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ABSTRACT

The smart grid leverages a variety of advanced technologies, including smart

metering, smart equipment, communication and control technologies, renew-

able energy sources, and machine learning, to improve the efficiency and

reliability of existing electric power systems. The efficiency and reliability of

power systems are of considerably importance to economic and environmental

health in this new era. However, there are significant challenges for modern-

izing the power grids and accomplishing the vision of the smart grid. This

dissertation presents a variety of optimization techniques that solve several

key challenges in the smart grid and improve its efficiency and reliability.

Optimal power flow (OPF) plays an important role in power system oper-

ation. The emerging smart grid aims to create an automated energy delivery

system that enables two-way flows of electricity and information. As a re-

sult, it will be desirable if OPF can be solved in real time in order to allow

the implementation of the time-sensitive applications such as real-time pric-

ing. We develop a novel method, the fast OPF algorithm, to accelerate the

computation of alternating current optimal power flow (ACOPF). We first

construct and solve an equivalent OPF problem for an equivalent reduced

system. Then, a distributed algorithm is developed to retrieve the optimal

solution for the original power system. Experimental results show that for a

large power system, our method achieves 7.01X speedup over ACOPF with

only 1.72% error, and is 75.7% more accurate than the DCOPF solution.

The experimental results demonstrate the unique strength of the proposed

technique for fast, scalable, and accurate OPF computation.

With the integration of intermittent renewable energy sources and de-

mand response in the smart grid, there is increasing uncertainty involved in

the traditional OPF problem. Therefore, probabilistic optimal power flow

(POPF) analysis is required to accomplish the electrical and economic op-

erational goals. We propose a novel method, the ClusRed algorithm, to
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accelerate the computation of POPF for large-scale smart grid through clus-

tering and network reduction (NR). A cumulant-based method and Gram-

Charlier expansion theory are used to efficiently obtain the statistics of sys-

tem states. We also develop a more accurate linear mapping method to

compute the unknown cumulants. ClusRed can speed up the computation

by up to 4.57X and can improve accuracy by about 30% when Hessian matrix

is ill-conditioned compared to the previous approach.

Aside from improving the efficiency and reliability of power grids through

addressing OPF related problems, we also study geomagnetic disturbances

(GMDs) and how to mitigate their threat to the reliability of power grids.

Geomagnetically induced currents (GICs) introduced by GMDs can damage

transformers, increase reactive power losses and cause reliability issues in

power systems. Finding an optimal strategy to place blocking devices (BDs)

at transformer neutrals is essential to mitigating the negative impact of GICs.

We develop a branch and cut (BC) based method and demonstrate that the

BC method can provide optimal solutions to OBP problems. Furthermore,

to practically solve the OBP problem, it is also important to account for the

potential impact of BD placement on neighboring interconnected systems,

solve the case where per-transformer GIC constraint exists and take the time-

varying nature of the geoelectric field into consideration. In addition, the

combined complexity of solving the OBP problem on a large-scale system

poses a big computational challenge. However, together with other existing

methods, the BC method cannot address the above issues well due to its

algorithmic limitations. We then develop a simulated annealing (SA) based

algorithm that, for the first time, can achieve near-optimal solutions for OBP

problems for the above scenarios at a reduced computational complexity.

More importantly, the SA method provides a comprehensive framework that

can be used to solve various OBP problems, with different objective functions

and constraints. We demonstrate the effectiveness and efficiency of our BC

and SA methods using power systems of various sizes.

In addition to natural disasters, in the era of internet of things, cyberse-

curity is of growing concern to power industries. Malicious cyberbehaviors

and technologies that used to challenge security in areas unrelated to power

systems, such as information integrity or privacy, have suddenly started to

endanger the safety of large-scale smart grids. In particular, short-term load

forecasting (STLF) is one of many aspects that are subject to these attacks.
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STLF systems have demonstrated high accuracy and have been widely em-

ployed for commercial use. However, classic load forecasting systems, which

are based on statistical methods, are vulnerable to training data poisoning.

We build and implement a first-of-its-kind data poisoning strategy that is

effective at corrupting the forecasting model even in the presence of outlier

detection. Our method applies to several forecasting models, including the

most widely adapted and best-performing ones, such as multiple linear re-

gression (MLR) and neural network (NN) models. Starting with the MLR

model, we develop a novel closed-form solution that enables us to quickly esti-

mate the new MLR model after a round of data poisoning without retraining.

We then employ line search and simulated annealing to find the poisoning

attack solution. Furthermore, we use the MLR attacking solution to gen-

erate a numerical solution for other models, such as NN. The effectiveness

of our algorithm has been demonstrated on the Global Energy Forecasting

Competition (GEFCom2012) data set with the presence of outlier detection.
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CHAPTER 1

INTRODUCTION

Energy consumption has become an increasingly important issue worldwide.

Climate change, rising energy prices and increasing power demand have re-

shaped the existing energy system. In this situation, electricity, which is

generated by consuming more than 40% of the total energy [1], is the key

to the overall efficiency of the energy system. The emerging smart grid is

aimed at creating a reliable and efficient power system by taking advantage

of information technologies, renewable energy, smart digital devices, machine

learning and so on. However, it is hard and time-consuming to find the op-

timal solutions to many operational and planning problems. Therefore, this

dissertation develops new high-performance computing algorithms that can

improve the operational efficiency and reliability of smart grids by solving

several smart grid optimization problems efficiently.

We have conducted several studies to improve the efficiency of solving

optimal power flow (OPF) problems in large-scale power systems, such as

deterministic optimal power flow (DOPF) and probabilistic optimal power

flow (POPF). In addition, we also consider the threats of geomagnetic dis-

turbances (GMDs) and solve the optimal blocking device placement (OBP)

problems that can improve the reliability of power system. We propose a

branch and cut (BC) based method that can find optimal solution and a simu-

lated annealing (SA) based method that can solve the scenario of considering

neighboring impact, per-transformer constraint and the time-varying feature

of geoelectric field. We also studied short-term load forecasting (STLF) and

developed a poisoning attack strategy that is effective in the presence of out-

lier detector. Future work will be discussed to advance this study and further

improve the efficiency and reliability of the smart grid.

Deterministic alternating current optimal power flow (ACOPF) is widely

used in power systems for making operational decisions [2–4]. It will be

desirable if OPF can be solved in real time in order to allow the imple-
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mentation of time-sensitive applications, such as real-time pricing. However,

many existing methods, such as quadratic programming [5], genetic algo-

rithms (GA) [6] and particle swarm optimization [7] are not computationally

efficient and cannot be used in large-scale power systems for real-time op-

eration [8–12]. Therefore, we propose a novel algorithm to accelerate the

computation of ACOPF through power system network reduction (NR) [13].

We formulate the ACOPF problem based on an equivalent reduced system

and interpret its solution. As a result, the detailed optimal dispatch for the

original power system can be obtained afterwards using a distributed algo-

rithm. Our experimental results demonstrated the unique strength of the

proposed technique for fast, scalable, and accurate ACOPF computation.

With the integration of renewable energy, demand response in the smart

grid, there are many considerable uncertainties in the system [14]. Probabilis-

tic optimal power flow (OPF) analysis is required to accomplish the electrical

and economic operational goals [15]. However, existing methods suffer from

slow speed and cannot provide accurate solutions when the Hessian matrix is

close to ill-conditioned [16–19]. Thus, we propose a network reduction based

method to speed up the POPF computation. We also take advantage of

a cumulant-based method and Gram-Charlier expansion theory [20], which

are well-known for their efficiency in computing the probabilistic distribution

functions. This work shows that the proposed method can solve POPF much

faster with better accuracy.

The quasi-dc geomagnetically induced currents (GICs) introduced by ge-

omagnetic disturbances (GMDs) have been concerning power grid operators

for many years [21, 22]. Over the last several years, the power industry

has seen more concentrated interest in this area. The US Federal Energy

Regulation Commission (FERC) now requires US utilities to perform GMD

vulnerability assessment, and prepare corrective action plans and mitigation

actions [23]. GMDs, such as solar storms, can cause rapid geomagnetic field

variation, which produces geoelectric field and GICs flowing through trans-

mission lines. GICs tend to flow through the neutral connection of transform-

ers and can cause half-cycle saturation of transformers. As a result, power

systems may suffer from transformer overheating and severe reactive power

losses. GICs can damage the bulk power system assets, typically associated

with transformers. This may eventually lead to system reliability issues,

such as misoperations of proactive relays, and voltage instability [24]. The
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impacts of GIC, GIC modeling and analysis are studied in [25–30]. Many

methods were proposed to mitigate the effects of GIC [31, 32]. One widely

recognized solution is to install blocking capacitors or switchable resistors to

the neutral connection of Wye-connected transformers [33, 34]. In order to

find the best way to protect power grids, optimal blocking device placement

(OBP) was studied to minimize the damage of GICs. Several methods were

proposed to formulate and solve the BD placement problem [35–37]. How-

ever, existing methods could not guarantee optimality in the BD placement

problem when minimizing GMDs’ damages. We formulate this OBP problem

as a mixed integer nonlinear programming (MINLP) problem and develop a

branch and cut based method [38] to solve this OBP problem. Nonetheless,

the BC method does not scale up well to large-scale power systems. To-

gether with all other existing methods, there are significant limitations that

stop them from being used for practical OBP problems with many practi-

cal constraints. For example, the impact of BD placement on neighboring

interconnected systems needs to be studied and evaluated in OBP problem.

It is also required to use a realistic time-varying geoelectric field (TVGF)

in OBP problems. In addition, per-transformer GIC constraint needs to be

included in the constraint of OBP problems. The community is in need of a

new algorithm that addresses the issues mentioned above and can produce a

high-quality solution in the given affordable computational time. We develop

a simulated annealing (SA) [39, 40] based algorithm that can accelerate the

solution process, produce a near-optimal solution in a relative short time,

and solve the above scenarios for OBP problems.

In the era of the internet of things, cybersecurity is of growing concern to

power industries [41]. As power systems benefit from stronger connectivity

and advanced probabilistic modeling, they also become more vulnerable to

attacks that target these aspects. Today, accurately conducting short-term

load forecasting (STLF) is essential to power systems [42]. The power indus-

try relies heavily on accurate predictions to increase efficiency, reduce waste

and maintain stability. If the forecast is corrupted, not only could there be

financial losses, in extreme but realistic cases the bulk power system assets

could be damaged, resulting in safety hazards. We study STLF and develop

a data poisoning algorithm that reduces forecasting accuracy without setting

off an outlier detector. The efficiency and reliability of smart grids are facing

significant challenges.
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The contributions and results of this dissertation are summarized as fol-

lows:

• We propose a fast ACOPF analysis framework through power sys-

tem network reduction to speed up the computation of ACOPF prob-

lems [43]. We demonstrate that this approach can achieve 1.32X to

7.01X speedup over full ACOPF while introducing just 0.54% error on

average. Compared to the widely used DCOPF, we reduce the error

by 77.6% on average. If ACOPF can converge to the optimal solution,

our proposed method can find an optimal solution, which demonstrates

the robustness of our algorithm. The proposed method can be used to

solve ACOPF for large-scale power systems in many applications, such

as operational reliability analysis and power market management.

