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Abstract

Many recent information technologies such as crowdsourcing and social decision-making sys-

tems are designed based on (near-)optimal information processing techniques for machines.

However, in such applications, some parts of systems that process information are humans

and so systems are affected by bounded rationality of human behavior and overall perfor-

mance is suboptimal. In this dissertation, we consider systems that include humans and

study their information-theoretic limits. We investigate four problems in this direction and

show fundamental limits in terms of capacity, Bayes risk, and rate-distortion.

A system with queue-length-dependent service quality, motivated by crowdsourcing plat-

forms, is investigated. Since human service quality changes depending on workload, a job

designer must take the level of work into account. We model the workload using queue-

ing theory and characterize Shannon’s information capacity for single-user and multiuser

systems.

We also investigate social learning as sequential binary hypothesis testing. We find some-

what counterintuitively that unlike basic binary hypothesis testing, the decision threshold

determined by the true prior probability is no longer optimal and biased perception of the

true prior could outperform the unbiased perception system. The fact that the optimal belief

curve resembles the Prelec weighting function from cumulative prospect theory gives insight,

in the era of artificial intelligence (AI), into how to design machine AI that supports a human

decision.

The traditional CEO problem well models a collaborative decision-making problem. We

extend the CEO problem to two continuous alphabet settings with general rth power of

difference and logarithmic distortions, and study matching asymptotics of distortion as the

number of agents and sum rate grow without bound.
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Chapter 1

Introduction

Since its initiation by Shannon [1], the main goal of information theory has traditionally been

to understand fundamental limits of machines such as communication devices or storage sys-

tems. There have been many efforts to determine the fundamental limits of such devices, and

now our understanding of the obstacles we face is clear, although state-of-the-art information

theory still does not give complete answers.

However, human-inspired models are not well-studied yet. As the historian of informa-

tion theory Ronald Kline has forcefully argued [2], there was an initial euphoria in the

late 1940s and early 1950s surrounding information-theoretic approaches to human-oriented

problems, but this quickly dissipated within the mainstream of research, cf. [3, 4]. Humans

have bounded rationality that is hard to model mathematically, perhaps due to cognitive

limitations of minds or the time available to make the decision. However, it is true that

there is consistency in human behavior. One might wonder whether human behavior is

consistent enough to warrant analysis through (perhaps stochastic) mathematical models,

the way physical communication channels and information sources seem to. Many long-

standing descriptions of people from psychology are consistent and dependable, displaying

test-retest reliability, inter-rater reliability, parallel-forms reliability, and internal consistency

reliability [5].

Prior works in statistical signal processing and in psychology have separately and indepen-

dently considered technological limitations and human limitations, but jointly considering

the informational and attentional limitations of both humans and machines will be critical

in engineering future sociotechnical systems. Hence, this dissertation investigates human-

machine mixed systems through an information-theoretic lens.
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1.1 Motivation and Prior Work

We study three problems motivated by human behavior, each of which models a distinct

aspect of people: 1) workload and work performance, 2) decisions based on previous decisions,

and 3) estimation from human’s biased belief.

1.1.1 Queue-Length-Dependent Channels

The first topic is workload impact on service quality. Unlike machines or computers, the qual-

ity of service by a human worker depends on his/her workload. It is known that overloading a

person with work often negatively impacts their quality of work as noted in psychology [6,7].

Similarly, it is known that when doctors are facing a long queue of patients, they feel rushed

and make more mistakes [8, 9].

A typical application scenario of such workload-dependent service quality is crowdsourc-

ing. The organization (e.g., Visipedia [10]) submits jobs to a crowdsourcing platform (e.g.,

Samasource [11]), and the platform dispatches them to the crowdworker to whom jobs are

assigned in the server. Error-correcting codes can be developed for difficult human computa-

tions, as described in [12]. Crowdsourcing platforms, like other large-scale systems including

distributed storage and cloud computing systems, currently use simple and queue-length-

agnostic job assignment policies. Thus crowdsourcing platforms acting as dispatchers can

be assumed to be independent of and agnostic about the worker load.

Multimedia communication is another motivating scenario. When a user is in a live video

or VoIP call over a multiple-access network, the access point—e.g., WiFi router or base

station—has to contend for wireless resources to send the information packets. This results

in an accumulation of packets at the MAC buffer of the access point. When the buffer is close

to overflow, the access point either drops them [13], sends their corresponding low-quality

versions [14] (assuming multiresolution coding [15]), or packs multiple MAC packets in the

available time slot using higher coding/modulation. All of these scenarios can be modeled

by queue-dependent service quality. We are interested in the maximum rate for reliable data

transmission in this system. As multimedia communication uses open-loop transport layer

protocols like UDP, the packet dispatcher (application) is agnostic and independent of the

load at the server (WiFi access point or BS).

As far as we know, most of the information-theoretic literature focuses on timing capacity

results [16–19]. Although we use some proof techniques related to those used in these works,

we are not concerned with information encoded in the timing between packets, only in the
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information in the symbols. There are some interesting works addressing what is called age

of information, relating loss of information to queuing delays [20], but those settings are

different as they are concerned with perishable information.

The study of information-theoretic limits of queuing multiple-access channels was pio-

neered by Telatar [21], and further explored in [22, 23]. This line of work is essentially con-

cerned with the reliable transmission of bursty sources [24], as we are here. A recent study

of microbial communication also had a kind of self-interference called channel clogging [25].

1.1.2 Social Learning

Team decision-making typically involves individual decisions influenced by private observa-

tions and the opinions of the rest of the team. The social learning setting is one such context

where decisions of individual agents are influenced by preceding agents in the team [26,27].

We consider the setting in which individual agents are selfish and aim to minimize their

perceived Bayes risk, according to their beliefs as reinforced by the decisions of preceding

agents. Social learning, also referred to as observational learning, has been widely studied

and we provide a non-exhaustive listing of some of the relevant works.

Aspects of conformism and “herding” were studied in [28–30], where an incorrect decision

may cascade for the rest of the agents once agents at the beginning make incorrect decisions.

The concept of herding is a consequence of boundedly informative private signals [31]. For

example, assume the private signals are binary and give true or false information, each with

positive probability. It can happen that a couple of the first agents receive false private

signals and thus choose wrong actions. Then, the effect of these actions on the beliefs of

subsequent agents can be so great as to cause them to ignore their private signals and follow

their precedent agents. The private signals are bounded so that they are not strong enough

to overcome the effect of the wrong actions. Further convergence properties of actions taken

under social learning have been explored under imperfect information [32]. The notion of

sequential social learning has been generalized to learning from neighbors in networks [33],

and explored in generality [34]. Social learning has also been explored under quantization of

priors [35], and distributed detection with symmetric fusion [36].

Such a learning problem has also been studied under the name of distributed inference or

learning. The traditional setup assumes a central fusion node that aggregates all the infor-

mation from distributed nodes and makes the final decision [37,38], where the links between

distributed nodes and fusion center could be rate-limited [39] or imperfect [40–42]. It is also
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common to consider such a learning problem in a distributed manner over networks. By

repeatedly updating local information without complete knowledge of network connectivity,

it is shown that all nodes can identify the true hypothesis [43–45]. Recently, independent

works [46] and [47] proposed a similar update rule and convergence result for fixed networks

and time-varying networks, respectively. In [48], binary hypothesis testing with time-varying

means according to Gaussian process is studied and minimal expected stopping times are

derived. In [49], the setup where the entire hypotheses are locally indistinguishable, but

globally identifiable is considered and large deviation convergence rate is provided.

Rhim and Goyal’s work [50] differs from the aforementioned literature in the sense that

they consider unbounded private signals so that there is no herding behavior. In addition,

they focus largely on the effects of prior probability and private signal strength. Informa-

tion is only propagated along the chain once so there is no iterative belief update. Unlike

sequential decision-making [51] where all agents know the true prior, agents may have beliefs

that do not match the true prior.

Human actions are typically affected by individual perceptions of the underlying context.

Cumulative prospect theory [52–54] seeks to provide a psychological understanding of human

behaviors under risk. It introduces the notion of probability reweighting functions to explain

boundedly rational human behaviors. Among reweighting functions, the Prelec reweighting

function [55] has significant empirical support and satisfies a majority of the axioms of

prospect theory.

In the era of AI (Artificial Intelligence or Augmented Intelligence), a sequential decision-

making model has a particular motivation since it captures the nature of collaboration in

human-AI teams with either the AI system advising the human who makes the final decision

or, less typically, a human advising an AI system that makes the final decision [56, p. 56].

Examples of the former include AI-assisted physicians or chess players (called centaur chess),

and of the latter, human-in-the-loop AI systems such as crowdsourcing systems and collab-

orative filtering mechanisms. Our work proves the interesting conclusion that a team of

suboptimal human-AI could beat the team of individually optimal human-AI, if it is well-

composed.

1.1.3 Generalized CEO Problems

The last topic is the CEO problem. Consider a particular motivating scenario that there is

a sequence of probabilities of successes {X(t)}∞i=1. The CEO (chief executive officer) of an

4



organization is interested in {X(t)}∞i=1, but does not observe it directly. Instead, there are

L agents of the organization who make noisy perceptions (or observations); the ith agent

has noisy version {Yi(t)}∞i=1 by its own model such as copula or independent additive noise.

The agents must convey their observations to the CEO without convening, but the CEO has

cognitive constraints that limit the information rate she can receive from agents, requiring

each agent to discretize his observation under rate constraints {Ri}Li=1. The CEO declares

{X̂(t)}∞t=1 that minimizes a distortion (or risk) function d(X(t), X̂(t)) = |X(t)− X̂(t)|r in a

long-term average sense.

As we will see, this scenario generalizes existing CEO problem literature in two aspects:

source-observation model and distortion function. The first CEO problem by Berger et

al. [39] was with discrete alphabets, so the Hamming distortion was considered. Later a

jointly Gaussian setting was studied with quadratic distortion [57], where the asymptotic

tradeoff between sum rate and distortion was investigated. The quadratic Gaussian CEO

problem was further studied in [58–60], finding the exact rate region for finite agents. Un-

der the logarithmic distortion, the exact rate region for general setting was found [61] and

we gave the rate region for the jointly Gaussian case explictly using quadratic-logarithmic

distortion duality [62]. In contrast to the jointly Gaussian CEO problem, non-Gaussian and

non-quadratic CEO problems have received less attention due to limited analytic tractabil-

ity compared with the Gaussian case. A non-regular source-observation pair such as copula

model or truncated Gaussian noise was considered under quadratic distortion [63], and a

general continuous source with additive Gaussian noise was considered under quadratic dis-

tortion and general distortion [64]. Toward generalization of source-observation pair, it was

shown that Gaussianity is in fact the worst [65].

Although [63] considers copula models, the distortion is still quadratic so our scenario

belongs to none of aforementioned literature. Regarding the distortion measure, the ab-

solute distortion (r = 1) is in particular important when our estimation is consistent or

asymptotically consistent, i.e., the estimate converges to the true value as the number of

observations increases, so |x − x̂| is small with high probability. To illustrate the impor-

tance, recall the Maclaurin approximation: a non-decreasing difference distortion function

dgen(x, x̂) = dgen(|x − x̂|) : R+ 7→ R+ can be expanded around small |x − x̂| as (assuming

5



dgen(0) = 0)1

dgen(|x− x̂|) = d′gen(0)|x− x̂|+
d′′gen(0)

2!
|x− x̂|2 +

d′′′gen(0)

3!
|x− x̂|3 + · · · ,

where d′gen(0), d′′gen(0), d′′′gen(0) are right derivatives of dgen. Suppose that the estimator X̂

is consistent. Under appropriate assumptions,2 the linear term dominates the distortion

function as

dgen(|x− x̂|) = d′gen(0)|x− x̂|+ o(|x− x̂|)

=⇒ E
[
dgen(|X − X̂|)

]
= d′gen(0)E

[
|X − X̂|

]
+ o (E [|x− x̂|])

=⇒ Dgen = d′gen(0)Dabs + o(Dabs),

which shows that the absolute difference distortion Dabs is a dominant portion of the general

difference distortion function.

We will also discuss an extension of quadratic Gaussian CEO problem [57] to general

regular source-observation model with rth power of difference and logarithmic distortions

[61].

There are two classical asymptotic approaches that have been developed for CEO prob-

lems. The first takes asymptotics in the number of agents [39, 57], where the number of

agents grows without bound keeping individual coding rate fixed. In this regime, the nature

of detection (for discrete alphabet) or estimation (for continuous alphabet) plays a key role.

The second takes asymptotics in individual coding rate with fixed number of agents [66],

which highlights the nature of compression. Note that distortion asymptotics of the two

regimes in terms of sum rate are different even for a common model. In this work, we will

take the first approach.

1This approximation for one-sided function is not well defined, but we may think of an extension of dgen
on small neighborhood around origin such that all left derivatives agree with their right counterparts at the
origin. Then, the Maclaurin series is well defined for the extended function.

2Note that E
[
d(|X − X̂|)

]
− d′(0)E

[
|X − X̂|

]
=
∑∞

k=2
d(k)(0)

k! E
[
|X − X̂|k

]
. Hence, the condition for the

approximation to be valid is equivalent to the fact that the infinite series on the right side vanishes with the
number of observations. For example, if all d(k)(0) are absolutely bounded by a constant, and the estimator
is consistent and has a sub-Gaussian tail, then the series vanishes with the number of observations.

6



1.2 Dissertation Outline and Contributions

This dissertation is organized as follows.

Chapter 2 introduces the queue-length-dependent channel for discrete-time queues and

discusses its capacity. First, the capacity expression for general queues is developed using

information spectrum method and ergodicity of queues. Then, restricting two special types

of arrivals, say Type I and Type II, we study two special types of queues, G/geo/1 and

geo/G/1, for which stationary distributions are available in closed form, so we are able to

optimize arrival and service processes.

Chapter 3 studies the single-user capacity of continuous-time queue-length-dependent

channels, and extremal properties are derived for two special types of queues, GI/M/1 and

M/GI/1. Then, the multiaccess capacity is studied using point processes. In particular,

when the number of transmitters is large and each is sparse, the superposition of arrivals

approaches a Poisson point process. In characterizing the Poisson approximation, we show

that the capacity of the multiuser system converges to the capacity of a single-user M/GI/1

queue-length-dependent system.

Chapter 4 generalizes the social learning problem of Rhim and Goyal [50] with agents

having diverse expertise. In addition, we introduce the Prelec weighting function from cu-

mulative prospect theory and study its (near-)optimality and suboptimality depending on

expertise levels. A self-organizing team construction is also discussed. This work emphasizes

that suboptimal advising could be more helpful for human decision-making than the optimal

advising when human belief is biased.

Chapter 5 extends existing CEO problems to two continuous alphabet settings with gen-

eral rth power of difference and logarithmic distortions, and studies asymptotics of distortion

as the number of agents and sum rate grow without bound. The first setting is called a reg-

ular source-observation model, such as jointly Gaussian, with difference distortion, and we

show that the distortion decays at R
−r/2
sum up to a multiplicative constant. The other setting

is called a non-regular source-observation model, such as copula or uniform additive noise

models, with difference distortion for which estimation-theoretic regularity conditions do

not hold. The optimal decay R−rsumis obtained. Lastly, we provide a condition for the regular

model, under which quadratic and logarithmic distortions are asymptotically equivalent by

entropy power relation as the number of agents grows.

Chapter 6 concludes this dissertation and notes future research directions.

For clarity and readibility, we have deferred proofs to the appendices if they are noncrucial.
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Chapter 2

Capacity of Systems with Queue-Length-Dependent
Service Quality

In this chapter, we define the capacity of systems with queue-length-dependent service quality

as the number of bits reliably processed per unit time, and we characterize this measure it in

terms of queuing system parameters. In particular, discrete-time queues are considered with

two different types of arrivals, say Type I (at most one arrival per time slot) and Type II

(multiple arrivals per time slot), and the capacity theorem is studied separately. In addition,

for a geo/G/1 queue, it turns out that deterministic service is the best and cramming and

idle service is the worst. Similarly, for a G/geo/1 queue, deterministic arrivals and bursty

arrivals are the best and the worst, respectively.

2.1 Problem Formulation

We keep the standard transmitter-receiver structure equipped with encoder and decoder,

but the channel is modeled as having quality of service that is queue-length-dependent in

nature. As usual, a transmitter and a receiver a priori agree on a set of possible sequences

of symbols (or codebook). The transmitter sends a sequence of symbols corresponding to

a message to the dispatcher. The dispatcher sends these symbols to a server according to

some stochastic process. The server services these symbols, which are then received by the

receiver. The receiver then tries to decode the message based on the received symbols.

The server works like a single first-in first-out (FIFO) queue with i.i.d. service requirements

for each job. Jobs correspond to symbols from a finite field F. In the model, servicing a job

involves reading the symbol and outputting it. The server may make random errors during

these steps and send out erroneous symbols. We are interested in the information capacity

of such a system, which we refer to as a queue-channel.
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2.1.1 Queuing Discipline

We consider a discrete-time system, t ∈ Z+ := {0, 1, 2, . . .}. Define Ai ∈ Z+, Di ∈ N to be

the inter-arrival time and inter-departure time of the ith job. The service time of the ith

job is denoted Si, and is strictly positive and i.i.d. drawn from a distribution PS on N.

We use the following convention. Arrivals at time t, if any, happen at the beginning of

time slot t. Departures from the queue at time slot t, if any, happen at the end of the time

slot. This implies that a job arriving at time slot t may receive and possibly finish its service

at time t.

Let Q(t) be the number of jobs in the queue at the end of time slot t and Qi be the number

of jobs in the system when the ith job departs. As Si ≥ 1 for all i, at a time slot t, at most

one job can depart.

We consider two basic types of arrival processes (also called dispatch processes) into the

queue: Type I and Type II.1 In a Type I process, there is at most one arrival in any time

slot and the times between two consecutive arrivals are i.i.d. with distribution PA on N.

Hence the support of Ai is N for Type I, i.e., PA(0) = 0. In a Type II process, the numbers

of arrivals A(t) in time slot t ≥ 1 are i.i.d. with distribution mA on Z+. The service rate

and arrival rate are µ and λ, respectively, satisfying EPS [S] = 1/µ and EPA [A] = 1/λ or

EmA [A] = λ, respectively. For stability of the queue, we assume λ < µ. We assume PS, PA,

and mA have finite second moments. For Type I systems, we assume either PA or PS has a

support that spans N. For Type II systems, we assume mA(1) > 0.

2.1.2 Service Noise

Transmission of symbols from a finite field F over the queue-channel happens in two stages.

Mapping the message, the transmitter sends symbols {Xi ∈ F : 1 ≤ i ≤ n} to a dispatcher,

which in turn sends the symbols to the server according to a stochastic process of arrival

rate λ.

The symbol corresponding to the ith symbol is Xi ∈ F, and the output symbol corre-

sponding to the ith symbol is Yi ∈ F. They are related through the additive noise variable

Zi ∈ F representing work error, such that Yi = Xi ⊕ Zi. The distribution of the errors Zi

depends on Qi. For any i, given Qi, Zi is independent of any other processes or variables,

and has a distribution ψq (on F) for Qi = q.

1Type I and II are analytically tractable sub-classes of the arrival processes with i.i.d. inter-arrival times
and i.i.d. numbers of arrivals at each arrival epoch.
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An n-length transmission over the queue-channel is denoted as follows. Inputs are {Xi :

1 ≤ i ≤ n}, channel realizations are {Zi : 1 ≤ i ≤ n}, and outputs are {Yi : 1 ≤ i ≤ n}.
Throughout, a k-dimensional random vector is denoted by Uk = (U1, U2, . . . , Uk).

All logarithms in the chapter have base 2 so that information is measured in bits.

2.2 Capacity of Queue-Channel

We are interested in the information capacity of unreliable server systems, i.e., the queue-

channel described above. In this section, we present results that are generic, i.e., are true

for both Type I and II arrivals.

2.2.1 Definition

Let M, M̂ ∈M be the message to be transmitted and decoded, respectively.

Definition 1. An (n, R̃, T ) code consists of the encoding function Xn = f(M) and the

decoding function M̂ = g(Xn, An, Dn), where the cardinality of the message set |M| = 2nR̃,

and for each codeword, the expected total time for all symbols to reach the receiver is less

than T .

Definition 2. If the decoder chooses M̂ with average probability of error less than ε, that

code is said to be ε-achievable. For any 0 < ε < 1, if there exists an ε-achievable code

(n, R̃, T ), the rate R = R̃/T is said to be achievable.

Definition 3. For an arrival process with distribution PA (Type I) or mA (Type II), the

information capacity of the queue-channel is defined as the supremum over all achievable

rates, which is denoted by C(PA) or C(mA) in bits per unit time.

Since the transmitter sends symbols to the dispatcher first, we assume the transmitter

knows the arrival process statistics, but not the realizations. Contrarily, the receiver knows

the realized arrival and departure times of each job.

2.2.2 Coding Theorem

Here, the transmitter does not observe {Ai, Di}, whereas the receiver observes these. Thus

the queue-channel has inputs {Xi} and outputs {Yi, Ai, Di}. As dispatch is independent of
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job-design, the channel transition probability factors as

P(Y n, An, Dn|Xn) = P(An, Dn)P(Y n|Xn, An, Dn).

The transmitter chooses {Xi} and hence can choose any joint distribution for the codebook

described by {Xi}. Note that {Yi, Ai, Di} depends on {Xi}, as well as on the arrival and

service processes. In general, {Yi, Ai, Di} may not be a stationary process. This means that

the queue-channel is not necessarily an information-stable channel [67], but the capacity

formula can nevertheless be found using the information spectrum approach [68,69]. Let the

information density be i(·), the normalized information density be

1

n
i(Xn;Y n, An, Dn) =

1

n
log

P(Y n, An, Dn|Xn)

P(Y n, An, Dn)
,

and the inf-information rate I(X; Y,A,D) be the lim-inf in probability of the normalized

information density, i.e., the largest α ∈ R ∪ {±∞} such that for all ε > 0,

lim
n→∞

P
[

1

n
i(Xn;Y n, An, Dn) ≤ α− ε

]
= 0.

Then, capacity in bits per unit time of the queue-channel is given by

C(PA) (and C(mA)) = λ sup
P(X)

I(X; Y,A,D), (2.1)

where λ is the arrival rate of PA (or mA), and the supremum is over all input processes

X = (X1, X2, . . .).

This capacity expression is not easy to handle due to the various possibilities of (An, Dn)

that can arise; however, the next proposition allows us to characterize the distribution of

i(·) (and hence, I) in a simpler form, in terms of the distributions of Xn, Y n, and Qn.

Proposition 1. The capacity expression (2.1) can be represented by using Qn,

C(PA) (and C(mA)) = λ sup
P(X)

I(X; Y|Q).

Proof. It suffices to show that

i(Xn;Y n, An, Dn) = i(Xn;Y n|Qn). (2.2)
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Note that the additive noise Zn depends only on Qn = φn(An, Dn), where φn(·) is a func-

tion that computes the number of symbols in the queue. Hence, P(Y n|An, Dn, Xn) =

P(Y n|Qn, Xn). Also, Xn is independent of (An, Dn).

P(Y n, An, Dn|Xn)

P(Y n, An, Dn)
=

P(An, Dn|Xn)P(Y n|An, Dn, Xn)

P(An, Dn)P(Y n|An, Dn)

=
P(Y n|An, Dn, Xn)

P(Y n|An, Dn)
=

P(Y n|Qn, Xn)

P(Y n|An, Dn)

=
P(Y n|Qn, Xn)∑

Xn P(Y n, Xn|An, Dn)

=
P(Y n|Qn, Xn)∑

Xn P(Xn|An, Dn)P(Y n|An, Dn, Xn)

=
P(Y n|Qn, Xn)∑

Xn P(Xn|Qn)P(Y n|Qn, Xn)

=
P(Y n|Qn, Xn)

P(Y n|Qn)
.

Taking logarithm and normalizing yield i(Xn;Y n, An, Dn) = i(Xn;Y n|Qn).

Thus, it follows that the distribution of i(·) depends only on the joint distribution of

(Xn, Y n, Qn).

Based on this, we can give a single-letter characterization of the capacity of the queue-

channel. In the proof of the forthcoming coding theorem, the converse part is essentially due

to basic properties of information quantities [69,70]. The direct part follows by choosing an

appropriate input process X to lower bound supP(X) I(X; Y|Q). In this regard, this proof is

structurally similar to earlier work that applied information spectrum techniques, e.g. [17,71].

The proof of the coding theorem also implicitly depends on the following lemma which

characterizes the process {Qi}.

Lemma 1. Under the assumptions in Sec. 2.1 and λ < µ < 1, there exists a unique distri-

bution π such that if Q1 ∼ π, then Qi ∼ π for all i ≥ 1, and the process {Qi} is ergodic,

i.e., for any f : Z+ → R with finite Eπf , almost surely 1
n

∑n
i=1 f(Qi) → Eπf as n → ∞.

Moreover, for any initial distribution of Q1, Qi converges to π in distribution and π(q) > 0

for all q ∈ Z+.

Proof. See Appendix A.1.

Now the capacity theorem.
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Theorem 1. For a given arrival process distribution PA (or mA) with λ < µ < 1 which

follows the assumption in Sec. 2.1, there exists a distribution π such that π(q) > 0 for all

q ∈ Z+ and P(Qn) → π as n → ∞. The capacity of this queue-channel is λ(log |F| −∑
q π(q)H(ψq)), where H(ψq) is the entropy of a distribution ψq(Z) on any finite set of size

|F|.

Proof. From properties of limit superior and inferior [69],

I(X; Y|Q) ≤ H(Y|Q)−H(Y|X,Q).

Since H(Y|Q) ≤ log |F| by Thm. 1.7.2 in [69] for any P(Y),

I(X; Y|Q) ≤ log |F| −H(Y|X,Q).

Note that H(Y|X,Q) is the lim-sup in probability of 1
n

log 1
P(Y n|Xn,Qn)

, i.e., the smallest

β ∈ R ∪ {±∞} such that

lim
n→∞

Pr

[
1

n
log

1

P(Y n|Xn, Qn)
≥ β + ε

]
= 0

for any ε > 0. Since noise is additive, by Lem. 1,

1

n
log

1

P(Y n|Xn, Qn)
=

1

n
log

1

ψQi(Zi)

→ EπQ,Z [− logψQ(Z)] almost surely as n→∞

=
∑
q

πqH(ψq).

Therefore we obtain the converse bound that

I(X; Y|Q) ≤ log |F| −
∑
q

πqH(ψq).

On the other hand, we also have

I(X; Y|Q) ≥ H(Y|Q)−H(Y|X,Q).

The second term converges to
∑

q πqH(ψq) by Lem. 1. We pick Xn i.i.d. uniformly at random

from F. Note that as F is a field, for any element yi ∈ F, yi − Xi spans all elements in F.
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Hence,
∑

X∈F ψQi(Yi −Xi) = 1. Thus,

P(Yi|Qi) =
∑
Xi∈F

P(Yi, Xi|Qi) =
∑
Xi∈F

P(Xi|Qi)P(Yi|Xi, Qi)

=
∑
Xi∈F

1

|F|
ψQi(Yi −Xi) =

1

|F|
,

and then when P(X) is uniform:

H(Y|Q) = log |F|.

Hence

I(X; Y|Q) ≥ log |F| −
∑
q

πqH(ψq),

and multiplying by the arrival rate λ completes the proof.

Note that the expressions in Thm. 1 are given for additive noise channels, but since

the coding theorem (Prop. 1) and ergodic lemma (Lem. 1) hold for general queue-length-

dependent channels, Thm. 1 can easily be generalized.

With the coding theorems developed in this section in hand, Secs. 2.3 and 2.4 study the

capacity of a few interesting classes of discrete-time queues. This results in insights regarding

the dispatch and service processes that have the best and worst information processing rates.

2.2.3 Comments

Before studying specific classes of queuing systems, we comment on the relation between

the maximum packet throughput and the maximum information throughput (the notion of

capacity defined here) of a queuing system. Packet throughput of a queuing system is the

maximum rate of packet arrivals that can be served without instability; hence the packet

throughput increases with λ on [0, µ). Though the expression for capacity (information

throughput) has λ as a multiplicative factor, this does not mean that information throughput

increases with λ. In typical queuing systems, the survival function corresponding to the

stationary probability is increasing in λ. Thus, an increase in λ also has a negative impact

on the terms involving π. Hence, in typical queuing systems, there is an optimal λ ∈ (0, µ)

that maximizes information throughput. Fig. 2.1 shows an example.
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Figure 2.1: Capacity of geo/geo/1 queue is plotted against arrival rate (for different service
rates) for F = {0, 1} and noise distribution P(Z = 1) = 0.1 for q = 0, otherwise
P(Z = 1) = 0.4.

2.3 Queues with Type I Arrival

This section is devoted to understanding the capacity of a queue with a Type I arrival

process and its dependence on the distribution of service times and inter-arrival times. First,

we find the capacity of a queue with geometric service time and arbitrary arrival process,

and characterize the capacity-optimizing arrival distributions. Then, we study the capacity

of a queue with geometric inter-arrival time and find the capacity-optimizing service time

distribution. Capacity has a saddle-point behavior around the geometric distribution.

In the application scenarios such as crowdsourcing and multimedia communication, server

performance deteriorates with increasing queue-length. Deterioration of server performance

with increasing queue-length is captured by a {ψq} whose entropy is non-decreasing with

q. A {ψq} of practical interest is a threshold behavior of the error-entropy with increasing

queue-length: H(ψq) = h0 for q ≤ b and H(ψq) = hb+1 for q ≥ b+ 1, for some b ∈ Z+.

Threshold behavior captures a state of server panic based on workload, suitable for human

servers and wireless access points with small MAC buffer. The special case of b = 0 describes

a human server that is distracted by any waiting job or a bufferless MAC. The special case

of b = 1 corresponds to a human server being distracted if more than one job is waiting.
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2.3.1 Discrete-time G/geo/1 Queue

For a G/geo/1 queue, the service time distribution is geometric with an expected service

time 1
µ
, µ < 1. The arrival process is Type I, with the inter-arrival times distributed as

PA and the expected time between arrivals 1
λ
, λ < µ. Since this queueing system satisfies

the assumptions in Sec. 2.1, its capacity can be obtained from Thm. 1. For any arrival

distribution PA, the capacity of G/geo/1 queue is given by the following theorem.

Theorem 2. The capacity of the G/geo/1 queue-channel is λ(log |F|− (1−σ)
∑

q σ
qH(ψq)),

where σ is the unique solution of the equation x =
∑∞

n=0 PA(n)(1− µ+ xµ)n in (0, 1).

