing mean fields for different flavors
and colors can be transformed into each other by gauge choices. We choose the
gauge such that

sAA′ = δAA′sA, (3.3)

a pairing state correlating colors and flavors. In particular, when sA = ∆CFL,
these condensates are invariant under the locked SU(3)CFL rotation, where one
perform the same SU(3) rotations on the flavor and color simultaneously, cor-
responding to the CFL state.

The two-color superconductor (2SC) phase, another possibility at densities
where strange quarks are significantly less dense than the light quarks, is charac-
terized by s5,7 = 0, s2 = ∆2SC 6= 0; in the 2SC state, only up and down quarks
of red and green colors pair, while strange and blue quarks do not participate
in the pairing.

The Lagrangian (3.1) respects the full symmetry group

U(1)B ⊗ U(1)A ⊗ SU(3)L ⊗ SU(3)R ⊗ SU(3)C , (3.4)

but the diquark condensates spontaneously break some of the symmetries. Un-
der U(1)B and U(1)A,

q → e−iγ5θA/2e−iθB/2q,

qC → e−iγ5θA/2eiθB/2qC ; (3.5)
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denoting the pseudoscalar mean fields pAA′ = 2H〈q̄τAλA′qC〉 which vanishes in
a scalar ground state, we find the scalar mean fields transform as

sAA′ → s′AA′ = eiφ (sAA′ cos θA + pAA′ sin θA) . (3.6)

Thus diquark condensates spontaneously break both baryon and axial U(1)
symmetries. In the chiral and color sectors, the 2SC and CFL condensates
differ, since in the former the strange blue quarks for example do not pair.
Under a SU(3)C transformation parametrized by φa and the vector subgroup
of SU(3)L ⊗ SU(3)R parametrized by θi,

q → e−iλaφa/2e−iτiθi/2q,

qC →
(
e−iλaφa/2

)T (
e−iτiθi/2

)T
qC . (3.7)

To further find the transformation relations for the condensates, we compute,
for an infinitesimal color transformation (the same applies to SU(3) vectorial
flavor transformations),

e−iλaφa/2λA

(
e−iλaφa/2

)T
≈

λA − i
φa
2 [λa, λA] = λA + φafaAbλb, a = 1, 3, 4, 6, 8;

λA − iφa2 {λa, λA} = λA − iφadaAbλb, a = 2, 5, 7;

(3.8)

here fabc (totally antisymmetric) and dabc (totally symmetric) are SU(3) struc-
ture constants, given by

[λa, λb] = 2ifabcλc, {λa, λb} =
4

3
δab + 2dabcλc; (3.9)

their values are given in Table 3.1 and 3.2. Similarly, for axial transformations
of the flavors (under which the diquark condensates are not invariant),

e−iγ5τiθi/2τA

(
e−iγ5τiθi/2

)T
≈

τA − iγ5
θi
2 [τi, τA] = τA + γ5θifiAjτj , i = 1, 3, 4, 6, 8;

τA − iγ5
θi
2 {τi, τA} = τA − iγ5θidiAjτj , i = 2, 5, 7.

(3.10)

Equations (3.8) and (3.10) can be used to calculate how sAA′ and pAA′ rotate
into each other under an arbitrary SU(3)C ⊗SU(3)L⊗SU(3)R transformation.
Table (3.3) summarizes the rotation between diquark condensates induced by
those transformations. For axial transformations, scalar and pseudoscalar con-
densates are rotated into each other, in addition to the rotation of flavors and
colors.
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abc 123 147 156 246 257 345 367 458 678
fabc 1 1/2 -1/2 1/2 1/2 1/2 -1/2

√
3/2

√
3/2

Table 3.1: Totally anti-symmetric structure constants fabc.

abc 118 146 157 228 247 256 338 344
dabc 1/

√
3 1/2 1/2 1/

√
3 -1/2 1/2 1/

√
3 1/2

abc 355 366 377 448 558 668 778 888
dabc 1/2 -1/2 -1/2 −1/2

√
3 −1/2

√
3 −1/2

√
3 −1/2

√
3 −1/

√
3

Table 3.2: Totally symmetric structure constants dabc.

In the 2SC phase, only s22 6= 0. Using Table (3.3), we find that under a
rotation corresponding to the isospin subgroup of the SU(3) chiral symmetry
(i.e., i, a = 1, 2, 3 as in Eq. (3.8) and (3.10)), s22 remains invariant. Therefore,
the 2SC phase respects a residue symmetry,

SU(2)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)Blue ⊗ U(1)S ; (3.11)

here, the U(1)S corresponds to the phase rotation of the strange quarks, and
U(1)Blue corresponds to a linear combination of baryon number and the a = 8

color generator, realizing a conservation of blue color. As a result, only 4 (up,
down, red and green) of the 9 quarks are gapped, 5 out of 8 gluons obtain a
mass from the Meissner mechanism, and the pions π±,0 cease to be NG bosons
due to the isospin symmetry being unbroken. Furthermore, the system does not
support baryon U(1) or electromagnetic U(1) supercurrents; the total number
of unbroken global U(1) symmetries remains the same [101].

In the CFL phase s22 = s55 = s77 6= 0, the residue symmetry is simply2

SU(3)CFL; (3.12)

the chiral symmetry is completely broken as in the vacuum by chiral conden-
sates, resulting in the full octet of NG bosons; all gluons acquire a Meissner
mass, and all quarks are gapped due to pairing.

3.1.2 Diquark pairing at mean field

We study the NJL model description of CFL pairing at mean field in terms of the
quasiparticle excitations. The quarks in their original basis are coupled to each
other via the diquark condensates. In mean field, the quark inverse propagator
is most conveniently written in the Nambu-Gorkov formalism, where we define

ψ ≡ (q, qC)T /
√

2; (3.13)
2There is actually an additional Z2 residue symmetry, corresponding to changing the sign of

the left or right handed quarks [101]; such symmetry is not respected by the chiral condensate.
We do not discuss this Z2 here since it is not relevant to the chiral symmetry breaking.
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i or a induced rotation between As or A′s associated structure constants
1,2 5↔ 7 d157, f257

3 5↔ 5, 7↔ 7 d355, d377

4,5 2↔ 7 d247, f257

6,7 2↔ 5 d256, f257

8 2↔ 2, 5↔ 5, 7↔ 7 d822, d855, d877

Table 3.3: Induced rotation between diquark condensates with flavor index A
and color index A′. For example, with a color transformation parametrized by
φ1, s55 will be rotated into s57, s77 will be rotated into s75, while s22 remains
invariant. As a second example, an axial chiral transformation parametrized by
θ8 will rotate s22 into p22, s55 into p55, and s77 into p77.

then in terms of the ψ field, the mean field NJL Lagrangian is

LMF = ψ̄

(
i/∂ − m̂q + γ0µ̂ iγ5

∑
A ∆†AτAλA

iγ5

∑
A ∆AτAλA i/∂ − m̂q − γ0µ̂

)
ψ −

∑
A

|∆A|2

4H

≡ ψ̄G−1
NGψ − V (∆A), (3.14)

where ∆A ≡ 2HsA, and sAA′ = δAA′sA in our gauge of choice. Since we are
formally writing qC as an independent fermion field, we are effectively doubling
the degrees of freedom using the Nambu-Gorkov spinor ψ; such degeneracy
should be removed in formal calculations involving traces and determinants of
the Nambu-Gorkov propagator.

We first focus on CFL pairing. To diagonalize G−1
NG, we first write the quark

fields in a new basis

qA =
1√
2

∑
i,a

λAaiqia, qia =
1√
2

∑
A

λAiaq
A; A = 1, . . . , 9; (3.15)

the new quark fields qA are linear combinations of quarks of different colors and
flavors, and we use λ9 = 1

√
2/3 added to the eight Gell-Mann matrices. The

conjugate quark fields in the new basis are

q̄ia =
1√
2

∑
A

λA∗ia q̄
A. (3.16)

It is straightforward to verify that canonical equal-time anti-commutation rela-
tions are preserved in the new basis:

{qA(1), qB†(2)} =
1

2
λAaiλ

B∗
bj {qia(1), q†jb(2)} =

1

2
δ(1− 2)λAaiλ

B†
ia

= δ(1− 2)
1

2
tr
(
λAλB

)
= δABδ(1− 2). (3.17)
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In the new basis, the flavor-color structure of the antisymmetric pairing becomes

qia (τA)ij (λB)ab qjb =
1

2
qS
[
λSiaλ

A
ijλ

B
abλ

K
jb

]
qK =

1

2
qS
[(
λSλB

)T
bi

(
λAλK

)
ib

]
qK

= qS
1

2
tr
[(
λSλB

)T (
λAλK

)]
qK ≡ qSΓABSKq

K . (3.18)

The vertex matrix in the new basis, ΓABSK , is symmetric in S,K, but hermitian
in A,B:

ΓABSK = Tr
[(
λSλB

)T (
λAλK

)]
= −Tr

[
λBλSTλAλK

]
= Tr

[
λKTλATλSλB

]
= Tr

[
λBTλKTλAλS

]
= Tr

[
(λKλB)TλAλS

]
= ΓABKS , (3.19)

and

ΓABSK = Tr
[(
λSλB

)T (
λAλK

)]
=
(
Tr
[
λBλKλ

T
Aλ

T
S

])∗
=

(
Tr
[
λTAλ

T
SλBλK

])∗
=
(
Tr
[
(λSλA)TλBλK

])∗
= (ΓBASK)∗. (3.20)

For q̄q̄, the vertex matrix is different from ΓABSK :

q̄ia (τA)ij (λB)ab q
∗
jb

=
1

2
q̄S
[
λS∗ia λ

A
ijλ

B
abλ

K∗
jb

]
qK∗ =

1

2
q̄S
[(
λS∗λB

)T
bi

(
λAλK∗

)
ib

]
qK∗

=
1

2
q̄STr

[
λTBλ

†
SλAλ

∗
K

]
qK∗ ≡ q̄SΓ̃ABSKq

K∗. (3.21)

When A,B = 2, 5, 7,

(Γ̃ABSK)∗ =
1

2
Tr
[
λTBλ

T
SλAλK

]
= ΓABSK . (3.22)

In our gauge choice, we only need to consider A = B = 2, 5, 7. One can show
that the matrices are then real (no summation over A):

ΓAA = Γ̃AA = (ΓAA)∗, A = 2, 5, 7. (3.23)

The pairing contribution to the inverse propagator, in the space of the new basis
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A = 1, 2, . . . , 9, is then∑
A=2,5,7

ΓAAiγ5∆A =

iγ5



∆21 . . . . .

. ∆2 . . ∆5−∆7√
3

−∆5+∆7√
6

. . ∆51 . . .

. . . ∆71 . .

. ∆5−∆7√
3

. . −∆2+2∆5+2∆7

3
−2∆2+∆5+∆7

3
√

2

. −∆5+∆7√
6

. . −2∆2+∆5+∆7

3
√

2
−2∆2−2∆5−2∆7

3


,

(3.24)

where 1 is the two-by-two identity matrix, and “ ·” denotes 0 or 02×2. In the
CFL phase, ∆2,5,7 = ∆CFL, and the giant matrix above reduces to the diagonal
form

iγ5

(
18×8 0

0 −2

)
∆CFL, (3.25)

directly indicating that eight quasiparticles resulting from the pairing will have
gap ∆CFL, while one quasiparticle will have twice the gap 2∆CFL. Since all
quarks in the new basis only pair with themselves in the CFL phase, the quasi-
particle energies are directly analogous to the BCS quasiparticle energies, but
with relativistic dispersions; assuming m̂q ≈ 0 and µ̂ ≈ µ1 at high density, the
positive energies are

E
(1)
k± =

√
(±k − µ)2 + ∆2

CFL for quasiparticles A = 1, . . . , 8,

E
(9)
k± =

√
(±k − µ)2 + 4∆2

CFL for quasiparticle A = 9. (3.26)

To derive the gap equation for the CFL mean fields, we calculate self-
consistently

∆CFL

4H
=

∆2,5,7

4H
= 〈ψ̄Γ22,55,77ψ〉 = −i

∫
p

Tr
[
GNG(p)Γ22,55,77

]
= −i

∫
p

Tr

[(
8

3
(GNG)11 (p)− 2

3
(GNG)99 (p)

)(
0 iγ5

0 0

)]
,

(3.27)

where the inverses of the propagators for the quasiparticles in the new basis are

(
G−1

NG

)
11

(p) =

(
/p+ γ0µ −iγ5∆CFL

iγ5∆CFL /p− γ0µ

)
,

(
G−1

NG

)
99

(p) =

(
/p+ γ0µ 2iγ5∆CFL

−2iγ5∆CFL /p− γ0µ

)
. (3.28)
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The calculation of paired propagators like (GNG)11,99 will be presented later
in Sec. 3.2.2. Using Eqs. (3.27) and (3.28), we obtain at zero temperature

∆CFL

2H
=

8∆CFL

3

∫
p

∑
±

[
2

E
(1)
p±

+
1

E
(9)
p±

]
. (3.29)

For 2SC pairing, we do not need to resort to a change in the quark basis, since
the pairing pattern is already one-to-one.3 At mean field, the only difference in
the 2SC phase is that only 4 quasiparticles are gapped by the same ∆2SC (since
only two flavors and two colors pair), the rest being free quarks; we thus do not
elaborate the details here. The NG modes in the 2SC phase however are very
different from the CFL phase, as we have seen from Sec. 3.1.1.

3.2 Nambu-Goldstone bosons in the presence of

diquark pairing: generalized mesons4

After introducing the diquark pairing in the NJL model at mean field, we next
study the NG bosons in the presence of diquark pairing in this section. Despite
breaking the same chiral symmetry, the diquark condensates 〈qq〉 contribute
very differently to the properties for the associated pseudoscalar NG bosons,
compared to the chiral condensate 〈q̄q〉. Unlike 〈q̄q〉, the diquark condensates
〈qq〉 are not gauge-invariant, and as a result the fluctuations of 〈qq〉 also carry
color; the NG bosons parametrized in this way are manifestly gauge-dependent
excitations, and are no longer eigenstates of electric charges. However, their
color charges can be screened by the diquark condensates themselves, and a
generalized charge – a linear combination of 8th color charge and electric charge
– remains as a good quantum number that directly matches the original electric
charges of the NG bosons in the vacuum, which we will discuss this in details
in Chapter 4.

To study the properties such as the masses and decay constants of the NG
bosons with diquark pairing, in this section we focus on a Nf = Nc = 1

schematic NJL model, emphasizing the core physics of collective modes mixing
and continuous chiral symmetry breaking via different condensates (i.e., 〈q̄q〉
and 〈qq〉), dodging the algebraic endeavors required to handle multiple SU(N)

groups. At high density, 〈q̄q〉 persists due to axial anomaly, and its contribution
to the NG bosons is as important as the 〈qq〉 condensates. We discuss in detail
such NG bosons particularly at the presence of both chiral symmetry breaking
condensates, in addition to the model itself.

3The CFL pairing in the original color-flavor basis is not manifestly one-to-one, thus re-
quiring using the new basis. Specifically, in the original basis, the CFL pairing pairs up blue
up with red down quarks, green up with red strange quarks, green down with blue strange
quarks, but the red up quarks pair up with both blue down and green strange quarks, which
is not one-to-one. Such a pattern makes it difficult to see the quasiparticle structures.

4 This section’s material is primarily based on the author’s published work [8].
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This section’s material comes primarily from the author’s published work
[8].

3.2.1 Schematic NJL model: Lagrangian, gap equations
and dispersion relations

In this subsection we specify the schematic model basics, including the pairing
gap equation and quasiparticle dispersions, for later calculations of the NG
boson properties. Our schematic model has the Lagrangian

L = q̄
(
i/∂ −mq + γ0µ

)
q +G

[
(q̄q)

2
+ (q̄iγ5q)

2
]

(3.30)

+H
[(
qT iγ5Cq

) (
q̄iγ5Cq̄

T
)

+
(
qTCq

) (
q̄Cq̄T

)]
,

whereG, the coupling strength for the four-quark chiral interaction term, andH,
the strength of the spin-singlet pairing interaction, are model parameters. Both
couplings are attractive, favoring the formation of condensates at mean field.
In the chiral limit, the Lagrangian respects a U(1)L⊗U(1)R “chiral” symmetry
of the quark field. As the norm of NJL models, which are not renormalizable,
we adopt a three-momentum cutoff Λ in our calculations, which is also a model
parameter.

This “chiral” symmetry in the model does not actually correspond to the
chiral symmetry in QCD, but the axial U(1) symmetry; however, the symmetry
breaking mechanism via chiral and diquark condensates is the same, and all
the arguments presented in this section also apply to the realistic Nf = Nc = 3

chiral symmetry breaking and the associated NG bosons, up to a flavor and color
group structure. We analogously refer to the single NG boson corresponding to
the spontaneous breaking of the axial U(1) in this model as the “pion.”

We solve this model at mean field to obtain the phases characterizing the
symmetry breaking pattern, which serves as our roadmap to study the NG
bosons at different densities. We define the four relevant mean fields,

σ = 2G〈q̄q〉, π = 2G〈q̄iγ5q〉,

∆s = 2H〈q̄iγ5Cq̄
T 〉, ∆ps = 2H〈q̄Cq̄T 〉, (3.31)

where we have chiral condensate and diquark condensates in both scalar “s” and
pseudoscalar “ps” channels; the mean field Lagrangian is

LMF = ψ̄S−1
MFψ −

σ2 + π2

4G
− |∆s|2 + |∆ps|2

4H
, (3.32)

with again the Nambu-Gorkov spinor ψ ≡ (q, qC)T /
√

2, the mean field inverse
propagator for the quarks

S−1
MF =

(
i/∂ − M̂ + γ0µ iγ5∆∗s + ∆∗ps

iγ5∆s + ∆ps i/∂ − M̂ − γ0µ

)
, (3.33)
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and the effective quark mass matrix M̂ = mq − σ − iγ5π. The fermionic quasi-
particle excitations ω(p) are from solving detS−1

MF(ω(p),p) = 0. After some
algebra, we find

ω(p) = ±
[
(mq − σ)2 + π2 + p2 + µ2 + |∆s|2 + |∆ps|2 ± 2δ(p)

] 1
2 ;

δ(p) ≡
[ (
|p|µ± Im

[
∆s∆

∗
ps

])2
+ µ2

(
(mq − σ)2 + π2

)
+ |(mq − σ)∆ps − π∆s|2

] 1
2

.

(3.34)

The leading “±” sign in ω(p) corresponds to the Nambu-Gor’kov degeneracy;
the second “±” sign in front of δ(p) corresponds to the particle-hole branches;
and the last “±” sign within δ(p) is a splitting caused by a relative phase between
∆s and ∆ps. All three “±” signs are independent of each other, making a total
of eight eigenvalues (or four physical ones, after removing the Nambu-Gor’kov
degeneracy and keeping only positive ω(p)).

The six gap equations that self-consistently determine the six mean fields
are then determined by

∂Ω

∂σ
=
∂Ω

∂π
=

∂Ω

∂∆s
=

∂Ω

∂∆∗s
=

∂Ω

∂∆ps
=

∂Ω

∂∆∗ps
= 0, (3.35)

where Ω is the grand thermodynamic potential density, easily calculated using
the fermion quasiparticle energies

Ω = −T
4∑
i=1

∫
p

[
ln
(

1 + e−ωi/T
)

+
1

2T
(ωi − ωi0)

]
.

+
σ2 + π2

4G
+
|∆s|2 + |∆ps|2

4H
. (3.36)

3.2.2 The scalar state

The six gap equations (3.35) admit non-trivial degenerate solutions due to chiral
symmetry, corresponding to energetically equivalent ground states spanned by
the symmetry group. The following solution in chiral limit mq = 0,

σ = −M, π = 0, ∆s = −i∆, ∆ps = 0, (3.37)

describes a scalar ground state with positive parity in the absence of pion con-
densation. In this state, the NG boson corresponding to spontaneous chiral
symmetry breaking originates from pseudoscalar fluctuations in π and ∆ps, as
in realistic chiral symmetry breaking in QCD. At high density, the favored di-
quark pairing channel is also likely scalar [101]. As in the vacuum NJL, this
scalar state is our starting point in studying the NG boson properties.
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In the scalar state, the inverse quark propagator becomes

S−1
0 (ω,p) =

(
/p−M + γ0µ −γ5∆

γ5∆ /p−M − γ0µ

)
, (3.38)

where we have chosen ∆s = i∆ where ∆ is real. Such a gauge choice results in
the eigenstate wave functions to be entirely real, as in the BCS theories. The
quasiparticle excitations in the scalar state reduce to

ω±(p) =
√

(ε±(p)− µ)2 + ∆2, ε±(p) = ±
√
p2 +M2, (3.39)

each with spin degeneracy of two, yielding four positive physical eigenvalues in
total. The normalized eigenvectors of the inverse propagator are

λ±(ω±(p), s) = R±(p)

(
v±(p)r(p)

u±(p)t(p)

)
,

r(p) ≡

(
s

P̂ s

)
, t(p) ≡

(
−P̂ s
s

)
, (3.40)

where s = (1, 0)T or (0, 1)T are spin-1/2 spinors, R2
±(p) ≡ (ε±(p) +M)/2ε±(p)

defines the normalization constant, and P̂ ≡ σ · p/(ε±(p) +M) is a projection
operator in spinor space; and the coherence functions v±(p), u±(p) are exactly
analogous to the non-relativistic BCS results:

v±(p) =

√
ω±(p) + ε±(p)− µ

2ω±(p)
, u±(p) =

√
ω±(p)− ε±(p) + µ

2ω±(p)
, (3.41)

which further satisfy

v±(p)2 + u±(p)2 = 1; v±(p)u±(p) =
∆

2ω±(p)
. (3.42)

The negative eigenvalues correspond to the charge conjugate fields in the Nambu-
Gorkov formalism; they are given by

λ̃±(−ω±(p), s) =

(
u±(p)r(p)

−v±(p)t(p)

)
. (3.43)

The Nambu-Gorkov inverse propagator can be written as a sum over all the
eigenvalues and eigenvectors:

S0(ω,p) =
∑
±,s

[
λ±(ω±(p), s)λ†±(ω±(p), s)

1

ω − ω±(p)

+λ̃±(−ω±(p), s)λ̃†±(−ω±(p), s)
1

ω + ω±(p)

]
γ0, (3.44)

which transforms the calculation of diagrams into products of eigenvector prod-
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ucts at each vertices. The gap equations in the scalar state reduce to two
independent ones:

M

2G
= M

∑
±

∫
p

1

ω±(p)

(
1∓ µ√

p2 +M2

)
, (3.45)

∆

2H
= ∆

∑
±

∫
p

1

ω±(p)
. (3.46)

The gap equations (3.45) and (3.46) yield the order parameters ∆ and M as
functions of µ. Since the procedure of fitting model parameters to vacuum
hadron phenomenology does not apply to our Nc = Nf = 1 schematic model,
we are free to set G,H and Λ as long as the resulting phase diagram simulates
that of realistic quark matter. To study the particularly interesting region where
chiral condensate and diquark condensate coexist, we require the resulting phase
diagram to have an extensive coexistence region. We also require the system to
be thermodynamically stable as a natural requirement.

3.2.3 From model parameters to the phase diagram, and
thermodynamic stability

To satisfy the two constraints, we first study G alone in the absence of diquark
pairing ∆, H = 0. For M 6= 0, the gap equation (3.45) becomes

1

2G
=

1

π2

∫ Λ

pF

p2dp√
M2 + p2

; (3.47)

Due to the appearance of M in the denominator the integral on the right hand
side is a decreasing function of G and has an upper limit. As a result, for any
given pF , there is a minimum value of G below which (3.45) only has trivial
solutions M = 0, i.e., no spontaneous chiral symmetry breaking. To find out
this minimum value, we consider the limit M → 0 in (3.47), which yields

G =
π2

Λ2 − p2
F

. (3.48)

As a result, in the vacuum, pF = 0, the minimum G > π2/Λ2 is required to
admit a non-trivial solution M . We denote this lower bound as Gc1 = π2/Λ2.

On the other hand, the second constraint – the thermodynamic stability
requirement – enforces ∂µ/∂n > 0 where n = p3

F /3π
2 is the quark density. This

requirement puts an upper bound for G. Differentiating pF (µ)2 = µ2 −M(µ)2

with respect to µ, we obtain

∂n

∂µ
=
pF
π2

(
µ−M ∂M

∂µ

)
(3.49)

which must be positive. To relate this to G, we plot the solutionsM(µ) as a fam-

56



M
/Λ

 

G =     10Λ-2 

G = 11Λ-2 

G = 12Λ-2 

G = 13Λ-2 

G = 14Λ-2 

G = 15Λ-2 

unstable 
region 

G = Gc2 = 11.41Λ-2 

G = 10.5Λ-2 

G = 16Λ-2 

backbending 
first appears 
near M = 0 μ/Λ 

1.0 

1.0 

0 0.2 0.4 0.6 0.8 

0.2 

0.4 

0.6 

0.8 

0 

Vacuum 

Finite 
density 
quark 
matter 

Figure 3.1: Solutions to gap equation M(µ) for varying G. Backbending
indicating instability first occurs at Gc2.

ily of curves given for varying G in Fig. 3.1. Above certain values of G, bending
back of M(µ) curve appears5: as a result, ∂M/∂µ starting finite and negative
at the start, turns −∞ and then +∞ before finally settling finite and positive.
Such transition means Eq. (3.49) cannot remain positive, implying instability of
the system against density fluctuations. The assumption of homogeneous mean
fields is not physical if this happens.

