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Abstract

The way that DNA is organized within a cell controls its physiological behavior. DNA must

be condensed in order to fit into the much smaller cell, but must also be accessible to pro-

teins responsible for biological processes. Architectural proteins assist with this large-scale

arrangement of DNA to achieve the correct balance between these two competing require-

ments. The structural proteins that interact with DNA in prokaryotes are known as nucleoid

associated proteins (NAPs). These proteins play a vital role in shaping the DNA and assist

in many cell processes, including gene expression, replication, and transcription. NAPs have

been studied extensively in order to elucidate how their physical properties (such as binding

kinetics or DNA manipulation) aid in regulating cell function.

It has been shown in experiment and simulation that NAPs can adopt multiple binding

states (i.e., the protein can be partially associated with its DNA substrate), which leads

to complex binding and unbinding kinetics. For a simple binary system, where a protein

can either be bound or unbound, the kinetics are relatively straightforward: there is a con-

centration dependent on-rate (kon) and a concentration independent off-rate (koff). When a

protein-substrate complex has a non-binary set of bound states (including an intermediate

“partially bound” state), other molecules in solution can impact the dissociation behavior.

In fact, these competitors compete with the original protein for binding sites, which enhances

the dissociation of the protein from its original substrate. This concentration-dependent dis-

sociation is called “facilitated dissociation” (FD).

We have developed a coarse-grained model of a typical NAP-DNA system that is built up

from local interactions, such as the mutlivalent binding that leads to FD as well as physical
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deformations of DNA induced by protein binding. This methodical coarse-graining allows us

to investigate the effect that these short-range interactions have on the mesoscale behavior

of the system. We have investigated the cooperative and competing behavior of NAP-DNA

interactions that result in concentration-, force-, and topology-dependent changes to both

protein kinetics and physical DNA behavior. Our model qualitatively matches experimental

observations, and provides a physical explanation for the observed behavior based on coop-

erative local interactions.

We demonstrate how the competition for binding sites along a DNA strand is affected

by the energy barriers between the three possible bound states in the system (bound, par-

tially bound, and unbound). This is the driving force behind facilitated dissociation; thus,

changing the level of binding competition changes the dissociation behavior. Our model

allows us to manually manipulate the binding energy landscape that other methods are un-

able to achieve. We can independently change the energy barriers between the three bound

states, which in turn changes a protein’s preferred bound state. This leads to three different

concentration-dependent FD kinetic regimes: a concentration-independent off-rate, a linear

dependence on c, and a combination of the two.

The multivalent binding also leads to multiple dissociation pathways: spontaneous and fa-

cilitated. The dissociation pathway a protein undergoes is dependent on a number of factors

including force, the local geometric deformation, and protein concentration. We investigate

how these factors impact the dissociation kinetics of a system that undergoes FD by expand-

ing our model to account for the physical bends that NAPs induce in DNA upon binding in

the DNA model, and also in the energy barrier landscape. At low forces, more proteins will

be bound due to the more relaxed nature of the DNA strand that more easily allows local

kinks caused by NAPs. As force is increased, there will be fewer bound proteins because of

the more extended nature of the DNA strand, which is in a less preferential conformation.

This force-enhanced unbinding and force-inhibited binding changes how a protein dissociates

from DNA, either through FD at low force or spontaneously at high force. We observe two
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two classes of dissociation: a classical “slip bond,” where a bond weakens with force, and a

“catch bond,” where a bond is strengthened with force.

The physical deformation that NAPs cause affects not only the binding and unbinding

kinetics; it also impacts the long-scale equilibrium and dynamic DNA elasticity. As more

NAPs are bound to the DNA, there are more local kinks, decreasing the end-to-end distance

of the single DNA strand. Because NAPs can adopt two possible binding states, DNA can

undergo two different types of deformations. This leads to a non-monotonic effect of con-

centration on the force-extension behavior of the DNA strand. Our method allows us to

study non-equilibrium elastic behaviors as well, such as DNA extending dynamically. The

competition between the two characteristic time scales of the system (unbinding time and

pulling time) leads to extension-rate dependent effects on both DNA elasticity and binding

behavior.

We are able to show that NAPs help stabilize DNA supercoils due to these same local,

cooperative effects. DNA supercoiling occurs when DNA wraps around itself to relieve tor-

sional stress. Both DNA supercoiling and NAPs are present in prokaryotic cells, but the

role of NAPs in supercoiling activity is not fully understood. Our model demonstrates that

NAPs are more likely to bind to supercoiled DNA, due to the protein’s preference to bind

to already-bent DNA, which in turn stabilizes the supercoil. This leads to a concentration-

dependent change of the phase transition between extended and supercoiled DNA in the

force-torque ensemble. We are able to use a combination of simulation data and theoreti-

cal predictions of the various energies of the system, such as the stretching, bending, and

excluded volume energies, as a function of both force and concentration. This information

can be used to develop a theory that provides a thorough understanding of how NAPs affect

DNA supercoiling.

This work has been based on single-molecule studies (≈ 1 µm) but is capable of extending

to much longer length scales. Other NAPs and their local effects on DNA can be added

to the system in the same way that FIS has been used in this work. We can understand
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the effect that these proteins have on the mesoscale behavior of DNA, and these mesoscale

behaviors in turn affect the large-scale structure and organization of the nucleoid.
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Chapter 1

Introduction

Structure and function in biology are closely related. This concept is typically applied to

proteins, but it extends to other biomolecules as well, including DNA. DNA organization

within a cell is critical for proper cell function, and in order to have a full understanding

of cell physiology, there must be a full understanding of how DNA is physically structured

and organized. This organization occurs on multiple levels, from the full genome all the way

down to the base-pair level. Because of the many orders of magnitude that play a role in

DNA organization, there is a challenge to comprehensively study the hierarchical

structure of DNA within a cell.

1.1 Scales of DNA Organization

DNA has millions or billions of base pairs for prokaryotic or eukaryotic cells, respectively [1].

As such, DNA is anywhere from 500-50,000 times longer than the cell itself, and requires

significant compaction in order to fit within the cell. In eukaryotic cells, chromosomal DNA

is stored in the membrane-enclosed nucleus, while in prokaryotic cells, a circular plasmid

is stored in the analogous membrane-less nucleoid. Within these structures, DNA can be

condensed in a number of different ways, including looping, compartment segregation, and

supercoiling [2–11], which can be seen in Fig. 1.1A and B.

Compartmentalization occurs between megabase segments of DNA that are loosely in-

teracting, yet their relative locations are strongly correlated [7, 12–14], shown by the light

gray and white checkerboard pattern in a sample Hi-C contact map shown in Fig. 1.1A [8]
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Figure 1.1: A. A cartoon showing how compartments and TADs are differentiated using a Hi-C
contact map [8]. TADs are identified via the dark gray squares along the diagonal of the contact
frequency box and shown by the close-contact red loops in the cartoon below. Compartments are
the light-gray checkerboard pattern, and are denoted by the different colored strands in the
cartoon below. B. A schematic showing the relationship between compartments, TADs, and
supercoils.

and the black circled region in the schematic in 1.1B. These compartments have genetic and

epigenteic features in common, such as overall contact frequency (low or high), amount of

coded DNA and frequency of gene expression [5, 7]. The exact mechanism of compartment

formation and physiological effects are still in question.

One mechanism that affects compartment organization is DNA looping, where two distant

sites along the DNA backbone are connected by some molecular bridge. This leads to the for-

mation of topologically associated domains (TADs), which are “locally” associated domains

on the order of ∼ 10− 100 kb with sharp, well-defined boundaries that often correspond to

transcription start sites or other protein-specific binding sites [4, 6, 15]. These domains are

often defined using contact maps, where these domains can be found along the diagonal of

the contact map (shown by the dark gray squares in Fig. 1.1A [8]) and are smaller than

compartment regions (see Fig. 1.1B). The organization at this length scale affects a number

of biological processes. For example, loops can act as gene regulators, since two distant sites,

such as a gene enhancer and a gene promoter can be brought in close proximity in order for

a gene to be expressed [16]. By changing loop formation, different promoters might interact
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with a given enhancer, which will change how or what genes are expressed. Loop extrusion

simulations (where loops are actively lengthened or shortened) has been shown to affect both

TADs and compartment organization [8].

Supercoiling occurs when twists are either added or removed from DNA (positively or

negatively supercoiled, respectively), which torsionally stresses the DNA strand. To relax,

DNA wraps around itself, which consequently decreases the end-to-end distance of the DNA

strand. DNA is negatively supercoiled in both prokaryotic and eukaryotic cels, meaning that

there are fewer twists in the DNA that completely relaxed DNA (fewer than 1 turn for every

10.5 base pairs) [17–19]. This assists in processes that require the DNA strand to “unzip,”

such as gene expression and replication [19–22]. These same processes generate positively

supercoiled DNA when the two strands are separated, adding twists to the flanking dsDNA

[23, 24]. Supercoiling topology is modulated by polymerases [17, 25] and topoisomerases

[17, 26]. Supercoiled domains can be found within TADs [17, 27, 28] and compartments can

contain different levels of supercoiling [29].

While these mechanisms can significantly compact the DNA, DNA must simultaneously

be transiently accessible to DNA-binding proteins such as helicases, polymerases, topoiso-

merases, transcriptases, and transcription factors that must bind to DNA in order to carry

out their physiological function. These proteins can bind and unbind from DNA, and even

move along the DNA strand as needed. These behaviors are inherently dynamic, where dif-

ferent sections of DNA will need to be accessible at different times under different conditions.

One example of this is DNA replication in prokaryotic cells [30]. When cells are in the expo-

nential growth phase where they are rapidly dividing, DNA will need to be replicated more

often than cells in the stationary or death phase. The origin of replication (oriC ) needs to

be accessible to DNA helicases that bind to double stranded DNA (dsDNA) and disrupt the

hydrogen bonds. This breaks apart the strand into two single-strands of DNA (ssDNA) to

prepare for DNA polymerase binding and subsequent DNA synthesis. Consequently, DNA

near this newly formed ssDNA is overtwisted, and proteins such as topoisomerases can assist

3



in relaxing the newly torsionally stressed DNA. All of these interactions are highly coop-

erative and dynamic, and these proteins require uninhibited access in order to act on the

DNA. There is an inherent competition between the need to significantly com-

pact DNA in a cell and the need for sections of DNA to be readily accessible. In

order to achieve the perfect balance between these two requirements, architectural proteins

bind to DNA and and assist in the long-scale structuring of DNA that satisfies the need for

both compaction and accessibility.

1.2 Nucleoid Associated Proteins

Architectural proteins known as nucleoid associated proteins (NAPs) are responsible for the

hierarchical genome structure in prokaryotic cells [31]. These proteins bind to DNA non-

specifically, although there are some preferred sequences for individual proteins. Upon bind-

ing, NAPs manipulate both the short- and long-scale DNA structure by bending, twisting,

and looping [32–46]. These effects that occur at the scale of a single protein-DNA complex

(≈ 15-30 base pairs, or 5-10 nm) or between two distant DNA sites (DNA-NAP-DNA) via

looping, are responsible for the structure of the overall genome; however, the exact mecha-

nism by which this happens is not understood. These proteins are not solely structural; they

play a role in different biological processes, such as gene expression [32, 38, 47–51], DNA

transcription [32, 41, 52–55], and replication [32, 56, 57].

NAPs are analogous to histones that wrap and organize DNA within eukaryotic cells,

although there are some notable differences which can be seen in the example crystal struc-

tures seen in Fig. 1.2A-D. A histone octamer, composed of two of each of the histones H2A,

H2B, H3, and H4, has a molecular weight of ≈ 110 kDa and forms a disk-like complex. DNA

is wrapped twice around this short, cylindrical core, leading to a nucleosome core that binds

≈ 140 base pairs of DNA, shown in Fig. 1.2A [59, 61]. NAPs are significantly smaller than

histones (10− 20 kDa), often found in a dimer form with two arms that fit into the grooves
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Figure 1.2: Crystal structures of architectural proteins created with VMD [58]. A. Crystal
structure of a eukaryotic nucleosome, with the histone octamer shown in grayscale and wrapped
DNA in orange [59]. B. Structure of the homodimer NAP FIS (blue) and DNA binding site
(orange) [44]. C. Structure of the heterodimer NAP IHF (pink) and DNA binding site (orange)
[41]. D. Structure of a homodimer HU (green) and DNA binding site (orange) [60]. HU can also
be found in a different homodimer form, as well as a heterodimer form.

of DNA. As a result, NAPs bind to a much shorter section of DNA (≈ 15 − 30 base pairs)

than histones. Crystal structures of typical NAP-DNA complexes that demonstrate this can

be seen in Fig. 1.2B-D [41, 44, 60]. Both of these classes of architectural proteins can link

distant sites of DNA, via linker histones in eukaryotes and NAP-NAP or DNA-NAP-DNA

interactions in prokaryotes [62–64].

Additionally, the histone core is relatively conserved throughout eukaryotic cells, where all

nucleosomes behave in a relatively similar manner. In the many different types of prokary-

otic cells, there are a large number of NAPs, each of which have different binding properties

and biological functions [32–38, 40, 50, 51, 66, 66–68]. Some of the most prevalent NAPs in

prokaryotes include factor for inversion stimulation (FIS) [42, 45, 46, 53, 57, 69], histone-like

protein (HU) [43, 54, 60, 70], integration host factor (IHF) [41, 49, 71], histone-like nucleoid-

structuring protein (H-NS) [47, 72–75], DNA protection during starvation (Dps) [76, 77],

and StpA [78, 79], although this list is non-exhaustive. FIS, IHF, and IU complexed to DNA

can be seen in Fig. 1.2B-D, respectively. Many of these proteins are conserved over different

genuses and species. Their physiological and architectural roles, as well as their different

levels within the in the cell are summarized in Table 1.1. Each NAP in Table 1.1 is natively

found in either a homo- or hetero-dimeric form, and some of these NAPs, such as Dps or
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Table 1.1: A non-comprehensive summary of the most widely-studied NAPs. These proteins can
wrap DNA like histones in eukaryotes, bend DNA, or connect two DNA strands and form a type
of “bridge” between them. Their concentrations within the cell vary with growth conditions,
which corresponds well with their physiological roles [35, 65].

HU, can een form higher ordered structures [77, 80]. This is a common trait amongst NAPs,

although it is not necessarily a requirement for a protein to be classified as a NAP. While

NAPs have been studied for several decades, new NAPs and the physical and physiological

roles that they play in the cell are still being discovered [81–84].

1.2.1 Extreme length-scales and time scales for NAP study

There are many in vivo, in vitro, and in silico methods that are currently used to study

NAP-DNA interactions, and these interactions generally fall into one of two extremes: near-

atomistic scale and near-nucleoid scale, examples of which are shown in Fig. 1.3. Information

about the local, static structure of a NAP-DNA complex can be obtained experimentally

via x-ray crystallography, which is available for a large number of NAPs listed in Table 1.1

and shown in Fig. 1.2 [41–46]. This provides insight into the structure of the protein, such

as whether or not it is an oligomer, which amino acids are critical to binding, and the size of

the binding site, as well as the local effect it has on DNA, such as strand breakages, bending

deformations, and twisting deformations [32].
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Figure 1.3: NAP-DNA interactions are studied at a range of length scales, including two limiting
cases: short time and length scales (lower left, purple box) and long time and length scales (upper
right, red box). Crystal structures and atomistic simulations can provide information about the
local interactions between NAPs and DNA (on the order of nm and ns) [43, 85]. At the other
extreme, fluorescence imaging of the cell, toy simulation models, and Hi-C contact maps provide
information of NAP-DNA interactions at the full genome level [88, 94, 95].
Atomistic simulation image adapted with permission from Tsai et al. [85], copyright 2016 American
Chemical Society. Fluorescent image adapted from Wang, et al. [88], reprinted with permission from
AAAS. Toy model figure adapted from Naumova, et al. [94], reprinted with permission from AAAS. Hi-C
map adapted from Le, et al. [95], reprinted with permission from AAAS.

In order to get at non-static information at this scale, one can turn to atomistic simulations

that are able to provide information about the binding mechanisms and the dynamics of the

protein at very short time scales (<microseconds) [45, 55, 69, 85, 86, 86, 87]. While these

types of simulations are able to supply information at the angstrom to nm level, there is a

consequential computational cost to extend them to longer time or length scales. Even with

significant computational power, atomistic simulations are computationally intractable on

nucleoid-relevant time and length scales (>seconds and >microns).

In contrast to very small-scale effects that are studied, experimentalists can use microscopy

to study the full-scale nucleoid [88–93]. These studies are useful to understand the long-scale

effects of NAPs and how they might be generally clustered within the nucleoid as a function
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of global changes to the cell. This can include experiments such knockout studies, where

an entire type of NAP is no longer present in the cell [88], or cells that are subjected

to external stressors [94]. However, there are limitations due to imaging constraints where

local NAP-DNA interactions cannot be resolved. Large scale, phenomenologically motivated

simulation or theoretical models can also be used to describe large-scale nucleoid behavior,

but these models are far removed from the small-scale physical properties of a real nucleoid

[94, 96, 97]. Hi-C maps, showing contacts throughout the entire genome, are created using

a combination of experimental and computational techniques and can show the effect that

large-scale changes to NAP-DNA interactions have on the structure of the nucleoid [95, 98].

1.2.2 Bridging the gap

The studies done at extreme time and length scales provide valuable information about

NAP-driven structuring of DNA, but there exists a big challenge to connect and un-

derstand the relationship between the two disparate length scales. However, there

are some promising tools that are able to address this mesoscale region. Single molecule

experiments can start to bridge the gap by studying longer time and length scales (1-10

microns and >seconds) [39, 64, 67, 68, 75, 86, 99–103]. Initial efforts in the literature to

study NAP-DNA complexes have revealed a rich set of physical behaviors that emerge at

the mesoscale, and are expected to play an important role in biological function.

Single molecule experiments have demonstrated that NAP-DNA complexes are stable,

where proteins stay bound for very long periods of time (>minutes to hours) [39, 68, 100].

However, when other molecules such as short DNA oligomers or DNA-binding proteins (such

as NAPs or other transcription factors) are introduced into solution, the dissociation rate

increases [99, 100, 104, 105], shown by the sample fluorescent images and related data in

Fig. 1.4A-B. Initial studies using structurally distinct proteins FIS, HU, and NHP6A found

that the dissociation rate depended linearly on the protein concentration in solution [99],

8



Figure 1.4: Sample figures from NAP-DNA single molecule experiments. A. A sample
fluorescence image from a protein exchange experiment, where DNA is coated with gfp-tagged
FIS proteins (top) that then undergoes an exchange with untagged FIS proteins in solution
(bottom) [99]. B. From experiments like those shown in panel (A), the fluorescence as a function
of time and concentration can be measured, which provides the dissociation rate of proteins as a
function of solution concentration [99] C. The force-extension behavior of DNA as a function of
FIS concentration [100]. The extension shifts to a higher force as c is increased to 20 nM (green
line) and decreases as c is increased to 200 nM (yellow line). D. DNA force extension as a
function of HU concentration [39]. With a concentration of 100 nM, there is an increase in the
force. However, when c = 500 nM, there is a stiffening effect where the force at a given extension
is lower than the case for bare DNA.
Panels (A) and (B) adapted from Graham et al. [99], by permission of Oxford University Press. Panel (C)
reprinted from Giuntoli, et al. [100], with permission from Elsevier. Panel (D) adapted with permission
from Skoko, et al. [39], copyright 2004 American Chemical Society.
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while later studies demonstrated that the dissociation rate was linearly dependent on the

concentration DNA oligomers in solution at low c, while concentration-independent at high

c [100]. This “facilitated dissociation” phenomena (named so because a molecule in solution

facilitates the dissociation of a protein bound to its substrate) is thought to occur due to the

nmultivalent binding nature of these proteins, i.e. they are not limited to a simple, binary

on or off state. A third “partially associated” conformation has been supported by both in

vitro and in vivo experiments [99, 100, 104, 105], coarse grained models [106], and atomistic

simulations [85].

This three-state binding landscape leads not only to complex binding and unbinding kinet-

ics, but also multiple effects on DNA elasticity. Structures of NAP-DNA complexes (some

of which can be seen in 1.2B-D) demonstrate that NAPs strongly deform the local structure

of DNA [41, 43–45, 57, 60]. In fact, NAPs can induce degrees of bending at the binding

site up to 160◦ [43, 44, 46]. Consequently, several NAPs bound along the DNA change end

to end distance of a DNA strand, which can be measured in a typical optical tweezers or

magnetic bead experimental set up [39, 67, 75, 86, 100, 103, 107]. The DNA can become

more compact when there are high degrees of bending along the contour length [39, 100] or

can become more stiff (no degree of bending with extra rigidity) [67, 68, 102, 108]. For a

system with a single binding state, there would be a single trend in extension behavior as

a function of protein concentration (i.e., as more bending proteins are added, the more the

DNA will compact until the strand is saturated). However, NAPs have generally demon-

strated non-monotonic extension behaviors (i.e., there is an initial decrease in extension and

an increase in extension as the DNA strand becomes saturated) shown in Fig. 1.4C and D,

due to the bound and partially bound states these proteins can adopt [67, 71, 100].

These local bends caused by NAPs can also impact tertiary DNA structures, like large-

scale writhes that occur when DNA is supercoiled. NAPs are thought to affect DNA super-

coiling since both are present in situ [10, 80, 112, 113]; however, the way that NAPs help

form and stabilize these writhes is not understood.
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Figure 1.5: Sample simulation snapshots from coarse-grained models. A. A coarse grained model
of DNA (3 beads per base, white) and HU (1 bead per amino acid, red and orange) that
demonstrates how HU slides along DNA to find a binding site [109]. B. A bead-spring model of a
chromatin fiber (blue) with active and inacive proteins (red and blue, respectively) that can bind
to two chromatin beads [110]. C. A multi-scale coarse-grained model of DNA that can
demonstrate DNA supercoiling at multiple length scales controlled by ∆ [111].
Panel (A) reprinted with permission from Tan, et al. [109], copyright 2016 American Chemical Society.
Panel (B) reprinted from Brackley, et al. [110], with permission from Elsevier. Panel (C) reprinted from
Krajina, et al. [111], with permission from Elsevier.

This level of behavior can also be investigated using coarse-grained computational models

[114, 115]. One commonly used model is the 3 sites per nucleotide (3SPN) model developed

by the de Pablo group [116–118]. Proteins can be similarly coarse-grained based on atomic

interactions to a single bead per amino acid (AICG model) [119]. Simulations utilizing this

level of coarse-graining have been used to study dynamic NAP-DNA interactions, such as

NAPs searching for a binding site along a short strand of DNA (35 bp), shown in Fig. 1.5A

[109]. DNA up to a length of ∼ 1 µM can be simulated with this method, which is on the

same length scale as experimental single molecule studies [116]. However, a system with

several NAPs and a DNA of this length, let alone on the scale of the nucleoid (∼ mm), is

not computationally tractable.

DNA can also be coarse-grained to a much further extent, where many base pairs are mod-

eled as a single bead. The short-scale detail is removed (such as specific sequence and double

helix shape), but retains the appropriate long-scale behavior [111, 120, 121]. This type of

coarse-graining has been used extensively to study eukaryotic chromatin [110, 122–130] and

mesoscale behavior of DNA [111, 131]. Snapshots from a simulation showing DNA bind-

ing proteins interacting with chromatin [110] and multiscale modeling of DNA supercoiling

[111] can be seen in Fig. 1.5B-C, respectively. While this ultra coarse-grained method has
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provided a number of insights into the mesoscale behavior of the eukaryotic genome, it has

not extended to the analogous, yet distinct, NAP-DNA systems. There is a significant

need to develop methods to study the intermediate time and length scales of

NAP-DNA interactions that can be extended to the full size of the nucleoid.

1.3 Dissertation Overview

In this work, we have developed a model of DNA and NAPs that is capable of investigating

mesoscale phenomena while maintaining the importance of local interactions. We utilize

FIS as a model NAP due to the extensive work in the literature ranging from atomistic

simulations to in vivo studies [44–46, 53, 57, 85, 99, 100, 104]. This model incorporates a

multi-state binding landscape and the geometric deformations of DNA in the NAP-DNA

complex, specifically the bending that occurs. We are able to investigate the concurrent

effects that this has on the NAP binding and unbinding kinetics, DNA elasticity, and DNA

topology.