Proof. See Appendix A.2.

Proof of this theorem involves obtaining the steady-state distribution π of the queue-

lengths seen by the departures. Towards this, techniques similar to that in the analysis of

continuous-time GI/M/1 queues [72] are extended to the discrete-time setting. The closed-

form expressions here differ to some extent from that in GI/M/1. Also, note that some of

the intermediate steps in the proof of Thm. 2 are used to prove some later results.

Based on the capacity characterization of the G/geo/1 queue, we explore the space of

arrival distributions. This leads to the following result about the best and worst (in terms

of capacity) arrival distribution for a G/geo/1 queue.

Proposition 2. For G/geo/1 queue with thresholded noise such that H(ψ0) = · · · = H(ψb) <

H(ψb+1) = · · · for some b ∈ {0, 1, . . .}, deterministic inter-arrival time maximizes capacity

among all arrival distributions with the same λ, for 1
λ
∈ Z+.

Proof. Proof of this result builds on the property of the fixed point equation x =
∑∞

t=0(1−
µ+ µx)tPA(t), and uses an intermediate result in the proof of Thm. 2.

First see that for any arrival distribution PA, π(q) = (1 − σ)σq, and capacity is log |F| −∑
q π(q)H(ψq), which is maximized when (1 − σ)

∑
q σ

qH(ψq) is minimized. Since noise is

thresholded at b, i.e., h0 = H(ψ0) = · · · = H(ψb) and hb+1 = H(ψb+1) = · · · , then the latter

term may be written as

(1− σ)
∑
q

σqH(ψq) = h0(1− σb+1) + hb+1(1− (1− σb+1))

= h0 + (hb+1 − h0)σb+1.

Hence, for a given {ψq}, capacity is maximized when σ is minimized.
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Next, note that the curves Ã(σ) =
∑∞

t=1 PA(t)(1−µ+µσ)t are convex and increasing with

σ, and Ã(0) > 0 (see Lem. 17 in Appendix). Also, there is a unique fixed point in (0, 1).

Thus, for these classes of curves, the curve that lower bounds a set of curves crosses the line

y = σ at the smallest value of σ among that set of curves. Similarly, the curve that upper

bounds a set of curves crosses the line y = σ at the largest value of σ.

For any 0 < α < 1 and any distribution PA with mean 1
λ
,

∞∑
t=0

αtPA(t) ≥ α
1
λ ,

by Jensen’s inequality, as αt is convex. Thus for any σ ∈ (0, 1) and PA with mean 1
λ
,

Ã(PA, σ) =
∞∑
t=0

(1− µ+ µσ)tPA(t)

≥ (1− µ+ µσ)
1
λ

= Ã(det, σ),

where the equality can be attained by a deterministic inter-arrival time. This implies that

the curve Ã(det, σ) is a lower-bounding curve for all other curves corresponding to different

PA.

Proposition 3. For the G/geo/1 queue with {ψq} such that H(ψ0) = · · · = H(ψb) <

H(ψb+1) = · · · for some b ∈ Z+, p̃A(t, ε) asymptotically minimizes the capacity among all

arrival processes as ε→ 0, where

p̃A(t, ε) =

1− ε, t = 1

ε, t = N(ε),

for ε > 0 and N(ε) is chosen to satisfy the mean constraint 1/λ.

Proof. It is sufficient to show that Ã(PA, σ) is asymptotically maximized by p̃A(t, ε) as ε→ 0.

Consider developing an upper bound of Ã(PA, σ) first. Using the fact that for α ∈ (0, 1), αt
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is decreasing,

Ã(PA, σ) =
∞∑
t=0

(1− µ+ µσ)tPA(t)

≤
∞∑
t=0

(1− µ+ µσ)PA(t) = (1− µ+ µσ).

On the other hand, Ã(PA, σ) evaluated at p̃A(t, ε) is:

Ã(p̃A(t, ε), σ) = (1− µ+ µσ)(1− ε) + (1− µ+ µσ)Nε,

which approaches the upper bound as ε → 0, but has a fixed-point solution in (0, 1). The

pmf p̃A(t, ε) asymptotically maximizes the fixed-point solution as ε → 0, thus minimizing

the capacity.

The results of Prop. 2 and 3 agree with our intuition. Deterministic arrivals in Prop. 2 give

enough time to the server with a given service rate, so that each job sees the lowest queue

length behind it on average. On the other hand, a typical realization of p̃A(t, ε) is that jobs

arrive every time slot (corresponding to t = 1) for some time interval but then the next job

arrives a very long time later corresponding to t = N(ε). The server will be busiest during

the first interval, but will be almost idle until the next job. It yields the worst performance.

In crowdsourcing, it is common for the arrival process to come from some kind of job

pre-processing. Since this pre-processing system itself could be serial or parallel chains of

servers with exponentially distributed random delays, we are interested in classes of arrival

processes that are certain geometric families of distributions.

Let {Ai, 1 ≤ i ≤ I} be independent geometric random variables with means 1
λi

. Then

define As to be a sum-of-geometric random variable and to be As the set of such probability

distributions with mean 1
λ
, i.e.,

As =
∑
i

Ai,

As =

{
PAs : E[As] =

1

λ

}
.

Also define Am to be a mixture of geometric random variables such that Am = Ai with

probability mass {ci} whose support is {1 ≤ i ≤ I}, with Am as the set of such probability
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distributions with mean 1
λ
, i.e.,

Am = Ai with probability ci,

Am =

{
PAm : E[Am] =

1

λ

}
.

Then the next lemma follows.

Lemma 2. For any PAs ∈ As,

Ã(PAs , σ) ≤ Ã(geo, σ).

On the other hand, for any PAm ∈ Am.

Ã(PAm , σ) ≥ Ã(geo, σ).

Proof. See Appendix A.3.

Proposition 4. For any G/geo/1 queue-channel with thresholded noise at b, geometric inter-

arrival times minimize and maximize capacity among all arrival distributions of As and Am,

respectively.

Proof. Following the arguments in the proof of Prop. 2, we only need to show that geometric

inter-arrival times maximizes (resp. minimize) σ for a given λ among As (resp. Am). Then

the proposition follows from Lem. 2.

There is an important takeaway from this result in the context of job pre-processing for

crowdsourcing. In crowdsourcing systems all jobs are pre-processed to make them suitable

for crowd workers, and the inter-arrival (inter-dispatch) time in our model corresponds to

this pre-processing time. The above theorem implies it is best to have a deterministic pre-

processing time. However, if pre-processing times are highly variable due to some system

issues (geometric is the most entropic), then instead of having a single pre-processing step it

is better to have a series of sub-steps (corresponding to sum-of-geometric) for pre-processing.

A corollary is the capacity extrema representation of the G/geo/1 queue-channel among

the class of sum- (resp. mixture-) of-geometric distributions.

Corollary 1. For a given arrival rate λ and given service rate µ, the minimum (resp. max-

imum) capacity of G/geo/1 queue-channel among the class of sum- (resp. mixture-) of-

geometric inter-arrival distributions is λ(log |F|− (1−σ∗)
∑

q σ
∗qH(ψq)), where σ∗ = λ(1−µ)

µ(1−λ)
.
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Proof. From the proof of Prop. 4, we know that geometric arrival achieves capacity extrema

for arrival rate λ,
∞∑
t=0

αtPA(t) =
α

1−α
1
λ

+ α
1−α

.

Letting α = 1− µ+ µσ and solving the fixed point equation

Ã(geo, σ) =

1−µ+µσ
µ−µσ

1
λ

+ 1−µ+µσ
µ−µσ

= σ,

we have the unique solution σ∗ = λ(1−µ)
µ(1−λ)

.

2.3.2 Discrete-time geo/G/1 Queue

In this section we consider another important class of queues, for which the arrival process

is Bernoulli, i.e., inter-arrival times are geometric, but the service times have a general

distribution.

Define
(
n
k

)
= 0 if n < k. By characterizing the stationary distribution seen by departures,

we prove the following capacity result.

Theorem 3. For j ∈ {0, 1, . . .}, let kj =
∑∞

t=0

(
t
j

)
(1 − λ)t−jλjPS(t), and for all complex z

with |z| < 1, K(z) =
∑∞

j=0 z
jkj, then capacity of this system is λ(log |F| −

∑
q πqH(ψq)) for

π0 = 1− λ
µ

, and πk = limz→0
Π(z)−

∑k−1
j=0 πjz

j

zk
, where Π(z) = (1− λ

µ
) (z−1)K(z)

z−K(z)
.

Proof. See Appendix A.4.

Derivation of the stationary distribution here follows similar steps as the derivation of the

stationary distribution of M/G/1 queue [72].

Next, we investigate the service time distributions that respectively maximize or minimize

the capacity of a geo/G/1 queue-channel. First, we consider the case of threshold error-

entropy behavior for threshold b = 0. The following corollary is a direct consequence of

Thm. 3.

Corollary 2. If {ψq} are such that H(ψ0) < H(ψ1) = H(ψ2) = · · · , then the capacity of the

geo/G/1 queue is the same for all PS.

Proof. The capacity in this case depends on π only through π0, but π0 is the same for all

service distributions with mean 1
µ
, as π0 = 1− λ

µ
.
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For the case with threshold b = 1, it can be shown that different service time distributions

result in different capacities.

Proposition 5. If H(ψ0) = H(ψ1) < H(ψ2) = H(ψ3) = · · · , then the capacity of the

geo/G/1 queue is maximized by a deterministic service time (for 1
µ
∈ Z+) and is asymptoti-

cally minimized by p̃S(t, ε) as ε→ 0, where

p̃S(t, ε) =

1− ε, t = 1

ε, t = N(ε),

for ε > 0 and N(ε) is chosen to satisfy the mean constraint 1/µ. Among the class of sum-of-

geometric random variables, capacity is minimized by the geometric service time distribution.

Proof. Let h0 = H(ψ0) and h2 = H(ψ2), h0 < h2. Then, by Thm. 1, the capacity of the

system is λ(log |F| − h0(π0 + π1)− h2(1− π0 − π1)).

It is clear from the capacity expression that it is maximized (resp. minimized) when π0+π1

is maximized (resp. minimized). Hence, it is enough to prove that deterministic service time

maximizes π0 + π1, and geometric service time minimizes π0 + π1 among the class of sum-

of-geometric random variables.

Note that

π1 = lim
z→0

Π(z)− π0

z
,

which, after a few steps of algebra using the expression for Π(z) and the fact that π0 = 1− λ
µ
,

gives

π1 = (1− λ
µ
)
1−K(0)

K(0)
.

Thus, π0 + π1 = (1− λ
µ
) 1
K(0)

. Using the definition that K(0) = k0 = P(no arrivals in S), the

capacity is minimized when k0 is maximized and vice-versa. After decomposing k0 for all t,

k0 =
∞∑
t=1

(1− λ)tPS(t).

The conclusion follows from the proofs of Lem. 2 and Prop. 3: the deterministic arrival with

mass at 1
µ
∈ Z+ minimizes k0 by Jensen’s inequality, and p̃S(t, ε) asymptotically maximizes

k0 as ε → 0. In addition, k0 is maximized by geometric distribution among the class of

sum-of-geometric random variables by Lem. 2.

Prop. 5 says that handling works with regularity in time yields the least queue length on
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average; cramming and staying idle is the worst. For thresholded noise behavior we observe

the following. For a geometric service time, the worst dispatch process among the sum-of-

geometric distributions is geometric. On the other hand, for a geometric arrival process, the

geometric service time is the worst among the sum-of-geometric distributions. Thus, if we

visualize the capacity function of a single server queue for a given arrival and service rate

plotted against arrival and service distributions (restricted to sum-of-geometric), there is a

minimum where both distributions are geometric.

In the context of crowdsourcing, this means it is always better to split highly variable

pre-processing (corresponding to the dispatch process) or human work (corresponding to the

service process) steps into a series of sub-steps. That is, it is always better to take a job by

parts (if coordination costs are not too high [73]).

2.4 Queues with Type II Arrivals

In this section, we study the queue-capacity of systems with Type II arrivals. An equivalent

capacity expression holds for Type II arrivals, i.e., possibly multiple arrivals in a time slot.

Let Ni be a random variable counting the number of arrivals at time i. Thus, the {Ni} are

i.i.d. with distribution mA.

Theorem 4. The queue-channel capacity of a queue with Type II arrivals distributed as mA,

and service time distributed as PS is given by λ(log |F| −
∑

q πqH(ψq)), for π0 = 1− λ
µ

, and

πk = limz→0
Π(z)−

∑k−1
j=0 πjz

j

zk
, where Π(z) = (1− λ

µ
) (z−1)K(z)

z−K(z)
, kj =

∑∞
t=1 P(

∑t
i=1Ni = j)PS(t).

Proof. The probability of j arrivals within a service time is
∑∞

t=1 P(
∑t

i=1Ni = j)PS(t). The

remainder of the proof follows the same approach as the proof of Thm. 3.

2.4.1 Effects of Service Processes

First, we characterize the effect of different service processes on the capacity, for a given

arrival process. As the following results show, deterministic service is best and bursty service

is worst, as in Prop. 5.

Proposition 6. Suppose that H(ψ0) = H(ψ1) < H(ψ2) = · · · . For a given Type II arrival

process mA, the maximum capacity is achieved by deterministic service time over all service
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time distributions. The minimum capacity is asymptotically achieved by p̃S(t, ε) as ε → ∞,

where

p̃S(t, ε) =

1− ε, t = 1

ε, t = N(ε),

for ε > 0 and N(ε) is chosen to satisfy the mean constraint 1/µ. In addition, the minimum

capacity among the class of sum-of-geometric random variables is achieved by geometric

service time distribution.

Proof. Following the proof of Prop. 5, we only need to prove that k0 is minimized and

asymptotically maximized by deterministic service time and p̃S(t, ε), respectively. Further,

k0 needs to be maximized by geometric service time among the class of sum-of-geometric

random variables.

Note that k0 =
∑∞

t=1 P(
∑t

i=1Ni = 0)PS(t) =
∑∞

t=1(mA(0))tPS(t), where 0 < mA(0) < 1.

Hence, the results follow from the proof of Prop. 5.

2.4.2 Effects of Arrival Processes

Next, we are interested in understanding the effect of arrival processes on the capacity for the

worst service time distribution. Specifically, we are interested in finding the arrival processes

that maximize and minimize the capacity.

Analogous to Cor. 2 and Prop. 5 for Type I systems, we have the following results.

Corollary 3. Consider the queue with given arrival rate λ and service distribution PS. If

H(ψ0) < H(ψ1) = H(ψ2) = · · · , the capacity of the queue with Type II arrival is the same

for all arrival distributions.

Proposition 7. For H(ψ0) = H(ψ1) < H(ψ2) = H(ψ3) = · · · , for a given arrival rate λ and

a service distribution PS, the capacity of the queue-channel over all Type II arrival processes

with finite support {0, 1, . . . , B} is lower-bounded by

CL = λ

(
log |F|+ (H(ψ2)−H(ψ0))(1− λ

µ
)

1

k0

−H(ψ2)

)
,

where k0 =
∑

t(1−
1
Bλ

)tPS(t).
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Proof. By an argument similar to the proof of Prop. 5, the minimum is obtained when k0 is

maximized. Hence, it is sufficient to show the maximum value of k0, thus the maximum of

mA(0).

Towards this, we first show that the distribution

m∗A(t) =

1− 1
Bλ
, t = 0

1
Bλ
, t = B

maximizes mA(0) among all discrete distributions with bounded support {0, . . . , B} and

mean 1/λ.

This can be proved by contradiction. Suppose there is another distribution m′A with mean

1/λ and m′A(0) > m∗A(0). Now

Em′A [X] =
B∑
t=0

tm′A(t)

≤ B
B∑
t=1

m′A(t) = B(1−m′A(0))

< B(1−m∗A(0)) =
1

λ
,

which contradicts the assumption that m′A has expectation 1/λ. Hence, there exists no m′A
on {0, . . . , B} with m′A(0) > m∗A(0).

Although the maximal k0, k∗0, is attained by m∗A(t), the induced Markov chain Q is not

irreducible because m∗A(1) = 0. Instead, we use the approximate probability mass function

m̃A(t), which has a nonzero mass at t = 1. Define

m̃A(t) =


1− 1

Bλ
− ε
(
1− 1

Bλ

)
, t = 0

ε, t = 1

1
Bλ
− ε

Bλ
, t = B.

Then, we need to show m̃A(t) approximates k0 arbitrarily close to k∗0. Note that k0 =∑
t(mA(0))tPS(t), which is a continuous function of mA(0). Thus, the conclusion follows.

Finally, the lower bound of capacity is computed as in the proof of Prop. 5,

CL = λ

(
log |F|+ (H(ψ2)−H(ψ0))(1− λ

µ
)

1

k0

−H(ψ2)

)
,
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where k0 =
∑

t(1−
1
Bλ

)tPS(t).

Proposition 8. For H(ψ0) = H(ψ1) < H(ψ2) = H(ψ3) = · · · , for a given arrival rate λ

and a service distribution PS, the maximum capacity of the queue-channel over all Type II

arrival processes with finite support {0, 1, . . . , B} is

CU = λ

(
log |F|+ (H(ψ2)−H(ψ0))(1− λ

µ
)

1

k0

−H(ψ2)

)
,

where k0 =
∑

t(1−
1
λ
)tPS(t), attained by the Bernoulli arrival process, i.e., mA(0) = 1− 1/λ

and mA(1) = 1/λ.

Proof. By a similar argument as above, the maximum is obtained when k0 is minimized.

This is reached when mA(0) is minimum. Hence, it is sufficient to prove that among all

discrete distributions, Bernoulli achieves it.

Again, the proof is by contradiction. Let us assume there is another distribution m′A with

the same mean, i.e.,
∑

t tm
′
A(t) = 1/λ for which m′A(0) < mA(0).∑
t

tm′A(t) ≥
∑
t≥1

m′A(t) = (1−m′A(0))

> (1−mA(0)) =
1

λ
,

which is a contradiction.

The capacity expression follows by substituting in the expression for k0 for Bernoulli

arrival.

This proposition implies that having at most one arrival per time slot is better. In other

words, burstiness in the arrival process hurts performance.

2.5 Without Timing Information

So far, we have assumed that the received or processed jobs have timestamps on dispatch

time and completion time. Though this assumption is valid in many wireless settings (MAC

timestamps are part of the protocols) and crowdsourcing scenarios (e.g., Samasource main-

tains timestamps), this information may not always be available. In this section we study

the setting where the decoder does not have knowledge of An, Dn.
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Here, the decoder no longer observes (Y n, An, Dn), but only observes Y n. Using the

information spectrum technique it immediately follows that the capacity is

C(PA) = λ sup
P(X)

I(X; Y).

The following theorem characterizes the capacity of the system based on the queue param-

eters and noise distributions. Proof follows similar steps as the proof of Thm. 1.

Theorem 5. For a given arrival (dispatch) process distribution PA (or mA) with λ < µ < 1

which follows the assumption in Sec. 2.1, there exists a distribution π such that π(q) > 0

for all q ∈ {0, 1, . . .} and P(Qn) → π as n → ∞. The capacity of this queue-channel is

λ(log |F| −H(
∑

q πqψq)), where πqψq is a mixture of distributions {ψq}.

Proof. First we show the converse. Using the standard information spectrum method,

I(X; Y) ≤ H(Y)−H(Y|X)

≤ log |F| −H(Y|X)

= log |F| −H(Z).

Without timing information, note that Zi ∼
∑

q P(Qi = q)ψq. Since Pr(Qi) → π and {Qi}
is ergodic, by Lem. 1,

I(X; Y) = log |F| −H(Z)

→ log |F| −H

(∑
q

πqψq

)
.

For achievability, like the proof of Thm. 1 we pick a uniform and i.i.d. P(Xn) =
∏n

i=1 P(Xi)

and show that

I(X; Y) ≥ H(Y)−H(Y|X)

= log |F| −H(Z)

→ log |F| −H

(∑
q

πqψq

)
.

Therefore multiplying by λ, we obtain the capacity expression in the theorem.

Next, we consider some queuing systems to find the best dispatch and service processes
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in this setting. In the case of thresholded noise behavior the following result holds for a

G/geo/1 system.

Proposition 9. Suppose F = {0, 1}, P(Zi = 1|q) ≤ 0.5 for all q and H(ψ0) = · · · = H(ψb) <

H(ψb+1) = · · · for some b ∈ {0, 1, . . .}. Then, for a G/geo/1 system with no timestamps,

the queue-channel capacity is maximized by deterministic inter-arrival (for 1
λ
∈ Z+) and is

minimized by geometric inter-arrival among the class of sum-of-geometric random variables.

Proof. In this system

H

(∑
q

πqψq

)
= H

(
ψ0

∑
q≤b

πq + ψb+1

∑
q≥b+1

πq

)
.

Note that πq = (1− σ)σq where σ is the fixed-point solution in Thm. 2. Hence,

H

(∑
q

πqψq

)
= H

(
ψ0(1− σb+1) + ψb+1σ

b+1
)
.

Now, as P(Zi = 1|q) ≤ 0.5, by monotonicity of binary entropy over [0, 0.5], it follows that

the above expression is maximized (minimized) when
∑

q≥b+1 πq is maximized (minimized),

which in turn happens when σ is maximized (minimized).

The remainder of the argument follows as in the proof of Prop. 2 and 4, because for

G/geo/1, deterministic arrival minimizes σ, while geometric arrival maximizes among the

class of sum-of-geometric random variables.

Proposition 10. Suppose F = {0, 1}, P(Zi = 1|q) ≤ 0.5 for all q and H(ψ0) = · · · =

H(ψb) < H(ψb+1) = · · · for some b ∈ {0, 1, . . .}. Then, for a geo/G/1 system with no

timestamps, the queue-channel capacity is maximized by a deterministic service time and (for
1
λ
∈ Z+) and is minimized by geometric service time among the class of sum-of-geometric

random variables.

Proof. By the same argument as in proof of Prop. 9, the maximum is achieved when π0 +π1

is maximized. The remaining argument follows the proof of Prop. 5.

2.6 Chapter Summary

In this chapter, we consider a queue-length-dependent channel, where service quality de-

pends on the queue-length of jobs. We define the capacity of such queuing systems to be
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the maximum rate at which jobs can be processed with arbitrarily small error probability,

and characterize it in terms of queuing parameters. It has several engineering applications

including crowdsourcing, multimedia communication.

We study Type I and Type II arrivals separately for analytic tractability. In Type I arrivals,

for a G/geo/1 queue with a step-increasing noise, jobs arriving deterministically maximize

capacity while bursty arrivals minimize capacity. Similarly, for a geo/G/1 queue with a

step-increasing noise, deterministic service maximizes capacity, but bursty service minimizes

capacity. Type II arrivals give similar results except that Bernoulli arrivals maximize capacity

for the G/geo/1 queue.
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Chapter 3

On Multiuser Systems with Queue-Length-Dependent
Service Quality

In the previous chapter, we studied the capacity of single-user queue-length-dependent qual-

ity in discrete time and further optimized the server of a geo/GI/1 queue or the dispatcher

of a GI/geo/1 queue, under given reliability assumptions.

Beyond the formulation in the previous chapter, there are often multiple input streams

in the motivating applications rather than just one, e.g., due to multihoming, so here we

consider a scenario where multiple transmitter-destination pairs want to send information

reliably and therefore dispatch coded symbols on arrival processes. A particular motivational

setting is driver-assisted autonomous trucks [74], where a human driver remotely monitors

multiple semi-autonomous trucks and steps in (i.e., processes information) only when the

autonomous algorithm cannot handle the task.

Fig. 3.1 presents such a multiple-access setting, where before entering a single central

processor, the multiple arrival processes are superposed. Once coded symbols arrive at the

central queue processor, they are served in a first-in first-out (FIFO) manner, and returned to

the intended receiver. Note that if there is a single central receiver, the topology reduces to a

multiple-access channel. As before, a distinguishing aspect of this chapter is that reliability

of the central server depends on queue-length arising from the superposed arrival process.

Here, we consider the superposition of multiple arrival processes in a continuous-time

Σ QUEUE

 ENC DISPATCHUser 1

User K

...

ENC DISPATCH

DEC

ROUTER

DEC

...

...

Figure 3.1: Block diagram of the system: only two out of K point processes are illustrated
for brevity. We use Σ to denote superposition operation.
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setting. Before proceeding, we first study the capacity of the continuous-time single-user

case, and also specify the best and worst dispatch processes for a GI/M/1 queue, and service

processes for a M/GI/1 queue with additional conditions. Then, the capacity expression of

the multiple-access setting is given in terms of the stationary distribution of queue-length

seen by each user’s departures. Surprisingly, our results show there is no loss in capacity due

to multiple-access interference.

As superposition of non-Poisson arrivals is in general intractable, we also consider the

large-user asymptotic by introducing a random marked point process (RMPP, or simply PP)

approach [75, 76] and apply the superposition convergence to a Poisson point process [77].

The latter states the superposition of a large number of sparse arrivals is approximately

Poisson. Building on this result, we prove that the capacity for
∑

k GIk/GI/1 queues, where

Σk stands for the superposition, converges to that for single-user M/GI/1 queues. In other

words, even though individuals are non-Poisson arrivals, sending information as if a single-

user M/GI/1 queue is asymptotically optimal. It also implies the best and worst services

obtained for a single-user M/GI/1 queue are preserved.

3.1 Preliminaries and System Model

3.1.1 Point Process

We use a PP approach to queueing systems, enabling us to derive analytical properties. Let

us define an RMPP Φ = Φ(t) as follows.

Definition 4. Let B be the Borel σ-algebra of R. Given a mark space M and its sigma-

algebra σ(M), consider a marked counting measure N(B × M) where B ∈ B and M ∈
σ(M) such that N(B ×M) < ∞ for any bounded B. Let N , σ(N ) be the set of all such

counting measures and its smallest σ-algebra, respectively. Then, a random marked point

process (RMPP, or simply a point process (PP)), Φ(t) is a random element from (Ω,F , P )

to (N , σ(N )).

For queueing applications, the mark usually denotes a random service time at the server

or the time required to finish each job. Hence, M = R+ and since only the ·/GI/1 queue is

considered in this work, each mark is i.i.d. from some distribution P S. Since all randomness

from arrival and service times is captured in the RMPP, any queue response such as queue-

length or waiting time is a deterministic function of the RMPP.
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Two equivalent representations of a PP are especially useful in this chapter. Suppose the

mark space is empty, i.e., M = ∅ for illustration. However, the following representations

can be easily extended to RMPPs with a non-empty mark space. The first representation is

to use an inter-arrival time representation, induced by Dirac delta functions.

Letting {Ti ∈ R+}i∈Z be a non-decreasing random sequence,

Φ(t)⇔
∞∑

i=−∞

δTi ⇔ (. . . , A−1, A0, A1, . . . , ),

where Ai := Ti − Ti−1 ≥ 0. So Ti indicates the time epoch when the ith arrival comes. The

case for i.i.d. Ai is called a renewal process, which arises in Sec. 3.2.

The other representation is by a random counting measure, which is useful especially in

Sec. 3.3. Note that

N(B) =

∫ ∞∑
i=−∞

1BδTidt,

that is, the number of arrivals in B, for any bounded B ∈ B, uniquely determines Φ(t).

Here 1B = 1B(t) is the indicator function with criterion {t ∈ B} and we write 1BΦ to stand

for the restricted RMPP on B.

A time shift operation is denoted by TτΦ(t) = Φ(t+τ), enabling definitions of stationarity

and ergodicity.

Definition 5 (Stationarity, Def. 1.2.1 [75]). An RMPP Φ is stationary if the probability

measure P is invariant with respect to the time shift Tτ , i.e., for any set Z ∈ σ(N ),

P (TτZ) = P (Z) for all τ ∈ R.

Definition 6 (Ergodicity, Def. 1.2.5 [75]). A stationary RMPP Φ (or its probability measure

P ) is ergodic if any set Z ∈ σ(N ) satisfying TτZ = Z for all τ ∈ R implies either P (Z) = 0

or 1.
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3.1.2 System Model

Multiple users intend to send messages to respective targeted receivers. To do that, the kth

user picks an encoded sequence of symbols1 Xn
(k)—each symbol is drawn from finite space

X—and dispatches it over an independent stationary renewal arrival process with inter-

arrival time distribution PA
k (t). Those arrivals are superposed just before entering a ·/GI/1

queue. The server follows FCFS service discipline with i.i.d. service time according to P S.

Assume that the waiting room is unlimited.

Since the server is unreliable, the symbol is corrupted to Y n
(k) ∈ Yn randomly, where Y

is also finite. The transition probability, denoted by W = WQ, is dependent on Q, the

queue-length at the moment just before the symbol’s departure, excluding the job being

serviced. That is, the channel at time t is WQ := PY |X,Q, where Q is the queue-length seen

by departure. In this sense we say the system is queue-length-dependent. Departing symbols

are labeled and delivered to the intended receiver. Since symbols are encoded against channel

noise, receivers can decode the sequence to recover the original information. We assume there

is a central coordination mechanism that reveals each transmitter’s dispatching process to

all other transmitters, but not realizations.

We use
∑

(·) to denote superposition, so the queue of interest is written as
∑

k GIk/GI/1.

The queues are assumed always stable, i.e., superposed arrival rate λ and service rate µ

satisfy traffic intensity ρ := λ
µ
< 1. Also we suppose some technical assumptions on arrivals

and service: 1) arrivals and service processes are simple, i.e., PA
k (0) = 0 for all k, P S(0) = 0;

2) at least one of {PA
k (t)}Kk=1 and P S(t) is continuous and strictly positive on R.

We assume causal knowledge of arrival and departure realizations, i.e., the encoders do

not know them, but the decoders do. Also all PA
k are available to transmitters, but not their

realizations.

3.2 Continuous-time Single-user Queue-channel

This section investigates the capacity of single-user queue-length-dependent channels like

[78], but in continuous-time.

1Throughout this chapter, symbol (common in information theory) and job (or customer, common in
queueing theory) are interchangeable.
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3.2.1 Coding Theorem for GI/GI/1 Queues

Consider a simple renewal arrival process Φ(t) with arrival rate λ, i.e., the ith inter-arrival

time Ai ∼ PA i.i.d. with λ = 1/E[A1]. Recall that the service quality (channel) of the ith job

depends only on the queue-length seen by the ith departure (i.e., just before ith departure),

denoted Qi. We first express capacity using the information spectrum [68, 69]; see [68, 69]

for notation of various information functionals.