To algebraically find Gc2, we use the fact that M → 0 indicates the first
violation of the stability with increasing G. In this limit we calculate ∂M/∂µ

by differentiating the gap equation (3.47):

M
∂M

∂µ
=

(
1− ln

Λ

pF (µ)

)−1

µ. (3.50)

At the critical Fermi momentum, pFc, given by 1− ln Λ/pFc = 0, the divergence
of ∂M/∂µ related to the backbending appears; thus pFc = Λ/e where e is
Napier’s constant. We find the critical value Gc2 by substituting pFc back into
Eq. (3.45) together with M → 0:

Gc2 =
π2

(1− e−2)Λ2
. (3.51)

The constraint on G is summarized in Fig. 3.2. With Gc1 < G < Gc2, the
system exhibits a second order transition from the chirally broken regionM 6= 0

to the restored region M = 0.
We next discuss H. In contrast to for M in Eq. (3.47), the integral in the

gap equation (3.46) does not have an upper bound as a function of ∆, as a result
5A similar instability related to back-bending of 〈q̄q〉(µ) also appears in lattice gauge

analyses of chiral restoration, e.g., [67].
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Figure 3.2: Stability of the system at varying Fermi momentum pF and G, in
terms of Λ. In the range Gc1 < G < Gc2, the system is stable with a chirally
broken vacuum.

of the singularity in 1/ω+(p) at the Fermi surface |p| = pF when ∆ → 0. At
any density, there is always a non-trivial solution ∆, as in non-relativistic BCS
theory of superconductors; diquark pairing therefore always happens at finite
density in this simple model. As a result, the existence of paired phase alone
does not constraint H.

The existence of the coexistence phase however does constrain H. In the
coexistence phase M,∆ 6= 0, one can divide the gap equation (3.45) by M and
(3.46) by ∆, and subtract one from the other, to find

1

2H
− 1

2G
=

∫
p

µ√
p2 +M2

(
1

ω+(p)
− 1

ω−(p)

)
. (3.52)

The right side is always positive due to ω+(p) < ω−(p). As a consequence, one
must have H < G to have a coexistence phase.

On the other hand, the stability condition becomes subtle and algebraically
involving at the simultaneous presence of H and G. Numerical calculation
suggests that an instability could still develop when H becomes comparable
to G, but for relatively small H, . G/2, a stable coexistence region can be
achieved. Figure 3.3 shows the phase structure of the model at varying pF

plotted for a good choice G = 11Λ−2 and H = 6Λ−2. When we discuss the
collective modes of the system in the following, we assume a phase structure as
in Fig. 3.3.

3.2.4 Identification of collective modes

The collective modes of the system are given by parametrized mean field fluc-
tuations. In the chiral limit, the spontaneous breaking of U(1)L ⊗ U(1)R =
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Figure 3.3: The evolution of |〈q̄q〉| = M/2G and |〈qq〉| = ∆/2H against
quark density n with G = 11Λ−2 and H = 6Λ−2. The phase diagram can be
roughly divided into the chirally broken vacuum (χSB) with ∆ ≈ 0, M 6= 0, the
coexistence (COE) phase where M and ∆ are both finite and comparable, and
the high density BCS limit where ∆ 6= 0 but M ≈ 0.

Mode Description Parity
θB phonon; NG boson of broken U(1)V +

θπ + θd pionic mode; NG boson of broken U(1)A -
θπ − θd massive chiral oscillation between π and ∆ps -
M Higgs-like; breaks U(1)A +
∆ Higgs-like; breaks U(1)V and U(1)A +
φ relative phase oscillation between ∆s and ∆ps +

Table 3.4: Six normal collective modes of the system.

U(1)V ⊗ U(1)A by the coexisting chiral and diquark condensates yield two
bosonic modes (denoted as the vacuum q̄q pion π and the diquark qq pion
π̃), whose two independent linear combinations correspond to the NG boson,
i.e., the generalized pion πG, and a massive pionic excitation πM corresponding
to the q̄q and qq fluctuations in the opposite chiral direction. In addition, the
overall phase fluctuation of ∆s and ∆ps admits a phonon mode with its massive
partner that corresponds to their relative phase fluctuations. The fluctuations
of the magnitudes of the chiral and diquark condensates also result in two Higgs-
like modes. We summarize these modes in Table 3.4, with the parametrization
angles to be defined shortly below.

We choose the following parametrization of the condensate mean fields, in
terms of the chiral sector axial U(1)A angle θπ, the diquark sector U(1)A angle
θd, the relative phase angle φ between ∆s and ∆ps, and the overall U(1)V phase
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angle θB :

σ = −M cos θπ,

π = −M sin θπ,

∆s = −i∆eiθBeiφ/2 cos θd,

∆ps = i∆eiθBe−iφ/2 sin θd. (3.53)

The oscillations of θπ correspond to the usual pion mode π, while those of θd
correspond to the diquark-condensate pion, π̃. We choose a gauge such that
∆ > 0, M > 0, and thus σ < 0 at θπ = 0.

Under a U(1)V transformation, ∆s and ∆ps rotate the same phase θB →
θB + θV . Meanwhile, a U(1)A transformation parametrized by angle θA rotates
σ and π as

σ → σ cos θA − π sin θA

π → π cos θA + σ sin θA

}
⇒ θπ → θπ + θA. (3.54)

We also compute the transformation rule of ∆s and ∆ps under θA:

∆s → ∆s cos θA + ∆ps sin θA

= −i∆
[
cos

φ

2
cos (θd + θA) + i sin

φ

2
sin (θd − θA)

]
≡ −i∆eiφ

′/2 cos θ′d,

∆ps → ∆ps cos θA −∆s sin θA

= −i∆
[
− cos

φ

2
sin (θd + θA) + i sin

φ

2
sin (θd − θA)

]
= i∆e−iφ

′/2 sin θ′d. (3.55)

The relative phase φ and the chiral angle θd both rotate under the chiral transfor-
mation and thus cannot be treated independently. Only when the two conden-
sates are in phase φ = 0 does the result reduce to θd → θd+θA and θπ → θπ+θA,
and the fluctuation in φ decouples. In this case, the diquark-condensate pion π̃
is understood as oscillations of the product of the two diquark terms, ∆s∆

∗
ps.

For general non-zero φ, we have instead

cos θd → cos θ′d =

[
cos2 φ

2
cos2 (θd + θA) + sin2 φ

2
sin2 (θd − θA)

] 1
2

,

φ → φ′ = 2 tan−1

[
tan(φ/2) sin (θd − θA)

cos (θd + θA)

]
. (3.56)

With our choice of parametrization, four invariant quantities under chiral trans-
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formations are manifest:

σ2 + π2 = M2, |∆s|2 + |∆ps|2 = ∆2,

Im
[
∆s∆

∗
ps

]
=

∆2

2
sin 2θd sinφ,

|σ∆ps + π∆s|2 = M2∆2

[
sin2 (θπ − θd)− 2 sin θπ sin θd sin2 φ

2

]
;

(3.57)

they are the only allowed terms to appear in the quasiparticle dispersion rela-
tions, as in (3.34) in the chiral limit indeed. The now parametrized six inde-
pendent degrees of freedom, M,∆, θπ, θd, θB , φ, are identified as the six modes
we listed earlier:

(1) The massless phonon mode, corresponding to fluctuations of θB . This
mode is massless since the free energy does not depend on this angle.

(2) The massless pionic mode πG identified with fluctuations of the angle
θG ≡ (θπ + θd)/2. Again the free energy does not depend on θG. This mode
describes the simultaneous chiral rotation of σ and ∆s in the same direction
under chiral transformation and is the NG mode.

(3) A massive pionic mode, denoted as πM , identified with fluctuations of
θM ≡ (θπ − θd)/2. This mode does not correspond to a U(1)A rotation of the
system and thus must be massive, as seen from its stiffness term:

∂Ω

∂ sin2 (θπ − θd)
= −

∑
±

∫
p

M2∆2

±δ(p)ω±
=

∫
p

M2∆2

µ
√
p2 +M2

(
1

ω+
− 1

ω−

)
> 0

(3.58)

as long as M,∆ 6= 0 as in the coexistence phase. The proportionality of this
stiffness term to ∼ M2∆2 originates from the mixing of π and π̃, even though
q̄q-qq coupling interactions at mean field level are not present in the original
Lagrangian; such mixing phenomenon is discussed from a Ginzburg-Landau
perspective in Ref. [64]. We can also trace this term back from the quasiparticle
dispersion (3.34), from the appearance of the invariant quantity |σ∆ps + π∆s|2

which appears like a vector product between two “chiral vectors” (σ, π) and
(∆ps,∆s).

(4) The two massive modes corresponding to fluctuations of ∆ andM . These
modes can be associated with oscillations in the radial direction of ‘Mexican hat’
potentials describing the broken symmetry state. In particular, the fluctuations
of M are related to the heavy σ-meson in nuclear matter, but can be removed
by going into a non-linear sigma model describing chiral symmetry breaking.

(5) The massive mode associated with fluctuations of the relative phase φ.
This mode is generally not discussed in NJL investigations of the phase diagram.
If one starts in the scalar state with φ = 0, a axial rotation θA will leave this
angle untouched, as seen from Eq. (3.56). Note that if either ∆s or ∆ps vanishes,
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this mode is not present.
In the following we neglect the phonon mode and the massive modes M and

∆, which have positive parity forbidding them from mixing with the two pionic
modes. We assume the scalar ground state with φ = 0 and discuss π and π̃ in
detail.

3.2.5 Mass matrix for the pions

We first calculate the mass matrix for the two pionic modes π and π̃ by ex-
panding the grand thermodynamic potential Ω to second order in them, and
demonstrate how they are related to the NG mode πG and the massive mode
πM . Starting from

Ω = Ω0 +
1

2
θ2
M

∫
p

∑
±

1

ω±(p)ε±(p)µ
+ . . . ≡ Ω0 +

1

2
~θ TΞ~θ + . . . (3.59)

where we denote for short the vector ~θ ≡ (θπ, θd)
T and Ω0 = Ω(θπ = θd = 0).

Using Eq. (3.59) we obtain the stiffness matrix

Ξ = M2∆2a

(
1 −1

−1 1

)
, (3.60)

where the function a(µ) > 0 is

a(µ) ≡
∫
p

∑
±

1

ω±(p)ε±(p)µ
. (3.61)

We let fπ and fπ̃ be the decay constants of π and π̃; since π = fπθπ and
π̃ = fπ̃θd, the stiffness matrix Ξ is related to the mass matrix Σ by

Σ = F−1ΞF−1 = M2∆2a

(
1/f2

π −1/fπfπ̃

−1/fπfπ̃ 1/f2
π̃

)
, (3.62)

where we denote F = diag(fπ, fπ̃), a simple invertible matrix relating π and π̃
to θπ and θd:

~π ≡

(
π

π̃

)
= F

(
θπ

θd

)
. (3.63)

To diagonalize the mass matrix Σ, we perform the transformation(
π

π̃

)
=

1√
f2
π + f2

π̃

(
fπ fπ̃

fπ̃ −fπ

)(
πG

πM

)
, (3.64)

which establishes a definition of πG and πM as a linear combination of π and π̃;
the mixing ratios agree with Ref. [64]. The two eigenvalues of Σ, m2

G = 0 and
m2
M = M2∆2a

(
f−2
π + f−2

π̃

)
, give the masses of πG and πM .
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One can understand the off-diagonal terms of Σ, describing π-π̃ mixing, by
perturbing the correlation functions in the chiral and diquark channel. For
example,

Ξ12 =
∂

∂θd

(
∂Ω

∂θπ

)
= −iM ∂〈ψ̄Γπψ〉

∂θd
= M∆

∂〈ψ̄Γπψ〉
∂〈ψ̄Γ∆ps

ψ〉
∼ ∂〈q̄iγ5q〉

∂〈qq〉

∣∣∣
θπ
, (3.65)

where in Nambu-Gor’kov-Dirac space

Γπ ≡ 1

M

∂S−1

∂θπ
=

(
iγ5 0

0 iγ5

)
,

Γ∆ps
≡ 1

i∆

∂S−1

∂θd
=

(
0 0

1 0

)
; (3.66)

here 1 is the 4× 4 identity matrix in Dirac space.
The mass matrix and the diagonalization into NG and massive modes can

be instructively compared with the Ginzburg-Landau study in Ref. [64], which
was based on symmetry principles. The mixing terms in Σ naturally result
from expanding the thermodynamic potential and do not require direct mixing
interactions between σ and ∆ at Lagrangian level. We can understand the
mode diagonalization as a consequence of Goldstone’s theorem, since only the
NG mode, corresponding to θG = (θπ + θd)/2, should remain massless. The
fluctuations corresponding to the massive mode do not correspond to a global
U(1)A fluctuation of the system, and thus cannot be massless.

3.2.6 Decay constant of πG

Having extracted πG from the model we next compute its decay constants. In
the effective theory of πG, the decay constant can be identified from the kinetic
energy coefficient of θG in the long wavelength limit. To derive this effective
theory we again resort to a Hubbard-Stratonovich transformation and promote
θπ,d to spatially dependent fluctuations. We denote the fluctuations of the mean
fields by σ̂, π̂, ∆̂s, and ∆̂ps, where the hat distinguishes the bosonic fluctuations
from their corresponding mean field values.

We start with the partition function

Z =

∫
dq dq̄ dσ̂ dπ̂ d∆̂s d∆̂∗s d∆̂ps d∆̂∗ps

× exp

{
i

∫
d4x

[
q̄S−1q − V (σ̂, π̂, ∆̂s, ∆̂ps)

]}
, (3.67)

where t = iτ , with 0 ≤ τ ≤ β, β being the inverse temperature. The inverse
quark propagator S−1 is perturbed from that in the scalar state S−1

0 by the
bosonized fields

S−1 = S−1
0 + x̂, (3.68)
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where

x̂ =

(
σ̂ + iγ5π̂ iγ5∆̂∗s + ∆̂∗ps

iγ5∆̂s + ∆̂ps σ̂ + iγ5π̂

)
, (3.69)

and the potential term involving the fluctuations are

V (σ̂, π̂, ∆̂s, ∆̂ps) =
1

4G

[
(σ̂ −M)

2
+ π̂2

]
+

1

4H

[
|∆̂s − i∆|2 + |∆̂p|2

]
. (3.70)

The quark field can again be integrated out, resulting in a fermion determi-
nant to be re-exponentiated to become the effective action of the boson fields:

A = −iTr lnS−1 +

∫
d4xV

= −iTr lnS−1
0 − iTr

[
S0x̂−

(S0x̂)2

2

]
+

∫
d4xV + . . . , (3.71)

where “Tr” denotes the sum over all indices, including position (or equivalently,
momentum). The constant term −iTr lnS−1

0 corresponds to the mean field
fermion sector and contains no bosonic fluctuations; we set this term aisde. In
terms of the spatially dependent real bosonic fields θ̂π and θ̂d, we write

−M cos θ̂π = σ̂ −M,

−M sin θ̂π = π̂,

−i∆ cos θ̂d = ∆̂s − i∆,

i∆ sin θ̂d = ∆̂ps, (3.72)

which further yields to leading order in θ̂π and θ̂d,

σ̂ ≈ 1

2
Mθ̂2

π, π̂ ≈ −Mθ̂π, ∆̂s ≈
i

2
∆θ̂2

d, ∆̂ps ≈ i∆θ̂d. (3.73)

Expanding A up to second order in θ̂π and θ̂d, we obtain

x̂ ≈ M

(
1
2 θ̂

2
π − iγ5θ̂π 0

0 1
2 θ̂

2
π − iγ5θ̂π

)

+∆

(
0 1

2γ5θ̂
2
d − iθ̂d

− 1
2γ5θ̂

2
d + iθ̂d 0

)

≡ M

(
1

2
θ̂2
πΓσ − θ̂πΓπ

)
+ ∆

(
1

2
θ̂2
dΓσd − θ̂dΓπ̃

)
. (3.74)
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Here, the matrices Γσ, Γσd , and Γπ̃ in Nambu-Gor’kov-Dirac space are

Γσ =

(
1 0

0 1

)
, Γσd =

(
0 γ5

−γ5 0

)
,

Γπ̃ =

(
0 i1

−i1 0

)
, (3.75)

where Γπ is defined in Eq. (3.66).

Writing the real vector fields ~θ ≡
(
θ̂π, θ̂d

)T
, the quadratic effective action

becomes

A ≈ 1

2
βV
∫

d4k

(2π)4
~θ(−k)TD−1

θ (k)~θ(k), (3.76)

where

D−1
θ (k) =

(
M2 (Bππ(k)− 1/2G) M∆Bπd(k)

M∆Bπd(k) ∆2 (Bdd(k)− 1/2H)

)
; (3.77)

here V is the spatial volume of the system. The bubbles are defined by

Bππ(k) = i

∫
d4p

(2π)4
tr (S0(p)ΓπS0(p− k)Γπ) ,

Bπd(k) = i

∫
d4p

(2π)4
tr (S0(p)ΓπS0(p− k)Γπ̃) ,

Bdd(k) = i

∫
d4p

(2π)4
tr (S0(p)Γπ̃S0(p− k)Γπ̃) . (3.78)

If one replaces the u, d quarks by protons and neutrons, the bubble Bππ is simply
the self-energy of the conventional in-nuclear medium pion Green’s function as
calculated in previous sections. We have used “tr” to denote the Dirac and
Nambu-Gor’kov trace. By definition, D−1

θ (0) simply reduces to −Ξ at zero
momentum k = 0, which corresponds to a spatially homogeneous variation.

In general, D−1
θ is not a function of the Lorentz scalar k2 at finite density due

to the violation of Lorentz invariance.6 As a result, the temporal and spatial
decay constants are in general different. We thus write, to second order in k,

D−1
θ (k) ≈ −Ξ +Qk2

0 −Qvk2. (3.79)

The dispersion relations of the modes are given by the eigenvalues of D−1
θ ,

the decay constants are contained in the matrix Q, and the mode velocities
are included in Qv. As we show shortly, after keeping only the leading order
logarithm divergencies, Q is related to the matrix F as defined in Eq. (3.63) by
Q = F2, while Qv = diag(v2

π, v
2
π̃)Q where vπ and vπ̃ are the mode velocities of

π and π̃.
6Even in the vacuum use of a three-momentum cutoff violates Lorentz invariance.
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To calculate the bubbles (3.78), we make use of the form (3.44). The de-
cay constant matrix Q can be obtained from take derivatives of the bubbles
with regard to k0 while setting k = (k0,0). As we are calculating thermo-
dynamic properties, the p0 integrals are Matsubara frequency summations (cf.
the explanation in Sec. 2.1.1 below Eq. (2.12)) with p0 → iων = 2πiTν and∫
dp0 → 2πiT

∑
ν , where ν = ±1/2,±3/2, . . .. With the quasiparticle spectrum

ω±, the free particle dispersion ε±, and the coherence functions v± and u± de-
fined earlier – all functions of the three-momentum integration variable p – the
bubbles are

Bππ(k2
0) =

∫
p

∑
j,`=±

(ujv` − vju`)2

(
1− M2 + p2

εjε`

)
Aj`(k0),

Bdd(k
2
0) =

∫
p

∑
j,`=±

(vjv` + uju`)
2

(
1− M2 − p2

εjε`

)
Aj`(k0),

Bπd(k
2
0) =

∫
p

∑
j,`=±

(vjv` + uju`)(vju` − ujv`)×
M(ε` − εj)

ε`εj
Aj`(k0),

(3.80)

with the factor

Aj`(k0) =
1

2

(
− 1

k0 − ωj − ω`
+

1

k0 + ωj + ω`

)
. (3.81)

The physical meanings of the bubbles and the factor function Aj`(k0) are
manifest in these forms, summarized as follows:

(1) The pairing part: the first factor sums of products between coherence
functions, indicates whether the quark loop connects the quark field with the
quark field or with the charge-conjugate quark field.

(2) The Dirac part: the second factor, involving ε’s, M2 and p2, depends on
whether the quark loop connects particle-antihole states with particle-antihole
states, or with antiparticle-hole states.

Both factors are at most of order unity; they result directly from projection
operators into different pairing and Dirac components of the eigenvectors. The
final factor Aj` reveals the pole structure of the external frequency k0; it contains
a pair of poles located at ±(ωj + ω`) with opposite signs for the corresponding
residues, representing the pion state and anti-pion state described by the bubble.
In our model the pion is only neutral, thus they represent the same pion state. In
Nf ≥ 2 models where charged pions are present, the dual poles would represent
the π+ and the π− state separably.

It is instructive to consider the Bππ bubble as an example to illustrate the
physical meanings. The factor (ujv`−vju`)2 involves products between v and u,
indicating that the quark loop connects the quark field with the charge-conjugate
field; the factor 1− (M2 + p2)/εjε` vanishes unless j = −`, indicating that the
particle-antihole state is connected to the antiparticle-hole state. Altogether,
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(d) 

(a) (b) 

(c) 

Figure 3.4: Characteristic diagrams corresponding to the bubbles (3.80). The
direct (a) π-π and (b) π̃-π̃ bubbles correspond to Bππ and Bdd, while the π-π̃
mixing bubbles such as (c) and (d) correspond to Bπ̃. Due to the breaking of
U(1)V by diquark pairing, quark number is not conserved.

the quark field particle-anti-hole state is connected to the charge-conjugate
antiparticle-hole state (or equivalently, to the quark field particle-antihole state
itself), and the quark field antiparticle-hole state is connected to the charge-
conjugate particle-antihole state (or equivalently, to the quark antiparticle-hole
state).

We can further simplify the mixing bubble Ππd by using properties of the
BCS coherence functions:

Bπd(k
2
0) = −M∆

∫
p

∑
j,`=±

(εj − ε`)2

2εjε`ωjω`
Aj`(k0); (3.82)

it is non-zero only in the coexistence phase where M,∆ 6= 0. The bubbles are
summarized diagrammatically in Fig. 3.4.

In terms of the bubbles, the matrix Ξ is given by −D−1
θ (k = 0), as in

Eq. (3.77). We find explicitly,

M2

(
Bππ(0)− 1

2G

)
= ∆2

(
Bdd(0)− 1

2H

)
= −M∆Bπd(0) = −M2∆2a, (3.83)

(a is given by Eq. (3.61)) confirming the expected form (3.60) of Ξ.
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From Eq. (3.80) we calculate the Q matrix:

Q11 = M2

∫
p

∑
j,`=±

(ujv` − vju`)2

(
1− M2 + p2

εjε`

)
Wj`,

Q22 = ∆2

∫
p

∑
j,`=±

(vjv` + uju`)
2

(
1− M2 − p2

εjε`

)
Wj`,

Q12 = −2M2∆2

∫
p

1

ω+ω− (ω+ + ω−)
3 = Q21, (3.84)

where

Wj`(p) ≡ 1

(ωj(p) + ω`(p))3
. (3.85)

The result (3.84) shows that both Ξ and the diagonal elements Q11 and Q22

are logarithmically divergent (of order ln Λ/M or ln Λ/∆), while the off-diagonal
elements Q12 are finite. In the following, we drop the finite off-diagonal terms,
following the standard prescription of considering only the ultraviolet-divergent
pieces up to logarithmic accuracy of the bubble diagrams in effective bosonized
theories (see e.g., [68, 69, 70]). The dropped Q12 terms would result in anoma-
lous mixing terms ∼ ∂µθ̂π∂

µθ̂d which are absent in general parametrizations
of pionic mode kinetic energies (up to second order in the pionic fields) in the
literature, e.g., [64]. After this procedure, we identify the remaining diagonal
elements of Q as the squared decay constants for the vacuum pion and the
diquark-condensate pion:

f2
π = Q11, f2

π̃ = Q22; (3.86)

that is, Q = F2 = diag(f2
π , f

2
π̃), where F = diag(fπ, fπ̃) as in Eq. (3.63).