In Chapter 1, we investigate the effect that the binding energy landscape has on the large-

scale dissociation of NAPs from DNA. Prior work had investigated symmetric energy barriers

between states and focused on the effect that external concentration of proteins have on fa-

cilitated dissociation [106]. By independently changing the energy barriers between bound

states (bound, partially bound, and unbound), and thus changing how a protein prefers to be

bound to its DNA substrate, we observe a range of different types of concentration-dependent

dissociation kinetics, including a concentration-independent off-rate, a linear dependence on

c, and a plateauing off-rate. We are able to show how these non-symmetric energy barriers

contribute to different dissociation kinetics by looking at the cooperative behavior of individ-

ual proteins in our system. Our model is capable of qualitatively matching experimentally

observed kinetics [99, 100, 104], and extends the understanding of what is occurring in sys-

tems undergoing facilitated dissociation.
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In Chapter 2, we continue our investigation into facilitated dissociation by studying how

other external factors, specifically force, can impact the dissociation kinetics. To do this,

we incorporate the fact that NAPs physically deform DNA via bending into the simulation

model and also in the binding/unbinding energy landscape. Because proteins bend the DNA,

there will be more bound when DNA is relaxed and can easily adopt many local kinks. As

DNA becomes more straight, there are fewer proteins bound because DNA is biased away

from the preferred bent conformation. This behavior is ensured by increasing the energy

barrier for binding and a lowering the energy barrier for unbinding as more force is applied.

If we consider a single NAP-DNA complex, this force-dependence has a straightforward

consequence on the unbinding kinetics: proteins dissociate more quickly as more force is

applied. This is the classical “slip bond,” where a bond weakens with force. However, when

we consider NAP-DNA complexes in a field of competitor proteins, the dissociation kinet-

ics become more complicated. The competing molecules are inhibited from binding, which

means that facilitated dissociation is inhibited, slowing down the overall dissociation as force

is increased. This phenomena is known as a “catch bond,” where a bond lifetime is extended

with force. We are able to demonstrate an extrinsic catch bond, where the individual bonds

are weakened, but the overall dissociation behavior slows with applied force. This complex

dissociation is dependent on a number of factors, including geometric deformation, concen-

tration, and how strongly different energy barriers are dependent on force.

The physical deformation that NAPs cause does not only affect the binding and unbinding

kinetics; it also impacts the long-scale DNA elasticity, which we discuss in Chapter 3. As

more NAPs are bound to the DNA, there are more local kinks, decreasing the end-to-end

distance of the single DNA strand. However, due to the multiple binding states that NAPs

can adopt (partially bound, fully bound, or two partially bound at one binding site), there

are multiple deformations that DNA can undergo, making the effect of concentration on the

force-extension behavior of the strand non-monotonic. We see semi-quantitative matching

of our simulated force-extension behavior to reported experimental data [100]. Because we
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use a coarse-grained Brownian dynamics simulation, we can investigate non-equilibrium be-

haviors, such as the dynamic extension of a DNA strand. Different time scales of the system,

such as the pulling time and unbinding time, work in tandem to affect the NAP-DNA sys-

tem. When these two characteristic time scales are similar, we see extension rate dependent

changes in the system, which includes the force required to extend the DNA strand and the

number of bound proteins. This suggests that the relative time scales of dynamic processes

play a role in NAP-DNA systems.

Lastly, in Chapter 4, we look at the behavior that NAPs have on DNA topology, specifi-

cally DNA supercoiling. The occurs when DNA is torsionally stressed and forms large-scale

writhed structures by wrapping around itself to relieve this stress. As mentioned earlier,

DNA is naturally supercoiled in prokaryotic cells and has been extensively studied in exper-

iment, simulation, and theory [111, 131–135]. However, the role that NAPs play in supercoil

formation or stabilization has not been as thoroughly investigated. Our coarse-grained model

can look at DNA supercoiling in the presence of NAPs. Proteins are more likely to bind to

DNA in the supercoiled state due to the preference for DNA in bent conformations, and this

in turn stabilizes the DNA supercoil. We demonstrate a concentration-dependent change

of the force and torque necessary to form DNA supercoils. This shifts the phase transition

between extended and supercoiled DNA to a higher force at a given torque, enabling the

formation of supercoils at lower τ .

Simulations provide information about the system, such as the extension behavior, bend-

ing energy, and excluded volume for extended and supercoiled DNA that is dependent on

both concentration and force. This in turn informs theory that provides a rigorous, phys-

ical understanding of how NAPs affect supercoiling behavior. We are able to demonstrate

qualitative matching between our simulations and theory, which can inform how DNA su-

percoiling might be impacted by other proteins or external factors in the cell.
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Chapter 2

Facilitated dissociation kinetics of dimeric
nucleoid-associated proteins are described by a universal
curve

i

2.1 Introduction

Physical interactions between proteins and DNA are an important and persistent area of

scientific interest [32, 136–138]. A full understanding of these behaviors requires an ac-

counting of how DNA and proteins work together or compete at a molecular level. These

connections govern cellular processes, such as mRNA transcription [32, 41, 52–55], gene ex-

pression [32, 38, 47, 48], and cell division [32, 56]. An important example of this is the

interplay between genomic DNA and nucleoid associated proteins (NAPs) in prokaryotes

[51, 65, 71, 72, 77, 104]. Increased understanding about the role of proteins in the nucleoid

has led to an appreciation of the wide variety of behavior, both physical and biological,

among NAPs [32, 34, 38]. NAPs are required for cell processes to occur, often relying on

their ability to manipulate nucleoid architecture; however, the exact mechanisms involved

in these processes are still not fully understood [32, 33, 36, 40, 139].

The properties of the bound NAP-DNA complex has been extensively studied, due to

the importance of NAP-DNA interactions [39, 42, 57, 68, 69, 73, 140, 141] and binding ki-

netics [103, 104] in determining cell physiology. Experimental work has demonstrated that

once NAPs are bound to DNA, they are typically stable and stay bound for long periods of

time in the absence of other molecules, such as freely diffusing proteins or protein-free DNA

[39, 68, 100]. The presence of these molecules, however, has a pronounced effect on NAP-

iAdapted with permission from Dahlke, K. and C.E. Sing. 2017. Facilitated Dissociation Kinetics of
Dimeric Nucleoid-Associated Proteins Follow a Universal Curve. Biophys. J. 112:543-551.
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DNA dissociation kinetics. Recent single-molecule measurements, using force spectroscopy

and fluorescence microscopy, have determined the unbinding kinetics of a variety of NAPs,

including FIS and HU in the presence of other NAPs in solution [99, 100]. These molecules

are thought to facilitate the dissociation of the proteins bound to the DNA by competing

for binding locations. Initial studies with competing NAPs in solution unexpectedly found

a linear concentration-dependent unbinding rate [99]:

koff = k0 + k1c (2.1)

Here, k 0 is the unbinding rate constant in the limit of zero concentration and k 1 is the

unbinding coefficient that incorporates the linear protein concentration c dependence of the

unbinding rate constant.

Further studies incorporated an external DNA concentration instead of an external protein

concentration [100]. These studies showed a different concentration-dependent unbinding

rate,

koff =
c

Ac+B
(2.2)

where A and B are constants that can be fit experimentally, and c is the freely-diffusing

DNA concentration. The off-rate increases and then plateaus, indicating that the addition of

any more competitor (DNA) will not further facilitate the dissociation of the bound NAPs.

Facilitated dissociation mechanisms, both general and system-specific, have been proposed

to describe these different behaviors [100, 106, 142–148]. Some mechanisms predict a purely

linear relationship between the competitor concentration and koff [106], while others predict

that koff will plateau at high competitor concentrations [100, 142, 147]. Mechanisms that

describe the plateau behavior include two limiting behaviors: an initial linearly-dependent

increase in the off-rate, then leveling of to a concentration-independent (or pseudo-saturated)

off rate [100]. Recent work from Giuntoli et al. provides a hypothesized model for dimeric

NAP dissociation facilitated by DNA strands in solution [100]. Their model is capable of
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capturing the general trends seen experimentally, but has not been directly related to the

binding and unbinding energy landscape.

The NAP FIS has been shown to demonstrate both linear and plateau behavior depending

on the nature of the competitor. Motivated by the FIS-DNA system, the intent of this

work is to build upon previous protein-DNA binding and unbinding models to capture both

the linear and plateau unbinding rates of FIS from DNA [99, 100, 106]. Our simulations

show that both experimentally-observed trends arise from the same general model, and are

part of a larger continuum between facilitated, non-facilitated, and maximally-facilitated

dissociation behaviors. We expect that our work has broader implications than just the

FIS-DNA system that may be extended to NAP-DNA or other biomolecular systems that

undergo facilitated dissociation [40, 149–151].

2.2 Materials and Methods

In order to investigate the binding and unbinding kinetics of dimeric NAPs from DNA,

we use a coarse-grained Brownian Dynamics (BD) model that incorporates NAP dimeric

structure and a proposed binding energy landscape. The simulations are designed such that

they mimic the single-molecule experiments performed by Graham et al.[99] and Giuntoli et

al.[100], and also build on previously proposed models of the system [106]. We initialize our

system with a static linear chain of N beads of radius a = 2.0 nm to represent the tethered

DNA strand. FIS proteins are modeled as nD dimers of beads, and freely diffusing DNA

strands are modeled as ns chains of M beads. The simulation box size is 200a×200a×224a

with periodic boundary conditions. Simulation snapshots are shown in Fig. 2.1A.

The movement of individual beads of index i is governed by the Langevin equation:

∂ri
∂t

= −
Ntotal∑
j

µij · ∇jU(t) + ξi (2.3)
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Figure 2.1: A. Snapshots from the simulations. “Tagged” proteins are colored light blue,
untagged or non-tagged proteins are dark blue, and DNA is yellow. B. Energy landscape of the
system, demonstrating relevant variables. Three states are present: unbound (left), singly-bound,
and doubly-bound (right). ∆Ẽ1 is the energy difference between unbound and singly bound, and
∆Ẽ2 is the energy difference between singly bound and doubly bound. ∆Ẽtotal = ∆Ẽ1 + ∆Ẽ2,
and ∆Ẽi = ∆Ẽi,UB −∆ẼB.

where each particle i has a radius of a and position ri. µij = δijδ/(6πηa) is the freely-draining

Stokes mobility matrix, η is the solvent viscosity, δ is the identity matrix, ξi is a random

velocity that satisfies 〈ξiξj〉 = 2kBTµijδij, and δij is the Kronecker delta. The energy of the

system is normalized by kBT (Ũ = U/kBT ), distances are normalized by a (r̃ij = rij/a),

and time is normalized by the diffusion time of a single bead τD = 6πηa3/(kBT ). A tilde

indicates that a value is normalized and dimensionless.

The potential energy of the system, U , is the sum of three contributions, U = US +ULJ +

UB, representing connectivity, excluded volume, and bending, respectively. US is a harmonic

spring potential:

ŨS =
κ̃s
2

∑
ij

(r̃ij − r̃0)2 (2.4)

where r̃ij is the distance between the two beads i and j, and the spring constant is set to

κ̃s = 200.0 to prevent large deviations from the equilibrium bond length, r̃0 = 2.0. Beads in

the protein dimers are connected via this harmonic potential, as are the DNA beads in the
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freely-diffusing strands.

The repulsive part of a Lennard-Jones (LJ) potential, ULJ accounts for excluded volume

interactions between beads:


ŨLJ = ε̃

∑
ij

[(
r̃0
r̃ij

)12

− 2
(
r̃0
r̃ij

)6

+ 1

]
r̃ij ≤ 2.0

0 r̃ij > 2.0

(2.5)

where the LJ parameter ε̃ = 0.41 sets the magnitude of the excluded volume potential.

The bending potential, UB, is included for freely-diffusing DNA strands:

ŨB =
κ̃θ
2

m−1∑
i=1

(θi − θ0)2 (2.6)

where θi is the angle between the bonds of beads i − 1 and i, and i and i + 1. θ0 is the

equilibrium angle between the bonds of beads i − 1 and i, and i and i + 1 and is set to

θ0 = 0.0. The bending force constant is set at κ̃θ = 12.5, which is chosen to match the

dsDNA persistence length of 50 nm.

The binding energy landscape of the system is controlled by the binding and unbinding

barriers, shown in Fig. 2.1B. Each bead in the protein dimer can independently bind (and

unbind) to DNA, and the protein can therefore be in one of three states, shown in Fig. 2.1B.

The dimer can be completely unbound from the DNA (UB), bound by a single bead to the

DNA (SB), or bound by both beads in the dimer to the DNA (DB). Each DNA bead can

only bind to a single protein bead, so doubly bound proteins occupy two adjacent DNA

beads. The binding and unbinding steps occur via a Monte Carlo update step occurring

every τ̃0 = 0.05, which demonstrates the statistical results expected from a Bell Model type

reaction [152]. The connectivity of a protein bead (i) and DNA bead (j) is modeled as a
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harmonic potential that is recalculated every τ̃0 as follows:

ŨC =
κ̃s
2

∑
ij

ωij(r̃ij−r̃0)2 (2.7)

ωij(t)=



1 if Ξ < e−∆EB

0 if Ξ > e−∆EB

if
∑

k(ωkj(t̃− τ̃0) + ωik(t̃− τ̃0)) = 0 & r̃ij < 2.1

1 if Ξ < e−∆EUB,2

0 if Ξ > e−∆EUB,2

if ωij(t̃− τ̃0) = 1 & DB

1 if Ξ < e−∆EUB,1

0 if Ξ > e−∆EUB,1

if ωij(t̃− τ̃0) = 1 & SB

(2.8)

where Ξ is a random number between 0 and 1 generated for each i. The reaction radius

r̃ij < 2.1 is informed by previous work which demonstrates that this choice leads to the

appropriate binding thermodynamics and kinetics [153]. Updates to ωij(t) are performed

randomly to avoid biasing the binding behavior based on chain index.

Inspired by the nearly symmetric geometry of a bound FIS-DNA complex [154], previous

literature considers identical energy barriers of binding for each bead in the dimer, regardless

of the protein’s state (∆Ẽ1 = ∆Ẽ2) [106]. This allowed for only one degree of freedom in the

binding landscape, ∆Ẽtotal. In the current model, each of the beads in the dimer can unbind

with different energy barriers, allowing for an extra degree of freedom (∆Ẽ1 and ∆Ẽ2) and

therefore a wider set of possible solutions. Recent work by Tsai et al. supports this three

state model and non-symmetric energies [85]. ∆ẼB = 3.0 is kept constant to ensure that

the binding time, τB, is equal to the diffusive time of the bead, τD = τB = 1/ν0e
∆ẼB =

6πηa3/(kBT ), where ν0 = 1/τ0 is the Monte Carlo update frequency.

Simulations measuring unbinding kinetics are initialized with 25 dimers that are doubly

bound to the stationary DNA chain. These dimers are ‘tagged’, while competitors (other

dimers or freely moving DNA chains) are initialized randomly throughout the box to obtain

the desired concentration, c. When a tagged dimer diffuses a distance 6a from the tethered

DNA strand, it becomes untagged and is removed from the system. This allows for rapid
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rebinding to occur, but does not increase the amount of free protein that can act as a

competitor in the system. The number of tagged molecules, nB, is tracked over time.

2.3 Results and Discussion

2.3.1 Equilibrium Behavior

Facilitated dissociation dynamics are reflected in the equilibrium behavior of FIS-DNA bind-

ing, which is readily accessible in experiment via standard titration assays [155]. We demon-

strate this by simulation and analytical calculations of the average amount of FIS bound

to DNA for a given set of energies (∆Ẽ1 and ∆Ẽ2). Comparison of the analytical value

to the simulated equilibrium behavior also verifies that the simulation reflects the intended

energy landscape. The simulations are initiated with a static DNA strand of N = 50 beads

and dimers randomly placed throughout the box to obtain the desired concentration c. We

define dimer concentrations as the number of dimer molecules, nD per volume. After the

system reaches equilibrium, the number of filled binding sites np is averaged over > 1.0×108

time steps, which is substantially longer than the relaxation time of the system. We track

the number of filled binding sites, np, as a function of ∆Ẽ2 and ∆Ẽtotal for various dimer

concentrations c. ∆Ẽtotal = 13.0 is shown in Fig. 2.2A, and a similar plot for ∆Ẽtotal = 10.0

can be seen in Fig. 2.2B. Symmetric energies (∆Ẽ1 = ∆Ẽ2) follow the same trends as ob-

served in Sing, et al [106].

The effect of non-symmetric energies is evident in this equilibrium data. At at high ∆Ẽ2

(and low ∆Ẽ1), proteins have a very low probability of moving from the doubly bound state

to the singly bound state. Dimers spend most of their time bound to the DNA in the doubly

bound state, taking up two binding sites along the DNA strand. The consequence is fewer

proteins binding to the DNA, and the DNA being nearly saturated with doubly bound pro-

teins at high enough concentrations. Alternatively, very low ∆Ẽ2 (and high ∆Ẽ1 in relation),
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Figure 2.2: A-B: Number of bound proteins np as a function of ∆Ẽ2 for a total energy of
∆Ẽtotal = 13.0 (A) and ∆Ẽtotal = 10.0 (B). The solid lines indicate the analytical value, and the
data points are obtained from simulations. C. Energy diagrams depicting the three extreme
states: left, ∆Ẽ2 is low and proteins prefer to be in the singly bound state over the doubly bound
state; center, ∆Ẽ2 = ∆Ẽ1; right, ∆Ẽ2 is high and proteins prefer to be in the doubly bound state
over the singly bound state.
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the proteins have a very high probability of moving between the doubly bound state and the

singly bound state (see Fig. 2.2C). While proteins can be found in the doubly bound state,

the time spent in that state is much less than the time spent in the singly bound state. This

allows more open binding sites along the DNA strand, and at high enough concentrations,

the DNA is saturated with singly bound proteins. This over-bound state has been exper-

imentally observed for a number of DNA-binding proteins [39, 108], which creates a much

“stiffer” DNA strand.

The equilibrium adsorption behavior can be described with an analytical expression, de-

rived using a transfer matrix calculation of the partition function. This method is well-

established in statistical mechanics, and is used by Sing et al. to derive their adsorbtion

equation for a similar system [106]. The grand partition function of the multi-energy system

(∆E1 6= ∆E2) in vector notation is shown below:

Ξ =
∑
~nB

eβ[~nB1·(∆ ~E1+~µ)+~nB2·(∆ ~E2−2.0)] (2.9)

where ~nB represents the “occupancy” of the system: each i can be in one of three states

(unbound, partially bound, or fully bound). nB1 = 0 indicates that i is not in the partially

(singly) bound state, and nB1 = 1 indicates that i is in the partially bound state. This

occupancy definition is the same for nB2 and the fully (doubly) bound state. ∆ ~E1 is the

energy upon binding for a partially bound protein, and ∆ ~E2 is the energy upon binding for

a fully bound protein. µ is the chemical potential, and the 2.0 is a simulation-dependent

protein degree of freedom term.

The grand partition function can be calculated by multiplication of matrices instead of by

direct summation. These matrices, Mi,j represent probabilities of a state at i based on the

possibilities of what the state was at i− 1. Because there are three possible states, a 3× 3
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matrix is required:

Mi,j =


1 1 1

P P P

0 Q 0

 (2.10)

where P = e∆Ẽ1+µ̃ and Q = e∆Ẽ2−2.0. µ̃ is the ideal gas chemical potential, µ̃ = µ̃0 +

ln(c), where µ̃0 = 5.7 is the constant reference chemical potential obtained from fits to

the simulation data. Each term of the matrix is the contribution at position i given the

contribution at position j to the partition function. The first row holds the contributions

of moving from any state (unbound, corresponding to the first column, partially bound,

corresponding to the second column, or fully bound, corresponding to the third column)

to the unbound state. The second row are the contributions (P ) moving from any state

(unbound, partially bound, or fully bound) to the partially bound position. The third row

are the contributions (Q) moving from any state to the fully bound state. Movement from

unbound to fully bound or fully bound to fully bound is not possible, so those contribution

terms are always 0.

The matrix multiplication form of the grand partition function is

Ξ = ~φNMN−2
i,j

~φ0 (2.11)

where ~φN = ~φ0 = 1P are the contributions of the ends of the chain of length N to the

partition function. With a large enough value of N , this equation can be approximated by

the largest eigenvalue of Mi,j, λ0, to the Nth power:

Ξ ≈ λN0 (2.12)

We note that the matching between simulation and theory provides a posteriori justification

for the large-N assumption. For this multi-energy, multi-state system, the largest eigenvalue
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is

λ0 =
1

2

[
1 + P +

√
(1 + P )2 + 4PQ

]
(2.13)

where P and Q are the partition function contributions shown earlier.

To find the equilibrium number of proteins, we use the thermodynamic relationship

kBT ln[Ξ] = G− µnp (2.14)

where np is the number of proteins bound to the DNA (either partially or fully bound).

When we substitute λ0 in for Ξ, we can solve for 〈np〉:

〈np〉 =
kBTN

λ0

∂λ0

∂µ
= NP

 1 + 2Q+1+P√
(1+P )2+4QP

1 + P +
√

(1 + P )2 + 4QP

 (2.15)

which is a more general version of the expression found in Sing et al. for symmetric binding

energies. This analytical result is plotted as lines in Fig. 2.2A and B, and demonstrates

matching with simulation for both symmetric and asymmetric binding energies.

2.3.2 Unbinding Model

While the model proposed by Sing et al. successfully described the linear concentration-

dependent behavior of competing proteins in solution [106], later experimental work showed

different behavior when the identity of the competitor was changed [100]. Giuntoli et al.

proposed a dissociation mechanism based on DNA competitors, shown by states 0-3 in Fig.

2.3.

A mean reaction time model was used to calculate the average time it takes for a protein

starting in state 0 (doubly bound) to be removed from the tethered DNA strand (state 3)

[156]:

〈τ03〉 =
k01(k12 + k21 + k23) + k10(k21 + k23) + k21k23

k01k12k23

(2.16)
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Figure 2.3: Proposed unbinding mechanism. The blue dimers are proteins, the light orange strand
represents the tethered DNA strand, and the dark orange strands represent the DNA
competitors. The kij ’s are the rate constants for moving from state i to state j. Because very
little dissociation is seen without competitor in solution, there is an assumption that movement
to and from state 4 is negligible, leading to states 0-3 being used to derive Eq. 2.16.

where kij are the rates moving from state i to state j and koff = τ03
−1. The concentration

dependence is built into k12, where the rate is multiplied by the concentration of competing

DNA molecules, c. A simplified version of Eq. 2.16 was used to describe the unbinding

kinetics observed experimentally:

koff = c/(Ac+B) (2.17)

where A and B are functions of the rates moving from state i to state j, kij, and c is the

concentration of competing DNA molecules.

This result from Giuntoli et al. can be fit to the observed facilitated dissociation kinetics

koff; however, the relationship to the underlying energy landscape was not explored. We

connect the rate constants kij to energetic and structural parameters, providing a connection

between experimental observations of facilitated dissociation and molecular details of FIS-

DNA interactions.

We determine the transition rates kij using the values from the energy landscape in Fig.
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2.1B, along with system specific values, such as the binding and unbinding testing frequency,

ν0. The rate constant k01 is dependent only on the unbinding energy of a doubly bound

protein (∆ẼUB,2) and ν0. Because both of the beads in the dimer can unbind with the

same probability, there is a factor of two in the rate constant, leading to k01 = 2ν0e
−∆ẼUB,2 .

Rate constants k21 and k23 are similarly calculated using ∆ẼUB,1, leading to k21 = k23 =

2ν0e
−∆ẼUB,1 .

k10 represents the transition from state 1 to state 0 (singly to doubly bound). This

transition rate depends not only on the binding energy, ∆ẼB, but is also dependent on the

number of available DNA binding positions open within 2.1a. This leads to k10 as a function

of the expected ∆ẼB and ν0, but indirectly as a function of ∆ẼUB,2, since this simulation

value impacts how many DNA binding positions are available. A prefactor value in k10, α,

takes into account this contribution, leading to k10 = αν0e
−∆ẼB . This prefactor decreases

with increasing ∆ẼUB,2, because as ∆ẼUB,2 increases, proteins are predominantly found in

the doubly bound position, leaving fewer open DNA binding sites. This results in a lower

probability that a singly bound protein can bind to the DNA, leading to a smaller k10 value.