Proposition 11. For a simple renewal PP Φ(t) with rate λ = 1/E[A1],

C(Φ) = sup
P (X)

I(X; Y|Q) [bits/sym] (3.1)

= sup
P (X)

λI(X; Y|Q) [bits/time].

Proof. See [78, Prop. 1].

Lemma 3. For each simple renewal PP Φ, there exists a unique stationary distribution π

such that if Q1 ∼ π, then any Qi ∼ π. Furthermore, for any measurable f : Z+ 7→ R+,
1
n

∑n
i=1 f(Qi)→ Eπ[f(Q)] as n→∞ almost surely.

Proof. Consider an arrival time instance when the system is empty, i.e., no job in the queue,

no job in the server at the instance of an arrival. At this instance, a new cycle of queueing

begins from the empty state. So let us consider the queue-length process seen by arrivals,

{Q̂i}i∈Z. In GI/GI/1 queues, the cycles are i.i.d. and so are called regenerative cycles [79,

Chap. VI], denoted by {Ri ∈ Z+}i∈Z. Also, ρ < 1 implies E[R] < ∞ and these cycles are

repeated infinitely many times. We know the limiting distribution of Q̂, say π̂, exists and is

ergodic so for any measurable nonnegative function f ,

Eπ̂[f(Q̂)] =
1

E[R]
E

[ ∑
i:inside of R

f(Q̂i)

]
= lim

n→∞

1

n

n∑
i=1

f(Q̂i).

Next, suppose the queue is in steady-state. Since the beginning and end of cycles are

empty-state, whenever there is an arrival, there is a corresponding departure in the cycle.
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Thus, Q̂
d
= Q, i.e., π̂ = π. Therefore, for any measurable nonnegative function f ,

Eπ̂[f(Q̂)] = lim
n→∞

1

n

n∑
i=1

f(Q̂i)

= lim
n→∞

1

n

n∑
i=1

f(Qi) = Eπ[f(Q)].

This completes the proof.

Combining Prop. 11 and Lem. 3, we have a simpler capacity expression in terms of expec-

tation over Q, or equivalently in terms of stationary distribution π(Q).

Theorem 6. For GI/GI/1 queues, the capacity formula (3.1) can be further simplified to

C(Φ) = sup
PX

E [I(PX ,WQ)] = sup
PX

∞∑
q=0

π(q)I(PX ,Wq) (3.2)

in bits per job, and

C(Φ) = λ sup
PX

E [I(PX ,WQ)] = sup
PX

λ
∞∑
q=0

π(q)I(PX ,Wq) (3.3)

in bits per time. Therefore, it is easy to see that the capacity over all renewal PPs with stable

arrival rate λ < µ is

C = sup
λ∈(0,µ)

sup
PA

sup
PX

λE [I(PX ,WQ)] [bits/time].

Proof. See [78, Thm. 1] with generalization to general discrete channels.

Remark 1. In this work, we assume a simple transmitter that does not know arrival and

departure realizations, which implies channel state information is unavailable. If the channel

state information is available without delay, the capacity formula follows immediately as

C(Φ) = λE
[
sup
PX

I(PX ,WQ)

]
[bits/time]. (3.4)

Thus, we can see that when the capacity-achieving distributions are all identical with some

P ∗X , such as binary symmetric channels or binary erasure channels, the transmitter simply

picks P ∗X even without the channel state information and achieves (3.4) by the codebook
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identical with no channel state information. Channel state feedback even without delay does

not improve capacity in this case.

A closed-form expression of π(Q) is unknown in general, but is known for some special

types of queues. Let us rewrite (3.2) for two special types of queues GI/M/1 and M/GI/1,

and consider per symbol capacity since per time capacity follows by multiplying by λ.

Theorem 7 (GI/M/1 queues). Let A∗(·) be the Laplace-Stieltjes transform of PA(t) and

define σ∗ as the unique solution of σ = A∗(µ(1−σ)) in (0, 1). Then, the capacity of GI/M/1

queues is given by

C(Φ) = sup
PX

E[I(PX ,WQ)] [bits/sym],

where π(q) = (1− σ∗)(σ∗)q.

Proof. See Appendix B.1.

Theorem 8 (M/GI/1 queues). The capacity of M/GI/1 queues is given by

C(Φ) = sup
PX

E[I(PX ,WQ)] [bits/sym],

where π(q) is obtained from the inverse of probability generating function

Π(z) =
(1− ρ)(1− z)K(z)

K(z)− z
,

and K(z) is the probability generating function of kq with

kq =

∫ ∞
0

P S(t)
e−λt(λt)q

q!
dt.

Proof. See Appendix B.2.

Example: Consider an M/M/1 queue and a binary symmetric channel (corresponding to

binary classification) with queue-length-dependent transition probability εq. Then, we know

that π(q) = (1− ρ)ρq and Thm. 7 shows that

C = λ
∞∑
q=0

π(q)(1−H2(εq)) [bits/time],
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Figure 3.2: Capacity of M/M/1 queue (for different service rates) with binary symmetric
channel is plotted. P[X 6= Y ] = 0.1 for q = 0, P[X 6= Y ] = 0.4 otherwise. It shows that
setting a proper workload maximizes per time capacity.

where H2(·) is the binary entropy function. Fig. 3.2 shows the capacity curves for different

rates.

3.2.2 Optimization of Capacity

This subsection considers optimization of the capacities for GI/M/1 and M/GI/1 queues given

in Thms. 7 and 8. To do so, we impose two conditions such that

1. P ∗X achieves the capacity for all Wq.

2. At such P ∗X , the system becomes more unreliable as q increases in a step-down manner,

i.e., for some b ∈ Z+,

I(P ∗X ,W0) = · · · = I(P ∗X ,Wb) > I(P ∗X ,Wb+1) = · · · .

Note that condition 1 covers |F|-ary symmetric or |F|-ary erasure channels since P ∗X is

uniform. Such channels model multi-label classification via crowdsourcing platform [12] in

that events {X 6= Y } in a symmetric channel and {Y = erasure} in an erasure channel model
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‘misclassification’ and ‘I don’t know’ answers of a crowdworker, respectively. In particular,

introducing the step change in noise allows us to find the best and worst server behaviors

explicitly. It is natural in applications (including non-human applications) for the server to

be more unreliable as the queue gets longer; see [78] for modeling details.

Corollary 4 (GI/M/1 queue). Fix arrival rate λ. For GI/M/1 queues, the best inter-arrival

distribution is deterministic, i.e., PA(t) only has a unit point mass at t = λ−1.

Proof. For the sake of brevity, let cb := I(P ∗X ,Wb) and cb+1 := I(P ∗X ,Wb+1). Then, the

capacity is written as

C(Φ) =
∞∑
q=0

π(q)I(P ∗X ,Wq)

=
∞∑
q=0

(1− σ∗)(σ∗)qI(P ∗X ,Wq)

=
b∑

q=0

(1− σ∗)(σ∗)qcb +
∞∑

q=b+1

(1− σ∗)(σ∗)qcb+1

= cb(1− (σ∗)b+1) + cb+1(σ∗)b+1

= cb − (σ∗)b+1(cb − cb+1).

As cb > cb+1, maximizing C(Φ) with given λ is equivalent to minimizing σ∗. Note that σ∗ is

the unique fixed point of σ = A∗(µ(1− σ)) and at σ = 0 and 1,∫ ∞
0

PA(t)e−µt(1−σ)dt

∣∣∣∣
σ=0

=

∫ ∞
0

PA(t)e−µtdt > 0∫ ∞
0

PA(t)e−µt(1−σ)dt

∣∣∣∣
σ=1

=

∫ ∞
0

PA(t)dt = 1.

Furthermore, A∗(µ(1− σ)) is strictly convex in σ since

∂

∂σ
A∗(µ(1− σ)) > 0,

∂2

∂2σ
A∗(µ(1− σ)) > 0.

Due to Jensen’s inequality, we obtain

A∗(µ(1− σ)) =

∫ ∞
0

PA(t)e−µt(1−σ)dt

≥ e−µE[A](1−σ) = e−
µ
λ

(1−σ),

(3.5)
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where the equality is attained only when A = λ−1 almost surely. It means that when

PA is deterministic, the curve A∗(µ(1 − σ)) = e−
µ
λ

(1−σ) lower bounds all other curves so

that achieves the smallest fixed point. Therefore, the deterministic inter-arrival distribution

achieves the greatest capacity.

Corollary 5 (GI/M/1 queue). Fix arrival rate λ. For GI/M/1 queues, cramming inter-

arrivals asymptotically minimize the capacity, i.e., PA(t; ε, δ) asymptotically achieves the

smallest capacity as ε, δ → 0, where

PA(t; ε, δ) =


1− ε if t = δ

ε if t =
1
λ
−δ(1−ε)
ε

0 otherwise.

Proof. Similar to the proof of Cor. 4, it is sufficient to show that σ∗ is maximized, i.e., when

PA is cramming A∗(µ(1− σ)) upper bounds all other curves. We know that for any PA,

A∗(µ(1− σ)) =

∫ ∞
0

PA(t)e−µt(1−σ)dt

≤
∫ ∞

0

PA(t)dt = 1.

(3.6)

On the other hand, note that the cramming inter-arrival distribution asymptotically achieves

the upper bound as ε, δ → 0 so that it maximizes the fixed point solution σ∗. Also notice

that the location of ε point mass is determined to satisfy mean constraint E[A] = λ−1.

Corollary 6 (M/GI/1 queue). Fix service rate µ. For M/GI/1 queues with service quality

stepping down at b = 0, i.e.,

I(P ∗X ,W0) > I(P ∗X ,W1) = I(P ∗X ,W2) = · · · ,

the capacity is constant among all service distributions.

Proof. When the threshold b = 0, let c0 := I(P ∗X ,W0) and c1 := I(P ∗X ,W1). Since the

capacity is given by

C(Φ) = π(0)c0 + (1− π(0))c1 = c1 + π(0)(c0 − c1),

so π(0) completely determines the capacity. On the other hand, by the inverse Z-transform
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relation,

π(0) = Π(0) = 1− ρ.

Thus, the capacity is constant over all P S of service rate µ.

Corollary 7 (M/GI/1 queue). Fix service rate µ. For M/GI/1 queues with service quality

stepping down at b = 1, i.e.,

I(P ∗X ,W0) = I(P ∗X ,W1) > I(P ∗X ,W2) = · · · ,

the capacity is maximized when the service is deterministic. On the other hand, the capacity

is asymptotically minimized by cramming service, i.e., P S(t; ε, δ) asymptotically minimizes

the capacity as ε, δ → 0, where

P S(t; ε, δ) =


1− ε if t = δ

ε if t =
1
µ
−(1−ε)δ
ε

0 otherwise.

Proof. Let c0 := I(P ∗X ,W0), c2 := I(P ∗X ,W2) for simplicity. Then the capacity is given by

C = (π(0) + π(1))c0 + (1− π(0)− π(1))c2.

Since c0 > c2, it is apparent that the capacity is maximized (resp. minimized) when π(0) +

π(1) is maximized (resp. minimized). Also note that

π(0) = 1− ρ = 1− λ

µ
,

π(1) =
Π(z)− π(0)

z

∣∣∣∣
z=0

=

(1−ρ)(1−z)K(z)
K(z)−z − π(0)

z

∣∣∣∣
z=0

=

(1−ρ)(1−z)K(z)
K(z)−z − (1− ρ)

z

∣∣∣∣
z=0

=
(1− ρ)(1−K(z))

K(z)− z

∣∣∣∣
z=0

=
(1− ρ)(1−K(0))

K(0)
.

Since π(0) + π(1) = 1−ρ
K(0)

, the best (resp. the worst) service distribution should minimize
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(resp. maximize) K(0) = k0. Recall the expression of k0,

k0 =

∫ ∞
0

P S(t)e−λtdt.

The same arguments of (3.5) and (3.6) imply that the deterministic service distribution

P S(t) = δµ−1 maximizes the capacity, and

P S(t; ε, δ) =


1− ε if t = δ

ε if t =
1
µ
−(1−ε)δ
ε

0 otherwise

asymptotically minimizes the capacity as ε, δ → 0.

Cor. 7 is also of interest when the number of users is large and each arrival process is

sparse, see Sec. 3.3.

3.3 Multiuser Input:
∑

k GIk/GI/1 Queues

Recall the system model in Sec. 3.1.2. Since K users simultaneously dispatch encoded sym-

bols, each user sees a different queue-length distribution from that for single-user systems;

thus, capacity changes. We characterize the individual and sum capacities for the K-user

scenario in terms of πKk(Q), the stationary queue-length distribution seen by user k’s de-

partures. Note that K, k denote total number of users and a specific kth user, respectively.

Since the superposition process is in general intractable, we obtain asymptotics of capacity

using Poisson approximation when component PPs are independent and sparse.

For a common setup, consider a triangular array of independent, stationary, and renewal

(thus, ergodic) PPs ΦKk, K ∈ Z+, k ∈ [1 : K]. Also suppose each PP has an inter-arrival

distribution PA
Kk with arrival rate λKk, not necessarily identical. Let us also assume second-

moment finiteness of inter-arrival times, which is necessary to prove Lem. 6:

EPAKk [A
2] <∞ for all k ∈ [1 : K]. (3.7)
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3.3.1 Coding Theorem for K-user Channels

Let ΦK be the superposition arrival process of Kth-row components, i.e, ΦK :=
∑K

k=1 ΦKk.

Note that the component PPs are stationary and ergodic.

The next lemma proves the superposition process is stationary and ergodic as well.

Lemma 4. Suppose each ΦKk, k ∈ [1 : K] is independent, stationary, and ergodic. Then,

ΦK is also stationary and ergodic.

Proof. First prove the stationarity. Take an arbitrary bounded Borel set B and let B′ = TτB

be the time-shifted set by τ ∈ R. Consider the counting measure representation; then due

to independence, NK(B) =
∑

kNKk(B) and

NK(B) =
∑
k

NKk(B)
(a)
=
∑
k

NKk(B
′)

(b)
= NK(B′),

where (a) is due to the stationarity of individual PPs and (b) is due to independence of

individual PPs. As τ ∈ R is arbitrary, stationarity is shown.

Next show the ergodicity. Suppose ΦK is not ergodic: then, by Def. 6, there exists a

Z ∈ σ(N ) such that for any φK ∈ Z and τ ∈ R, it holds that TτφK ∈ Z, however,

0 < PK [Z] < 1. As Z is closed under any time-shift operation, we can write for φK ∈ Z,

φK =

(∑
k

φKk

)
∈ Z ⇔

φ′K := TτφK = Tτ
∑
k

φKk =

(∑
k

TτφKk

)
∈ Z ∀τ ∈ R. (3.8)

Now consider PK [Z]. Let Zk be the collection of φKk consisting some φ ∈ Z. As φKk is a

component of φK , TτφKk is also a component of φ′K by (3.8) so that Zk is also closed. Since

each ΦKk is stationary and ergodic, PKk[Zk] is either 0 or 1. However, because 0 < PK [Z] =∏
k PKk[Zk] < 1 by independence, there is a contradiction. Therefore, ΦK is ergodic.

Let Q
(K)
i be the queue-length process seen by the superposed departures. The next lemma

further guarantees that the stationary distribution πK exists and Q
(K)
i is ergodic since ΦK

is stationary and ergodic from Lem. 4.

Lemma 5 (Sec. 2.2 [75]). If the input PP Φ of the queue ·/GI/1 with traffic intensity ρ < 1 is

stationary and ergodic, then the queue-length distribution seen by departures is also stationary

and ergodic. Furthermore, the stationary distribution is independent of the initial state.
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Now let us consider individual ‘seen by departures’ processes. Let Q
(Kk)
i , πKk be the queue-

length process seen by user k’s departures and its stationary distribution. The following

lemma proves the existence of πKk and its ergodicity.

Lemma 6. Suppose (3.7) holds. Then, for each k ∈ [1 : K], the stationary distribution πKk

exists. Furthermore, for any measurable f : Z+ 7→ R+, 1
n

∑n
i=1 f(Q

(Kk)
i ) → EπKk [f(Q)] as

n→∞ almost surely.

Proof. See Appendix B.3.

As before, Lem. 6 allows a simpler capacity expression. Let Cind(ΦKk), Csum(ΦK) be the

kth user’s individual capacity and their sum capacity. The following theorem only describes

per job capacity, but per time capacity is immediate by multiplying by individual and sum

arrival rates, respectively.

Theorem 9.

Cind(ΦKk) = EπKk [I(PX ,WQ)] [bits/sym],

Csum(ΦK) = EπK [I(PX ,WQ)] =
K∑
k=1

wkCind(ΦKk) [bits/sym],

where wk := λKk/
∑

j λKj.

Proof. Since individual {πKk} are stationary and ergodic, the first statement follows.

To show the second statement, notice that

Csum(ΦK) ≤ EπK [I(PX ,WQ)]

holds. In addition, since πK is the weighted average of πKk, i.e., πK(q) =
∑

k wkπKk(q), the

equality holds.

Unlike typical multiple-access settings, it is interesting to note that the per time sum ca-

pacity is simply a sum of per time individual capacities, which means that greedy individuals

do not degrade optimality in sum information rate. This follows since once arrival processes

are fixed, symbol noise levels are also fixed by queue-length. The server processes one symbol

at a time; therefore, adding more (or reducing) information in a user’s codeword does not

increase (or decrease) interference levels.
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3.4 Poisson Approximation

In the previous subsection, we obtained the multiple-access capacity formula for general∑
k GI/GI/1 queues. However, a more explicit expression is unavailable even for an |F|-ary

symmetric channel or an erasure channel, unless the queue is
∑

kM/GI/1. This is because

the superposition of K independent renewal PPs is not necessarily renewal and is renewal if

and only if individual PPs are Poisson [80] (thus, the superposition process is also Poisson).

So the tractability of the superposition process is limited. Although it is intractable, when K

is large and individual PPs are sparse (formally defined in Def. 7 below) we can approximate

the superposition process by a Poisson PP.

Consider a triangular array of i.i.d., stationary, ergodic, and renewal PPs, {ΦKk}, where

K ∈ Z+ and k ∈ [1 : K]. Individual processes are assumed to be sparse as given below.

The superposition process of row PPs is denoted by ΦK :=
∑

k ΦKk with corresponding

probability measure PK . Let NKk(B) be the counting measure corresponding to ΦKk, i.e.,

the number of events of ΦKk(t) in B ∈ B. Also let NK(B) be the number of events of ΦK

in B, so NK(B) =
∑

kNKk(B). Then we can derive that NK(B) converges to the Poisson

distribution of intensity measure λ|B| where | · | is the Lebesgue measure, or equivalently,

ΦK(t) converges to the Poisson process, say Φ∗(t), with probability measure P ∗, under the

sparsity condition. Let N∗ be the counting measure for the Poisson PP, i.e., for any bounded

B ∈ B,

P[N∗(B) = j] =
1

j!
(λ|B|)je−λ|B|.

Definition 7. For a given bounded B ∈ B, the triangular processes are said to be sparse

with sum rate λK :=
∑

k λKk + g1(K,B)
|B| if

λKk :=
P[NKk(B) = 1]

|B|
, (3.9)

g1(K,B) :=
K∑
k=1

∞∑
j=2

jP[NKk(B) = j]→ 0 as K →∞,

g2(K) := max
k∈[1:K]

λKk → 0 as K →∞.

The next lemma shows that ΦK locally converges to Φ∗ on B in total variation sense. The

lemma holds for any bounded B ∈ B, but we focus on a bounded interval B = [a, b]. Proof

is based on so called Poisson approximation and available in various forms, e.g., [77], but we
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give a more detailed proof with explicit convergence speed. Let λ∗K :=
∑

k λKk.

Lemma 7. Fix a bounded B ∈ B of interest and let Φ∗K be Poisson PP with intensity

λ∗K |B|. Suppose individual PPs of the triangular array are sparse with sum rate λK. Then,

NK(B) → N∗K(B) in total variation. Furthermore, the speed of convergence is O(g(K,B)),

where g(K,B) := max{g1(K,B), |B|2g2(K)}.

Proof. See Appendix B.4.

The next corollary is especially useful in the next subsection, where each user sends symbols

on i.i.d. renewal arrivals.

Corollary 8. Further, suppose component PPs in a row of the triangular array are iden-

tically distributed, and λ∗K = λ for all K, i.e., Poisson PPs corresponding to each row are

identical. Then, dTV(NK(B), N∗(B)) → 0 as K → ∞ with speed O(g1(K,B), |B|2K−1}),

where N∗ is the counting measure for the Poisson PP with intensity λ.

3.4.1 Capacity Approximation

We reformulate input processes of the queue as two-sided RMPPs to streamline proofs and

arguments. Recall that the mark space M = R+ and service times are drawn i.i.d. from

P S. Suppose that the RMPPs begin at t = −T for large T > 0 and the queue is initially

empty. Since all randomness of queueing is captured by the RMPP, any queue-state process

is a deterministic function of Φ(t) and initial queue state θ−T . For example, discrete-time

queue state processes, such as queue-length seen by arrivals or departures, can be expressed

as z(i,Φ, θ−T ) for some deterministic function z.

As we have seen previously, the process of queue-length seen by departures {Qi}i∈Z is of

interest. Note that

Qi(Φ) = h(i,Φ, θ−T ) for some deterministic function h.

Consider the case of Cor. 8, where users’ individual arrivals are i.i.d. and corresponding

Poisson sum rate is identically λ∗K = λ for all K. As corresponding Poisson PPs are identi-

cally distributed regardless of row K, row index K for Poisson related quantities is dropped.

Let Q
(K)
i be the queue-length process seen by ith departure of the K-user superposition pro-

cess. Similarly let Q∗i be the corresponding process for the Poisson PP Φ∗(= Φ∗K for all K).

Then, the continuity theorem holds due to the local convergence property above. Here,
TV→
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denotes local convergence of PP on B ∈ B in total variation. For random variables,
TV→ is

the usual total variational convergence.

Lemma 8. For any ε > 0, we can take a large interval B = B(ε) ∈ B that yields

dTV(Q
(K)
k , Q∗i ) ≤ 2ε+O(g(K,B)),

where g(K,B) = max{g1(K,B), |B|2g2(K)}. In other words, Q
(K)
k

TV→ Q∗i .

Proof. See Appendix B.5.

Recall notations that πKk, πK denote the stationary queue-length distributions seen by

individual user’s and superposed departures, respectively. As individual users are symmetric,

πKk are identical and in addition πKk = πK for all k.

Since each arrival has only a few arrivals on B (with high probability), we implicitly

suppose the transmission is repeated many times to achieve block code performance.

Let cmax := supq maxPX I(PX ,Wq), which is cmax ≤ log |X | clearly. The final approximation

follows.

Theorem 10. Let C(Φ∗) be the single-user capacity of M/GI/1 queue with arrival rate λ,

derived in Thm. 8. Consider K users with sparse individual PPs ΦKk. Then, under su-

perposition, the sum capacity Csum(ΦK) at arrival rate λ is approximated by the single-user

capacity C(Φ∗) as

|Csum(ΦK)− C(Φ∗)| ≤ cmax (4ε+O(g(K,B))) [bits/sym],

|Csum(ΦK)− C(Φ∗)| ≤ g1(K,B)

|B|
cmax + λcmax (4ε+O(g(K,B))) [bits/time].

Proof. As πK = πKk for all k, individuals can send information at rate

C(ΦKk) =
∑
q

πKk(q)I(PX ,Wq) [bits/sym],

the sum rate is also C(ΦKk) in bits per symbol sense. On the other hand, the stationary

distribution πK differs from the stationary distribution for Poisson, say π∗, at most 2ε +
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O(g(K,B)) in total variation. This implies

|Csum(ΦK)− C(Φ∗)| =

∣∣∣∣∣
∞∑
q=0

(π∗(q)− πK(q))I(PX ,Wq)

∣∣∣∣∣
≤ cmax

∣∣∣∣∣
∞∑
q=0

(π∗(q)− πK(q))

∣∣∣∣∣
≤ cmax

∞∑
q=0

|π∗(q)− πK(q)| = cmax · 2dTV(Q
(K)
k , Q∗i )

≤ cmax(4ε+O(g(K,B))).

To obtain the second bound, recall that actual sum arrival rate of the superposition process

deviates from λ by g1(k,B)
|B| . Therefore,

|Csum(ΦK)− C(Φ∗)|

=
∣∣∣ (λ+

g1(K,B)

|B|

)∑
q

πK(q)I(PX ,Wq)− λ
∑
q

π∗(q)I(PX ,Wq)
∣∣∣

≤ g1(K,B)

|B|
cmax + λcmax · 2dTV(Q

(K)
k , Q∗i )

≤ g1(K,B)

|B|
cmax + λcmax (4ε+O(g(K,B))) [bits/time]

Thm. 10 only considers the sum capacity; however, it is clear from the proof that individual

per symbol capacity remains unchanged, and per time capacity is properly scaled, i.e.,∣∣∣∣Cind(ΦKk)−
C(Φ∗)

K

∣∣∣∣ ≤ g1(K,B)

K|B|
cmax +

λ

K
cmax (4ε+O(g(K,B))) [bits/time].

Therefore, the best and worst server results in Cor. 7 also apply to the superposition

arrivals asymptotically as K →∞.

Corollary 9. Suppose the conditions in Sec. 3.2.2 hold. Then, for the K-user setting with

sparse individuals, the results in Cor. 7 still hold asymptotically; that is, when the service

quality steps down at b = 1, the sum and individual capacities are maximized when the service

is deterministic. On the other hand, the sum and individual capacities are asymptotically

minimized by cramming service.
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3.5 Chapter Summary

In this chapter, we extend the single-user results in Chap. 2 to a multiaccess setting. We

first obtain the single-user capacity for continuous-time queues in a single letter form. Also

similarly to the single-user case, stationarity and ergodicity of queueing process provide the

multiuser capacity expression. Unlike usual multiuser or multiaccess problems, information

rate in codewords does not change others’ performance. This is because others’ jobs affect

channels only through arrival processes, but not through information symbols on them.

Furthermore, when the number of users is large and each is sparse, the individual and sum

capacities are asymptotically close to the single-user capacity of M/GI/1 queues, and thus

the best (resp. the worst) service in the single-user setup is also the best (resp. the worst)

in multiuser setup.
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Chapter 4

Beliefs in Decision-Making Cascades

Team decision-making typically involves individual decisions that are influenced by private

observations and the opinions of the rest of the team. The social learning setting is one

such context where decisions of individual agents are influenced by preceding agents in the

team [26, 27]. We consider the setting in which individual agents are selfish and aim to

minimize their perceived Bayes risk, according to their beliefs as reinforced by the decisions

of preceding agents.

4.1 Problem Description

Consider an N -agent cascading decision-making problem, as illustrated in Fig. 4.1. The un-

derlying hypothesis, H ∈ {0, 1}, is a binary signal with prior P [H = 0] = p0 and P [H = 1] =

1− p0. There are N agents that sequentially detect the state in a predetermined order. The

nth agent has a private signal Yn generated according to the likelihood fYn|H , which is not

necessarily identical for all n. Let the decision made by the nth agent be Ĥn. In addition

to the private signal, the nth agent also observes the decisions made by preceding agents,

{Ĥ1, . . . , Ĥn−1}, to make a decision Ĥn.

However, the nth agent believes the prior probability of the null hypothesis is qn ∈ (0, 1)

as against the true prior probability p0. We call this the belief of the agent in order to

distinguish it from the prior. Agent n is also aware of her own likelihood fYn|H that defines

her private signal. However, she also perceives the likelihoods and beliefs of the other agents

to be the same as hers, i.e., she thinks fYj |H = fYn|H , qj = qn for all j 6= n, even though they

could be different and unknown to her. We assume that the likelihood ratio of each agent is
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Figure 4.1: A cascading decision-making model with N agents.

an increasing function in y,1 i.e., for all agents

Ln(y) :=
fYn|H(y|1)

fYn|H(y|0)

is an increasing function of y.

Several numerical examples are given for private signals defined with independent additive

Gaussian noise. The desired monotonicity also holds for many non-additive models, such

as exponential distribution with mean H−1, H ∈ R+, binomial distribution with success

probability H ∈ [0, 1], and Poisson distribution with rate H ∈ R+ are members of such

family, where H could take two values.

Our performance analysis focuses on the last agent (Nth agent, Norah) and her decision

ĤN . Upon observing her private signal YN and the (N − 1) preceding decisions, she de-

termines her decision rule. The relative importance of correct decisions and errors can be

abstracted as a cost function. For simplicity, we assume correct decisions have zero cost and

use the shorthand notations c10 = c(1, 0) as the cost for false alarm or Type I error (choosing

Ĥ = 1 when H = 0), and c01 = c(0, 1) as the cost for missed detection or Type II error

(choosing Ĥ = 0 when H = 1). In addition, we assume that agents have the same costs;

they are a team in the sense of Radner [81]. Then the Bayes risk is

RN = c10p0pĤN |H(1|0) + c01(1− p0)pĤN |H(0|1). (4.1)

As Ĥn depends on the previous decisions, the computation of (4.1) also depends on

1This property is particularly useful in uniformly most powerful (UMP) tests.
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(Ĥ1, . . . , ĤN−1), and the Bayes risk can be expanded as

RN =
∑

ĥ1,...,ĥN−1

c10p0pĤN ,ĤN−1,...,Ĥ1|H(1, ĥN−1, . . . , ĥ1|0)

+ c01(1− p0)pĤN ,ĤN−1,...,Ĥ1|H(0, ĥN−1, . . . , ĥ1|1). (4.2)

We determine the optimal set of beliefs of the agents {q∗n}Nn=1 that minimize (4.2).

In our model, the nth agent minimizes her perceived Bayes risk, which is the Bayes risk

with prior probability p0 replaced by her belief qn. In other words, for all n = 1, . . . , N ,

the nth agent adopts the decision rule that minimizes her perceived Bayes risk Rn, and her

decision is revealed to other agents as a public signal. The decisions {Ĥ1, . . . , Ĥn−1} of the

earlier-acting agents reveal information about H and thus should be incorporated into the

decision-making process by agent n. As mentioned earlier, since she believes qn is the true

prior, she aggregates information under the assumption that q1 = q2 = · · · = qn.

It is important to note that every agent is selfish and rational; the agents do not adjust

their decision rules for Norah’s sake. The novelty in the model (and hence in the conclusions)

comes from agent n having the limitation of using a private initial belief qn in place of the

true prior probability p0.

4.1.1 Prospect Theory

Let us also formally introduce the Prelec reweighting function from cumulative prospect-

theoretic models of human behavior. It spans a family of open- and closed-minded beliefs

(will be clarified later), and thus the optimal beliefs that emerge in the following sections

could be approximated by a function in the Prelec family.