Similarly dropping the finite off-diagonal terms of the velocity matrix Qv, we
obtain Qv = diag(v2

π, v
2
π̃)Q, where the velocities are

v2
π = Qv11 = f−2

π

∂Bππ(0)

∂k2
,

v2
π̃ = Qv22 = f−2

π̃

∂Bdd(0)

∂k2
. (3.87)

In terms of the pion fields π(x) = fπ θ̂π(x) and π̃(x) = fπ̃ θ̂d(x), the effective
Lagrangian density is now

1

2
~θ T
(
−Q∂2

t +Qv~∂ 2 − Ξ
)
~θ ≡ 1

2
~πT (−∂2

t + diag(v2
π, v

2
π̃)~∂ 2 − Σ)~π, (3.88)

where ~π(x) ≡ (π(x), π̃(x))T = F~θ(x). The inverse propagator in Eq. (3.88) is
again diagonalized by Eq. (3.64), in terms of the NG mode πG and the massive
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Figure 3.5: ( Decay constants fG, fπ and fπ̃ as functions of quark density n,
with G = 11Λ−2 and H = 6Λ−2.

mode πM . Furthermore, in terms of θ̂π and θ̂d, we write

πG =
f2
π θ̂π + f2

π̃ θ̂d√
f2
π + f2

π̃

≡ fGθ̂G (3.89)

where θ̂G, the chiral NG boson degree of freedom, is the fluctuation correspond-
ing to the universal axial U(1)A rotation of the whole system from the scalar
state; such rotation corresponds to the simultaneous rotation of θ̂π and θ̂d,
therefore θ̂G = θ̂π = θ̂d. As a result,

f2
G = f2

π + f2
π̃ , (3.90)

thus relating the decay constant of the NG boson fG to the decay constants
fπ and fπ̃ for the corresponding chiral rotations of the 〈q̄q〉 and 〈qq〉 order
parameters. As Eq. (3.89) shows f2

π and f2
π̃ can be understood as the “weight

functions” of π and π̃ within the NG mode πG.
The plot of fG, fπ and fπ̃ as functions of quark density in Fig. 3.5 shows that

the decay constant of the NG pion, fG, always increases with increasing quark
density, whereas fπ decreases with density; the behavior of fπ is in agreement
with the prediction of in-medium chiral perturbation theory [71] that to leading
order in the density the pion decay constant decreases from its vacuum value
linearly.7 The different behavior of fG and fπ arises from the presence of diquark
pairing at all densities in our schematic model; even at low density, the BCS
gap causes fG to increase with increasing density despite 〈q̄q〉 (and thus fπ)

7 Unlike NJL discussions of quark matter, Ref. [71] discusses only a nucleon medium.
Although the vacuum cannot be described by deconfined NJL quark matter, the behavior of
its chiral NG mode under modification of the density does connect qualitatively well with
such nuclear matter models, a similarity suggesting that the transition from nuclear matter
to high density quark matter could have continuous dynamic chiral symmetry breaking.
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gradually shrinking at the same time.8

We now demonstrate how to understand the behavior of fπ and fπ̃ shown
by Fig. 3.5 particularly in the low density and the coexistence region. In the
low density limit, the behavior of fπ̃ and ∆ can be derived from the pairing gap
equation (3.46) and the bubble results Eq. (3.84). Isolating the divergent part
1/ω+ in the gap equation integral, and approximate near the Fermi surface

(εp − µ)2 ≈ p2
F

µ2
(p− pF )2, (3.91)

we obtain

1

2H
≈ 1

2π2

∫ Λ

0

p2dp
1√

(ε− µ)2 + ∆2

≈ 1

2π2

∫ Λ

0

p2
F dp

1

∆
√

p2
F

µ2∆2 (p− pF )2 + 1
. (3.92)

Changing variables to

sinhx =
pF
µ∆

(p− pF ), coshx dx =
pF
µ∆

dp; sinhx ∈
[
− p

2
F

µ∆
,

ΛpF
µ∆

]
, (3.93)

then

1

2H
=

p2
F

2π2

∫
dx

µ∆

pF

coshx

∆
√

sinh2 x+ 1
=
µpF
2π2

∫
dx. (3.94)

When ∆ is small, we can approximate ΛpF /µ∆ = sinhx ≈ 1
2 expx which yields

x ≈ ln(2ΛpF /µ∆). As a result the gap equation becomes

1

2H
≈ µpF

2π2

(
ln

2ΛpF
µ∆

+ ln
2p2
F

µ∆

)
=
µpF
2π2

ln
p3
FΛ

µ2∆2
=
µpF
π2

ln
pF
µ∆

√
pFΛ, (3.95)

which further yields

∆ ∼ pF
µ

√
pFΛ exp

(
− π2

2HµpF

)
≈ pF

m

√
pFΛ exp

(
− π2

2HmpF

)
. (3.96)

If we assumed pF � Λ in evaluating (3.95), we would arrive at

1

2H
≈ µpF

2π2
ln

2ΛpF
µ∆

⇒ ∆ ∼ pF
m

Λ exp

(
− π2

HmpF

)
. (3.97)

In either case, ∆ is extremely small compared to pF and vanishes faster than
any power of pF . In short, in the limit n→ 0, the gap behaves like

∆

Λ
∼ pF
M
e−π

2/HMpF , (3.98)

8Realistically, the homogeneous diquark pairing described in the present model does not
appear in the low density QCD phase diagram, owing to the onset of confinement.
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and ∆/n→ 0 as n→ 0.
We can perform the same analysis to derive the behavior of fπ̃. We first de-

rive a generalized Goldberger-Treiman relation for the diquark pairing, gπ̃fπ̃ =

∆, where gπ̃ is the effective diquark pion-quark coupling strength analogous to
gπ of gπfπ = M . Let us quickly review the vacuum pion case. The vacuum-to-
axial-vector transition parametrizing the decay constant is

ifπq
µ = 〈0|JµA|π〉 = gπqq〈0|JµAq̄iγ5q|0〉

= gπi

∫
p

tr
(
S(p)

1

2
γµγ5S(p− q)iγ5

)
;

(3.99)

the coupling gπ on the other hand is the g in Sec. 2.1.2, appearing as the residue
of the pion pole in the T-matrix; it is related to the bubble Bππ by

g2
π =

(
dBππ
dk2

0

)−1

. (3.100)

Analogously, for fπ̃ we write down the amplitude

ifπ̃q
µ = gπ̃i

∫
p

tr
(
S(p)

γµ

2
γ5S(p− q)Γd

)
, (3.101)

where

Γd =

(
i

−i

)
(3.102)

is the vertex corresponding to the diquark pion. After some algebra and setting
kµ = (k0,0), we obtain

fπ̃ =
1

2
gπ̃

∫
p

∑
ij

(viv
′
j + uiu

′
j)(uiv

′
j + vu′)

(
1− M2 − p2

εiε′j

)
1

(ωi + ω′j)
2

=
1

2
gπ̃∆

∫
p

∑
ij

(
1

2ωi
+

1

2ω′j

)(
1− M2 − p2

εiε′j

)
1

(ωi + ω′j)
2
≡ gπ̃∆Iπ̃,

(3.103)

where the sum over i, j = ± is over all four positive energy eigenvalues as in
(3.39), and positive/negative ε± = ±(p2 + M2)−1/2, with the corresponding
coherence functions u± and v±; both ω, ε and the primed ω′, ε′ are evaluated at
p = 0. Meanwhile,

g−2
π̃ =

dBdd
dk2

0

=

∫
p

∑
ij

(
viv
′
j + uiu

′
j

)2(
1− M2 − p2

εiε′k

)
1

(ωi + ω′j)
3

≡ Jπ̃. (3.104)
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The terms corresponding to (i, j) = (+,+) or (−,−) are logarithmically di-
vergent, while (+,−) and (−,+) terms are finite; since Jd and Id eventually
undergo the renormalization process as discussed in Sec. 2.1.3, they are iden-
tical to logarithmic accuracy; we thus identify Iπ̃ = Jπ̃ at this level, resulting
in

fπ̃ = g−1
π̃ ∆→ gπ̃fπ̃ = ∆. (3.105)

We are now at a place to calculate the behavior of fπ̃ as a function of quark
density n in the vacuum limit of this model. Isolating the divergent piece of Jπ̃
near the Fermi surface,

Jπ̃ ≈ 2p4
F

8µ2
× 1

2π2

∫ Λ

0

dp
1

((εp − µ)2 + ∆2)3/2

≈ p4
F

8π2µ2∆3

∫ Λ

0

dp
1

(
p2
F

µ2∆2 (p− pF )2 + 1)3/2
; (3.106)

changing the integration variable to sinhx = pF (p− pF )/µ∆, we have

Jπ̃

≈ p4
F

8π2µ2∆3

∫
dx

µ∆

pF

coshx

(sinh2 x+ 1)3/2
=

µp3
F

8π2µ2∆2

∫
dx

1

cosh2 x

=
µp3

F

16π2µ2∆2

 1(
µ∆
2p2
F

)2

+ 1
− 1(

2ΛpF
µ∆

)2

+ 1


≈ p3

F

16π2M∆2
, (3.107)

as long as ∆ vanishes faster than any power of pF (as we already demonstrated)
and we have used µ ≈M in the vacuum limit. As a consequence, we obtain

f2
π̃ = Jπ̃∆2 ∼ p3

F

16π2M
=

3n

16M
. (3.108)

Thus fπ̃ ∼
√
n.

We can estimate the density in our model at which fπ ∼ fπ̃, i.e., the “max-
imum” mixing where diquark and chiral condensates are equally important.
Taking fπ to be approximately its vacuum value, we have

fπ ≈ fπ̃ → n ≈ 16

3
Mf2

π , (3.109)

which, with M = 300 MeV, gives

n ∼Mf2
π ∼ 3× 106MeV3 ∼ 0.4fm−3 ∼ 2n0 (3.110)

where n0 is nuclear matter density. This result suggests that even in realistic
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quark models, the chiral and diquark condensates should be equally important
at the order of several times n0, thus the study of a coexistence region is highly
relevant.

It is preferable to discuss the decay constant of the actual generalized pion
fG, since it is the NG boson and thus the directly observable long-lived particle.
We can equivalently parametrize fG as the vector transition amplitude from
a state with one generalized pion to the vacuum via the time component of
the axial current JµA ≡ ψ̄iγµγ5ψ/2, in the same way as in the vacuum pion
treatment [23] in NJL models as discussed above:

ifGk
0 = 〈0|J0

A|πG〉 =
1

fG
〈0|J0

A|fππ + fπ̃π̃〉
1

fG
i(f2

π + f2
π̃)k0, (3.111)

which indeed confirms Eq. (3.90).
With fG and the diagonalization (3.64), we can re-write the coupling be-

tween quarks and chiral/diquark pions in terms of quarks and NG/massive
pions. Using the perturbed quark inverse propagator with the bosonized fields
in Eqs. (3.68) and (3.69), and the transformation Eq. (3.64), we have

Lint = ψ̄

(
M

fπ
Γππ +

∆

fπ̃
Γπ̃π̃

)
ψ = ψ̄ (ΓGπG + ΓMπM )ψ, (3.112)

where the interaction vertex with generalized pion ΓG and the massive partner
ΓM are

ΓG(µ) ≡ 1
fG

(MΓπ + ∆Γπ̃) ,

ΓM (µ) ≡ 1
fG

(
fπ̃
fπ
MΓπ − fπ

fπ̃
∆Γπ̃

)
; (3.113)

they are matrix functions of µ, describing the emerging density-dependent cou-
plings; the graphical summary is presented in Fig. 3.6. The coupling strengths
to the chiral sector and the diquark sector are given by the weightings M/fG

and ∆/fG; in the vacuum limit ∆/fG = 0, and the former reduces to gπ, the
residue of the pion pole in the q̄q-q̄q scattering T-matrix, related to M and fπ
via the familiar Goldberger-Treimann relation gπ = M/fπ.

In more realistic NJL models where Nf , Nc > 1, possible asymmetric chi-
ral and diquark pairings due to the heavy strange quark, and the Kobayahsi-
Miskawa-’t Hooft six-quark instanton interaction [21, 22, 72] provide additional
q̄q-qq mixing, with further modifications of ΓG and ΓM . We leave this as a
research topic for the future.

3.2.7 Explicit chiral symmetry breaking by current
(bare) quark mass mq 6= 0

Our discussion so far has focused on the chiral limit, where the NG boson
– the generalized pion πG – remains strictly massless. We now generalize to
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(a) 

(b) 

Figure 3.6: (a) Diagrammatic decomposition of quark-πG coupling ΓG into
chiral Γπ and diquark Γπ̃ vertices. The (green) dashed double line represents
the πG field. The Nambu-Gor’kov field ψ (black, double line) contains both the
quark and charge-conjugate quark fields, thus including the quark field (black,
solid, arrowed line) propagating in either time direction; Γπ is the coupling
matrix between vacuum pion π (red, dashed line) and the pseudoscalar q̄q quark
sector, and Γπ̃ is the coupling matrix between diquark-condensate pion π̃ (blue,
double line) and the pseudoscalar qq sector. (b) Characteristic bubble diagrams
contributing to the resulting self-energy of πG in the Nambu-Gor’kov formalism,
including both direct bubbles, Bππ and Bdd, and mixing bubbles, Bπd.
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mq 6= 0 which explicitly breaks the chiral symmetry, granting the generalized
pion mass, while also supposedly modifying the mass of the massive mode πM .
To investigate the effect of mq on the pion mass matrix, we directly take second
order derivatives of Ω with respect to θπ and θd, using Eq. (3.36).

We start by briefly reviewing the familiar σ − π sector alone from this per-
spective of differentiating the grand thermodynamic potential density Ω. As
seen from the quasiparticle spectrum, ω±(p), Eq. (3.34), mq slightly shifts σ,
causing the system to favor a negative value for σ (whence the sign in the
parametrization σ = −M cos θπ). In the vacuum scalar state, the eigenvalues
expanded to leading order in mq are:

ω±(p) =
∣∣∣± (p2 +m2

q + σ2 + π2 − 2mqσ
)1/2 − µ∣∣∣

= ω±(p)mq=0 +

(
± µ√

p2 + σ2 + π2
− 1

)
σmq

ω±(p)mq=0
; (3.114)

we can then expand

Ω = Ωmq=0 + σmq

∑
±

∫
p

1

ω±

(
1∓ µ√

p2 + σ2 + π2

)
≈ Ωmq=0 +

σmq

2G
, (3.115)

where we have used the gap equation Eq. (3.46) in writing the second line, up
to linear order in mq. With the parametrization (3.53), this term effectively
adds a positive stiffness term for θ2

π ∼ π2, since σ = −M(1 − θ2
π/2 + . . .). We

thus retrieve the well known GMOR result for the vacuum pion mass to leading
order in mq,

f2
πm

2
π =

M

2G
mq = −〈q̄q〉mq. (3.116)

Next we consider the diquark pairing alone with no chiral condensate, σ = 0,
and choose a gauge where ∆ps and ∆p are in phase. In this case we have the
quasiparticle spectrum

ω2
±(p) = p2 + µ2 + ∆2 ∓ 2

√
(|p|µ)

2
+m2

q|∆ps|2; (3.117)

in this case, it is the pseudoscalar diquark NG mode π̃2 ∼ θ2
d ∼ |∆ps|2 that

obtains a mass of

f2
π̃m

2
π̃ = a∆2m2

q. (3.118)

This GMOR relation is second order in mq and has no linear order contribution,
unlike the vacuum GMOR relation for chiral condensate and q̄q pion. The grand
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thermodynamic potential then expands as

Ω = Ωmq=0 + 1
2am

2
q|∆ps|2 +O

(
m4
q

)
. (3.119)

It is interesting that unlike σ, the diquark mean fields suffer from neither shift
in mean field potentials caused by mq, nor any direct coupling to mq at the
Lagrangian level; the key term responsible for such a behavior is |(mq−σ)∆ps−
π∆s|2, one of the chirally invariant quantities (see Eq. 3.57). This term explains
why the diquark condensate GMOR relation starts from second instead of first
order.

The difference in the leading order dependence onmq of the GMOR relations
in the vacuum phase and the high density BCS phase, which is also present in the
more realistic Nf = 3, Nc = 3 case, can be understood as originating from the
U(1)A axial symmetry. Specifically, when one writes down a general Ginzburg-
Landau effective Lagrangian in terms of the chiral and diquark condensates, the
term of lowest order in mq and ∆s that respects U(1)A symmetry is of order
m2
q [65, 64]. As a result, at high density, where diquark pairing dominates, the

chiral NG bosons should obey a GMOR relation ∼ m2
q. A subtle complication

in more realistic models is that the axial U(1)A symmetry is explicitly broken
by quantum effects (the axial anomaly) at lower densities, which permits an
additional mass term for the diquark condensates of order mq. In this case,
the chiral NG bosons might still obey a GMOR relation ∼ mq in leading order
even with dominating diquark condensates at moderate densities. Nevertheless,
it is known that at high density the axial anomaly is heavily suppressed [73,
74] greatly reducing such a U(1)A-violating term; the GMOR relation is then
restored to ∼ m2

q in leading order (cf. Eq. (3.118)).9

We are in position to calculate the mass matrix when both chiral and diquark
condensates are present. When computing the perturbation to the mass matrix
by mq, it is necessary to consider up to second order, which as we showed is the
leading order in the diquark sector. We start again with the angle fluctuations
~θ = (θπ, θd)

T , and expand Ω:

Ω(θπ, θd) = Ω(0, 0) +
1

2
~θ TΞ(mq)~θ + . . . , (3.120)

where the stiffness matrix is now

Ξ(mq) =

(
bMmq + aM2∆2 −aM∆2 (M +mq)

−aM∆2 (M +mq) a (M +mq)
2

∆2

)
; (3.121)

9Diquark pairing is not the only known mechanism that can modify the meson mass GMOR
relation. The asymmetry in quark flavors could have a similar effect of inducing higher order
GMOR relations, such as pions in an isospin-asymmetric medium [75, 76].
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here

b =

∫
p

∑
±

1

ω±

(
1− µ

ε±

)
(3.122)

is a function ofM , ∆, µ, and mq, and is also the integral on the right side of the
gap equation (3.45). In the chiral limit mq = 0 in the chirally broken phase with
M 6= 0, b simply reduces to 1/2G. In terms of the mass matrix Σ = F−1ΞF−1

for the pion fields ~π, we obtain the following matrix generalization of the GMOR
relation encompassing both modes:

FΣF = M2a∆2

(
1 −1

−1 1

)
+Mmq

(
b −a∆2

−a∆2 2a∆2

)

+a∆2m2
q

(
0 0

0 1

)
≡ Ξ +MmqΞI + a∆2m2

qΞII, (3.123)

a relation that can be readily generalized to systems with more complex chiral
order parameters than 〈q̄q〉 and 〈qq〉. Since a, b, fπ, fπ̃, ∆ and M are them-
selves functions of mq, Eq. (3.123) is not a series expansion in mq despite its
appearance.

To decipher the physical meaning behind Eq. (3.123), we first note that the
non-perturbed matrix term Ξ is understood as resulting from Goldstone’s the-
orem as discussed before. The perturbation terms, δΞ ≡ MmqΞI + a∆2m2

qΞII,
contains combinations of order parameters that violate the U(1)A chiral sym-
metry, such as σ|∆s|2 and σ (in contrast to the chirally invariant combinations
(3.57)); they are caused by mq which explicitly violates such symmetry.

To leading order in mq, the perturbation to Ξ and thus its eigenvalues (the
πG, πM masses) are

m2
G ≈

bMmq + a∆2m2
q

f2
G

,

m2
M ≈ aM2∆2

(
1

f2
π

+
1

f2
π̃

)
+Mmq

(
bf2
π̃

f2
Gf

2
π

+
2a∆2

f2
π̃

)
+m2

q

a∆2f2
π

f2
Gf

2
π̃

;

(3.124)

we plot them as functions of density in Fig. 3.7. In the relatively high density
BCS regime, mG decreases with increasing density as a consequence of the
increasing BCS pairing 〈qq〉 taking on the role of chiral order parameter; fπ̃
increases while fπ vanishes. From the mixing, Eq. (3.64), one sees that the
πG mode is mainly composed of π̃-like fluctuations, while the massive mode is
mainly π-like, being heavy due to vanishing 〈q̄q〉. The NG-mode mass obeys
the diquark-condensate pion GMOR relation (cf. Eq. (3.118)):

f2
Gm

2
G ≈ am2

q∆
2 (3.125)
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while at low density, the πG mode is primarily π-like, and one recovers the
vacuum pion GMOR relation (cf. Eq. (3.116)):

f2
Gm

2
G ≈ bMmq ≈

Mmq

2G
≈ −〈q̄q〉mq (3.126)

to leading order in mq.
Figure 3.7 also shows a crossing of mM and mG at low density, which is

actually an artifact of our present schematic model, where diquark pairing per-
sists at arbitrary density. As a result, the π̃-like mode, corresponding to chiral
fluctuations of pairing amplitude 〈qq〉 mainly near the Fermi surface, the free
energy cost goes to zero as the Fermi surface vanishes. In the vacuum this mode
is simply not present. Realistically, this regime should be described by nuclear
matter instead, which is beyond the scope of deconfined quark models; one
would need include the physics of chiral symmetry breaking in nuclear matter.

The density at which mM crosses mG can be roughly estimated using Eq.
(3.124) and the fact that ∆ � fπ̃ at low density (see Eq. (3.98) and its com-
ments) to show that when mG ∼ mM , the decay constants are comparable
with each other: fπ ∼ fπ̃. Since f2

π̃ ∼ n/M at low density, fπ ∼ fπ̃ implies
n ∼ f2

πM , a characteristic density scale for chiral symmetry breaking via 〈q̄q〉.
Using values from realistic NJL models where the effective quark mass M is
∼ 300MeV and the experimental fπ is ∼ 92 MeV, we find that n is of order
nuclear matter density, n0 ≈ 0.16 fm−3, as we have shown earlier in the decay
constant discussion. In this density regime, QCD confinement binds quarks into
nucleons, and the homogeneous diquark pairing picture in the schematic model
at these densities is no longer physical. Nevertheless, the πG mode does obey
the well-known vacuum pion GMOR relation in the low density limit, allowing
this pionic mode to be smoothly interpolated between nuclear matter and quark
matter at high density, where chiral symmetry remains broken throughout.

3.2.8 Physical implications of generalized pion and
outlook

We have studied in detail a schematic model in this section of continuous chiral
symmetry breaking by chiral and diquark condensates. From the vacuum to
high density, the symmetry breaking condensate gradually evolves from the
q̄q chiral condensate alone, to a coexistence phase of chiral and diquark qq

condensates, and finally a diquark pairing dominated phase. Throughout the
same chiral symmetry is broken, and the NG boson, the generalized pion πG,
smoothly changes from the vacuum pion π into a generalized pionic mode as a
linear combination of π and π̃, whose properties such as decay constant, mass
and coupling to the quark medium are all continuous functions of density. Our
discussion suggests that the NG boson sector in cold, dense quark matter may
remain qualitatively the same at varying densities, despite the change in the
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quark 
matter 
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nuclear 
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Figure 3.7: The perturbed masses of the NG mode, mG, and of the heavy mode,
mM , as functions of quark density, n. Here we take G = 11Λ−2, H = 6Λ−2

and mq = 0.01Λ. With decreasing density, mM rapidly decreases as the Fermi
surface vanishes, eventually crossing the NG-mode mass mG; this is an artifact
of our simplified NJL model which does not take confinement into account.
Realistically this low density regime is instead described by nuclear matter; the
boundary of the transition from quark matter to nuclear matter drawn in the
plot is only illustrative.
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phases10.
The persistence of the πG mode at all densities raises the possibility of a

continuous Bose-Einstein condensation of the pions in dense quark matter. In
the literature, homogeneous condensates of the pionic NG modes have been
considered within NJL, in both the low density non-BCS (e.g., [79]) and high
density BCS (e.g., [77]) limits. Our study here suggests that the pion conden-
sation at the two limits could be smoothly connected, with no abrupt phase
transitions in terms of the pion (or more generally, meson) condensation. Our
present schematic model however cannot study such possibilities directly, since
the pion condensation in this model will be trivial; the pion merely corresponds
to a global axial U(1)A rotation of the system from the scalar state. In the chiral
limit, the chiral symmetry is respected by the Lagrangian, and such rotation
does not cost any free energy; the rotated system is energetically equivalent to
the original scalar state. With a finite mq breaking chiral symmetry, the scalar
state is the unique ground state with the lowest free energy, since there are no
forces driving condensation, and homogeneous pion condensates are unstable.

To study in more detail the evolution of pion condensation at varying density,
our model must be generalized into realistic Nf = Nc = 3 and quark masses,
where driving factors of meson condensation emerge. For example, the mis-
matched Fermi surfaces of up and down quarks and an electric charge chemical
potential translate directly into an effective chemical potential of the charged
pions (see discussions of pion condensation in NJL models in [45, 78, 79, 80, 81,
82, 83, 84]). When the effective pion chemical potential overwhelms the pion
mass, even homogeneous pion condensation can occur. Furthermore, as the
pions directly couple to the quarks in the pseudoscalar q̄q and qq channels as
discussed in this section, more types of pionic condensates could be favored by
the pion interacting with the quark matter medium at different densities, such
as inhomogeneous meson condensates (e.g., [85, 86]) or condensation into states
with finite momenta. Other exotic phases involving inhomogeneous chiral or
diquark condensates (e.g., [87, 88]) could also affect pion condensation. These
possibilities provide attractive future research opportunities.

Another direction worth pursuing from this study is the detailed realization
of the meson mass reversal phenomenon [65] (where the mass ordering of the
pseudoscalar mesons are reversed due to the diquarks forming 3̄ representations
of flavor; as a result, diquark pions receive larger contributions from strange
quarks and become heavier than the diquark kaons, which is totally opposite
to the mass ordering of vacuum hadronic pions and kaons), again requiring
generalization into Nf = Nc = 3. The masses and decay constants of the

10 The 2SC phase is an exception, where the isospin component of the chiral symmetry is
restored. It is an open question whether the 2SC phase actually appears in place of the CFL
phase at intermediate densities with realistic strange quark masses [101]. Nevertheless, it has
been found in NJL studies that the CFL phase remains more energetically favorable than the
2SC phase all the way down to nuclear matter density, as long as the diquark pairing attraction
is strong enough to produce a CFL gap ∼ 100 MeV in the chiral limit [52, 89, 90, 91, 92, 93].
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generalized meson octet as functions of density can then be computed in the
same way to study the the density-dependent meson mass spectrum throughout
different phases, and how those mass curves depend on model parameters. Our
schematic model provides an outline of calculating these meson properties.