• ClusRed [44] is proposed to accelerate the computation of probabilistic

OPF for large-scale smart grids through network reduction (NR). A

cumulant-based method and Gram-Charlier expansion theory are used

to efficiently obtain the statistics of system states. We develop a more

accurate linear mapping method to compute the unknown cumulants.

Our method speeds up the computation by up to 4.57X and can im-

prove accuracy by about 30% when the Hessian matrix is ill-conditioned

compared to the previous approach.

• By taking advantage of the special structure of the OBP problems, a

branch and cut method is proposed to solve the OBP problem and

address the effects of GMDs [45]. The effectiveness and optimality of

our method is demonstrated on a 6-bus system, a 20-bus system and a

much larger realistically sized system. Our method can provide optimal

solution to OBP problems and can also be used to solve variations of

OBP problems with different objective functions.

• We develop a fast SA method that can produce high-quality near-

optimal solutions for OBP problems. For the first time, we study the

BD placement impact on interconnected systems and solve for the BBS

scenario; we study the time-varying nature of geoelectric field and solve

for the TVGF scenario. We also demonstrate that our SA method can

be easily extended to solve OBP problems with various configurations.
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• We develop a poisoning strategy that can corrupt energy load forecast-

ing model even in the presence of outlier detection [46]. Our closed-form

model estimation technique, line search and simulated annealing based

methods have been shown to be effective in the presence of an outlier

detector.

The rest of the dissertation is organized as follows: Chapter 2 presents our

work on accelerating deterministic ACOPF. Chapter 3 presents ClusRed,

our distributed POPF solver. We then present our BC and SA method for

solving OBP problems in Chapter 4 and Chapter 5. Chapter 6 presents our

poisoning attack strategy for STLF systems. We conclude this dissertation

and discuss the future directions in Chapter 7.
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CHAPTER 2

FAST OPTIMAL POWER FLOW
ANALYSIS FOR LARGE-SCALE SMART

GRID

2.1 Introduction

The power system in United States is one of the largest and most complex

cyber-physical systems in the world [1]. To support its automation, power

systems need to monitor, control, and secure the grid in real time for efficient

and reliable operation. Nowadays, the emerging smart grid aims to enable

two-way flows of information and electricity to create an automated and

advanced energy system with different decision makers involved. Timely and

accurate analysis and control of such a large system are vitally important

for its operating reliability and efficiency. Inaccurate or slow analysis of the

power system may result in uneconomic operation of the grid and potential

environmental pollution [2].

OPF has been widely used in power system planning and operation in the

last 50 years, and seeks to optimize an objective function by adjusting a set

of control variables subject to certain physical, operational, and policy con-

straints. However, even today, full ACOPF has not been widely adopted in

real-time operations for large-scale power systems because of the high com-

putational requirement. In the smart grid paradigm, the problem size grows

tremendously with the integration of renewable energy, energy storage, and

demand response. In addition, a more detailed model is needed to support

various emerging applications, which further aggravates the computational

burden. With the advent of the wholesale electricity market, ACOPF com-

putation is now part of the core pricing mechanism for electricity pricing and

trading. For example, an ultimate goal of the independent system operator

(ISO) is to solve the security-constrained ACOPF over large-scale power sys-

tems. Typically, this problem must be solved daily in 2 hours, hourly in 15

minutes, and every 5 minutes in 1 minute by the ISO [3]. Currently, the prob-
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lem is solved through various levels of approximations based on application

and time sensitivity [4].

Although a highly nonlinear full ACOPF would provide the most accurate

control settings in power system operations, due to the high computational

demands of ACOPF, DCOPF is widely used. However, since DCOPF uses a

linear approximation of the power flow equations and the lossless DC power

flow assumption (the so-called DC power flow assumption), it is not accurate,

and the assumption of neglecting reactive power and power losses largely lim-

its its application to real-world problems [47]. Currently, people use various

approximation techniques and engineering judgments to explore reasonable

solutions to the ACOPF problem [4]. However, today’s inaccurate approxi-

mation may unnecessarily cost billions of dollars annually because of the use

of inaccurate OPF solutions [2]. It may also result in environmental pollution

from unnecessary emissions and wasted energy [2]. As a result, accelerating

ACOPF computation while maintaining high accuracy is very important.

A wide variety of optimization techniques have been examined to solve the

non-convex ACOPF problems, such as quadratic programming [5], linear pro-

gramming [8] and the interior point method [9, 10]. Alternative approaches

include genetic algorithms (GA) [6], evolutionary programming [11], steepest

descent-based methods [12] and particle swarm optimization [7].

However, these methods are not computationally efficient, and cannot be

used in large-scale power systems for real-time operation. A distributed

algorithm for the ACOPF problem was proposed in [48], where the OPF

problem for the original systems was decomposed into per-area instances.

This approach assumes the decoupling between different regions, which is

not true for a densely interconnected power system. It can also result in

very large border regions, which slow down the convergence and may even

cause the problem of non-convergence. In addition, the convergence is not

guaranteed unless the objective function of the OPF problem is convex with

respect to the border region variables, which is not always true in reality.

There are NR techniques to reduce the computational burden by finding an

equivalent system. Some traditional reduction methods, such as the Ward

equivalent technique [13], are usually performed by computing the admit-

tance and eliminating unnecessary elements that are not in the study area.

The reduced model may lose sparsity and may not yield the same power

flow pattern as the original one. In addition, this technique is only used for
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power flow analysis. Alternatively, sensitivity matrix-based methods, such

as the power transfer distribution factor (PTDF)-based method, are used for

NR [16, 17]. The method proposed in [16] preserves the same power flow

pattern as that in the original system at the operation set point where the

reduction is performed. This method has the operation set point dependence

and yields significant error when the system operates at a different set point.

In [17], another NR method was proposed to derive an equivalent system

that does not depend on the set point. However, both [16] and [17] are pro-

posed for power system long-term planning studies. The generation of the

equivalent system is not fast enough, which is not suitable for the real-time

power system operating purpose.

In this chapter, a new method based on NR is proposed to solve for ACOPF

for the large-scale smart grid. The contributions are:

• We propose a novel method to partition the power network that can

efficiently reduce the error brought by NR and a fast analytical approx-

imation method to identify the parameters of the equivalent system

without using DC power flow assumption.

• Instead of only considering the reduced equivalent system, we propose

a distributed method to efficiently recover the detailed solution for the

original system. Congestion and the transmission capacity of lines are

considered in the algorithm to ensure the feasibility of the ACOPF

solution.

• We provide an effective methodology for scalable computation of the

ACOPF problems with high accuracy and speed.

The rest of this chapter is organized as follows. In Section 2.2, we give the

necessary background and the ACOPF formulation. Section 2.3 describes the

framework and the algorithm of the NR-based ACOPF solution method. We

present the numerical results in Section 2.4 and the conclusions in Section

2.5.

2.2 Preliminaries

Over the past 50 years, the steady-state OPF problem was well formulated

and many variations of ACOPF formulations were studied. In this chapter,
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we begin with the background of power system analysis. We will introduce

power flow analysis and ACOPF formulation.

2.2.1 Power Flow Analysis

The power flow equations constitute the steady-state model of the power

system and are widely used to compute the system states once the injections

and the withdrawals at each network node are specified.

We consider a power system with N + 1 buses and L lines. We denote by

N , {0, 1, 2, · · · , N} the set of buses, with the bus 0 being the slack bus, and

by L , {`1, `2, · · · `L} the set of transmission lines that connect the buses in

the set N . We associate with each line ` ∈ L the ordered pair ` = (i, j). The

series admittance of line ` is denoted by g`− jb`. Each bus i is characterized

by the voltage phasor:

Ei = Vie
jθi , (2.1)

where Vi is the nodal voltage magnitude and θi is the nodal voltage phase

angle. The net injected complex power at each bus i is

Sneti = Pneti − jQneti , (2.2)

where the net power injection at each node i is Pneti = Pgi −PLi and Qneti =

Qgi−QLi , where Pgi(Qgi) is the real (reactive) power generated and PLi(QLi)

is the real (reactive) power consumed by the load at bus i. Equivalently,

for each bus i, there are four real variables, Pneti , Qneti , Vi, and θi. The

power flow equations express the relationship that these variables must satisfy

when the power system operates in the steady state. We denote by Y the

(N + 1)× (N + 1) nodal admittance matrix, with Yij as the element in row

i+1 and column j+1. We adopt the convention that Y = G−jB, where G

is the conductance matrix and B is the susceptance matrix. Then we have

I = Y E, (2.3)

where I = [I0, I1, · · · , IN ]T is the vector of nodal current injection phasors,

and E = [E0,E1, · · · ,EN ]T is the vector of nodal voltage phasors measured

with respect to the ground node.
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In power systems, we have three types of buses: (1) slack bus 0 with V0 and

θ0 specified; (2) P,V-bus with Pneti and Vi specified; and (3) P,Q-bus with

Pneti and Qneti specified. At each bus two of the four variables are known

and the other two are unknown. At each bus i, the net complex power is

given by

Sneti = Pneti − jQneti = E∗i Ii = E∗i

N∑
k=0

Yik Ek. (2.4)

Therefore the power balance equations at each bus can be formulated as

follows by separating the real and imaginary part,

Pneti =
N∑
k=0

ViVk[Gik cos θik −Bik sin θik], (2.5)

Qneti =
N∑
k=0

ViVk[Gik sin θik +Bik cos θik], (2.6)

where i ∈ N , and θik = θi − θk is the voltage angle difference between bus

i and k. The complex power flow in the transmission line ` = (i, j) can be

formulated as

Sij = E∗i Iij. (2.7)

The goal of power flow analysis is to solve the above nonlinear equations

and obtain the voltage phasors and power flow in branches that represent

the state of the system.

2.2.2 Optimal Power Flow

OPF is used to optimize the steady-state performance of a power system

in terms of an objective function under certain equality and inequality con-

straints. With specified reference bus angle, line admittance, shunt capaci-

tances, and Pneti and Qneti at P,Q-bus, the ACOPF problem can be formu-

lated as follows:

10



min
u

f(x,u)

s.t. g(x,u) = 0

h(x,u) ≤ 0

, (2.8)

where u is the vector of independent (or control) variables and x is the vector

of dependent (or state) variables. Here,

u = [Pm, Vm, t` ], for ∀ P,V-bus m, (2.9)

x = [Vr, θr, θm ], for ∀ P,V-bus m and ∀ P,Q-bus r, (2.10)

where t` is the vector of transformer tap settings. The equality constraints

g(x,u) = 0 consist of nonlinear power balance equations in (2.5) and (2.6).

The inequality constraints h(x,u) ≤ 0 typically include

V min
i ≤ Vi ≤ V max

i , (2.11a)

Pmin
gi
≤ Pgi ≤ Pmax

gi
, (2.11b)

Qmin
gi
≤ Qgi ≤ Qmax

gi
, (2.11c)

S`k ≤ Smax`k
, (2.11d)

tmin`k
≤ t`k ≤ tmax`k

, (2.11e)

for ∀i ∈ N and ∀`k ∈ L. Here, Pgi and Qgi are the active power generation

and reactive power generation of the generator at bus i. S`k and t`k are the

power flow and the transformer tap setting on `k.