Definition 8 ( [55]). For α, β > 0, the Prelec reweighting function w : [0, 1] 7→ [0, 1] is

w(p;α, β) = exp(−β(− log p)α).

The function w(p;α, β) is:

1. strictly increasing,

2. has a unique fixed point w(p;α, β) = p at p∗ = exp(− exp(log β/(1− α))), and

3. spans a class of open-minded beliefs when α < 1, i.e., overweights (underweights) small

(high) probability, and vice versa when α > 1.
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A more generic form, termed composite Prelec weighting function, has been defined in [82].

4.1.2 Notations

Throughout the chapter, we use f for continuous probability density functions and p for

discrete probability mass functions. All logarithms are natural logarithms. We use N (µ, σ2)

to denote a Gaussian distribution with mean µ and variance σ2, and φ(x;µ, σ2) to denote

its density function, i.e.,

φ(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

Also in the case of the standard Gaussian, φ(x) := φ(x; 0, 1) for simplicity. Q(x) is defined

as the complementary cumulative distribution function of the standard Gaussian,

Q(x) =

∫ ∞
x

φ(t)dt.

4.2 Belief Update and Sequential Decision-Making

Our model assumes unbounded private signals. Thus, unlike in [28,29], it is always possible

that a subsequent agent may not follow previous decisions; that is, herding happens with

arbitrarily low probability. We now discuss using both a decision history and private signals

for Bayesian binary hypothesis testing. The decision rule can be interpreted as each agent

updating her posterior belief based on the decision history and then applying a likelihood

ratio test to her private signal.

4.2.1 Alexis, the First Agent

Since Alexis has no prior decision history, she follows usual binary hypothesis testing. She

uses the following likelihood ratio test with her initial belief q1, with ties broken arbitrarily:

L1(y1) =
fY1|H(y1|1)

fY1|H(y1|0)

Ĥ1=1

≷
Ĥ1=0

c10q1

c01(1− q1)
. (4.3)
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Since we assume the likelihood ratio is increasing in y1, the rule simplifies to comparing the

private signal with an appropriate decision threshold:

y1

Ĥ1=1

≷
Ĥ1=0

λ1(q1), (4.4)

where λi(q) denotes the decision threshold λ that satisfies

Li(λ) =
fYi|H(λ|1)

fYi|H(λ|0)
=

c10q

c01(1− q)
. (4.5)

4.2.2 Blake, the Second Agent

Blake observes Alexis’s decision Ĥ1 = ĥ1 and evaluates the likelihood ratio for (Ĥ1, Y2), using

his initial belief q2 as

fY2,Ĥ1|H(y2, ĥ1|1)

fY2,Ĥ1|H(y2, ĥ1|0)

Ĥ2=1

≷
Ĥ2=0

c10q2

c01(1− q2)
. (4.6)

The private signals Y1 and Y2 are independently conditioned on H, so Ĥ1 and Y2 are also

independently conditioned on H. Hence, the left side of (4.6) is

fY2,Ĥ1|H(y2, ĥ1|h) = fY2|H(y2|h)pĤ1|H(ĥ1|h).

So we can rewrite (4.6) as2

fY2|H(y2|1)

fY2|H(y2|0)

Ĥ2=1

≷
Ĥ2=0

c10q2

c01(1− q2)

pĤ1|H(ĥ1|0)[2]

pĤ1|H(ĥ1|1)[2]

. (4.7)

The likelihood ratio test (4.7) can be interpreted as Blake updating his initial belief upon

observing Alexis’s decision Ĥ1. Combined with q2, his initial belief is updated according to

2The subscript [2] in the term pĤ1|H(ĥ1|h)[2] indicates the value of pĤ1|H(ĥ1|h) that Blake (the second

agent) thinks. We specify this because Blake does not know Alexis’s belief q1. Thus, he interprets her decision

based on his belief q2. The value is different from the true value of pĤ1|H(ĥ1|h) = pĤ1|H(ĥ1|h)[1]. Of course,

it will also be different from what Chuck, the third agent, perceives, which is denoted by pĤ1|H(ĥ1|h)[3].

This will be explained in the next subsection.
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pĤ1|H(ĥ1|h)[2], from q2 to qĥ12 :

qĥ12

1− qĥ12

=
q2

1− q2

pĤ1|H(ĥ1|0)[2]

pĤ1|H(ĥ1|1)[2]

. (4.8)

The posterior belief is

qĥ12 =
q2pĤ1|H(ĥ1|0)[2]

q2pĤ1|H(ĥ1|0)[2] + (1− q2)pĤ1|H(ĥ1|1)[2]

=
pĤ1,H

(ĥ1, 0)[2]

pĤ1,H
(ĥ1, 0)[2] + pĤ1,H

(ĥ1, 1)[2]

= pH|Ĥ1
(0|ĥ1)[2].

(4.9)

It should be noted that the true pĤ1|H(ĥ1|h) is given by

pĤ1|H(0|h) = pĤ1|H(0|h)[1] = P [Y1 ≤ λ1(q1)|H = h]

=

∫ λ1(q1)

−∞
fY1|H(y|h)dy,

pĤ1|H(1|h) =

∫ ∞
λ1(q1)

fY1|H(y|h)dy.

But Blake evaluates Alexis’s decision Ĥ1 as if it were made based on q2 and the likelihood

fY2|H(·), as against q1, fY1|H(·) respectively. Thus the probability pĤ1|H(ĥ1|h) is computed

based on λ2(q2), instead of λ1(q2):

pĤ1|H(0|h)[2] =

∫ λ2(q2)

−∞
fY2|H(y|h)dy, (4.10a)

pĤ1|H(1|h)[2] =

∫ ∞
λ2(q2)

fY2|H(y|h)dy. (4.10b)

An interesting observation is that Alexis’s belief q1 does not affect Blake’s belief update

as observed in (4.9) and (4.10). That is, for any belief q1 that Alexis might hold, Blake,

who does not know this belief, presumes that the conditional probabilities are computed

according to (4.10) and updates his belief as in (4.9) which depends only on Blake’s initial

belief and Alexis’s decision.

However, Alexis’s initial belief implicitly affects Blake’s performance since her biased belief
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changes the resulting decisions whose probabilities are embedded in the probability of Blake’s

decision:

pĤ2|H(ĥ2|h) =
∑

ĥ1∈{0,1}

pĤ2,Ĥ1|H(ĥ2, ĥ1|h)

= pĤ2|Ĥ1,H
(ĥ2|0, h)[2] × pĤ1|H(0|h)[1]

+ pĤ2|Ĥ1,H
(ĥ2|1, h)[2] × pĤ1|H(1|h)[1].

Thus, Alexis’s biased belief changes the probability of not only her decision but also of

Blake’s decision.

4.2.3 Chuck, the Third Agent

Chuck’s detection process is similar to Blake’s. He observes both Alexis’s and Blake’s deci-

sions and also updates his initial belief q3 like in (4.8):

qĥ1,ĥ23

1− qĥ1,ĥ23

=
q3

1− q3

pĤ2,Ĥ1|H(ĥ2, ĥ1|0)[3]

pĤ2,Ĥ1|H(ĥ2, ĥ1|1)[3]

=

(
q3

1− q3

pĤ1|H(ĥ1|0)[3]

pĤ1|H(ĥ1|1)[3]

)
pĤ2|Ĥ1,H

(ĥ2|ĥ1, 0)[3]

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 1)[3]

.

(4.11)

Note that Ĥ1 and Ĥ2 are not conditionally independent given H as Blake’s decision Ĥ2

depends on Alexis’s decision Ĥ1.

Chuck’s belief update can be understood as a two-step process. The first step is to update

his belief according to Alexis’s decision:

qĥ13

1− qĥ13

=
q3

1− q3

pĤ1|H(ĥ1|0)[3]

pĤ1|H(ĥ1|1)[3]

. (4.12)

The second step is to update it from qĥ13 based on Blake’s decision:

qĥ1,ĥ23

1− qĥ1,ĥ23

=
qĥ13

1− qĥ13

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 0)[3]

pĤ2|Ĥ1,H
(ĥ2|ĥ1, 1)[3]

. (4.13)

Again, Chuck is aware of neither Alexis’s nor Blake’s initial beliefs or likelihoods. Thus,
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Chuck computes all probabilities based on his own belief q3 and likelihood fY3|H , which is

indicated by the subscript [3] in (4.12) and (4.13).

Details of computations of (4.12) and (4.13) are as follows:

pĤ1|H(0|h)[3] =

∫ λ3(q3)

−∞
fY3|H(y|h)dy,

pĤ1|H(1|h)[3] =

∫ ∞
λ3(q3)

fY3|H(y|h)dy.

Similar to Blake (4.8), Chuck computes qĥ13 for Ĥ1 = 0 and Ĥ1 = 1 respectively as:

q0
3 =

q3

q3 + (1− q3)
∫ λ3(q3)
−∞ fY3|H(y|1)dy∫ λ3(q3)
−∞ fY3|H(y|0)dy

, (4.14a)

q1
3 =

q3

q3 + (1− q3)
∫∞
λ3(q3)

fY3|H(y|1)dy∫∞
λ3(q3)

fY3|H(y|0)dy

. (4.14b)

Then,

pĤ2|Ĥ1,H
(0|ĥ1, h)[3] =

∫ λ3(q
ĥ1
3 )

−∞
fY3|H(y|h)dy, (4.15a)

pĤ2|Ĥ1,H
(1|ĥ1, h)[3] =

∫ ∞
λ3(q

ĥ1
3 )

fY3|H(y|h)dy. (4.15b)

Even though the value of ĥ1 does not appear in (4.15), it is implicit in qĥ13 and affects the

computation results. Chuck’s posterior belief qĥ1,ĥ23 is obtained by substituting (4.14) and

(4.15) in (4.13).

4.2.4 Norah, the Nth Agent

Norah, the Nth agent, observes YN and {Ĥ1, . . . , ĤN−1}. Paralleling the arguments in the

preceding subsections, her initial belief update is a function of qN as well as {Ĥ1, . . . , ĤN−1},
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but not of {q1, . . . , qN−1}. Generalizing (4.11), we have

q
ĥ1,...ĥN−1

N

1− qĥ1,...ĥN−1

N

=
qN

1− qN
pĤ1|H(ĥ1|0)[N ]

pĤ1|H(ĥ1|1)[N ]

×

N−1∏
n=2

pĤn|Ĥn−1,...,Ĥ1,H
(ĥn|ĥn−1, . . . , ĥ1, 0)[N ]

pĤn|Ĥn−1,...,Ĥ1,H
(ĥn|ĥn−1, . . . , ĥ1, 1)[N ]

.

(4.16)

Combining all observations, we obtain the following theorem. Define the initial belief

update function for Nth agent, UN as

q
ĥ1...ĥN−1

N = UN(qN , ĥ1, ĥ2, . . . , ĥN−1;N).

Theorem 11. The function Un, n ≤ N yielding the posterior belief of N th agent has the

following recurrence relation:

• For n = 1, U1(q;N) = q.

• For n > 1,

Un(q, ĥ1, . . . , ĥn−2, 0;N)

=
q̃

q̃ + (1− q̃)
∫ λN (q̃)
−∞ fYN |H(y|1)dy∫ λN (q̃)
−∞ fYN |H(y|0)dy

, (4.17a)

Un(q,N, ĥ1, . . . , ĥn−2, 1;N)

=
q̃

q̃ + (1− q̃)
∫∞
λN (q̃) fYN |H(y|1)dy∫∞
λN (q̃) fYN |H(y|0)dy

, (4.17b)

where q̃ = Un−1(q, ĥ1, . . . , ĥn−2;N).

Note that capital N in (17a) and (17b) indicate the recursive updates are computed from

the value that the Nth agent thinks.

Fig. 4.2 depicts the function U4(q4, ĥ1, ĥ2, ĥ3; 4) for N = 4 for eight possible combinations

of Alexis’s, Blake’s, and Chuck’s decisions (ĥ1, ĥ2, ĥ3). An interesting property of UN is

that the posterior belief is much more dependent on the most recent decision ĥN−1 than

on the earlier decisions (ĥ1, . . . , ĥN−2). In this sense, we can interpret that recent decisions

give more information than earlier decisions. This is especially the case when the (N − 1)th

agent has not followed precedent. This is because the Nth agent rationally concludes that the
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Figure 4.2: The function U4(q4, ĥ1, ĥ2, ĥ3; 4)—posterior belief of the fourth agent

(qĥ1,ĥ2,ĥ34 )—for each possible combination of Alexis’s, Blake’s, and Chuck’s decisions

[ĥ1, ĥ2, ĥ3] when c10 = c01 = 1 and private signals are distorted by additive Gaussian noise
with two noise levels. The posterior belief is mostly dependent on Chuck’s decision; the top
four curves are for ĥ3 = 0 and the bottom four curves are for ĥ3 = 1.

58



(N−1)th agent observed strong evidence to justify a deviation from precedent. For example,

if the decision history of the first five agents is (0, 0, 0, 0, 1) then the sixth agent takes the

last decision 1 seriously even though the first four agents chose 0. A reversal of an arbitrarily

long precedent sequence may occur because we assume unbounded private signals; if private

signals are bounded [28,29], then the influence of the precedent can reach a point where agents

cannot receive a signal strong enough to justify a decision running counter to precedent.

Another interesting point is that smaller noise variance changes beliefs more. It is clear from

(4.17), but also from common sense, that when the variance is smaller, the Nth agent trusts

and is more inclined towards previous decisions. Note that even though the prior updates of

Norah in Fig. 4.2 do not depend on {q1, . . . , qN−1} and their corresponding likelihoods, the

probability of prior decisions depends on them and, implicitly, so does Norah’s decision.

As we can see in Fig. 4.2, the dominant previous decision for agent N is the decision of

agent (N − 1). We can prove that observing the (N − 1)th agent’s decision 0 (or decision

1), the Nth agent’s posterior belief becomes larger (or smaller), which in turn implies that

the decision threshold of Nth agent becomes larger (or smaller) so that she is more likely to

declare decision 0 (or 1) as well.

Theorem 12. Suppose that noises are independent and additive, and have continuous den-

sities. Fix some prior decisions {ĥ1, . . . , ĥN−2} and let q̃N , q̃
0
N , q̃

1
N denote the posterior beliefs

of the N th agent given the (N − 2) decisions only, the (N − 2) decisions with ĥN−1 = 0, and

the (N − 2) decisions with ĥN−1 = 1. Then,

q̃1
N < q̃N < q̃0

N .

Proof. We know that q̃N , q̃
0
N , q̃

1
N differ only by the last multiplicative term of (4.16). Since

q
1−q is monotone increasing, the statement is equivalent to showing:

∫∞
λN (q̃N )

fYN |H(y|0)dy∫∞
λN (q̃N )

fYN |H(y|1)dy
< 1 <

∫ λN (q̃N )

−∞ fYN |H(y|0)dy∫ λN (q̃N )

−∞ fYN |H(y|1)dy
.

Since the noise is independent and additive, fYN |H(y|1) = fYN |H(y − 1|0) so the term on the
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left side ∫∞
λN (q̃N )

fYN |H(y|0)dy∫∞
λN (q̃N )

fYN |H(y|1)dy
=

∫∞
λn(q̃N )

fYN |H(y|0)dy∫∞
λN (q̃N )−1

fYN |H(y|0)dy

=

∫∞
λN (q̃N )

fYN |H(y|0)dy∫ λN (q̃N )

λN (q̃N )−1
fYN |H(y|0)dy +

∫∞
λN (q̃N )

fYN |H(y|0)dy
< 1.

The right inequality can be shown similarly.

Considering the complicated relationships that individual decisions have on the evolution

of initial beliefs, it is also important to verify if the belief evolution preserves the ordering,

given the same set of subsequent decisions. That is, given two beliefs qL < qR at some point

of the recursive update and the same sequence of following d decisions, then it is important to

characterize the likelihoods for which the the ordering is preserved in the resulting posterior

beliefs, given the sequence of decisions, which is described in the following theorem.

Theorem 13. Suppose that noise is independent and additive, and has a continuous density.

Consider two beliefs qL < qR. Then, for any given later-acting decisions d, the posterior belief

satisfies qdL < qdR if and only if

g1(q) :=
q

1− q

∫ λN (q)

−∞ fYN |H(y|0)dy∫ λN (q)

−∞ fYN |H(y|1)dy
, (4.18)

g2(q) :=
q

1− q

∫∞
λN (q)

fYN |H(y|0)dy∫∞
λN (q)

fYN |H(y|1)dy
(4.19)

are both increasing in q.

Proof. Note that once observing decision 0, beliefs are updated as

q0
L

1− q0
L

=
qL

1− qL

∫ λN (qL)

−∞ fYN |H(y|0)dy∫ λN (qL)

−∞ fYN |H(y|1)dy
,

q0
R

1− q0
R

=
qR

1− qR

∫ λN (qR)

−∞ fYN |H(y|0)dy∫ λN (qR)

−∞ fYN |H(y|1)dy
,

and so if (4.18) holds, q0
L < q0

R. Similarly, (4.19) can be shown by updating after decision

1.
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Let us state some properties of Mills ratio [83, 84], which is about Gaussian distribution,

and we will see that g1(q), g2(q) are both increasing if likelihood is Gaussian.

Lemma 9 ( [84]). Define η(x) := φ(x)/Q(x), the inverse of Mills ratio. Then, for any

x ∈ R, it is true that 0 < η′(x) < 1 and η′′(x) > 0.

Corollary 10. Consider a Gaussian likelihood, i.e., YN = H+ZN , where ZN are independent

and identically drawn from N (0, σ2), for some σ2 > 0. Then g1(q), g2(q) are both increasing

in q.

Proof. Let us consider g2(q) first. For the binary hypothesis test with Gaussian noise, we

know that the decision threshold for the likelihood ratio test is given by

λN(q) =
1

2
+ σ2 log

(
c10q

c01(1− q)

)
.

Then, we have

g2(q) =
q

1− q

Q
(
λN (q)
σ

)
Q
(
λN (q)−1

σ

) .
Letting x := log c10q

c01(1−q) , it is sufficient to show that

g̃(x) := log

(
c10

c01

g2(q)

)
= x+ log

(
Q
(
σx+ 1

2σ

))
− log

(
Q
(
σx− 1

2σ

))
,

is increasing in x since c10, c01 are positive constants, log(·) is a monotonically increasing

function, and x is a strictly increasing function of q.

The first derivative of g̃ is given by

g̃′(x) = 1− ση
(
σx+ 1

2σ

)
+ ση

(
σx− 1

2σ

)
. (4.20)

Since η(·) is a continuous function, using the mean value theorem, there exists y in(
σx− 1

2σ
, σx+ 1

2σ

)
, such that

ση
(
σx+ 1

2σ

)
− ση

(
σx− 1

2σ

)
= ση′(y)

1

σ
= η′(y). (4.21)
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From the first property of Lem. 9, 0 < η′(y) < 1, we have

η
(
σx+ 1

2σ

)
− η

(
σx− 1

2σ

)
< 1.

Thus, from (4.20), it follows that g̃′(x) > 0 for all x, indicating that g̃(·) is an increasing

function of x. This in turn implies that g2(·) is also an increasing function.

To prove the result for g1, it is sufficient to observe that by the symmetry of error proba-

bilities:

g1(q) =
1

g2(1− q)
.

4.3 Optimal Belief

We described the initial belief evolution and decision-making model in Sec. 4.2. In this

section, we investigate the set of initial beliefs that minimize the Bayes risk. We consider

the case of two agents for analytical tractability although the broad nature of the arguments

extends to multi-agent systems. Note that the Bayes risk of the system with N = 2 is the

same as Blake’s Bayes risk because his decision is adopted as the final decision.

Let us recapitulate the computation of Blake’s Bayes risk. Alexis chooses her decision

threshold as λ1 := λ1(q1). Her probabilities of error are given by

P I
e,1 = pĤ1|H(1|0) =

∫ ∞
λ1

fY1|H(y|0)dy,

P II
e,1 = pĤ1|H(0|1) =

∫ λ1

−∞
fY1|H(y|1)dy.

Blake however presumes Alexis uses the decision threshold λ1,[2] := λ2(q2) and computes

her probabilities of error accordingly3:

P I
e,1,[2] = pĤ1|H(1|0)[2] =

∫ ∞
λ1,[2]

fY2|H(y|0)dy,

P II
e,1,[2] = pĤ1|H(0|1)[2] =

∫ λ1,[2]

−∞
fY2|H(y|1)dy.

3Recall that the subscript [2] denotes the quantity ‘seen by’ Blake.
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When Alexis decides Ĥ1 = 0, Blake updates his belief q2 to the posterior q0
2:

q0
2

1− q0
2

=
q2

1− q2

1− P I
e,1,[2]

P II
e,1,[2]

=⇒ q0
2 =

q2(1− P I
e,1,[2])

q2(1− P I
e,1,[2]) + (1− q2)P II

e,1,[2]

,

(4.22)

his decision threshold is λ0
2 := λ2(q0

2), and the probabilities of error are

P I0
e,2 = pĤ2|Ĥ1,H

(1|0, 0) =

∫ ∞
λ02

fY2|H(y|0)dy,

P II0
e,2 = pĤ2|Ĥ1,H

(0|0, 1) =

∫ λ02

−∞
fY2|H(y|1)dy.

Likewise, when Alexis decides Ĥ1 = 1, Blake updates his belief q2 to the posterior q1
2:

q1
2

1− q1
2

=
q2

1− q2

P I
e,1,[2]

1− P II
e,1,[2]

=⇒ q1
2 =

q2P
I
e,1,[2]

q2P I
e,1,[2] + (1− q2)(1− P II

e,1,[2])
,

(4.23)

his decision threshold is λ1
2 := λ2(q1

2), and the probabilities of error are

P I1
e,2 = pĤ2|Ĥ1,H

(1|1, 0) =

∫ ∞
λ12

fY2|H(y|0)dy,

P II1
e,2 = pĤ2|Ĥ1,H

(0|1, 1) =

∫ λ12

−∞
fY2|H(y|1)dy.

Now we compute the system’s Bayes risk (or Blake’s Bayes risk) R2:

R2 = c10pĤ2,H
(1, 0) + c01pĤ2,H

(0, 1)

= c10

∑
ĥ1∈{0,1}

pĤ2|Ĥ1,H
(1|ĥ1, 0)pĤ1|H(ĥ1|0)pH(0)

+ c01

∑
ĥ1∈{0,1}

pĤ2|Ĥ1,H
(0|ĥ1, 1)pĤ1|H(ĥ1|1)pH(1)

= c10

[
P I0
e,2(1− P I

e,1) + P I1
e,2P

I
e,1

]
p0

+ c01

[
P II0
e,2P

II
e,1 + P II1

e,2 (1− P II
e,1)
]

(1− p0). (4.24)
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Note that the Bayes risk R2 in (4.24) is a function of q1 and q2. One might think that R2

is minimum at q1 = q2 = p0 as Alexis makes the best decision for the true prior and Blake

does not misunderstand her decision. Surprisingly, however, this turns out to be untrue. We

prove this by studying Alexis’s optimal belief q∗1 that minimizes R2.

Theorem 14. Alexis’s and Blake’s optimal beliefs q∗1, q
∗
2 that minimize R2 satisfy

q∗1
1− q∗1

=
p0(P I1

e,2 − P I0
e,2)

(1− p0)(P II0
e,2 − P II1

e,2 )
. (4.25)

Before proceeding to the proof, note that error probability terms in the right-side are

dependent on q2, but not on q1. Furthermore, the value of (P I1
e,2 − P I0

e,2)/(P II0
e,2 − P II1

e,2 ) is

generally not 1, i.e., in general q1 = q2 = p0 is not the optimal belief. For example, for the

additive Gaussian noise model considered in the next section, the ratio is not equal to 1

except when p0 = c01/(c10 + c01).

Proof of Thm. 14. Let us consider the first derivative of (4.24) with respect to q1:

∂R2

∂q1

= c10p0(P I1
e,2 − P I0

e,2)
∂P I

e,1

∂q1

+ c01(1− p0)(P II0
e,2 − P II1

e,2 )
∂P II

e,1

∂q1

.

We want to find q1 that minimizes R2, i.e., q1 makes the first derivative zero. Using

dP I
e,1

dq1

=
dP I

e,1

dλ1

dλ1

dq1

= −fY1|H(λ1|0)
dλ1

dq1

,

dP II
e,1

dq1

=
dP II

e,1

dλ1

dλ1

dq1

= fY1|H(λ1|1)
dλ1

dq1

;

this occurs when

c10p0(P I1
e,2 − P I0

e,2)fY1|H(λ1|0)

= c01(1− p0)(P II0
e,2 − P II1

e,2 )fY1|H(λ1|1)

⇔
fY1|H(λ1|1)

fY1|H(λ1|0)
=

c10p0(P I1
e,2 − P I0

e,2)

c01(1− p0)(P II0
e,2 − P II1

e,2 )
. (4.26)
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Figure 4.3: The Bayes risk for q1, q2 ∈ (0, 1) with p0 = 0.3, c10 = c01 = 1, and additive
standard Gaussian noise. The pair of optimal beliefs (N) yields R2 = 0.2186, while the true
prior (•) yields R2 = 0.2214.

Note that λ1 = λ1(q1) is the solution to (4.4),

fY1|H(λ1|1)

fY1|H(λ1|0)
=

c10q1

c01(1− q1)
. (4.27)

Equating (4.26) and (4.27) completes the proof.

The theorem considers general continuous likelihoods {fYn|H} with the monotonicity as-

sumption on λ(q). It is interesting to evaluate the optimal beliefs in the case of Gaussian

likelihoods (i.e., additive Gaussian noise) and obtain insights into optimality in the sequential

decision-making problem.

4.4 Gaussian Likelihoods

We now focus on Gaussian likelihoods and study their optimal beliefs in this section. Suppose

the nth agent receives the signal Yn = H+Zn, where Zn is an independent additive Gaussian

noise with zero mean and variance σ2
n > 0. Thus, the received signal probability densities
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for H = h are

fYn|H(yn|h) = φ(yn;h, σ2
n).

For a belief qn, the decision threshold is then determined by the likelihood ratio test,

Ln(yn) =
fYn|H(yn|1)

fYn|H(yn|0)

Ĥ1=1

≷
Ĥ1=0

c10qn
c01(1− qn)

,

that simplifies to the following simple threshold condition for Gaussian likelihoods:

yn
Ĥ1=1

≷
Ĥ1=0

λn(qn) =
1

2
+ σ2

n log

(
c10qn

c01(1− qn)

)
. (4.28)

Here the index n represents the nth agent in the system, as the belief and variance of the

agent varies along the chain.

Using the recursive update in Sec. 4.2 and decision threshold (4.28), it is possible to obtain

the Bayes risk of Blake (i.e., N = 2) for given beliefs q1, q2. Fig. 4.3 depicts Blake’s Bayes risk

for q1, q2 ∈ (0, 1), and explicitly shows that knowing true prior probability is not optimal.

The social learning problem with Bayes costs c10 = c01 = 1, prior p0 = 0.3, and additive

Gaussian noise with zero mean and unit variance results in a Bayes risk that is minimum

when Alexis’s belief is 0.38 and Blake’s belief is 0.23 (triangle), as shown in the figure where

it is also compared to the true prior (circle).

Figs. 4.4 and 4.5 show the trend of optimal belief pair that minimizes the last agent’s

Bayes risk, when all agents have the same noise levels for the case of two and three agents

respectively. We can observe several common characteristics. First, the non-terminal agents

(i.e., Alexis for N = 2 and Alexis and Blake for N = 3) overweight their beliefs if p0 is small

and underweight it if p0 is large. We call this open-minded behavior as it enhances less likely

events. Second, the last agent (i.e., Blake for N = 2 and Chuck for N = 3) underweights the

belief if p0 is small and overweights it if p0 is large, implicitly compensating for the biases of

the preceding agents. Such behavior is referred to as being closed-minded as it represents a

cautious outlook to the decision-making problem. Lastly, there is a unique, non-trivial prior,

p0 ∈ (0, 1), where all agents’ optimal beliefs are identical to the true prior.

However, the case of nonidentical noise variances of agents results in a very different

behavior of optimal beliefs, especially when the last agent has smaller noise. The optimal

beliefs for N = 2 and the case of the preceding agent having smaller noise, and that of
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Figure 4.4: The trend of the optimal beliefs for N = 2 (Alexis, Blake). Z1, Z2 are standard
Gaussian. Top panel: c10 = c01 = 1. Bottom panel: c10 = 1, c10 = 3.
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Figure 4.5: The trend of the optimal beliefs for N = 3 (Alexis, Blake, and Chuck).
Z1, Z2, Z3 are standard Gaussian. Top panel: c10 = c01 = 1. Bottom panel: c10 = 1, c10 = 3.
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Figure 4.7: Optimal beliefs when the later-acting agent has smaller noise, where σ2
1 = 1

and σ2
2 = 0.25.
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the last agent having smaller noise are shown in Figs. 4.6 and 4.7, respectively. As can be

observed, the optimal belief curves are markedly different when the last agent has smaller

noise, and we now derive some analytical properties of q∗1, q
∗
2.

Theorem 15. For any σ2
1 and σ2

2, q∗1 and q∗2 satisfy:

1. for p0 ∈ (0, 1), q∗1 ≤ p0 if and only if q∗2 ≥ c01
c01+c10

, with equality for q∗2 = c01
c01+c10

.

2. p0 = q∗1 = q∗2 if and only if p0 ∈
{

0, c01
c01+c10

, 1
}

.

Proof. Given in App. C.1.

Thm. 15 highlights the fact that if the last agent believes the null hypothesis is more likely,

then the ideal predecessor underweights the prior, and vice versa. Additionally, for p0 near

zero (near one) the optimal predecessor overweights (underweights) the prior.

In particular, let us consider two cases separately. First, let the predecessor have smaller

noise. Then the curves for optimal beliefs and the corresponding Bayes risk are as shown

in Fig. 4.6. The behavior here is similar to the case with equal noise, indicating that the

reducing noise of the predecessor does not alter the overall behaviors of beliefs, as the last

agent is unaware of this improved signal quality.

On the other hand, when the last agent has smaller noise, we notice that the nature

of curves changes, as shown in Fig. 4.7. The behavior of the ideal agents indicates that

when the predecessor has significantly larger noise than the last agent, the last agent stays

open-minded. In addition, q∗1 has multiple crossings with p0, but q∗2 has a single crossing at

q∗2 = c01/(c01 + c10).