The rate constant k12 appears in the concentration-dependent term of koff: k12c. We

introduce a prefactor β to the rate constant k12 to account for the correlation of competitor

binding opportunities. When there is no competitor within binding range at t, it may be

more likely than average that there remains no competitor at t+τ0. This is a correlation effect

that becomes significant at low ∆Ẽ2, where the singly and doubly bound states interchange

rapidly. This leads to the expression k12 = βν0e
∆ẼB . The different competitor geometries

and methods of competition lead to different binding correlations at different ∆Ẽ2.

Using the predicted kij values, the full mean reaction rate equation can be simplified to

the following:

koff = γ
βc

βc

2e−∆Ẽ1,UB
+

2e−∆Ẽ2,UB + αe−∆ẼB + e−∆Ẽ1,UB

e−∆Ẽ2,UB−∆ẼB

(2.18)
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where γ is the simulation-dependent constant that takes into account the testing frequency,

and α and β are the aforementioned prefactors.

2.3.3 Facilitated Dissociation Simulations

We test a variety of simulation conditions for DNA competitors to verify the hypothesized

model: we consider different ∆Ẽtotal, ∆Ẽ2, and DNA competitor concentrations, defined

by the number of DNA beads (M · ns) per volume. For each specified set of values, the

number of tagged proteins in the system is tracked over time for 30 individual trajectories.

In Fig. 2.4A we plot the averaged number of bound proteins 〈nB〉 for different values of ∆Ẽ2

at constant ∆Ẽtotal = 13.0 and constant c = 20.0ng/µL. This set of curves is an example

of those seen at other values of ∆Ẽtotal and c; data for different ∆Ẽtotal (and symmetric

energies, ∆Ẽ1 = ∆Ẽ2) can be seen in seen in Fig. 2.4B. An unbinding rate constant koff can

be calculated from unbinding curves, like those shown in Fig. 2.4A and B, via a fit to the

following expression:ii

〈nB〉 = nB,0e
−koff t̃ (2.19)

Rate constants koff corresponding to a constant ∆Ẽtotal = 13.0 are plotted in Fig. 2.4C as a

function of concentration c and ∆Ẽ2. A similar plot for koff as a function of ∆Ẽtotal and c is

shown in Fig. 2.4D.

The facilitated dissociation simulations were repeated with proteins as the competitor in

solution, using the same method to calculate the unbinding constants koff . Very similar

behavior (both qualitative- and quantitatively) is observed and can be seen in Fig. 2.5A-D.

We can directly track the average time it takes to move from state i to state j and

average it over all simulation times and trajectories to verify the theoretical kij values. From

iiWe account for the differences between the theoretical and simulated koff values by adding a k0 to
the theoretical koff. The theory-based equation only accounts for the concentration dependent dissociation
pathway, and the addition of k0 accounts for non-concentration dependent dissociation that is seen in our
simulations (but not experimentally). Modified simulations that prevent unfacilitated dissociation show
matching between the unmodified theory and simulated koff values.
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Figure 2.4: Data from DNA facilitated dissociation simulations. A-B: Unbinding curves for
external c = 20ng/µL. The system starts with 25 tagged proteins doubly bound to the stationary
DNA strand, and DNA strands are initialized throughout the simulation box to obtain a
concentration of c = 20ng/µL. This corresponds to 120 competitor DNA beads. When a tagged
protein moves 6a from the tethered DNA, the protein is removed, and we observe that the
number of tagged proteins (nB) in the system decreases exponentially. Panel A shows data for
different ∆Ẽ2 at a constant ∆Ẽtotal = 13.0, and panel B shows data for different ∆Ẽtotal with
symmetric energies (bolded black lines correspond to ∆Ẽtotal = 13.0). C-D: The off-rate
constant, koff as a function of c at different ∆Ẽ2 (C) and ∆Ẽtotal (D). The solid lines in C are
values calculated from Eq. 2.16. An example of the koff for c = 20ng/µL at ∆Ẽtotal = 13 is shown
in the inset to panel C.
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Figure 2.5: Data from protein facilitated dissociation simulations. A-B: Unbinding curves for
external c = 1/. The system starts with 25 tagged proteins doubly bound to the stationary DNA
strand, and protein dimers are initialized throughout the simulation box to obtain a
concentration of c = 1. This corresponds to 86 protein beads, or 43 protein dimers. When a
tagged protein moves 6a from the tethered DNA, the protein is removed, and we observe that the
number of tagged proteins (nB) in the system decreases exponentially. Panel A shows data for
different ∆Ẽ2 at a constant ∆Ẽtotal = 13.0, and panel B shows data for different ∆Ẽtotal with
symmetric energies. C-D: The off-rate constant, koff as a function of c at different ∆Ẽ2 (C) and
∆Ẽtotal (D). The solid lines are values calculated from Eq. 2.16.
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these simulations, we are able to calculate the values of the prefactor α directly from the

measurement of k10, which range from 0.15 to 0.06 with increasing ∆Ẽ2. The values of β are

determined from the overall koff behavior by fitting Eq. 2.18 to data, and are dependent on

competitor identity. For DNA competitors, β ranges from 0.001 to 0.000045 with increasing

∆Ẽ2, and for protein competitors, β values range from 0.00013 to 0.04 as ∆Ẽ2 increases.

Both of these prefactors are independent of concentration.

When considering the unbinding constants for symmetric energies (∆Ẽ1 = ∆Ẽ2) at low

concentrations of either competitor, we observe the linear behavior described by previous

experiments and simulations [99, 106]. However, if we go to higher concentrations or non

symmetric energies, we see that the both competitors can display the plateau off-rate seen

experimentally with DNA competitors.

When at a single concentration and total energy (as in Fig. 2.4A), the dissociation rate

(koff) shows non-monotonic behavior. It initially increases as ∆Ẽ2 increases; however, after

koff reaches its maximum value at a “turnaround” ∆Ẽ2, it begins to decrease. This non-

monotonic behavior can be explained with the asymmetric unbinding energy effect included

in our simulations. At low ∆Ẽ2 (high ∆Ẽ1), proteins are preferentially in the singly-bound

rather than the doubly-bound state. The high energy barrier associated with ∆Ẽ1 must be

overcome when moving from the singly-bound to unbound state, leading to long unbinding

times. Alternatively, at high ∆Ẽ2, the proteins are strongly bound in the doubly-bound

position. They must overcome the high ∆Ẽ2 barrier to become singly bound, but once they

do they only need to overcome the small ∆Ẽ1 barrier to fully unbind. Both of these limits

result in long unbinding times because the large energy barriers ∆Ẽ1 or ∆Ẽ2 become the

bottlenecks of the dissociation mechanism.

At these two extremes, the competitors in solution do not play as much of a role in moving

the tagged protein from doubly-bound to singly-bound to unbound. At mid-range ∆Ẽ2,

however, the competitors play a large role in preventing the tagged protein from moving

from the singly-bound state to the doubly-bound state. The existence of an intermediate
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Figure 2.6: A. Universal curve for both DNA and protein competitors for ∆Ẽtotal = 13.0. Each
data point is normalized by k∗ and c∗, and the solid line is an arbitrary theroy curve calculated
from Eq. 2.16. B. The c∗ and k∗ values used to normalize the data points in (A) plotted as a
function of ∆Ẽ2 on the lower x-axis (for k∗) and ln(∆Ẽ2,UB/ξ) on the upper x-axis (for c∗), where

ξ = (e−∆Ẽ2,UB−∆ẼB)/(2e−∆Ẽ2,UB + αe−∆ẼB + e−∆Ẽ1,UB). C. Conceptual schematic describing the
normalizing factors. c∗ is the concentration at which the rate from state 0 to state 2 is equal to
the rate from state 2 to state 3. k∗ is the final step of dissociation, moving from state 2 to state 3.

position is vital for facilitated dissociation, and there is no long-lived intermediate state at

the two extremes of ∆Ẽ2. The fastest dissociation occurs when the competitors play the

strongest role in the overall unbinding, which is where the “turnaround” point occurs at a

mid-range ∆Ẽ2 (dependent on competitor identity and ∆Ẽtotal).

2.3.4 Rescaling of Facilitated Dissociation Kinetics

All unbinding rate koff versus concentration c curves share similar features, such as an initial

linear increase and for some conditions, an eventual plateau value (seen in the inset of Fig.

2.6A). Indeed, we find that for both competitors and for all values of ∆Ẽ2, we can normalize

koff → koff/k
∗ and c→ c/c∗ such that they fall along a single, universal curve independent of

the energy landscape parameters or competitor identity (Fig. 2.6A). This is also true of the

theoretical fits, indicated by the solid line in in Fig. 2.6A. The two normalization constants,

k∗ and c∗ exhibit regular trends as a function of system parameters (Fig. 2.6B).

The normalization constants k∗ and c∗ can be understood in the context of Eq. 2.18 and

two physical limiting cases. The saturated koff value occurs at high concentration, where the

limiting step in the overall off rate is the final dissociation of the tagged protein from the
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DNA strand. This can be seen mathematically with Eq. 2.18: when c is very large, Eq. 2.18

can be approximated by

koff ≈ γ
βc
βc

2e
−∆Ẽ1,UB

∝ e−∆Ẽ1 ∝ e∆Ẽ2 (2.20)

This relationship can be seen for both DNA and protein competitors by the red data points

in Fig. 2.6B. When the overall koff is normalized by k∗ ∼ e∆Ẽ2 , all unbinding curves approach

the same maximum off-rate.

The transition point from linearly increasing to plateau occurs at a critical concentration,

c∗, when the rate going from state 0 to 2 (low concentration regime) is equivalent to the

rate going from state 2 to 3 (high concentration regime), k02 = k23, shown in Fig. 2.6C. As

stated above, the high concentration limit is k23 ∼ e∆Ẽ2 . The rate from state 0 to 2 can be

approximated by the low concentration limit of Eq. 2.18:

koff ≈ γ
βce−∆Ẽ2,UB−∆ẼB

2e−∆Ẽ2,UB + αe−∆ẼB + e−∆Ẽ1,UB
(2.21)

When the low concentration limit and high concentration limit of Eq. 2.18 are equal, we see

c∗ ∝ e∆Ẽ2

βe
−∆Ẽ2,UB−∆ẼB

2e
−∆Ẽ2,UB+αe−∆ẼB+e

−∆Ẽ1,UB

=
e∆Ẽ2

ξ
(2.22)

where ξ is the low concentration limit. This relationship can be seen in the by the black data

points in Fig. 2.6B. Normalizing c by c∗ moves the transition point to the same universal

location for all unbinding curves.

The different ∆Ẽ2 regimes effect the low concentration limit. At low ∆Ẽ2, 2e−∆Ẽ2,UB is

the dominant term in the denominator due to the prefactor of 2 (and the α prefactor of

the binding term), leading to ξ ≈ βe−∆ẼB/2. At midrange ∆Ẽ2, the term with ∆ẼB is the

dominant term, even with the small α prefactor, leading to ξ ≈ βe−∆Ẽ2,UB . At very high

∆Ẽ2, the ∆Ẽ1,UB begins to be dominant, leading to ξ ≈ βe−∆Ẽ2,UB−∆ẼB/e∆Ẽ1,UB .

There are some differences between the simulation and experimentally observed off rate
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behaviors. The energy barriers used in the simulations are much smaller than the real world

experimental values to allow us to observe dissociation on computationally accessible time

scales. The non-negligible koff at a concentration of 0 observed in the simulations reflects this

difference. The model is otherwise not dependent on the size of the energy barriers (on the

order of kBT ) and resulting time scales (< 10 ms) used in the simulations. It can be extended

to far longer times (> 1000 s) seen experimentally [99, 100]. The off-rate plateau observed

in our protein-competitor simulations had not been observed in initial work [99, 106], but is

consistent with more recent experiments showing saturated dissociation at sufficiently high

concentrations [104].

2.4 Conclusion

Solution phase concentration-dependent dissociation has been experimentally observed for

NAPs and other DNA binding proteins [99, 100, 104, 147], as well as other biological binding

partners, such as DNA duplexes [142]. Different concentration dependencies were observed,

and multiple models have been proposed to explain the concentration dependence of differ-

ent systems [100, 106, 142–146]. The present simulation work confirms the physical behavior

suggested by Giuntoli et al. as a result of their three-state mean reaction time model.

Our simulations allow us to understand the effect of energetic and physical parameters

on the mechanism of facilitated dissociation. Regardless of the competitor identity and pa-

rameter values, all dissociation rates can be normalized to the same universal curve, which

encompasses all of the different aspects of the concentration-dependent dissociation behav-

iors observed. At low concentrations for both simulated protein and DNA competitors, we

see the linearly-concentration dependent behavior that is experimentally observed with pro-

teins in solution [99]. We also see the plateau behavior seen in DNA-competitor experiments

[100], once again for both the simulated proteins and DNA with certain parameter values.

The simulations in this work were designed to mimic single-molecule experiments involv-
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ing NAPs and DNA, but they can easily be expanded to other systems. By altering the

binding energy ∆EB for individual DNA beads to correspond to favorable or unfavorable

binding events, we can, in principle, simulate sequence-specificity of protein binding, which

is important for proteins like transcription factors [138, 157]. We note that slight differences

in sequence specificity can also quantitatively affect facilitated dissociation, which has pre-

viously been considered in previous work by one of the authors [106]. Other changes to the

system such as untethering the DNA strand, incorporating effects such as DNA allostery

[158], initializing with a DNA strand that is not saturated with proteins, or adding in addi-

tional forces, all of which correspond to in vivo behaviors, can, in principle, be added. The

dissociation model can also be extended to other molecules that have a multi-state binding

mechanism, even if molecular features are the cause of the behavior, and not the dimeric

binding domains often seen in NAPs [32].

While the model used in this work is more complex than the model proposed by Sing et

al., we are able to capture the linearly increasing and eventual plateau of the unbinding rate

trends while still retaining a robust, physical understanding of the dissociation behavior.

Scaling of the low and high concentration regimes come directly from the off-rate Eq. 2.18

that is composed of system-specific parameters. The shifting of these two different regimes

with different ∆Ẽ2 can provide information about experimentally observed facilitated disso-

ciation. Proteins that are strongly bound in the fully bound state (high ∆Ẽ2 : ∆Ẽ1 ratio)

demonstrate seemingly linear behavior, and proteins that are strongly bound in the parti-

cally bound state (low ∆Ẽ2 : ∆Ẽ1 ratio) demonstrate rapid plateau behavior.

Our findings have shown a continuum of facilitated dissociation from concentration-dependent

facilitation to saturated facilitation behavior, which has implications for NAP and nucleoid

function. NAP concentrations in cells vary with different growth conditions [65], leading to

different protein-DNA dissociation rates and consequently different protein-DNA association

times. These varying NAP concentrations also compact the DNA differently [68, 100, 102],

allowing a higher (or lower) local concentration of DNA to facilitate protein dissociation.
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Future experimental and simulation studies with additional NAPs can provide more infor-

mation about where the dissociation rate behavior of different NAPs falls along the spectrum

of facilitated dissociation.
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Chapter 3

Force-dependent facilitated dissociation can generate
protein-DNA catch bonds

i

3.1 Introduction

Molecular mechanical forces play an important role in genomic function, governing phys-

iological behaviors including mechanical signaling, gene transcription and expression, and

genome structure [159–163]. Reaction-rate theory [152, 164–170] and in vivo [161, 171–173]

and in vitro [174–176] experiments suggest that cells may transduce these mechanical stimuli

through alterations to ligand-substrate interactions, such as protein-DNA association and

dissociation kinetics. For many biomolecular interactions, dissociation requires escaping a

single potential energy well, and forces accelerate unbinding by lowering the energy barrier

for the dissociation. However, multivalent proteins, i.e., those with more than a simple bi-

nary set of “on” or “off” states, may dissociate from DNA through multiple, distinct kinetic

pathways. These additional kinetic pathways are commonly facilitated by DNA binding by

competitor biomolecules from solution [99, 105, 150, 177]. Because of such “facilitated dis-

sociation” phenomena, the unbinding kinetics of DNA-binding proteins may be considerably

more complicated when DNA is subjected to mechanical forces.

Recent work with a variety of biomolecules, such as transcription factors [99, 100, 104,

105, 178–181], metalloregulators [55, 150], chromatin effectors [182], DNA polymerases [183–

187], antibody-antigen complexes [188], and other biological complexes [142, 177, 189–198]

has demonstrated that facilitated dissociation, in which protein dissociation rates depend on

ambient protein or other biomolecule concentration, is a widespread phenomenon both in

iSubmitted to Biophys. J on April 23, 2019.
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vitro and in vivo. Facilitated dissociation contrasts with classical kinetic models of bimolec-

ular complexes that undergo a simple, binary on/off transitions, and have concentration-

dependent association rates and concentration-independent dissociation rates. Instead, many

proteins undergoing facilitated dissociation are multivalent, so that they may be associated

with their substrates in one of several distinct binding states.

As a protein unbinds from DNA via facilitated dissociation, it forms an intermediate state

between the fully bound and fully dissociated states, in which it is partially associated with

its DNA substrate (Fig. 3.1A, state P). This partially bound state permits other biomolecules

in solution, such proteins or DNA strands, to compete for contacts with either the protein or

the DNA. Subsequent binding by a competitor molecule inhibits the initially bound protein

from fully rebinding (Fig. 3.1A, state S). This accelerates (or “facilitates”) the unbinding

of the original protein from its binding site by inhibiting full rebinding of the partially

bound protein and providing an additional dissociation pathway [85, 100, 105, 106, 144–

146, 177, 178, 193, 199]. Since spontaneous unbinding without competitor biomolecules may

be slow for these protein-DNA complexes (e.g., < 10−3 s−1 for the bacterial protein FIS),

facilitated dissociation can lead to as much as a 100-fold enhancement in the dissociation

rate at physiological protein concentrations (∼ 10 nM for FIS) [99, 105].

Protein-DNA dissociation kinetics may be further modulated by applied forces. In vivo,

& 1−10 pN tension within DNA (or chromatin) can be induced by a number of intracellular

and extracellular factors, including transmitted cytoskeletal forces [161, 173], transcription

[200–203], and chromatin compaction [204–206], among other factors. Since many proteins

that undergo facilitated dissociation preferentially associate with bent DNA, flexible DNA,

or DNA that is not under tension [44, 67, 68, 100, 103], these in vivo forces may alter dis-

sociation kinetics through their effects on the geometry of the DNA substrate. While the

number of proteins bound to DNA indeed decreases under tension in vitro [67, 103, 207],

the kinetics of tension-dependent proteins are unclear. Tension should increase the sponta-

neous dissociation rate of DNA-bound proteins [152, 164–166, 175]. However, since tension
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suppresses protein binding, it should also suppress the facilitated dissociation pathway of

protein unbinding. These apparently competing effects suggest that the coupling between

force and ligand-substrate geometry may generically lead to unexpected protein-DNA dis-

sociation kinetics within cells.

Indeed, previous work on protein dissociation and unfolding demonstrated that complex

force-dependent kinetics can be achieved for structures with multiple transition pathways.

For example, for reactions that may occur by two different pathways, inhibition of one

pathway can reduce the total reaction rate [170, 208–213]. When inhibition is driven by

increasing applied force, the bound complex is referred to as a “catch bond” [214, 215]. A

common conceptual picture for such bonds is that one of the transition states for dissociation

resides at a smaller physical distance than the bound state, so that force drives the complex

away from that transition [208, 209, 211, 212]. However, there are several different generic

mechanisms by that may underlie such bonds [215]. Correspondingly, catch bonds have

been experimentally observed for a wide variety of biological proteins and complexes that

must withstand physiological forces. These include cellular adhesion proteins in humans (P-

and L-selectin and integrin) [209, 210, 216, 217], metazoans (cadherin-catenin-actin) [218],

and bacteria (FimH) [219, 220], the molecular motors myosin [221], dynein [222, 223], and

PICH [224], microtubule-kinetochore interactions [225], and T-cell receptors under certain

conditions [226]. In these models and experiments, bond strengthening and slowing of spon-

taneous dissociation with force are an intrinsic properties of the bound complex. In contrast,

in the case of facilitated dissociation, it is the extrinsic effects of competitor biomolecules

that may lead to anomalous kinetics, without bond strength enhancement and the suppres-

sion of spontaneous dissociation.

We hypothesize that the two dissociation pathways of DNA-binding proteins that undergo

facilitated dissociation may together effectively generate catch-bond dissociation kinetics.

We predict that when the spontaneous dissociation pathway dominates protein dissocia-

tion, increasing force on the DNA substrate enhances the dissociation rate, as is typical
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of slip bonds. In contrast, when the facilitated dissociation pathway dominates so that a

biomolecule from solution must bind DNA to facilitate unbinding of the DNA-bound pro-

tein, the applied force should inhibit dissociation by inhibiting competitor binding; thus, we

predict catch-bond behavior in this regime. We develop a coarse-grained simulation model

and corresponding theoretical model for DNA-bending proteins interacting with DNA, and

we explore their force-dependent facilitated dissociation kinetics in the geometry of a com-

mon in vitro single-molecule experiment (Fig. 3.1B) [106, 199, 227]. Within the model, we

identify several distinct types of force-dependent dissociation kinetics: classical slip bonds,

catch bonds, delayed onset catch bonds, and force-insensitive bonds. These bonds occur

in different physical regimes, depending on the ratio of force sensitivities of each pathway.

We investigate how different physical variables, including the preferred binding geometry

of the protein-DNA complex and concentration of competitor molecules, may impact force-

dependent dissociation. Altogether, the simulations and calculations demonstrate that ap-

plied or local mechanical stresses could dramatically modulate the facilitated dissociation of

proteins, which could be probed in single-molecule experiments.

3.2 Mathematical and Computational Models and
Methods

To explore the consequences of forces facilitated dissociation in the presence of applied forces,

we consider a generic stochastic kinetic model (Fig. 3.1). In this model, a protein is initially

fully bound to DNA (state F), and it must sequentially pass from fully to partially bound

(state P) before dissociating into the unbound state (state U). While in the partially bound

state, a competitor protein may invade the binding site in order to “saturate” it; in this

state the binding site is simultaneously occupied by two partially bound proteins (state

S). In the model, competitor binding prevents a partially bound protein from returning to

the fully bound state. Experimentally, this may also transition the ligand-substrate complex
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Figure 3.1: A. A schematic of the generic four-state model for protein-DNA dissociation kinetics.
The protein-DNA complex may be have single fully bound protein (F), a single partially bound
protein (P), two partially bound proteins (saturated, or S), or in the unbound state, no bound
protein (U). In the model, the F to P and P to S unbinding steps are force dependent; these steps
are indicated with the colored arrows. B. A drawing of the many proteins on a long DNA
molecule, undergoing the dissociation kinetics depicted in (A). The top depicts spontaneous
dissociation pathway, in which an initially fully bound protein first transitions to the partially
bound state, and subsequently, to the unbound state, as shown by the proteins from left to right.
The bottom shows the facilitated dissociation pathway, in which an initially fully bound protein
transitions to the partially bound state, and then, upon competitor binding, to the saturated
state, and finally to the unbound state (from left to right).

into a highly unstable configuration [85, 105]; however, this additional dissociation-enhancing

effect is not considered here. In contrast to other schematically similar two-pathway reaction

models [208, 209, 211–213], a factor extrinsic to the physical state of the bound complex,

i.e., the concentration of competitor biomolecules in solution, may be tuned to shift the

relative weights of the two dissociation pathways. Despite the coarse-grained nature of

the model, it has the salient features of facilitated dissociation: two dissociation pathways

and extrinsic regulation by competitor proteins. Thus, the reaction scheme describes the

unbinding kinetics of various DNA-binding proteins, such as RPA, FIS, and NHP6A [105,

193].