We draw attention to the possible role of the φ̂ mode. This mode, discussed
in Sec. 3.2.4, could also play a role in a realistic phase diagram (a possibility
that has not received attention in present NJL studies). Although the φ̂ mode,
not being a NG mode, is always massive, there may be density regions where
its mass is significantly reduced. This observation comes from the fact that the
φ̂ mode corresponds to a relative phase oscillation between the scalar diquark
condensate ∆s and the pseudoscalar ∆ps. Specifically, its stiffness term,

∂2Ω

∂ sin2 φ
=

∆4

16
sin2 2θd

∑
±

∫
p

1

ω3
±
> 0, (3.127)

(calculated here, for simplicity, in the pure BCS limit with a finite θd chiral
rotation from the scalar state in our model) can be made small if either the
BCS gap ∆ or the (homogeneous generalized pion condensation) θd is small.
The possible role of the φ mode in the low energy physics of dense quark matter
and its coupling to the pseudoscalar ∆ps fluctuations and thus its coupling to
the generalized pion can be explored in the future as well.

Our derivation of the generalized GMOR relation (3.123) is based on expand-
ing the grand thermodynamic potential in terms of mq and bosonized fields. In
the following sections 3.3 and 3.4, we develop a more general formalism for cal-
culating the GMOR relation to arbitrary order, based on insertion of boson field
vertices in quark loop diagrams. We demonstrate that this formalism yields the
expected GMOR result to linear and quadratic order in mq, and outline the
strategy of calculating GMOR coefficients with the coexistence of chiral and
diquark condensates.

Our formalism is presented in two parts. In Sec. 3.3 we first demonstrate
how to self-consistently compute the meson inverse propagators in the gen-
eral presence of multiple condensates (chiral and diquark); the resulting inverse
propagators of different mesonic fields form a set of linear equations in terms
of bubble diagrams. In Sec. 3.4 we develop a method of perturbing, using bare
quark masses mq, the bubble diagrams via vertex insertions self-consistently in
the chirally broken state, constrained by gap equations. In turn, the perturba-
tion to the meson inverse propagators by mq is obtained; solving for the zeros
of the perturbed inverse propagators gives the perturbed energies of mesonic
modes, and thus the mode masses as functions of mq – a generalized GMOR
relation.
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3.3 Self-consistent calculation of generalized

meson inverse propagators

We first develop the self-consistent derivation of meson inverse propagators in
this section; the method is based on Refs. [5] and [6], and an example of its
application in cold atoms can be found in Ref. [94]. We start with a general
Lagrangian

L = ψ̄S−1
0 ψ +

∑
α

gα
(
ψ̄Γαψ

)† (
ψ̄Γαψ

)
; (3.128)

here, ψ can be the Nambu-Gorkov spinor or just the ordinary quark fields; the
system has gα couplings in the Γα channel. For example, in the NJL model, for
the chiral (q̄q)2, (q̄iγ5τa)2 and diquark |q̄iγ5τAλAq

C |2 interactions, the vertices
are

Γσ = 1, Γπa = iγ5τa, ΓdA = 2γ5τAλA

(
0 0

1 0

)
. (3.129)

We define the composite operator

wα(x) ≡ ψ̄(x)Γαψ(x), (3.130)

which will serve as the interpolating field for the mesons, either NG or massive;
its mean field expectation value is, in terms of the trace over the one particle
correlation function of the fermion S(1, 2) ≡ −i〈T ψ(1)ψ̄(2)〉,

〈wα(1)〉 = −itr
(
S(1, 1+)Γα

)
, (3.131)

where 1+ stands for t′1 = t1 + 0+ in the time component. The mean field
Lagrangian is

LMF = ψ̄S−1
0 ψ +

∑
α

gα

[
〈wα〉†ψ̄Γαψ + 〈wα〉ψ̄Γ̃αψ

]
−
∑
α

gα|〈wα〉|2, (3.132)

where Γ̃α ≡ γ0Γ†αγ
0; Γ̃ satisfying

ψ̄Γ̃αψ = (ψ̄Γαψ)†. (3.133)

Our goal is to compute the time-orderedmeson correlation function (the meson
propagator),

Dαβ(1, 2) ≡ −i〈T wα(1)w†β(2)〉, (3.134)

which is necessary to derive the meson dispersion relations.
To achieve this, we first add an external source perturbation to the mean
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field Lagrangian,

Lpert = −
∑
β

wβ(2)Uβ(2)−
∑
β

w†β(2)U†β(2), (3.135)

making S(1, 2;U) a functional of the sources Uα. The meson correlation func-
tions can then be calculated using

Dαβ(1, 2) =
δ〈wα(1)〉
δU†β(2)

∣∣∣∣∣
U=0

=
1

i
tr

[
δS(1, 1+;U)

δU†β(2)
Γα

]
. (3.136)

After some algebra, we obtain

Dαβ(1, 2) = Bαβ(1, 2)−
∫
x

∑
σ

Bασ(1, x)gσDσβ(x, 2)

−
∫
x

∑
σ

Bασ̄(1, x)gσDσ̄β(x, 2), (3.137)

where the bubbles and “anomalous” meson correlation functions are defined by

Bαβ(1, 2) = itr
[
S(1− 2)Γ̃βS(2− 1+)Γα

]
,

Bαβ̄(1, 2) = itr
[
S(1− 2)ΓβS(2− 1+)Γα

]
,

Dᾱβ(1, 2) = −i〈Tw†α(1)w†β(2)〉. (3.138)

In compact form, we write

D = −B +BĝD, (3.139)

where the correlation functions and bubbles are matrices with indices α, β, α̃, β̃
being channel labels, and ĝαβ = ĝα̃β = ĝαβ̃ = ĝα̃β̃ = gαδαβ .

The matrix equation (3.139) is solved to compute D in terms of the bubbles
B; the poles ofD encode the meson states. As a specific example, let us consider
the application to a pure CFL phase pseudoscalar meson correlation functions.

We first work out the diquark meson vertices, which differ from the familiar
vacuum meson vertices, e.g, for π−,

Γπ− =

(
iγ5

τ1+iτ2√
2

iγ5
τ1−iτ2√

2

)
(3.140)

in the Nambu-Gorkov space, which can be derived by varying the chiral con-
densate with an infinitesimal transformation

q → [1− iγ5θiτi/2] q,

σ = q̄q → q̄ [1− iγ5θiτi/2] [1− iγ5θiτi/2] q = q̄q − θiq̄iγ5τiq. (3.141)
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charged meson vaccum meson vertex diquark meson vertex

π−(
√

2ūiγ5d)

(
iγ5

τ1+iτ2√
2

iγ5
τ1−iτ2√

2

)
−
( √

2τ5λ7√
2τ7λ5

)
π+(
√

2d̄iγ5u)

(
iγ5

τ1−iτ2√
2

iγ5
τ1+iτ2√

2

)
−
( √

2τ7λ5√
2τ5λ7

)
K−(
√

2ūiγ5s)

(
iγ5

τ4+iτ5√
2

iγ5
τ4−iτ5√

2

) ( √
2τ2λ7√

2τ7λ2

)
K+(
√

2s̄iγ5u)

(
iγ5

τ4−iτ5√
2

iγ5
τ4+iτ5√

2

) ( √
2τ7λ2√

2τ2λ7

)
K̄0(
√

2d̄iγ5s)

(
iγ5

τ6+iτ7√
2

iγ5
τ6−iτ7√

2

)
−
( √

2τ2λ5√
2τ5λ2

)
K0(
√

2s̄iγ5d)

(
iγ5

τ6−iτ7√
2

iγ5
τ6+iτ7√

2

)
−
( √

2τ5λ2√
2τ2λ5

)
Table 3.5: Vertices of the charged vacuum mesons and the diquark mesons.

However, the scalar diquark condensate, dj ≡ q̄iγ5τjλjq
C , transforms as

dj → q̄ [1− iγ5θiτi/2] iγ5τjλj
[
1− iγ5θiτ

T
i /2

]
qC

= dj + q̄θi
1

2
(τiτj + τjτ

T
i )λjq

C , (3.142)

where the additional term corresponds to pseudoscalar diquark condensates, as
expected. Taking j = 1, 2 for charged pions, we find

Γπ− = −

( √
2τ5λ7√

2τ7λ5

)
. (3.143)

The vacuum meson in the non-paired phase and diquark meson vertices in the
CFL phase are summarized in Table. 3.5. These vertices are used to construct
the interpolating fields (composite operators) for the mesons, e.g., the interpo-
lating field for π− will be given by ψ̄(x)Γπ−ψ(x), and so on.

We note that the interpolating fields wπ,K of diquark mesons as given by the
vertices in Table. 3.5 are linear combinations of the qq and q̄q̄ fields; however,
the diquark interaction term in the original Lagrangian is of the form (qq)(q̄q̄),
which does not manifestly factorize into the form |wπ,K |2. We have to work
with intermediate interpolating fields sij , pij that are not the meson interpo-
lating fields themselves, given by writing the scalar and pseudoscalar diquark
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interaction term as

H
∑
ij

(
q̄Ciγ5τiλjq

)
·
(
q̄iγ5τiλjq

C
)

= 4H
∑
ij

ψ̄

(
iγ5Γij

0

)
ψ · ψ̄

(
0

iγ5Γji

)
ψ

≡ H
∑
ij

s†ijsij ,

H
∑
ij

(
q̄Cτiλjq

)
·
(
q̄τiλjq

C
)

= 4H
∑
ij

ψ̄

(
Γij

0

)
ψ · ψ̄

(
0

Γji

)
ψ

≡ H
∑
ij

p†ijpij . (3.144)

By construction, the actual meson interpolating fields are linear combinations
of pij :

π− : −
√

2i
(
p57 − p†75

)
,

π+ :
√

2i
(
p†57 − p75

)
,

K− :
√

2i
(
p27 − p†72

)
,

K̄0 : −
√

2i
(
p25 − p†52

)
. (3.145)

The mean field Lagrangian, in terms of the fields sij , pij , is

LMF

= ψ̄S−1
0 ψ + 2H

∑
ij

[
〈sij〉†ψ̄iγ5

(
1

0

)
Γijψ + 〈sij〉ψ̄iγ5

(
0

1

)
Γ̃ijψ

]
−H

∑
ij

|〈sij〉|2

+2H
∑
ij

[
〈pij〉†ψ̄

(
1

0

)
Γijψ + 〈pij〉ψ̄

(
0

1

)
Γ̃ijψ

]
−H

∑
ij

|〈pij〉|2

−
∑
ij

sijWij −
∑
ij

s†ijW
†
ij −

∑
ij

pijUij −
∑
ij

p†ijU
†
ij , (3.146)

where Wij and Uij are scalar and pseudoscalar external sources. To compute
the meson correlation functions, we need to calculate correlation functions of
the form

−i〈Tpijpmn〉,−i〈Tp†ijp
†
mn〉,−i〈Tpijp†mn〉 (3.147)

according to (3.145). Using method demonstrated earlier this section, we com-
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pute

−i〈Tpij(1)pmn(2)〉 =
δ〈pij(1)〉
δUmn(2)

|U,W=0 =
1

i
tr
[
δS(1, 1+;UW )

δUmn(2)
Γij

]
; (3.148)

using the identity

δ

δU
1 = 0 =

δS

δU
S−1 + S

δS−1

δU
, (3.149)

to obtain

1

i
tr
[
δS(1, 1+;UW )

δUmn(2)
Γij

]
= −1

i

∫
3,4

tr
[
S(1, 3;UW )

δS−1(3, 4;UW )

δUmn(2)
S(4, 1+;UW )Γij

]
= −1

i

∫
3,4

tr

[
S(1, 3;UW )

(
− Γmnδ34δ23 + 2H

∑
kl

Γkl
δ〈p†kl〉(3)

δUmn(2)
δ34

+2H
∑
kl

Γ̃kl
δ〈pkl〉(3)

δUmn(2)
δ34

)
× S(4, 1+;UW )Γij

]

= −itr
[
S(1, 2)ΓmnS(2, 1+)Γij

]
+ 2H

∑
kl

i

∫
3

tr [S(1, 3)ΓklS(3, 1)Γij ]

×1

i
〈Tpmn(2)p†kl(3)〉+ 2H

∑
kl

i

∫
3

tr
[
S(1, 3)Γ̃klS(3, 1)Γij

]
×1

i
〈Tpmn(2)pkl(3)〉

= B(1ij , 2mn)− 2H ·B(1ij , 3kl) ·
1

i
〈Tpmn(2)p†kl(3)〉

−2H ·B(1ij , 3̄kl) ·
1

i
〈Tpmn(2)pkl(3)〉,

(3.150)

where the 3̄ij means we use the conjugate vertex Γ̃ij in the bubble definition as
in (3.138).

Let us investigate the π− bubble. Using (3.145), the correlation function of
π− interpolating field is

Dπ− =
1

2i
〈T (p57 − p†75)(p†57 − p75)〉

=
1

2i
(−D57,75 +D57,57† +D75†,75 −D75†,57), (3.151)

where

Dij,mn =
1

i
〈Tpijpmn〉, Dij,mn† =

1

i
〈Tpijp†mn〉. (3.152)

Since only a few B and D appears in a closed set of equations as other charged
mesons and the neutral mesons do not mix with π−, we adopt a simplified
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notation

simplified subscript

57, 57† 1
57, 75 2

75†, 57† 3
75†, 75 4

(3.153)

In this notation, we have simply

Dπ− =
1

2i
(D1 −D2 −D3 +D4) . (3.154)

The self-consistent equation (3.150) can then be written as

(1 + 2HB)

(
D1

D3

)
≡

(
1 + 2HB1 2HB2

2HB3 1 + 2HB4

)(
D1

D3

)
=

(
B1

B3

)
,(

1 + 2HB1 2HB2

2HB3 1 + 2HB4

)(
D2

D4

)
=

(
B2

B4

)
,

(3.155)

where the products between Bs and Ds are always understood in coordinate
space as

(BijDjk)(1, 2) =

∫
dxBij(1, x)Djk(x, 2). (3.156)

The solution to (3.155) is

D1 =
B1 + 2H detB

2HK
,

D2 =
B2

2HK
,

D3 =
B3

2HK
,

D4 =
B4 + 2H detB

2HK
; (3.157)

where the common denominator is

K =
1

2H
+B1 +B4 + 2H detB. (3.158)

Thus, according to (3.154), the same goes for Dπ− . The dispersion relation for
the diquark pion is thus solved by

0 = K =
1

2H

[
(1 + 2HB1)(1 + 2HB4)− 4H2B2B3

]
.

(3.159)
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To find the modes, we first note that that the bubbles have the following prop-
erties in momentum space:

B1(k0) = B4(−k0), B2(k) = B3(k); (3.160)

B1 and B4 in particular can also be written in the form

B1 = B0(k) +A(k)k0, B4 = B0(k)−A(k)k0, (3.161)

where A(k) and B0(k) are

A(k) = −2

∫
p

∑
i,j=±

(εi + ε′j)
2 − k2

2εiε′j
×

(u2
iu
′2
j − v2

i v
′2
j )

(ωi + ω′j)
2 − k2

0

,

B0(k) = −2

∫
p

∑
i,j=±

(εi + εj)
′2 − k2

2εiε′j
×

(u2
iu
′2
j + v2

i v
′2
j )(ωi + ω′j)

(ωi + ω′j)
2 − k2

0

;

(3.162)

here ω± = ((ε±−µ)2 + ∆2
CFL)1/2 are the positive quasiparticle energies, u±, v±

are the coherence functions corresponding to ω± (cf. Eq. (3.39) and (3.41)),
ε± = ±(M2 + p2)1/2, and the primed quantities are functions of p− k instead
of p, where k is the spatial component of the four-momentum k.

The dispersion equation then reads

0 = (1 + 2HB0(k)− 2HB2(k))(1 + 2HB0(k) + 2HB2(k))− 4H2A2k2
0.

(3.163)

The full calculation of obtaining GMOR relation by perturbing the bubbles in
(3.163) is very involved and we leave it to future studies; however, the formalism
and guidelines are very clear. Here we merely verify that in the chiral limit,
Eq. (3.163) gives the correct massless NG mode. This can be done by proving
that k = 0 is a solution of (3.163). In fact, one can explicitly calculate that,
using the CFL gap equation,

B0(0)−B2(0) = B1(0)−B2(0)

= −
∫ ∑
±

(
16

3

1

ω±,∆CFL

+
8

3ω±,2∆CFL

)
= − 1

2H
,

(3.164)

thus indeed proving k = 0 is a solution; meanwhile, the non-vanishing terms
1+2HB0 +2HB2 and 4H2A2k2

0 will contribute to the renormalization constant.
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3.4 Gell-Mann–Oakes–Renner relation: another

perspective from loop diagrams

Having discussed how to derive the meson inverse propagator in terms of quark
bubbles in Sec. 3.3, we now discuss how to perturb the bubbles with bare quark
massesmq in order to derive the generalized GMOR relation from the perturbed
inverse propagator. We demonstrate our method in Sec. 3.4.1 and 3.4.2 using
a simple Nf = Nc = 1 example; in Sec. 3.4.3 we outline how to generalize to
realistic Nf , Nc > 1 models.

3.4.1 Nf = Nc = 1 with no pairing

We illustrate our method in this simplest case, before briefly discussing the gen-
eralization scheme to realistic Nf = Nc = 3. We start with the (homogeneous)
gap equations, in the form of traces over quark propagators

−M
2G

cos θ = σ =
1

i
TrS,

−M
2G

sin θ = π =
1

i
TrSiγ5, (3.165)

where S is the quark propagator, M the dynamic quark mass, G the four-quark
chiral coupling strength, and θ is the chiral angle locating the ground state on
the chiral circle (σ, π). The grand trace Tr again runs over all degrees of freedom
including four-momentum. The inverse of the quark propagator is given by

S−1 = i/∂ + 2G(〈σ〉+ iγ5〈π〉) + γ0µ

= i/∂ −M(cos θ + iγ5 sin θ) + γ0µ. (3.166)

Considering the derivative of S with regard to θ, corresponding to applying a
chiral transformation on the system, we have

∂S

∂θ
= −S ∂S

−1

∂θ
S = SM(− sin θ + iγ5 cos θ)S. (3.167)

In particular, in the scalar state θ = 0, we have ∂S/∂θ = SMiγ5S; the deriva-
tive becomes an insertion of a pion vertex iγ5 on the quark line S. This is
reasonable, since in the scalar state, the variation of θ corresponds exactly to
the pseudoscalar pion.

Applying the derivative with regard to θ on the two gap equations (3.165),
we obtain

M

2G
sin θ =

1

i
TrSM(− sin θ + iγ5 cos θ)S

= M(− sin θBσσ + cos θBπσ) (3.168)
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and

−M
2G

cos θ = M(− sin θBσπ + cos θBππ); (3.169)

here the bubbles with no external momentum follow the usual definition

Bxy =
1

i
Tr (SΓxSΓy) , x, y = σ, π, (3.170)

and the vertices in Dirac space are Γσ = 1 and Γπ = iγ5. In the scalar state
θ = 0, we retrieve the gap equation in bubble form from (3.169):

1

2G
+Bππ = 0. (3.171)

Differentiating the gap equations one more time, we have:

1

2G
cos θ = − cos θBσσ + cos θ

1

i

∂

∂θ
Tr (SΓπSΓσ)

= − cos θBσσ + cos θ
M

i
Tr (SΓπSΓπSΓσ + SΓπSΓπSΓσ)

≡ − cos θBσσ + cos θMTππσ, (3.172)

where the triangle (again with vanishing external momentum) is defined by

Tππσ =
2

i
Tr (SΓπSΓπSΓσ) . (3.173)

In the scalar state, the differentiated gap equations (3.172) reduce to

1

2G
+Bσσ = MTππσ, (3.174)

relating the σ-σ bubble to a triangle diagram with two pion vertices.
The diagram relation (3.174) is useful for deriving the GMOR relation via

perturbing S with a small bare quark mass mq. To do so, we write S as well as
the effective mass M as expansions in powers of mq,

S = S0 +mqS1 + . . .

M = M0 +mqM1 + . . . (3.175)

The self-consistent gap equation (3.165) then becomes

M0 +M1mq + . . .

2G
= − 1

iTr (S0 + S1mq + . . . ) . (3.176)

Meanwhile, we note that S also has explicit dependence on M , therefore

S1 =
∂S

∂mq
+

∂S

∂M

∂M

∂mq
=

∂S

∂mq
+

∂S

∂M
M1 = S0S0 (1 +M1) ; (3.177)
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together with the expansion (3.176), we obtain

M1

2G
= −1

i
Tr (S0S0 + S0S0M1)→

(
1

2G
+Bσσ

)
M1 = −Bσσ, (3.178)

a relation for the σ-σ bubble Bσσ. With Eqs. (3.174) and (3.178) together, we
obtain further

M1 + 1 =
1

1 + 2GBσσ
=

1

2GTππσM
. (3.179)

We are now ready to perturb the (unrenormalized) inverse propagator for
the pion:

D−1(k) =
1

2G
+Bππ(k)

=
1

2G
+Bππ(k;mq = 0) +

1

i
Tr
(
S0(p)S0(p)ΓπS0(p− k)Γπ

+S0(p)ΓπS0(p− k)S0(p− k)Γπ
)
(1 +M1)mq +O(m2

q)

≡ 1

2G
+Bππ(k;mq = 0) + Tππσ(k)(1 +M1)mq +O(m2

q)

=
1

2G
+Bππ(k;mq = 0) + Tππσ(1 +M1)mq

+ [Tππσ(k)− Tππσ] (1 +M1)mq +O(m2
q),

(3.180)

where we use Tππσ(k) to denote the triangle diagrams with one external leg
carrying four-momentum k. Using Eq. (3.179), we arrive at

D−1(k) =
1

2G
+Bππ(k;mq = 0) +

mq

2GM
+O(k2mq,m

2
q). (3.181)

The non-perturbed part 1/2G+Bππ(k;mq = 0), after applying the gap equation
(3.171), reduces to

∂2Bππ(k;mq = 0)

∂k2
k2 + · · · = g−2

π k2 + . . . ; (3.182)

thus the pion squared mass term at linear order inmq is (also using the Goldberger-
Treiman relation gπfπ = M)

m2
π =

g2
πmq

2GM
=
σmq

f2
π

, (3.183)

the expected GMOR relation.
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3.4.2 Nf = Nc = 1 with pairing

We now include diquark pairing. We write in total

M

2G
cos θ = −1

i
TrSΓσ,

M

2G
sin θ = −1

i
TrSΓπ,

∆

4H
cos θ =

1

i
TrSΓd = −1

i
TrSΓd† ,

∆

4H
sin θ = −1

i
TrSΓp =

1

i
TrSΓp† ; (3.184)

we use “d” to denote scalar diquark and “p” to denote pseudoscalar diquark.
The quark inverse propagator is then (in Nambu-Gorkov space)

S−1

=

(
i/∂ −M(cos θ + iγ5 sin θ) + γ0µ iγ5d

† + p†

iγ5d+ p i/∂ −M(cos θ + iγ5 sin θ)− γ0µ

)

=

(
i/∂ −M(cos θ + iγ5 sin θ) + γ0µ (−γ5 cos θ − i sin θ)∆

(γ5 cos θ + i sin θ)∆ i/∂ −M(cos θ + iγ5 sin θ)− γ0µ

)
.

(3.185)

Differentiating S with regard to θ we obtain

∂S

∂θ
= −S ∂S

−1

∂θ
S

= S
[
−M sin θΓσ +M cos θΓπ −∆ sin θ(Γd − Γd†) + ∆ cos θ(Γp − Γp†)

]
S,

(3.186)

where the pseudoscalar diquark vertices are

Γp ≡

(
i

0

)
, Γp† =

(
0

i

)
. (3.187)

Note that in the scalar state, this is equivalent to the insertion of the generalized
pion vertex (3.113) as discussed in Sec. 3.2:

S
[
MΓπ + ∆(Γp − Γp†)

]
S = S [MΓπ + ∆Γπ̃]S = SfGΓGS. (3.188)
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Differentiating the gap equations (3.184), after some algebra we obtain

− sin θ
∆

2H
= −M sin θBσ̃σ +M cos θBσ̃π −∆ sin θBσ̃σ̃ + ∆ cos θBσ̃π̃,

cos θ
∆

2H
= M sin θBπ̃σ −M cos θBπ̃π + ∆ sin θBπ̃σ̃ −∆ cos θBπ̃π̃,

− sin θ
M

2G
= M sin θBσσ −M cos θBσπ + ∆ sin θBσσ̃ −∆ cos θBσπ̃,

cos θ
M

2G
= M sin θBπσ −M cos θBππ + ∆ sin θBπσ̃ −∆ cos θBππ̃,

(3.189)

where we have analogously defined the diquark “σ” vertex:

Γσ̃ = Γd − Γd† , Γd =

(
γ5

0

)
, Γd† =

(
0

γ5

)
. (3.190)

In the scalar state, the above equations reduce to

M

(
1

2G
+Bππ

)
= −∆(Bπp −Bπp†)

∆

(
1

4H
+Bpp −Bpp†

)
= −MBpπ

∆

(
1

4H
+Bp†p† −Bp†p

)
= MBp†π, (3.191)

or more compactly,

−∆Bππ̃ = M

(
1

2G
+Bππ

)
,

−MBπ̃π = ∆

(
1

2H
+Bπ̃π̃

)
;

(3.192)

they are tightly related to the two-by-two inverse pion propagator, linking π
and π̃, as confirmed by Eq. (3.77) in Sec. 3.2.6.