As expected, the ideal predecessor is open-minded for near-deterministic priors (p0 close

to zero or one). However, when the prior uncertainty in the hypotheses is high (p0 near 1/2),

we note that the ideal last agent with less noise favors the less likely hypothesis. This can

be attributed to the fact that the last agent stays open-minded to the less likely hypothesis

when the predecessor with larger noise is more likely to make errors. To further understand

the nature of such a predecessor, we characterize the crossings of the optimal belief curve

with the prior q∗1 = p0 .

Theorem 16. The set of all p0 such that q∗1 = p0, q∗2 = c01
c01+c10

is given by the solutions to

ex =
1− βQ(−α + σ1x)

1− βQ(−α− σ1x)
, (4.29)
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where

x = log

(
c10p0

c01(1− p0)

)
, α =

1

2σ1

, β = 1− Q (1/2σ2)

Q (−1/2σ2)
.

Proof. Given in App. C.2.

We note that p∗ = c01
c01+c10

is always a solution to (4.29). The case of multiple solutions to

(4.29) is of particular interest and a sufficient condition is given in the following corollary.

Corollary 11. If
2βσ1φ(α)

1− βQ(−α)
> 1, (4.30)

then (4.29) has at least 3 solutions in (0, 1).

Proof. Since x is a monotonic function of p0, it is sufficient to show that (4.29) has at least

3 solutions in x. From the symmetry in (4.29), since x = 0 is always a root, it suffices to

show the existence of at least one more root in x > 0. First note the ranges of variables,

x ∈ (−∞,∞), α ∈ (0,∞), β ∈ (0, 1).

Letting r(x) be the right side of (4.29), since 0 ≤ Q(·) ≤ 1, we have

1− β ≤ r(x) :=
1− βQ(−α + σ1x)

1− βQ(−α− σ1x)
≤ 1

1− β
,

indicating that r(x) ∈ [1− β, 1
1−β ]. However, note that ex monotonically increases in (1,∞)

for x > 0. Since ex, r(x) coincide at x = 0, it follows that they cross at least once on (0,∞)

and also on (−∞, 0), if r′(x) > d
dx
ex at x = 0 by the intermediate value theorem. Thus, the

sufficient condition follows:

r′(0) =
2σ1βφ(α; 0, 1)

1− βQ(−α)
> 1 =

d

dx
ex

∣∣∣∣∣
x=0

.

Cor. 11 provides a sufficient condition on the noise level of agents under which there

exist multiple crossings of the curves q∗1(p0) and p0. The range of standard deviations of the

additive Gaussian noise of the preceding and last agents that satisfy the sufficient condition of

Cor. 11 is shown in Fig. 4.8. Note from the figure that the area below the red dotted contour

in Fig. 4.8 has multiple solutions to q∗1 = p0, i.e., when the last agent has comparatively

smaller than the preceding agent.
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This is important as the crossings indicate a change in the perceived bias of the predecessor

and also indicate the regions in which the last agent overweights the unlikely hypothesis as

in Fig. 4.7.

4.5 Team Construction Criterion

Having studied the mathematical conditions for optimal reweighting of initial beliefs, we now

investigate team selection for social learning. Naturally, a social planner who is aware of the

context p0 can pick the optimal agent pairs to minimize Bayes risk. However, it is not clear

if agents are capable of organizing themselves into ideal teams in the absence of contextual

knowledge. Thus, we now identify the criterion for the last agent to identify the optimal

predecessors among a set of given predecessors.

Theorem 17. Consider two predecessors with q1 < q1′. Let λ1, λ1′ be the decision thresholds

of the respective predecessors. Then, the predecessor with belief q1 is the optimal choice if
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and only if
P1 [Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1

2, λ
0
2]]

P0 [Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1
2, λ

0
2]]
≥ c10p0

c01(1− p0)
. (4.31)

Proof. Given in App. C.3.

In other words, by rewriting (4.31) in a likelihood ratio form, we observe that the criterion

for picking the predecessor with a smaller belief is given by the likelihood ratio test

L
[
Ĥ1 = Ĥ2 = 1, Ĥ1′ = Ĥ2′ = 0

]
≥ c10p0

c01(1− p0)
,

where Ĥ2′ is the decision made by the last agent following the decision of the predecessor

with belief q1′ .

Thus selecting an ideal predecessor requires a social planner who is aware of the context p0.

Without this, the last agent selects a predecessor according to his personal belief q2. That

is, the last agent verifies condition (4.31) by replacing p0 by q2. Such a choice of predecessor

might not always conform to the optimal choice when the belief of the last agent deviates

significantly from the prior. To illustrate, we consider the problem of choosing between two

predecessors with beliefs q1(p0) = q∗1(p0) and q1′(p0) = p0. Let q(p0, q2) be the belief of the

optimal predecessor choice for a given pair (p0, q2). We identify the region of correct selection

by shading, S = {(p0, q2) : q(p0, q2) = q(q2, q2)}.
First, when noise levels are equal, the region in which the last agent picks the correct

preceding agent is shown in Fig. 4.9a. We note that the correct region is relatively small

and does not include q∗2. In particular, the last agent with optimal belief chooses the wrong

predecessor always, whereas a suboptimal last agent with beliefs in the shaded region picks

the correct one.

On the other hand, when the last agent has smaller noise than the predecessor, the cor-

responding region is as shown in Fig. 4.9b. Here we note that the last agent with optimal

belief picks the correct preceding agent always.

Thus, we note that knowledge of the mathematically optimal beliefs does not guarantee

selection of the right preceding agent. Further, we also observe that the diversity of noise

levels may increase the feasibility of selecting the right preceding agent when the last agent

has optimal belief.

We also explore the optimal choice of predecessor for the given optimal last agent in the

absence of knowledge of the prior probability. From (4.25), the belief of the optimal preceding
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Figure 4.9: Context-unaware team selection.
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agent, q̃1 chosen by a last agent, in the absence of context (prior probability p0) satisfies

q̃1

1− q̃1

=
p0

1− p0

P I1
e,2 − P I0

e,2

P II0
e,2 − P II1

e,2

. (4.32)

The last agent’s behavior with belief q∗2 is as shown in Fig. 4.9c. We note that the preceding

agent chosen by the last agent differs from the optimal choice. Further, it is also evident that

this choice consequently results in an increased Bayes risk. Such behavior in team selection

highlights the significance of context, and thus of a social planner, for identifying the right

team.

4.6 Human-AI Collaboration Systems

In this section, we use mathematical results from previous sections to study the engineer-

ing design problem of constructing human-AI collaborative systems. To do so, we make

the following assumptions from the behavioral sciences: Human agents perform Bayesian

decision-making [85–88] and their perceptions follow the Prelec reweighting function [55]. In

addition, agents experience varying observational noise which is additive and Gaussian (as

it is a common model in human signal perception [89, 90]). As usual in sequential social

learning setup, all agents make selfish decisions [29,33].

4.6.1 Approximation by Prelec Family

To design human-AI collaborative systems, we first determine whether optimal belief func-

tions from previous sections are close to human behavior as modeled by cumulative prospect

theory [52,55].4

We approximate the optimal belief curves q∗n by the Prelec function and study the resulting

increase in the Bayes risk. We restrict to the Prelec family whose fixed point is identical

4Bounded rationality models have been categorized into two main classes—costly bounded rationality and
truly bounded rationality [48]. Costly rationality considers the emergence of boundedly irrational behavior
as optimization under some costs of decision-making such as computation and communication. On the other
hand, truly bounded rationality is not based on an optimization framework. Though not the focus of the
present chapter, one might wonder whether people are (approximately) naturally optimal for social learning.
That is: Since the optimal belief curves result from limitations in computation (selfish decision-making) and
communication (public signal quantization), do cumulative prospect-theoretic models emerge from a costly
rationality framework for social learning?
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to p∗ = c10
c01+c10

, and then find best parameters (αn, βn) in the minimax absolute error sense,

i.e.,

(αn, βn) = arg min
α,β:w(p∗;α,β)=p∗

‖q∗n(·)− w(·;α, β)‖∞.

Let the Prelec function approximations be (q1,Pre, q2,Pre).

The Prelec approximations for the two-agent case are shown in dotted curves in Fig. 4.10.

When the preceding agent has smaller noise as in the top panel of Fig. 4.10, the Prelec

function approximates the optimal beliefs well and the Bayes risk does not increase by much.

To evaluate the loss from the approximation, consider the set of correct beliefs q1 = q2 = p0,

that result in a Bayes risk of R2,corr. The maximal loss in terms of Bayes risk from using the

correct beliefs is maxp0(R2,corr−R2,min) ≈ 0.0039. On the other hand, the maximal loss from

the best Prelec approximation is ≈ 0.0009. This indicates that the natural cognitive biases

of humans (i.e., Prelec reweighting) are effective for social learning when the preceding agent

has smaller noise.

On the other hand, when the last agent has smaller noise as in the bottom panel of

Fig. 4.10, the Prelec approximation does not accurately mimic the optimal behavior of

agents. Recall that the Prelec function is always increasing and has only one crossing with

unit slope line in (0, 1). Therefore, the Prelec function fails to account for all the variations

in the optimal belief. Moreover, while the additional loss of Bayes risk by the Prelec fitting

is ≈ 0.0187, the loss from using the correct beliefs, p0 = q1 = q2, is ≈ 0.0060. This

indicates that even though the Prelec weighting functions serve as good approximations

with predecessors having less noisy observations, they do not model the optimal behavior in

the case of predecessors having noisier observations. These results suggest that human agents

following cumulative prospect theory models [52] yield small Bayes risk when predecessors

have smaller noise.

4.6.2 Human-AI Teams

The previous subsection informs the design of AI-human collaboration structures [56]. In

many human-AI joint teams, a human agent makes the final decision based on the advice

of an AI component as depicted in Fig. 4.11a, but the opposite structure of Fig. 4.11b is

also possible. It is thus important to identify the best team configuration [91]. Indeed,

D. Kahneman recently stated that “You can combine humans and machines, provided the
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Figure 4.10: Optimal beliefs as compared to Prelec-weighted beliefs. Top panel: When the
preceding agent has smaller noise. Bottom panel: When the later-acting agent has smaller
noise.
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Figure 4.11: Models of AI-human collaboration, where a machine provides input for human
judgement or vice versa.

machine has the last word” [92].

Our results indicate that an AI assistant with smaller noise could be an effective prede-

cessor to the human decision-maker. In particular, an open-minded AI predecessor and a

closed-minded human final decision-maker with appropriate Prelec reweighted beliefs work

well together, as in Fig. 4.6. However, an AI component with greater noise might not be a

good predecessor to the human last agent who does not have beliefs that mimic the optimal

behavior in Fig. 4.7 and so, perhaps counterintuitively, the architecture of Fig. 4.11b should

be adopted, with the AI agent having larger noise making the global decision.

Additionally, these results along with those of Sec. 4.5 provide some insight into human-

AI teams when the human agent picks an AI predecessor, given a choice among different

agents. In particular, consider the AI-human team where the human, who has a Prelec-

weighted belief, chooses one of two possible AI predecessors—one that has the optimal belief

q∗1 and the other that is aware of the true prior p0. In case the human agent has larger noise,

and a closed-minded Prelec belief as in Fig. 4.9a, she unfortunately picks the AI predecessor

with q1 = p0 and the team becomes suboptimal. However, if the human agent has smaller

noise, and an open-minded Prelec belief, she picks the optimal AI component q1 = q∗1 and

therefore can make the optimal decision as in Fig. 4.9b. Thus it is evident that optimal team

organization is feasible when the human has smaller noise and the appropriate open-minded

belief.
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4.7 Chapter Summary

We discuss the sequential social learning problem with individual biased beliefs. Unlike

previous works on herding, we focus on the Bayes risk of the last-acting agent. We first derive

the optimal belief update rule for general likelihoods and evaluated for Gaussian likelihoods.

Counterintuitively, optimal beliefs that yield minimum Bayes risk are in general different

from the true prior. Under equal expertise levels, we observe that optimal advisors have

open-minded beliefs, that is, they overweight small priors and underweight large priors, while

the optimal advisee has closed-minded belief. However, the trend may change depending on

varying expertise levels such that, especially when the advisee has much more expertise,

optimal belief of the advisee is inverted as she becomes open-minded.

We also show that the Prelec reweighting function from cumulative prospect theory ap-

proximates the behavior of the optimal beliefs under specific levels of expertise; however,

when the advisee has much more expertise, it fails to capture all the behavioral traits of the

optimal beliefs.

Finally, we consider the ability of agents to organize themselves into optimal teams and

show that in the absence of a social planner, the advisee can get paired with the wrong

advisor when the individual belief deviates significantly from the underlying prior value.

The setup arises from the consideration of AI and it tells us that, without knowing the true

prior, our human-machine team construction could be misorganized.
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Chapter 5

The CEO Problem with rth Power of Difference and
Logarithmic Distortions

In this chapter, we explore two CEO problems that differ from the prior works listed in

Sec. 1.1 in that the models not only have a non-Gaussian source-observation pair, but also

have general rth power difference distortion d(x, x̂) = |x− x̂|r or logarithmic distortion. The

models and our contributions are briefly summarized here.

• (Sec. 5.2, regular model) Continuous source and observation supported on R satisfying

some regularity conditions, including the jointly Gaussian CEO problem [57, 58, 60],

but with |x − x̂|r distortion: The distortion scales as R
−r/2
sum . Achievability is by the

Berger-Tung scheme [93] and median estimator and converse is by the Shannon lower

bound [94].

• (Sec. 5.3, non-regular model) Bounded source and observation such that estimation-

theoretic regularity conditions do not hold, including copula [63] or additive uniform

noise model with |x− x̂|r distortion: The distortion scales as R−rsum. Achievability is by

the Berger-Tung scheme and midrange estimator [95] and converse is by the Chazan-

Ziv-Zakai bound [96,97].

• (Sec. 5.4, equivalence) The regular model as in Sec. 5.2: If test channels satisfy some

conditions, quadratic (i.e, r = 2) and logarithmic distortions are asymptotically equiv-

alent as L → ∞, bridged by entropy power relation DQ = 1
2πe

2DLog , where DQ, DLog

are quadratic and logarithmic distortions, respectively. It also implies logarithmic

distortion decays as − logRsum.

With the results of [57, 58, 60, 61], our results suggest that the Berger-Tung achievable

scheme might be asymptotically optimal even for various types of models, not listed here.

Furthermore, noting that the jointly Gaussian model, a special case of regular models, is the

worst model among additive noises [65], we can conclude that other regular models are not

much easier to estimate since they all have R
−r/2
sum asymptotics. It is possible to further argue

that regular models are essentially the worst model among all variance-bounded additive
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Figure 5.1: The CEO problem model with L agents.

noise models (not necessarily regular) in the sense of sum rate asymptotics by the argument

of [65]. In contrast, non-regular models that have R−rsum are easier to estimate than regular

models. The equivalence of the two distortions is interesting since we already know the

entropy power inequality Var(X|Z) ≥ 1
2πe
eh(X|Z) [70], where the left and right sides are

interpreted as quadratic and logarithmic distortions respectively, but the equivalence shows

asymptotically equality.

5.1 CEO Problem Formulation

We consider the CEO problem as in [39], but with real-valued alphabets, i.e., X ,Y ⊂ R. The

source {X(t)}∞i=1 that the CEO is interested in is independent and identically distributed

(i.i.d.) from a density function fX(x). There are L agents who collect the source information,

but the ith agent is only given a noisy version {Yi(t)}∞t=1, i.i.d. drawn from a common

observation distribution fY |X . The agents encode observations separately into messages of

rate {Ri}Li=1; more precisely, the ith agent encodes a length n block of observations into a

codeword Ci from codebook Ci of rate Ri and proceeds to send the codeword index. Sum

rate of the link to the CEO is limited to Rsum =
∑L

i=1 Ri. Upon receiving codewords from

agents, the CEO wishes to estimate {X̂(t)}nt=1 that minimizes the expected distortion of

length n,

Dn(Xn, X̂n) :=
1

n
E

[
n∑
t=1

|X(t)− X̂(t)|r
]

=
1

n

n∑
t=1

E
[
|X(t)− X̂(t)|r

]
,
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where X̂ ∈ X , if the distortion is rth power of difference distortion.

The other distortion measure in this chapter is logarithmic distortion, which commonly

arises in machine learning literature and also recently in information theory [61],

Dn(Xn, X̂n) :=
1

n
E

[
n∑
t=1

− log X̂(X; t)

]
=

1

n

n∑
t=1

E
[
− log X̂(X; t)

]
,

where X̂ is a probability distribution over X , i.e., X̂ ∈ P(X ), where P(X ) denotes the

probability distribution space over X . The problem model is illustrated in Fig. 5.1.

In this work, we are interested in the asymptotic tradeoff between Rsum and Dn(Xn, X̂n).

To see this, define

Dn(L,Rsum) := min
{Ci}Li=1:

∑L
i=1Ri≤Rsum

Dn(Xn, X̂n),

D(L,Rsum) := lim
n→∞

Dn(L,Rsum).

As we will see, D(L,Rsum) asymptotically vanishes as L,Rsum grow without bound, but

keeping the average individual rate Rsum/L unchanged. So we investigate the following

quantities:

βreg := lim
L,Rsum→∞

Rr/2
sumD(L,Rsum) in Sec. 5.2,

βn-reg := lim
L,Rsum→∞

Rr
sumD(L,Rsum) in Sec. 5.3.

Hence, if βreg and βn-reg are constant, it tells us that the speeds of distortion decay are R
−r/2
sum

and R−rsum for regular and non-regular models, respectively.

Before proceeding with formal definitions of regular and non-regular models in the follow-

ing sections, recall one of the regularity conditions of the Fisher information (and thus the

Cramer-Rao lower bound) [98, Sec. 2.5]:

The support of fY |X is common for all x, i.e., the set {y : fY |X(y|x) > 0} is independent

of x.

In this context, a model is called regular if it satisfies the above condition as well as other

conditions in Sec. 5.2, whereas it is non-regular if the above does not hold, but conditions

in Sec. 5.3 hold. Note that these two definitions do not form a disjoint partition, and there

are examples that are neither regular nor non-regular
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In the sequel, f, p denote continuous and discrete probability densities, respectively. We

will use the natural logarithm so that the unit of information rate is nats. Hat notation

V̂ is for estimated values and tilde notation Ṽ is for quantized values. The function q(·)
also stands for the quantization function so q(V ) and Ṽ are interchangeable. The round

bracket subscript V(i) denotes ith order statistics, that is, reordered sequence from {Vi}Li=1 in

increasing order V(1) ≤ V(2) ≤ · · · ≤ V(L). When L = 2m + 1,m ∈ Z+, V(m+1) is the sample

median and it is often denoted by med({Vi}Li=1). Also the true median of fV is denoted by

med(V ) with abuse of notation.

5.2 Regular CEO Problem

5.2.1 Model and Result

We consider unbounded source and observation alphabets X = Y = R and impose regularity

conditions on probability distributions that enable us to characterize βreg explicitly. Let us

first state source and observation conditions (A1)–(A4).

(A1) The source has a finite absolute moment of order r.

(A2) The density fX is continuous and positive almost everywhere in R and the density

fY |X is twice continuously differentiable with respect to x for almost every x ∈ R and

almost every y ∈ R.

(A3) For almost every x ∈ R,

EY |x

[∣∣∣∣ ∂∂x log fY |X(Y |x)

∣∣∣∣2
]
<∞ and EY |x

[∣∣∣∣ ∂2

∂x2
log fY |X(Y |x)

∣∣∣∣2
]
<∞,

and the Fisher information IY (x) := EY |x[( ∂
∂x

log fY |X(Y |x))2] is well-defined, finite,

and positive for almost every x ∈ R.

(A4) The posterior distribution of x given Y n asymptotically concentrates on the true value

sufficiently fast for every x ∈ R. Formally speaking, for any δ > 0, x ∈ R

P[fX|Y n [N c
x] > δ] = o(1/ log n),

for every open set Nx containing the true x.
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Condition (A1) is necessary not only for technical evaluation, but also for the rate-distortion

formulation as in [99]. Conditions (A2)–(A4) are smoothness conditions that enable us to

characterize asymptotics explicitly, especially (A4) leads to a simple expression of Lem. 14.

Next we impose some conditions for the existence of an auxiliary random variable U that

satisfies some properties. Recall that med(U |x) is the median of fU |X=x, i.e.,

∫ med(U |x)

−∞
fU |X(u|x)du =

1

2
.

(A5) The Markov chain X − Y − U holds and U has a finite absolute moments of order r.

(A6) Medians of fU |x0 , fU |x1 are distinct when x0 6= x1. In addition, the function u = `(x) :=

med(U |x) that maps x to the median of fU |x is bi-Lipschitz continuous, i.e., `(·) and

`−1(·) are both Lipschitz. Suppose `−1 has a Lipschitz constant K > 0.

(A7) For some positive constant c, it holds that α := infx∈R fU |x(med(U |x)|x) > c.

Define Sreg to be the set of Us that satisfy (A5)–(A7). Condition (A5) enables forward test

channels in compression step. Also since we will use median estimation, conditions (A6) and

(A7) are technically required because upon obtaining the exact median of U conditioned

on x, one should be able to recover x from it. The Lipschitz property also guarantees

that when error in estimating the median of U is small, error in X is small as well up

to the Lipschitz constant factor. If one adopts another estimation scheme such as mean

estimation or maximum likelihood estimation, different conditions will be required. It is

however remarkable that (A1)–(A7) all hold for the Gaussian CEO problem with additive

Gaussian test channel as in [57], where sample mean is used.

As mentioned, the distortion measure we will consider is the rth power of difference, i.e.,

d(x, x̂) = |x− x̂|r,

under which our main result of this section is the following.

Theorem 18 (Regular CEO problem). Suppose conditions (A1)–(A4) hold for source and

observation model and suppose there exists U such that (A5)–(A7) hold. Then, for distortion

measure d(x, x̂) = |x− x̂|r,

C1

(
min

U :X−Y−U
I(Y ;U |X)

)r/2
≤ βreg ≤ C2

(
min
U∈Sreg

I(Y ;U |X)

)r/2
,
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where

C1 =
1

re

(
V1Γ

(
1 +

1

r

)
e−

1
2
E[log det IY (X)]

√
2πe

)−r
,

C2 =

(
K

2α

)r
23r/2 Γ( r+1

2
)

√
π

,

and the minimum of the lower bound is taken over non-trivial random variables to ensure

that the mutual information is non-zero.

5.2.2 Direct Coding Theorem

We will make use of standard achievable scheme in [57]. That is, first finely quantize contin-

uous alphabets and apply Berger-Tung encoding and decoding over incurred discrete alpha-

bets, and then, estimate the source. Our estimation is based on sample median estimator,

which is the best for absolute distortion, i.e., |x − x̂|. Suppose the number of agents is

odd, i.e., L = 2m + 1,m ∈ Z+ to simplify notation. Before proceeding, note that ran-

dom variables {Ui}Li=1 are all generated through an identical test channel fU |Y that satisfies

(A5)–(A7). This assumption does not lose optimality.1

Quantization

Quantizing the real line enables agents to use subsequent codes and Slepian-Wolf compression

in discrete domain. Let X̃, Ỹ , Ũ denote the quantized versions of X, Y, U . We suppose our

fine quantization ensures that the loss due to quantization is negligible. Formally, we take

a quantization scheme that satisfies the following conditions: for some small δi > 0, i ∈
{0, 1, 2},

E
[
|U(m+1) − q(U(m+1))|r

]
≤ δ0 and E

[
|q(U(m+1))−med({q(Ui)}Li=1)|r

]
≤ δ0 (5.1)

|I(Y ;U)− I(Ỹ ; Ũ)| ≤ δ1, (5.2)

|I(X;U)− I(X̃; Ũ)| ≤ δ2. (5.3)

1Suppose that nonidentical test channels achieve a smaller distortion D. As agents are symmetric, the
distortion must be invariant under permutation. Time-sharing argument that averages nonidentical channels
shows that identical test channels also achieve D, which yields a contradiction.
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It is easy to see that there exists a quantization scheme with finite cardinality that satisfies

(5.1) from the finite moment condition, as well as (5.2) and (5.3) from the definition of mu-

tual information for arbitrary ensembles [100]; hence, a common refinement of quantization

schemes satisfies all three conditions. This quantization also induces discrete probability

distributions for X̃, Ỹ , Ũ :

pỸ ,Ũ(ỹ, ũ) =

∫
{(y,u):q(y)=ỹ,q(u)=ũ}

fY,U(y, u)dydu,

pX̃,Ũ(x̃, ũ) =

∫
{(x,u):q(x)=x̃,q(u)=ũ}

fX,U(x, u)dxdu,

pỸ |X(ỹ|x) =

∫
{y:q(y)=ỹ}

fY |X(y|x)dy,

pŨ |Ỹ (ũ|ỹ) =
pỸ ,Ũ(ỹ, ũ)

pỸ (ỹ)
.

Spaces of X̃, Ỹ , Ũ are denoted by X̃ , Ỹ , Ũ .

Codes Approximating Test Channel

Each agent takes block length n0 and encodes quantized observation Ỹ n0 into a codeword,

instead of Y n0 . Let ϕ : Ỹn0 7→ Ũn0 be the (possibly stochastic) block code encoder, common

for all agents. This mapping induces the following empirical distributions:

p̂Ỹ n0 ,Ũn0 (ỹn0 , ũn0) = pỸ n0 (ỹn0)1{ϕ(ỹn0 )=ũn0},

p̂Ỹ ,Ũ(Ỹ (t) = ỹ, Ũ = ũ) = Ep
Ỹ n

[
1{Ũ(t)=ũ,Ỹ (t)=ỹ}

]
,

p̂Ũ |Ỹ (Ũ(t) = ũ|Ỹ (t) = ỹ) =
p̂Ỹ ,Ũ(Ỹ (t) = ỹ, Ũ(t) = ũ)

pỸ (Ỹ (t) = y)
,

where 1{·} is the indicator function. Then the existence of a block code that approximates

the true test channel fU |Y follows from [57, Prop. 3.1].

Proposition 12 ( [57]). For every ε, δ > 0, there exists a deterministic mapping ϕ : Ỹ n0 7→
Ũn0 with the range cardinality M such that

1

n0

logM ≤ I(Y ;U) + ε
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and ∑
ũ∈Ũ

|p̂Ũ |X(Ũ(t) = ũ|x)− pŨ |X(Ũ(t) = ũ|x)| ≤ ε

|X̃ |

for all t ∈ [1 : n0] and all x ∈ R.

Encoding and Decoding

The overall encoding scheme is two-step as [39, 57]: in the first stage, each agent encodes

Ỹ n0
i into Ũn0

i by common ϕ(·). Note that {Ũn0
i }Li=1 are correlated; the second stage performs

Slepian-Wolf (or SW, for short) encoding to remove the correlation. Let Wi ∈ W be the

index of the codeword Ũn0
i . Formally speaking, the SW encoder at the ith agent is the

mapping ξi :Wn → {0, 1, . . . , Ni − 1}. Individual and sum rates are therefore defined to be

Ri =
1

nn0

logNi,

Rsum =
L∑
i=1

Ri =
1

nn0

L∑
i=1

logNi.

The complete encoder of ith agent is given by

Zi := ξi ◦ ϕn0(ỹnn0) ∈ {0, 1, . . . , Ni − 1}.

The CEO performs decoding in reverse: it recovers {Ûnn0
i }Li=1 from {Zi}Li=1, and then esti-

mates X from {Ûnn0
i }Li=1.

The next proposition ( [57, Prop. 3.2 and Sec. III.D]) specifies the average individual rate

upper bound in multi- and single-letter mutual information forms, and its error probability.

Proposition 13 ( [57]). For every ε, λ > 0 and ε′ > ε, there exists sufficiently large L, n

and index encoders {ξi}Li=1 such that

Rsum

L
≤ 1

n0

H(Ũn0|X̃n0) + ε ≤ I(Y ;U |X) + ε′,

P[B] ≤ λ,

where B := {(Ûn0
1 , . . . , Ûn0

L ) 6= (Ũn0
1 , . . . , Ũn0

L )} is the error event.
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Estimation Upper Bound

If the CEO has the true U(m+1) = med({Ui}Li=1), the median of {U1, . . . , UL}, then she can

uniquely determine X by mapping `−1. Therefore our goal is to estimate U(m+1) as accurately

as possible from decoded {Ûi}Li=1. Note that for a given X = x, the true median of U is

med(U |x) = `(x).

Lemma 10 (Median Estimator [101]). Let F, f be the cumulative distribution and density

function of V . Then, the sample median of L = 2m+ 1 samples follows the density function

P[V(m+1) = v] =
(2m+ 1)!

m!m!
(F (v))m(1− F (v))mf(v) =

(F (v))m(1− F (v))m

B(m+ 1,m+ 1)
dF (v),

where B(·, ·) is the Beta function, so it is the Beta(m+ 1,m+ 1) distribution scaled by F (v).

Furthermore, V(m+1) is approximately Gaussian N
(
med(V ), 1

4Lf2(med(V ))

)
provided that L is

large.

Lemma 11. Under the notations of Lem. 10, the following holds when L is large:

E[|V(m+1) −med(V )|r] ≤
(

2

Lf 2(med(V ))

)r/2 Γ( r+1
2

)
√
π

+ ε.

Proof. See App. D.1.

Now we can derive the distortion asymptotics in terms of Rsum.

Theorem 19 (Achievability of Regular CEO Problem).

βreg ≤ 23r/2

(
K

α

)r Γ( r+1
2

)
√
π

(
min
U∈Sreg

I(Y ;U |X)

)r/2
.

Proof. Given t, instantaneous error is bounded as follows. Since `(·) is the function that

maps x to med(U |x) ∈ U and X = `−1(med(U |X)), our estimation is X̂ = `−1(Û(m+1)(t)).
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E
[
|X(t)− X̂(t)|r

]
= E

[
|X(t)− `−1(Û(m+1)(t))|r

]
(a)

≤ KrE
[
|med(U |X)− Û(m+1)(t)|r

]
= KrE

[
|med(U |X)− U(m+1)(t) + U(m+1)(t)− Û(m+1)(t)|r

]
(b)

≤ (2K)rE
[
|med(U |X)− U(m+1)(t)|r|

]
+ (2K)rE

[
|U(m+1)(t)− Û(m+1)(t)|j

]
(c)

≤ (2K)rE
[
|med(U |X)− U(m+1)(t)|r

]
+ ε1,

where (a) follows from the Lipschitz property of `−1; (b) follows from the triangle inequality

and Prop. 18 in App. D.4; and (c) is proven as Prop. 15 in App. D.2.