We focus on proteins that bind and bend a long DNA molecule, which is subjected to

tension, f , as in single-molecule experiments (Fig. 3.1B) [39, 67, 100, 103, 228, 229] or certain

in vivo conditions [55]. In this setup, when force is applied to DNA, it becomes more difficult

to bend, and thus the protein binding affinity should decrease. Therefore, we assume that

the rates, kF,P and kP,S, of partial unbinding and competitor binding, respectively, depend
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on the force applied to the DNA.

We explore this generic model via two complementary approaches, described below. We

develop a hybrid Brownian dynamics/kinetic Monte Carlo simulation model to explore force-

and concentration-dependent protein dissociation behavior for proteins with different force

sensitivities and binding geometries. In parallel, we perform numerical calculations for a

theoretical model based on the simulations in order to more easily study the kinetics of

individual proteins, analyze the contributions of the two dissociation pathways, and explore

regimes of parameter space that are impractical to simulate. Together, the two approaches

provide elucidate how the kinetics described by Fig. 3.1A may be manifested in the typical

experimental scenarios depicted in Fig. 3.1B.

3.2.1 Hybrid Brownian Dynamics/Kinetic Monte Carlo

Simulations

Model for DNA Polymer Dynamics

We adapt a coarse-grained Brownian dynamics simulation model for DNA-binding proteins

binding that demonstrates both spontaneous and facilitated dissociation (Fig. 3.1B) [199,

227]. DNA is represented by a strand of N = 100 beads, indexed by i, of radius a = 4 nm at

positions ri. The strand is tethered to a stationary boundary at one end, and a pulling force

f is applied to the other end. Units are non-dimensionalized as follows: distance in with

respect to bead radius (r̃ij = rij/a), time with respect to the diffusion time of a single bead

(t̃ = t/τD), and energy with respect to kBT (Ũ = U/kBT ). Throughout the text, variables

with tildes denote non-dimensionalized quantities.

Neighboring beads in the DNA polymer are connected by Hookean springs, which is
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governed by the stretching potential:

ŨS =
κ̃S
2

∑
i,j=i+1

(r̃ij − b̃0)2, (3.1)

where r̃ij is the distance between adjacent beads i and j, and b̃0 = 2.0 is the equilibrium

distance between two beads. κ̃S = 200 to prevent large deviations of r̃ij from b̃0.

Excluded volume is included via a shifted Lennard-Jones potential:

ŨLJ =


ε̃
∑
ij

[(
b̃0
r̃ij

)12

− 2
(
b̃0
r̃ij

)6

+ 1

]
r̃ij ≤ 2.5b̃0,

0 r̃ij > 2.5b̃0,

(3.2)

where the magnitude of the potential is controlled by ε̃ = 0.41, and b̃0 = 2.0 is location of

the minimum.

A bending potential is included to maintain the stiffness of DNA as well as to incorporate

the effects of the local bending deformations that may be induced by DNA-binding proteins:

ŨB =
κ̃B
2

m−1∑
i=1

(θi − θ0,A)2, (3.3)

where κ̃B = 6.25 ensures a DNA persistence length of 50 nm, and θi is the angle between

bonds of beads i and i− 1 and beads i and i+ 1. θ0,A is the equilibrium angle between these

two vectors, and its value depends on whether protein is bound to DNA bead i, which is

denoted by the state index A.

Monomer dynamics are overdamped and governed by a Langevin equation that includes

three potentials described above:

∂ri
∂t

= −
Ntotal∑
j

µij · ∇jU(rij; t) + ξi(t), (3.4)
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where µij = δijδ/(6πηa) is the freely-draining Stokes mobility matrix, η is the solvent vis-

cosity, δ is the identity matrix, δij is the Kronecker delta, U = US +ULJ +UB is the sum of

all bead potentials, ξi is a random velocity that satisfies the fluctuation-dissipation theorem,

〈ξi(t)ξj(0)〉 = 2kBTµijδijδ(t).

Model for Protein Binding and Unbinding Kinetics

Proteins in the system are implicitly modeled as a field of proteins that interacts with the

DNA strand. A four-state model is used to describe the possible states of a DNA bead: fully

bound (F), partially bound (P), saturated (S), and unbound (U), as shown in Fig. 3.1A. The

partially bound and fully bound states correspond to a single protein interacting with a single

DNA bead, while the saturated state corresponds to each of two proteins partially binding

the same single DNA bead. DNA in either the unbound (U) or partially bound (P) states

locally has an equilibrium bending angle of θ0,U = θ0,P = 0, while a non-zero equilibrium

angle is associated with the fully bound (F) and saturated states (S): θ0,F = θ0,S > 0.

Transitions between two states, A and B, are dictated by state-dependent energy barriers,

∆ẼA,B. The binding state of a DNA bead, denoted by Ωi, is updated with a Monte Carlo

step every τ̃MC = 0.05. This time step is chosen to ensure that if an (implicit) protein is

found to have diffused so that it is near the DNA binding site, the subsequent binding time,

τb, matches the diffusion time, τD, of a single bead [199]. A random number, 0 ≤ ζ < 1, is

generated, and for DNA site i in state Ωi = A, the binding update occurs as follows:

Ωi(t) =


B if ζ < e−∆EA,B ,

A if ζ > e−∆EA,B .

(3.5)

Most transitions in this model have fixed energy barriers for binding or unbinding: ∆ẼU,P =

3, ∆ẼP,F = 5 (where the additional 2kBT accounts for entropy loss upon full binding [227]),

and ∆ẼP,U = ∆ẼS,P = 10. Due to the universal nature of facilitated dissociation, the results
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are broadly applicable beyond this particular set of energy barrier choices [199].

However, two key transitions have energy barriers that vary as a function of force. The

form of the energy barrier for the competitor protein binding event to DNA site i in the

facilitated dissociation pathway (P to S) is:

∆ẼP,S = xP,S
κ̃B
2

(θi − θ0,S)2 + ∆Ẽ∗b, (3.6)

where the first term in Eq. 3.6 accounts for the effect of applied force on the binding energy

and the second term is a constant energy barrier. As more force is applied to the DNA strand,

the average angle, θi, between DNA bead bond vectors increases. Therefore, on average, the

DNA binding site is further from its preferred binding geometry (θ0,S) at higher applied

forces, which decreases the likelihood of protein binding. The force sensitivity parameter,

xP,S > 0, controls the strength of the effect of force on the binding energy barrier. To ensure

that the zero-force (f = 0) total protein dissociation rate, k̃off, is the same for all parameters,

we include an adjustable parameter ∆Ẽ∗b to account for the effects of the force-dependent

term on the zero-force off rate, listed in Table 3.1.

The energy barrier for the force-dependent partial unbinding step (F to P) has the form:

∆ẼF,P = xF,P[κ̃B (θi − θ0,F)] + ∆Ẽ∗Ub, (3.7)

where the second term is a constant unbinding energy barrier. The first term is the derivative

of the bending energy term in Eq. 3.6 ( κ̃B
2

(θ − θ0,B)2), but multiplied by the force sensitivity

parameter xF,P; it accounts for the change in the unbinding energy barrier due to the local

bending conformation of DNA, which is related to the force applied to the DNA strand [227].

The force sensitivity xF,P > 0 controls the strength of the force-dependent term. Similar to

Eq. 3.6, the last term, ∆ẼUb, is an adjustable parameter that matches k̃off at f = 0 for all

parameters and can be found in Table 3.2. Physically, we may interpret xF,P as the distance
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Table 3.1: Reference energy barrier values (∆Ẽ∗b ) used in Eq. 3.6. These values are found by
parameterizing Eq. 3.6 to match all koff at f = 0. All other values in Eq. 3.6 are constant (other
than the variable θ, which is measured instantaneously in the simulation).

θ0,S and θ0,F xP,S ∆Ẽ∗b

π/6

1 1.2
5 0.72
10 0.4
25 -0.06

π/3

1 0.1
5 -4
10 -9
25 -24

π/2

1 -2.6
5 -17.1
10 -35.5
25 -90

Table 3.2: Reference energy barrier values used in Eq. 3.7. These values are found by
parameterizing Eq. 3.7 to match all koff at f = 0.

θ0,S and θ0,F xF,P ∆Ẽ∗Ub

π/6

≤ 0.01 10
0.1 9.95
0.2 9.88
0.3 9.83
0.5 9.84
0.75 9.95
1.0 10.16
2.0 11.7

π/3

≤ 0.25 10
0.3 10.01
0.5 10.16
0.75 10.5
1.0 10.95
2.0 14.35

π/2

≤ 0.1 10
0.2 10.1
0.3 10.17
0.5 10.42
1.0 11.54
2.0 15.75
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a protein must be displaced in order to partially dissociate, or the position of the transition

energy barrier [165–167, 212, 215].

The force dependence of kF,P but not kP,U models insensitivity of spontaneous dissociation

to applied forces, while partial dissociation events depend on force. These kinetics are

suggested by observations of DNA-binding proteins such as NHP6A, HMGB, and HU [39,

229]. Furthermore, the force dependence of the saturation transition models the inhibition

of protein binding by tension (e.g., [103]), which we have assumed is relevant to competitor

protein binding.

We define the sensitivity ratio as xP,S/xF,P, which is a measure of the relative sensitivities

to force of each dissociation pathway. A high ratio (> 100) indicates that the facilitated

pathway is much more sensitive to force, whereas a low ratio (< 10) indicates that the a

spontaneous pathway is much more sensitive to force.

We measure the off rate, k̃off, in simulations by counting the number, nB(t), of initially

bound proteins that remain bound to the DNA over time. We initialize the DNA strand with

every nonspecific binding site in the fully bound state, and then allow these originally bound

proteins to unbind and competitors to bind over time. We simulate until all originally bound

proteins unbind. We take the average of 100 independent trajectories to obtain 〈nB(t)〉, and

thus the mean dissociation rate, k̃off.

3.2.2 Theoretical Geometric Model and Numerical Calculations of

Mean-First Passage Time

To gain a better understanding of the geometric protein-DNA binding model, we numeri-

cally compute the expected dissociation rates for a corresponding theoretical using standard

statistical mechanical methods.

Within the stochastic kinetic model described by Fig. 3.1A and the equations above, we

calculate the average protein dissociation rate as the inverse of the mean first-passage time
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[105, 230]:

koff = 〈τ〉−1 =
kF,P(kP,SkS,U + kP,U(kS,P + kS,U))

kP,F(kS,P + kS,U) + kF,P(kP,S + kS,P + kS,U) + kP,SkS,U + kP,U(kS,P + kS,U)
,

(3.8)

where kA,B is the transition rate from state A to state B. As above, kF,P and kP,S depend on

force. In addition, kP,S is proportional to the concentration of competitor protein.

The expected dissociation rate is given by Eq. 3.8. To use that expression, we must

calculate the mean rates of partial dissociation, 〈kF,P〉, and binding-mediated saturation,

〈kP,S〉. These are given by averaging with respect to the equilibrium distribution of local

DNA bending angles, which is weighted by the potentials of the geometric model above and

the force that tends to align the DNA polymer along the tension axis. Thus, the partial

dissociation rate is given by:

〈kF,P(f)〉 =

∫ π
0
νe∆ẼF,P(θ)e−(ŨB(θ)−2b0f cos θ) sin θdθ∫ π

0
e−(ŨB(θ)−2b0f cos θ) sin θdθ

, (3.9)

where ν = 1/τMC is the attempt rate for partial unbinding, which is chosen to match the

simulations. Similarly, the competitor binding (saturation) rate is given by:

〈kP,S(c, f)〉 =

∫ π
0
γce∆ẼP,S(θ)e2b0f cos θ sin θdθ∫ π

0
e2b0f cos θ sin θdθ

, (3.10)

where c is the concentration of competitor proteins and γ is the binding attempt rate, which

is again chosen to match the simulations.

We numerically compute these average rates and insert them into Eq. 3.8 to obtain the

mean dissociation rate. All rate constants are reported as non-dimensionalized quantities,

which are normalized by the corresponding zero-force, zero-concentration rate constants.

This mimics the adjustable energy barriers in Eqs. 3.6 and 3.7.
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3.3 Results

3.3.1 Geometric Model Coupling Force and Dissociation

The four-state model described above allows proteins to unbind via two different dissociation

pathways, which are illustrated in Fig. 3.1B. The first is a spontaneous dissociation pathway,

in which a protein (black dimer) sequentially transitions from fully bound to partially bound

to unbound spontaneously, without the participation of competitor protein (gray dimer).

The second dissociation pathway is the concentration-dependent facilitated pathway, where

a protein transitions from fully bound to partially bound, and then a competitor protein

binds to the partially vacated binding site and assists the original protein in unbinding.

The fully bound and saturated proteins physically interact with the DNA substrate by

bending the DNA polymer. This changes the local equilibrium bond angle, θ0,A. There are

two force dependencies included in the models, which are governed by the force sensitivity

parameters, xF,P and xP,S (see methods section above and Fig. 3.1A). In general, these two

force dependencies enable the applied force, f , to accelerate the F-P transition and inhibit

the P-S transition. By varying the force dependencies of the rates associated with the two

different pathways, we observe a range of bond dissociation behaviors, described below.

3.3.2 Dissociation Rates in Limiting Scenarios

To demonstrate the main phenomenological features of our model, we first investigate the

simplest scenarios, in which the system has only one force dependence (i.e., one of either

xF,P > 0 or xP,S > 0). In these cases, the net protein dissociation rate depends in a simple

manner on the single force-dependent transition rate (either kF,P or kP,S).
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Force-Dependent Spontaneous Dissociation

We first consider the protein-DNA binding model with the force dependence restricted to

only the spontaneous dissociation pathway. Thus, we vary xF,P while fixing xP,S = 0 so

that only the unbinding transition from fully bound to partially bound depends on force.

Here, the model demonstrates the canonical slip bond behavior; the bond is weakened as

more force is applied, so the bond lifetime decreases. This is manifested in the model by an

observed increase in the dissociation rate, k̃off. The force dependence of partial unbinding

models the force dependence of observed “microdissociation” events, which is observed, for

example, in experiments with HMGB and NHP6A [229].

As force is applied to the DNA polymer, it straightens, which decreases the local bending

angle, θ. This frustrates the fully bound protein conformation, which has binding energy

proportional to (θ− θ0,F), with θ0,F > 0 (Eq. 3.7). Any xF,P > 0 for both the theoretical and

simulation model incorporates this decrease in the bending force in the F to P unbinding

step, leading to a more favorable unbinding step at high forces. This leads faster protein

dissociation as force is increased, and results in the slip-bond behavior in simulation. This is

true even when competitor proteins facilitate dissociation (in a force-independent manner),

as shown in Figs. 3.2A and A.1A.

As xF,P increases, the total dissociation rate becomes more force sensitive. As illustrated by

the transition rate numerically calculated from Eq. 3.9, shown in Fig. 3.2B, the spontaneous

dissociation rate, kF,P increases more rapidly with force for larger xF,P. Thus, in scenarios

in which only partial dissociation depends on force, tension within DNA may accelerate

dissociation of multivalent DNA-bending proteins.

Force-Dependent Facilitated Dissociation

We also investigate the case in which only the facilitated dissociation pathway depends on

force, xP,S > 0 and xF,P = 0; this leads to catch-bond behavior. This force dependence
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Figure 3.2: A. In simulations with force dependence only for partial dissociation (i.e., xF,P > 0
and xP,S = 0), the overall dissociation rate, k̃off, increases with force, f . The force dependence
strengthens with increasing force sensitivity, xF,P (light to dark red). B. The normalized partial
dissociation rate, k̃F,P (which is different from the overall koff shown in panel A), calculated from
Eq. 3.9. As xF,P increases, the partial dissociation rate, kF,P, increases; this underlies the
slip-bond behavior observed in simulations. C. In simulations with force sensitivity only only for
competitor binding (xF,P = 0 and xP,S > 0), the dissociation rate, k̃off, decreases with increasing
force. As the force sensitivity, xP,S, increases (light to dark blue), the force dependence of the
dissociation rate becomes sharper and the onset of strong force dependence shifts to lower forces.
D. The normalized competitor binding rate, kP,S (different than koff shown in panel C) calculated
from Eq. 3.10. For large enough forces, kP,S is generally suppressed by increasing force, which
results in catch-bond kinetics. As xP,S increases, kP,S is suppressed more sharply and for smaller
f . Results in all panels are for c = 100 µM. Simulation results (A and C) are for
θ0,F = θ0,S = π/6 and theoretical results (B and D) are for θ0,F = θ0,S = π/3.
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increases the energy barrier for a competitor protein to bind to a partially occupied DNA

site. This models the inhibition of binding by DNA-bending proteins when DNA bending is

inhibited by tensile forces [103, 227].

Applied forces in this scenario decrease the total dissociation rate by suppressing com-

petitor binding, and thus slowing protein dissociation via the facilitated pathway. In the

model, force decreases the average bending angle 〈θ〉. This increases the energy barrier for

competitor protein binding, which is proportional to (θ − θ0,S)2. As shown in Fig. 3.2C,

for finite competitor concentrations, the off rate, k̃off, decreases with increasing force, f , in

simulations, as expected for a catch bond.

For sufficiently high forces, f , and force sensitivities, xP,S, the off rate is insensitive to

force, as seen for f > 100 pN and xP,S = 25. For even sharper force dependencies (larger

xP,S), competitor binding should be suppressed for any f > 0. Under such conditions, the

facilitated dissociated pathway is so strongly inhibited by force that proteins can effectively

only dissociate via the spontaneous pathway, leading to a force-independent koff. This trend

can be inferred from the observed shift with increasing xP,S in simulations (from light to

dark blue) and for very large xP,S in the theory (Fig. A.1B). The numerically calculated

transition rate, kP,S, shown in Fig. 3.2D illustrates the changes in the facilitated rate with

xP,S and f that govern the total dissociation rate. The theoretical kP,S is mostly consistent

with simulations, but contrary to expectations from the simulations, the calculated rate is

non-monotonic in force, increasing for small f . This occurs in the theoretical model because

low forces shift the angular distribution toward the equilibrium angle (for θ0,S < π/2), which

enhances the competitor binding rate. In simulations, this effect is suppressed by excluded

volume interactions, which reduce the mean bending angle at zero force.; however, excluded

volume can be incorporated into a more detailed version of the theoretical model (Fig. A.2).

The two distinct variable force dependencies in the model thus have opposing effects on

the total dissociation rate. However, in contrast to these limiting scenarios, physiological

protein dissociation may have multiple force-dependent kinetic barriers. These force depen-
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dencies have differing degrees of control over the protein dissociation kinetics in different

physical regimes, described below.

3.3.3 Multivalent Protein Dissociation with Multiple Force

Dependencies

While the effect of force on each dissociation pathways is straightforward when considered

independently, we observe more complex behavior in scenarios in which both pathways are

force dependent. In this case, inhibition of competitor protein binding by force suppresses

the facilitated pathway, which competes with the force-enhanced partial unbinding that ac-

celerates the spontaneous dissociation pathway.

As we observe in Fig. 3.3A and B, this competition between the two pathways leads to

three classes of bonds: the slip and catch bonds discussed above, and a hybrid bond we

refer to as a “delayed catch bond.” The delayed catch bond is characterized by an off rate

with a slip-bond force dependence for low forces and a transition to catch-bond behavior

with increasing force; hence the onset of the catch bond is delayed as a function of force. At

very high forces, the off rate may either increase with force (reverting to a slip bond) or be

essentially insensitive to force. Fig. 3.3A and B show the transitions between catch, delayed

catch, and slip bonds as a function of the force sensitivity ratio, xP,S/xF,P for the particular

parameter choice xP,S = 10.

For low sensitivity ratios, the force dependence of the facilitated dissociation pathway is

weak compared to that of the spontaneous pathway, whereas for high sensitivity ratios, the

force dependence of the facilitated pathway is stronger. In both simulations and theory, for

low sensitivity ratios, the protein-DNA complex acts as a slip bond, dissociating more rapidly

with increasing force (red lines). As before, this occurs because force stimulates spontaneous

dissociation while having relatively little effect on the competitor protein binding required

for facilitated protein unbinding (e.g., in Fig. 3.2, compare derivatives of dark lines in B to
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light lines in D).

As the sensitivity ratio is increased, the force has a greater inhibitory effect on the facili-

tated dissociation pathway. For moderate sensitivity ratios, this manifests itself at ∼ 10 pN

forces in the model as a change from an increasing to a decreasing off rate (dark red and

purple lines in Fig. 3.3A and B). The onset of catch-bond kinetics is delayed in this sce-

nario because the spontaneous pathway has a non-negligible force dependence, while the

competitor binding rate, kP,S, in the facilitated pathway is less sensitive to small forces.

This disparity arises because kF,P depends purely exponentially on the bending angle, θ0,F,

whereas the competitor binding rate has a broad (xP,S-dependent) peak around the preferred

binding angle, θ0,S (see Eqs. 3.6 and 3.7). Moreover, at low forces, by accelerating the tran-

sition from fully to partially bound, the facilitated dissociation pathway is also effectively

accelerated because the protein-DNA complex is more frequently susceptible to invasion by

a competitor protein.

For very high sensitivity ratios, the force dependence of the facilitated pathway is domi-

nant. Here, we observe catch-bond kinetics in the simulation, while the numerical calculation

predicts that the onset of the catch bond is delayed to higher forces (blue lines in Fig. 3.3A

and B). This discrepancy occurs because the Gaussian chain approximation used in the the-

oretical model results in a small enhancement in the rate kP,S for small forces (Fig. 3.2).

This effect is suppressed in simulations by the additional chain stiffness imparted by ex-

cluded volume interactions. Nonetheless, we observe predominantly catch-bond kinetics in

this regime because the facilitated dissociation pathway is far more sensitive than the spon-

taneous pathway to the applied force.

To characterize the broader force-dependent dissociation kinetics of this model, we mea-

sure the derivative of the dissociation rate for a range of sensitivity ratios, xP,S/xF,P, and

forces, f . Fig. 3.3C and D shows the resulting phase diagrams for the simulations and theory.

Here, we observe three types of force-dependent dissociation kinetics: force-insensitive bonds

(|∂k̃off/df | < σ, where σ � 1 is a threshold value; gray points), slip bonds (∂k̃off/df > σ;
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Figure 3.3: A. Simulation off rates, k̃off, as a function of force, f and sensitivity ratio, xP,S/xF,P,
at xP,S = 10 and c = 100µM. As the sensitivity ratio decreases (by increasing xF,P), dissociation
kinetics change from catch-bond (blue) to delayed-catch-bond (purple and dark red) to slip-bond
(red) behavior. B. Theoretical off rates as a function of force and sensitivity ratio. Similar to the
simulation data, as the ratio xP,S/xF,P decreases, the protein-DNA complex crosses over from
catch-bond to delayed-catch-bond to slip-bond kinetics. C. A phase diagram in the ratio-force
plane, constructed from the simulation data, shows physical regimes of decreasing koff,
corresponding to catch bonds (open blue circles), and increasing koff, corresponding to slip bonds
(filled red circles). D. The theoretical diagram shows regimes with catch-bond, slip-bond, and
force-insensitive-bond kinetics (blue hollow circles, red filled circles, and gray filled squares,
respectively). The theory agrees qualitatively with simulations, and reveals an additional
force-insensitive regime for very low sensitivity ratios, xP,S/xF,P.
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red), catch bonds (∂k̃off/df < −σ; blue). Combinations of these types of kinetics result in

the three general classes of bonds described above.

For high force sensitivity ratios, where xP,S � xF,P, we always observe catch-bond kinetics

in simulations (∂k̃off/∂f < −σ). In contrast, the theoretical model predicts that the onset

of catch-bond kinetics should arise at non-zero force for all sensitivity ratios. Again, this

difference is due to the Gaussian chain approximation utilized in the theoretical model.

For lower force sensitivity ratios, we observe a growing domain of slip-bond behavior as

xP,S/xF,P decreases, and the transition to catch-bond kinetics occurs at higher forces. This

occurs because the force dependence of competitor binding is weaker than that of partial

dissociation. Below a critical sensitivity ratio, the force dependence of partial protein dis-

sociation completely dominates, and only classical slip-bond kinetics are observed. For very

low sensitivity ratios, below the minimum value tested in simulations, the theory predicts

force-insensitive kinetics (Fig. 3.3D). In this regime, xF,P is large and the spontaneous path-

way is so sensitive to force so that partial dissociation occurs almost instantaneously for any

finite f . Thus, even though the facilitated pathway remains sensitive to force (via xP,S), it no

longer significantly accelerates dissociation; this is because because the rebinding transition

(P to F) that is prevented by competitor binding no longer delays protein dissociation.