2.2.3 Applications

OPF is an efficient tool in power system operations and it has many appli-

cations. Below are two popular applications.

2.2.3.1 Minimization of Generation Cost

In the case of minimizing the generation cost, the objective function f is

usually considered as the total active power generation cost:
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f =
∑

i ∈ NGf i(Pgi), (2.12a)

where NG ={i | bus i is connected to a generator}, and f i(Pgi) is the active

power generation cost at bus i. f i(Pgi) is usually modeled by a quadratic

function,

f i(Pgi) = aiP
2
gi

+ biPgi + ci, (2.12b)

where ai, bi, ci are the cost coefficients. If this problem can be solved ac-

curately in real time, optimal control operations will be updated timely to

achieve the lowest generation cost, and potentially a large amount of money

can be saved.

2.2.3.2 Minimization of Line Loss

In this case, the objective function f is considered as the total loss on trans-

mission lines [49]:

f =
∑

(i,j)∈L

Gij(V
2
i + V 2

j − 2ViVj cos(θi − θj)). (2.13)

Solving this ACOPF problem in real time will enable timely adjustment

of control settings to reduce the line loss, which can improve the economic

efficiency of power system operation. In 2011, around 7% of the electricity

generated was lost in the transmission lines in the U.S., which is worth about

$3.23 billion. As a result, it is important to solve this ACOPF problem

quickly and accurately.

2.3 Methods

In this chapter, we present the NR-based algorithm for solving the ACOPF

for the large-scale smart grid. We will take the objective function of minimiz-

ing the active power generation cost, which is shown in (3.10), as an example

to illustrate this method.
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2.3.1 Approach Overview

The goal of this approach is to accelerate the computation of the ACOPF

solution by reducing the number of variables in the ACOPF, thus reducing

the size of the ACOPF problem. With NR, the size of x,u and the admit-

tance matrix Y , are reduced down to the size of xeq,ueq, and Y eq in the

newly formulated ACOPF problem for the reduced equivalent system. We

denote by N eq , {0, 1, 2, ..., N eq} the set of buses in the reduced system and

by Leq , {`1, `2, `3, ..., `Leq} the set of transmission lines that connect the

buses in set N eq. Similarly, power balance equations and line flow equations

are formulated as

Seqneti = Pneti − jQneti = Eeq
i
∗ Ieqi

= Eeq
i
∗
Neq∑
j=0

Y eq
ij Ej

eq,∀i ∈ N eq,
(2.14a)

Seqij = Eeq
i
∗Ieqij , ∀(i, j) = ` ∈ Leq. (2.14b)

In order to keep the equivalence between the reduced ACOPF problem and

the original ACOPF problem, the power injection pattern and the power flow

pattern should be maintained. The goal of NR is to find an aggregation func-

tion that maps the variables in the original system to the variables in the

reduced system, and that minimizes the mismatch between the original sys-

tem and the reduced equivalent system. However, it is impossible to use

existing methods to analytically or numerically find the exact aggregation

function in real time for the large-scale smart grid. In this approach, the ag-

gregation function is analytically approximated by linearizing the AC power

balance equations. Therefore, we propose the NR-based ACOPF computa-

tion algorithm.

The overall algorithm flow of the proposed method is shown in Fig. 2.1.

We first generate the similarity descriptors and the congestion indicators. By

clustering, we group buses into subsystems. NR is performed to generate an

equivalent reduced system. Then, the ACOPF problem is formulated and

calculated for the equivalent reduced system. After checking the feasibility

of the solution, detailed control settings are recovered by solving ACOPF for

each subsystem.
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Figure 2.1: Fast ACOPF algorithm

2.3.2 Generation of Similarity Descriptor

In order to identify the similarity between buses and to group similar buses

into one subsystem, a novel bus similarity descriptor containing voltage,

load/generator model, and surrounding network topology information is in-

troduced here. The traditional descriptor in power system applications only

considers the bus itself and ignores the interactions with its adjacent buses

in its local network. Such isolation of buses cannot fully reflect bus features.

We assign each bus i ∈ N the similarity descriptor

Di = τi · (Vi, θi,MGi ,MLi ,Γi), (2.15)
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where

τi = (τVi , τθi , τMGi
, τMLi

, τΓi) (2.16)

is the weight vector; MGi and MLi represent the generator model and load

model at bus i; Γi is defined by

Γi = (
∑

j,(i,j)∈L

Vi
Vj cos θij

,
∑

j,(i,j)∈L

Vi
Vj sin θij

), (2.17)

which is the local topology descriptor. In this approach, we use the polyno-

mial “ZIP” load model [50] to describe the load model. The generators are

modeled as synchronous generators and inductor generators [51,52]. All the

parameters that describe the generator’s and load’s features are included in

the descriptor. The similarity descriptor provides a measure of how “close”

two buses are. It allows us to identify buses that can be merged together

in the reduced network by using clustering algorithms. The generation of

similarity descriptors is done offline and will be updated when required.

2.3.3 Congestion Forecast

In a power system, congestion occurs whenever the provision of transmission

services required by the preferred generation/demand schedule exceeds the

physical capability of the grid. In this dissertation, we only consider the

restrictions imposed by the physical transmission capacity of the line. Con-

gestion may increase the total generation cost because it may prevent cheap

electricity generation from being dispatched. If we neglect congestion in the

original system, it is possible that the calculated ACOPF solution after NR

is not feasible. Therefore, it is very important to properly group buses in

order to preserve the congestion profile. We propose a new method to ensure

that the line flow constraints are not violated in the original system when ap-

plying the control settings derived from the ACOPF solution of the reduced

network.

Congestion forecast is a heuristic method that predicts where congestion

is going to occur. It takes power system field measurement data and the load

forecast result SfLi as inputs. In addition, it takes the uncommitted transfer

capability (UTC) of the successfully calculated ACOPF cases as feedback.
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UTC in line ` = (i, j) is defined by

u(i,j) , Smax(i,j) − |S(i,j)| , where ` = (i, j) ∈ L. (2.18)

In order to predict congestion, we assign a congestion indicator for bus

i ∈ N based on the following heuristics:

(1) If the power generation capacity at bus i plus the total UTC of the

transmission lines connected to bus i are larger than its demand, then

bus i can either accommodate itself or import power from other gener-

ators. The reverse is also true.

(2) Motivated by OPF, power systems will force cheap generators to gen-

erate as much power as they can and export it to reduce the overall

cost until some factors, such as loss or congestion on the lines, limit

the benefit of increasing generation output. We use the derivative of

the cost function with respect to the power generation λfPgi
= ∂f

∂Pgi
at

current operational state to evaluate it.

(3) Based on different loading and generating conditions, the system will

update the control settings to the new optimal control settings by solv-

ing the ACOPF problem. Depending on the system condition, UTC

changes correspondingly. We denote u` as the original UTC and ũ` as

UTC after applying new optimal control settings. By comparing these

two UTCs, we find the lines that became congested and accordingly

predict which lines are going to get congested.

Based on the above heuristics, we define

φci = 1− eγφi (
∑

(i,j)∈L u(i,j)+S
max
gi
−SfLi ) , (2.19)

αci = (
λfPgi

maxi λ
f
Pgi

)γαi , (2.20)

βci = min
(i,j)∈L

βij , (2.21a)

βij =

1, u(i,j) < ũ(i,j)

(
ũ(i,j)

u(i,j)
)γβi , otherwise

, (2.21b)
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where φci indicates the impact of supply and demand balance on conges-

tion, and αci reflects the impact of power generation cost on congestion. βci

indicates the possibility of lines connected to bus i getting congested after

applying the optimal control settings. γi = (γφi , γαi , γβi) is the weight vector.

Note that γφi , γαi > 0 and 0 < γβi < 1. We define the congestion indicator

Ci:

Ci = φci ∗ αci ∗ βci . (2.22)

It is obvious that φci , α
c
i , β

c
i ∈ [0, 1], thus Ci ∈ [0, 1]. The congestion

indicator Ci for bus i is assigned to be 1 when bus i is connected to lines

that are susceptible to congestion. We tend to isolate bus i if Ci is close to

0 and group i into a subsystem if Ci is close to 1.

2.3.4 Similarity Identification and Grouping of Buses

In the similarity identification process, each point is represented by Ψi, which

is defined by

Ψi =

0, Ci < δ

Di, Ci ≥ δ
, (2.23)

where δ is a threshold for congestion indicators. System operators select

δ to meet their accuracy and performance requirements. A hot start K-

means algorithm is used to cluster the buses [53]. The most recent historical

clustering result is used as the starting point to improve the convergence

speed of the K-means algorithm. Due to the special physical features of

the slack bus and transformers, we isolate the slack bus and make sure that

lines with transformers are not grouped into subsystems unless its tap ratio

is close to 1. After the clustering process, the system is then divided into

S subsystems. The set N is divided into S subsets, where Nk ∈ N and

Nk ∩ Nm = ∅ for ∀k,m ≤ S. Subsystem k contains all the buses in Nk .

Let ck ∈ Nk denote the centroid bus in subsystem k. Value at bus ck is the

average value of the cluster.
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2.3.5 Network Reduction and Reduced System Generation

The NR process follows the following strategy:

(a) Buses inside one subsystem are aggregated into one bus;

(b) Lines between two subsystems are aggregated into one line; and

(c) Lines inside one subsystem are ignored.

The power network parameters are approximated to maintain the same

power injection pattern and power flow pattern as the original system. We

propose a fast method to approximate the aggregation function.

2.3.5.1 Power Demand and Generation in the Equivalent System

Power demand SeqLk and power generation Seqgk at bus k in the equivalent

system are calculated as follows:

SeqLk =
∑
i∈Nk

SLi and Seqgk =
∑
i∈Nk

Sgi , (2.24)

where SLi and Sgi are the power demand and power generation at bus i in

the original system.

2.3.5.2 Bus Voltage in the Equivalent System

Since subsystem k is aggregated into bus k in the equivalent system, Eeq
k is

approximated by the voltage of the centroid bus ck in subsystem k.