Regarding the first term, since the median estimator is approximately Gaussian

N
(
med(U |X), 1

4Lf2(med(U |X))

)
distributed,

(2K)rE
[
|med(U |X)− U(m+1)(t)|r

]
= (2K)rEXEU |X

[
|med(U |X)− U(m+1)(t)|r|X

]
≤ (2K)rEX

[(
2

Lf 2(med(U |X))

)r/2 Γ( r+1
2

)
√
π

+ ε2|X

]

= 23r/2

(
K

α

)r
1

Lr/2
Γ( r+1

2
)

√
π

+ ε2,

where the inequality follows from Lem. 11.

Summing over all t ∈ [1 : n], we have

Dn(Xn, X̂n) =
1

n

n∑
t=1

E
[
|X(t)− X̂(t)|r

]
≤ 23r/2

(
K

α

)r
1

Lr/2
Γ( r+1

2
)

√
π

+ ε

=⇒ D(L,Rsum) ≤ 23r/2

(
K

α

)r
1

Lr/2
Γ( r+1

2
)

√
π

+ ε2.

From Prop. 13, we have Rsum

L
≤ I(Y ;U |X), therefore,

βreg = lim
L,Rsum→∞

Rr/2
sumD(L,Rsum)

≤ 23r/2

(
K

α

)r Γ( r+1
2

)
√
π

I(Y ;U |X)r/2.
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Taking infimum over Sreg completes the proof.

5.2.3 Converse Coding Theorem

A key feature of the converse is the Shannon lower bound [99, 102], which for real-valued

sources with difference normed distortion is given in [94]. It is one of the few tools that

evaluates the rate distortion function as a closed-form expression and is known for asymp-

totically tightness when distortion goes to zero [103, 104]. Combining Lem. 14 stemming

from [105, 106], we can show the matching converse. As we will see, the Shannon lower

bound is essentially an uncoded lower bound, that is, the bound is for estimation from

{Yi}Li=1 rather than from received codewords. It therefore shows a lower bound only due to

intrinsic observational noise, yet is sufficient to show the matching asymptotics. Converse

argument regarding coding rate also follows standard argument in [57], but we state it for

completeness.

Coding Rate Lower Bound

Let us first derive coding rate lower bound.

nRi = log |Cni |

≥ I(Y n
i ;Ci|Xn) =

n∑
t=1

I(Yi(t);Ci|Y t−1
i , Xn)

=
n∑
t=1

[
h(Yi(t)|Y t−1

i , Xn)− h(Yi(t)|Ci, Y t−1
i , Xn)

]
=

n∑
t=1

[
h(Yi(t)|Xn)− h(Yi(t)|Ci, Y t−1

i , Xn)
]

≥
n∑
t=1

[h(Yi(t)|Xn)− h(Yi(t)|Ci, Xn)]

=
n∑
t=1

I(Yi(t);Ci|Xn).
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The sum rate lower bound is therefore given by

Rsum ≥
1

n

n∑
t=1

L∑
i=1

I(Yi(t);Ci|Xn).

Define X̆t := (X(1), . . . , X(t−1), X(t+1), . . . , X(n)) and let Ui(t, x̆t) be a random variable

whose joint distribution with X(t) and Yi(t) is

P[x ≤ X(t) ≤ x+ dx, y ≤ Yi(t) ≤ y + dy, Ui(t, x̆t) = c]

= fX(x)fY |X(y|x)P[Ci = c|Yi(t) = y,X(t) = x, X̆t = x̆t]dxdy

= fX(x)fY |X(y|x)P[Ci = c|Yi(t) = y, X̆t = x̆t]dxdy,

since the codeword Ci depends on X(t) only through Yi(t). Hence, the Markov chain X(t)−
Yi(t) − Ui(t, x̆t) holds for each i and given x̆t, which gives the following lower bound in

expectation form.

Rsum ≥
1

n

n∑
t=1

L∑
i=1

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t))].

Note that X̂(t) = g(C1, . . . , CL) = g′(U1(t), . . . , UL(t)) for some functions g, g′.

Estimation Lower Bound

An estimate of the CEO problem is X̂n(C1, C2, · · · , CL); however, it is obvious that there

is an estimate X̂ ′n = X̂ ′n({Y n
i }Li=1) based on {Y n

i }Li=1 yielding a better estimate than X̂n.

We will derive the performance lower bound for X̂ ′n using the Shannon lower bound and it

turns out that this lower bound for X̂ ′n is sufficient to show the asymptotics.

Lemma 12. Let X̂ be an arbitrary estimate from {Yi}Li=1. Then,

I(Xn; X̂n) ≤ nI(X; {Yi}Li=1).
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Proof.

I(Xn; X̂n)

(a)

≤ I(Xn; {Y n
i }Li=1)

= h({Y n
i }Li=1)− h({Y n

i }Li=1|Xn)

=
n∑
t=1

h({Yi(t)}Li=1|{Y t−1
i }Li=1)−

n∑
t=1

h({Y n
i (t)}Li=1|Xn, {Y t−1

i }Li=1)

(b)

≤
n∑
t=1

h({Yi(t)}Li=1)−
n∑
t=1

h({Yi(t)}Li=1|Xn, {Y t−1
i }Li=1)

(c)
=

n∑
t=1

h({Yi(t)}Li=1)−
n∑
t=1

h({Yi(t)}Li=1|X(t))

=
n∑
t=1

I(X(t); {Yi(t)}Li=1)

(d)
= nI(X;Y L),

where (a) follows from the data processing inequality for Xn − {Y n
i }Li=1 − X̂n; (b) follows

from the fact that removing conditions only increases entropy; (c) follows since {Yi(t)}Li=1

depends only on X(t); and (d) follows since X(t), {Yi(t)}Li=1 are i.i.d. over time.

Lemma 13 (Shannon lower bound [94]). Suppose X, X̂ are d-dimensional vectors in Rd and

consider any norm ‖X − X̂‖. Define the standard rate distortion function

R(D) := inf
PX̂|X :E[‖X−X̂‖r]≤D

I(X; X̂).

Then, the Shannon lower bound is given by

R(D) ≥ RSLB(D) := h(X)− d

r
log

(
rD

d
(VdΓ(1 + d/r))r/de

)
,

where Vd is the volume of d-dimensional unit ball such that {x : ‖x‖ ≤ 1, x ∈ Rd} and Γ(·)
is the Gamma function.

Lemma 14 ( [105,106]). Suppose X ∈ Rd and conditions (C2)–(C4) hold. Then,

I(X; {Yi}Li=1) =
d

2
log

L

2πe
+ h(X) +

1

2
E[log det IY (X)] + o(1).
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Combining all of the above, we can prove the converse.

Theorem 20 (Converse of Regular CEO Problem).

βn-reg ≥ C1

(
min

U :X−Y−U
I(Y ;U |X)

)r/2
,

where

C1 =
1

re

(
V1Γ

(
1 +

1

r

)
e−

1
2
E[log det IY (X)]

√
2πe

)−r
.

Proof. In particular, suppose that X̂ ′(t) in Lem. 12 is an estimate achieving distortion D′ :=
1
n

∑n
t=1 E[|X(t)− X̂ ′(t)|r] from {Y n

i }Li=1 with D′ ≤ D. Then, combining all lemmas we have

the following chain of inequalities:

h(X)− d

r
log

(
rD′

d
(VdΓ(1 + d/r))r/de

)
(a)

≤ RSLB(D′)

(b)

≤ inf
PX̂|X :E[‖X−X̂‖r]≤D′

I(X; X̂)

≤ 1

n
I(Xn; X̂ ′n)

(c)

≤ I(X;Y L)

(d)
=

1

2
log

L

2πe
+ h(X) +

1

2
E[log det IY (X)] + o(1),

where (a), (b) are from the Shannon lower bound Lem. 13; (b) is from Lem. 12; and (c) is

from Lem. 14.

With d = 1, we have the following inequality:

h(X)− 1

r
log (rD′(V1Γ(1 + 1/r))re) ≤ 1

2
log

L

2πe
+ h(X) +

1

2
E[log det IY (X)] + o(1).

Arranging terms, we obtain

D ≥ D′ ≥
(

1√
L

)r
1

re

(
V1Γ

(
1 +

1

r

)
e−

1
2
E[log det IY (X)]

√
2πe

)−r
=:

C1

Lr/2
,
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where

C1 =
1

re

(
V1Γ

(
1 +

1

r

)
e−

1
2
E[log det IY (X)]

√
2πe

)−r
.

It is easy to see D(L,Rsum) ≥ C1L
−r/2.

Multiplying D(L,Rsum) by R
r/2
sum,

βreg ≥ lim
L→∞

(
1

n

n∑
t=1

L∑
i=1

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t))]

)r/2

· C1

Lr/2

= C1 lim
L→∞

(
1

nL

n∑
t=1

L∑
i=1

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t))]

)r/2

≥ C1 lim
L→∞

(
1

nL

n∑
t=1

L∑
i=1

min
t,i,X̆t

I(Yi(t);Ui(t, X̆t)|X(t))

)r/2

≥ C1

(
min

U :X−Y−U
I(Y ;U |X)

)r/2
.

So the lower bound has been proved.

Discussion

It is interesting to evaluate the Shannon lower bound for jointly Gaussian CEO problem.

When the model is jointly Gaussian as in [57], but with general rth power of difference, it

is possible to exactly evaluate the right side of the chain of inequalities without resorting

to Lem. 14. Note that when X, Y L are jointly Gaussian, once receiving yL the posterior

distribution P(X|Y L = yL) is also Gaussian. Let X,Z ∼ N (0, σ2
X),N (0, σ2

Z), respectively,

and Yi(t) = X(t) + Zi(t).

Letting ȳ be the sample mean, ȳ := 1
L

∑L
`=1 yi,

P(X|Y L = yL) ∼ N (E[X|Y L = yL],Var[X|Y L = yL])

= N

 σ2
X

σ2
X +

σ2
Z

L

ȳ,
σ2
X

1 +
σ2
X

σ2
Z
L

 .
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This results in the mutual information as follows:

I(X;Y L) = h(X)− h(X|Y L)

=
1

2
log(2πeσ2

X)− h(X|Y L)

=
1

2
log(2πeσ2

X)−
∫
p(yL)h(X|Y L = yL)dyL

=
1

2
log(2πeσ2

X)−
∫
p(yL)

1

2
log

2πe
σ2
X

1 +
σ2
X

σ2
Z
L

 dyL

=
1

2
log(2πeσ2

X)− 1

2
log

2πe
σ2
X

1 +
σ2
X

σ2
Z
L

 .

It is immediately apparent that RSLB(D) ≤ I(X;Y L) gives the same asymptotics R
−r/2
sum

(up to a different constant factor). This verifies our aforementioned conclusion that non-

Gaussian regular models do not perform much better than the Gaussian model in the sense

of sum-rate asymptotics, although Gaussianity is the worst compressible model [65].

It should also be noted that the median estimator is neither unique nor the best, but

achieves the correct sum rate asymptotics. For instance, the (scaled version of) sample

mean estimator in [57] turns out to be the best estimator for the quadratic Gaussian CEO

problem even in non-asymptotic regime [58, 60] because the minimum mean-squared error

estimator (MMSE) is in fact a linear summation of codewords for the additive Gaussian

test channel. To illustrate pros and cons of those estimators, consider a simple estimation

problem of X from observation Yi = X + Zi, i ∈ [1 : L], where Yi is given observation,

Zi is additive and i.i.d. drawn from some fZ with zero mean and σ2
Z variance. In this

case, sample mean estimator is distributed approximately N (0, σ2
Z/L) by the central limit

theorem and so yields approximately σ2
Z/L quadratic distortion. However, the quadratic

distortion induced by the median estimator is (4Lf 2
Z(0))−1 according to Lem. 10. Since the

performance of the median estimator is independent of variance, the median estimator is

more efficient when Z is sufficiently heavy-tailed. Also the Gaussianity of Lem. 10 suggests

a further extension to a broader class of estimators called consistent and asymptotic normal

(CAN) estimators; for example, the maximum likelihood estimator (MLE) is also CAN

and furthermore asymptotically efficient [107]. The asymptotic normality of MLE by the

Bernstein-von Mises theorem will be a stepping stone to the equivalence of quadratic and

logarithmic distortions in Sec. 5.4.
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5.3 Non-regular Model

5.3.1 Model and Result

This section considers the bounded source and observation in [63], where the source-observation

model is assumed to be non-regular in the sense of regularity conditions of the Cramer-Rao

lower bound [98, 108]. A special case of such non-regular model is known as a copula2 that

models dependency between two (or multiple) uniform random variables and is widely used

in quantitative finance: the CEO wishes to estimate some economic event or financial risk

such as bankruptcy of a firm, but only related indicators governed by the copula model are

observable. The formal definition of the non-regular model is as follows.

(B1) The source and the observation are finitely supported, that is, X ,Y ⊂ R are finite

intervals of the real line. Without loss of generality, we suppose X = Y = [0, 1]. In

addition, fY |x is discontinuous at both end points of support conditioned on x, i.e., let

Yx := [e`(x), eu(x)] be the support of fY |x, then, fY |x(e`(x)), fY |x(eu(x)) > 0.

(B2) There exists a random variable U ∈ U satisfying the following: 1) the Markov chain X−
Y −U holds; 2)fU |x has bounded support [a(x), b(x)] for which (a+b)(x) is invertible; 3)

the inverse function `−1 = (a+b)−1 exists and is Lipschitz with constant K > 0; and 4)

fU |x(u|x) does not vanish at either end point a(x), b(x), i.e., fU |x(a(x)|x), fU |x(b(x)|x) >

δ for some positive δ that does not depend on x. Without loss of generality, we assume

U = [0, 1].

As illustration, a simple example of (X, Y ) that satisfies (B1) is a copula [109]. Another

example is a uniform source with independent additive uniform observational noise, i.e.,

Yi = X + Zi where X,Zi ∼ unif[0, 1]. Also X ∼ unif[0, 1] with Y ∼ unif[0, X] is an example

that satisfies (B1). Verifying (B1) for the copula example is given in [63], and for the

uniform examples is immediate. Also it should be noted that one of regularity conditions of

the Cramer-Rao lower bound [98, Sec. 2.5], namely that the support of fY |X is the same for

all x ∈ X , is violated in (B1) as well as in all examples above, so that the model is called

non-regular.

Let Sn-reg be the set of Us that satisfy (B2). Applying a copula test channel (e.g., Clayton

copula) fU |Y to Y satisfies (B2) so that Sn-reg is nonempty.

2A copula is a multivariate distribution that has the uniform distribution for each marginal [109].
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Theorem 21 (Non-regular CEO problem). Suppose condition (B1) holds for source and

observation model and there exists U such that (B2) holds. Then, for distortion measure

d(x, x̂) = |x− x̂|r,

C3

(
min

U :X−Y−U
I(Y ;U |X)

)r
≤ βn-reg ≤ C4

(
min

U∈Sn-reg
I(Y ;U |X)

)r
,

where

C3 = r2−r
∫ 1

h̃=0

h̃r−1

∫ 1

x=0

fX(x)e−h̃g(x)dxdh̃,

C4 =
r!2r+1Kr

δr
,

with

g(x) =
d

d∆

(
− min

s∈[0,1]
log

(∫
f sY |X(y|x)f 1−s

Y |X(y|x+ ∆)dy

)) ∣∣∣∣∣
∆=0

,

and the minimum of the lower bound is taken over non-trivial random variables to ensure

that the mutual information is non-zero.

Before proceeding, it should be noted that proofs in the sequel repeat parts of standard

achievability and converse proofs in Sec. 5.2.2 and Sec. 5.2.3 and so are omitted.

5.3.2 Direct Coding Theorem

Like Sec. 5.2.2, we repeat quantization, Berger-Tung compression-decompression, and then

estimation of the source X. Conditions for the quantization are the following:

E[|U − Ũ |r] ≤ δ0, (5.4)

|I(Y ;U)− I(Ỹ ; Ũ)| ≤ δ1,

|I(X;U)− I(X̃; Ũ)| ≤ δ2.

The remaining steps are the same as Sec. 5.2.2 except for the estimation step. Midrange

estimator will be used to estimate the source since it is optimal in several cases with bounded

support [95,110,111]. Furthermore, it is more efficient than sample mean in many cases such

as the cosine, parabolic, rectangular, and inverted parabolic distributions [95].
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Theorem 22 (Achievability of Non-regular CEO Problem).

βn-reg ≤
r!2r+1Kr

δr

(
min

U∈Sn-reg
I(Y ;U |X)

)r
,

where δ > 0 is given in the condition (B2).

Proof. As mentioned, the CEO estimates by sample midrange estimator, i.e.,

X̂(t) = `−1

(
Û(1)(t) + Û(L)(t)

2

)
.

Then we have the following distortion upper bound:

E
[
|X(t)− X̂(t)|r

]
= E

[∣∣∣∣∣X(t)− `−1

(
Û(1)(t) + Û(L)(t)

2

)∣∣∣∣∣
r]

= E

[∣∣∣∣∣`−1

(
a(X(t)) + b(X(t))

2

)
− `−1

(
Û(1)(t) + Û(L)(t)

2

)∣∣∣∣∣
r]

≤ KrE

[∣∣∣∣∣a(X(t)) + b(X(t))

2
−
Û(1)(t) + Û(L)(t)

2

∣∣∣∣∣
r]

since `−1 is Lipschitz with constant K. For notational simplicity, let us denote aX =

a(X(t)), bX = b(X(t)) and omit ‘(t)’.

KrE

[∣∣∣∣∣aX + bX
2

−
Û(1) + Û(L)

2

∣∣∣∣∣
r]

(a)

≤ KrE

[(∣∣∣∣aX + bX
2

−
U(1) + U(L)

2

∣∣∣∣+

∣∣∣∣∣U(1) + U(L)

2
−
Û(1) + Û(L)

2

∣∣∣∣∣
)r]

(b)

≤ (2K)rE
[∣∣∣∣aX + bX

2
−
U(1) + U(L)

2

∣∣∣∣r]+ (2K)rE

[∣∣∣∣∣U(1) + U(L)

2
−
Û(1) + Û(L)

2

∣∣∣∣∣
r]

= KrE
[∣∣aX + bX − U(1) − U(L)

∣∣r]+KrE
[∣∣∣U(1) + U(L) − Û(1) − Û(L)

∣∣∣r]
(c)

≤ KrE
[∣∣aX + bX − U(1) − U(L)

∣∣r]+ ε,

where (a) follows from the triangle inequality; (b) follows from Prop. 18 in App. D.4; and

(c) is proven by Lem. 16 in App. D.2.

Recall that fU |X does not vanish at either end point, aX and bX . Define the set I :=
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{u(1) > aX + ε or u(L) < bX − ε1} so that Ic = {U(1) ≤ aX + ε1 and U(L) ≥ bX − ε1}.

E
[∣∣aX + bX − U(1) − U(L)

∣∣r] = EXEU |X
[∣∣aX + bX − U(1) − U(L)

∣∣r |X] .
The conditional expectation is

EU |X
[∣∣aX + bX − U(1) − U(L)

∣∣r |X]
=

∫
I

∣∣aX + bX − U(1) − U(L)

∣∣r fU(1),U(L)|X(u(1), u(L)|x)du(1)du(L)

+

∫
Ic

∣∣aX + bX − U(1) − U(L)

∣∣r fU(1),U(L)|X(u(1), u(L)|x)du(1)du(L)

≤ const · P[I|X] +

∫
Ic

∣∣aX + bX − U(1) − U(L)

∣∣r fU(1),U(L)|X(u(1), u(L)|x)du(1)du(L). (5.5)

Let us separately evaluate each term. First, since {Ui}Li=1 are independent when conditioned

on X,

P[I|X] ≤ P[U(1) > aX + ε1|X] + P[U(L) < bX − ε1|X]

=
L∏
i=1

P[Ui > aX + ε1|X] +
L∏
i=1

P[Ui < bX − ε1|X]

=
L∏
i=1

(1− P[Ui ≤ aX + ε1|X]) +
L∏
i=1

(1− P[Ui ≥ bX − ε1|X])

= (1− P[U ≤ aX + ε1|X])L + (1− P[U ≥ bX − ε1|X])L,

where the last equality follows since agents are i.i.d. Since fU |X is continuous and does not

vanish at aX , bX :

lim
u→aX or bX

fU |X(u|x) ≥ δ

P[U ≤ aX + ε1|X] ≥ δε1 and P[U ≥ bX − ε1|X] ≥ δε1.

Therefore

P[I|X] ≤ (1− P[U ≤ aX + ε1|X])L + (1− P[U ≥ bX − ε1|X])L ≤ 2(1− δε1)L,

so the first term vanishes exponentially fast as L.
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Let us consider the second term of (5.5). Take random variables

η := L

∫ U(1)

aX

fU |X(u)du ≥ δL(U(1) − aX),

ξ := L

∫ bX

U(L)

fU |X(u)du ≥ δL(bX − U(L)),

where aX ≤ U(1) ≤ aX + ε1, bX − ε1 ≤ U(L) ≤ bX with marginal and joint distributions [112]

fξ(s) = fη(s) =
(

1− s

L

)L−1

and

fξ,η(s1, s2) =
L− 1

L

(
1− s1 + s2

L

)L−2

,

where s1, s2 ≥ 0 and s1 + s2 ≤ L. Also note that as L → ∞, ξ and η are asymptotically

independent and fξ(s), fη(s)→ e−s. From the definition of ξ, η,

|aX + bX − (U(1) + U(L))|r =
(
(U(1) − aX) + (bX − U(L))

)r ≤ 2r(ξr + ηr)

(Lδ)r
,

where the last inequality follows from Prop. 18 and the definitions of η and ξ. Therefore,

when L is large the second term is∫
Ic

∣∣aX + bX − U(1) + U(L)

∣∣r fu(1),u(L)|X(u(1), u(L)|x)du(1)du(L)

≤ 2r

(Lδ)r

∫ L(1−FU|X(bX−ε1)

0

∫ LFU|X(aX+ε1)

0

(sr1 + sr2)fξ,η(s1, s2)ds1ds2.

Combining all of the above,

Rr
sumD(L,R)

≤ Rr
sumK

rEX

[
2r

(Lδ)r

∫ L(1−FU|X(bX−ε1)

0

∫ LFU|X(aX+ε1)

0

(s1 + s2)fξ,η(s1, s2)ds1ds2 + ε

]
.

As
∫∞

0
sre−sds = r!,

lim
L→∞

Rr
sumD(L,Rsum) ≤ (2K)rI(Y ;U |X)r

δr

(
2

∫ ∞
0

sre−sds

)
=
r!2r+1KrI(Y ;U |X)r

δr
.

Taking infimum over Sn-reg gives us the achievability.
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5.3.3 Converse Coding Theorem

To show the converse, we will use the generalized Chazan-Ziv-Zakai bound since it still

holds for the non-regularity conditions (B1) and (B2) unlike the Cramer-Rao lower bound.

The next lemma is a generalized version of the Chazan-Ziv-Zakai bound. Proof is an easy

extension of special case r = 2 [96, 113], but for the sake of completeness we include it in

App. D.3. Note that Pmin in the next theorem is a function of fY |X so it is also an uncoded

lower bound like the Shannon lower bound in Sec. 5.2.3. However, it gives a matching

asymptotic lower bound up to a constant.

Lemma 15 (Chazan-Ziv-Zakai Bound for r ∈ N). Suppose X ∈ [0, 1]. Then,

E
[
|X − X̂|r

]
≥
∫ 1

h=0

r2−rhr−1

∫ 1−h

x=0

fX(x) + fX(x+ h)

2
Pmin[x, x+ h]dxdh,

where Pmin is the minimum probability of error of binary hypothesis testing with H0 : Y ∼ fY |x

and H1 : Y ∼ fY |x+h.

Proof. See App. D.3.

Recall that the same argument in Sec. 5.2.3 gives the sum rate lower bound

Rsum ≥
1

n

n∑
t=1

L∑
i=1

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)].

Theorem 23 (Converse for Non-regular CEO Problem).

βn-reg ≥ r2−r
(

min
U :X−Y−U

I(Y ;X|U)

)∫ 1

h̃=0

h̃r−1

∫ 1

x=0

fX(x)e−h̃g(x)dxdh̃,

where

g(x) =
d

d∆

(
− min

s∈[0,1]
log

(∫
f sY |X(y|x)f 1−s

Y |X(y|x+ ∆)dy

)) ∣∣∣∣∣
∆=0

.

Proof. It is obvious that the estimate from {Y n
i }Li=1 performs better than an estimate from
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codewords. Let X̂ ′ be the uncoded estimate, i.e., X̂ ′ = X̂ ′({Y n
i }Li=1). Then,

Dn(Xn, X̂n)

≥ Dn(Xn, (X̂ ′)n)

=
1

n

n∑
t=1

E
[
|X(t)− X̂(t)|

]
(a)

≥ 1

n

r2−r

2

n∑
t=1

∫ 1

h=0

hr−1

∫ 1−h

x=0

(fX(x) + fX(x+ h))Pmin(x, x+ h)dxdh

=
1

n

r2−r

2Lr

n∑
t=1

∫ 1

h=0

(Lh)r−1

∫ 1−h

x=0

(fX(x) + fX(x+ h))Pmin(x, x+ h)dxd(hL)

(b)
=

1

n

r2−r

2Lr

n∑
t=1

∫ 1

h̃=0

h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+

h̃

L
)

)
Pmin

(
x, x+

h̃

L

)
dxdh̃

(c)

≥ r2−r

2Lr
1

1
n

∑n
t=1

[∫ 1

h̃=0

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1 ,

where (a) follows from the Chazan-Ziv-Zakai bound in Lem. 15; (b) is obtained by letting

h̃ = hL; and (c) follows from the arithmetic-harmonic (AM-HM) inequality. In addition,
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Rr
sumD

n(Xn, X̂n)

≥ r2−r

2Lr

(
1
n

∑n
t=1

∑L
i=1 EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
1
n

∑n
t=1

[∫ 1

h̃=0
h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1

(a)

≥ r2−r

2Lr

1
n

∑n
t=1

(∑L
i=1 EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
1
n

∑n
t=1

[∫ 1

h̃=0
h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1

=
r2−r

2Lr

∑n
t=1

(∑L
i=1 EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
∑n

t=1

[∫ 1

h̃=0
h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1

(b)

≥ r2−r

2Lr
min
t

(∑L
i=1 EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
[∫ 1

h̃=0
h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1

≥ r2−r

2
min
t,i

(
EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
[∫ 1

h̃=0
h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+ h̃

L
)
)
Pmin

(
x, x+ h̃

L

)
dxdh̃

]−1

=
r2−r

2
min
t,i

(
EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
×
∫ 1

h̃=0

h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+

h̃

L
)

)
Pmin

(
x, x+

h̃

L

)
dxdh̃,

where (a) follows after applying the Jensen’s inequality on the numerator; and (b) follows

from Prop. 17 in App. D.4. Also the Chernoff-Stein lemma [70] gives

Pmin

(
x, x+

h̃

L

)
= e−LC(x,x+ h̃

L
),

where C
(
x, x+ h̃

L

)
is the Chernoff information between two conditional densities of y given

x and x+ h̃
L

. Since L→∞, the quantity Gx

(
h̃
L

)
:= C

(
x, x+ h̃

L

)
can be approximated by
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the Maclaurin expansion

Gx(∆) = Gx(0) + ∆ ·G′x(0) +O(∆2).

As Gx(0) = 0, we have

Pmin

(
x, x+

h̃

L

)
= e−LC(x,x+ h̃

L
) = e−h̃G

′
x(0)+O(L−1).

Therefore, for large L,

Rr
sumD

n(Xn, X̂n)

≥ r2−r

2

(
min
t,i

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r
×
∫ 1

h̃=0

h̃r−1

∫ 1− h̃
L

x=0

(
fX(x) + fX(x+

h̃

L
)

)
e−h̃G

′
x(0)+O(L−1)dxdh̃

(a)
=
r2−r

2

(
min
t,i

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r ∫ 1

h̃=0

h̃r−1

∫ 1

x=0

2fX(x)e−h̃g(x)dxdh̃

= r2−r
(

min
t,i

EX̆t [I(Yi(t);Ui(t, X̆t)|X(t)]

)r ∫ 1

h̃=0

h̃r−1

∫ 1

x=0

fX(x)e−h̃g(x)dxdh̃

≥ r2−r
(

min
t,i,X̆t

I(Yi(t);Ui(t, X̆t)|X(t)

)r ∫ 1

h̃=0

h̃r−1

∫ 1

x=0

fX(x)e−h̃g(x)dxdh̃,

where (a) follows from the fact that L is sufficiently large; and g(x) is the first derivative of

G′x(0), i.e.,

g(x) =
d

d∆

(
− min

s∈[0,1]
log

(∫
f sY |X(y|x)f 1−s

Y |X(y|x+ ∆)dy

)) ∣∣∣∣∣
∆=0

.

Taking limits concludes the proof that

βn-reg = lim
L,Rsum→∞

lim
n→∞

Rr
sumD

n(Xn, X̂n)

≥ r2−r
(

min
U :X−Y−U

I(Y ;U |X)

)r ∫ 1

h̃=0

h̃r−1

∫ 1

x=0

fX(x)e−h̃g(x)dxdh̃.
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5.4 Equivalence of Quadratic and Logarithmic Distortions

In this section, we will show that quadratic distortion DQ and logarithmic distortion DLog [61]

are in fact asymptotically equivalent under some conditions. Those two are in general related

by the entropy power inequality [70], that is, when Z is a set of received messages,

Var(X|Z) ≥ 1
2πe
eh(X|Z) =⇒ DQ ≥ 1

2πe
2DLog .

We previously showed equality in the case of the jointly Gaussian CEO problem with finite

number of agents [62] due to entropy maximization property of Gaussians. Here we extend

it to our regular CEO problem and provide conditions for which DQ and DLog are equivalent

under the entropy power conversion DQ = 1
2πe

2DLog , as L→∞. Regarding such universality

of logarithmic distortion, it is known that logarithmic distortion is equivalent to any distor-

tion measure in a direct source coding problem [114], but note that it is not true for remote

source coding problems.

To argue the equivalence, we state again that each agent’s test channel fUi|Yi is identical

to fU |Y as assumed in the previous sections since it does not lose optimality.3 Also beyond

the regular model in Sec. 5.2, we further suppose the following conditions on test channel

for logarithmic optimal codewords [115,116]:

(C1) For all x ∈ X , it holds that
∫
U

∂2

∂x2
fU |X(u|x)du = 0. Also the Fisher information is

finite and positive, i.e.,

0 < IU(x) := EU |x[( ∂
∂x

log fU |X(U |x))2] <∞

for all x ∈ X .