Differentiating the gap equations (3.189) again, we arrive at further scalar
state relations

−M
2G

= MBσσ −M (MTπσπ + ∆Tπ̃σπ) + ∆Bσσ̃ −∆(MTπσπ̃ + ∆Tπ̃σπ̃),

− ∆

2H
= −MBσ̃σ +M (MTπσ̃π + ∆Tπ̃σ̃π)−∆Bσ̃σ̃ + ∆ (MTπσ̃π̃ + ∆Tπ̃σ̃π̃) ,

(3.193)

the second equation of which becomes in the pure-pairing (M = 0) scalar state

− 1

2H
= −Bσ̃σ̃ + ∆Tπ̃π̃σ̃,

Bσσ̃ = −∆Tπ̃σπ̃. (3.194)
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Let us proceed to expand the quark propagator and the gaps ∆ and M in
mq:

M = M0 +M1mq +
1

2
M2m

2
q . . .

∆ = ∆0 + ∆1mq +
1

2
∆2m

2
q + . . .

S = S0 + S1mq +
1

2
S2m

2
q + . . . (3.195)

Due to the diquark sector contribution to the pion mass starts with leading order
m2
q, we need to work up to at least S2,∆2 and M2. To find out the analytic

expression for S1 and S2, we write down the variation

S1δmq = ∂mqSδmq + ∂MSδM + ∂∆Sδ∆

= ∂MS ·mq + ∂MS

(
M1δmq +

1

2
M2δm

2
q + ...

)
+∂∆S

(
∆1δmq +

1

2
∆2δm

2
q + ...

)
(3.196)

and

S2δm
2
q =

∂2S

∂m2
q

δm2
q +

∂2S

∂M2
δM2 +

∂2S

∂∆2
δ∆2

+2

(
∂2S

∂mq∂M
δmqδM +

∂2S

∂mq∂∆
δmqδ∆ +

∂2S

∂∆∂M
δ∆δM

)
;

(3.197)

using

∂mqSδmq + ∂MSδM + ∂∆Sδ∆

= ∂MS ·mq + ∂MS

(
M1δmq +

1

2
M2δm

2
q + ...

)
+∂∆S

(
∆1δmq +

1

2
∆2δm

2
q + ...

)
= [SΓσS(1 +M1) + SΓσ̃S∆1] δmq +

1

2
(SΓσSM2 + SΓσ̃S∆2) δm2

q + ...

(3.198)

and

1

2

[
∂2S

∂m2
q

δm2
q +

∂2S

∂M2
δM2 +

∂2S

∂∆2
δ∆2

+2

(
∂2S

∂mq∂M
δmqδM +

∂2S

∂mq∂∆
δmqδ∆ +

∂2S

∂∆∂M
δ∆δM

)]
= SΓσSΓσS(1 +M1)2δm2

q, (3.199)
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we finally obtain

S1 = SΓσS(1 +M1) + SΓσ̃S∆1,

S2 = SΓσSM2 + SΓσ̃S∆2 + 2SΓσSΓσS(1 +M1)2. (3.200)

All we need next is to calculate ∆1,2 and M1,2. Applying the gap equations
(3.184) again in terms of the expansion in powers of mq; with the help of the
insertions

∂S

∂M
= −S ∂S

−1

∂M
S = SS = SΓσS,

∂S

∂∆
= S (Γd − Γd†)S = SΓσ̃S,

∂S

∂mq
= SΓσS, (3.201)

we end up with another set of self-consistent relations (in the scalar state)(
1

2G
+Bσσ

)
M1 = −Bσσ +Bσσ̃∆1,(

1

2H
−Bσ̃σ̃

)
∆1 = Bσ̃σ +Bσ̃σM1, (3.202)

the second of which indicates that ∆1 = 0 if Bσσ̃ = 0, which is true in the pure-
pairing limit. For simplicity we consider this limit. Using the power expansions
back in the gap equations (3.184) at second order, we obtain(

1

2G
+Bσσ

)
M2 = −2Tσσσ(1 +M1)−Bσσ̃∆2 = −2Tσσσ(1 +M1)(

1

2H
−Bσ̃σ̃

)
∆2 = 2Tσ̃σσ(1 +M1) +Bσ̃σM2 = 2Tσ̃σσ(1 +M1) (3.203)

Therefore, we have

M1 =
−Bσσ

1
2G +Bσσ

, ∆1 = 0,

M2 =
−2Tσσσ(1 +M1)

1
2G +Bσσ

, ∆2 =
2Tσ̃σσ(1 +M1)

1
2H −Bσ̃σ̃

. (3.204)

If we ignore the wave function mixing from the small chiral condensate due
to mq, then the diquark pion’s inverse propagator can be written, after some
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algebra, as

1

2H
+Bπ̃π̃(k) =

1

2H
+Bπ̃π̃(k;mq = 0)

+(1 +M1) (Tσπ̃,π̃(k) + Tπ̃,σπ̃(k))mq

+
[
2(1 +M1)2Qσπ̃,σπ̃(k) +M2 (Tσπ̃,π̃(k) + Tπ̃,σπ̃(k))

+∆2 (Tσ̃π̃,π̃(k) + Tπ̃,σπ̃(k))
]m2

q

2
+O(m3

q),

(3.205)

where the triangle and square diagrams with external legs of momenta q are
defined by

TAB,C(q) =
1

i
TrS(p)ΓAS(p)ΓBS(p− q)ΓC ,

TA,BC(q) =
1

i
TrS(p)ΓAS(p− q)ΓBS(p− q)ΓC ,

QAB,CD(q) =
1

i
TrS(p)ΓAS(p)ΓBS(p− q)ΓCS(p− q)ΓD. (3.206)

The GMOR relation can thus be readily extracted as triangle and square dia-
grams. In particular, if we simply remove the chiral sector, the inverse propa-
gator of the diquark pion’ becomes

1

2H
+Bπ̃π̃(k) =

1

2H
+Bπ̃π̃(k;mq = 0)∆2Tσ̃π̃,π̃(k)

m2
q

2
+O(m3

q)

(3.207)

as expected.

3.4.3 Generalization to realistic models

The generalization of this method to Nf , Nc > 1 models with more general
condensates is straightforward; the outline can be summarized as follows:

(1) Write down the self-consistent gap equations for all the condensates
(mean fields), including all configurations of the ground state related to each
other by chiral rotations. In our previous Nf = Nc = 1 example, both the scalar
and pseudoscalar condensates (e.g., σ and π) must be taken into account, even
if we want to focus on the scalar state (or any particular state) only.

(2) Differentiate the gap equations with regard to parametrized chiral rota-
tion angles. This procedure can generate an infinite set of equations relating
loop diagrams with different numbers of vertex insertions – it relates tadpoles to
bubbles, bubbles to triangles, triangles to squares, and so on. These equations
can be used later on to identify the GMOR relation in the inverse propagator
of the mesons.

(3) Expand the mean field quark inverse propagator as well as the conden-
sates themselves in power series of the explicit symmetry breaking perturbation
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(mq in our case); this is essentially computing the variation of the quark lines
by the perturbation, while constrained by the gap equations to ensure self-
consistency.

(4) Match the powers of the perturbation. This step will generate a set of
linear equations relating the perturbation terms S1,2,... and M1,2,... etc. at each
power of the perturbation, with loop diagrams (such as bubbles and triangles)
being the coefficients of this linear system. Solving this linear system will yield
the perturbation terms completely.

(5) Write down the meson inverse propagator using S1,2,... and M1,2.... etc.
as a power series in the perturbation (mq); the GMOR relation, relating the
NG meson mass to powers of mq, becomes manifest at arbitrary orders in the
perturbation mq.
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Chapter 4

Quark-hadron continuity:
CFL dressing

In this Chapter we derive a low energy gauge-invariant effective description
of QCD in the coexistence phase in the presence of color-flavor-locked (CFL)
diquark and chiral condensates (CFL+χSB). We show that the Lagrangian of
this effective description, constructed from symmetry and quarks and gluons
dressed by both chiral and diquark condensates, takes the form of that of a
baryon-meson theory, with an intuitive mapping between the quarks and gluons
and the baryons and mesons. Our method is a sophisticated generalization of
the effective theory of baryons in CFL quark matter constructed in Ref. [7].

Our effective theory of dressed quarks and gluons is analogous to the non-
linear sigma model in the presence of symmetry-breaking condensates. We
discuss the physical implications of this description of QCD as a concrete real-
ization of quark-hadron continuity, where the low energy spectrum of the CFL
QCD is tightly connected to that of hadronic matter, with possibly modifica-
tions in coupling structures.

4.1 CFL diquark and chiral condensates using

quark fields

Let UL,R be a flavor SU(3)L,R transformation, and UC of SU(3)C . Then, the
quark fields transform as

qL,R;ia → U ijL,RU
ab
C qL,R;jb = UL,RqL,RU

T
C , (4.1)

where in the final term we treat color and flavor indices on an equal footing; the
usefulness of this notation comes from the fact that in diquark pairing phase,
flavor and color are locked and maneuvers often involve summations over both
indices. The chiral condensate matrix Mij = q̄RjqLi (up to a renormalization
constant), which is a color singlet with flavor indices i and j, transforms as

Mij = q̄RjqLi ⇒Mij → ULimU
†
RnjMij = ULMU†R. (4.2)

The color indices of the quark fields are implicitly summed over, resulting in
a color singlet M . Under an axial SU(3) transformation where UL = U†R, M
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transforms as a nonet. A useful parametrization is

M = Σs + iΠp, (4.3)

where “s, p” stand for scalar and pseudoscalar. Here, Σs =
∑8
a=0 q̄τaq is the

scalar q̄q bilinear component of M , Πp =
∑8
a=0 q̄iγ5τaq is the pseudoscalar

component; their diagonal a = 0 (trace) part, q̄q and q̄iγ5q, correspond to
“1” of the respective nonet. τa=0,...,8 are the SU(3) Gell-Mann matrices, with
τ0 =

√
2/31 included (1 is the unit matrix).

We separate M into its magnitude (which carries the same dimension as M)
and a dimensionless SU(3) phase Y :

Mij = |M |Yij ; (4.4)

all the transformation properties of M ’s are exhibited by Y , and a finite |M |
characterizes a non-vanishing chiral condensate. The simplest interaction term
between the quark field and the chiral field is

g|M |q̄LY qR + h.c., (4.5)

which can also be formally obtained from the mean field approximation in the
NJL model (see Chapter 2). The form of this interaction is strictly constrained
by symmetry, and must be universal in all effective theories that respect chiral
symmetry at order M .

It is convenient to generalize all the matrix operations to formally act on both
color and flavor. We formally write the transpose qTia = qai for the quark field, or
any field with flavor index i and color index a; similarly, traces and determinants
are performed by formally treating color and flavor indices on an equal footing.
One however must be careful in tracking the flavor and color indices during
these matrix operations to avoid mixing up the two physically distinct quantum
numbers. On the other hand, products in Dirac space are always implied without
causing confusion, e.g., qΓq in this Chapter means qmΓmnqn (Γ is some Dirac
matrix), which corresponds to qT q and qTΓq in the usual notation where the
normal transpose does not act on flavor and color. With these generalized
matrix operations, we can write the interaction term as

g|M |Tr(q̄LY qR) + h.c. (4.6)

Similar toM , we construct the diquark condensate matrix as (up to a renor-
malization constant)

d†L,Rai = εijkεabcq
T
L,R;jbCqL,R;kc, (4.7)

which is totally anti-symmetric in spin, color and flavor. We observe that d†ai
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transforms as 3̄f and 3̄c. As a result, the bosonic dia will transform like a quark
in flavor and color space. we can compactly write

d∗L,Ria ≡ d
†
L,R;ai; d

†
L,R → U∗Cd

†
L,RU

†
L,R. (4.8)

Separating d into its magnitude (which characterizes the CFL condensate) and
a SU(3)CFL phase (which carries both flavor and color indices)

dia = |d|Xia, (4.9)

we have

X†L,R → U∗CX
†
L,RU

†
L,R, XL,R → UL,RXL,RU

T
C ; (4.10)

where XL,R transforms like a quark, but carries baryon number -2/3:

XL,R → e2iθB/3XL,R, for q → e−iθBq; (4.11)

θB is the U(1)B phase.
The interaction between scalar diquark condensates and the quarks at lead-

ing order in |d| is

h
|d|
2

[
TrX†LqLCX

†
LqL − (TrX†LqL)C(TrX†LqL) + h.c.

]
− (L↔ R). (4.12)

This interaction is a generalization of the four-quark pairing interaction of the
form |qTCτAλAγ5q|2 (cf. Chapter 3). Indeed, in the scalar ground state, Xia =

δia, so

[TrqLCqL − (TrqL)C(TrqL)− (L→ R)]

=
[
δiaεijkεabcq

jb
L Cq

kc
L − (L→ R)

]
= −δiaεijkεabcqjbCγ5q

kc ∝ δAB(qTCτAλBq), (4.13)

where we have used the following property of the Levi-Civita symbol

εijkεimn = δjmδkn − δjnδkm. (4.14)

Altogether, to lowest order in |d| and |M |, we can write the chiral Lagrangian
of quarks interacting with the condensates

L = q̄i/∂q + g|M | (q̄LY qR + h.c.)

+h
|d|
2

([
TrX†LqLCX

†
LqL − (TrX†LqL)C(TrX†LqL)− (L→ R)

]
+ h.c.

)
.

(4.15)

At this step, the dynamics of the NG bosons, which are contained in the matrix
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representations X and Y , is not manifestly present. As X and Y are linearly
independent phases, we must diagonalize the Lagrangian in their coupling to
the quarks to distinguish the physical NG bosons and the massive modes.

4.2 Dressed quarks with diquark and chiral

condensates

We now construct fermion fields by dressing quarks with the diquark and chiral
condensates, analogous to the dressing of nucleons by the chiral condensate in
non-linear sigma model.

As the first step, a gauge-invariant fermion field can be formed via

qLiaX
†
Laj = ψLij , (4.16)

which transforms as a color singlet but a flavor nonet:

ψL,R → UL,RψL,RU
†
L,R. (4.17)

The reversal to the quark field is

qLia = ψLijXLja, (4.18)

q̄Lai = X†Lajψ̄Lji.

In terms of the new flavor nonet ψ, the quark coupling to the chiral phase Y is

q̄LiaYijqRja = ψ̄LmiYijψRjnXRnaX
†
Lam ≡ Tr

(
ψ̄LY ψRỸ

†
)
. (4.19)

Here, the color-singlet object Ỹ †nm ≡ XRnaX
†
Lam transforms as a flavor nonet

just like the chiral phase Y †:

Ỹ † → URỸ
†U†L; Ỹ → ULỸ U

†
R; (4.20)

it contains the same physical information as the original diquark phase X, but
has the advantage of being gauge-invariant. Meanwhile, Xs in the diquark-
quark interaction term are completely transformed away after dressing quarks
into ψ fields, and thus the interaction no longer contains NG bosons or the
massive modes:

TrX†LqLCX
†
LqL − (TrX†LqL)C(TrX†LqL)− (L↔ R)

= TrψLCψL − (TrψL)C(TrψL)− (L↔ R). (4.21)

To further decode the information of the NG bosons from Eq. (4.19), we

101



define “half” of the chiral phase, ξ, as

ξ2 = Y. (4.22)

The pseudoscalar mesons, corresponding to the fluctuations of ξ (and thus Y ),
are given by the parametrization

ξ = exp

[
i

8∑
a=1

τaπa/2fπ

]
, (4.23)

where τa are the Gell-Mann matrices for flavor, πa the eight real fields, and fπ
the pion decay constant. The transformation rule for ξ derives from that of Y .
Introducing the “compensator” field, K, which is a function of both ξ itself and
the SU(3)L,R transformations:

K = ULξ
√
ULξ2UR

†
; (4.24)

one can show that

ξ → ULξK
† = KξU†R. (4.25)

Using ξ we can further dress the fermion fields. We define

φL = ξ†ψLξ,

φR = ξψRξ
†; (4.26)

the new fermion fields transform as flavor nonet

φL,R → KφL,RK
†. (4.27)

The chiral interaction term then becomes

Tr
(
ψ̄LY ψRỸ

†
)

= Tr
(
φ̄LφRY

†
M

)
, (4.28)

where the chiral phase YM is defined by

YM ≡ ξ†Ỹ ξ† = ξ†XLX
†
Rξ
†. (4.29)

The “M ” in the subscript means “massive”, which we will clarify in a moment.
The diquark interaction term remains invariant after this dressing:

TrψLCψL − (TrψL)C(TrψL)− (L↔ R)

= TrφLCφL − (TrφL)C(TrφL)− (L↔ R). (4.30)

So far we have rotated away some of the chiral phases in the interaction
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terms by two successive redefinitions of the quark field. These redefinitions, or
dressing, will introduce derivative terms from the kinetic energy q̄i/∂q. Indeed,
after first dressing q → ψ, which we call the “diquark dressing,”

q̄i/∂q = Trψ̄i/∂ψ −
[
Trψ̄LiγµψL

(
XL∂µX

†
L

)
+ (L↔ R)

]
, (4.31)

whereXL,R∂X
†
L,R are gauge-invariant left- and right- handed diquark phase cur-

rents. With the additional dressing ψ → φ, which we call the “chiral dressing,”
we obtain further

q̄i/∂q = Trφ̄iγµ∂µφ− Trφ̄γµγ5φãµ + Trφ̄iγµφṽµ

−Trφ̄γµγ5[aµ, φ] + Trφ̄iγµ[vµ, φ]; (4.32)

here, the chiral axial and vector currents a, v are defined by

aµ = i
2

(
ξ†∂µξ − ξ∂µξ†

)
,

vµ = 1
2

(
ξ†∂µξ + ξ∂µξ

†) (4.33)

while the diquark axial and vector currents (dressed by chiral condensates) ã, ṽ
are

ãµ = − i
2

[
ξ†
(
XL∂µX

†
L

)
ξ − ξ

(
XR∂µX

†
R

)
ξ†
]
,

ṽµ = − 1
2

[
ξ†
(
XL∂µX

†
L

)
ξ + ξ

(
XR∂µX

†
R

)
ξ†
]
. (4.34)

Equation (4.32) indicates that the two currents, a, v and ã, ṽ, couple to φ
with different flavor structures, despite them sharing the same flavor SU(3)

transformation rules. Also, at this stage it is clear that the pseudoscalar mesons
corresponding to the YM phase are massive, while the other linearly independent
modes are the NG bosons. The reason is that only the YM mesons are coupled to
φ in a non-derivative interaction, which results in non-zero self-energy through
interacting with φ, which becomes a mass at zero four-momentum. The NG
mode only couples to φ with a derivative coupling, so it remains massless.

To find the currents corresponding to the NG modes and the massive modes,
we analogously define “half” of the diquark chiral phase

ξ̃2 = Ỹ , ξ̃ = exp

[
i

8∑
a=1

τaπ̃a/2fπ

]
, (4.35)

where π̃a are the eight real pseudoscalar diquark mesons, which are gauge-
invariant; in this formalism, one can easily see that they correspond to q̄q̄qq-
type fluctuations since Ỹ ∼ q̄q̄qq. Physically they are equivalent to the qq-type
fluctuations studied in Chapter 2; they are merely different but equivalent de-
scriptions of the same physical pseudoscalar mesons. Indeed, Table 4.1 shows
the operator correspondence of the two different descriptions; each pair trans-
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diquark phases gauge-invariant description
XLX

†
R ξ̃2

XL∂µX
†
L ξ̃∂ξ̃†

XR∂µX
†
R ξ̃†∂ξ̃

Table 4.1: The correspondence between composite diquark phase operators and
that of the gauge-invariant field ξ̃.

form identically under SU(3)L,R,C , and are physically indistinguishable.
In the gauge-invariant description which also takes advantage of the parametriza-

tion (4.35), the dressed diquark axial and vector currents are

ãµ = − i
2

[
ξ†
(
ξ̃∂µξ̃

†
)
ξ − ξ

(
ξ̃†∂µξ̃

)
ξ†
]
,

ṽµ = − 1
2

[
ξ†
(
ξ̃∂µξ̃

†
)
ξ + ξ

(
ξ̃†∂µξ̃

)
ξ†
]
. (4.36)

At linear order in the meson fields,

YM = ξ†ξ̃2ξ† ≈ 1 +
∑
a

τa

(
π̃a
fπ̃
− πa
fπ

)
. (4.37)

Thus, if we parametrize the meson fields contained in YM in a similar fashion

YM = exp

[
i

8∑
a=1

τaπ
M
a /fπ

]
= 1 + i

∑
a

τa
πMa
fM

+ . . . , (4.38)

then at the same linear order,

πMa
fM

=
π̃a
fπ̃
− πa
fπ
, (4.39)

confirming that πMa is indeed the massive mode. The other linearly independent
mode is

πGa
fG

=
fπ̃π̃a + fππa

f2
G

, (4.40)

with

fM =
fπ f̃π√
f2
π + f̃2

π

, fG =

√
f2
π + f̃2

π ; (4.41)

here, fM and fG are such that πM,G
a are normalized and obey the same com-

mutation relations as π and π̃; they agree with the form derived in Chapter
2.

To identify the currents associated with the NG modes and the massive
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modes, we expand the currents (4.33) and (4.36):

aµ = − 1

2fπ
∂µΦ +O

[(
Φ

fπ

)3
]
, vµ = −{Φ, ∂µΦ}

8f2
π

+O

[(
Φ

fπ

)4
]
,

ãµ = − 1

2fπ̃
∂µΦ̃ +O

( Φ̃

fπ̃

)3
 , ṽµ =

{Φ̃, ∂µΦ̃}
8f2
π̃

+O

( Φ̃

fπ̃

)4
 ; (4.42)

here, Φ ≡
∑
a τaπa and Φ̃ ≡

∑
a τaπ̃a. For later use, we also write ΦG ≡∑

a τaπ
G
a and ΦM ≡

∑
a τaπ

M
a , and define the NG and massive currents up to

leading order in meson fields:

aG,Mµ = − 1

2fG,M
∂µΦG,M + . . . ,

vG,Mµ = −{ΦG,M , ∂µΦG,M}
8f2
G,M

+ . . . , (4.43)

where the “. . . ” implies higher order terms in the meson fields; in general, those
terms are more complicated when constructed from Φ and Φ̃. With this defini-
tion, up to leading order in meson fields,

aµ = aGµ −
f2
π̃

f2
G

aMµ ,

vµ = vGµ +
f4
π̃

f4
G

vMµ −
fπfπ̃ ({ΦG, ∂µΦM}+ {ΦM , ∂µΦG})

8f2
πf

2
G

,

ãµ = aGµ +
f2
π

f2
G

aMµ ,

ṽµ = −vGµ −
f4
π

f4
G

vMµ +
fπfπ̃ ({ΦG, ∂µΦM}+ {ΦM , ∂µΦG})

8f2
π̃f

2
G

.

(4.44)

If we consider low energy, we can neglect all the massive modes and current;
the system then involves only φ and the NG modes, and YM = 1. The full
Lagrangian, with both the kinetic term (4.32) and the interaction terms (4.28)
and (4.30), is then

L = Trφ̄iγµ∂µφ− gFTrφ̄γµγ5[aGµ , φ]− gDTrφ̄γµγ5{aGµ , φ}

−g′FTrφ̄iγµ[vGµ , φ]− g′DTrφ̄iγµ{vGµ , φ}

+g|M |Tr
(
φ̄LφR

)
+h
|d|
2
TrφLCφL − (TrφL)C(TrφL)− (L↔ R), (4.45)

where the couplings are gF = gD = 1/2, g′F = 1/2 and g′D = −3/2; intriguingly
the vector currents have a different coupling structure in flavor space than the
axial currents. In particular, the axial vector coupling constant, gA, is given by
gA ≡ gF + gD = 1, as in the NJL model.
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The Lagrangian (4.45) is valid in the coexistence phase of diquark and chiral
condensates; if either vanishes, then the dressing procedure loses its physical
meanings. When one applies (4.45) in the |M | or |d| → 0 limit, the massive
modes and currents are important and can no longer be removed. For the axial
vectors, one can show that, using (4.44 and (4.32), the coupling constants for
the massive modes are

g′F = −2f2
π̃ + f2

π

2f2
G

, g′D =
f2
π

2f2
G

, (4.46)

which depend on fπ and fπ̃ and thus the density. The couplings of the NG mode
to the fermion field φ on the other hand are constant as long as we remain in
the coexistence phase.

The dressing scheme (4.26) using the chiral phase ξ is not the only way to
realize the non-linear chiral Lagrangian (4.45). In fact, one can at this step
choose to dress the fermion fields ψ with the gauge-invariant diquark phases ξ̃
again:

φ′L = ξ̃†ψLξ̃, φ
′
R = ξ̃ψRξ̃

†. (4.47)

This dressing scheme will result in no chiral currents aµ, vµ in the manifest
Lagrangian, but the chiral interaction will still take a form of Tr(φ̄′LY

†
Mφ
′
R), ex-

posing the massive modes; the construction of NG and massive currents follows
identically. The resulting NG pseudoscalar sector FA = FD = 1/2 is still the
same; however, the massive pseudoscalar current coupling becomes

g′F = g′D =
f2
π

2f2
G

, (4.48)

a different set than Eq. (4.46). The reason is that the dressed fields φ′ differ
from φ by a total dressing of the massive modes:

φL = ξ†ξ̃φ′Lξ̃
†ξ =

√
YM φ′L

√
YM
†
. (4.49)

Thus, the difference between the dressing schemes (4.26) and (4.47) is another
field dressing with massive pseudoscalar modes; it is natural that this absorption
of some massive chiral phases (and thus the massive currents) into the fermion
fields produces different F −D couplings. The NG currents on the other hand
are completely independent of the dressing schemes, which is expected since
they should only depend on the symmetry breaking pattern itself.
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Figure 4.1: The bubble contribution to the self-energy of the axial current ajkµ
of the NG bosons from both gD and gF coupling structures.