Eeq
k = Eck . (2.25)

2.3.5.3 Equivalent Line Admittance Approximation

Traditionally, many approaches identify the parameters of the equivalent

system by calculating the sensitivity matrix. However, that kind of approach

is computationally expensive, especially for large-scale power systems, as

the calculation of the sensitivity matrix may take from minutes to hours to

complete. In this approach, we approximate the parameter by the linearized
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power balance equations. We merge the power balance equations (2.5) and

(2.6) of the buses in one subsystem and generate power balance equations for

the single equivalent bus. Similarly, we merge the line flow equations from

(2.7) where line flows in the equivalent system are

Smn =
∑

r∈Nm,v∈Nn

Srv. (2.26)

In order to maintain the same power injection pattern and the same power

flow pattern, by using Taylor’s expansion, the line admittance matrix is ap-

proximated by

Y eq
ij =

∑
s∈Ni,t∈Nj

(
VsVt cos θst
VciVcj cos θcicj

Gst + j
VsVt sin θst
VciVcj sin θcicj

Bst). (2.27)

2.3.6 Formulation and Calculation of the Reduced ACOPF
Problem

In order to perform ACOPF computation, a new objective function and a

set of new constraints after NR are generated based on (2.24)-(2.27). Several

generators are aggregated into a single bus in the equivalent system. The

cost function of an equivalent generator is greedily changed to a piecewise

function:
fk(P eq

gk
) = min

i∈Nk

∑
i

f i(Pgi)

s.t. P eq
gk

=
∑
i∈Nk

Pgi , ∀k ∈ N eq.
(2.28)

The equality constraints, which are the power balance equations, are changed

to

Seqi = P eq
i − jQ

eq
i = Eeq

i
∗
Neq∑
k=0

Eeq
i Y

eq
ik . (2.29)

Inequality constraints are relaxed based on (2.24)-(2.27). For constraints

on state variables and power generation limits, the minima of the lower

bounds are used as the new lower bounds, and the maxima of the upper

bounds are used as the new upper bounds. Line limits in the equivalent

system are relaxed to the sum of the corresponding line limits in the origi-

nal system. We find the optimal solution for the reduced equivalent system
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by performing ACOPF analysis. Further computation is needed to find the

optimal solution to the original system.

2.3.7 Congestion Check

Based on the ACOPF solution for the reduced system, the interchanged

power between different subsystems is obtained. The feasibility of the ACOPF

solution for the reduced system is then efficiently checked in parallel by per-

forming power flow analysis for each subsystem while considering the original

constraints. In order to consider power interchange, we add an additional

equality constraint that models the power interchange activities between dif-

ferent subsystems to the constrained power flow analysis problem for each

subsystem. If there is no solution for the constrained power flow analysis in a

subsystem, it indicates that there exists a congested line in that subsystem.

As shown in Fig. 2.1, if there are congested lines detected, we isolate the

related buses, remove the congested lines out of the subsystem and go back

to the NR step.

2.3.8 Distributed ACOPF Computation for Each Subsystem

The ACOPF solution for the reduced system gives the sum of the control

variables inside each subsystem. To decide the optimal dispatch inside the

subsystem, it is still an ACOPF problem but with a smaller size and in-

terchange power specified. Thus, ACOPF is computed to find the optimal

settings for each subsystem. Finally, we obtain the detailed solution to the

original ACOPF problem. With the nature of such a coarse-grained frame-

work, we are able to distribute the computation of ACOPF for S subsystems

to S processors to improve the speed.

We use the primal-dual interior point method to solve the ACOPF prob-

lem. It is worth mentioning that this framework works with different solvers

and is in parallel with the performance of the optimization problem solvers.
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2.4 Results

To test the proposed fast ACOPF computation algorithm for large-scale

smart grids, we use two standard IEEE test power systems and two modi-

fied large test systems published in Matpower [54]. They are summarized in

Table 2.1. In our tests, we use the total active power generation cost as the

objective function of the ACOPF problem. We run all the tests on a laptop,

which has an Intel Core2 Duo Processor of 2.26 GHz and 2 GB memory.

Table 2.1: Test Benchmarks

Benchmark Bus No. Branch No. Generator No.
IEEE 30-bus 30 41 6
IEEE 300-bus 300 411 69
Case 3120sp 3,120 3,693 505
Case 21k 21,084 25,001 2,692

2.4.1 Experimental Results for the IEEE 30-Bus Test System

The IEEE 30-bus standard load-flow test system is used as a benchmark

here. Figure 2.2 shows the network of the IEEE 30-bus system and it is

partitioned into 6 subsystems. Two modified IEEE 30-bus systems with 5%

more load demand and 10% more load demand and a modified IEEE 30-

bus system with congestion are used to demonstrate the robustness of the

proposed method including congestion forecast and congestion check. Real

power costs for these 30-bus test systems were adapted from [16].

In this experiment, the congestion indicator threshold is set as 10% of the

max value of all the congestion indicators Cis. For the non-congested test

system, no additional bus is isolated. As shown in Fig. 2.2, the dash lines

are the boundaries of the subsystems. To illustrate the capability of the

congestion forecast module, we set the transmission capacity in line 2-5 to

be 32 MW while the active power flow in this line was 63.01 MW in the

standard case. Then bus 5 is isolated and the solid line shows the isolation.

Table 2.2 shows the experimental results for the IEEE 30-bus test system.

Initially, we set the power generation to be {260.9, 40.0, 0.0, 0.0, 0.0, 0.0}
(MW), which is a feasible setting for the test system, and the generation

cost is 875.28 $/hr. By using the proposed method, the optimal setting is
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Figure 2.2: Clustering results for the IEEE 30-bus test system

{178.91, 48.50, 21.18, 21.14, 11.93, 11.40} (MW), with the generation cost

of 802.35 $/hr. Note that bus 1 is the slack bus and we do not control the

active power output. The total generation cost is reduced by 8.31%. The

proposed method has 0.016% error on average compared to the most accurate

full ACOPF. The proposed method reduces the error by 97.93% on average

compared to DCOPF. The error of DCOPF is about 43 times larger than

the proposed method in congestion-free test systems. In the congestion case

DCOPF has a larger error which is about 2.1% and the error of DCOPF is

about 106 times larger than the proposed method. The proposed method

handles congested systems much better than DCOPF does.

2.4.2 Experimental Results for Larger Benchmarks

We also test this algorithm on larger benchmarks, including the IEEE 300-

bus test system, case 3120sp, and case 21k from Matpower. In this approach,

a 300-bus system is reduced to an 89-bus system with 112 lines; the 3120-bus
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Table 2.2: Experimental Results of the IEEE 30-Bus Test System

Standard With With With
30-bus 5% DI 10% DI Congestion

Initial ($/h) 875.28 940.40 1008.05 875.28
ACOPF ($/h) 802.20 854.41 907.59 947.44
DCOPF ($/h) 806.97 859.70 913.44 967.67
PM ($/h) 802.35 854.54 907.69 947.63
DC error* ($/h) 4.77 5.26 5.75 20.23
DC error* 0.595% 0.612% 0.634% 2.135%
PM error* ($/h) 0.15 0.13 0.10 0.19
PM error* 0.018% 0.015% 0.011% 0.020%
Improvement** 96.86% 97.53% 98.26% 99.06%
PM: Proposed Method; DC error: DCOPF error; DI: Demand Increase.

*PM/DCOPF Error Compared to ACOPF

**PM Accuracy Improvement Compared to DCOPF

Table 2.3: Experimental Results of Accuracy Evaluation

IEEE IEEE Case Case
30-bus 300-bus 3120sp 21k

ACOPF ($/h) 802.20 719,725 2,142,704 2,732,880
DCOPF ($/h) 806.97 724,171 2,165,940 2,925,892
PM ($/h) 802.35 721,967 2,145,385 2,779,782
DC error ($/h) 4.77 4,446 23,236 193,012
DC error * 0.595% 0.618% 1.084% 7.06%
PM error ($/h) 0.15 2,242 2,681 46,902
PM error * 0.019% 0.311% 0.125% 1.72%
Improvement ** 96.8% 49.6% 88.5% 75.70%
PM: Proposed Method; DC error: DCOPF error.

*PM/DCOPF Error Compared to ACOPF

**PM Accuracy Improvement Compared to DCOPF
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Table 2.4: Experimental Results of Computation Time

IEEE IEEE Case Case
30-bus 300-bus 3120sp 21k

ACOPF (s) 0.6510 1.312 15.250 2552.8
DCOPF(s) 0.4720 0.5109 5.6130 400.7

PM (s) 0.4946 0.7966 7.2547 364.0
PM Speedup Compared to

1.32× 1.63× 2.12× 7.01×
ACOPF

PM Speedup Compared to
0.85× 0.64× 0.77× 1.10×

DCOPF
PM: Proposed Method.

system is reduced to a 449-bus system with 565 lines; and the 21k-bus system

is reduced to a 4628-bus system with 5824 lines.

Table 2.3 shows the accuracy of proposed method. The proposed method

has 0.54% error on average (1.72% error for the 21k-bus system) compared

to the most accurate full ACOPF. The proposed method reduces the error

by 77.6% on average (75.7% for the 21k-bus system) compared to DCOPF.

As the size of the power system increases, the error of obtaining the optimal

generation cost also increases. For the 21k-bus system, 7.06% error was

observed in DCOPF. The power system will unnecessarily lose $193,012 per

hour, which is $1.69 billion per year. This method can provide an accurate

solution to ACOPF problems that can reduce the error by 75.7% compared

to DCOPF. Thus we can save $146,110 per hour, which is $1.28 billion per

year.

Table 2.4 shows the computation time of the proposed method. Compared

to full ACOPF, the proposed method achieves 1.32×-2.12× speedup for small

benchmarks (30-bus, 300-bus, 3120-bus) and 7.01× speedup for the largest

benchmark (the 21,000-bus test system). The proposed method is slower

than DCOPF for small benchmarks, but is faster than DCOPF for the largest

benchmark.

The proposed method achieves better accuracy for all test systems com-

pared to DCOPF. For large systems, the proposed method has the advantage

over DCOPF in terms of both accuracy and speed.
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2.5 Conclusion

ACOPF is very important in power system operation. In some applications,

it cannot be approximated by DCOPF because of the DC power flow as-

sumption. In addition, the poor accuracy of DCOPF results in great loss of

social welfare. Therefore, a faster ACOPF algorithm needs to be developed

for large-scale smart grids.

In this chapter, we propose a fast ACOPF analysis framework through

power system network reduction to speed up the computation of ACOPF

problems. This distributed framework works with different ACOPF solvers,

such as primal-dual interior point method. We demonstrate that this ap-

proach can achieve 1.32× to 7.01× speedup over full ACOPF while intro-

ducing just 0.54% error on average. With congestion forecast and check, as

long as ACOPF can converge to the optimal solution, our proposed method

can find an optimal solution, which demonstrates its robustness. Compared

to the widely used DCOPF, we reduce the error by 77.6% on average. It

can potentially save millions of dollars in smart grid operation. Also, exper-

imental results show that the computation time of the proposed algorithm

grows almost linearly. The proposed method can be used to solve ACOPF

for large-scale power systems in many applications, such as operational reli-

ability analysis and power market management.
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CHAPTER 3

CLUSRED: CLUSTERING AND
NETWORK REDUCTION BASED

PROBABILISTIC OPTIMAL POWER
FLOW ANALYSIS FOR LARGE-SCALE

SMART GRID

3.1 Introduction

The future smart grid in the U.S. has caused dramatic increases in the use

of renewable energy sources, energy storage and demand response. Contrary

to the traditional electric components, all the smart devices and economic

agents present in the smart grid will need to make real-time decisions in order

to achieve their individual objectives or to maximize their own profits [14].

Due to the inherent randomness of natural phenomena and the implicit and

inaccurate assumptions related to modeling approaches, such as the assump-

tion of constant load, balanced and steady-state conditions, many power

system analysis and control problems are subject to uncertainties. The reli-

ability of the power system and its ability to realize its objectives depend on

the capabilities of making decisions. These decision-makers must be able to

handle problems of growing complexity accounting for uncertain conditions,

such as random disturbances, the effect of non-dispatchable resources, and

customer participation. Because of the inefficiency and inaccuracy of previ-

ous approaches, new computational methods are needed to provide real-time

and accurate solution to these complicated decision making problems.