(C2) Let x0 denote the true source. Then, there exists k(u) such that | ∂2
∂x2
fU |x(u|x)| ≤ k(u)

on small neighborhood of x0 and such that Ex0 [k(U)] is finite.

Define S ′reg to be the set of Us that satisfy (C1) and (C2) as well as (A5)–(A7). Note that

although S ′reg ⊂ Sreg, it only affects a constant factor in Thm. 18.

Theorem 24. Given L,Rsum, suppose optimal codebook for logarithmic distortion is gener-

3Note that individual rates need not be identical; however, the sum rate that agents must satisfy is
unchanged by the Slepian-Wolf coding regardless of individual rate allocation.
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ated from a member of S ′reg. Then, DQ(L,Rsum) and DLog(L,Rsum) asymptotically satisfy

DQ(L,Rsum)− 1

2
log (2πeDLog(L,Rsum))→ 0 as L,Rsum →∞.

It is easy to anticipate that the logarithmic distortion decays as− logL (so that− logRsum)

since the minimum logarithmic distortion is always h(X|UL) by declaring posterior distri-

bution [61, Lem. 1] and h(X|UL) decreases as − logL from Lem. 14. The above theorem

not only validates such intuition, but also shows its asymptotic equivalence to quadratic

distortion with entropy power relation. Before proceeding to the proof, let us state the

Bernstein-von Mises theorem which is often referred to as asymptotic normality of posterior,

without the prior having an effect.

Lemma 16 (Bernstein-von Mises [115,116]). Suppose (C1) and (C2) as well as (A1)–(A7)

hold. Then, for any x0 ∈ X ,

‖f(X|UL)−N (X̂MLE, (LIU(x0))−1)‖TV → 0 as L→∞ with fY |x0-probability 1,

where X̂MLE and ‖·‖TV denote the maximum likelihood estimator and total variation distance,

respectively.

Now we can prove the equivalence, which relies on the Bernstein-von Mises theorem.

Proof of Thm. 24. Let us consider the quadratic optimal codebook and fix some codewords

(w1, w2, . . . , wL). Then, incurred quadratic distortion is

(
Dn

Q(L,Rsum|{wi}Li=1)
)n

=

(
1

n

n∑
i=1

E
[
|Xi − X̂i|2|{wi}Li=1

])n

=

(
1

n

n∑
i=1

Var(Xi|{wi}Li=1)

)n

(a)

≥
n∏
i=1

Var(Xi|{wi}Li=1)

(b)

≥
n∏
i=1

1

2πe
e2h(Xi|{wi}Li=1) =

1

(2πe)n
e2

∑
h(Xi|{wi}Li=1)

(c)
=

1

(2πe)n
22nDnLog(L,Rsum|{wi}Li=1) =

(
1

2πe
22DnLog(L,Rsum|{wi}Li=1)

)n
,

where (a) follows from the arithmetic-geometric inequality; (b) follows from the fact that

Gaussian maximizes differential entropy for a given variance; and (c) follows by declaring
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the true posterior distribution [61, Lem. 1]. Hence, taking expectation over all codewords,

Dn
Q(L,Rsum) = E

[
Dn

Q(L,Rsum|{Wi}Li=1)
]
≥ E

[
1

2πe
22DnLog(L,Rsum|{Wi}Li=1)

]
(d)

≥ 1

2πe
22E[DnLog(L,Rsum|{Wi}Li=1)] =

1

2πe
22D̃nLog(L,Rsum),

where (d) follows from the Jensen’s inequality and D̃n
Log is the logarithmic distortion incurred

by quadratic optimal codebook. It is therefore obvious that the logarithmic optimal codebook

achieves a smaller distortion. It shows one direction

Dn
Q(L,Rsum) ≥ 1

2πe
22DnLog(L,Rsum).

To show the other direction, consider the logarithmic optimal codebook.

Dn
Log(L,Rsum) = h(X|UL)

(a)
=

1

2
log
(
2πeVar(X|UL)

) (b)

≥ 1

2
log
(
2πeDn

Q(L,Rsum)
)
,

where (a) is in fact ‘≥’, but the equality holds asymptotically by the Bernstein-von Mises

theorem; and (b) follows since the logarithmic optimal codebook is suboptimal for quadratic

distortion. The theorem is proved.

5.5 Chapter Summary

In this chapter, we study two continuous alphabet CEO problems—regular and non-regular—

and find their matching sum rate asymptotics R
−r/2
sum and R−rsum, respectively, for |x − x̂|r

distortion. We also propose practical estimators, sample median and midrange estimators,

unlike usual MLE or MMSE [39,57] that are computationally expensive.

Inspired by the Bernstein-von Mises theorem, we also provide a condition for the regular

model, under which quadratic and logarithmic distortions are asymptotically equivalent by

entropy power relation as the number of agents grows.
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Chapter 6

Conclusion and Future Research

In this dissertation, we have discussed three examples of human-machine information pro-

cessing systems. As noted, the main reason for the difference from machine-only systems is

the bounded rationality of humans. We aim at separate examples of bounded rationality in

each chapter.

We model the bounded rationality as workload-dependent (in Chaps. 2 and 3) information

processing quality and study Shannon’s capacity theorem. The purpose of this research is

to understand how systems that involve humans behave and how we can optimally design

them. We only consider one aspect of the queueing metric, namely queue length seen by

departure; we believe this is the most reasonable metric at least in a crowdsourcing appli-

cation. However, moving to another queueing metric, we can also consider the case that

service quality relies on the queue-length seen by arrivals. This is especially the case when

customers in a hurry are the source of errors. The nature of Chaps. 2 and 3, however, remains

unchanged since, for the single-user case, distributions of queue-length seen by arrivals and

departures are identical. The distributions seen by arrivals and departures are nonidenti-

cal in general. Waiting-time-dependent service quality is interesting and a good proxy for

quantum bit processing [117].

Social learning in sequential decision-making (Chap. 4) is a new formulation in the sense

that people in sequential social learning are not aware of others’ beliefs based on which

previous decisions are made. This study brought to light two main attributes. Firstly, having

perfect prior information does not guarantee that the team can function well together. In

fact, complementary sets of traits constitute good teams, therein informing us of what pairs

of agents can function well together. In addition, comparing the optimal beliefs with the

Prelec reweighting functions, we observe that humans might be fundamentally predisposed

to functioning well in teams if the advisor is open-minded and has more expertise than the

closed-minded learner. The social learning study allows us to deduce optimal interactions

between human and machine depending on expertise and bias on an inference problem. With

the growth of machine learning, designing machines for humans or systems that interact with
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humans, for example crowdsourcing systems or AI-assisted physicians, is crucial. Therefore,

developing machines involving humans in the loop is a problem of great interest. From

cumulative prospect theory, we can assume the Prelec reweighting function is a good analytic

model for humans, which leads us to a further machine-human interacting system design.

Lastly, we formulate collaborative decision-making as a CEO problem and then extend the

classical CEO problem to two continuous alphabet settings, called regular and non-regular

CEO problems, with general rth power of difference and logarithmic distortions, and study

matching asymptotics of distortions. Noting that the conditions for regular models (A1)–

(A7) and for non-regular models (B1)–(B2) do not form a disjoint partition, there are many

other models that do not belong to either of the two. For example, when the observational

noise is additive triangular, it does not satisfy non-vanishing probability density in (B1) so

that the midrange estimator does not gives tight asymptotics with the Chazan-Ziv-Zakai

based converse. So it would be an interesting future direction to find a generalization of the

source-observation condition and its matching estimation scheme in (non-)asymptotic regime.

As mentioned, the jointly Gaussian model is the worst model among all finite variance models

as shown in [65] and all regular models have the same asymptotics. Therefore, regular models

belong to the class of the slowest distortion decay R
−r/2
sum , and our non-regular models are

another class of decay R−rsum. In this context, it is interesting to classify various models by

distortion decay.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 1

We need separate approaches for Type I and Type II arrival processes, as the nature of {Qi}
process depends on the type.

First consider Type II processes. For these, λ < 1 implies
∑

k kmA(k) < 1. If mA(0) = 0,

the mean arrival rate must be equal or greater than 1, contradicting the assumption. Hence,

mA(0) > 0. Also from the assumption in Sec. 2.1, mA(1) > 0.

Under the assumptions, we show {Qi} is an irreducible and aperiodic Markov chain by

proving P(Qi+1 = Qi + 1|Qi), P(Qi+1 = max(Qi − 1, 0)|Qi), P(Qi+1 = Qi|Qi) > 0 for all Qi.

If this is true then any state can be reached from any other state, since states are in Z+.

Notice the enumerated probabilities are probabilities of the events corresponding to two,

one, and no arrivals, respectively, during a service time.

By the above result and assumption, mA(0),mA(1) > 0 and there exists an s > 1 such that

PS(s) > 0. Note the probability of exactly two arrivals in a service time is lower bounded by

(mA(1))2(mA(0))s−2PS(s)

for any s > 1. As there exists an s > 1 such that PS(s) > 0 and mA(a),mA(1) > 0, this

bound is strictly positive. Probability of exactly one arrival in a service time is lower bounded

by mA(1)(mA(0))s−1PS(s) for any s > 0, which again is strictly positive. Probability of no

arrival is lower bounded by PS(s)(mA(0))s, which is also strictly positive.

Note that as P(Qi+1 = Qi|Qi) > 0, this Markov chain is also aperiodic. Due to the

self-loop if P(Qi+k = q′|Qi = q) is positive, then so is P(Qi+k+1 = q′|Qi = q).

Positive recurrence follows by considering queue-length to be the Lyapunov function, be-

cause λ < µ. Hence, the result follows for Type II processes due to the existence of a unique

stationary distribution for an irreducible and aperiodic positive recurrent Markov chain.
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Hence, {Qi} is ergodic.

For Type I, {Qi} is not a Markov chain, and we take a different approach. First note that

as µ < 1,
∑

s sPS(s) > 1. This implies there exists an s > 1 such that PS(s) > 0. Note that

by assumption λ < µ. Then, for Type I arrival processes this implies there exists an a > 1

such that PA(a) > 0.

Consider the process {Wi}, the sojourn time for jobs. We first claim that under the

assumption, this is an irreducible, aperiodic, and positive recurrent Markov chain. It is

known in queuing theory that for i.i.d. inter-arrival and service times, {Wi} is a Markov

chain. Next, we show irreducibility and aperiodicity by showing that P(Wi+1 = Wi + 1|Wi),

P(Wi+1 = Wi|Wi), and P(Wi+1 = max(Wi − 1, 0),Wi) > 0.

First, we consider the case when PA has a support that spans Z+. As µ < 1, there exists an

s > 1 such that PS(s) > 0. Consider a possible path from Wi to Wi+1 = max(Wi + b, 0), b ∈
{0,±1}. This can happen as follows: the (i+1)th job brings a service time requirement of s,

and it reaches the system s− b time after the ith job. As the service times and inter-arrival

times are independent, probability of this sample path event is exactly PS(s)PA(s−b), which

is strictly positive.

Next, we consider the case when PS has a support spanning Z+. As λ < 1, there exists an

a > 1 such that PA(a) > 0. Then a possible path for the events is as follows: the (i + 1)th

job comes a time after ith job and brings with it a service requirement of a + b. The rest

follows by evaluating the probability of this event.

Note that {Wi} is an irreducible and aperiodic Markov chain. Note that given Wi, Qi is

independent of anything else because given Wi, it only depends on the number of arrivals in

the time Wi:

P(Qi = q) = P

(
q∑
i=1

Ai ≤ Wi <

q+1∑
i=1

Ai

)
.

As the Ai are i.i.d., this also implies that given a distribution of Wi, the distribution of Qi

is fixed.

It follows from queuing theory that {Wi} is positive recurrent for λ < µ. Hence, {Wi}
converges in distribution to a stationary distribution, and by the above argument, so does

{Qi}. Ergodicity of Qi follows from the ergodicity of Wi. �
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A.2 Proof of Theorem 2

Let {Q̂i} be queue-lengths seen by the arrivals, then the stationary distribution of Q̂i is the

same as that of Qi. Note that there is only one arrival and one departure at a time. Since

the queue-length is stable, the fraction of time the queue-length increases by 1 from a value

q is the same as the fraction of time the queue-length decreases by 1 from q, for all q. Since

increase corresponds to arrival and decrease corresponds to departure, the fractions of arrivals

and departures that see a queue-length q are the same. Thus it is sufficient to show that the

stationary distribution of {Q̂} is πk = (1−σ)σk, where σ solves x =
∑∞

n=0 PA(n)(1−µ+xµ)n

in (0, 1).

We shall first show the uniqueness of the stationary distribution from the fact that {Q̂i}
is an irreducible Markov chain, and then derive the stationary distribution.

Consider the transition probability

P(Q̂i+1 = q′|Q̂i = q, Q̂i−1, . . .).

As at most one arrival is possible, the probability is 0 for q′ − q > 1. For q′ − q ≤ 1,

P(Q̂i+1 = q′|Q̂i = q, Q̂i−1, . . .)

= P(there are q − q′ + 1 departures

between i and i+ 1 arrival | Q̂i = q, Q̂i−1, . . .).

As service time is geometric with mean 1
µ

and hence memoryless, starting from any time, the

time to the next departure is geometric with the same mean, if there is a job in the queue.

After any arrival, there is always at least one job in the queue, and hence, time to the next

departure is geometric. Thus the probability that there are q − q′ + 1 departures given the

past is nothing but the probability that the sum of q − q′ + 1 geometric random variables is
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less than a realization of PA. Thus,

P(Q̂i+1 = q′|Q̂i = q, Q̂i−1, . . .)

=
∞∑
t=0

PA(t)P

(
q−q′+1∑
i=1

Si ≤ t ≤
q−q′∑
i=1

Si

)

=
∞∑
t=0

PA(t)P(Bin(t, µ) = q − q′ + 1) (A.1)

=
∞∑
t=0

PA(t)

(
t

q − q′ + 1

)
(1− µ)t−q+q

′−1µq−q
′+1.

Eq. (A.1) follows because the service times are geometric, meaning each time a job in

service gets completed according to a Bernoulli random variable, and the sum of Bernoulli

random variables is binomial. This derivation implies the transition depends only on q and

q′, further implying the process is Markov.

Thus the probability of the q → 0 transition is

∞∑
t=0

PA(t)

(
t

q + 1

)
(1− µ)t−q−1µq+1.

Note that the transitions can be written as the amount of change in the queue-length,

meaning a q → q′ transition is a q − q′ change, and is nothing but the probability of having

q − q′ + 1 departures before an arrival.

For k ≥ 0, let βk denote the probability that the sum of k geometric random variables is

less than the time between two arrivals. Then, for q′ > 0,

P(Q̂i+1 = q′|Q̂i = q) = βq−q′+1,

and for q′ = 0,

P(Q̂i+1 = 0|Q̂i = q) = 1−
q∑

k=0

βk.

Also, as β0, β1, β2 > 0, the Markov chain is irreducible and aperiodic. Thus there exists

a unique stationary distribution π which solves π = π[P ], where [P ] is the probability

transition matrix. The transition matrix [P ] is written as a matrix whose first column is

(1 − β0, 1 −
∑1

k=0 βk, . . .)
T and other columns are (0, . . . , β0, β1, β2, . . .)

T , where β0 is the

(i, i+ 1)th entry.
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From π = π[P ] it follows that

π0 =
∞∑
i=0

(
1−

i∑
k=0

βk

)
πi,

πk =
∞∑
i=0

πk−1+iβi for k > 0.

Like in the analysis of GI/M/1 queue [72], we guess a solution πk = π0σ
k for some σ < 1.

Next, we check if this solution satisfies π = π[P ] for a unique σ < 1.

It follows from π = π[P ], as above, that σ must satisfy

σ =
∞∑
i=0

σiβi

=
∞∑
i=0

σi
∞∑
t=0

PA(t)

(
t

i

)
(1− µ)t−iµi

=
∞∑
t=0

PA(t)
t∑
i=0

(
t

i

)
(1− µ)t−i(σµ)i (A.2)

=
∞∑
t=0

PA(t)(1− µ+ σµ)t. (A.3)

Eq. (A.2) follows by interchanging the two sums, as per the Fubini-Tonelli theorem since

terms are non-negative. Eq. (A.3) follows using the binomial theorem.

To show that the distribution π is unique, we show that x =
∑∞

t=0 PA(t)(1− µ+ xµ)t has

a unique solution in 0 < x < 1. Towards this we characterize
∑∞

t=0 PA(t)(1 − µ + xµ)t, in

Lems. 17 and 18 given below, which complete the proof. �

Lemma 17. For any PA on Z+ and µ ∈ (0, 1),
∑∞

t=0 PA(t)(1 − µ + xµ)t is an increasing

function of x in (0, 1), and strictly convex in (0, 1).

Proof. Define

f(x) =
∞∑
t=0

PA(t)(1− µ+ xµ)t.

It is sufficient to show that f ′(x), f ′′(x) are both strictly positive in x ∈ (0, 1).
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Let the partial sum up to T in f(x) be fT (x), i.e.,

fT (x) =
T∑
t=0

PA(t)(1− µ+ xµ)t,

and then

f ′T (x) =
T∑
t=0

µtPA(t)(1− µ+ xµ)t.

It is easy to see that f ′T (x) is increasing as 0 < 1−µ+xµ < 1. In addition, f ′T (x) is bounded

since

f ′T (x) =
T∑
t=0

µtPA(t)(1− µ+ xµ)t

≤ µ
T∑
t=0

tPA(t) <∞.

Since f ′T (x) is increasing and bounded, limT→∞ f
′
T (x) exists for all x ∈ (0, 1).

Next, note that for any x ∈ (0, 1), the difference between f ′T (x) and f ′(x) is

f ′(x)− f ′T (x) =
∞∑

t=T+1

µtPA(t)(1− µ+ xµ)t−1

≤ µ
∞∑

t=T+1

tPA(t)→ 0

as T → ∞, where the inequality follows from 0 < 1 − µ + xµ < 1 and the limit follows

from the condition of fixed mean. Then, limT→∞ f
′
T (x) = f ′(x) uniformly in (0, 1). That

f ′(x) > 0 follows from

0 < 1− µ+ xµ < 1.

Similarly, we can show the existence and strict positivity of f ′′(x), which completes the

proof.

Lemma 18. The equation x =
∑∞

t=0 PA(t)(1− µ+ xµ)t has a unique solution in (0, 1).

Proof. Note that x = 1 is a solution to this fixed-point equation. First, we show that there

is at least one fixed point in (0, 1).
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Again, f(x) =
∑∞

t=0 PA(t)(1− µ+ xµ)t > 0 for x = 0. Hence, if there is no fixed point in

(0, 1) this implies that f(x) is strictly greater than x in (0, 1).

Now, consider the derivative of f(x) at 1 − δ
µ
, which is µ

∑
t t(1 − δ)tPA(t) = µÂ(1 − δ),

where Â(α) = EPAαA. We know that generating function Â is continuous around 1. Hence,

as δ → 0, Â(1 − δ) → 1
λ
. As µ

λ
> 1, there exists δ > 0 such that µ

∑
t t(1 − δ)tPA(t) > 1.

This means that the derivative of f(x) at x = 1− δ is > 1.

If f(x) > x for all x ∈ (0, 1), then the following is true. From convexity of f ,

f(1) ≥ f(1− δ) + δf ′(1− δ)

> 1− δ + δf ′(1− δ)

> 1− δ + δ = 1.

This is a contradiction. So, there exists a fixed point in (0, 1).

Let us assume there is more than one fixed point in (0, 1). By Lem. 17, f(x) is convex in

(0, 1). A convex function can intersect a line at most twice. As f(x) crosses y = x at x = 1,

there can be only one fixed point in [0, 1), but 0 is not a fixed point.

A.3 Proof of Lemma 2

Note that for a geometric random variable Ai with mean 1/λi and letting α = (1−µ−σµ) ∈
(0, 1),

Ã(PAi , σ) =
∞∑
t=1

αtPAi(t)

=
∞∑
t=1

αt(1− λi)t−1λi = αλi

∞∑
t=0

(α(1− λi))t

=
αλi

(1− α) + αλi
=

α
1−α

1
λi

+ α
1−α

. (A.4)

Consider the sum-of-geometric random variables As first. Then for any sum-of-geometric
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random variable PAs ∈ As,

Ã(PAs , σ) =
∞∑
t=1

αtPAs(t)

=
∞∑

ti=1, 1≤i≤I

αt1+t2+···+tIPA1(t1) · · ·PAI (tI)

=
I∏
i=1

∞∑
ti=1

αtiPAi(ti) =
I∏
i=1

α
1−α

1
λi

+ α
1−α

.

The last equality follows from (A.4). Note that the inequality∏
i

(1 + xi) ≥ 1 +
∑
i

xi

holds for any xi > 0. Hence, inverting both sides of this inequality and scaling both numer-

ator and denominator by α
1−α ,

Ã(pAs , σ) =
I∏
i=1

α
1−α

1
λi

+ α
1−α

≤
α

1−α∑I
i=1

1
λi

+ α
1−α

=
α

1−α
1
λ

+ α
1−α

= Ã(geo, σ).

Next since Am is mixed, for any PAm ∈ Am,

Ã(PAm , σ) =
∞∑
t=1

αtPAm(t) =
I∑
i=1

ci

∞∑
ti=1

αtiPAi(ti)

=
I∑
i=1

ci

α
1−α

1
λi

+ α
1−α

.
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The last expression is convex in 1/λi. Hence by Jensen’s inequality

Ã(PAm , σ) =
I∑
i=1

ci

α
1−α

1
λi

+ α
1−α

≥
α

1−α∑I
i=1 ci

1
λi

+ α
1−α

=
α

1−α
1
λ

+ α
1−α

= Ã(geo, σ).

A.4 Proof of Theorem 3

Consider the following transition probability for q > 0:

P(Qi+1 = q′|Qi = q,Qi−1, . . .)

= P(there are q′ − q + 1 arrivals

between departures i− 1 and i | Qi = q,Qi−1, . . .)

= P(sum of q′ − q + 1 geometric times

≤ interdeparture time between i− 1 and i) (A.5)

=
∞∑
t=0

PS(t)P(Bin(t, λ) = q′ − q + 1) (A.6)

=
∞∑
t=0

PS(t)

(
t

q′ − q + 1

)
(1− µ)t−q

′+q−1µq
′−q+1

= kq′−q+1.

Eq. (A.5) follows because geometric random variables are memoryless. Geometric inter-

arrival is the same as Bernoulli arrival per time slot, and the sum of Bernoulli variables is

binomial, which leads to (A.6).

When Qi = 0, note that just before the (i+ 1)th arrival, the queue-length is 0, and it is 1

just after the (i+1)th arrival. Then the probability that Qi+1 = q′ is equal to the probability

that there are exactly q′ arrivals during the service time of the (i + 1)th job. From above,

this is equal to kq′ .

This proves {Qi} is Markov; irreducibility and aperiodicity follow since P(Qi+1 = Qi +

δ|Qi) > 0 for δ ∈ {0,±1}.

118



From π = π[P ] for this Markov chain it follows that

π0k0 + π1k0 = π0

π0k1 + π1k1 + π2k0 = π1

...

Multiplying the first equation by z0, the second by z, the third by z2, and so on, and then

summing all of them we get

π0K(z) +K(z)(π1 + π2z + · · · ) = Π(z),

which, after some algebra, gives

Π(z) =
π0(z − 1)K(z)

z −K(z)
.

We know that Π(1) = 1, so the left side must also be 1 for z = 1. But it is 0
0

when evaluated

at z = 1, as K(1) =
∑

j kj = 1. Thus using l’Hôpital’s rule we get

π0 =
1−K ′(1)

K(1)
.

Note that K ′(z) =
∑

j jkjz
j which gives K ′(1) =

∑
j jkj, i.e., K ′(1) is the expected

number of arrivals in a time distributed as PS. As arrivals are Bernoulli and are independent

from service times, from Wald’s lemma we get

K ′(1) =
λ

µ
,

which in turn gives π0 = 1− λ
µ
.

From Π(z) we can obtain π1 by evaluating Π(z)−π0
z

as z → 0. By repeating the procedure

we can obtain πk by evaluating the limit of
Π(z)−

∑k−1
j=0 πjz

j

zk
as z → 0.
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Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 7 (GI/M/1 queues)

In the case of GI/M/1 queues, it is easier to derive the queue-length distribution seen by ith

arrival (i.e., just prior to arrivals), say Q̂i, than Qi because of the memoryless property of

the server. From the same argument as in the proof of Lem. 3, we know that generic random

variable Q̂
d
= Q when it is stationary, so we will consider Q̂ instead of Q.

Notice that Q̂n+1 = (Q̂n− βn + 1)+, where βn is the number of jobs completed during the

inter-arrival time An+1. As {An} is i.i.d., it does not depend on the past history of the queue

and neither does βn. Therefore, Q̂n forms a discrete-time Markov chain.

Define `q to be the probability of q job completions between two consecutive arrivals, i.e.,

`q := P[βn = q|Q̂n ≥ q] =

∫ ∞
0

PA(t)
e−µt(µt)q

q!
dt. (B.1)

Then, the transition matrix [P ] is given by1

[P ] =


1− `0 `0 0 0 · · ·

1− `0 − `1 `1 `0 0 · · ·
1− `0 − `1 − `2 `2 `1 `0 · · ·

...
...

...
...

. . .

 ,
1Such a matrix is called a lower Hessenberg matrix.
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and the stationary distribution relationship π̂ = π̂[P ] yields

π̂(0) =
∞∑
q=0

π̂(q)

(
1−

q∑
i=0

`i

)
,

π̂(i) =
∞∑
q=0

`qπ̂(i+ q − 1) for i > 1. (B.2)

As the stationary distribution is unique, it suffices to show that π̂(q) = π̂(0)σq for some

σ < 1. Substituting π̂(q) = π̂(0)σq into (B.2), we have

σ =
∞∑
q=0

`qσ
q =: B(σ). (B.3)

Note that B(0) = `0 > 0, B(1) = 1, and B(σ) is convex over σ ∈ [0, 1] since B′(σ), B′′(σ) ≥ 0.

There are two possible cases: no fixed point in (0, 1) or a unique fixed point in (0, 1). Recall

B(σ) is a probability generating function of `q and thus, B′(1) = µ
λ

= ρ−1 > 1 since it is

the number of job completions normalized by inter-arrivals. Therefore, the latter is the only

possibility and the fixed point in (0, 1) is unique. Let σ∗ denote the solution.

On the other hand, substituting (B.1) into (B.3),

σ =
∞∑
q=0

`qσ
q =

∞∑
q=0

(∫ ∞
0

PA(t)
e−µt(µt)q

q!
dt

)
σq

=

∫ ∞
0

PA(t)
∞∑
q=0

e−µt

q!
(µtσ)qdt

=

∫ ∞
0

PA(t)e−µt
∞∑
q=0

(µtσ)q

q!
dt

=

∫ ∞
0

PA(t)e−µt(1−σ)dt

= A∗(µ(1− σ)),

where A∗(·) is the Laplace-Stieltjes transform of PA(t). Hence, the fixed point solution σ∗

is the unique root of

σ = A∗(µ(1− σ)).
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As
∑

q π̂(q) = 1, it is easy to see π̂(0) = 1− σ∗. Therefore,

π(q) = π̂(q) = (1− σ∗)(σ∗)q.

B.2 Proof of Theorem 8 (M/GI/1 queues)

To derive π(Q) in closed form, we will first show that {Qi} forms a Markov chain, and then

represent the stationary distribution in terms of P S.

Let Qn+1 be the queue-length seen by (n+ 1)th departure. Then, we observe that

Qn+1 =

Qn + αn+1 − 1 if Qn ≥ 1,

αn+1 if Qn = 0,

where αn+1 is the number of jobs arriving during the service time of (n+1)th job. Since αn+1

is independent of past history {Qn, Qn−1, · · · , Q1}, we know that {Qn} forms a discrete-time

Markov chain. Furthermore, it is time-homogeneous as inter-arrivals and services are i.i.d.

Denote the transition probability of the Markov chain by pij := P[Qn+1 = j|Qn = i].

Then,

pij =

P[j − i+ 1 arrivals during service] if i ≥ 1,

P[j arrivals during service] if i = 0.

We obtain pij by marginalizing joint probability. Since the number of arrivals is Poisson,

P[q arrivals during service]

=

∫ ∞
0

P[S = t and q arrivals]dt

=

∫ ∞
0

P S(t)P[q arrivals|S = t]dt

=

∫ ∞
0

P S(t)
e−λt(λt)q

q!
dt.

Letting kq := P[q arrivals during service] for brevity, the transition matrix is given as fol-
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lows.2

[P ] =



k0 k1 k2 k3 · · ·
k0 k1 k2 k3 · · ·
0 k0 k1 k2 · · ·
0 0 k0 k1 · · ·
0 0 0 k0 · · ·
...

...
...

...
. . .


.

Solving the stationary distribution identity π = π[P ],

π(q) = π(0)kq +

q+1∑
j=1

π(j)kq−j+1 for q = 0, 1, · · · .

Multiplying the equations of each q by zq and summing over q = 0, 1, · · · , we have

Π(z) =
π(0)(1− z)K(z)

K(z)− z
,

where Π(z), K(z) are probability generating functions of π(q), kq,

Π(z) =
∞∑
q=0

π(q)zq and K(z) =
∞∑
q=0

kqz
q.

Note that K(1) =
∑

q kq = 1. By l’Hôpital’s rule at z = 1, we have π(0) = 1−K ′(1). Since

kq is the normalized number of arrivals during service time, the first moment K ′(1) = ρ = λ
µ
,

which implies π(0) = 1− ρ. Therefore,

Π(z) =
(1− ρ)(1− z)K(z)

K(z)− z
.

B.3 Proof of Lemma 6

To prove the ‘seen by departures’ result, we start from continuous-time ergodicity in [118].

We first take a continuous-time piecewise-deterministic Markov process [119]. Then, since it

is strong Markov, the stopped process at user k departures forms a stationary and ergodic

2Such a matrix is called an upper Hessenberg matrix.
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discrete-time Markov chain. Suppose that once job processing is completed and the job

departs at time t, the next job enters the server at time t+.

Let us take a continuous-time Markov process Z(t) := (L(t),A(t),S(t)) ∈ Z, where

• L(t) is the vector of transmitter jobs in order of their arrivals including the job in

the server. If the system is empty, L(t) = ∅. Otherwise, L(t) = (`0, `1, `2, · · · ) ∈ [1 :

K]Q(t)+1, where Q(t) is the queue-length at time t.