4.3 Meson kinetic energy and the non-linearity

of the meson field transformation

We have worked out the quark-meson Lagrangian (4.45) at a basic level. To
complete the effective theory where the NG bosons are long-lived particles with
their own kinematics, we explicitly integrate out their self-energy given by bub-
ble diagrams (see Eq. (4.50) and (4.52); the bubble contribution to self-energy
is illustrated in Fig. 4.1). We consider the NG modes only.

The meson-fermion interaction from (4.45) has the general form

LπG−φ = −(gF + gD)φ̄ij(γ
5γµ)ajkµ φki − (gD − gF )φ̄ki(γ

5γµ)φija
jk
µ ; (4.50)

here, the axial current aµ can be that of the chiral mode, diquark mode, or
the NG and massive modes; as they all share the same symmetry structure, it
suffices to consider the chiral mode, whose calculation is simplest. For simply
we assume free fermions φ, such that their Green’s functions obey

−i〈Tφij(1)φ̄ab(2)〉 = G(ij, ab)(1− 2) = δibδjaG(1− 2). (4.51)

After some algebra, the bubble connecting the two end axial current states
(aGµ )jk and (aGν )mn is

Bjk,mnµν (k) = 2
{(
g2
D + g2

F

)
δkmδ

j
n +

(
g2
D − g2

F

)
δnmδ

k
j

}
kµkνBµν(k)δkmδ

j
n,

Bµν(k) ≡ 9i

∫
p

Trγ
[
γ5γµGpγ

5γνGp−k
]
. (4.52)

Similar to Chapter 2, we also write down the vacuum-to-meson transition am-
plitude parametrized in terms of fπ. The integration of such bubbles has been
performed in [96] and the result is the standard kinetic energy

f2
πTraµa

µ =
f2
π

4
∂µY

†∂µY. (4.53)
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As Y = exp iΦ/fπ, up to quadratic order in Φ, we simply have

f2
π

4
∂µY

†∂µY ≈ 1

4
Tr∂µΦ∂µΦ =

1

4
Trτaτb∂πa∂πb =

1

2
∂πa∂πa, (4.54)

the familiar form. The same kinetic energy form will exist for the diquark
mesons, and thus the NG and massive mesons (after diagonalization) as well.

The meson kinetic energy form (f2
π/4)∂µY

†∂µY has the advantage of Y
transforming linearly Y → ULY U

†
R, which is useful when considering the current

algebra of this model. However, the transformation of Φ is highly non-linear.
Consider a pure left-hand SU(3) transformation

UL = e−iτaθa/2, UR = 1, (4.55)

where θa parametrizes the transformation. We write the resulting transforma-
tion on Φ in a series:

Φ→ Φ′ = Φ + θaAa + . . . , (4.56)

where Aa are matrices; then

ei(Φ+Aaθa+... )/fπ = e−θaλa/2eiΦ/fπ . (4.57)

Expanding

ei(Φ+Aaθa+... )/fπ = 1 +
i

fπ
(Φ +Aaθa + . . . ) +

i2

2!f2
π

(Φ +Aaθa + . . . )2 + . . .

+
in

n!fnπ
(Φ +Aaθa + . . . )n + . . . , (4.58)

we obtain

ei(Φ+Aaθa+... )/fπ = eiΦ/fπ + θa

[ i
fπ
Aa +

i2

2f2
π

{Φ, Aa}

+
i3

3!f3
π

(AaΦΦ + ΦAaΦ + ΦΦAa) + . . .
]

+O(θ2)

= eiΦ/fπ − iθaτa
2

eiΦ/fπ +O(θ2). (4.59)

The equation that determines Aa is then

i

fπ
Aa +

i2

2f2
π

{Φ, Aa}+
i3

3!f3
π

(AaΦΦ + ΦAaΦ + ΦΦAa) + . . .

= −i τa
2

(1 +
i

fπ
Φ +

i2

2f2
π

Φ2 + . . . ); (4.60)

unfortunately, Aa does not have a simple form and depends on Φ itself, because
of the non-linearity of Φ under an infinitesimal transformation.
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4.4 Currents, symmetry and good quantum

numbers: mapping to a baryon-meson

theory

In this section we discuss the Noether currents resulting from the symmetry in
terms of the dressed fermion fields as well as the meson fields, and show that
they have a clear one-to-one correspondence in their quantum numbers. In the
remainder of this section specifically, we neglect the massive modes altogether;
whenever we mention the meson fields Y , πa, Φa and the currents aµ and vµ,
we mean those of the NG modes. Based on last section, the NG bosons will
contribute a kinetic energy to the Lagrangian

f2
G

4
∂µY

†∂µY, (4.61)

together with the derivative couplings to the fermions in the form of axial aµ
and vector vµ currents.

The Noether current, corresponding to a global symmetry transformation
parametrized by a set of angles θa, is

Jaµ =
∑
i

δL
δ∂µOi

· δOi
δθa

, (4.62)

where Oi are the fields in the Lagrangian; in our case they are the fermion and
meson fields. Recall that the full QCD symmetry is

SU(3)L ⊗ SU(3)R ⊗ U(1)B ⊗ U(1)A ⊗ U(1)EM ⊗ SU(3)C . (4.63)

Denoting the left and right hand flavor transformation

UL = e−iθ
L
a τa/2, UR = e−iθ

R
a τa/2; (4.64)

under UL,R with an infinitesimal θL,Ra , we see the quark fields transform as

qL → qL − i
2θLaλaqL,

qR → qR − i
2θRaλaqR, (4.65)

and the meson fields transform as

L : Y → Y − i
2θ
L
a τaY,

R : Y → Y + i
2θ
R
a Y τa. (4.66)

Thus, the left and right hand currents, generated by both the fermions φ and
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the mesons Y , are

JLµ,a =
f2
G

4
Tr
[
∂µY

†(− i
2
λaY ) +

i

2
Y †λa∂µY

]
=
if2
G

4
Tr
[
Y †λa∂µY

]
,

JRµ,a =
f2
G

4
Tr
[
∂µY

†(
i

2
Y λa)− i

2
λaY

†∂µY

]
= − if

2
G

4
Tr
[
λaY

†∂µY
]
.

(4.67)

The meson contribution to the vector and axial vector currents is then

JV,Yµ,a = JLµ,a + JRµ,a =
if2
G

4
Tr
(
[Y †, λa]∂µY

)
≈ −ifabcπb∂µπc,

JA,Yµ,a = −JLµ,a + JRµ,a = − if
2
G

4
Tr
(
{Y †, λa}∂µY

)
≈ − if

2
G

4
Tr

i

fG
· 2λaΦ = fG∂µπa.

(4.68)

The fermion contribution to the currents is more easily worked out by writing
the current in terms of the original quark fields first, and then in terms of φ:

JL,qµ,a =
1

2
q̄Lγ

µτaqL =
1

2
Trφ̄Lγµξ†τaξφL

=
1

2
Trφ̄LγµτaφL +

1

2
Trφ̄Lγµ[τa,

iΦ

2fπ
]φL + . . . ,

JR,qµ,a =
1

2
q̄Rγ

µτaqR =
1

2
Trφ̄RγµτaφR −

1

2
Trφ̄Rγµ[τa,

iΦ

2fπ
]φR + . . . .(4.69)

Therefore, to leading order, the total axial and vector currents from the quark
fields are

JV,qµ,a = JL,qµ,a + JR,qµ,a = 1
2Trφ̄γ

µτaφ+O(φ̄φππ),

JA,qµ,a = −JL,qµ,a + JR,qµ,a = 1
2Trφ̄γ

µγ5τaφ+O(φ̄φπ). (4.70)

The total axial and vector currents from (4.45) are then

JVµ,a = 1
2Trφ̄γµτaφ− ifabcπb∂µπc +O(π4, φ̄φππ, . . . ),

JAµ,a = 1
2Trφ̄γµγ

5τaφ+ fG∂µπa +O(π3, φ̄φπ, . . . ). (4.71)

In addition, the U(1)B current is simply

JBµ =
1

2
Trφ̄γµφ; (4.72)

the mesons do not contribute as they carry no baryon number. In the paired
phase, the baryon number and the electromagnetic U(1) charge are not good
quantum numbers, in the sense that the excitations are not eigenstates of baryon
or electric charge numbers
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Nevertheless, there exists an additional global U(1) symmetry that is still
respected in the CFL phase; its corresponding quantum number is called the
generalized charge Q̃, as a counterpart to the electric charge Q which is a good
quantum number in non-pairing phases. The generalized charge is a special
feature to Nf = Nc = 3 quark matter, where the electric charge matrix in flavor
space,

Q = diag(2/3,−1/3,−1/3), (4.73)

has a similar structure to the 8th color charge matrix

Q
(8)
C = diag(1, 1,−2)/

√
3, (4.74)

where we use R,G,B for the color index 1,2,3.
The generalized charge Q̃ is defined as

Q̃ ≡ Q+Q
(8)
C /
√

3; (4.75)

the resulting generalized charges for the quarks are summarized in Table 4.2 in
comparison to the electric charge Q of the baryon nonet. It can be seen that
there is exact one-to-one mapping from the quark table to the baryon table
in terms of the generalized charge to the electric charge. Furthermore, it can
be shown that all CFL diquark condensates, which pair quarks in symmetric
positions from the Q̃ quark table, carry zero Q̃ charge; thus, Q̃ is still a good
quantum number even in CFL phase, while Q is not. It also implies that the
dressed fermion fields ψ and φ share the same Q̃ table, since neither diquark
condensates nor the chiral condensate carry Q̃ charge.

Table 4.4 also lists the Q̃ and Q values of the pseudoscalar mesons calculated
from the Q̃ table of the quarks. The mesons carry exactly the same Q̃ charge as
their Q charge; the former is useful in the CFL phase quark matter, while the
latter is useful in the vacuum phase hadronic matter. This mapping inspires us
to write the matrix elements of the φ field using baryon symbols as well:

φ =


1√
2
Σ0 + 1√

6
Λ + Λ′ Σ+ p+

Σ− − 1√
2
Σ0 + 1√

6
Λ + Λ′ n0

Ξ− Ξ0 − 2√
6
Λ + Λ′

 ; (4.76)

equivalently, we may describe φ as the effective baryons in CFL quark matter.

4.5 Color and electric charge densities in the

mapped φ theory

So far we have mapped the basic quark Lagrangian into a gauge-invariant baryon
Lagrangian, with exact mapping of their conserved charges. In quark matter,
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Q̃ b g r
u 0 1 1
d -1 0 0
s -1 0 0

baryon notet
1√
2
Σ0 + 1√

6
Λ + Λ′ Σ+ p+

Σ− − 1√
2
Σ0 + 1√

6
Λ + Λ′ n0

Ξ− Ξ0 − 2√
6
Λ + Λ′

Table 4.2: Generalized charge Q̃ for the quark fields, compared with the baryon
nonet. Note the one-to-one correspondence of the generalized charges in the
quark table to the electric charges in the baryon table.

Q Q̃

π+ = ud̄ +1 +1
π− = dū -1 -1

π0 = ūu− d̄d 0 0
K+ = us̄ +1 +1
K− = sū -1 -1
K0 = ds̄ 0 0

η 0 0

Table 4.3: Generalized charge Q̃ and the electric charge Q of the pseudoscalar
mesons.

one often imposes the color neutrality and charge neutrality constraints, so
the total color and electric charge densities n3 = n8 = nQ = 0 vanish in the
bulk. We now show that these constrained electric and color densities, with
the introduction of color and electric chemical potentials µ3,8,Q, translate into
fermion densities in the φ theory, as well as φ-meson interactions which take
simple forms at leading order in the meson fields.

The color charge densities in the φ theory are

n3,8 = q†Laiλ
ab
3,8qLib + (L↔ R) = X†Lajψ

†
Ljiλ

ab
3,8ψLikXLkb + (L↔ R)

= Trψ†LψLXLλ3,8X
†
L + (L↔ R)

= Trφ†LφLξ
†XLλ3,8X

†
Lξ + Trφ†RφRξXRλ3,8X

†
Rξ
†. (4.77)

In the gauge-invariant description, we replace XL, XR with ξ̃, ξ̃†, and λ3,8 be-
comes essentially a flavor Gell-Mann matrix. At zeroth order in the meson fields
Φ and Φ̃, n3,8 are simply specific φ baryon densities:

Trφ†φλ3 = Ξ−†Ξ− − Ξ0†Ξ0 + Σ−†Σ− − Σ+†Σ+ +
1√
3

(
Λ†Σ0 + Σ0†Λ

)
+

√
2

3

(
Λ′†Σ0 + Σ0†Λ′

)
,

Trφ†φλ8 =
2√
3

(
− n†n− p†p− Λ†Λ + Ξ0†Ξ0 + Ξ−†Ξ−

+Σ+†Σ+ + Σ−†Σ− + Σ0†Σ0
)

+

√
2

3

(
Λ†Λ′ + Λ′†Λ

)
. (4.78)
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At linear order in meson fields, n3,8 has a commutator contribution

Trφ†iγ5φ

[
Φ

2fπ
− Φ̃

2fπ̃
, λ3,8

]
; (4.79)

this is an interaction of the φ baryons with the massive pseudoscalar mesons.
This commutator picks out only off-diagonal mesons; thus, µ3,8 will translate
into effective chemical potentials for the massive modes if the pseudoscalar den-
sities 〈φ†γ5φ〉 are non-vanishing. Neglecting massive modes is equivalent to
keeping the (4.78) term only. Similarly, the electric charge density is

nQ = q†Lai

 2/3

−1/3

−1/3


ij

qLja + (L→ R)

≡ q†LaiQijqLja + (L→ R)

= X†Lamψ
†
LmiQijψLjnXLna + (L→ R)

= Trψ†LQψLXLX
†
L + (L→ R) = Trφ†Lξ

†QξφLξ
†XLX

†
Lξ + (L→ R)

= Trφ†Lξ
†QξφL + Trφ†RξQξ

†φR. (4.80)

At zeroth order in meson fields, it contributes again a φ baryon density term;
however, it does not correspond to the generalized charge Q̃ densities. This
result is not intuitive, since one might expect the electric charge neutrality
should directly translate into generalized charge neutrality, as the fermions and
mesons carry the same generalized charge Q̃ and electric charge Q. However,
this reasoning is wrong: although each φ fermion carries the same Q̃ as the Q of
its partner hadronic baryon, φ themselves do not carry the same Q number as
their Q̃, thus the Q density of the φ baryons is not the same as their Q̃ density.

4.6 Dressed gluons

In this section we show that the same dressing scheme applies to gluons as well,
mapping gluons into vector mesons in baryon-meson theories. We start with
the quark-gluon and gluon tensor terms in QCD

L = q̄iγµDµq −
1

4
FµνF

µν (4.81)

where the covariant derivative is

Dµ = ∂µ −
i

2
gsA

α
µλα (4.82)

and the gluon tensor

Fαµν = ∂µA
α
ν − ∂νAαµ + gsfαβγA

β
µA

γ
ν . (4.83)
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The quark-gluon coupling preserves chirality, i.e., left-handed quarks are coupled
to left-handed quarks, and right-handed quarks are coupled to right-handed
quarks only. For left-handed quarks, the quark-gluon coupling in terms of the
ψ field (after diquark dressing) is

1

2
q̄Laiγ

µAαµλ
ab
α qLib =

1

2
X†Lajψ̄Ljiγ

µAαµλ
ab
α ψLikXLkb

= Trψ̄LγµψL
(

1

2
XLλαA

α
µX
†
L

)
≡ Trψ̄LγµψLV Lµ

(4.84)

and similarly for right-handed quarks. The gluons, losing colors by dressing via
the CFL phases XL,R, gain flavor and chirality instead, a defining feature of
color-flavor-locking. Introducing the vector and pseudovector fields

2Vµ = V Lµ + V Rµ , 2Pµ = −V Lµ + V Rµ , (4.85)

the quark-gluon coupling becomes

Trψ̄LγµψLV Lµ + (L→ R) = Trψ̄LγµψL(Vµ − Pµ) + Trψ̄RγµψR(Vµ + Pµ)

= Trψ̄γµψVµ + Trψ̄γµγ5ψPµ. (4.86)

This corresponds to a typical baryon–vector-meson interaction with gD = −gF =

1/2 (cf. Eq. (4.45)).
The next step of dressing via the chiral phases ξ is straightforward. Define

the further dressed vector mesons

WL
µ = ξ†V Lµ ξ, W

R
µ = ξV Rµ ξ

†, (4.87)

and 2WV
µ = WL

µ +WR
µ , 2WP

µ = −WL
µ +WR

µ ; the fermion–vector-meson coupling
simply becomes

Trψ̄γµψVµ + Trψ̄γµγ5ψPµ = Trφ̄γµφWV
µ + Trφ̄γµγ5φWP

µ . (4.88)

The gluon tensor term becomes slightly more complicated under the two
steps of dressing. In terms of the dressed chiral and diquark axial and vector
currents aµ, vµ and ãµ, ṽ/mu from Eqs. (4.33) and (4.34), after some algebra
one can show that the spatial derivatives of the dressed vector meson field are

2∂µW
L
ν = [WL

ν , ṽµ + iãµ] + [WL
ν , vµ − iaµ] + ξ†XLλα∂µA

α
νX
†
Lξ,

2∂µW
R
ν = [WR

ν , ṽµ − iãµ] + [WR
ν , vµ + iaµ] + ξXRλα∂µA

α
νX
†
Rξ
†. (4.89)

To write down the gluon tensor term in terms of W , it is for later use to define
the chiral covariant derivative, which acts differently on left- and right-handed
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fields, by

DµWL
ν ≡ ∂µW

L
ν +

1

2
[vµ + ṽµ + i(ãµ − aµ),WL

ν ],

DµWR
ν ≡ ∂µW

R
ν +

1

2
[vµ + ṽµ − i(ãµ − aµ),WR

ν ]; (4.90)

in addition, one can work out the following relations

DµWL
ν +DµWR

ν = ∂µW
V
ν +

1

2
[vµ + ṽµ,W

V
ν ]− 1

2
[i(ãµ − aµ),WP

ν ],

−DµWL
ν +DµWR

ν = ∂µW
P
ν +

1

2
[vµ + ṽµ,W

P
ν ]− 1

2
[i(ãµ − aµ),WV

ν ],

[WL
µ ,W

L
ν ] + [WR

µ ,W
R
ν ] =

1

2
[WV

µ ,W
V
ν ] +

1

2
[WP

µ ,W
P
ν ],

−[WL
µ ,W

L
ν ] + [WR

µ ,W
R
ν ] =

1

2
[WP

µ ,W
V
ν ] +

1

2
[WV

µ ,W
P
ν ]. (4.91)

Using these relations, the left-handed dressed field tensor of the vector field, is
then given by

1

2
ξ†XLF

α
µνλαX

†
Lξ

= ∂µW
L
ν − ∂νWL

µ −
1

2

(
[WL

ν , ṽµ + iãµ] + [WL
ν , vµ − iaµ]− (µ↔ ν)

)
+

1

4
gsXL[λβ , λγ ]X†LA

β
µA

γ
ν

= ∂µW
L
ν − ∂νWL

µ −
1

2

(
[WL

ν , ṽµ + iãµ] + [WL
ν , vµ − iaµ]− (µ↔ ν)

)
+gs[W

L
µ ,W

L
ν ]

≡ DµWL
ν −DνWL

µ + gs[W
L
µ ,W

L
ν ],

≡WL
µν , (4.92)

and the right-handed WR
µν is defined similarly. The vector and pseudovector

field tensors are defined by

WV
µν = WL

µν +WR
µν

= ∂µW
V
ν +

1

2
[vµ + ṽµ,W

V
ν ]− i

2
[ãµ − aµ,WP

ν ]− (µ↔ ν)

+gs
[WV

µ ,W
V
ν ] + [WP

µ ,W
P
ν ]

2
,

WP
µν = −WL

µν +WR
µν

= ∂µW
P
ν +

1

2
[vµ + ṽµ,W

P
ν ]− i

2
[ãµ − aµ,WV

ν ]− (µ↔ ν)

+gs
[WP

µ ,W
V
ν ] + [WV

µ ,W
P
ν ]

2
. (4.93)

As a result, the original gluon tensor term becomes

1

2
FµνF

µν = 2TrWL
µνW

Lµν = 2TrWR
µνW

Rµν ; (4.94)
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symmetrizing the left and right hand fields, we can write

1

2
FµνF

µν =
1

4
Tr(WV −WP )µν(WV −WP )µν

+
1

4
Tr(WV +WP )µν(WV +WP )µν

=
1

2
TrWV

µνW
V µν +

1

2
TrWP

µνW
Pµν . (4.95)

Combining (4.88) and (4.95), the quark-gluon Lagrangian (4.81) becomes com-
pletely transformed into a gauge-invariant interacting Lagrangian between φ

baryons and a degenerate set of vector and pseudovector mesons WV
µ and WP

µ .
If a massive deformation term m2

gA
α
µA

µ
α is included in the quark-gluon La-

grangian (4.81), as in certain studies of infrared gluon dynamics [97, 98], it
becomes a mass term for the dressed vector and pseudovector mesons. One can
show that

m2
gA

α
µA

µ
α = m2

g

(
TrWL

µW
Lµ + TrWR

µ W
µR
)

= 2m2
g

(
TrWV

µ W
V µ + TrWP

µ W
Pµ
)
. (4.96)

It is curious that the original eight gluons, after dressing in chiral and di-
quark condensates, become eight vector and eight pseudovector mesons; the
doubling the degrees of freedom comes from the fact that both left and right
hand condensates can dress the gluons on an equal footing. At this level, there
is no mass splitting mechanism between the vector and pseudovector mesons.1

In the hadronic matter, vector mesons play an important role of mediat-
ing short range interactions between baryons. The physically observed vector
mesons, ρ0, ρ±(770), ω(782), φ(1020), K∗±(891), and K∗0(895), turn out to
have masses of the same magnitude to that of infrared gluons 0.5 ± 0.2 GeV.
However, the actual relation between the physical, long-lived vector mesons,
the dressed gluon fields in our model, and the phenomenological vector fields
in chiral baryon or quark Lagrangians is yet unclear. At the very least, these
vector fields describe strong physics at a common energy scale . 1 GeV.

1 The doubling of spin-1 bosons via the dressing of the gluons may seem to have troubling
implications for the thermodynamics of the system from the perspective of hadrons transition-
ing into quarks and gluons: the specific heat would change significantly with the emergence
of additional degrees of freedom, disfavoring a direct continuity between hadronic matter and
quark matter. However, as we observe from the dressing schemes (4.84) and (4.87), the gluons
are dressed by the massive modes in the gauge-invariant description. This immersion of the
gluons in a cloud of the massive fluctuations should contribute to a gluon effective mass, in ad-
dition to gluon self-interactions. The resulting vector bosons should acquire significant masses.
Since additional heavy particles do not notably alter the specific heat at low temperature, the
mapping of eight gluons into sixteen vector bosons does not cause thermodynamic issues for
quark-hadron continuity. We leave detailed discussion of this topic to future research.
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4.7 φ-baryon pairing, φ-meson interaction and

explicit chiral symmetry breaking

Having obtained an effective theory of the φ-mesons from the gluons, we next
discuss the pairing and φ-meson coupling structures of the chiral Lagrangian
(4.45). In flavor space, the pairing between φ-baryons, corresponding to the
original CFL pairing, is

Trφφ− TrφTrφ =
(
p+Ξ− + Ξ−p+

)
+
(
nΞ0 + Ξ0n

)
+
(
Σ+Σ− + Σ−Σ+

)
+ΛΛ + Σ0Σ0 − 2Λ′Λ′

= [NΞ]sym + [ΣΣ]sym + [ΛΛ]sym − 2[Λ′Λ′]sym. (4.97)

The ±, 0 charges here refer to the generalized charge, not the electric charge.
The factor 2 in front of the singlet baryon Λ′ implies a single larger gap among
the total nine gapped quasi-fermions in CFL pairing. In the φ-baryon picture,
all fermions pair with themselves, and thus form a much more convenient basis
for computation.

This pairing pattern (excluding the largely gapped singlet) is structurally
similar to that of the hadronic baryon-baryon pairing in SU(3) flavor-symmetric
matter. The pairing is most attractive in the flavor singlet channel for Nf = 3

[95]: √
4

8
[NΞ]sym +

√
3

8
[ΣΣ]sym −

√
1

8
[ΛΛ]sym; (4.98)

nevertheless, the coefficients differ from Eq. (4.97), and neither pairing patterns
are reflected in dense nuclear matter at ∼ 2n0, where only neutrons and protons
are present. (It is unknown how the actual pairing pattern of nuclear matter
will evolve at higher baryon density, with the possible generation of strangeness;
this is again an intriguing future topic.)

The φ-meson coupling, to leading order in Φ (the NG modes) with gF =

gD = 1/2 is

1

2fG
Trφ̄γµγ5[∂µΦ, φ] +

1

2fG
Trφ̄γµγ5{∂µΦ, φ} =

1

2fG
Trφ̄γµγ5(∂µΦ)φ. (4.99)

Table 4.7 lists the detailed coupling of the mesons with the φ baryons, into both
octet-only baryons and also the singlet baryon Λ′; this table is useful to compute
meson-baryon scattering and meson self-energies, while making connections with
the hadronic mesons in nuclear matter.