In the last 50 years, OPF, which seeks to optimize an objective function

by adjusting a set of control variables subject to certain physical, operational

and policy constraints, has been widely used to support power system au-

tomation and planning. It has been generally addressed as a deterministic

optimization problem. However, many uncertain conditions, such as the vari-

ation of loading conditions and the measuring and forecasting errors of the

system parameters, exist in power system operation. Traditional determin-
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istic OPF (DOPF) cannot analyze the probabilistic system behaviors. Thus,

it is becoming increasingly important to incorporate probability into DOPF

and transform DOPF into a probabilistic OPF (POPF) problem for smarter

system operation.

POPF is concerned with the introduction of randomness or uncertainty

into conventional DOPF problems. Since the early 1970s, probabilistic meth-

ods have been applied to power systems, such as the probabilistic power flow

(PPF) problems [15]. Recently, a cumulant method (CM) was proposed

to solve PPF using cumulants and Gram-Charlier expansion [55]. Later,

point estimate method (PEM) was used to account for uncertainties in PPF

problem [56]. First-Order Second-Moment Method, which uses a first-order

Taylor series approximation to compute second-order statistical information,

was proposed to solve the POPF problems [57]. However, the limitation of

only analyzing the probabilistic features at a specific solution point largely

limits its application. In [58], a two-point estimate method for POPF was

proposed to gain the first three moments of the corresponding probability

density functions (PDFs). However, 2PEM method does not perform well

when the number of uncertain variables becomes large, which means that

2PEM is not scalable and not desirable in modern CPS. In [18,19], CM was

used to solve POPF. The key point in CM is to find the linear relation-

ship between unknown variables and known variables to compute cumulants.

Ref. [18] just simply uses the inverse of Hessian matrix as the linear mapping

matrix. The effectiveness and accuracy rely on the accuracy of inversing

Hessian matrix. However, Hessian matrix can sometimes be ill-conditioned

and cannot be inversed accurately, which will result in large errors. Also, no

alternative solutions are provided when Hessian is not invertible. In addition,

inversing the Hessian matrix is very time consuming for a large-scale power

system, such as the eastern interconnection in U.S.

Considering these limitations, we develop a new method to generate the

linear mapping matrix efficiently and accurately. To solve the scalability is-

sue, network reduction (NR) techniques are used to solve the problem. NR

can efficiently reduce the computation burden by analyzing an equivalent re-

duced system. Traditional methods, such as Ward equivalent technique [13],

are usually performed by computing the admittance and eliminating unnec-

essary elements that are not in the study area, which can reduce the network

but cannot be used to solve OPF problems because it may not yield the same
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power flow pattern as the original one. Sensitivity matrix based methods,

such as power transfer distribution factor (PTDF) based method [16], are

too time consuming and cannot be used for real-time operating purpose [17].

In our previous work [43], an analytical approximation based NR method

was developed to solve DOPF efficiently and accurately. However, our pre-

vious approach cannot handle POPF. To solve this problem, we need to

develop new probabilistic methods to handle clustering, aggregation, conges-

tion check, equivalent POPF problem formulation, linear mapping matrix

generation and so on.

In this chapter, we present a fast scalable algorithm, ClusRed, to solve

POPF efficiently using clustering, NR techniques and a novel method to

generate linear mapping matrix. Our main contributions are:

• This work provides a fast scalable probabilistic algorithm for POPF

computation that is 4.57X faster than the previous approach.

• We developed a new linear mapping matrix generation method that is

more robust when Hessian matrix is ill-conditioned.

The rest of this chapter is organized as follows. In Section 3.2, we give

the necessary background, the DOPF and POPF formulation. Section 3.3

describes the framework and ClusRed algorithm. We present the numerical

results in Section 3.4 and the conclusion in Section 3.5.

3.2 Preliminaries

Over the past 50 years, steady-state OPF problem was well formulated and

many variations of OPF formulations were studied. In this section, we begin

with the background of power system analysis. We will introduce power flow

analysis, DOPF and POPF formulation.

3.2.1 Power Flow Analysis

We consider a power system with N + 1 buses and L lines. We denote by

N , {0, 1, 2, · · · , N} the set of buses, with the bus 0 being the slack bus, and

by L , {`1, `2, · · · `L} the set of transmission lines that connect the buses in
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the set N . We associate with each line ` ∈ L the ordered pair of bus indices

(i, j) and we write ` = (i, j). Each bus i is characterized by the voltage

phasor Ei = Vie
jθi and the net injected complex power Sneti = Pneti− jQneti .

Here Vi is the nodal voltage magnitude and θi is the nodal voltage phase

angle. The net power injection at each node i is Pneti = Pgi − PLi and

Qneti = Qgi −QLi , where Pgi(Qgi) is the real (reactive) power generated and

PLi(QLi) is the real (reactive) power consumed by the load at bus i. We

denote by Y the (N + 1) × (N + 1) nodal admittance matrix, with Yij as

the element in row i + 1 and column j + 1. We adopt the convention that

Y = G− jB, where G is the conductance matrix and B is the susceptance

matrix. In power system, we have 3 types of buses: (1) slack bus 0 with V0

and θ0 specified; (2) P,V-bus with Pneti and Vi specified; and (3) P,Q-bus

with Pneti and Qneti specified. A 3-bus power system example is shown in

Fig. 3.1. In the 3-bus power system, bus 0 is a slack bus with V0 and θ0

specified; bus 1 is a P,V-bus with P1 and V1 specified; and bus 2 is a P,Q-bus

with P2 and Q2 specified. The net complex power at bus i is given by

Figure 3.1: Single line diagram of 3-bus power system

Sneti = Pneti − jQneti = E∗i Ii = E∗i
∑N

k=0
Yik Ek. (3.1)

Therefore the power balance equations at each bus can be formulated as

follows.

Pneti =
∑N

k=0
ViVk[Gik cos θik −Bik sin θik], (3.2)

Qneti =
∑N

k=0
ViVk[Gik sin θik +Bik cos θik], (3.3)
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where i ∈ N , and θik = θi − θk is the voltage angle difference between bus

i and k. The complex power flow in the transmission line ` = (i, j) can be

formulated as

Sij = E∗i Iij. (3.4)

The goal of power flow analysis is to solve the above nonlinear equations and

obtain the states of the system.

3.2.2 Deterministic OPF

The OPF problem is formulated to optimize the steady state performance

of a power system evaluated by an objective function, such as the total

generation cost, or the total power transmission loss, under certain physical

and operational constraints, including AC power flow, physical constraints

and regulation policy constraints etc. With specified deterministic values of

reference bus angle, power demands at each bus and network parameters, a

general DOPF problem is formulated as follows:

min
u

f(x,u)

s.t. g(x,u) = 0

h(x,u) ≤ 0

, (3.5)

where u is the vector of independent (or control) variables and x is the vector

of dependent (or state) variables. Here,

u = [Pm, Vm, t` ], for ∀ P,V-bus m, (3.6)

x = [Vr, θr, θm ], for ∀ P,V-bus m and ∀ P,Q-bus r, (3.7)

where t` is vector of transformer tap settings. The equality constraints

g(x,u) = 0 consist of nonlinear power balance equations in (3.2) and (3.3).

The inequality constraints h(x,u) ≤ 0 typically includes:

V min
i ≤ Vi ≤ V max

i , (3.8a)

Pmin
gi
≤ Pgi ≤ Pmax

gi
, (3.8b)

Qmin
gi
≤ Qgi ≤ Qmax

gi
, (3.8c)
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S`k ≤ Smax`k
, (3.8d)

tmin`k
≤ t`k ≤ tmax`k

, (3.8e)

for ∀i ∈ N and ∀`k ∈ L. Here, Pgi and Qgi are the active power generation

and reactive power generation of the generator at bus i. S`k and t`k are the

power flow and the transformer tap setting on `k.

3.2.3 Probabilistic OPF

With some of the input variables to be uncertain, such as power generation

and load, DOPF problem (3.5) becomes probabilistic. Thus the traditionally

constant values will become random variables in POPF.

min
X

f(X,Sg,Sl)

s.t. g(X,Sg,Sl) = 0

h(X,Sg) ≤ 0

(3.9)

where X = [x,u] that contains all the control variables and state variables,

Sg is the power generation vector (except the slack bus), and Sl is the load

vector. Because of the randomness of Sl, the variables of interests are no

longer deterministic. Instead, the desired outputs are PDFs. The goal of

POPF is to calculate the PDFs of the variables of interests. For example,

in power market analysis, locational marginal price (LMP) which evaluates

the hypothetical production cost of one unit additional hypothetical power

demand is very important. With random loading conditions, LMPs become

probabilistic and the PDFs need to be calculated to make the most economic

and efficient decisions on smart grids operation.

In reality, OPF can be used to minimize the total active power generation

cost f :

f =
∑

i∈NG
f i(Pgi), (3.10a)

where NG ={i | bus i is connected to a generator}, and f i(Pgi) is the active

power generation cost at bus i. f i(Pgi) is usually modeled by a quadratic

function,

f i(Pgi) = aiP
2
gi

+ biPgi + ci, (3.10b)
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where ai, bi, ci are the cost coefficients. If this problem can be solved ac-

curately in real time, optimal control operations will be updated timely to

achieve the lowest generation cost with the largest probability and potentially

a large amount of money can be saved.

3.2.4 Cumulants and Gram-Charlier Theory

Cumulants and Gram-Charlier (GC) theory are explained in [20]. For any

random variable x, we denote by αv(x) and γv(x) the vth moment and vth

cumulant of its distribution, m the mean, and σ the standard deviation.

Suppose ξ and ξ′ are random variables with ξ = aξ′ + b, we have

γ1(ξ) = aγ1(ξ′) + b and γv(ξ) = avγv(ξ
′). (3.11)

Consider the sum of n independent random variables ξ = ξ1 + ξ2 + ...+ ξn,

the following property holds:

γv(ξ) = γv(ξ1) + γv(ξ2) + ...+ γv(ξn). (3.12)

We can compute unknown cumulants by using the known cumulants and

the linear relationship between them.

For the standardized variable x−m
σ

, its PDF is denoted as f(x). According

to GC Expansion, f(x) can be written as

f(x) = φ(x) +
c1

1!
φ(x)′ +

c2

2!
φ(x)′′ +

c3

3!
φ(x)′′′ + ... , (3.13)

where φ(x) represents the PDF of normal distribution with m = 0 and σ = 1,

and ci are constant coefficients [20]:

ci = αi −
∑i−1

m=1

(
i− 1

m− 1

)
cmαi−m. (3.14)

3.3 Methods

In this section, we present the ClusRed algorithm that can solve POPF effi-

ciently for large-scale smart grids. We take the objective function of minimiz-

ing total generation cost and known random loads with Gaussian distribution
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as an example to illustrate this method. In this problem, the unknown vari-

ables that we are interested in are the LMPs. This method can be easily

extended to solve any POPF problems with different objective functions,

known random variables such as loads and wind generation, and unknown

variables of interest such as LMP and power flow.