• A(t) ∈ RK
+ is the residual arrival time vector whose component Ak(t) indicates the

remaining time until the next arrival of kth user.

• S(t) ∈ (R+ ∪∞)K is the residual service time vector whose component Sk(t) indicates

residual service time if user k’s job is being served, infinite otherwise.

Under condition (3.7), this is Harris recurrent so that there exists the stationary distribution

π̂ and the following holds [118, Thm. 6.4]: For any g : Z 7→ R+,

lim
t→∞

1

t

∫ t

0

g(Z(s))ds = Eπ̂[g(Z)] almost surely. (B.4)

Fix a user k and take a sequence of stopping times (t1, t2, · · · ) such that tn := min{t >
tn−1 : Sk(t−) > 0, Sk(t) = 0} (assume t0 < 0 for simplicity), i.e., the sequence of hitting

times at which user kth job departs. Take a small ∆ > 0 and g1 := 1{Sk(t)≤∆}, g2 :=

1{|L(t)|=q+1,Sk(t)≤∆}. Since either inter-arrival time distributions or service time distribution

are continuous, we know that π̂ is also continuous. Therefore, (B.4) implies

lim
n→∞

1

tn

∫ tn

0

g1(Z(s))ds ≈ ∆ · π̂{Z(t) : Sk(t) = 0},

lim
n→∞

1

tn

∫ tn

0

g2(Z(s))ds ≈ ∆ · π̂{Z(t) : Q(t) = q, Sk(t) = 0}.

Taking ∆ → 0 and using the fact that the queue-length is a deterministic function of L(t),

it follows that the stationary distribution exists and

πKk(q) :=
π̂{Z(t) : |L(t)| = q + 1, Sk(t) = 0}

π̂{Z(t) : Sk(t) = 0}
. (B.5)
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Next show the ergodicity. Define samplings

h1(Z(t)) := 1{Sk(t)≤∆},

h2(Z(t)) := 1{Sk(t)≤∆}f(q(t)),

and note that

lim
n→∞

1

tn

∫ tn

0

h1(Z(s))ds = lim
n→∞

n∆

tn
= λKk∆

and

lim
n→∞

1

tn

∫ tn

0

h2(Z(s))ds = lim
n→∞

1

tn

n∑
i=1

f(q(tj))∆

= lim
n→∞

n

tn

1

n

n∑
i=1

f(q(ti))∆ = λKk∆ lim
n→∞

1

n

n∑
i=1

f(q(ti)),

where limn
n
tn
→ λKk is used due to the system stability. Then,

limn→∞
1
tn

∫ tn
0
h2(Z(s))ds

limn→∞
1
tn

∫ tn
0
h1(Z(s))ds

= lim
n→∞

1

n

n∑
i=1

f(q(ti)). (B.6)

Also letting ∆→ 0 and applying (B.4) to the left side of (B.6),

limn→∞
1
tn

∫ tn
0
h2(Z(s))ds

limn→∞
1
tn

∫ tn
0
h1(Z(s))ds

=
Eπ̂[h2(Z)]

Eπ̂[h1(Z)]

=

∑∞
q=0 f(q)π̂{Z(t) : Sk(t) = 0, |L(t)| = q + 1}

π̂{Z(t) : Sk(t) = 0}

=
∞∑
q=0

f(q)
π̂{Sk(t) = 0, |L(t)| = q + 1}

π̂{Sk(t) = 0}

=
∞∑
q=0

f(q)πKk(q) = EπKk [f(Q)].

Since Qi = Q(ti), the following holds:

1

n

n∑
i=1

f(qi) =
1

n

n∑
i=1

f(q(ti)) = EπKk [f(Q)]
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almost surely.

B.4 Proof of Lemma 7

We restricted to PPs over bounded B so ΦK ,Φ
∗
K both have no events outside of B. Therefore

it is sufficient to show that for all B′ ∈ B such that B′ ⊂ B,

dTV(NK(B′), N∗K(B′))→ 0 as K →∞.

Note that Poisson processes are infinitely divisible, so we can split into K independent

Poisson PPs {Φ∗Kk}k∈[1:K] with intensity λKk. Let N∗Kk be the counting measure of Φ∗Kk.

From the Poisson distribution and its Taylor expansion when |B|λKk is small:

P[N∗Kk(B) = 1] = |B|λKk +O(|B|2λ2
Kk),

P[N∗Kk(B) ≥ 2] = O(|B|2λ2
Kk).

Hence, the total variational distance between individual PPs is computed as follows, where
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argument B is omitted for simplicity.

2dTV(NKk, N
∗
Kk)

=
∑
j∈Z+

|P[NKk = j]− P[N∗Kk = j]|

= |(1− P[NKk ≥ 1])− (1− P[N∗Kk ≥ 1])|

+
∑
j≥1

|P[NKk = j]− P[N∗Kk = j]|

= |P[N∗Kk = 1] + P[N∗Kk ≥ 2]− P[NKk = 1]

− P[NKk ≥ 2]|+
∑
j≥1

|P[NKk = j]− P[N∗Kk = j]|

(a)

≤ |P[N∗Kk = 1]− λKk|+O(|B|2λ2
Kk) + P[NKk ≥ 2]

+
∑
j≥1

|P[NKk = j]− P[N∗Kk = j]|

(b)

≤ O(|B|2λ2
Kk) + P[NKk ≥ 2]

+
∑
j≥1

|P[NKk = j]− P[N∗Kk = j]|

(c)

≤ O(|B|2λ2
Kk) + P[NKk ≥ 2] + P[NKk ≥ 2] + P[N∗Kk ≥ 2]

= O(|B|2λ2
Kk) + 2P[NKk ≥ 2],

where (a) follows from the triangle inequality, (3.9), and the Taylor expansion; (b) follows

from the Taylor expansion; and (c) follows from the triangle inequality and the Taylor

expansion.

Now we bound the total variation between two sums of independent random variables as
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follows.

dTV(NK , N
∗
K)

(a)

≤
∑

k∈[1:K]

dTV(NKk, N
∗
Kk)

(b)

≤
∑

k∈[1:K]

O
(
|B|2λ2

Kk

)
+
∑

k∈[1:K]

P[NKk ≥ 2]

≤ c|B|2 ·
∑

k∈[1:K]

λKk

(
max
k∈[1:K]

λKk

)
+
∑

k∈[1:K]

P[NKk ≥ 2]

= c|B|2 · λ∗K · g2(K) +
∑

k∈[1:K]

P[NKk ≥ 2],

where (a) follows from the total variation inequality for product measures, and (b) follows

from the above derivation.

Therefore, the first term vanishes at speed O(|B|2g2(K)), the second term
∑

k P [NKk ≥
2] → 0 at speed O(g1(K,B)). So the overall speed of convergence is given by O(g(K,B)),

where g(K,B) := max{g1(K,B), |B|2g2(K)}.
Finally, for all subsets B′ ⊂ B with B′ ∈ B, we can repeat the above argument, but the

speed of convergence still holds since g1(K,B′) ≤ g1(K,B) and |B′|g2(K) ≤ |B|g2(K).

B.5 Proof of Lemma 8

We will first restrict the superposed RMPP on B, and then apply the data processing

inequality (also known as monotone theorem in some literature [120]) to show Q
(K)
i

TV→ Q∗i .

Without loss of generality, we only consider some arbitrary ith symbol whose arrival was at

ti > 0.

Let us introduce empty points [75]. When φ(t) is a specific realization of Φ(t), an arrival

time instance ej(φ) at which there is no job in the system (in the queue and in the server

both) is called an empty point.3 List ej(φ) in order

· · · < e−1(φ) < e0(φ) ≤ 0 < e1(φ) < · · · .

The jth empty point implies that the queue state after t = ej(φ) is completely determined

only by arrivals after ej(φ). Then, we know that e0(ΦK)
TV→ e0(Φ∗) with speed O(g(K,B))

3This is different from the regenerative cycles, introduced in Sec. 3.2. Since we are considering arbitrary
superposition process Φ that is not renewal in general, ej(Φ) is not regenerative.
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by data processing inequality and thus, ej(ΦK)
TV→ ej(Φ

∗) for any j by stationarity.

Take a set of PP realizations Au1 := {φ : −u1 < e0(φ) ≤ 0}. Since e0(ΦK)
TV→ e0(Φ∗), for

arbitrary ε1 > 0 it is possible to take u1, K0 such that for all K > K0,

PK [Au1 ] > 1− ε1 and P ∗[Au1 ] > 1− ε1.

Also, take a set Au2 := {φ : 0 < ti(φ) < u2}. Thus it is immediate that for arbitrary ε2 > 0

we can take u2 > 0 such that PK [Au2 ] > 1− ε2 and P ∗[Au2 ] > 1− ε2.

Let q(i, φ) be the queue-length seen by ith departure of φ, and u := max(u1, u2), ε := ε1+ε2.

By the property of the empty point and Au1 , Au2 ,

P ∗[φ : q(i, φ) = q(i,1[−u,u)φ)] ≥ P ∗[Au1 ∩ Au2 ] > 1− ε,

PK [φ : q(i, φ) = q(i,1[−u,u)φ)] ≥ PK [Au1 ∩ Au2 ] > 1− ε.

Setting B = [−u, u), we can bound total variation as follows:

dTV(Qi(ΦK), Qi(Φ
∗))

(a)

≤ dTV(Qi(ΦK), Qi(1BΦK)) + dTV(Qi(1BΦK), Qi(1BΦ∗))

+ dTV(Qi(1BΦ∗), Qi(Φ
∗))

(b)

≤ 2ε+ dTV(Qi(1BΦK), Qi(1BΦ∗))

(c)

≤ 2ε+ dTV(1BΦK ,1BΦ∗) ≤ 2ε+O(g(K,B)),

where (a) follows from the triangle inequality, (b) follows from the property of empty point,

and (c) follows from the data processing inequality since Qi(·) is a function of a PP. Since

ε1, ε2 are arbitrary, the statement is proved.
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Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 15

Let us prove Thm. 15 starting with the premise that q∗1 ≥ p0. First, from (4.25), we have

q∗1 ≥ p0 ⇔
P II1
e,2 − P II0

e,2

P I1
e,2 − P I0

e,2

≥ −1. (C.1)

To study the ratio in (C.1), consider the Type I vs. Type II error curve for binary

hypothesis testing under additive Gaussian noise.1 This is shown in Fig. C.1, and as seen

here is a convex function [108]. Note that on the curve, the Type I and Type II error

probabilities, (P I
e , P

II
e ), are the points on the curve that have tangents with slope matching

−
(

c10q
c01(1−q)

)
, where q is the corresponding prior probability, and σ2 is the variance of the

additive Gaussian noise.

First, from Thm. 12, we know that q0
2 ≥ q1

2 which in turn implies that λ0
2 ≥ λ1

2. This in

turn indicates that

P I0
e,2 = Q

(
λ02
σ2

)
≤ Q

(
λ12
σ2

)
= P I1

e,2.

Similarly, P II0
e,2 ≥ P II1

e,2 , and thus, as shown in the figure, the point B0 =
(
P I0
e,2, P

II0
e,2

)
lies to

the left of B1 =
(
P I1
e,2, P

II1
e,2

)
.

Further, since B1 lies on the curve, so does the point B̄1 =
(
P II1
e,2 , P

I1
e,2

)
as it caters to the

error probabilities corresponding to the probability of the null hypothesis P [H = 0] = 1−q1
2.

Thus, the line B1B̄1 has a slope of −1.

Note that condition (C.1) translates to the slope of the line B0B1 being greater than −1.

Observe that if B̄1 lies to the right of B1 then it implies that the slope of B0B1 is less than

−1, violating (C.1). Similarly, if B0 lies to the left of B̄1, then again the (C.1) is violated.

1It is also called receiver operating characteristic (ROC) curve [108, 121] when the curve is vertically
inverted.
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Figure C.1: The point B0 always exists between points B1 and B̄1.

On the other hand, if B0 lies between B̄1 and B1, then we know that the slope of B0B1

is greater than that of B1B̄1, therein satisfying (C.1). Thus, (C.1) is true if and only if the

point B0 lies between the two points B1 and B̄1.

From the convexity of the curve and comparing coordinates of B0 and B̄1, we have

q∗1 ≥ p0 ⇔ P I0
e,2 ≥ P II1

e,2 and P II0
e,2 ≤ P I1

e,2

(a)⇔ Q

(
λ0

2

σ2

)
≥ 1−Q

(
λ1

2 − 1

σ2

)
and Q

(
λ1

2

σ2

)
≥ 1−Q

(
λ0

2 − 1

σ2

)
(b)⇔ λ0

2 + λ1
2 ≤ 1

(c)⇔ 2λ1,[2] + σ2
2 log

P I
e,1,[2]

(
1− P I

e,1,[2]

)
P II
e,1,[2]

(
1− P II

e,1,[2]

)
 ≤ 1, (C.2)

where (a) follows from the false alarm and missed detection probabilities in terms of the

Q-function of the standard Gaussian random variable; (b) follows from the fact that the

Q-function is monotonically decreasing and that 1 − Q(x) = Q(−x); and (c) follows from

(4.22), (4.23), and λ1,[2] = λ2(q2).

From (4.28), we have

λ1,[2] =
1

2
+ σ2

2 log

(
c10q

∗
2

c01(1− q∗2)

)
.
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Substituting in (C.2), we have

q∗1 ≥ p0 ⇔ 2 log

(
c10q

∗
2

c01(1− q∗2)

)
≤ log

P II
e,1,[2]

(
1− P II

e,1,[2]

)
P I
e,1,[2]

(
1− P I

e,1,[2]

)
 .

Letting x := log
(

c10q∗2
c01(1−q∗2)

)
= 1

σ2
2

(
λ2 − 1

2

)
and using Q(·) representation of error probabil-

ities, we have

q∗1 ≥ p0 ⇔ 2x ≤ log

Q
(
σ2x− 1

2σ2

)
Q
(
−σ2x+ 1

2σ2

)
Q
(
σ2x+ 1

2σ2

)
Q
(
−σ2x− 1

2σ2

)
 . (C.3)

From Cor. 10, we know that the function

g̃(x) = x+ log

(
Q
(
σx+ 1

2σ

)
Q
(
σx− 1

2σ

))

is an increasing function of x. Thus, reformulating (C.3) using g̃(·),

q∗1 ≥ p0 ⇔ g̃(x) ≤ g̃(−x)

⇔ x ≤ 0⇔ q∗2 ≤
c01

c01 + c10

.

The condition for equality follows from observing the condition for equality at all the in-

equalities, proving the first part of the result.

The second part follows directly from the first, taking into account the trivial cases of

p0 ∈ {0, 1}.

C.2 Proof of Theorem 16

We will consider the case of c01 = c10 = 1 for convenience. The proof extends directly by a

simple scaling argument.

The optimal belief of worker two satisfies ∂R2

∂q2
= 0. Thus, differentiating (4.24) with respect
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to q2 and rearranging,

p0

[
(1− P I

e,1)fY2|H(λ0
2|0)

∂λ0
2

∂q2

+ P I
e,1fY2|H(λ1

2|0)
∂λ1

2

∂q2

]
=

(1− p0)

[
P II
e,1fY2|H(λ0

2|1)
∂λ0

2

∂q2

+ (1− P II
e,1)fY2|H(λ1

2|1)
∂λ1

2

∂q2

]
.

Let x = log
(

p0
1−p0

)
. For q∗2 = 1/2 and q∗1 = p0, we have

λ1 =
1

2
+ σ2

1x and λ1,[2] =
1

2
.

It implies P I
e,1,[2] = P II

e,1,[2] = Q(1/2σ2). Then,

L(λ0
2) =

fY2|H(λ0
2|1)

fY2|H(λ0
2|0)

=
q2

1− q2

(1− P I
e,1,[2])

P II
e,1,[2]

=
Q(−1/2σ2)

Q(1/2σ2)
=:

1

c
,

L(λ1
2) =

fY2|H(λ1
2|1)

fY2|H(λ1
2|0)

=
q2

1− q2

P I
e,1,[2]

(1− P II
e,1,[2])

=
Q(1/2σ2)

Q(−1/2σ2)
= c.

Equivalently, this implies that

λ0
2 =

1

2
+ σ2 log

(
1

c

)
, λ1

2 =
1

2
− σ2 log

(
1

c

)
.

Thus, λ0
2 + λ1

2 = 1, and so

fY2|H(λ1
2|1) =

1√
2πσ2

exp
(
− (λ12−1)2

2σ2
2

)
=

1√
2πσ2

exp
(
− (λ02)2

2σ2
2

)
= fY2|H(λ0

2|0).

Similarly, we also have

fY2|H(λ1
2|0) = fY2|H(λ0

2|1).
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Further, from (4.22) and (4.23), we have

dλ0
2

dq2

=
dλ0

2

dλ1,[2]

dλ1,[2]

dq2

=

1 +
σ2

2φ
(
λ1,[2]
σ2

)
1− P I

e,1,[2]

−
σ2

2φ
(
λ1,[2]−1

σ2

)
P II
e,1,[2]

 dλ1,[2]

dq2

,

dλ1
2

dq2

=
dλ1

2

dλ1,[2]

dλ1,[2]

dq2

=

1−
σ2

2φ
(
λ1,[2]
σ2

)
P I
e,1,[2]

+
σ2

2φ
(
λ1,[2]−1

σ2

)
1− P II

e,1,[2]

 dλ1,[2]

dq2

.

When λ1,[2] = 1
2
, P I

e,1,[2] = P II
e,1,[2] = Q

(
1

2σ2

)
, and φ

(
λ1,[2]
σ2

)
= φ

(
λ1,[2]−1

σ2

)
. Thus,

dλ02
dq2

=
dλ12
dq2

.

Using these, the values of prior for which q∗1 = p0, q
∗
2 = 1/2 are given by

p0

1− p0

=
Q
(
−1
2σ2

)
Q
(
−1
2σ1
− σ1x

)
+Q

(
1

2σ2

)
Q
(

1
2σ1

+ σ1x
)

Q
(
−1
2σ2

)
Q
(
−1
2σ2

+ σ1x
)

+Q
(

1
2σ2

)
Q
(

1
2σ1
− σ1x

) . (C.4)

Using the definitions of x, α, β in (C.4), and the fact that Q(−y) = 1 − Q(y), the result

follows.

C.3 Proof of Theorem 17

From (4.1), we note that the Bayes risk for social learning with beliefs (q1, q2) is

R2(q1, q2)

= c10p0

[
P I0
e,2(1− P I

e,1) + P I1
e,2P

I
e,1

]
+ c01(1− p0)

[
P II0
e,2P

II
e,1 + P II1

e,2 (1− P II
e,1)
]
.

Then, the difference in Bayes risk between the two choices of advisors is given by

∆R2 = R2(q1, q2)−R2(q1′ , q2)

= c10p0(P I
e,1 − P I

e,1′)(P
I1
e,2 − P I0

e,2) + c01(1− p0)(P II
e,1 − P II

e,1′)(P
II0
e,2 − P II1

e,2 ). (C.5)

Since q1 < q1′ , the decision thresholds satisfy λ1 < λ1′ . Thus, from (C.5) and independence

of Y1, Y2 given H, we see that ∆R2 ≤ 0 if and only if (4.31) holds.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Lemma 10

Let us introduce notations first. Let W be a Gaussian random variable with distribution

N
(
med(V ), 1

4Lf2(med(V ))

)
. Let ξm := E[V(m+1)] and note that ξm 6= med(V ) in general since

V(m+1) is a biased estimator in general. Also let γr, γ
′
r be absolute central moments of V(m+1)

and W , i.e.,

γr := E[|V(m+1) − ξm|r],

γ′r := E[|W −med(V )|r],

and ρr, ρ
′
r be central moments of V(m+1) and W , i.e.,

ρr := E[(V(m+1) − ξm)r],

ρ′r := E[(W −med(V ))r].

Then, our proof is based on the following result.

Proposition 14 ( [122]). limm→∞ ρr = ρ′r for all r ≥ 2, and limm→∞ ξm = med(V ).

Due to the triangle inequality and Prop. 18,

E[|V(m+1) −med(V )|r]

= E[|V(m+1) − ξm + ξm −med(V )|r]

≤ 2rE[|V(m+1) − ξm|r] + 2rE[|ξm −med(V )|r]

= 2rE[|V(m+1) − ξm|r] + 2r|ξm −med(V )|r,

where the last equality follows since ξm,med(V ) are deterministic quantities. Furthermore,

due to Prop. 14, we can take large m for any positive δ such that |ξm −med(V )|r ≤ δ.
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Consider the first term. Since ρr → ρ′r, we know that γr, γ
′
r are bounded. Letting A :=

V(m+1) − ξm and B := W −med(V ) for brevity, we can take large p ∈ N such that∣∣∣E[|A|r]− E[|A|r ∧ p]
∣∣∣ ≤ δ and

∣∣∣E[|B|r]− E[|B|r ∧ p]
∣∣∣ ≤ δ.

Then,∣∣∣E[|A|r]− E[|B|r]
∣∣∣ =

∣∣∣E[|A|r − |A|r ∧ p+ |A|r ∧ p]− E[|B|r − |B|r ∧ p+ |B|r ∧ p]
∣∣∣

≤ 2δ +
∣∣∣E[|A|r ∧ p]− E[|B|r ∧ p]

∣∣∣.
Note that | · |r ∧ p is a bounded continuous function and A→ B in distribution as m→∞
by Lem. 10. Therefore we can take large m such that

∣∣∣E[|A|r ∧ p]− E[|B|r ∧ p]
∣∣∣ ≤ δ by the

continuous mapping theorem, which leads us to∣∣∣E[|A|r]− E[|B|r]
∣∣∣ ≤ 3δ.

Hence, we have

E[|V(m+1) −med(V )|r] ≤ 2rE[|B|r] + 2r3δ + 2rδ.

Note that E[|B|r] is the rth absolute central moment of Gaussian, so

E[|B|r] =

(
1

2Lf 2(med(V ))

)r/2 Γ( r+1
2

)
√
π

.

Since δ is arbitrary, the proof is completed.

D.2 Distortion Bounds in Achievability

The next proposition is a part of the proof of the regular model achievability.

Proposition 15 (Regular CEO Problem).

(2K)rE
[
|U(m+1)(t)− Û(m+1)(t)|r

]
≤ ε.
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Proof. For the sake of notational brevity, we omit ‘(t)’ so

(2K)rE
[
|U(m+1)(t)− Û(m+1)(t)|r

]
(D.1)

= (2K)rE
[
|U(m+1) − Û(m+1)|r

]
≤ 22rKrE

[
|U(m+1) − q(U(m+1))|r

]
+ 22rKrE

[
|q(U(m+1))− Û(m+1)|r

]
≤ 22rKrE

[
|U(m+1) − q(U(m+1))|r

]
+ 23rKrE

[
|q(U(m+1))−med({Ũi}Li=1)|r

]
+ 23rKrE

[
|med({Ũi}Li=1)− Û(m+1)|r

]
,

where both inequalities are due to the triangle inequality and Prop. 18.

Now the first and the second terms are small enough because of (5.1), i.e.,

22rKrE
[
|U(m+1) − q(U(m+1))|r

]
≤ 22rKrδr0,

23rKrE
[
|q(U(m+1))−med({Ũi}Li=1)|r

]
≤ 23rKrδr0.

The last term is positive only when there is a Slepian-Wolf decoding error B defined in

Prop. 13, so

23rKrE
[
|med({Ũi}Li=1)− Û(m+1)|r

]
≤ 23rKr(2ũmax)

rP[B] ≤ 23rKr(2ũmax)
rλ,

and λ→ 0 as n→∞. Therefore (D.1) can be bounded by ε if we choose small δ and large

n appropriately.

The next proposition is a part of the proof of the non-regular model achievability.

Proposition 16 (Non-regular CEO Problem). For any ε > 0, there exist a quantization

scheme and block length n such that

KrE
[∣∣∣U(1) + U(L) − Û(1) − Û(L)

∣∣∣r] ≤ ε.

Proof. Using the triangle inequality and Prop. 18, we have

KrE
[∣∣∣U(1) + U(L) − Û(1) − Û(L)

∣∣∣r]
≤ (2K)rE

[∣∣∣U(1) + U(L) − Ũ(1) − Ũ(L)

∣∣∣r]+ (2K)rE
[∣∣∣Ũ(1) + Ũ(L) − Û(1) − Û(L)

∣∣∣r] . (D.2)

The first term is decomposed into two terms by Prop. 18 and we take sufficiently fine
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quantization points (5.4),

(2K)rE
[∣∣∣U(1) + U(L) − Ũ(1) − Ũ(L)

∣∣∣r]
≤ 22rKrE

[∣∣U(1) + U(L)

∣∣r]+ 22rKrE
[∣∣∣Ũ(1) − Ũ(L)

∣∣∣r]
≤ 22r+1Krδr0.

Next, to bound the second term recall the decoding error probability P[B] ≤ λ given in

Prop. 13. Then,

(2K)rE
[∣∣∣Ũ(1) + Ũ(L) − Û(1) + Û(L)

∣∣∣r]
≤ 22rKr

(
E[|Ũ(1) − Û(1)|r] + E[|Ũ(L) − Û(L)|r]

)
≤ 22rKr2(2ũmax)

rP[B] ≤ 22rKr2(2ũmax)
rλ,

where ũmax := max{|ũ| : ũ ∈ U} < 1 as U = [0, 1].

Hence, taking sufficiently fine quantization and taking sufficiently large n, we can bound

(D.2) for any ε > 0.

D.3 Proof of Lemma 15

Let us start with the following identity for a non-negative random variable Z:

E[Z] =

∫ ∞
0

P[Z ≥ t]dt.

Letting Z = |X̂ −X|r and t =
(
h
2

)r
, we have the following identity by change of variable.

E[|X − X̂|r] =

∫ ∞
0

P[|X − X̂|r ≥ t]dt

=

∫ ∞
0

r2−rhr−1P
[
|X − X̂|r ≥

(
h

2

)r]
dh

=

∫ ∞
0

r2−rhr−1P
[
|X − X̂| ≥ h

2

]
dh.
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Let us derive a lower bound of P
[
|X̂ −X| ≥ h

2

]
.

P
[
|X̂ −X| ≥ h

2

]
= P

[
X̂ −X ≥ h

2

]
+ P

[
X̂ −X < −h

2

]
=

∫ 1

0

fX(x)P
[
X̂ −X ≥ h

2

∣∣∣X = x

]
dx+

∫ 1

0

fX(x)P
[
X̂ −X < −h

2

∣∣∣X = x

]
dx.

By change of variable x = t+ h in the second integration, we have

P
[
|X̂ −X| ≥ h

2

]
=

∫ 1

0

fX(x)P
[
X̂ −X ≥ h

2

∣∣∣X = x

]
dx+

∫ 1−h

−h
fX(x)P

[
X̂ −X < −h

2

∣∣∣X = t+ h

]
dt

=

∫ 1

0

fX(x)P
[
X̂ − x ≥ h

2

∣∣∣X = x

]
dx+

∫ 1−h

−h
fX(t+ h)P

[
X̂ − t < h

2

∣∣∣X = t+ h

]
dt

≥
∫ 1−h

0

fX(x)P
[
X̂ − x ≥ h

2

∣∣∣X = x

]
dx+

∫ 1−h

0

fX(t+ h)P
[
X̂ − t < h

2

∣∣∣X = t+ h

]
dt

=

∫ 1−h

0

fX(x)P
[
X̂ − x ≥ h

2

∣∣∣X = x

]
+ fX(x+ h)P

[
X̂ − x < h

2

∣∣∣X = x+ h

]
dx

=

∫ 1−h

0

(fX(x) + fX(x+ h))

{
fX(x)

fX(x) + fX(x+ h)
P
[
X̂ − x ≥ h

2

∣∣∣X = x

]
+

fX(x+ h)

fX(x) + fX(x+ h)
P
[
X̂ − x < h

2

∣∣∣X = x+ h

]}
dx.

So the quantity in the curly bracket implies the error probability of a decision rule

X̂ − x
X=x+h

≷
X=x

h

2

and then it is further bounded by the optimal error probability Pmin(x, x + h). Then, we
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have the final lower bound as follows:

P
[
|X̂ −X| ≥ h

2

]
≥
∫ 1−h

0

(fX(x) + fX(x+ h))Pmin(x, x+ h)dx

=⇒ E[|X − X̂|r] ≥
∫ ∞

0

r2−rhr−1

∫ 1−h

0

fX(x) + fX(x+ h)

2
Pmin(x, x+ h)dxdh

=

∫ 1

0

r2−rhr−1

∫ 1−h

0

fX(x) + fX(x+ h)

2
Pmin(x, x+ h)dxdh.

The proof is completed.

D.4 Inequalities

Proposition 17. Suppose ai, bi > 0 for all i ∈ [1 : n]. Then,∑n
i=1 ai∑n
i=1 bi

≥ min
i∈[1:n]

(
ai
bi

)
.

Proof. Let m := mini

(
ai
bi

)
. Then,

ai ≥ mbi ∀i ∈ [1 : n],

=⇒
n∑
i=1

ai ≥ m
n∑
i=1

bi,

=⇒
∑n

i=1 ai∑n
i=1 bi

≥ m = min
i∈[1:n]

(
ai
bi

)
.

Proposition 18. For a, b ≥ 0 and r ∈ N,

(a+ b)r ≤ 2r(ar + br).
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Proof. By the binomial expansion theorem,

(a+ b)r =
r∑
i=0

(
r

i

)
aibr−i

≤
r∑
i=0

(
r

i

)
(max(a, b))r

= 2r (max(a, b))r

≤ 2r (ar + br) .
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[32] B. Çelen and S. Kariv, “Observational learning under imperfect information,” Games
Econ. Behav., vol. 47, no. 1, pp. 72–86, Apr. 2004.

[33] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games Econ. Behav.,
vol. 45, no. 2, pp. 329–346, Nov. 2003.

[34] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian learning in social
networks,” Rev. Econ. Stud., vol. 78, no. 4, pp. 1201–1236, Oct. 2011.

[35] J. B. Rhim, L. R. Varshney, and V. K. Goyal, “Quantization of prior probabilities
for collaborative distributed hypothesis testing,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4537–4550, Sep. 2012.

[36] J. B. Rhim and V. K. Goyal, “Distributed hypothesis testing with social learning and
symmetric fusion,” IEEE Trans. Signal Process., vol. 62, no. 23, Dec. 2014.
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