For all sensitivity ratios, the theoretical model predicts a force-insensitive domain for suf-

ficiently high forces. This occurs because the facilitated pathway is completely suppressed

by force and the spontaneous pathway cannot be further enhanced by additional application

of force. In the simulations, this predicted force-independent regime likely occurs at forces

above the maximum simulated f .

In summary, in our protein dissociation model, several varieties of force-dependent kinetics

are possible. This behavior is largely controlled by the force sensitivity ratio, which deter-

mines the relative strength of the force dependence of the facilitated dissociation pathway

as compared to that of the spontaneous dissociation pathway. The competition between

the force dependencies of these two dissociation pathways leads to hybrid kinetic behaviors
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(“delayed catch bonds”), or in unbalanced cases, distinct limiting scenarios (slip or catch

bonds).

3.3.4 Effects of Binding Geometry

A key determinant of protein-DNA interactions is the geometry of the binding interface.

Critically, this local geometry can determine the strength and nature of the coupling be-

tween applied forces and dissociation kinetics. To study how geometric factors may alter the

force dependence of proteins undergoing facilitate dissociation, we varied the parameter θ0,A,

which sets the equilibrium DNA bending angle for protein binding (Eq. 3.3). Alterations to

θ0,A thus regulate how the applied force, f , changes the overall dissociation rate, k̃off.

We consider three different values of θ0,F = θ0,S ≡ θ0 in the simulation model: π/6, π/3,

and π/2. We measure the dissociation rate, k̃off, at different forces, f , and force sensitiv-

ity ratios, xP,S/xF,P (fixing xP,S = 10.0 and θ0,U = θ0,P = 0 for simplicity). Contour plots

showing the dissociation rates for θ0 = π/6, π/3, and π/2 are shown in Fig. 3.4A-C, respec-

tively. For all three cases, we see the same qualitative dissociation kinetics discussed above:

catch bonds when the facilitated pathway is most sensitive to force (large xP,S/xF,P), slip

bonds when the spontaneous pathway is most sensitive to force (smaller xP,S/xF,P), and de-

layed catch bonds when the force dependencies of the two pathways compete (intermediate

xP,S/xF,P). These qualitative observations also hold for the theoretical model (Fig. A.3).

Nonetheless, binding geometry has a marked impact on the transitions between these dis-

sociation behaviors. Most notably, as θ0 is increased, the range of force sensitivity ratios,

xP,S/xF,P, in which delayed catch bonds are observed shrinks. This effect arises because

protein-DNA complexes with a large equilibrium DNA-bending angle are most strongly im-

pacted by the applied force; straight DNA conformations induced by applied force have an

energetic cost for protein binding that increases with θ0 (see Eqs. 3.6 and 3.7). Consequently,

for large preferred bending angles, even small forces can induce sharp changes to the partial
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Figure 3.4: Contour plots of k̃off as a function of applied force, f , and sensitivity ratio, xP,S/xF,P,
for bending angles θ0,F = θ0,S ≡ θ0 = π/6, π/3, and π/2 (A-C, respectively) with xP,S = 10 and
c = 100 µM. Approximate boundaries between catch bond, delayed catch bond, and slip bond
regimes are denoted by black dotted lines. Large off rates, corresponding to faster dissociation,
are red, while small off rates (slower dissociation) are purple.

dissociation and competitor binding rates. Thus, the regime in which the two pathways

compete narrows for highly bent interfaces because their respective force-dependent rates,

kF,P and kP,S, vary over different narrow force scales.

In addition to qualitative changes in the transitions between different regimes, we observe

quantitative differences in the off rate as a function of θ0. In Fig. 3.4, purple regions of

the contour plots indicate a slow k̃off, while red regions indicate fast k̃off. For larger bending

angles, the red region extends to lower forces, which indicates that slip dissociation can be

rapid even for small forces because of the mechanical energetic cost for the protein to remain

bound to DNA. In contrast, k̃off for the catch-bond regime is not drastically altered because

it is minimized as the facilitated pathway is suppressed by force.

Altogether, altering the binding geometry by varying θ0 changes the degree of coupling

between mechanics and kinetics. This coupling modulates the energy barriers between dif-

ferent binding states by determining the energy required for the protein to bend DNA. Thus,

the binding geometry is a critical factor in regulating the competition between dissociation

pathways and determining the force dependence of the overall protein dissociation rate.
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3.3.5 Effects of Competitor Concentration

Since the phenomenon of facilitated protein dissociation is characterized by concentration-

dependent off rates, we study the force-dependent kinetics at different ambient concentra-

tions of competitor molecules. At zero force, as the competitor concentration, c, increases,

more initially bound proteins dissociate via the facilitated dissociation pathway. We thus

hypothesized that increasing c could lead to the facilitated pathway becoming dominant for

small forces and force sensitivity ratios; in turn, catch-bond kinetics would become more

prevalent.

We consider the two limiting scenarios of high and low sensitivity ratios, which respec-

tively, exhibit catch- and slip-bond kinetics at c = 100 µM. We investigate how changing the

concentration from 1 µM to > 104 µM modulates the dissociation behavior. Plots showing

k̃off as a function of force, f , and concentration, c, are shown in Fig. 3.5A-D for simulations

(A and C) and theory (B and D). Their corresponding bond phase diagrams are shown in

Fig. 3.5E-H.

We first study the effect of varying competitor concentration on the dissociation with a

large force sensitivity ratio. For concentrations spanning at least three orders of magnitude

in simulations, we observe only catch bonds or, at low c, force-insensitive bonds, as shown

in Fig. 3.5A and E. The spontaneous pathway depends on force so weakly that almost com-

pletely irrespective of concentration, the facilitated pathway is more sensitive to force. For

high concentrations (blue lines), this leads to a k̃off that decreases with force, i.e., a catch

bond. For lower concentrations, c ≤ 10 muM (red lines), there are very few competitor pro-

teins available to participate in facilitated dissociation. So, while the facilitated dissociation

pathway is sensitive to force, DNA-bound proteins rarely dissociate via this pathway, which

leads to a nearly force-independent off rate.

As with varying the force sensitivity ratio, these observations hold for the theoretical

model with the caveat that we observe delayed onset catch bonds instead of catch bonds
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Figure 3.5: A-B: Off rates, k̃off, as a function of force, f , at various concentrations, c, for the
simulation and theoretical models, respectively. Different colored curves show different
competitor concentrations, ranging from low (red) to high (blue). For simulation results (A),
θ0,F = θ0,S = π/6 and xP,S/xF,P = 100. For theoretical results (B) θ0,F = θ0,S = π/3 and
xP,S/xF,P = 10. C-D: k̃off for the simulation and theoretical models, respectively. For simulation
results (C), θ0,F = θ0,S = π/6 and xP,S/xF,P = 5. For theoretical results θ0,F = θ0,S = π/3 and
xP,S/xF,P = 2. E-H: Corresponding phase diagrams of indicating the bond type as determined by
∂koff/∂f , plotted in the concentration-force plane. Each panel correspond to the k̃off plots directly
above it.

(Fig. 3.5B and F). Again, this is due to discrepancies between the low-force DNA confor-

mations, and thus, competitor binding rates, found in the different models. Additionally,

the theoretical model allows us to observe the slip-bond regime that is present for very low

competitor concentrations. Because competitor proteins are scarce in this regime, the effect

of the facilitated dissociation pathway is negligible, and its force dependence is unimportant.

We also investigate the alternative limiting case in which the force sensitivity ratio is

small, so that the spontaneous pathway is most sensitive to force. Here, for low concentra-

tions (c = 10 µM in simulations, red lines in Fig. 3.5C), we find pure slip-bond kinetics

due to the force dependence of the partial unbinding transition. This is expected because

there are very few proteins to facilitate the dissociation of the initially bound proteins, so

variations in competitor binding rates contribute negligibly to the total dissociation rate.

Moreover, because xF,P is larger in this scenario, the slip regime can be observed in the
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simulations for small c (Fig. 3.5C and G). For sufficiently high concentrations (> 500 µM),

we see delayed catch bonds. With these high competitor concentrations (blue and purple

lines in Fig. 3.5C), proteins can easily dissociate via the facilitated pathway due to the

frequency with which competitor proteins attempt to invade the DNA binding site. While

force-induced inhibition of competitor binding is outweighed by force-enhanced partial dis-

sociation pathway at low forces, for large forces, competitor proteins are strongly inhibited

from binding. This shuts off a major dissociation pathway, which leads to the emergence of

catch-bond behavior.

The numerical calculations with low sensitivity ratio, shown in panels D and H in Fig. 3.5,

also reveal a change from slip-bond dissociation at low concentrations to delayed-catch-bond

kinetics at high concentrations. Additionally, in the theoretical model, we clearly observe the

high-force convergence of the off rates at different concentrations (Fig. 3.5D), which is only

hinted at by the simulation data (Fig. 3.5C). This convergence occurs because the facilitated

dissociation pathway is completely suppressed by large forces, and thus concentration does

not regulate the off rate in the high-force regime.

These results indicate the fundamental role that competitor protein (or biomolecule) con-

centration plays in regulating force-dependent unbinding kinetics. Concentration sets the

overall magnitude of the facilitated dissociation effect and is thus an essential ingredient of

the catch bond exhibited by the model.

3.4 Discussion

We investigated the effect of a several key physical variables on force-dependent facilitated

dissociation of proteins from DNA using both simulation and theory. With two force-

dependent pathways for protein dissociation – spontaneous and facilitated – we observe

three qualitatively distinct types of unbinding kinetics. Generically, catch bonds are ob-

served when the facilitated pathway is strongly inhibited by applied force. Force suppresses
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competitor binding to DNA, which impedes the facilitated dissociation pathway (Fig. 3.2C

and D). Slip-bond behavior, in contrast, is observed in cases in which the spontaneous path-

way is more sensitive to force, so the complex exhibits canonical force-dependent dissociation

kinetics (e.g., Fig. 3.2A and B). Between these limiting scenarios, the force dependencies of

the two pathways compete with each other. Here, we may observe delayed catch bonds, in

which k̃off as a function of f initially increases, then decreases, and finally increases once

again (Fig. 3.3A and B). More generally, the observable types of force-dependent dissocia-

tion kinetics depend on details of the system of interest. In particular, other rates in the

process shown in Fig. 3.1 could depend on force, which could expand the range of disso-

ciation behaviors considerably. Beyond the force sensitivities, we have found that several

other factors – both intrinsic and extrinsic – regulate force-dependent dissociation kinetics

of multivalent DNA-binding proteins (Figs. 3.4 and 3.5). Below, we discuss these factors,

experimental evidence and tests for force-dependent facilitated dissociation, and the possible

physiological relevance of our results.

3.4.1 Multivalent Proteins Can Form Catch Bonds via Extrinsic

Factors

We have found the surprising behavior that protein-DNA complexes dissociating due to

competition with other proteins in solution may dissociate more slowly when subjected to

force. Thus, these complexes form “catch bonds,” with force-dependent kinetics qualita-

tively similar to that of other proteins and complexes, including cell adhesion proteins and

molecular motors [209, 210, 216, 218, 219, 221–224]. However, the catch bond we observe

in this protein-DNA system differs from other complexes that are known to exhibit catch-

bond behavior. Many catch bonds occur due to intrinsic factors, such as conformational

changes within the protein-ligand complex, as is the case with the bacterial adhesion protein

FimH [215, 219]. With facilitated dissociation, the observed catch bond is due to force-
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inhibited binding of a third competitor molecule, while the original protein-DNA complex

in the absence of these competitor molecules actually demonstrates the classical slip-bond

kinetics. Thus, whereas the force-induced affinity change in FimH is intrinsic to the molec-

ular structure of the bond, the DNA-binding proteins that we consider undergo extrinsic,

force-induced affinity changes due to the binding kinetics of competitor molecules. This

extrinsic mechanism results in a similar two-pathway picture for protein dissociation, but it

is regulated by a much broader collection of physical variables.

Among these variables, the competitor protein concentration, an extrinsic factor, is essen-

tial to drive facilitated dissociation; thus, it necessarily determines the nature of the overall

force-dependent kinetics that we observe (Fig. 3.5). Low concentrations generally lead to

only slip-bond kinetics due to the limited role of the facilitated dissociation pathway. As

concentration is increased, if both the spontaneous and facilitated pathways are sensitive to

force, we observe a transition from a slip bond to a delayed catch bond because the facili-

tated and spontaneous dissociation pathways compete. When the spontaneous pathway has

a very weak force dependence or the facilitated pathway has a very strong force dependence,

we may observe only catch bonds.

3.4.2 The Shape of the Binding Interface Couples to

Force-Dependent Dissociation Kinetics

The preferred binding geometry of the protein on DNA, and thus the local geometry of the

binding site is an important intrinsic factor that governs protein dissociation. The binding

geometry is governed by two types of parameter in our model, the equilibrium bending an-

gles, θ0,F and θ0,S, and the force sensitivities, xF,P and xP,S (Figs. 3.2 and 3.4).

The force sensitivities, which directly govern dissociation kinetics, implicitly describe the

geometry of the protein-DNA complex. We interpret the force sensitivities as dictating the

degree to which a bound protein deforms when the DNA substrate is bent away from the
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equilibrium binding angle. For large force sensitivities, the protein (and/or the DNA binding

site) is stiff. With a high force sensitivity for the partial unbinding transition (governed by

xF,P in Eq. 3.7), the protein is not strongly distorted as DNA is straightened by applied

force. As a result, the energy barrier for partial unbinding decreases, so the protein-DNA

bond weakens and the corresponding transition rate, kF,P, increases. Similarly, the force

sensitivity xP,S that can inhibit competitor binding describes the degree to which a protein

(and binding site) may deform in order to saturate a partially bound binding site. When

this sensitivity is high, the protein is stiff and difficult to deform into a conformation that

can bind a straightened segment of DNA. Thus, together, these force sensitivities implicitly

describe conformational changes that are possible for the protein and corresponding DNA

binding site.

The preferred angle for protein-DNA binding explicitly incorporates geometric factors into

the model. In the model, the equilibrium bending angle directly controls how strongly the

force sensitivity couples to the transition energy barriers, so geometry alters the overall force

dependence in a manner similar to that of the sensitivity ratio. Larger equilibrium bends in

the DNA (governed by θ0,F and θ0,S in Eq. 3.3) make both the facilitated and spontaneous

pathways more sensitive to force (Eqs. 3.6 and 3.7). In turn, as both pathways become more

sensitive to force, the crossover between the catch and slip bond kinetic regimes narrows,

and each regime is expanded (Fig. 3.4). Because the force dependencies become so extreme,

the system inevitably falls into one of the two limiting scenarios due to the imbalance in the

force dependencies of the partial dissociation and competitor binding rates (kF,P and kP,S,

respectively).

For more complicated binding geometries, we expect correspondingly more complicated

force-dependent dissociation rates. For instance, we included only two force-dependent steps

out of the possible six in the four-state model. Including additional force dependencies, even

in steps that are not associated with a geometric change, could significantly alter the disso-

ciation kinetics. Each dissociation pathway (facilitated and spontaneous) would then have
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multiple cooperating or competing force-dependent steps, which would lead to a more di-

verse set of dissociation behaviors. Moreover, the functional forms of the force dependencies

may govern the observed dissociation kinetics. Consequently, we anticipate that in biologi-

cal manifestations of protein-DNA facilitated dissociation, the force-dependent kinetics will

depend on structural properties of the protein and the local DNA/chromatin environment.

Indeed, it has been observed that the dissociation rates of the transcriptional regulators

CueR and ZntR in bacteria are sensitive to local chromatin conformation [55]. Thus, while

our simple four-state model illustrates the general phenomenology of force-dependent fa-

cilitated dissociation, forces may differentially govern kinetics through several biophysical

mechanisms.

Intriguingly, these force-dependent kinetics may feedback into the local structure of the

DNA substrate. Even at zero force, facilitated dissociation has been shown to regulate the

conformation of stretched and twisted DNA [227]. Thus, further studies of DNA interact-

ing with proteins with force-dependent facilitated dissociation kinetics could lead to novel

insights into the structure and dynamics of protein-bound DNA and chromatin.

3.4.3 Single-Molecule Experiments to Test the Model

The force-dependent facilitated dissociation kinetics predicted in this work could be observed

using established experimental setups. In particular, we propose that the in vitro single-

molecule experiments that mirrors our model (Fig. 3.1B) would be able to measure the force

dependence of facilitated dissociation. In these experiments, DNA is tethered to a surface

at one end and a bead at the other (Fig. 3.1B). The bead is manipulated via optical or

magnetic tweezers (e.g., [39, 67, 68, 99, 100, 103, 228, 229]), which can exert ∼ 0.1− 10 pN

tensile forces on the tethered DNA.

To measure dissociation rates, protein initially bound to DNA should be fluorescently

labeled, as in previous experiments studying facilitated dissociation of the bacterial nucleoid-
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associating protein FIS [99]. Non-fluorescing competitor proteins may be flowed in so that as

competitors from solution exchange with the initially bound fluorescent proteins, the tethered

DNA strand becomes darker. Using an approach with distinguishable sets of protein is

essential because simply measuring the number of bound proteins is insufficient to determine

the dissociation rate because proteins may exchange, i.e., when a protein vacates a DNA

binding site, the binding site may nonetheless remain occupied by the competitor protein

[55, 105, 150, 177]. However, with one species of “light” protein and one species of “dark”

(competitor) protein, dissociation rates can be measured by observing the decay of the

fluorescence signal along the tethered DNA. This experiment can probe kinetics at various

tensile forces and competitor concentrations, and other physical variables, such as ionic

concentration, can be varied to tune transition energy barriers [67, 104, 105, 231] or preferred

binding geometry [228].

A variation of this experiment with single-stranded DNA binding protein (SSB) suggests

that facilitated dissociation can lead to catch-bond-like force-dependent kinetics [232]. In

this experiment, dissociation of SSB from its binding site is facilitated by “intersegment

transfer,” i.e., DNA segments from the same DNA strand compete with binding by the

protein to the initial binding site and eventually strip it from the binding site. In these

experiments, force on the DNA suppresses the interaction of these distant DNA segments

because DNA looping is inhibited by tension. Thus, force suppresses facilitated dissociation

in this experiment, which is precisely what is required for the catch bond effect.

3.4.4 Relevance to in vivo Protein Kinetics and Function

Functionally, many catch bonds are complexes that must bear forces, such as adhesion pro-

teins and molecular motors [209, 210, 216, 218, 219, 221–224]. Indeed, some proteins that

undergo facilitated dissociation are architectural proteins, such as the bacterial protein FIS

which can DNA stabilize loops against applied forces [68, 233]. In addition, several recent
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studies, suggest that facilitated dissociation may have important regulatory effects in living

cells [55, 104, 177, 187, 234, 235]. Our model suggests that these facilitated dissociation

kinetics may be modulated by mechanical stresses transmitted through DNA/chromatin,

and more generally, the local conformation of the genome.

Our main prediction is that forces can inhibit the dissociation of a DNA-bound protein

by inhibiting competitor-mediated dissociation and exchange with biomolecules from the

surrounding environment. It has previously been suggested that cells may utilize facilitated

dissociation to efficiently regulate transcription through modulation of transcription factor

binding and unbinding kinetics [55, 177, 234, 235]. Our results suggest that large mechan-

ical stresses within the genome would locally inhibit facilitated unbinding kinetics. Thus,

transcriptional regulation by facilitated dissociation could be specifically targeted to me-

chanically relaxed regions of the genome.

It has also been shown that competitor DNA strands can facilitate protein dissociation

by effectively stripping partially bound proteins from the protein-bound DNA [68, 100]. For

this process, competitor binding (P to S in Fig. 3.1A) should depend far less sensitively

on the conformation of protein-bound DNA because competitor DNA binds the partially

bound protein. Instead, competitor binding should depend on the conformation of and

tension within the competitor DNA molecule. In contrast to the case of competitor-protein-

mediated dissociation described above, this process should favor protein transfer to DNA

segments with lower mechanical stress. This may be relevant, for instance, during tran-

scription, in which RNA polymerase may exert > 10 pN forces [201]. There, it has been

observed that nucleosomes initially proximal to the translocating polymerase are ejected,

and subsequently found on nearby strands of DNA [236–240]. This may be a prototypical

example of force-dependent facilitated dissociation mediated by competitor DNA.

Force-dependent facilitated dissociation by competitor DNA may also regulate diffusive

searches for target sites. For example, recent theoretical work suggests that protein target

searches may be governed by the local chromatin conformation [241]. Again, the force depen-
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dence of protein dissociation may either assist proteins searching for mechanically relaxed

regions of chromatin or inhibit intersegment transfer as observed in vitro [232].

More generally, our work illustrates how mechanical forces may regulate facilitated protein-

DNA dissociation. We anticipate that a wide variety of multivalent proteins may be sub-

jected to these non-canonical, extrinsically regulated kinetics in vivo.
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Chapter 4

Force-extension behavior of DNA in the presence of
DNA-bending nucleoid associated proteins

i

4.1 Introduction

The genomic material in a prokaryotic cell is contained within the cellular structure known as

the nucleoid, composed of DNA and nucleoid associated proteins (NAPs). NAPs act as archi-

tectural proteins by helping organize the overall nucleoid structure [32–34, 37, 38, 242, 243].

These proteins bind non-specifically to the DNA and can alter the local structure. For

example, the NAP HU can form weakly bent hairpin turns or stiffen straight DNA, while

NAPs IHF and FIS can form stiff local bends [37, 68, 108, 139]. These small changes in

local structure have effects at longer length scales, which play a role in nucleoid organization

[54, 242, 244]. In addition to the direct architectural role these proteins play, they also

indirectly play a role in several biological functions, such as DNA replication, transcription,

and gene expression [32, 38, 47, 48, 51, 52, 54, 72].

Many of these biological processes can exert forces on the DNA, such as the forces stem-

ming from DNA and RNA polymerases [200, 202, 203]. These pN scale forces can affect how

proteins interact with the DNA, especially those that bind weakly such as NAPs. Single

molecule studies can give us information about how forces affect the behavior of protein-

DNA interactions. Studies done with NAPs such as FIS, IHF, and HU have shown a range of

force and concentration dependent extension behaviors [39, 67, 68, 71, 99, 100, 102, 103, 108].

When low concentrations of these proteins are bound to the DNA, the extension at a given

iReproduced from Dahlke, K. and C.E. Sing. 2018. Force-extension behavior of DNA in the presence
of DNA-bending nucleoid associated proteins J. Chem Phys. 148:084902. with the permission of AIP
Publishing
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force decreases, indicating that these proteins are compacting the DNA [39, 67, 68, 71, 99,

100, 102, 103, 108]. However, at high concentrations of proteins, reduced compaction or even

a stiffening effect can be observed [39, 67, 68, 71, 99, 100, 102, 103, 108]. The underlying

mechanisms by which these behaviors occur is difficult to determine by single molecule ex-

periments alone.

Simulations can give us insights into how the local interactions between the proteins and

DNA are affecting the conformational behavior that is observed in these single molecule ex-

periments. Previous studies have provided evidence that the NAP FIS has multiple binding

states, where a protein can be partially bound or fully bound to a DNA strand [85]. Other

NAPs such as HU, H-NS, and IHF, may also exhibit multiple binding states due to their

dimeric nature [32, 40, 243]. These multiple bound states are thought to play a role in these

different extension behaviors. Simulations allow us to directly track the states (and number)

of bound proteins and how they correlate with the overall behavior of the DNA molecule.