Finally let us consider the form of explicit chiral symmetry breaking terms
in the φ-baryon theory. The simplest explicit chiral symmetry breaking term
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+
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−

Σ
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−

Σ̄
0
Σ

+
+
√

2n̄
p

+
1 √
3

( Σ̄
−

Λ
+

Λ̄
Σ

+
)

√ 2 3

( Λ̄
′ Σ

+
+

Σ̄
+

Λ
′)

π
−

Σ̄
0
Σ
−
−

Σ̄
+

Σ
0

+
√

2p̄
n

+
1 √
3

( Σ̄
+

Λ
+

Λ̄
Σ
−
)

√ 2 3

( Λ̄
′ Σ
−

+
Σ̄
−
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π
0
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p
−
n̄
n

+
Σ̄
−

Σ
−

+
Σ̄

+
Σ

+
+

1 √
3

( Λ̄
Σ

0
+

Σ̄
0
Λ
)

√ 2 3

( Λ̄
′ Σ

0
+

Σ̄
0
Λ
′)

K
+

Ξ̄
−

Σ
0

+
√

2
Ξ̄

0
Σ

+
+

1 √
3

( Ξ̄
−

Λ
−

2Λ̄
p
)

√ 2 3

( Ξ̄
−

Λ
′
+

Λ̄
′ p
)

K
−

Σ̄
0
Ξ
−

+
√

2
Σ̄

+
Ξ

0
+

1 √
3

( Λ̄
Ξ
−
−

2p̄
Λ
)

√ 2 3

( Λ̄
′ Ξ
−

+
p̄
Λ
′)

K
0

−
Σ̄

0
Ξ

0
+
√

2Σ̄
−

Ξ
−

+
1 √
3

( Λ̄
Ξ

0
−

2
n̄

Λ
)

√ 2 3

( Λ̄
′ Ξ

0
+
n̄

Λ
′)

K̄
0

−
Ξ̄

0
Σ

0
+
√

2Ξ̄
−

Σ
−

+
1 √
3

( Ξ̄
0
Λ
−

2
Λ̄
n
)

√ 2 3

( Ξ̄
0
Λ
′
+

Λ̄
′ n
)

η
1 √
3

( n̄n
+
p̄
p

+
Λ̄

Λ
+

Σ̄
−

Σ
−

+
Σ̄

+
Σ

+
+

Σ̄
0
Σ

0
−

2Ξ̄
0
Ξ

0
−

2Ξ̄
−

Ξ̄
−
) .

√ 2 3

( Λ̄
Λ
′
+

Λ̄
′ Λ
)

Table 4.4: Couplings between φ-baryons and the pseudoscalar mesons from
Eq. (4.99).
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using the bare quark mass matrix is

q̄Lm̂qR + h.c. = q̄ai

 mu

md

ms


ij

qja + h.c.; (4.100)

after dressing, this mass term becomes

Trξφ̄Lξ†m̂ξ†φRξỸ † + h.c.

≈ Trφ̄Lm̂φR −
1

4f2
π

Trφ̄L(Φ2m̂+ Φm̂Φ)φR + h.c. . . .

= Trφ̄Lm̂φR −
1

4f2
G

Trφ̄L(Φ2
Gm̂+ ΦGm̂ΦG)φR + h.c.+ . . .

(4.101)

where we again neglect the massive modes. Thus, in this non-linear realization,
a bare quark mass matrix m̂ not only induces a mass term for φ-baryons, but
also introduces corrections to the φ-meson couplings. Most importantly, it pro-
duces a non-derivative coupling between the NG modes and the baryons. At
quadratic order in meson fields, this coupling contributes a formal mass term
∼ 〈φ̄LφR〉m̂2/f2

G, which corresponds to the GMOR relation at linear order.
It should be noted that when the chiral condensate vanishes and the system is

in purely diquark pairing phase, then we must apply the diquark-diquark dress-
ing. In this case we still arrive at Eq. (4.101), but with ΦG replaced by diquark
meson matrix Φ̃. At linear order in m̂ this term no longer contributes to the
meson self-energy because 〈φ̄LφR〉 = 0; one must move to the next order, where
the contribution will come from the bubble of the form ∼ 〈φLφL〉〈φ̄Rφ̄R〉 ∼ |∆|2;
this corresponds to the GMOR relation at quadratic order in m̂, agreeing with
our demonstration in Chapter 3.

At linear order in m̂ and mean field, assumingmu = md � ms and 〈φ̄LφR〉 =

σ1/3, the meson masses obtained from (4.101) are

m2
π±,π0

=
(mu +md)σ

f2
G

, m2
K± =

(mu +ms)σ

f2
G

, m2
K0,K̄0 =

(md +ms)σ

f2
G

;

(4.102)

the π8 field, corresponding to the η meson, will in general mix with flavor singlet
η′ which corresponds to breaking of the U(1)A; we leave their discussion to future
studies as our φ theory has not included any prescription for the axial anomaly
so far.

One can proceed to study higher order interaction terms in m̂ generated by
the (4.101) term; we leave it to a future project. In general, due to symmetry
constraints, only the following combinations (at quadratic order in meson fields)
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are allowed:

ATrΦΦm̂m̂+BTrΦm̂Φm̂+ C (TrΦm̂)
2
, (4.103)

where A,B,C are constants proportional to σ/f2
G. It is interesting that the

term (4.101) can only produce a manifest chiral condensate contribution to
the meson masses, while the diquark condensate contribution only comes from
bubble diagrams (at one fermion-loop) containing anomalous Green’s functions.

4.8 Alternative dressing scheme and coexistence

of baryons formed by different diquark

dressing

The dressed φ baryons constructed from past sections, despite having intuitive
mapping to the hadronic baryons, actually have the wrong parity. This is be-
cause under parity transformation, dL ↔ −dR; as a result,

φL ↔ −φR. (4.104)

In this section we show how this dilemma can be lifted by inclusion of an alterna-
tive dressing scheme, leading to an additional nonet of baryons. The coupling
between the former and the new nonets via an explicit axial U(1) symmetry
breaking term as well as a direct mixing term can lift the degeneracy, retaining
only positive parity baryons in the low energy spectrum. We dress the left(right)
handed quark by a right(left) handed diquark instead:

ψ′L = qLX
†
R, ψ

′
R = qRX

†
L; (4.105)

the resulting color-singlet fields transform as (compare with (4.17))

ψ′L → ULψLU
†
R, ψ

′
R → URψ

†
RU
†
L. (4.106)

Similar to gluon dressing, as left and right handed diquarks are independent
degrees of freedom, it is reasonable for the fermion sector to receive additional
composite degrees of freedom under a different dressing scheme. The interaction
term with chiral condensate and diquark pairing becomes

Trq̄LY qR = TrX†Rψ̄
′
LY ψ

′
RXL = Trψ̄′LY ψ

′
RỸ , (4.107)
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and

TrX†LqLCX
†
LqL −

(
TrX†LqL

)
C
(
TrX†LqL

)
− (L↔ R)

= TrX†Lψ
′
LXRCX

†
Lψ
′
LXR −

(
TrX†Lψ

′
LXR

)
C
(
TrX†Lψ

′
LXR

)
− (L↔ R)

= Trψ′LCỸ
†ψ′LỸ

† −
(
Trψ′LỸ

†
)
C
(
Trψ′LỸ

†
)
− (L↔ R). (4.108)

Unlike the former dressing scheme, the diquark phases remain in the pairing
interaction term. To transform them away, one must use the diquark-diquark
dressing; that is, the next step is to dress ψ′ using gauge-invariant diquark
phases

φ′L = ξ̃†ψ′Lξ̃
†, φ′L → Kφ′LK

†,

φ′R = ξ̃ψ′Rξ̃, φ
′
R → Kφ′RK

†; (4.109)

they now transform identically as φL,R, and the two interaction terms reduce
to

Trψ̄′LY ψ
′
RỸ = Trφ̄′Lξ̃

†Y ξ̃†φ′R ≡ Trφ̄′LY
′
Mφ
′
R, (4.110)

and

Trψ′LCỸ
†ψ′LỸ

† −
(
Trψ′LỸ

†
)
C
(
Trψ′LỸ

†
)
− (L↔ R) (4.111)

= Trφ′LCφL − (Trφ′L)C (Trφ′L)− (L↔ R). (4.112)

The meson field Y ′M ≡ ξ̃†Y ξ̃† bears a similar structure to the original massive
field YM ≡ ξ†Ỹ ξ†; they coincide at leading order in Φ, Φ̃, but they do not
commute at higher order due to the SU(3) algebra. This feature is closely
related to the fact that the NG modes are always the same, as they are directly
given by the symmetry breaking pattern of the system. Under a chiral symmetry
transformation, the phases rotate identically ξ̃ = ξ, and one sees immediately
that YM = Y ′M = 0. However, since all the condensates can rotate individually,
the number of independent massive modes will be2 8 × 8 × 2 − 8 = 120. Only
when Nf = Nc = 1, are there just one massive mode and NG mode.

The huge amount of massive modes seem to contradict the fact that YM
and Y ′M are only two SU(3) matrices and cannot represent that many indepen-
dent modes. One needs to realize that the mapping from ξ, ξ̃ to YM and Y ′M
is surjective; any particular meson represented by the phases YM and Y ′M will
correspond to a number of independent massive modes that are totally degen-
erate. In particular, there are at most 8 different masses for the massive modes,

2There are eight independent ways to rotate the chiral condensates and eight independent
ways to rotate the diquark condensates; each pair of a chiral condensate rotation and a diquark
condensate rotation has two linearly independent combinations. The total number of linearly
independent fluctuations is thus 8× 8× 2 = 128. Subtracting the eight massless NG modes,
we end up with 120 massive modes.
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as long as the chiral and diquark interactions we have been using are the only
interaction terms in the theory. Since these massive modes are always unstable
and will decay into the NG modes immediately, we do not pursue further details
on their dynamics.

In order to construct effective baryons with positive parity, we return to
the linear sigma model for the moment and start from the ψ and ψ′ baryons.
One can easily check that ψ′, thus the φ′ baryons, also have negative parity.
However, if we define linear combinations3

√
2ψ′L = B′L +BL, ψ′L → e−iθBe−iθAULψLU

†
R;

√
2ψ′R = B′R −BR, ψ′R → e−iθBeiθAURψRU

†
L;

√
2ψL = B′L −BL, ψL → e−iθBe3iθAULφLU

†
L;

√
2ψR = B′R +BR, ψR → e−iθBe−3iθAURφRU

†
R;

(4.113)

with the transformation rules under SU(3)L,R and U(1)B,A, then the B,B′

baryons transform under parity as

B → B, B′ → −B′. (4.114)

The B baryons have the desired parity, but their partners B′ will naturally
coexist since they are just another combination of the ψ and ψ′ fields. Next we
show that, starting from a chiral Lagrangian of coexisting ψ and ψ′ (thus B and
B′) fields, we can eventually split the masses of B and B′ baryons with the help
of the axial anomaly and ψ-ψ′ mixing, resulting in heavier B′ baryons; they
decay into the lighter B baryons via emission of pseudoscalar mesons, and thus
disappear in the low energy effective theory. The resulting effective Lagrangian
contains only positive parity B baryons, which neatly map to hadronic baryons.

We first construct the chiral Lagrangian in the presence of both ψ and ψ′.
With a chiral condensate M = |M |Y , the chiral interaction term (4.19), aside
from admitting masses and meson-baryon couplings between ψ and ψ′ baryons
themselves, can also yield a direct mixing term between ψ and ψ′ with diquark
phases canceled out, via dressing one quark into ψ but the other quark into ψ′:

q̄LMqR = Trψ̄′LMψR. (4.115)

We also consider the following interaction that explicitly violates axial U(1),
but still respecting chiral symmetry:

2g′εijkεlmn

[
ψ̄′LilM

†
jmψ

′
Rkn + h.c.

]
; (4.116)

Note that M itself transforms as M → M exp 2iθA under axial U(1). This
interaction is only possible in terms of ψ′ fields; it forms a flavor singlet by totally

3The resulting ψ and ψ′ fields are analogous to mirrored chiral assignment of baryon
multiplets in construction of baryon chiral Lagrangians [99].
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anti-symmetrizing left and right handed flavor indices. We will see shortly it
plays an important role in splitting the masses of B and B′ baryons.

For simplicity we ignore all meson field fluctuations at the moment and work
on the baryon sector alone. Using

εijkεlmn = det

 δil δim δin

δjl δjm δjn

δkl δkm δkn

 , (4.117)

one can show that (4.116) can be written as

εijkεlmnψ̄
′
LilM

†
jmψ

′
Rkn =

(
TrM† Trψ′R − TrM†ψ′R

)
Trψ̄′L − Trψ̄′LM

† Trψ′R
+Trψ̄L{M†, ψ′R} − TrM† Trψ̄′Lψ

′
R

= Trψ̄′L{M†, ψ′R} − TrM† Trψ̄′Lψ
′
R + h.c.+ singlet.

(4.118)

In this study, we ignore the baryon singlet Trψ′ (as it has a large gap). The
total Lagrangian, without diquark pairing and meson currents for the moment,
allowing possible different coupling strength with different dressed baryons, is

L = TrB̄(i/∂ − gM)B + TrB̄′(i/∂ + gM)B′ (4.119)

+gmix

[
Tr(ψ̄′LMψR) + Tr(ψ̄′RM

†ψL) + h.c.
]

(4.120)

+2g′
[
Trψ̄′L{M†, ψ′R} − TrM† Trψ̄′Lψ

′
R + h.c.

]
, (4.121)

where we have already written the kinetic energy and the chiral interaction term
(4.19) ∝ g in terms of the B and B′ baryons. Note the different sign in the g
term for B and B′. It is also convenient to break down M in its hermitian
(positive parity) and anti-hermitian (negative parity) parts

M = Σ + iΠ; (4.122)

in the following we also ignore the singlet TrΠ. Further utilizing the relationships
between φ, φ′ and B,B′, we have

Tr(ψ̄′LMψR) + Tr(ψ̄′RM
†ψL) + h.c. = TrB̄(Σ + iΠγ5)B + (B ↔ B′), (4.123)

and

2
(
Trψ̄′L{M†, ψ′R} − TrM† Trψ̄′Lψ

′
R + h.c.

)
= TrΣTrB̄B − TrB̄{Σ, B}+ TrB̄iγ5{Π, B} − TrB̄′γ5{Σ, B}+ TrB̄′i{Π, B}

−(B ↔ B′). (4.124)
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At mean field, assuming 〈Σ〉 = σ1 and 〈Π〉 = 0, the Lagrangian becomes

LMF

= (B̄, B̄′)

(
/p+ (gmix − g)σ + g′σ −g′σγ5

g′σγ5 /p+ (gmix + g)σ − g′σ

)(
B

B′

)
.

(4.125)

This Lagrangian can be diagonalized by the transformation(
B

B′

)
=

(
cos θ γ5 sin θ

−γ5 sin θ cos θ

)(
β

β′

)
, (4.126)

where

sin 2θ =
g′√

g2
mix + g′2

, cos 2θ =
gmix√

g2
mix + g′2

. (4.127)

The resulting two diagonal baryons, β and β′, have masses

m = −σ(
√
g2

mix + g′2 − g + g′),

m′ = −σ(
√
g2

mix + g′2 + g − g′). (4.128)

The chiral condensate σ is negative. As gmix and g originate from the same
chiral interaction (4.19), one can assume gmix ∼ g as a starting consideration.
In this case, 0 < m < m′ as long as g > g′; the β baryons, carrying positive
parity, will have lower masses. The β′ baryons become unstable and can decay
into β baryons by emission of a pseudoscalar meson, parametrized as Π in this
linear model.

In dense quark matter where the axial anomaly is suppressed by high baryon
chemical potential, it is reasonable that gmax ∼ g and g > g′. An interesting
situation arises if g′ = 0 and gmax = g; then, the β baryons are massless despite
spontaneous chiral symmetry breaking, while β′ remain massive. However, one
cannot simply conclude that the lowest lying baryons thus must be massless;
there can be higher order terms in M that contribute to the baryon masses as
well.

We next study the interaction between β baryons and pseudoscalar mesons
in this linear realization. For simplicity we focus on the gmix and g′ terms, which
are new to the baryon-meson coupling we have considered so far:

LβΠ = gmix

[
TrB̄iγ5ΠB + (B ↔ B′)

]
+g′

[
TrB̄iγ5{Π, B}+ TrB̄′i{Π, B} − (B ↔ B′)

]
. (4.129)

In terms of β and β′ baryons, together with the mass diagonalization, the total
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baryon-meson Lagrangian reads

L = Tr(β̄, β̄′)

(
/p−m 0

0 /p−m′

)(
β

β′

)
+gmix cos 2θ

[
Trβ̄iγ5Πβ + Trβ̄′iγ5Πβ′

]
+g′

[
(1 + sin 2θ)Trβ̄iγ5{Π, β} − (1− sin 2θ)Trβ̄′iγ5{Π, β′}

]
+gmix sin 2θ

[
Trβ̄iΠβ′ − Trβ̄′iΠβ

]
− g′

[
cos 2θTrβ̄i{Π, β′} − Trβ̄′i{Π, β}

]
≡ Lkin + Lβ̄βΠ + Lβ̄′β′Π + Lβ̄β′Π, (4.130)

where Lβ̄β′Π is responsible for β′ decaying into β plus a pseudoscalar meson.
The part only involving β is

Lβ = Trβ̄(/p−m)β + g′DTrβ̄iγ5{Π, β}+ g′FTrβ̄iγ5[Π, β], (4.131)

where (the g′D,F defined in this linear realization is different from those in non-
linear realization as in previous sections)

g′D =
1

2
gmix cos 2θ, g′F =

1

2
gmix cos 2θ + g′(1 + sin 2θ); (4.132)

due to the mixing angle θ, we no longer have gD = gF as in the models with only
one type of baryon. This is because the g′ term introduces different gD,F values
in the baryon-meson couplings. To compute the total axial coupling, one needs
to add the contribution from the g term, whose sign is reversed for β baryons:

gD = gF = −g
2

; (4.133)

as a result,

gA ≡ gD + gF + g′D + g′F =
g2

mix√
g2

mix + g′2
+ g′

(
1 +

g′√
g2

mix + g′2

)
− g

=
√
g2

mix + g′2 − g + g′ =
m

−σ
, (4.134)

as expected.

4.9 Outlook

In this Chapter we have constructed in detail a mapping from the quarks and
gluons into a gauge-invariant effective theory, which takes the form of color-
singlet baryons and pseudoscalar, vector and pseudovector mesons. The dressing
of the quarks using the CFL condensate and chiral condensate is central to the
mapping, which is only possible for an Nf = Nc = 3 color superfluid. We have
computed the masses and gaps of the effective baryons, and their couplings to
the mesons. Our mapping scheme directly establishes quark-hadron continuity
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in the case of complete flavor-symmetry.
In reality, our picture still faces challenges from realistic quark masses that

explicitly break chiral symmetry. As a result, CFL pairing will be stressed at
lower density, and possible 2SC pairing and inhomogeneous phases may form; in
these more complicated phases, the dressing scheme and the mapping cannot be
directly applied. Even in the high density limit, the mapping between dressed-
quark baryons and hadronic baryons may face complications. It is known that
realistic baryons are not simple representations of flavor SU(3) groups, but a
superposition of multiple different representations due to the breaking of flavor
symmetry; in nuclear matter, flavor symmetry is relatively severely broken, and
the generation of strangeness as a function of density in hadronic regime is still
an open question. Nevertheless, the study of a chiral baryon-meson theory as
an effective description of CFL quark matter is still meaningful. Even without
a complete mapping, this theory could still differ from realistic baryon theories
only by limited modification (e.g., of coupling constants, mass matrices etc.).
Given the likelihood of a relatively smooth crossover from hadrons to quarks, it
is useful to push this theory of quark-hadron mapping, which helps to advance
our understanding of both nuclear matter and quark matter.
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Chapter 5

Understanding vector
repulsion from gluon exchange

In Chapter 4 we have mapped quark-gluon matter in the color-flavor-locked
(CFL) phase to hadronic matter with baryons and mesons. We have also con-
sidered the possible connection between effective quark models and hadronic
matter in Chapter 2 in terms of chiral symmetry breaking, and the light collec-
tive modes (pseudoscalar mesons) in particular, in both the G and H sectors.
In this Chapter, we turn to the vector repulsion sector, gV , and try to under-
stand it from the perspective of QCD; such vector repulsion is a requirement to
support two-solar mass neutron stars suggested by the QHC19 studies.

We find that non-perturbative single gluon exchange can produce enough
positive energy density in the vector channel to explain an effective vector re-
pulsion coupling gV ∼ G as in the Nambu–Jona-Lasinio (NJL) model, when
provided with dynamic gluon mass mg in the range 200 - 600 MeV and the
QCD strong coupling αs = 2 - 6 in the sub-GeV energy scale.

We also estimate the effects of quark masses and a CFL pairing gap on the
quark propagators. As it turns out, gV can be well approximated by a flavor-
symmetric, decreasing function of density, and the flavor dependence of gV
from the Fermi surfaces are well-suppressed by a gluon mass. We briefly discuss
similar matchings for the isovector repulsion and for the pairing attraction, and
compare the isovector energies in dense hadronic matter.

This Chapter is mainly based on Ref. [9] submitted for publication at the
time of writing this thesis.

5.1 Phenomenological gV in the NJL model

Recall that the NJL model with point interactions in the scalar, diquark, and
vector-isoscalar channels is described by the interaction Lagrangian schemati-
cally of the form [23]

Lint = G(q̄q)2 +H(q̄q̄)(qq)− gV (q̄γµq)2, (5.1)

where the vector repulsion in the isoscalar channel [100] is needed for quark
matter to support heavy neutron stars. The resultant energy density from the
vector repulsion is gV n2

q, where nq = 3nB is the quark number density.
As we stated before the scalar coupling G and the ultraviolet cutoff ΛNJL
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of the NJL model can be directly related to physical observables such as the
properties of pseudoscalar mesons. However, the vector repulsion at present is
constrained only by comparing the equation of state of matter with observations
of neutron stars. Nevertheless, the QHC19 study provides strict constrains on
its value; to support neutron stars of masses above two solar masses (includ-
ing the recently measured neutron star mass, 2.17 ± 0.1M� in the pulsar PSR
J0740+6620 [17]) requires that gV be well in the range 0.6-1.3 G0, and H in the
range 1.35-1.65 G0 [29], where G0 = 1.835Λ−2

NJL with ΛNJL = 631.4, is the scalar
coupling in the vacuum obtained by a fitting of pion observables [23].

The NJL model four-quark interactions are inspired by color-current–color-
current interaction, ∼ (q̄γµλ

αq)2. A Fierz transformation of this interaction into
the chiral, diquark and vector-isoscalar channels leads to NJL couplings (5.1)
with the ratios gV 0/G0 = 1/2 and H0/G0 = 3/4 (see Appendix) [23] where the
“0” continues to indicate vacuum values. But in the fully interacting system,
these ratios need not hold; as in QHC18 and QHC19 we focus on more general
in-medium values of gV and H, studying here the density dependence of gV in
particular.

The density dependence (or independence) of gV can be understood from
dimensional arguments. Since gV has dimensions of mass−2, at asymptotically
large densities, where the only energy scale is the quark Fermi momentum pF , gV
should behave as ∼ αs/p2

F , where αs is the QCD running coupling constant. On
the other hand, in the highly non-perturbative vacuum at zero baryon density,
the relevant scale is ΛQCD, and we expect gV ∼ αs/Λ

2
QCD. Thus, the matter

density dependence of gV can be ignored only when pF � ΛQCD, provided that
αs also freezes at low energy [11]. To smoothly connect gV at low density with
that at high density, we adopt a model of massive gluons [97, 98] which includes
non-perturbative generation of the gluon mass mg as well as the freezing of αs
in the Landau gauge at low energies.

As we estimate, a gluon massmg ∼ 0.4 GeV, and a moderately strong quark-
gluon coupling αs ∼ 3 at 5n0 (or similar values, shown in Fig. 5.3 below, with
αs/m

2
g roughly constant) can produce a strong enough gV ∼ G0 to allow quark

matter to support two-solar mass neutron stars.
At high density, where the matter tends to have equal population of up-,

down-, and strange-quarks, flavor-singlet channels are much more important
than non-singlet flavor channels. This allows us to focus on the flavor-singlet
scalar and vector couplings as well as CFL-type diquark pairing [101], favored
for equal flavor population. Flavor non-singlet interactions are nonetheless im-
portant at low densities, as we shall discuss in Sec. 5.6.