3.3.1 Approach Overview

The overall algorithm flow is shown in Fig. 3.2. We first generate similarity

descriptors and congestion indicators for each bus. By clustering, we group

buses into subsystems. NR is performed to generate an equivalent reduced

system and an equivalent POPF problem is formulated. Then, we solve the

equivalent POPF problem for the reduced system. After performing prob-

abilistic congestion check, detailed solutions are obtained by solving POPF

for each subsystem. At the solution point, we introduce a novel method to

generate a linear mapping matrix that has better performance. Finally, by

using cumulant method and Gram-Charlier expansion, we obtain the PDFs

of the unknown variables of interest. Unlike NR-based method for DOPF,

we consider PDFs of random loads during the clustering, NR and equivalent

POPF formulation. In addition, we develop probabilistic congestion check

method and compute POPF for each subsystem in a distributed way.

3.3.2 NR-based POPF Algorithm

3.3.2.1 Similarity Descriptor Generation

In order to identify the similarity between buses and group similar buses into

one subsystem, we generate a similarity descriptor Di that contains voltage,

load/generator model, variance of random load and surrounding network

topology information for bus i. By considering the variances of random

loads, we can evaluate the randomness of the loads. Similarity descriptor

provides a measure of how “close” two buses are. It allows us to aggregate

similar buses in the reduced network by using clustering algorithms.
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Figure 3.2: ClusRed algorithm

3.3.2.2 Clustering

We use the heuristic congestion forecast method in [43] to generate congestion

indicator Ci ∈ [0, 1]. We tend to isolate bus i if Ci is close to 0 and group i

into a subsystem if Ci is close to 1.

In the similarity identification process, each point is represented by Ψi,

which is defined by

Ψi =

0, Ci < δ

Di, Ci ≥ δ
, (3.15)

where δ is a threshold for congestion indicator. System operator can select δ

to meet their accuracy and performance requirements. Bus i will be isolated

if Ψi = 0. Hot start K-means algorithm is used here. The most recent his-

torical clustering result is used as the start point to improve the convergence

speed of K-means algorithm. Due to the special physical features of slack

bus and transformers, we isolate slack bus and make sure that lines with

transformers are not grouped into subsystems. Then the system is divided

into S subsystems, which means that set N is divided into S subsets, where
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Nk ∈ N and Nk ∩ Nm = ∅ for ∀k,m ≤ S . Subsystem k contains all the

buses in Nk. Let ck ∈ Nk denote the centroid bus in subsystem k. Value at

bus ck is the average value of the cluster.

3.3.2.3 Network Reduction

The NR process follows the following strategies: (1) Buses inside each sub-

system are aggregated into one bus; (2) Lines between two subsystems are

aggregated into one line; (3) Lines inside each subsystem are ignored. The

power network parameters are approximated to maintain the same power

injection pattern and power flow pattern as the original system.

Power demand SeqLk and power generation Seqgk at bus k in the equivalent

system are calculated by

SeqLk =
∑

i∈Nk
SLi and Seqgk =

∑
i∈Nk

Sgi , (3.16)

where SLi and Sgi are the power demand and power generation at bus i in

the original system.

Suppose SLi has an independent normal distribution of N(µi, σ
2
i ), where

µi is the mean of the distribution and σ2
i is the variance of the distribution.

Then SeqLk is also normally distributed, with mean
∑

i∈Nk µi and variance∑
i∈Nk σ

2
i .

Since subsystem k is aggregated into bus k in the equivalent system, Eeq
k

is approximated by the voltage of the centroid bus ck in subsystem k.

Eeq
k = Eck . (3.17)

Instead of using the time-consuming sensitivity matrix based method, we

approximate the parameters by using the linearized power balance equations.

We merge the power balance equations (3.2) and (3.3) of the buses in one

subsystem and generate power balance equations for the single equivalent

bus. Similarly, we merge the line flow equations from (3.4) where line flows

in the equivalent system are

Smn =
∑

r∈Nm,v∈Nn
Srv. (3.18)
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In order to maintain the same power injection pattern and the same power

flow pattern, the line admittance matrix is approximated by

Y eq
ij =

∑
s∈Ni,t∈Nj

(
VsVt cos θst
VciVcj cos θcicj

Gst + j
VsVt sin θst
VciVcj sin θcicj

Bst). (3.19)

3.3.2.4 POPF for Reduced Equivalent System

After NR, new objective function, constraints and PDFs of aggregated loads

are generated. Based on (3.16), the cost function of an equivalent generator is

changed to a piecewise function by greedily minimizing the total cost without

considering network constraints:

fk(P eq
gk

) = mini∈Nk
∑

i
f i(Pgi)

s.t. P eq
gk

=
∑

i∈Nk
Pgi , ∀k ∈ N eq.

(3.20)

The equality constraints, which are the power balance equations, are changed

to

Seqi = P eq
i − jQ

eq
i = Eeq

i
∗∑Neq

k=0
Eeq
i Y

eq
ik . (3.21)

Inequality constraints are transformed based on (3.16) ∼ (3.19). Line

limits in the equivalent system are relaxed to the sum of the corresponding

line limits in the original system. After formulating the POPF problem

for the reduced equivalent system, we obtain the optimal solution for the

reduced system by performing POPF analysis. The line flows are then used

to compute the power interchange between each subsystem and the external

system.

3.3.2.5 Probabilistic Congestion Check

The random interchange power between each subsystem and the external

system can be obtained by solving equivalent POPF problem. For each sub-

system, we can obtain the PDFs of the line flows by performing probabilistic

power flow analysis with random interchange power and random loads as

random inputs while honoring all the constraints. We check the probability

of violating line limits based on the PDFs of the line flows. If this probability

is larger than a certain threshold, we will determine that this line is “prob-
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ably” congested. As shown in Fig. 3.2, if there are “probably” congested

lines detected, we isolate the related buses, remove the congested lines from

the subsystem and update the clustering results. This step can be done in

parallel.

3.3.2.6 Distributed POPF for Each Subsystem

The POPF solution for the reduced system gives the sum of the control vari-

ables inside each subsystem. To decide the optimal dispatch inside a sub-

system, it is still an POPF problem but with a smaller size and interchange

power specified. Thus, POPF is computed to find the optimal solution for

each subsystem. Thus we obtain the detailed solution to the original POPF

problem. Finally, by using cumulant method and Gram-Charlier expansion,

we obtain the PDFs of the unknown variables. With the nature of such a

multi-level framework, we are able to distribute the computation of ACOPF

for S subsystems evenly to all the processors to improve the speed.

We summarize the overall algorithm in Algorithm 1.

Algorithm 1: POPF Algorithm

Data: Random input PDFs, Power system parameters
Result: PDFs of random variables

1 Calculate the cumulants of random inputs;
2 Calculate the similarity descriptors;
3 Calculate the congestion indicators;
4 while not Converged do
5 Group buses into subsystems using k-means;
6 Perform network reduction;
7 Generate reduced equivalent system;
8 Solve POPF for reduced equivalent system;
9 Perform probabilistic congestion check;

10 if congestion detected then
11 Isolate congested lines and buses;
12 else
13 Solve POPF for subsystems; set Converged =1 ;
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3.3.3 Linear Mapping Matrix

We introduce a new way to generate linear mapping matrix to calculate the

PDFs of LMPs. Prime-dual Interior Point Method (PDIPM) is used to solve

POPF in (3.9). We transform the POPF problem to the following:

min
x

[f(Sg)− γ
ni∑
m=1

ln(zm)]

s.t. g(x, Sg, Sg) = 0

h(x, Sg) + z = 0

z ≥ 0

. (3.22)

For a certain γ, the Lagrangian for this equality constrained problem is

Lγ(x, Sg, Sl, z, λ, µ) =f(Sg) + λTG(x, Sg, Sl)+

µT (H(x, Sg) + z)− γ
ni∑
m=1

ln(zm).
(3.23)

For any function F (x, y), we denote by Fx the first order partial derivative

of F with respect to (w.r.t.) x, Fxx the second order partial derivative w.r.t.

x, and Fxy the second order mixed derivative w.r.t. x and y. The first order

KKT condition gives:

(GT
xxλ+HT

xxµ) ∗∆x+GT
x ∗∆λ+HT

x ∗∆µ = −GT
xλ−HT

x µ, (3.24)

fTSgSg ∗∆Sg +GT
Sg ∗∆λ+HT

Sg ∗∆µ = −fTSg −G
T
Sgλ−H

T
Sgµ, (3.25)

GT
Sl
∗∆Sl = −GT

Sl
λ, (3.26)

[µ] ∗∆Z + [Z] ∗∆µ = −[µ]Z + γe, (3.27)

Gx ∗∆x+GSg ∗∆Sg +GSl ∗∆Sl = −G(x, Sg, Sl), (3.28)

Hx ∗∆x+HSg ∗∆Sg + I ∗∆Z = −H(x, Sg)− Z. (3.29)

Solving these equations, we have

∆λ = T−1GSl∆Sl + T−1(G−G′ ∗M−1N), (3.30)
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where

G′ = [Gx, GSl ], (3.31)

T = G′M−1G′T , (3.32)

M =

[
Lγxx 0

0 fSgSg

]
+

[
HT
x

HT
Sg

]
[Z]−1[µ][Hx, HSg ], (3.33)

N =

[
Lγx
LγSg

]
+

[
HT
x

HT
Sg

]
(γe+ [µ][Hx, HSg ]). (3.34)

According to Taylor’s expansion, in the neighbor of the solution point, this

linear relationship holds for λ and Sl.

λ = T−1GSlSl + T−1(G−G′ ∗M−1N). (3.35)

We use Cholesky decomposition to inverse the matrix to further speed up

the computation. When M is not invertible, we use pseudo inverse instead

and modify the matrix by adding k ∗ I to ensure the robustness. After

generating the cumulants of Sl using the PDFs, we use the linear mapping

matrix to compute the cumulants of LMPs. With Gram-Charlier expansion,

we can obtain the PDFs of the LMPs. By decomposing the large problem,

we can operate on smaller problems with Hessian matrices that have smaller

condition numbers. Instead of operating on a single high-dimensional Hessian

matrix, we operate on smaller matrices and reduce the computation burden.

3.4 Results

To test ClusRed algorithm, we use five test benchmarks published in Mat-

power [54] which were also used in [18, 19]. They are summarized in Table

3.1. We run all the tests on a multi-core machine, which has Intel Core i5

processor of 3.10 GHz and 8 GB memory.

To demonstrate computation efficiency and accuracy of this method, we

compare it with Monte Carlo simulation (MCS), which is considered “accu-

rate”. MCS repeats the process of DOPF using a particular set of values

of the random variables that are sampled based on the corresponding PDFs.

For the purpose of comparison we set the number of trials to be 10,000 to en-

sure the accuracy quality of the solution. However, because it takes months
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Table 3.1: Test Benchmark

Benchmarks Bus No. Branch No. Generator No.
Case 9 9 9 3
Case 30 30 41 6
Case 118 118 186 54
Case 3120 3,120 3,693 505
Case 21k 21,084 25,001 2,692

to run 10,000-sample MCS for the largest benchmark, case21k, we run 1,500-

sample MCS. We also compare ClusRed with the previous method in [18],

which we call CM.