Simulations have investigated protein-DNA interactions on a coarse grained scale. For

example, Takada et al. have investigated the relationship between protein sliding and DNA

bending using the NAP protein HU by using a three beads per nucleotide model for DNA

(3SPN.2C) [116], and an atomistic interaction-based coarse grained model (AICG) for the

protein [109]. They are able to look at the local, dynamic interactions between the protein

and the DNA. This type of coarse grained model can be used to study other protein-DNA

interactions, such as the transcription factor protein p53 [245–247], zinc finger proteins [248],

and nucleosomes [249–251], but this level of coarse-graining cannot be extended past sys-

tems on the order of 1 µm [116]. There are also highly coarse-grained protein-DNA models,

where there are multiple base pairs per DNA bead, and a protein is modeled with just a few

particles [110, 252–255]. Many of these large-scale models are capable of reaching lengths on

the order of nucleoid (∼ mm), but the interactions between the DNA and protein are often

phenomenologically motivated [110]. We want to create a model that is capable of capturing

the equilibrium and dynamic behavior of NAP/DNA interactions that is built on physically
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motivated local interactions.

This work investigates the force-extension behavior of DNA as a function of concentration

of FIS, whose binding behavior has been well-characterized [42, 46, 53, 57, 69, 99, 141, 154].

By controlling the dependence of FIS’s binding affinity on the local shape of the DNA, we

can demonstrate changes in the number of proteins bound as a function of force. The dif-

ferent local deformations that are based on FIS’s bound state are the main drivers of the

different force-extension behaviors. Our model allows us to look at the behavior of FIS/DNA

interactions as the DNA strand is being pulled out of equilibrium.

4.2 Materials and Methods

We aim to create a simulation model that allows us to not only study NAP/DNA interactions

at equilibrium, but also investigate their dynamics. In order to achieve this, we model single

molecule systems of interest with a coarse-grained Brownian Dynamics (BD) simulation. A

strand of dsDNA is represented by a chain of N = 100 beads of radius a = 4 nm, resulting in

a simulated strand that corresponds to approximately 2350 base pairs, shown in Fig. 4.1A.

The size of the bead is chosen to correspond to the approximate size of a binding site of a

FIS protein [46, 100, 141]. One end of the DNA strand is tethered, and the other end of

the DNA strand is constricted to movement only along the x-axis. Distance, energy, and

time in the system are non-dimensionalized by the radius of a bead a (r̃ij = rij/a), kBT

(Ũ = U/kBT ), and the diffusion time of a single particle τD = 6πηa3/(kBT ) (t̃ = t/τD),

respectively. Normalized (and dimensionless) values are denoted by a tilde.

The DNA strand can interact with a concentration field of implicit proteins. Each DNA

bead can be in one of four bound states: no protein bound (unbound, or U), a protein fully

bound (F), a protein partially bound (leaving one site per DNA bead open, or P), or a

saturated bead with two proteins partially bound to it, (S). A representative schematic can

be seen in Fig. 4.1B. This simplified four state model is motivated by previous simulations
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Figure 4.1: A. A snapshot of the tethered DNA strand from a simulation with the bending angle
θ shown in the inset. B. Schematic of the four different coarse-grained DNA states. The small
gold beads represent DNA binding sites, and the large yellow circle represents a single simulated
DNA bead. Blue dimers represent protein dimers. C. An example energy landscape of the
binding/unbinding model of the partially bound and fully bound states. Each ∆E is a function of
θ, described by Eqs. 4.1 and 4.2.

[85, 106, 199] and experiments [99, 100, 105]. Movement between two states, A and B, is

controlled by binding and unbinding energy barriers, ∆Ẽa,b. We use arbitrary energy barriers

that result in simulated binding kinetics that are much faster than experimentally measured

values in order to make our simulations computationally tractable [100]. An example set of

energy barriers for movement between states P and F are shown in Fig. 4.1C.

Force dependent binding and unbinding behavior has been experimentally observed [67,

103]. We incorporate this into our model by accounting for the energy penalty and force

required to bend the DNA into a new equilibrium position. Bare DNA (with no bound

proteins) has an equilibrium angle of θ0,U = 0.0. Motivated by the DNA bending induced

by the fully bound NAP FIS, we choose θ0,F = π/3 [44–46, 139, 154]. θ0,S = π/6 and

θ0,P = 0.0 are parameterized to qualitatively match the force versus DNA extension curves

seen experimentally [68, 100].

The energy barrier for binding events (moving from U to P, from P to F, and from P to
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S) has the following form:

∆Ẽa,b = ∆Ẽ∗B + δb,F σ̃ +
κ̃B
2

(θ − θ0,b)
2 (4.1)

where ∆Ẽ∗B = 3.0 is the constant binding energy, and δa,F σ̃ = 2.0 is the entropic loss

associated with moving from the singly bound state to the fully bound state. The last term

is included in order to cause binding events to be more likely when the DNA strand is in

a preferential conformation (θ0,b). This is not a direct effect of the applied force, since the

force applied to DNA cannot affect a protein until it is bound. Force instead biases DNA

into states that are far from ideal binding configurations, leading to an indirect effect on

binding likelihood.

The force-dependent energy barrier for unbinding events (movement from P to U, from F

to P, and from S to P) has the following form:

∆Ẽb,a = ∆Ẽ∗UB,a + λ[κ̃B (θ − θ0,b)] (4.2)

where ∆Ẽ∗UB,a are the constant unbinding energies associated with changing the bound state.

These values are set to ∆Ẽ∗UB,F = 10.0 and ∆Ẽ∗UB,P = ∆Ẽ∗UB,S = 12.0. The last term is

associated with the change in energy landscape due to the bending force, which is related to

the force applied to the DNA strand. λ = 0.7 is the strength of this force dependence, and

is chosen to see a measurable change in binding behavior in our simulations.

When the DNA strand is being pulled by a low force, there are more local bends in the

strand (higher average θ). This leads to a decrease in the binding energy barriers (last term

in Eq. 4.1) and an increase in the unbinding energy barriers (last term in Eq. 4.2), making it

easier for a protein to move from an unbound state to a bound state. Alternatively, at high

force, there are fewer local bends in the DNA strand (lower average θ), which corresponds to

an increase in binding energies and decrease in unbinding energies. Proteins therefore have
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an easier time moving from a bound state to an unbound state at high force.

A Monte Carlo type update of each DNA bead’s bound state, denoted by Ωi, occurs every

τ̃MC = 0.05. This update time step is chosen to match the average constant binding time,

τB, to the diffusion time, τD of a single bead, given that a protein is in a position to bind,

which is dependent on concentration. This update also shows the statistical results of a Bell

Model type reaction [152]. A random number ζ is generated, and the binding update occurs

as follows:

Ωi(t) =



{
P if ζ < γe−∆EU,P

U if ζ > γe−∆EU,P
if Ωi(t̃− τ̃0) = U{

F if ζ < e−∆EP,F

P if ζ > e−∆EP,F
if Ωi(t̃− τ̃0) = P{

P if ζ < e−∆EF,P

F if ζ > e−∆EF,P
if Ωi(t̃− τ̃0) = F{

U if ζ < e−∆EP,U

P if ζ > e−∆EP,U
if Ωi(t̃− τ̃0) = P{

S if ζ < γe−∆EP,S

P if ζ > γe−∆EP,S
if Ωi(t̃− τ̃0) = P{

P if ζ < e−∆ES,P

S if ζ > e−∆ES,P
if Ωi(t̃− τ̃0) = S

(4.3)

The γ coefficient corresponds to the concentration dependence of binding. We impose a

chemical potential on our system, µ = µo + ln(c), where c is the concentration of the protein

in µM and γ takes the form γ = e−µ = e−µ0c. This impacts the probability that the DNA

bead will move from the unbound state to the P (or S) state. The values of γ were found by

matching to simulations done with explicit, freely-diffusing proteins, which indicated that

µ0 = 1.7 µM.

The movement of each DNA bead i is governed by the Langevin equation,

∂ri
∂t

= −
Ntotal∑
j

µij · ∇jU(t) + ξi (4.4)

where ri is the position of bead i, µij = δijδ/(6πηa) is the freely-draining Stokes mobility
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matrix, η is the solvent viscosity, δ is the identity matrix, δij is the Kronecker delta, and ξi

is a random velocity that satisfies the fluctuation dissipation theorem, 〈ξiξj〉 = 2kBTµijδij.

U is the sum of the potential energies of the system: stretching (US), excluded volume

(ULJ), and bending (UB). DNA beads are connected by Hookean springs, which gives the

equation

ŨS =
κ̃S
2

∑
i,i+1

(b̃− b̃0)2 (4.5)

where b̃ is the distance between adjacent beads i and j, and b̃0 = 2.0 is the equilibrium

distance between two beads. κ̃S is set to an arbitrary value of 200.0, to ensure that deviations

from b̃0 are small.

The excluded volume potential is of the shifted Lennard-Jones form

ŨLJ = ε̃
∑
ij

[(
b̃0
r̃ij

)12

− 2
(
b̃0
r̃ij

)6

+ 1

]
r̃ij ≤ rc

0 r̃ij > rc

(4.6)

where ε̃ = 0.41 controls the magnitude of the potential, and b̃0 = 2.0 is where the potential

is at its minimum. A cutoff of r̃c = 5.0 is chosen due to the negligible forces at distances

greater than 5.0a. Repulsive beads placed at the midpoint of the bond vectors also interact

with this potential at a cutoff of r̃c = 2.0 (to include only the repulsive portion of this

potential), which is needed to prevent the DNA strand from crossing.

The bending potential is included to maintain the appropriate stiffness of DNA

ŨB =
κ̃B
2

m−1∑
i=1

(θi − θ0(Ωi))
2 (4.7)

where κ̃B = 6.25 is chosen to correspond to a DNA persistence length of 50 nm, and θi is

the angle between bonds of beads i−1 and i, and i and i+1. θ0(Ωi) is the equilibrium angle

of the DNA bead in its bound state Ω.

A summarized list of simulation parameters can be found in Table 4.1, grouped into four

rows. Row 1 contains parameters defining the simulated DNA strand, corresponding to a
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DNA strand of length 800 nm. Row 2 contains parameters defining the equilibrium angle

of DNA in a given bound state used in Eqs. 4.1, 4.2, and 4.7. Row 3 contains the energy

barrier values used in Eqs. 4.1 and 4.2 and other binding parameters, all of which are chosen

for computational convenience. Row 4 contains parameters used in the potential energies of

the system (Eqs. 4.5-4.7).

Table 4.1: Summary of parameters used in the simulation. Tildes denote normalized values.

Simulation parameters
N = 100 a = 4 nm
θ0,U = 0 θ0,F = π/3
θ0,P = 0 θ0,P = π/6

∆Ẽ∗B = 3.0 ∆Ẽ∗UB,P = 12.0

∆Ẽ∗UB,F = 10.0 ∆Ẽ∗UB,S = 12.0
λ = 0.7 τ̃MC = 0.05

b̃0 = 2.0 ε̃ = 0.41
κ̃S = 200.0 κ̃B = 6.25

4.3 Results and Discussion

4.3.1 Binding Equilibrium

To verify that our 4-state model captures the appropriate binding behavior, we compare the

expected binding equilibrium results from statistical mechanics to those obtained from our

simulations. These simulations can also show us the effect of force on the number of NAPs

bound to DNA. Similar measurements can be calculated from experimental force versus

extension curves [103]. Simulations allow us to measure the number of DNA beads in a

bound state directly, and they also allow us to measure the number DNA sites in a specific

state. At low forces, there is a large change in energy between the partially and fully bound

states, ∆Ẽ2 = ∆ẼP,F − ∆ẼF,P (and similarly between the partially bound and saturated

states, ∆Ẽ3 = ∆ẼP,S −∆ẼS,P). This is due to the higher values of the unbinding energies

(∆ẼF,P and ∆ẼS,P) and lower values of the binding energies (∆ẼP,F and ∆ẼP,S). Force thus
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Figure 4.2: The number of DNA beads in each bound state at a force of 10.0 pN (darker lines and
square data points) and 0.0 pN (lighter lines and circle data points). The data points correspond
to simulation data, and lines are calculated from Eq. 4.8.

drives the system away from both the fully bound and saturated states towards the partially

bound state.

We observe the result of these force-dependent transitions in the binding behavior of our

model NAP. The changes in ∆Ẽ2 and ∆Ẽ3, caused by the force exerted on the DNA molecule,

change the number of proteins bound at equilibrium, shown by the data points for forces of

0.0 pN and 10.0 pN in Fig. 4.2. At high forces, there are fewer total proteins bound because

there is a lower change in energy between states. If we look at the differences between the

different bound states (P, F, and S), we see that at high forces, there is an increase in the

number of DNA sites in the partially bound state compared to the low force value. This

can be explained by the increase in energy required to move from the partially bound to

fully bound state (∆ẼP,F), leading to more proteins staying in the partially bound state.

The differences in the fully bound state behavior at low and high forces is again described

by the changes in ∆ẼP,F and ∆ẼF,P. At high forces, there is an overall lower ∆Ẽ between

unbound and fully bound states, leading to fewer proteins fully bound to the DNA strand.

The saturated state is the state most dependent on the concentration of proteins in the
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system, and we start to see the force effects at high concentration. We see fewer DNA sites

in the saturated states at lower force due to the high number of DNA sites in the fully bound

state. At higher forces, there are fewer DNA beads in the fully bound state, which allows

the DNA to become oversaturated with partially bound proteins (beads are in the S state).

We compare the values from our simulation to the value predicted by statistical mechanics:

〈np〉 = kBT
∂ ln Ξ

∂µ
(4.8)

where np is the number of bound proteins. Ξ is the grand partition function of our system:

Ξ =
[
e(∆Ẽ1+µ̃) + e(∆Ẽ1+∆Ẽ3+2µ̃) + e(∆Ẽ1+∆Ẽ2+µ̃) + 1

]N
(4.9)

Substituting this expression into Eq. 4.8, we get

〈np〉 = N
e∆Ẽ1+µ̃ + 2e(∆Ẽ1+∆Ẽ3+2µ̃) + e∆Ẽ1+∆Ẽ2+µ̃

e∆Ẽ1+µ̃ + e(∆Ẽ1+∆Ẽ3+2µ̃) + e∆Ẽ1+∆Ẽ2++µ̃ + 1
(4.10)

for the average total number of NAPs bound to DNA. We can also modify Eq. 4.10 to

calculate the number of DNA beads in each state by doing the derivative of Ξ with respect

to an arbitrary µa, which will give us the number of DNA beads in state a. The predicted

values for 〈na〉 are plotted as lines in Fig. 4.2, and demonstrate quantitative matching with

simulations (points).

4.3.2 Force-Extension at Equilibrium

Elasticity behavior of a strand of DNA, such as extension (z) as a function of force (f), can

be dependent on the number of proteins bound to it (which depends on the concentration of

proteins, c) [39, 67, 68, 71, 100, 102, 103, 108]. Fig. 4.3A shows the simulated force versus

extension behavior obtained by exerting a constant force on the DNA strand and measuring
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Figure 4.3: A. Force versus extension behavior as a function of NAP concentration. The
extension of a DNA molecule decreases as concentration is increased to 10.0 µM, but begins to
re-extend as protein concentration is increased to 1000 µM as the DNA strand becomes saturated
with proteins. Data points are from simulations, and the lines are provided to guide the eye. B.
Simulation snapshots of the DNA at different protein concentrations. Orange beads represent
unbound DNA beads, gray beads are partially bound DNA beads, dark blue beads are fully
bound DNA, and cyan beads are saturated DNA beads. C. Theoretical concentration dependent
force-extension behavior from Eq. 4.16.

the extension of the chain at equilibrium. From c = 0 µM to c = 10.0 µM, extension

decreases at a given force as more proteins are added. This is due to the increase in number

of DNA sites that are in a fully bound state and the local bending that occurs at each of

these sites. At c = 10.0 µM, the DNA strand is nearly “saturated” with fully bound sites

(see Fig. 4.3B), leading to a high number of sites with the highest degree of local bending.

When the concentration of proteins increases past c = 10.0 µM, more proteins bind to the

DNA, which start to displace some of the fully bound states with saturated states and above

c = 1000 µM, the DNA is “saturated” with two proteins bound per DNA site (S) (see Fig.

4.3B). The DNA sites in this state have a higher degree of bending than bare DNA, but less

than the DNA saturated with fully bound sites.

We adapt a theory developed in the literature to describe the force-extension behavior

of DNA that can undergo local bending when proteins are bound to it [66, 256–258]. The

model is based on a semi-flexible polymer composed of discrete segments, each of which can

adapt a bent conformation at equilibrium when a protein is bound. We expand this model
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to account for the multiple binding modes in our model. The energy of a strand is

Ẽ =
N∑
i=1

[
−bfui · x̂+

κB
2

(acos(ui · ui+1)) δiU

+
{κB

2
(acos(ui · ui+1)− θS)− E1 − µ

}
δiP

+
{κB

2
(acos(ui · ui+1)− θS)− E1 − E3 − 2µ

}
δiS

+
{κB

2
(acos(ui · ui+1)− θF )− E1 − E2 − µ

}
δiF

]
(4.11)

where b is the length of a segment, f is the force, x̂ is a unit vector in the direction of

the force, ui are the normalized bond vectors, θa are the equilibrium bending angles for the

binding state, and µ is the chemical potential.

To get the force extension behavior, we numerically solve the partition function using

a transfer matrix formalism. We use a discretized set of t = 1000 possible bond vectors

(ui) that are uniformly distributed along the surface of a unit sphere. We consider a 4t-

component vector ψi, with each component representing the partition function where the

i-th monomer has a given unit vector ui and state Ωi. This vector ψi can be related to

the vector ψi+1 describing a chain with i + 1 monomers via a 4t × 4t transfer matrix,

T = (ui+1,Ωi+1|ui,Ωi). This matrix is composed of the Boltzmann factors that incorporate

the i + 1-th monomer contributions into the i-monomer partition function, with this new

monomer ui+1 in the unbound (Ω = U), partially bound (Ω = P ), saturated (Ω = S), or

fully bound (Ω = F ) states, given that the i-th monomer had a segment ui in a state Ω:

T(ui+1, U |ui,Ωi) = exp

[
−
(
κ̃B
2

)
(acos(ui · ui+1)) + b̃f̃ui+1 · x̂

]
(4.12)

T(ui+1, P |ui,Ωi) = exp

[
−
(
κ̃B
2

)
(acos(ui · ui+1 − θS) + Ẽ1 + µ̃) + b̃f̃ui+1 · x̂

]
(4.13)
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T(ui+1, S|ui,Ωi) =

exp

[
−
(
κ̃B
2

)
(acos(ui · ui+1 − θS) + Ẽ1 + Ẽ3 + 2µ̃) + b̃f̃ui+1 · x̂

] (4.14)

T(ui+1, F |ui,Ωi) =

exp

[
−
(
κ̃B
2

)
(acos(ui · ui+1 − θF ) + Ẽ1 + Ẽ2 + µ̃) + b̃f̃ui+1 · x̂

] (4.15)

The partition function is calculated by operating on a single-monomer vector ψ0 with T

N -times to obtain ψN . The components of this final ψN are summed to obtain the partition

function Z = I · ψN (I is a vector of 1s) for a strand of N segments. The extension of the

strand (z) is calculated by taking the derivative of (lnZ) with respect to the force:

z =
∂ lnZ
Nb∂f̃

(4.16)

Fig. 4.3C shows the theoretical force-extension behavior as a function of chemical poten-

tial, µ. The theoretically predicted behavior is qualitatively similar to what is seen in our

simulations and in previous experiments [68, 100]. The quantitative differences between the

theoretical prediction and the simulation data are due to simulation parameters, such as

excluded volume interactions, that cannot be included in the theoretical model.

4.3.3 Rapid Force-Extension

Our model allows us to look past this system at equilibrium, and we can anticipate the

interplay of timescales as the system is driven out of equilibrium. We investigate the behavior

of a DNA strand with stretching, bending, and LJ potentials as a function of pulling rate,

v, and concentration, c, where each variable has associated timescales. The simulations are

initiated in a fully extended state (z = 200a) and are slowly compressed to z = 50a to allow

protein binding to equilibrate. The strand is then pulled at both ends at a rate v/2 back to

its fully extended state. 40 trajectories are averaged for each v, which range from 1.0× 10−4
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to 1.0× 10−1 a/τD (or 0.15 to 151 µm/s), and each c, ranging from 0 to 1000 µM, to obtain

force and number of bound proteins as a function of extension. The system allows us to

examine timescales associated with the pulling rate and FIS-DNA interactions: the time it

takes a protein to go from fully bound to partially bound, τ̃UB, and the time it takes the

DNA strand to move one bead length, or 2a, τ̃P . The average time it takes for a protein to

partially unbind (F to P) can be calculated by

τ̃UB = τ̃MCe
∆ẼF,P (4.17)

where ∆ẼF,P is calculated from Eq. 4.2, which is dependent on force. At low extension

(z̃ = 50) where the DNA strand can adopt many conformations, the average ∆ẼF,P ≈ 9.1,

leading to an average τ̃UB = 405. At high extensions (z̃ = 200), where the pulling force

and bending force are strongly competing, ∆ẼF,P ≈ 7.7, leading to an average τ̃UB = 107.

The characteristic pulling time, τ̃P = 1/v ranges from 10000 for v = 1 × 10−4 to 20 for

v = 1.0 × 10−1. The relationship between these two timescales can be described by the

dimensionless number Γ = τ̃P/τ̃UB.

We can measure the force as a function of extension and v, and an example force-extension

curve at c = 0.0 µM can be seen in Fig. 4.4A. At low extension, the forces measured for the

slower pulling rates (v < 5.0×10−3) are nearly identical. At higher extensions, shown in the

inset to Fig. 4.4A, we see an increase in measured force, which matches for all v < 5.0×10−3.

For v > 5.0 × 10−3, we see measurably different behavior. Instead of a constant force at

low extension, we see different linear increases in the measured force. At high extension

and high v, we see a similar sharp increase in force just as we did for low v. This is due to

hydrodynamic drag effects, which are negligible at low v. The work dissipated due to drag

can be calculated by the following integral:

WD =

∫ zf

zi

dz(fv(z)− feq(z)) (4.18)
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Figure 4.4: A. Force versus extension behavior of bare DNA (c = 0 µM) as a function of pulling
rate v. The lines are a moving average of 50 data points, where each data point is an average of
the force at a given extension of 40 trajectories. The inset shows the force-extension behavior at
high extension (z ≥ 160a). B. Force versus extension behavior as a function of NAP
concentration at v = 1.0× 10−4, which we take to be the equilibrium force-extension behavior.
The inset shows the force-extension behavior as a function of NAP concentration at
v = 1.0× 10−1. C. The force versus extension data at c = 5.0 µM. We see an increase in
measured force as we increase v that is not solely due to drag, especially above z = 140a. The
inset shows force measured at high extension, where the differences in measured force at different
rates is most pronounced. D-F: The number of DNA beads in the fully bound state as a function
of extension and v at c = 0.05 µM (D), c = 0.5 µM (E), and c = 5.0 µM (F). The inset of (D) is a
magnification of the number of fully bound states at c = 0.05 µM.

where fv is the measured force at the pulling rate v at an extension z, and feq is the measured

force at extension z at equilibrium. This value increases as we increase v, since there are

higher drag forces at higher pulling rates.

We also compared the force-extension curves of different concentrations at a constant

pulling rate, which can be seen in Fig. 4.4B. We see qualitatively similar non-monotonic be-

havior with constant v at high extension as we did with constant f , shown previously in Fig.

4.3A. As concentration is increased, we observe a higher measured force at a given extension
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as we increase concentration from 0 µM to 10.0 µM. We then see the expected decrease

in force as concentration increases further to 1000 µM. The inset to Fig. 4.4B shows the

behavior at v = 1.0× 10−1 and shows the same qualitative concentration-dependent trends

as the low pulling rate, but also exhibits hydrodynamic drag effects.

Fig. 4.4C shows the force-extension behavior when c = 5.0 µM, which corresponds to

the concentration where the most DNA sites are in the fully bound state. We see many

qualitative similarities to the DNA only system, such as the constant force at low v and low

z, hydrodynamic drag at high v and low z, and a sharp increase in measured force at high

extension for all v. The effects of proteins on the system are most evident at high exten-

sion, which are shown in the inset to Fig. 4.4C. The forces measured at extensions above

180a increase with increasing v, which is not observed for all v in the bare DNA system.