5.2 Weak coupling limit results

Before considering the highly non-perturbative properties of the system at ∼
5n0, let us first consider the extrapolated results from the weak coupling limit
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which is only valid at ultra high density. The energy density shift due to the
quark-gluon interaction to leading order in αs is

EQCD = − iπαs
2

∫
d4x 〈Jαµ (x)Aµα(x)Jβν (0)Aνβ(0)〉, (5.2)

where the expectation value is in a Fermi gas, x = (t,x), and t is integrated from
0 to −i/T (with T the temperature). The currents are Jαµ (x) ≡ q̄(x)γµλ

αq(x),
where the λα are the color SU(3) Gell-Mann matrices normalized to trλαλβ =

2δαβ .
Without diquark pairing, Eq. (5.2) simply becomes the Fock term in terms

of the two-quark interaction

EQCD ≈
παs

2

∫
p,p′

Tr [S(p)λαγ
µS(p′)λβγ

ν ]Dαβ
µν (p− p′);

(5.3)

here the trace Tr runs over flavor, color, and Dirac indices, and the integra-
tions over frequencies p0 and p′0 are understood as the fermion Matsubara fre-
quency summations,

∫
dp0f(p0) → 2πiT

∑
n f(iωn), where ωn = 2πTn, with

n = ±1/2,±3/2, . . . . The time-ordered quark Green’s function is

Sabij (x− y) = −i〈T qai (x)q̄bj(y)〉 (5.4)

and are denoted by S(p) in momentum space; here a, b are color indices and i, j
flavor indices. The gluon Green’s function is

Dαβ
µν (x− y) = −i〈T Aαµ(x)Aβν (y)〉. (5.5)

With no medium modification of the gluons, D in the Landau gauge takes the
form in the momentum space,

Dαβ
µν (q) = −δαβ

(
gµν −

qµqν
q2

)
D(q). (5.6)

The full calculation of the energy leads to divergent Dirac sea contributions
involving antiparticles. Only the gµν term in Dαβ

µν (q) contributes to the particle-
particle exchange (Fock) energy, and we keep only this term.

Similar to local four-quark interactions, the traces in Eqs. (5.3) can be re-
organized, via a Fierz transformation (see Appendix), into traces over quark
Green’s functions in the quark-antiquark channels. The NJL model contains
two such channels: the scalar q̄q channel – which is used to characterize the
spontaneous chiral symmetry breaking – and the vector-isoscalar q̄γµq channel.
The energies corresponding to the scalar and vector channels, after the Fierz
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expansion of Eqs. (5.3), denoted by Es
QCD and Ev

QCD, are

Es
QCD = −8παs

27

∫
p,p′

TrS(p)TrS(p′)D(p− p′), (5.7)

Ev
QCD =

4παs
27

∫
p,p′

Tr[S(p)γµ]Tr[S(p′)γµ]D(p− p′).

(5.8)

To relate these Fierz results to the NJL G and gV , we consider two limit-
ing extremes, low and high density, where the gluon propagator’s momentum
dependence can be simplified. Owing to the non-perturbative infrared cutoff of
order ΛQCD, the gluon propagator has a finite limit D(q → 0) at low energy;
thus at low densities we have

Es,v
QCD = Cs,vαsD(0)

(∫
p

Tr [S(p)Γs,v]

)2

, (5.9)

where Cs = −8π/27 = −2Cv and Γs = 1, and provided that
∫
p
Tr[S(p)γj ] = 0,

Γv = γ0. In this form one can readily identify the NJL couplings as G = 2gV =

CsαsD(0).
At higher densities however, we must keep the momentum dependence of

the gluon propagators. With massless free quark and gluon propagators,

S0,ab
ij (p) = δabδij

γµp
µ

(p0 + µ)2 − p2
, (5.10)

D0(p) =
1

p2
, (5.11)

where µ is the quark chemical potential, we find the perturbative result,1

Ev
QCD = 24παs

(∫
d3p

(2π)3

f(|p| − µ)

|p|

)2

, (5.12)

where f(z) = [exp(z/T ) + 1]−1 is the Fermi distribution function; at zero tem-
perature (5.12) reduces to

Ev
QCD =

3αsp
4
F

2π3
. (5.13)

This result is identical to the exchange energy of a highly relativistic electron
1While the full trace in Eq. (5.3) contains contributions from both particles and antiparti-

cles, we focus only on modifications due to non-zero particle densities here.
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gas to within flavor and color factors.2,3

Meanwhile, the vector repulsion contributes an energy density in the NJL
model [29]

Ev
NJL = gV n

2
q, (5.15)

which we identify with Ev
QCD in the matching density region ∼ 5-20 n0 corre-

sponding to pF ∼ 0.4-0.6 GeV, one finds

gV =
παs
6p2
F

. (5.16)

The solid line in Fig. 5.1 shows gV obtained using (5.16) and the two-loop
running coupling constant αs(µq):

αs(µq) =
4π

9 ln µ̃2

(
1− 64 ln ln µ̃2

81 ln µ̃2

)
, (5.17)

with µ̃ ≡ µq/ΛQCD and ΛQCD = 340 MeV [11]. The shaded horizontal band
indicates the range of (constant) gV in QHC19 [29]. Although gV in Fig. 5.1
approaches the needed range below 20n0, the factor p−2

F and the running αs
near the Landau pole at ΛQCD already causes strongly divergent behavior of
gV even at 5n0 (corresponding to pF ∼ 400 MeV), in contrast to the simple
treatment in NJL of gV as constant in this regime. However, extending the
pQCD calculation down to ΛQCD is not reliable. The solid line in Fig. 5.1 shows
gV for αs frozen at 3.0 at low energies [11]. Although the divergence from the
Landau pole is removed in this case, gV still increases rapidly at low energy.

5.3 Non-perturbative αs and massive gluons

below one GeV

We now examine the consequences of the non-perturbative behavior of the strong
coupling constant αs and the gluon propagator below the 1 GeV scale. For re-
views, see Refs. [11, 98] and references therein. In various non-perturbative
approaches for the gluon sector (lattice gauge theory, Schwinger-Dyson equa-

2 Equation (5.12) includes the interactions between quark number densities q̄γ0q, as well
as those between spatial currents, q̄γjq. These contributions yield the matrix element, for
on-shell momenta,

Tr[S(p)γµ]Tr[S(p′)γµ] ∝
|p||p′| − p · p′

2|p||p′|
, (5.14)

whose numerator cancels the pole from the massless gluon propagator, giving Eq.(5.12).
3 In deriving Ev

QCD in Eq. (12) from Eq. (5.9) with a momentum-dependent gluon propa-
gator, the correlation functions 〈q̄~γq〉 are as important as 〈q̄γ0q〉; the former is not included
in the NJL mean field description. Such deficiency in the NJL model can be compensated
by absorbing the contribution from 〈q̄~γq〉 into the density dependence of gV itself; in this
way, we can directly compare the NJL gV with the current definition of gV in terms of QCD
parameters.
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Figure 5.1: The dashed line indicates the single gluon exchange result for gV in
perturbative QCD as a function of the quark matter Fermi momentum, pF . The
horizontal shaded region shows the range of gV in QHC19 [29], while the vertical
shaded region shows the baryon density ∼ 5-20n0. The solid line indicates the
result for αs frozen at 3.0 at low energies [11].

tions, and gauge/gravity duality) under gauge fixing, αs is of order unity be-
low one GeV (with freezing or decoupling behaviors in the deep infrared limit,
q → 0). Here we focus on gluons dynamically acquiring a mass, favored by
the lattice results (and corresponding to the decoupling solution of the gluon
Schwinger-Dyson equations in the Landau gauge),

D(p) =
1

p2 −m2
g

. (5.18)

Estimates of mg tend to lie in the range ∼ 500± 200 MeV [97, 98].
Equation (5.18) regulates the divergent behavior of gV as pF → 0 in Fig. 5.1

and leads to

Ev
QCD(mg) = Ev

QCD(0) + δEv
QCD(mg), (5.19)

where (as in derivation of Eq. (5.12), Ev
QCD(0) results from a cancellation be-

tween the massive gluon propagator with a part of quark matrix elements, while
the remaining terms are proportional to m2

g)

δEv
QCD(mg) = −

3αsm
2
g

2π3

∫ pF

0

∫ pF

0

dp dp′ ln

(
1 +

4pp′

m2
g

)
=

3αsm
4
g

8π3
K(x), (5.20)

where z ≡ (2pF /mg)
2 andK(z) ≡ 2z−(1+z) ln(1+z)+Li2(−z) with Li2(−z) ≡
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Figure 5.2: The vector coefficient gV as a function of quark Fermi momentum
generated by a frozen αs =3 below 1 GeV and different gluon masses mg.

∑∞
`=1(−z)`/`2 the polylogarithm function with n = 2. Thus one finds,

Ev
QCD(mg) =

3αsp
4
F

2π3

(
1 +

K(z)

z2

)
. (5.21)

Note that for positive z, 0 ≤ 1 + K(z)/z2 < 1, implying that the finite gluon
mass softens the repulsion while keeping the total vector energy positive.

Matching Eq. (5.15) with Eqs. (5.16) and (5.21) one finds

gV (pF ; z � 1) → παs
6p2
F

,

gV (pF ; z � 1) → 4παs
27m2

g

. (5.22)

Figure 5.2 shows gV for different gluon masses mg with a typical value of the
frozen αs = 3.0 at low energies . 1 GeV [11]. In the infrared gV is regulated by
the gluon mass, mg, so that there is no divergent behavior at pF = 0.

Figure 5.3 gives contour plots of the resulting vector coefficient gV for given
different αs and gluon mass mg, at 5n0 and 20n0. For the resulting gV /G0

to be in the interval 0.6-1.3 at 5n0 with mg = 400 MeV, one needs a strong
αs ∼ 2-4, within the range of possible quark-gluon coupling strengths at low
energies [11]. Future theories of the quark-gluon vertex αs together with detailed
forms of gluon correlation functions below one GeV will be of interest as they
can be directly related to effective quark models constrained by neutron star
observations.

In the density range ∼ 5n0 in a neutron star, where the quark Fermi mo-
mentum lies well below one GeV, it is reasonable to assume an approximately
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Figure 5.3: The vector coefficient gV generated by different constant αs and
gluon masses mg, at pF = 400 MeV (∼ 5n0). The central cross indicates αs =
3 and mg= 400 MeV.

constant αs and mg. The two limiting results, Eq. (5.22), thus suggest an
approximate density-dependent parametrization of gV based on explicit single-
gluon exchange

gV (pF ;mg) '
4παs/3

9m2
g + 8p2

F

. (5.23)

This parametrization is useful for including the density dependence of gV in the
quark-hadron crossover equations of state.

5.4 Effect of finite quark mass

At high densities quark matter contains both a weak chiral condensate, ∼ 〈q̄q〉
as well as a diquark condensate ∼ 〈qq〉, as a consequence of the six-quark
Kobayashi-Maskawa-’t Hooft (KMT) effective interaction [102]. The quark ef-
fective mass, Mq ∼ 〈q̄q〉, is dynamically generated by the chiral condensate; in
the NJL model, Mq is the mean-field self-energy generated by the effective local
four-quark interaction. At densities & 5n0, the chiral condensate enhanced by
the KMT interaction could result in an effective mass Mq ∼ 50-70 MeV for the
light quarks, and ∼ 250-300 MeV for the s quark [10]. These masses are not
small compared to the quark Fermi momentum at these densities, and must be
taken into account in the exchange energy calculation.

Here we calculate the effects of Mq on gV only by modifying the quark
propagators in Eq. (5.9), and not further correcting the vertices. We recognize
that this is not a self-consistent calculation; rather we aim here to get a sense
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Figure 5.4: Vector repulsion coefficient gV for different values of Mq with
mg = 400 MeV and αs = 3.

of the effects of a finite quark mass on the the vector channel of the matrix
element (5.2), which is connected to perturbative QCD at asymptotic density.
We take the quark Green’s function to be

Sabij (p) = δabδij
γµp

µ +Mq

(p0 + µ)2 − p2 −M2
q

, (5.24)

and assume the same effective mass Mq for all flavors.
With this S, we obtain after some algebra, with εp = (|p|2 +M2

q )1/2,

Ev
QCD = 24παs

[(∫
d3p

(2π)3

f(εp − µ)

εp

)2

−(2M2
q −m2

g)

∫
d3p d3p′

(2π)6

1

εpεp′
· f(εp − µq)f(εp′ − µq)

(εp − εp′)2 − |p− p′|2 −m2
g

]
.

(5.25)

The asymptotic forms of Eq. (5.25) for pF �Mq and mg, and for pF �Mq

andmg can be readily found, with the result that g
V

(pF ;mg,Mq) agrees in these
limits with Eq. (5.22). In particular, gV is independent of Mq at pF = 0 as long
as mg is finite. The combined effects ofMq and mg are shown in Fig. 5.4, which
compares g

V
at several different values of Mq and mg = 400 MeV. We find

that the effect of Mq on g
V

is almost negligible. Thus the assumption that g
V

is flavor independent is reasonable, despite flavor symmetry being significantly
broken by the strange quark mass; the parametrization (5.23) is approximately
useful independent of flavor.
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5.5 Effect of diquark pairing

We next consider the effects on Ev
QCD of scalar color-flavor-locked pairing among

quarks through modification of the normal quark Green’s function S in Eq. (5.9).4

In the CFL phase it is convenient to expand the quark field (with SU(3) flavor
and SU(3) color indices), as qia =

∑8
A=0 λ

A
iaqA/

√
2, in term of the Gell-Mann

matrices, λA (A = 1, 2, ..., 8), and λ0 = 1
√

2/3. In this basis, the normal quark
propagator becomes diagonal

Sabij (x− y) =
∑
A

1

2
λAiaλ

A
bjSA(x− y). (5.26)

With CFL pairing, the SA=1,...,8 describe eight paired quark quasiparticles with
the same gap ∆A=1,...,8(p) = ∆(p), and one quasiparticle S0 with double the
gap ∆0(p) = 2∆(p).

For massless quarks (εp = |p|), one finds

Ev
QCD =

4παs
27

∑
A,B

∫
pp′

tr[SA(p)γµ]tr[SB(p′)γµ]
1

(p− p′)2 −m2
g

, (5.27)

=
αs

54π3

∑
A,B

∫ ∞
0

dp dp′ v2
Apv

2
Bp′

×
[
4pp′ − JAB(p, p′,mg) ln

∣∣∣∣1 +
4pp′

JAB(p, p′,mg)

∣∣∣∣] , (5.28)

with v2
Ap = 1

2

(
1− (εp − µ)/EAp

)
, EAp = [(εp−µ)2+∆2

A]1/2, and JAB(p, p′,mg) =

m2
g + (p− p′)2− (EAp −EBp′)2. Generalization to the case with finite quark mass

Mq is straightforward. Note that the total quark density is given by

nq = 2
∑
A

∫
d3p

(2π)3
v2
Ap. (5.29)

The integral in Eq. (5.28) converges only with a momentum dependent gap.
Following the numerical study in Ref. [103, 104], we approximate the spatial
momentum dependence of ∆ by

∆(p) =
∆(µ)

(1 + b(p− µ)2/µ2)ζ
; (5.30)

the constant b > 0 parametrizes how fast ∆(p) falls off away from the Fermi
surface, and the exponent ζ > 0 parametrizes the behavior of ∆(p) at high
momenta (see Fig. 5.5). In the weak coupling limit, ζ = 1 + O(αs) and ∆ ∼
µg−5e−3π2/

√
2g [105, 106]. Here we simply vary the gap in the range, ∆(µ) =

100-300 MeV, consistent with the QHC19 equation of state.

4The anomalous Green’s function, Fabij (x−y) = −i〈T qai (x)(qTC)jb(y)〉, leads as well to the

familiar energy shift Epair
QCD proportional to the square of the pairing gap, an effect related to

inferring the in-medium modification of H.
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Figure 5.5: The parametrization (5.30) of the momentum dependence gap ∆(p)
for µ = 500 MeV, b = 1.0, ∆(µ) = 50 MeV, and ζ = 1.0.

Figure 5.6: The vector repulsion coefficient gV for different ∆(µ) withmg = 400
MeV and αs = 3. The curves show how inclusion of pairing in the presence of
a massive gluon has only a small effect on gV .
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As we see, a gap decreases gV at all densities, and the dependence of the gap
is significant for massless gluons. For gluon masses mg ∼ 400 MeV, however,
even a large variation of ∆ from 0 to 300 MeV does not change the qualitative
behavior of gV . In comparison with the effects of Mq, a large gap ∆(µ) = 200

MeV (as in QHC19) still has a sizable impact: at 5n0, a 200 MeV CFL gap
reduces gV from ∼ 0.9G0 to ∼ 0.55G0, even with mg = 400 MeV.

The gluon propagator is also modified in a dense quark medium by Landau
damping [105, 106, 107], and the Debye screening mass in the longitudinal sector,
and in the presence of diquark pairing by Meissner masses in the transverse
sector [89, 108], of order

√
αs µ. The interplay of these modifications of the

gluon propagator in the quark matter in neutron stars, and their effects on
neutron star properties is an open question worthy of future research.

5.6 The vector-isovector channel and connection

with nucleon-meson interactions

Our discussion has so far focused on the flavor symmetric case, where the
isoscalar channel is the only non-vanishing contribution from single gluon ex-
change energy in the vector channel. However, for realistic constituent quark
masses, the vector-isovector channel (denoted by τ) also contributes to the single
gluon exchange energy,

Evec,τ
QCD =

2παs
9

∫
p,p′

Tr[S(p)γµτα]Tr[S(p′)γµτα]D(p− p′),

(5.31)

where the τα=1,...,8 are the eight Gell-Mann flavor matrices. This isovector
channel corresponds to the interaction gτ (q̄γµταq)

2. In particular, the α = 3
and 8 terms yield the exchange energy at low density of the form

gτ

[
(nu − nd)2 +

1

3
(nu + nd − 2ns)

2

]
. (5.32)

This vector-isovector energy is analogous to the neutron-proton symmetry en-
ergy in nuclear matter. For the single gluon exchange, gτ/gV = 3/2, indicating
an vector-isovector energy comparable to the vector-isoscalar energy for signif-
icant differences in flavor densities. In this case, adding the isoscalar channel
contribution g

V
(nu + ud + ns)

2 with gτ/gV = 3/2, the total vector exchange
energy reads

Evec
QCD + Evec,τ

QCD = 3g
V

(n2
u + n2

d + n2
s), (5.33)

reflecting the fact that the gluons carry no flavor quantum numbers.
It is instructive, in constructing quark-hadron crossover descriptions of dense
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matter between the nucleonic and quark phases, to understand how the vector
energy in the NJL model connects at low densities with the corresponding en-
ergy in nuclear matter, taking into account the isospin symmetry energy in
both phases. In the chiral nucleon-meson model [109] treated at mean field,
a phenomenological vector repulsion for nucleons in the isoscalar and isovector
channels, mediated by massive vector boson exchange, is:

GV (np + nn)2 +Gτ (np − nn)2

=
GV
9

(nu + nd)
2 +

Gτ
9

(nu − nd)2, (5.34)

where GV is estimated to be ' 5.12 fm−2 and Gτ to be ' 1.07 fm−2. In the
absence of strange quarks, the total vector energy in quark matter is

E
vec(total)
QCD =

(
g
V

+
gτ
3

)
(nu + nd)

2 + gτ (nu − nd)2,

(5.35)

where we assume the flavor symmetry g
(3)
τ = g

(8)
τ = gτ . Matching GV /9 to

g
V

+ gτ/3 and Gτ/9 to gτ , we would obtain

gV = 2.93G, gτ = 0.66G, (5.36)

where gV is about three times the suggested NJL value, and gτ/gV ≈ 0.23.
The former result is incompatible with the estimates in QHC19, and the latter
significantly deviates from the single gluon exchange prediction. However, with
possible explicit flavor symmetry breaking g

(3)
τ 6= g

(8)
τ (which is beyond the

effects of single gluon exchange), the matching becomes

GV /9 = gV + g(8)
τ , Gτ/9 = g(3)

τ . (5.37)

Still g(3)
τ = 0.66G. For gV in the range 0.6-1.3G as found in the QHC19 equation

of state, we obtain

g(8)
τ ∼ 1.9− 2.6G� 1

3
g(3)
τ . (5.38)

That is, to make a close connection of the vector energies in the NJL model to
the nucleon-meson model at low density would require including a very strong
explicit flavor symmetry breaking in the vector-isovector channel, in the form
of a huge ‘symmetry energy’ between light and heavy quarks.

Including the g(3)
τ and g(8)

τ interactions in the NJL model would significantly
impact the phase diagram in states with flavor asymmetry, if the above values
from matching to the chiral nucleon-meson model (or indeed from single gluon
exchange) are used. Such symmetry energies strongly favor equal densities in all
flavors, suggesting that strange quarks would appear and the system would enter
the CFL phase at relatively low densities. At least a moderate vector-isovector
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interaction with coupling strength ∼ 1-2 G should be explored in future NJL
model studies of quark matter at & 5n0 as well.

In the remainder of this paper, we consider the vector-isoscalar energy only,
since the strong diquark pairing strength H ' 1.5G and vector-isoscalar repul-
sion gV ' 1.0G found in QHC19, would predict that quark matter at densities
& 5n0 is already in the CFL phase with weak flavor asymmetry. Furthermore
Ref. [110] argues that the equation of state of quark matter described by NJL
without pairing is insensitive to the vector-isoscalar interaction for a moderate
gV = 0.8G. We defer more detailed studies of the impact of vector-isovector
interactions on the NJL equation of state to the future.

5.7 Conclusion

We have computed the vector repulsion coefficient gV from the explicit gluon
exchange energy in quark matter, modifying the quark and gluon Green’s func-
tions to account for a non-perturbative gluon mass mg, chiral condensate and
diquark pairing, and included as well a possible infrared-finite αs. In the density
range ∼ 5-20n0 with reasonable parameters for αs, gluon mass, quark mass and
pairing gap, we can begin to understand the origin of a gV of order ∼ 0.6-1.3G.
The parameters we have chosen, despite their uncertainties, lie within estimates
from a variety of models and theoretical frameworks of sub-GeV QCD. Among
the non-perturbative effects we have considered, the resulting gV is most sensi-
tive to αs and mg, while Mq and ∆ induce only relatively small changes owing
to suppression by a gluon mass. Thus, the parametrization (5.23) should be a
good approximate description of the density dependence of gV , to be included in
the equation of state for neutron star matter with a strongly interacting quark
phase.

Many open questions remain. The vector repulsion between quarks at densi-
ties & 5n0 may also come from non-perturbative QCD beyond the single gluon-
exchange contribution treated in this paper; such uncertainty is not under con-
trol at present. As αs could range anywhere from 0 to 10 (or even be divergent at
low momentum scales), the assumption that the vector repulsion is dominated
by a single gluon exchange with a fixed αs and mg is overly simplified. Our
treatment can be improved and extended in several directions. The first would
be inclusion of more realistic quark and gluon propagators, including possible
momentum dependence of masses and differences between transverse and lon-
gitudinal gluons. The second would be to include the non-perturbative running
of αs. Including the density dependence of gV , as in the parametrization (5.23),
can have a significant effect on model studies of quark matter. In particular,
corrections to the contributions from the light and heavy quarks could shift
the phase boundaries and modify the equation of state. Including the density
dependence of the diquark coupling, H, would have similar effect.

We note that relating the effective QCD vector couplings gV and gατ in
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the NJL model of dense matter (an effective field theory for quarks) to nucleon-
meson models (effective field theories for hadrons) would provide a further probe
of quark-hadron continuity [102, 111]. If the transition from nuclear to quark
matter is essentially smooth, one expects the vector repulsion from hadronic
to quark matter to be similarly smooth, since in the quark-hadron continuity
picture, the spectrum of light gluonic excitations is tightly connected to that
of hadronic vector mesons [112], while quarks are mapped to the baryons in
nuclear matter. Low energy quark-gluon matter treated in this way becomes an
extension of the baryon-meson picture of nuclear matter, plausibly enabling a
relatively smooth crossover and in turn mapping gV and gατ from the hadronic
to quark phases.5

5 One may ask how vector repulsions in the nucleon-meson description of nuclear matter, a
gauge-invariant theory, can be mapped onto vector repulsions in the gauge-dependent theory
of quarks and gluons, despite the vector repulsions in both being effective fermion-fermion
interactions mediated by massive boson exchange. We have shown in Chapter 4 that including
color charge screening by CFL diquark condensates [7, 113] leads to a low energy gauge-
invariant description of quarks and gluons of the same form as a baryon-meson Lagrangian.
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Appendix

Fierz transformation

The Fierz transformation is a re-arrangement of fermion operator products
in the Dirac, flavor and color space using index-exchanging properties of the
gamma and SU(N) generator matrices. In the quark-antiquark channel, re-
arrangement of the Dirac indices read

(γµ)mn(γµ)m′n′ = 1mn′1m′n + (iγ5)mn′(iγ5)mn′

−1

2
(γµ)mn′(γµ)m′n

−1

2
(γµγ5)mn′(γµγ5)m′n, (.1)

and those of the the flavor and color indices (Nf = Nc = 3) read

1ij1kl =
1

3
1il1kj +

1

2
(τa)il(τa)kj ,

λabα λ
a′b′

α =
16

9
1ab′1a′b −

1

3
λab

′

α λa
′b
α . (.2)

In the quark-quark channel,

(γµ)mn(γµ)m′n′ = (iγ5C)mm′(iγ
5C)nn′ + Cmm′Cnn′

−1

2
(γµγ5C)mm′(γµγ

5C)nn′

−1

2
(γµC)mm′(γµC)nn′ , (.3)

and

1ij1kl =
1

2
(τS)ik(τS)lj +

1

2
(τA)ik(τA)lj ,

λabα λ
cd
α =

2

3
λSacλ

S
bd −

4

3
λAacλ

A
bd, (.4)

where S and A stand for symmetric and antisymmetric indices, and the τα=1,...,8

are the eight Gell-Mann flavor matrices. Using these relations, one can trans-
form a single trace into products of two traces, as done in e.g. Eq. (5.9):

Tr[S(p)ΓIS(p′)ΓI ] =
∑
M

gMTr[S(p)ΓM ]Tr[S(p′)ΓM ],

(.5)
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where ΓI are Dirac, flavor and color matrices.
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