3.4.1 Numerical Results on 30-bus System

Similar to the previous approach [18], we set the loads to vary with a small

standard deviation that equals to 4% of the nominal bus loads. Figure 3.3

shows the mean and standard deviation of LMP at every bus obtained by

MCS, ClusRed and CM.

The PDF of LMP at bus 15 is shown in Fig. 3.4(a). Both ClusRed and

CM can approximate the PDF accurately. Figure 3.4(b) shows the PDF of

LMP at bus 8. Neither ClusRed nor CM can approximate the PDFs accu-

rately. One reason is that some physical limits of the system’s components

are reached, such as generation limit at bus 6 and transmission capacity limit

between bus 6 and 10. Cumulant-based estimation method cannot perform

well since the linear mapping matrix cannot provide an accurate linear re-

lationship between LMPs and random loads at the solution point. Another

reason is that the system is working close to physical limits and the Hessian

matrix is ill-conditioned. The condition number in this case is 1.77 × 106,

which is very large. The poor numerical stability can introduce considerable

inaccuracy in matrix operations, which will in turn affect the accuracy of

generating linear mapping matrix and the solution of POPF. In ClusRed,

we operate on smaller matrices and they have better numerical stability.

Experimental results show that ClusRed has better accuracy than CM.
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Figure 3.3: 30-bus test system
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Figure 3.4: LMPs at bus 15 and bus 8
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3.4.2 Numerical Results for Other benchmarks

We test all the benchmarks to demonstrate the accuracy and efficiency of

ClusRed. Mean absolute percentage error (MAPE), which computes the

mean value of the absolute estimation errors of LMPs in percentage, is used

to evaluate the estimation quality. Similarly, we compute worst absolute

percentage error (WAPE) to evaluate the worst estimation. Experimental

results show that both ClusRed and CM can accurately estimate the mean

value of the distribution. As shown in Table 3.2, for small benchmarks,

MAPE and WAPE are very small. For case-3120 and case-21k, MAPE and

WAPE become larger. It shows that ClusRed is comparable with CM in

terms of average accuracy, but performs 32.08% better for the worst estima-

tion on average. The reason is that NR introduces a fixed amount of errors

while ClusRed can generate the linear mapping matrix with better accuracy.

Table 3.2: Accuracy Evaluation of Mean

Benchmarks
CM ClusRed

MAPE WAPE MAPE WAPE
Case 9 0.08% 0.11% 0.08% 0.11%
Case 30 0.03% 0.29% 0.02% 0.13%
Case 118 0.02% 0.08% 0.02% 0.07%
Case 3120 1.25% 3.57% 1.28% 2.11%
Case 21k 3.73 % 10.84% 3.87% 5.22%

The standard deviation is also evaluated to demonstrate the accuracy of

ClusRed. As shown in Table 3.3, compared to CM, ClusRed greatly im-

proves the accuracy of the worst case scenarios when the Hessian matrix is

ill-conditioned. In this experiment, both case-3120 and case-21k have very

large condition numbers for their Hessian matrix. On average, the accuracy

is improved by 36.76% in terms of WAPE. For case-21k, because of the ex-

tremely long run time, we only have 1,500 sample MCS results. Considering

the size of this benchmark with much more random variables, at least 20,000

samples are desired. Thus the MCS results here are not accurate enough and

biased the accuracy comparison.

We demonstrate the efficiency of ClusRed algorithm by comparing its run-

time with those of other algorithms. As shown in Table 3.4, compared to the

CM method, we achieved 4.57X speedup for the large-scale benchmark.
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Table 3.3: Accuracy Evaluation of Standard Deviation

Benchmarks
CM ClusRed

MAPE WAPE MAPE WAPE

Case 9 3.17% 3.47% 3.15% 3.36%

Case 30 5.29% 80.99% 4.63% 33.9%

Case 118 2.84% 6.18% 2.43% 5.39%

Case 3120 6.78% 93.57% 5.28% 37.11%

Case 21k 10.24 % 148.84% 12.07% 67.22%

Table 3.4: Computation Time

Benchmarks MCS CM ClusRed SU1* SU2**
Case 9 630s 0.24s 0.19s 3315 1.26
Case 30 890s 0.31s 0.22s 4045 1.41
Case 118 1160s 0.53s 0.27s 4296 1.96
Case 3120 13.29h 28.58s 12.56s 3809 2.28
Case 21k 156h 2998s 656s 856 4.57
*: Speedup compared to MCS; **: Speedup compared to CM.

3.5 Conclusion

With increasing uncertainties involved in smart grids, solving POPF is be-

coming more and more important in smart grid operation. Previous cumulant

methods are neither fast nor accurate enough for large-scale smart grids. In

this chapter, we propose a fast clustering and NR based cumulant method,

ClusRed, that can solve POPF much faster and more accurately. We also

developed a new linear mapping matrix based on NR that has better perfor-

mance than previous approaches. For large-scale smart grids, compared to

inversing high dimensional Hessian matrix, generating the new linear map-

ping matrix is much faster.

We demonstrate that ClusRed can achieve several thousandfold of speedup

compared to MCS and up to 4.57X compared to previous CMs for large-scale

smart grids. In addition, the experimental results show that we maintain a

high level of accuracy compared to MCS. On average, we improve the worst

estimation accuracy of mean value by 32.08% and standard deviation value

by 36.76%. The proposed method can be used to solve POPF problems for

large-scale smart grids in many applications, such as market management

and reliability analysis.
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CHAPTER 4

OPTIMAL BLOCKING DEVICE
PLACEMENT FOR GEOMAGNETIC
DISTURBANCE MITIGATION VIA
BRANCH AND CUT ALGORITHM

4.1 Introduction

The quasi-dc geomagnetically induced currents (GICs) introduced by geo-

magnetic disturbances (GMDs), such as solar storms, have been concerning

power grid operators for many years [21,22]. Over the last several years, the

power industry has seen more concentrated interest in this area. The US

Federal Energy Regulation Commission (FERC) now requires US utilities

to perform GMD vulnerability assessment, and to prepare corrective action

plans and mitigation actions [23]. GMDs can cause rapid geomagnetic field

variation, which in turn produces GICs flowing through transmission lines.

GICs tend to flow through the neutral connection of transformers and can

cause half-cycle saturation of transformers. As a result, power systems may

suffer from transformer overheating and severe reactive power losses. GICs

can damage the bulk power system assets, typically associated with trans-

formers. This may eventually lead to system reliability issues, such as misop-

erations of proactive relays, and voltage instability [24]. The impact of GIC,

GIC modeling and analysis are studied in [25–30].

Many methods were proposed to mitigate the effects of GIC [31, 32]. One

widely recognized solution is to install blocking capacitors or switchable re-

sistors to the neutral connection of Wye-connected transformers [33, 34]. In

February 2015, the first blocking device was installed on a 345/138 kV trans-

former in Wisconsin to increase the power system’s resilience to GMDs [59].

Considering that each blocking device is very expensive to install and main-

tain [34], it is crucial to place these BDs effectively and efficiently. We for-

mulate this problem as an optimal BD placement (OBP) problem aiming
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at selecting transformers in a power system to place BDs that minimize the

damage of GICs.

In [35], a BD placement problem is proposed to minimize the purchase and

installation costs of BDs while satisfying power system voltage and maximum

generator reactive power limits. In [36], thermal limits of power equipment

and power system operation constraints are considered in addition. However,

the works mentioned above failed to solve the problem of minimizing GMDs’

damages, which can usually be measured by the reactive power losses in a

system. In [37], a BD placement problem that can minimize the reactive

power losses is proposed and it is formulated as a mixed integer second-order

cone programming (SOCP) problem via linear approximation. By taking

advantage of the local blocking effect, an efficient blocking solution is de-

veloped by choosing substations, instead of transformers. However, due to

the limitation of linear approximation, this relaxed SOCP method cannot

always find the optimal solution. In addition, it can only provide blocking

solutions on the substation level. Since a BD is physically placed at a trans-

former and a substation can contain several transformers, blocking a number

of substations does not directly reflect the cost.

In this chapter, we formulate the OBP problem as a mixed integer non-

linear programming (MINLP) problem and use a branch and cut algorithm

to search for the optimal solution [38]. Since there are several thousand

high voltage transformers in the very large US electric grid, it is non-trivial

to find the optimal solution. This OBP problem is a combinatorial opti-

mization problem. Generic search algorithms are not guaranteed to find an

optimal solution as the problem is a non-convex problem and generic search

algorithms can easily get stuck at local optima. The key idea is that since

OBP problem is constrained by the power system network equation, we can

use bounding and pruning to reduce the search space and can potentially

speed up the computation while guaranteeing to find the optimal solution.

Our goal is to find the optimal solution which is indicated by the binary

variables that represent whether to place blockers at transformers or not.

In order to solve this problem efficiently, we introduce additional continuous

variables to keep the low degree of unknown variables in the constraints in

the OBP problem so that we can take advantage of the properties of the

constraints when using branch and cut algorithm. Due to the relationship

between the binary variables and the additional variables, we can branch
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only on the binary variables instead of the continuous variables. In this way,

we can solve the OBP problem efficiently. Our main contributions are as

follows:

• We formulate the OBP problem as an MINLP problem that is suitable

for branch and cut solvers.

• We apply a branch and cut based algorithm and develop proper branch-

ing strategy to find the globally optimal solution.

The rest of this chapter is organized as follows. In Section 4.2, we introduce

the necessary background on power system modeling with GICs. Section 4.3

describes the formulation of the OBP problem. Solution method and detailed

analysis regarding the theoretical structure of OBP problem and branch and

cut method are presented in Section 4.4. We present the numerical results

in Section 4.5 and the conclusion in Section 4.6.

4.2 Preliminaries

The modeling methodologies of GICs and their effect on power systems have

been well studied in [25,27,28]. During geomagnetic disturbances, geomag-

netic field variations introduce low-frequency GICs along transmission lines

and flow through substation transformer to ground. Compared to the 50/60

Hz AC electric currents in the power network, the frequency of GICs is very

low. As a result, GICs are modeled and analyzed based on DC analysis for

all buses and substations.

4.2.1 Network Modeling

We start with DC network modeling for GICs. Consider a power system with

NB buses, NL lines, NS substations and NK transformers. In GIC analysis,

buses and substation neutrals form all the nodes in the GIC’s DC network.

We denote byN , {1, 2, · · · , NB} the set of buses and by L , {`1, `2, · · · `NL}
the set of transmission lines that connect the buses in the setN . We associate

with each line ` ∈ L the ordered pair ` = (i, j). The series conductance of line

` is denoted by g`. We denote by S , {0, 1, 2, · · · , NS} the set of substations

and K , {0, 1, 2, · · · , NT} the set of transformers.
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Each bus i is characterized by the nodal voltage magnitude, Vi. We de-

note by Y the (N + NS) × (N + NS) nodal admittance matrix, with Yij as

the element in row i and column j. In this case Y = G, where G is the

conductance matrix. If a bus i is connected to another bus j, then Yij is the

conductance of line (i, j). If a bus i is connected to a substation j then Yij is

the conductance of transformer windings to the substation neutral. Similarly

we have:

I = GV , (4.1)

where I is the vector of nodal current injection and V is the vector of nodal

voltage.