We see this effect when most of the DNA beads are in the fully bound state at low force

with low numbers of the saturated bound state, which occurs between c = 0.01 µM and

c = 10.0 µM. These fully proteins cause the greatest local bends in the backbone (via the

equilibrium bending angle θ0), which leads to a higher force required to extend the DNA

molecule. This force also changes the binding and unbinding energies of these proteins, and

these proteins “pop off” more easily as the force is increased. We see very similar behavior

when v < 2.5× 10−3, which corresponds to Γ < 1. When Γ ≥ 1, we see marked changes in

the force-extension behavior.

In addition to measuring the force as a function of extension, we can track the number of

DNA sites in a given state as a function of extension and v. The most significant changes

occur with the fully bound state, which corresponds to the differences seen in the equilibrium

binding behavior, and is shown in Fig. 4.4D-F. At low concentrations (c ≤ 0.05 µM), there

are slight decreases in the number of beads in the fully bound state as a function of extension

(Fig. 4.4D), which are most pronounced for the low pulling rates. For all concentrations, the

number of proteins bound can re-equilibrate at slow pulling rates due to extremely high Γ,

where the timescales associated with binding and unbinding are far faster than the timescales
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associated with pulling. At a faster pulling rate v, the number of proteins bound in a given

state cannot re-equilibrate as the strand is extended, leading to a less of a decrease in the

number of proteins fully bound. The total number of DNA beads in any bound state (P, F,

or S) changes at low v, but at high v, proteins do not have time to become fully unbound

from the DNA strand, leading to near constant values of total number of DNA beads in any

bound state.

This v dependent unbinding behavior a function of extension is most pronounced at con-

centrations where there is a large difference in number of fully bound DNA beads at low

extension (z̃ = 50) and high extension (z̃ = 200), which we call ∆C. The maximum value

of ∆C occurs at c = 0.5 µM (Fig. 4.4E). The DNA strand starts with ≈ 65 beads in the

fully bound state, and decreases to ≈ 14 beads when allowed to re-equilibrate during slow

pulling, leading to ∆C = 51. As we increase v, we see a decrease in ∆C, and at the fastest

pulling rate v = 1.0 × 10−1, ∆C = 17. The difference in these ∆C’s (denoted by ∆∆C)

is the difference in number of fully bound proteins between the slow and fast pulling rates,

leading to ∆∆C = 34 for c = 0.5 µM.

We can compare these ∆Cs and ∆∆C to those at c = 5.0 µM, where we see the largest

number of fully bound DNA beads, shown in Fig. 4.4F. At equilibrium, ∆C = 42, and at

v = 1.0 × 10−1, ∆C = 23, leading to ∆∆C = 19. Even though there are more DNA beads

in the fully bound state at c = 5.0 µM, there is a bigger ∆∆C between the slow and fast

pulling rates at c = 0.5 µM.

This effect caused by the change in number of fully bound proteins becomes less impor-

tant as the system increases in concentration beyond c = 5.0 µM and we begin to see more

DNA beads in the saturated state at both low and high-forces. When a fully bound protein

undergoes an unbinding event, it opens up a site on the DNA bead, which can be filled by

another partially bound protein at high enough concentrations. The time it takes for that

empty site to fill with another protein decreases as we increase the concentration. In this

high concentration regime, we move from a highly bent state (θ0,F = π/3) to a less highly
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bent state (θ0,S = π/6), which does not decrease the force required to extend the DNA as

much as movement between a highly bent state to a no-bent state.

We look at the value ∆C ′ = ∆C −∆CS/2, where ∆CS is the change in number of DNA

sites in the saturated states. The factor of 0.5 is included because the saturated state bends

the DNA less than the fully bound state. When c < 5.0 µM, ∆C ≈ ∆C ′ because there are

so few DNA sites in the saturated state. At higher concentrations, these two values differ

due to the increase in number of saturated states (and consequently a decrease in number of

fully bound states). At 500 µM and at equilibrium, ∆C ′ = 11, while the change in number

of fully bound states is ∆C = 20. If we look at the overall change in number of DNA bent

sites between equilibrium and v = 1.0 × 10−1, we observe a ∆∆C ′ = 4 at 500 µM, while

∆∆C = 10.

We can compare the cooperative effects of pulling rate and concentration by looking at the

rate- and concentration-normalized dissipative work, W̌D, where the drag force is negligible.

We can use Eq. 4.18 at a given concentration to calculate the work dissipated due to the

effect of rate on the binding/unbinding behavior of the proteins. These normalized work

values (W̌D) are shown in Fig. 4.5A. We observe a region (the red area of the plot) where

there is a large amount of work dissipated due to pulling rate effects on protein binding

and unbinding behavior. This corresponds to the area where ∆∆C is high; this is caused

by the greater change in force required to extend the DNA strand at higher v. This stems

from two attributes of this region; (1) DNA beads tend to be in the fully bound state in

equilibrium but leave the strand at high force (a high ∆C ′), and (2) the DNA is being pulled

sufficiently quickly that the proteins do not have time to unbind. We demonstrate the first

attribute by plotting ∆C ′ in Fig. 4.5B, which demonstrates a maximum at a concentration

corresponding to the high-dissipation region seen in Fig. 4.5A. This concentration regime is

the range where we see the greatest change in number of DNA beads in a bent state (∆C ′),

which is the underlying cause of protein unbinding regardless of the pulling rate. The second

attribute reflects the dependence on pulling rate, and we thus see large values of W̌D occur
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Figure 4.5: A. A heat map of the concentration normalized dissipative work. Data points (at a
given c and v) are calculated using Eq. 4.18, where feqm is the extension-dependent force at at c
and f̌v is the drag-normalized extension-dependent force at v. The black line is where Γ ≈ 1 B. A
representative plot of ∆C ′ at equilibrium.

where Γ ≤ 1 (shown by the black line in Fig. 4.5A). Here, τP becomes less than τUB, and

therefore proteins do not have time to re-equilibrate as the strand is pulled.

4.4 Conclusion

NAP-DNA interactions affect DNA conformations in ways that have been measured experi-

mentally with single-molecule studies. This work uses coarse-grained models to demonstrate

how local interactions, specifically the bending induced by the protein FIS and correspond-

ing force-dependent binding and unbinding energies, impacts DNA equilibrium and dynamic

behavior in a system with external forces. The local bending equilibrium angle is a function

of the bound state of DNA, and we can thus change the force-extension behavior as a func-
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tion of protein concentration in our model. This reflects previous experimental studies that

postulate that FIS can partially bind to DNA [85, 105, 106, 199], and this partial binding

behavior leads to non-monotonic force-extension behavior [39, 100, 103]. We are able to

show how the interplay of timescales of the system can impact dynamic behavior.

This model made several simplifying assumptions about the FIS-DNA system; for exam-

ple, the bending and twisting rigidity of the DNA is not changed when NAPs become bound.

This may be important if we want to capture effects such as DNA stiffening behavior seen

with the NAP HU [67], or more extreme bending that can cause a change in twisting rigidity

such as the hairpins caused by IHF [37]. Our simulation method can be easily manipulated

to account for these types of effects. We can see different types of concentration dependent

force-extension behavior by changing (for example) the local equilibrium angle’s stiffness κB

or the extent that force affects the unbinding energy barrier λ. In order to take into account

effects such as the dependence of binding behavior on salt, we can change the binding and

unbinding energies or add in other particle-DNA interactions [67, 105].

While the focus of this work was to demonstrate fundamental equilibrium and dynamic

competitions in DNA-NAP systems by mimicking experimental single molecule studies, our

coarse-grained BD model can be extended past the single molecule scale. This will allow us

to investigate behaviors that occur at the nucleoid scale using a model that is built up from

local interactions.
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Chapter 5

Influence of nucleoid associated proteins on DNA
supercoiling behavior

5.1 Introduction

The nucleoid is the prokaryotic cellular structure that holds most of the genomic informa-

tion in a bacterial cell. In addition to DNA, the nucleoid contains a class of proteins called

nucleoid associated proteins (NAPs). NAPs bind non-specifically to the DNA and help phys-

ically organize the genetic material [32–34, 36, 40]. These interactions not only play an archi-

tectural role, but also affect biological functions such as gene expression [32, 38, 47, 48, 259],

DNA replication [32, 56, 57], and transcription [32, 41, 52–54, 260].

In order for the long DNA strand (on the order of mm for prokaryotes) to fit into the much

smaller cell (on the order of µm), different methods of compaction must act on the DNA

[3, 9, 68, 242, 261, 262]. One of these compaction mechanisms is known as supercoiling. This

occurs when the DNA double helix, which when relaxed has 1 twist per 10.5 base pairs, is

torsionally stressed (such as by topoisomerases) by adding or subtracting twists [263, 264].

DNA can relieve this torsional stress by forming writhed structures. The bacterial chro-

mosome is naturally negatively supercoiled, meaning that there is fewer than one twist per

10.5 base pairs, which is necessary for several biological functions to occur [30, 265–267].

Processes such as DNA replication or transcription require local unwinding of DNA, which

produces additional twists in the DNA helix ahead of the local strand separation [268]. Neg-

ative supercoiling helps mitigate some of the positive torsional stress occurring from this

process.

Single molecule studies can be used to study the physical behavior of DNA supercoiling.
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Several strand properties such as extension, torque, and force can be measured as a func-

tion of how much the strand is over- or under-wound [132, 133, 269–271]. Both atomistic

[272, 273] and coarse-grained simulations have been used to study supercoiling behavior

[111, 131, 135, 274–278]. This approach can provide more localized information, such as

the types of coils formed [111] and local defects caused by DNA supercoiling, such as kinks

and bubbles [272]. Theoretical models and descriptions of DNA supercoiling have also been

established [133, 134, 276, 278, 279].

A torsionally constrained strand, such as the circular plasmids found in the cell or the

DNA strands used in experimental and computational single molecule studies can be defined

by the topological linking number Lk. This is a constant integer that is the sum of the twist

(Tw) and writhe (Wr) of the system. Twist describes how many times the individual strands

of dsDNA coil around the central axis of the DNA helix. Writhe is a measure of how many

times the dsDNA coils around itself. Oftentimes, a supercoiled system is described by the

supercoil density σ, which is the change in linking number from its relaxed value (Lk−Lk0)

normalized by the relaxed value (Lk0), which accounts for a more direct comparison between

strands of different lengths.

While DNA supercoiling has been well-characterized both experimentally and theoreti-

cally, the role that NAPs have in this process is not well understood [50]. These proteins are

abundant in the cell, and many of their interactions with the DNA are well-characterized,

such as their effect on force and extension behavior of DNA and some of their mesoscale

roles in nucleoid architecture [67, 68, 71, 102, 103, 108, 227, 280, 281]. Some single molecule

studies have investigated the role of H-NS and HU on DNA supercoiling behavior [112, 113].

With the addition of different NAPs, there is evidence of NAP-dependent supercoiling be-

havior as a function of force and torque. At high concentrations of H-NS, which can form

stiff DNA strands, supercoil writhes start to form at higher ∆Lk. Alternatively, at low con-

centrations of HU, which create a more compact DNA strand, coils form at a lower torque.

A full understanding of the interplay between DNA supercoiling and NAPs remains to be
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elucidated.

This work will show how DNA supercoiling is impacted by the NAP FIS, whose binding

behavior and local manipulation of DNA has been well characterized [53, 57, 99, 100, 227].

We have developed a coarse-grained simulation method to study DNA supercoiling behavior

in the presence of FIS. These simulations provide a physical understanding of the differ-

ent roles that FIS plays in DNA supercoiling, specifically how FIS enables the formation

of writhes due to its local bending effects. Using a combination of information obtained

directly from simulations, as well as theoretical predictions, we can develop a phase diagram

based on the effects of FIS on the local energies of the system, including bending, excluded

volume, and stretching as a function of both concentration and force. This qualitatively

matches with the phase behavior measured from simulation. While the work presented here

is based on FIS-DNA interactions, the theory can be easily applied to other types of proteins

that have different local effects on DNA.

5.2 Materials and Methods

We use a coarse-grained Monte Carlo simulation to study our system, which is designed to be

analogous to experimental single molecule studies of DNA supercoiling. A dsDNA molecule

is modeled as a linear strand of N = 100 beads of radius a = 4 nm, whose locations are

denoted by ri. The first two (i = 1 and i = 2) and last two beads (i = 99 and i = 100) are

tethered along the x-axis, which limits movement of those beads to a single dimension. We

include the second and second-to-last beads in this restriction to one dimensional movement

to ensure that the strand is torsionally constrained throughout the simulation (constant

∆Lk). All other beads are allowed to move in three dimensions.

Each bead (except for the last bead) has 3 unit vectors that fall along the axes of the

body-fixed coordinate (bfc) system associated with each bead i: ui is the unit vector that
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follows the bond vector between beads i and i+ 1:

ui =
ri+1 − ri
|ri+1 − ri|

, (5.1)

fi is perpendicular to the bond vector ui (such that fi ·ui = 0), and vi is the cross product of

the others (vi = fi×ui). This allows us to use a Euler transformation to define the twisting

motion in our system, similar to previous works [131, 135].

Stretching (US), excluded volume (UEV ), bending (UB), and twisting (UT ) potentials make

up the total potential of the system. These are all included in order to correctly simulate

experimentally observed DNA supercoiling behavior. Each individual potential is shown

below:

US =
κS
2

∑
i,i+1

(b− b0)2 (5.2)

where b is the distance between adjacent beads i and i + 1 and κS = 200 kT to minimize

deviations from the equilibrium bond length of b0 = 2.0a,

UB =
κB
2

N−1∑
i=2

(θ − θ0)2 (5.3)

where κB = 6.25a to match the DNA persistence length of 50 nm, θi is the angle between

the bonds of beads i−1 and i, and i and i+1, and θ0 is the equilibrium angle between these

same bonds.

UT =
κT
2

N−1∑
i=1

(ωi − ω0)2 (5.4)

where κT = 12.5 to set the twisting persistence length of DNA to 100 nm, and

ωi = arccos((fi · fi+1 + vi ·vi+1)/(1 + ui ·ui+1)) (5.5)

92



Figure 5.1: A schematic showing the potentials used in the Monte Carlo simulation. Adjacent
beads are connected with stiff springs (US), beads (and repulsive beads located at the midpoint of
each bond vector) have excluded volume (UEV ), the strand has a persistence length of 12.5a (or
50 nm) (UB), and the strand has a twisting persitence length of 25a (or 100 nm) (UT ).

where u, f, and v are the vectors associated with the coordinate system discussed above,

and 
UEV = ε

∑
ij

(
r0
rij

)12

rij ≤ 5.0a

0 rij > 5.0a

(5.6)

where e = 0.41. This is a purely repulsive potential to ensure that the DNA strand does not

cross over itself, as that would change ∆Lk of the system. To further ensure that the DNA

strand does not cross over itself when several beads are in close proximity, as they can be

when the strand is supercoiled, we also include repulsive beads at the midpoint of each bond

vector that have only interact with each other via the excluded volume potential at very

short distances (b < 2.0a). A representative schematic of these four types of interactions in

the system can be seen in Fig. 5.1.

An implicit field of FIS proteins interact with the DNA beads and locally induce DNA

bending via the equilibrium bending angle, θ0. FIS is assumed to have multiple binding

states (unbound, partially bound, or fully bound), reflecting physical intermediates in the

DNA and FIS binding process that have been shown in the literature [85, 100]. This leads

to a four state DNA model that has been used in previous works [227], where a single DNA

site can be in one of four states: unbound (U), partially bound (P), fully bound (F), or

oversaturated (S), where two proteins are partially bound to a single DNA bead. For the U
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and P states, the DNA prefers to be straight (θ0 = 0◦), and for the F and S states, the DNA

is preferentially bent (θ0,F = 60◦ and θ0,S = 30◦).

Because these proteins can deform the DNA locally, it follows that their binding and

unbinding kinetics depend on the local structure of the DNA. In our model, a protein is

more likely to bind to a DNA bead that has a bent conformation, rather than a straight one,

due to a lower bending energy cost to move from the unbound to bound state. Similarly, a

protein will also be less likely to unbind from a bent DNA bead than a straight one. This

local structure is dependent on the force applied to the strand, as well as DNA topology (in

this case, supercoiling.) The details of the FIS-DNA binding kinetics and the forms of the

energy barriers can be found in Chapter 3.

5.3 Results

Simulation

To ensure that our simulation correctly captures supercoiling behavior that has been ob-

served experimentally, we compare a set of simulations with no proteins (c = 0) to existing

experimental data [133]. Our simulations are initiated with a linear DNA strand with a

constant linking number (∆Lk, or number of extra twists added) ranging from 0 to 20. The

strand is torsionally constrained at both ends to ensure that ∆Lk is constant throughout

the simulation. We exert a pulling force (f) on both ends of the DNA strand, within the

physiologically relevant range of 0 − 10.0 pN [161]. We allow the simulation to reach equi-

librium, and measure the average extension for each pair of ∆Lk and f , which can be seen

in Fig. 5.2A.

At low forces (f <0.25 pN), supercoils are formed at low ∆Lk, where the twists added into

the system are converted into writhes. This occurs because there is effectively no penalty for

decreasing the extension of the DNA strand. At mid-range forces (0.5 to 5 pN), the extension
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Figure 5.2: A. DNA extension as a function of ∆Lk and force at c = 0. At f < 7.5 pN, the
transitions between constant extension and decreasing extension at a constant force indicate the
formation of supercoils. These transitions are not seen in this range of ∆Lk for forces greater
than 7.5 pN. B. Extension vs ∆Lk for c = 10.0 µM. We see an overall decrease in extension (at
the same force) compared to the c = 0 plot due to the local bends caused by the fully bound state
of the DNA sites, and also a shift towards lower ∆Lk in the transition from constant extension to
decreasing extension. C. Extension vs ∆Lk for c = 1000.0 µM. We see an overall decrease in
extension (at the same force) compared to the c = 0 plot (panel A), but an increase from the
c = 10 µM (panel B) due to the smaller local bends caused by the oversaturated state of the
DNA, and also a shift towards lower ∆Lk in the transition from constant extension to decreasing
extension.

is constant at low ∆Lk but decreases linearly at high ∆Lk. This is due to the conversion

of extended DNA to writhed DNA. This transition begins when the penalty for decreasing

the extension is less than the torsion, and the DNA strand begins writhing to alleviate the

torsional stress it feels. At high forces (f >7.5 pN), the extension remains constant as ∆Lk

increases. The extra twists in the system remain twists and are not converted into writhes.

The rising torsion of the strand is not enough to offset the penalty of decreasing the exten-

sion of the molecule at these high forces. These observations match both qualitatively and

quantitatively with positively supercoiled results from the literature [133].

We introduce FIS into the simulations at a different concentrations ranging from c =

0.1 µM to 1000 µM, resulting in a marked change in supercoiling behavior. Plots showing

the extension as a function of ∆Lk and force at c = 10.0 µM and c = 1000 µM are shown in

5.2B and C, respectively. As proteins are added into the system (up to c = 10 µM, where

the strand is effectively saturated with fully bound proteins at low force), we see an overall

decrease in the measured extension at all ∆Lk, due to local kinks in the DNA strand caused
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by protein binding [100, 227]. Above c = 10 µM, the extension increases slightly from its

minimum value at c = 10 µM, due to the lesser bending caused when the strand is oversat-

urated with proteins, as has been shown previously [39, 100, 103, 227]. Similarly, we see a

shift to a lower ∆Lk where writhe formation begins at a given force (for example, writhes

begin to form at ∆Lk = 15 at c = 0 and ∆Lk = 7 at c = 10 µM when f = 5 pN). This

indicates that fewer twists (which corresponds to a lower applied torque, τ ,) are needed to

form a supercoil.

Using these sets of extension versus ∆Lk at different concentrations, we can construct a

DNA supercoiling phase diagram, which can be seen in Fig. 5.3. Each point on the phase

transition curve comes from the ∆Lk (and corresponding measured torque, τ) where su-

percoiling begins at a given force. Above this phase transition, DNA exists in the purely

extended form (shown by the upper right inset in Fig. 5.3), where there are no writhed

structures along the DNA strand. Below the transition, DNA exists in a fully supercoiled

state, where the entire strand is part of a writhed structure (shown by the lower middle

insets in Fig. 5.3). Along the curve is a large coexistence region, where there are both

extended and writhed sections within the same DNA strand. The decreasing portions of the

data in Fig. 5.2 corresponds to this coexistence region.

We observe a non-monotonic shift in this phase transition with respect to concentra-

tion, which corresponds to previously observed non-monotonic force-extension behavior

[39, 100, 103, 227]. As the concentration of FIS is increased from 0 µM (black data points)

to 10 µM (dark blue data points), we see a shift in supercoil formation to lower τ at a given

force; this is related to the increasing number of fully bound sites along the DNA strand as

c is increased. However, increasing concentration past c = 10 µM shifts the phase transition

towards higher τ until the DNA is oversaturated with FIS, which occurs at c = 1000µM

(cyan data points).

We are also able to observe an interesting change in the type of supercoil formed as

concentration changes. Bare DNA forms plectonemes (both singular and branched) in our
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Figure 5.3: Phase transition of DNA supercoiling. Data points are from simulation with dotted
lines to guide the eye. Above the transition (high force and low torque), DNA exists in an
extended state, shown by the simulation example in the top left of the plot. Below the transition,
DNA exists in a fully writhed state, which is shown by simulation examples in the lower right of
the plots. Along the boundary exists both extended and writhed structures in the same DNA
strand.

simulations, where the supercoil has a high pitch and the start and end of a given supercoil

are in close proximity to each other (black boxed inset to Fig 5.3). However, when a critical

number of adjacent sites are in the F or S states (≥ 6), the DNA can form a solenoid-like

structure, where loops are stacked next to each other (blue boxed inset to Fig 5.3). We hy-

pothesize that this would change to a toroid-like structure if we had a closed circular strand

instead of a linear one.

The change in supercoil shape is due to the local deformations that proteins cause. When

a DNA bead is the fully bound or oversaturated state, it becomes energetically favorable to

adopt a more bent conformation. While there is a large bend at the apical loop of the plec-

toneme (seen at the top of the black box inset to Fig 5.3), most beads have just a slight bend

associated with being in the main body of the plectoneme. There is a consistently larger

bend for DNA beads in the entirety of the solenoid. Thus, the solenoid is the preferred
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conformation when several adjacent DNA sites are in the F or S states.

Theory

Theoretical models have been developed to describe DNA supercoiling behavior in a wide

phase space [134]. One such theoretical model calculates the phase transition boundaries by

calculating the free energies of each phase (ΦExt for extended DNA and ΦSc for supercoiled

DNA) as a function of force f and torque τ . The phase transition occurs when ΦExt = ΦSc.

We are interested to see how the free energies of the phases change not only with f and τ ,

but also with concentration. To do this, we use a combination of data from simulations, as

well as theoretical estimations, to account for the effect of concentration on the terms that

make up the free energies of the two different phases.

The free energy of the extended phase per a in the constant f − τ ensemble is:

ΦExt = ΦS,Ext(f, c)− ΦT,Ext(τ) (5.7)

where the first term ΦS,Ext is the stretching free energy and the last term ΦT,Ext is the

twisting free energy. The free energy of the supercoiled phase per a is:

ΦSc = ΦB(f, c)− ΦT,Sc(τ) + ΦEV (f, c) (5.8)

where the first term ΦB is the bending free energy, the second term accounts for the energy

due to twisting (ΦT,Sc = ΦT,Ext + τ(−2πWr), where ΦT,Ext is the same as the twisting free

energy in the extended phase, and Wr is the writhe), and the last term ΦEV accounts for

the confinement.

The concentration-dependent energy terms are going to be affected by the number of DNA

sites in a given state (U, P, F, or S), which is a function of both c and f due to the force-

dependent energy barriers discussed in Chapter 3. We can calculate the fraction of DNA

98



sites in a given state A (φA) in the extended phase with the following equations:

Ξ =
[
e(∆E1+µP ) + e(∆E1+∆E3+2µS) + e(∆E1+∆E2+µF ) + 1

]N
(5.9)

where Ξ is the grand partition function of the system, ∆E1 is the energy difference between

the U and P states, ∆E2 is the difference between the P and F states, and ∆E3 is the

difference between the P and S states (all in units of kBT ). These energy differences can be

measured directly from simulations at different forces. The chemical potentials are all equal

µP = µS = µF = µ0 + ln(c), where µ0 = 2.5 from fits to simulation data. Eq. 5.9 can be

used in the following equation to calculate φA:

〈φA〉 =
kBT

N

∂ ln Ξ

∂µA
(5.10)

and the fraction of unbound states can be calculated from the following:

〈φU〉 = 1− φP − φF − φS (5.11)

The fraction of DNA sites in the F and S states at different c and f can be seen in Fig.

5.4. At low forces, the DNA strand has a high fraction of fully bound proteins from c = 5

to c = 20 µM, after which the fraction in the oversaturated state begins to increase. As

force is increased, the fraction of fully bound states decreases due to the less-relaxed nature

of the DNA strand. This allows for more oversaturated states, which have a lesser degree

of bending than the fully bound states. This change in the number of F and S states will

impact the concentration-dependent terms in Eqs. 5.7 and 5.8. The fraction of P states,

which is not shown in Fig. 5.4, is significantly smaller than either the F or S states. φP

increases slightly with force, but to a much less extent than φF or φS is changed.

For the fraction of DNA sites in a given state in the supercoil phase, we use φA at f = 0

for the extended phase. Proteins will be much more likely to bind to DNA in a supercoiled
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Figure 5.4: A. The fraction of DNA sites in the fully bound state (lines labeled FB) and
oversaturated state (lines labeled SB) as a function of c and f . As force increases (red to purple),
there is a decrease in F states and an increase in S. There is a peak in number of F states between
5-10 µM, which is where the number of oversaturated states begins to increase. Not shown in the
plot is the fraction of DNA sites in the partially bound state, due to φP < 0.12 for all
concentrations and forces. At low forces (f < 1 pN), there are effectively no partially bound
states. As force is increased, there is a slight increase in φP between c = 5 and c = 10 µM,
corresponding to the region where the number of fully bound is very high. B. The fraction of
DNA sites in the fully bound state as a function of f and ∆Lk at c = 1.0 µM. When ∆Lk = 0,
φF matches with the theoretically predicted φF shown in panel (A). As writhes are formed at
higher ∆Lk, there is a significant increase φF . This increase in φF can be seen for all
concentrations, but the effect is greatest between c = 1 and c = 10 µM.

phase because of the local bends, so there will be a higher number of DNA sites in one of

the preferentially bent states (moreso the F state than the S state) in this phase at the same

concentration. This phenomena can be observed when tracking the number of fully bound

DNA sites as a function of ∆Lk in the simulations, an example of which can be seen in Fig.

5.4. When the DNA strand is fully extended (at low ∆Lk), the number of proteins bound

is relatively constant. As a supercoil begins to form and grow (via twists being converted to

writhes as ∆Lk increases), there is an increase in the number of proteins bound as well.

The stretching free energy term in Eq. 5.7 can be calculated directly from a theory

that has been developed to describe force-extension behavior of DNA with protein-induced

local bending [227, 256]. This theory accounts for multiple binding states (and consequent

multiple bending deformations) as a function of concentration. The force-extension behavior

calculated from this theory via a transfer matrix formalism has been shown to qualitatively
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Figure 5.5: A. The force-extension curves calculated via the transfer matrix formalism from prior
work [227]. This qualitatively matches the values from our simulations. B. The stretching free
energy (ΦS,Ext) as a function of f and c, calculated from Eq. 5.12 and the transfer matrix
formalism that provided f(z) shown in panel (A) [227, 256].

match both experiment [100, 103] and prior simulations [227]. By integrating the force-

extension curve (shown in Fig. 5.5A) up to the f of interest, we can get the stretching free

energy as a function of force and concentration:

ΦS,Ext(f, c) =

∫ zf

0

f(z)dz (5.12)

where zf is the extension at which we reach the desired f . Slight modifications to the

concentrations used in this theory are necessary to better quantitatively match the limiting

cases (high φF and high φS, specifically) that were observed in simulations. The stretching

energy values calculated can be seen in Fig. 5.5B. We observe an increase in the energy

required to fully extend the strand as c increases from 0 to 10 µM due to the addition of

local kinks in the backbone, even at high forces. There is a subsequent, expected decrease

as c increases to 1000 µM due to smaller local bends.

The twist free energy ΦT,Ext is found in both ΦExt and ΦSc. We can measure ΦT,Ext in

our simulations for different c, f , and ∆Lk. We find that, as expected, the average twist

energy per a is the same in the extended and supercoiled phase for a given set of variables.
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Therefore, these two terms cancel each other out in Eq. 5.7 and 5.8.

The bending free energy ΦB,Sc is, more accurately, the energetic penalty for a DNA to be

in the supercoiled state instead of the extended state:

ΦB = ΦB,Sc − ΦB,Ext (5.13)

The bending angle of DNA in the extended state is non-zero (〈θ〉 6= 0), even at very high

forces, which should be accounted for in the theoretical model. We can calculate the bending

energy for either phase with the following equation:

ΦB,Ext,Sc = φUΦB,U + φPΦB,P + φFΦB,F + φSΦB,S (5.14)

where φA is calculated from Eq. 5.10-5.11 for the extended phase, and φA for the supercoiled

phase is assumed to be the values calculated at f = 0. ΦB,A is the average bending energy

for a bead in a given state (U, P, S, or F), and, like φA, is different for the extended phase

and supercoiled phase. The partition function Q of a given state A of DNA in the extended

phase is:

QA =

∫ 2π

0

dψ

∫ π

0

dθ sin θ exp
[
−κ

2
(θ − θ0,A)2

]
exp

[
4f cos

θ

2

]
(5.15)

where the first Boltzmann factor is the bending energy, which accounts for different states

A, and the second Boltzmann factor is the energy from the conjugate pair (fl), where

l = 4 cos θ/2. Eq. 5.15 can be used to calculate the average energy:

ΦB,A =
1

2

κ
2

∫ 2π

0
dψ
∫ π

0
dθ(θ − θ0,A)2 sin θ exp

[
−(κ

2
(θ − θ0,A)2 − 4f cos θ

2
)
]∫ 2π

0
dψ
∫ π

0
dθ sin θ exp

[
−(κ

2
(θ − θ0,A)2 − 4f cos θ

2
)
] (5.16)

where there is an extra factor of 1/2 to ensure that ΦB,A is per a. The results from Eq. 5.16

quantitatively match values from our simulation and can be seen in Fig. 5.6A.

For the U and P states, as force is increased, the bending energy in the extended phase
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Figure 5.6: A. The bending free energies in the extended phase for DNA in the U and P (black),
S (cyan), and F (dark blue) states. The data points are values measured in simulation, and the
lines are calculated from Eq. 5.16. Because the equilibrium angle θ0 is the same for both the U
and P states, the bending energies will also be the same ΦB,U = ΦB,P . B. The bending free
energies in the supercoiled phase for DNA in the U and P (black), S (cyan), and F (dark blue).
The U/P and S curves are calculated from the simulation-motivated two state model in Eq. 5.17
and 5.18. ΦB,F is approximated as 0 kBT . The data points are values measured from simulation.
C. The overall bending free energy (ΦB) as a function of f and c calculated from Eq. 5.13 and
5.14, as well as the values shown in panels (A) and (B). As the fraction of sites in the F state
increases to c = 10 µM, there is a significantly lower bending energy penalty due to the preference
for F sites to be in a bent state, which becomes negative when the DNA strand is saturated with
F states. The expected nonmonotonic behavior is observed as c increases to 1000 µM.

decreases (shown by the black line and data points in Fig 5.6A). The strand becomes more

linear, leading to a smaller difference in θ − θ0, which in turn lowers the bending energy.

For beads in the F state, there is a very slight decrease, then an increase in bending energy

in the extended phase as f increases, shown by the dark blue line and data points in Fig.

5.6A. This is due to the strand’s local kinks becoming slightly more bent (f < 2 pN) and

then less bent (f ≥ 2 pN), which leads to a larger θ − θ0,F and subsequently larger ΦB,F .

The bending energy for DNA beads in the S state have qualitatively similar trends to those

found in the U or P state, seen by the light blue line and data points in Fig. 5.6A. The

local angle decreases as force is increased and approaches the equilibrium angle θ0,S in the

extended state.

For ΦB,A in the supercoiled phase, we take inspiration from the bending energies from the

supercoiled phase observed in simulation. For the U, P, and S states, we use a two-state
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approximation for the force-dependent bending energies in the supercoiled phase:

ΦB,U = ΦB,P = 0.6 +
0.04e0.95f

1 + 0.026e0.95f
(5.17)

ΦB,S = 0.22 +
0.0525e1.2f

1 + 0.175e1.2f
(5.18)

These equations quantitatively match the values estimated from our simulations (see Fig.

5.6B), although there is some uncertainty at higher forces (f ≥ 7.5 pN). This phenomeno-

logical force-dependence must be included to observe the same qualitative behavior shown in

our simulations. However, more investigation is required for a full molecular understanding

of the origin of this force dependence. The bending energy for DNA sites in the F state in

the supercoiled phase is ΦB,F ≈ 0, because the DNA must adopt a bent conformation in the

supercoiled phase, which is favorable for the fully bound state. This nearly quantitatively

matches what we observe in our simulations.

We see an increase in the bending energy as force is increased for the U, P, and S states

(black and cyan lines and data points, respectively), which is in contrast to the trend shown

in the extended phase (shown in Fig. 5.6A). The opposite occurs in the supercoiled phase as

force is increased; the bending energy increases due to the higher bends found in the more

tightly coiled plectoneme. Our approximation of ΦB,F = 0 kBT is shown by the dark blue

line and data points in Fig. 5.6B.

These force- and state-dependent energies can be used in Eq. 5.14, along with φA, to

calculate a force- and concentration-dependent bending energy for the extended phase and

supercoiled phase. The difference between the two, (ΦB, which is used to calculate ΦSc in Eq.

5.8), is shown in Fig. 5.6C. As c increases, there is a non-monotonic decrease, then increase

in ΦB, due to the non-monotonic fraction of sites in the F state and an increasing number

of sites in the S state. In fact, when there is a high fraction of F sites in the supercoiled

phase (c = 10 µM, blue line in Fig. 5.6C), the energy penalty becomes negative, indicating

that there is actually an energy benefit for DNA to be in the supercoiled state instead of
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the extended state. As c increases beyond 100 µM, this energetic benefit goes away, but the

resulting bending penalty (such as the one for c = 1000 µM shown in cyan in ??C) is much

smaller compared to the c = 0 case (black line in 5.6C).

The writhe used to calculate the twisting free energy of the supercoiled phase, can be

calculated directly from simulations with the following equation:

4πWr =
∑
j

∑
i 6=j

[(rj+1 − rj)× (ri+1 − ri)] ·
(rj − ri)

|rj − ri|3
(5.19)

which calculates how many times the DNA strand crosses. This accounts for both positive

and negative crossings to ensure that a relaxed DNA strand (∆Lk = 0) that crosses over

and under itself multiple times has an average Wr = 0. The average Wr per a is effectively

constant for DNA that is supercoiled in our simulations, regardless of f or c, and is measured

as Wr = 0.5. There is no Wr for DNA in the extended state.

Lastly, we consider the confinement penalty for being in the supercoiled phase instead of

the extended phase, ΦEV = ΦEV,Sc − ΦEV,Ext. Measurements from simulations showed only

slight variations in this energy (< 0.1 kBT ) as force increased for DNA in the extended phase,

and effectively no differences between the different types of DNA states. As expected, we

observed a larger value of the confinement energy in the supercoiled phase, since the DNA

beads are more closely packed regardless of state (which can be seen in the insets to Fig.

5.3). Because the changes are so minute between different forces and concentrations, espe-

cially compared to the absolute values of the other energy terms in Eq. 5.8, we utilize a

single, constant value for ΦEV in Eq. 5.8, which we approximate to be 0.1 kBT .

With a full accounting of how each of the phases’ free energies changes with force and con-

centration, we are able to predict how the transition between the extended and supercoiled

phase changes when FIS is added to the system. The theoretical f−τ phase diagram is shown

in Fig. 5.7. This qualitatively matches the phase diagram from our simulations (shown in

Fig. 5.3), with the same sort of nonmonotonic shift in the phase transition (a shift to higher
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Figure 5.7: The phase transition between extended and supercoiled DNA as predicted by Eq. 5.7
and 5.8. This nearly quantitatively matches the phase behavior measured from simulations, which
is shown in Fig. 5.3.

forces as c increases from 0 to 10 µM, and a subsequent decrease as c > 10 µM). As more

DNA-deforming proteins are added to the system, the energy of the extended phase (ΦExt)

increases because of an increase in the stretching energy, ΦS,Ext. At the same conditions

(increasing c at constant f and τ), the energy in the supercoiled phase decreases because of

the decrease in the bending penalty, ΦB. There are slight quantitative differences which can

be attributed to a number of factors not taken into account in our theory, such as the wall

potentials used in our simulation and uncertainty in some of our energetic predictions when

f is large.

5.4 Discussion

This theory allows us to understand the protein-induced molecular effects that drive DNA

supercoiling beyond just FIS. For proteins such as IHF that cause a much higher degree of

bending than FIS in the fully bound state, we would expect to see an even higher bending
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benefit because the bending energy in the extended phase (calculated from Eq. 5.16) in-

creases significantly with a higher θ0,F (> 3 kBT for θ0,F = 5π/6), and we would expect a

similar bending energy of 0 kBT in the supercoiled phase. The stretching free energy would

also increase due to the significant bends in the backbone, leading to a higher ΦExt. To-

gether, these changes would shift the phase diagram to an even higher force than the largest

one (dark blue) in Fig. 5.7.

The opposite behavior would be observed for proteins such as HU that cause a DNA

stiffening effect when oversaturated. The equilibrium angle for this state would change,

θ0,S = 0, as would the bending stiffness, κB. There would be a quantitative effect on the

bending energy in the extended phase (Eq. 5.16) and a significant increase in the energy of

bending in the supercoiled phase due to the increase in stiffness. The extended phase would

become more energetically favorable to due a lower ΦS, and this would lead to a shift to a

lower force in the phase transition than even the bare DNA case (black line in Fig. 5.7).

While our model did not incorporate electrostatic effects, they can be added and would

impact the confinement penalty and binding energies. For a low ionic strength system, we

would expect to see an increase in the confinement penalty (which would inhibit supercoil

formation), since the negatively-charged DNA strand would have a significant electrostatic

repulsion. In a high salt limit (high ionic strength), these electrostatics would be screened

by the ions in the solution, decreasing the confinement penalty due to electrostatics and

enabling supercoil formation. Salt has also been shown to affect the binding behavior of

NAPs [67, 100] and could be incorporated into the binding and unbinding energy barriers,

which would change the fraction of proteins bound.

5.5 Conclusions

Understanding NAP’s role in the DNA supercoiling process is important in understanding

how DNA is packaged within a cell. Here, we have shown using coarse-grained simulation
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and theoretical techniques that FIS, an NAP which locally bends DNA, eases the formation

of supercoils. These local bends make it more energetically favorable for DNA to form

supercoils, which results in a lower torque required to create writhes. While simulation

and theory results presented here were based on the NAP FIS, this method is not limited

to this one protein. We can extend these results to other NAPs, such as HU and H-NS,

which have been experimentally shown to affect DNA supercoiling, by changing some of the

parameters in our simulation such as the equilibrium angles and bending stiffness. Other

factors that play an important role in vivo and in vitro, including ionic strength and DNA

form (such as Z-DNA or A-DNA) can also be included with parameter modifications to both

the simulation and theory. This work is based on linear, single-molecule behavior, but can

describe behavior at much longer length scales. Additionally, by coarse-graining several base

pairs per bead (27 bp/DNA bead), we can extend our simulations to much longer time and

length scales than those shown here, while maintaining computational tractability.
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Chapter 6

Conclusions and future directions

This collection of work has demonstrated that the local interactions between the NAP FIS

and DNA have long scale consequences. We investigated how the multivalent binding na-

ture of NAPs leads to complex and atypical solution concentration-dependent dissociation

behavior. By changing the energy barriers between different binding states, we change a

protein’s binding state preference at equilibrium, which in turn leads to a range of dissoci-

ation behaviors. These dissociation rates were normalized to a single off-rate curve. This

universal curve describes the dissociation kinetics of not just our model FIS-DNA system,

but also complexes that exhibit an intermediate, partially bound state.

We also demonstrated that the dissociation kinetics in our system are not only affected

by external concentration, but also applied force. Instead of manually manipulating the

energy barriers between states, we allowed them to change based on the applied force and

how it impacted the local geometry of a DNA binding site. This again biased the protein

into different states based on the force applied, which changed how the protein dissociated

from its DNA substrate. We saw a competition between the force-driven unbinding of these

complexes, which sped up the dissociation process, and the force-inhibited binding of the

proteins in solution, which slowed the dissociation process. While this phenomena has not

been experimentally observed for NAP-DNA systems, this competitive effect of force and

concentration may be a route that cells use to dissociate a NAP from DNA in vivo.

This force-dependent kinetic binding and unbinding also has effects on DNA elasticity,

which we studied under equilibrium and dynamic conditions. We found that the relative

timescales of the system, one associated with proteins and one associated with DNA, worked
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in concert to change DNA elasticity and protein kinetics simutaneously. While the timescales

in our simulation were short in real time (<seconds), we could point to the importance of

these timescales relative to each other, which can be extrapolated to real-time dynamics that

occur in vitro or in vivo.

Lastly, we studied how the local deformations of these proteins impact the formation and

stability of mesoscale DNA supercoils. We showed that FIS’s preference for bent DNA im-

pacted whether it was more likely to be bound to DNA that was supercoiled or extended, and

that this in turn stabilized the DNA supercoils. A theory based on energies of the system

(like bending and stretching) was able to qualitatively describe the supercoiling behavior

we observed in our simulations. The theory can be readily modified to account for different

concentration and deformation effects that might be caused by other proteins.

While the work presented here was focused on a simple model system of a single type

of NAP (FIS) and DNA, this method can be easily extended to incorporate many types

of NAPs. Each different type of protein can have its own independent set of binding and

unbinding energies, as well as local deformations. For example, fully bound IHF causes “U-

turn” bends up to 160◦ which can be incorporated via the equilibrium bending angle, while

a DNA strand oversaturated with HU causes DNA stiffening, which can be changed via the

bending stiffness, κB. Different proteins will undoubtedly change the mesoscale behaviors

studied here, but our work provides a foundation for understanding how these different local

effects will affect behaviors like facilitated dissociation and concentration-dependent DNA

elasticity. The inclusion of more proteins will move us closer to the complexity of a nucleoid,

where proteins and forces interact at the local scale to change the overall structure.

In addition to diversifying the set of NAPs in our system, we can make other biologi-

cally inspired changes to our model to approach nucleoid-scale behavior. We can model

DNA as plasmid, a closed circle of DNA, which is how DNA naturally exists in prokary-

otic cells. Other biological factors, including ionic and crowding effects [282, 283], can be

incorporated into our model via the addition of an electrostatic potential (ionic strength) or
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macromolecules with excluded volume (crowding).

This level of coarse-graining (many base pairs per bead, corresponding to a single FIS-

DNA binding site) does not limit us to the short single molecule length scales investigated

here (∼ 1 µm). A non-optimized simulation with 100 beads and a mean field of proteins

(typical simulation for the work presented here) takes approximately one day on a single

CPU thread to reach real time scales on the order of seconds. With optimization, systems

reaching lengths of ∼ 100 µM can still be computationally tractable at this level of coarse

graining.

In addition to simply increasing the size of our simulation, we can further coarse-grain our

model to longer “real” lengths by incorporating the mesoscale effects we show at a longer

scale. For example, we showed that FIS bound to DNA decreases the extension of the DNA

strand, and we can incorporate this effect with different bending stiffnesses and different

equilibrium bending angles at longer length scales, where a single bead may represent many

binding sites instead of the single binding site used in the work presented here. This would

allow us to reach even longer time and length scales that approach the scale of the full nu-

cleoid (>mm and >seconds)

The theories developed to describe different aspects of our model NAP-DNA system can

also be extended to other protein-DNA systems. For example, protein binding and DNA

elasticity have a symbiotic relationship that is related to the force and time scales of the

system. Our work with FIS gives us insight into how different NAP systems, such as IFH-

DNA or HU-DNA, might behave under the same sort of dynamic conditions. These sorts

of hypothesis, built from our understanding of local interactions, can be easily tested and

implemented into a more comprehensive model that includes many types of proteins as

mentioned above.
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2011. Influence of histone tails and H4 tail acetylations on nucleosome–nucleosome
interactions. J. Mol. Biol. 414:749–764.

129. Lyubartsev, A. P., N. Korolev, Y. Fan, and L. Nordenskiöld. 2015. Multiscale modelling
of nucleosome core particle aggregation. J. Phys. Condens. Matter. 27:064111.

130. Ozer, G., A. Luque, and T. Schlick. 2015. The chromatin fiber: multiscale problems
and approaches. Curr. Opin. Struct. Biol. 31:124–139.

131. Allison, S., R. Austin, and M. Hogan. 1989. Bending and twisting dynamics of short
linear DNAs. analysis of the triplet anisotropy decay of a 209 base pair fragment by
Brownian simulation. J. Chem. Phys. 90:3843–3854.

132. Strick, T. R., J.-F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette. 1996.
The elasticity of a single supercoiled DNA molecule. Science. 271:1835–1837.

133. Strick, T., J.-F. Allemand, D. Bensimon, and V. Croquette. 1998. Behavior of super-
coiled DNA. Biophys. J. 74:2016 – 2028.

134. Marko, J. F., and S. Neukirch. 2013. Global force-torque phase diagram for the DNA
double helix: Structural transitions, triple points, and collapsed plectonemes. Phys.
Rev. E. 88:062722.

135. Chirico, G., and J. Langowski. 1994. Kinetics of DNA supercoiling studied by Brownian
dynamics simulation. Biopolymers. 34:415–433.

136. Pabo, C. O., and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem.
53:293–321.

121



137. Johnson, D. S., A. Mortazavi, R. M. Myers, and B. Wold. 2007. Genome-wide mapping
of in vivo protein-DNA interactions. Science. 316:1497–1502.

138. Halford, S. E., and J. F. Marko. 2004. How do site-specific DNA-binding proteins find
their targets? Nucleic Acids Res. 32:3040–3052.

139. Perkins-Balding, D., D. P. Dias, and A. C. Glasgow. 1997. Location, degree, and
direction of DNA bending associated with the Hin recombinational enhancer sequence
and Fis-enhancer complex. J. Bacteriol. 179:4747–53.

140. Swinger, K. K., and P. A. Rice. 2007. Structure-based analysis of HU-DNA binding.
J. Mol. Biol. 365:1005–1016.
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Appendix A: Supplemental figures for Chapter 2
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Figure A.1: A: Normalized dissociation rate, k̃off , for the theoretical model with force-dependent
partial dissociation (xF,P > 0, increasing from light to dark red) and force-independent facilitated
dissociation (xP,S = 0). B: Normalized dissociation rate, k̃off , for the theoretical model with
force-independent partial dissociation (xF,P = 0) and force-dependent facilitated dissociation
(xP,S = 0, increasing from light to dark blue). Plots show results for c = 100 µm and θ0 = π/3.
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Figure A.2: Scaled saturation rate, k̃P,S, for the theoretical model with an additional free energy
term included to account for excluded volume effects. Here, the free energy is given by
F = ŨB(θ)− 2b0f cos θ + δθ2, where δ = 0.1 governs the effective stiffness imparted by excluded
volume. This expression is used to compute 〈kP,S(c, f)〉 as in Eq. 10 in the main text. Scaled rate
with excluded volume is shown by the solid green lines, with increasing xP,S from light to dark
green. Results for the theory without excluded volume are shown for comparison by dashed blue
lines (increasing xP,S from light to dark blue). Bending stiffness imparted by excluded volume
effects reduces the non-monotonicity of k̃P,S.
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Figure A.3: Normalized dissociation rates, k̃off for various sensitivity ratios, xP,S/xF,P, and forces,
f . Value of k̃off is indicated by color from purple to red for slow to fast rates for A: θ0 = π/6, B:
θ0 = π/3, and C: θ0 = π/2.
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