4.2.2 Calculating Induced Voltage

To evaluate the GICs effects, let the geomagnetic field be

~E = [Enorth, Eeast],

where Enorth is the geomagnetic field along the north direction and Eeast is

the geomagnetic field along the east direction. The induced voltage in the

transmission between bus i and j is computed by integrating the geomagnetic

electric field along the route of the line:

Vij =

∫ j

i

~Ed~l(i,j), (4.2)

where d~l(i,j) is the incremental line segment length including direction. Inte-

gration path is the route of the line between bus i and bus j. As we assume

that ~E is constant, then we have

Vij = ~L · ~E = LNorthij ENorth
ij + LEastij EEast

ij , (4.3)

where LNorthij is the northward distance and LEastij is the eastward distance

between bus i and j. With the induced voltage, by doing Norton equivalent

we can then calculate the GICs current injection at each bus.

Igic =
∑
j

gijVij = GLine · ~L · ~E = H ~E, (4.4)
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where matrix H is with the size of Nb × 2. H can also be written as

H = [HNorth, HEast]
T . (4.5)

4.2.3 DC Network Analysis

The GICs, Igic, at each bus is used to calculate the voltage at each bus using

the DC model of the network constructed in the previous section.

V = G−1Igic. (4.6)

4.2.4 GICs Effects on Transformers

As we have the DC voltage of all buses and all transformer neutrals, we

can then calculate the GICs going through a transformer using the following

equation:

I = gmn(Vm − Vn). (4.7)

The effect of GICs on each transformer is characterized as the effective cur-

rent going through the transformer [28].

Ieffective
t = IH + IL/αt, (4.8)

where IH is the transformer GIC going through the high-side winding for a

conventional transformer or the series winding for an autotransformer, and IL

is the transformer GIC going through the low-side winding for a conventional

transformer or the common winding for an autotransformer, and αt is the

transformer turn ratio. IH and IL can be calculated by (4.7). Expressing the

above equations in matrix format, we have

Ieffective
t = φV. (4.9)

Then we can calculate the reactive power loss

Qt
loss = εt|Ieffective

t |. (4.10)
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4.2.5 Effects of Placing Blockers

After placing blockers, the network conductance matrix is changed. Con-

sider placing a blocker on transformer t connecting bus m and n, which sits

at substation s. For a conventional transformer, it is equivalent to discon-

necting both side windings from the substation. So G matrix is changed

correspondingly by removing the contribution of the side windings to the G

matrix.

∆G(s, s) = −gms − gns, (4.11)

∆G(m,m) = −gms, (4.12)

∆G(n, n) = −gns, (4.13)

∆G(m, s) = ∆G(s,m) = gms, (4.14)

∆G(n, s) = ∆G(s, n) = gns, (4.15)

and ∆G(m,n) = ∆G(n,m) = 0, ∆G(x, y) = 0 where x, y /∈ {m,n, s}.
For blocking an auto transformer, it is equivalent to disconnecting common

winding with the substation. Assume that bus n is the low side.

∆G(s, s) = −gns, (4.16)

∆G(n, n) = −gns, (4.17)

∆G(n, s) = ∆G(s, n) = gns, (4.18)

and ∆G(x, y) = 0 where x, y /∈ {n, s}.

4.3 OBP Problem Formulation

In this approach, in order to find the optimal blocker placement solution, we

formulate this problem as a mixed integer nonlinear programming (MINLP)

problem. For each transformer ti, we assign a binary variable

xi ∈ {0, 1}

to indicate if there is a blocker or not. In our solution, xi = 0 represents that

no blocker is placed at transformer ti while xj = 1 represents that there is a
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blocker at transformer tj. Supposing that we have K transformers, the goal

is to find X = {x1, x2, ..., xK} that can minimize the hazards of GICs.

Based on the analysis of GICs modeling above, for each blocker we placed,

the admittance matrix (G) is changed correspondingly. Supposing that we

have K transformers in the power system, then the admittance matrix is

G = G0 +
K∑
i=1

xi∆Gi, (4.19)

where G0 is the admittance matrix without any additional blockers in the

system and ∆Gi is the change on admittance matrix by placing a blocker at

ti. After placing a number of blockers, the final admittance matrix is G.

As we discussed in last section, Φ will also change when placing blockers.

Similarly, we have

Φ = Φ0 +
K∑
i=1

xi∆Φi, (4.20)

where Φ0 is the correlation matrix with no additional blockers in the system

and ∆Φi is the change on the correlation matrix by placing a blocker at ti.

After placing a number of blockers, the final correlation matrix is Φ.

Consider the total loss of reactive power

Qtotal
loss =

K∑
i=1

εi|Iti |, (4.21)

where Iti is the current going through transformer ti and εi is the corre-

sponding coefficient for transformer ti which is related to the transformer

itself only.

To compute the reactive power loss, firstly, we need to calculate the GICs

introduced by geomagnetic field using (4.4). Secondly, we can compute the

voltage at each bus and substation neutral using (4.6) and 4.4. Thus, we

have the following equation:

V = G−1Igic = G−1H ~E. (4.22)

Then, we can calculate the current going through each transformer

It = ΦV = ΦG−1H ~E = Ψ ~E, (4.23)
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where V represents the voltage at each bus and Φ is the corresponding admit-

tance matrix for calculating the currents flowing through the transformers.

Ψ has the size of Nt × 2. Last, we can use (4.21) to compute the reactive

power loss. The above flow shows the GICs analysis process.

The overall hazards caused by GICs can be characterized by the total reac-

tive power loss. As a result, we minimize the total reactive power loss in OBP.

Given a power system together with the constraints on DC voltage at each

bus and the total budgets on installing blockers, the goal of placing blockers

in the power system is to minimize Qloss. Modeling this mathematically gives

us the following optimization problem.

min
x

Qtotal
loss =

K∑
i=1

εi|Iti |

s.t. Igic = GV

It = ΦV

Igic = HE

K∑
i=1

xi ≤ N

, (4.24)

where N is the maximum number of blocking devices that can be installed in

the system which is limited by the budget. The objective function simply is

the total reactive power loss. The equality constraints are related to power

system itself and are equivalent to (4.4), (4.22) and (4.23). The inequality

constraints are constraints on max number of blockers and max DC voltage

allowed.

Notice that matrix G and Φ actually contain unknown variable xi. For

each transformer, there are corresponding changes made on matrix G if a

blocker is placed. So matrix G contains xi on many rows and columns that

correspond to transformer’s substation and its related buses. If we explicitly

express the inversed matrix G−1 using xi by (4.22), the inversion of G will

contain
∏

i∈B xi which has a very high degree. As a result, it is not desirable

to explicitly express V in terms of xi because it will be much more difficult

to handle xi in high degrees. Instead, we take in all the elements in vector

V as unknown variables, which we denote as vj.
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Now, the goal is to find out X and V by solving the above OBP problem

that can minimize the total loss of reactive power. Because X is a vector of

binary values and V is a vector of continuous values, the problem is a mixed

integer problem. In addition, both the constraints and the objective functions

are nonlinear. Therefore, the OBP problem is a mixed integer nonlinear

programming (MINLP) problem. We also notice that there is dependency

between X and V , as we can always calculate V with a given value of X. So

the problem is a combinatorial problem.

Because there are several hundred transformers in a typical power system,

the number of potential solutions
(
N
K

)
is extremely large. It is impossible to

enumerate all the possible solutions, perform GICs analysis and pick the best

solution simply because the running time is too long. On the other hand,

we want to find the optimal solution as each blocker costs a large amount of

money. Approximations and inequivalent relaxations are not desirable. As a

result, we need to develop a fast method that can find the optimal solution.

4.4 Methods

In this section, we present our solution using branch and cut method that can

find the optimal solution for the OBP problems in large-scale power systems.

We take the objective function of minimizing total reactive power loss as an

example to illustrate this method. In this problem, the unknown variable

that we are interested in is the blocker placement vector X which indicates

which transformers to be blocked. This method can be easily extended to

solve OBP problems with any other nonlinear objective functions, such as

minimizing the maximum reactive power loss, total sum of currents going

through transformers and so on.

4.4.1 Approach Overview

The overall algorithm flow of our approach is shown in Fig. 4.1. Firstly,

we need to construct the OBP problem. To construct the OBP problem,

we gather the longitude and latitude information for all buses and substa-

tions. Then, we calculate the GICs in transmission lines by the geomagnetic

electric field information and location information. We also construct the
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corresponding graph for the given power system. Then we calculate the ad-

mittance matrix G before placing any blockers. By Kirchhoff’s circuit laws,

we can compute the effective GICs going through each transformer by using

the voltage at each bus and each substation. Expressing the relationship

between V and It in matrix format, we get Φ matrix. Then we compute ∆G

and ∆Φ for each blocker we placed using (4.19) and (4.20). After computing

these necessary components, we can then put everything together and gen-

erate the OBP problem explicitly. Finally, we use branch and cut algorithm

to solve this OBP problem.

4.4.2 OBP Problem Generation

As we want to address the problem of generating polyhedral relaxations of

multivariate functions, we need to generate the OBP problem explicitly so

that the convexity can be exploited. In order to improve the efficiency of

solving this OBP problem using branch and cut method, we need to improve

the convexity of the OBP problem so that we can take advantage of this

condition to speed up the bounding process. In OBP problem formulation,

we introduce additional variables V , which represents the voltages at each

bus and each substation neutral. Given the value of X, V can be calculated

by (4.6). As shown in (4.24), instead of explicitly expressing V in terms of X,

we keep V and make it easier for convex relaxation of the constraints which

defined the search space. It is worth mentioning that we also set upper and

lower bounds for continuous variables in OBP problem using our knowledge

of real power systems. For example, quasi-DC voltage cannot be too high

in real systems as it can be dangerous to surrounding equipment especially

under humid weather conditions. Based on the constraints on voltage, the

search space is reduced significantly to a smaller rage. We may also achieve

better convex relaxation and polyhedral outer approximations in a smaller

range.
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Figure 4.1: BC method

4.4.3 Branch and Bound Based Method

A branch and bound algorithm is an algorithm that explores branches of

state space tree, which represent subsets of the solution set, by performing

systematic enumeration of candidate solutions [38].

In the search tree, each node is a subset of the whole solution space. It

recursively computes the upper and lower bounds of the minimum of the

objective function with a given subset of solution space [38]. If the lower

bound for a tree node A is greater than the upper bound for some other

node B, then A can be safely discarded from the search. Assume the current

minimum upper bound is U , so any node whose lower bound is greater than

U can be discarded. By enumerating the candidate solutions of branches in

an recursive way, the search space is reduced. The recursion stops when the

current candidate set S is reduced to a single element, or when the upper
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bound for set S matches the lower bound. Either way, any element in S is a

minimum of the objective function [38].

4.4.4 Branch and Cut Algorithm for OBP

The branch and cut algorithm is a branch and bound based algorithm. It

firstly decomposes factorable function to derive relaxation of the OBP prob-

lem. Then it uses polyhedral outer approximation of the above derived relax-

ations to generate linear programming based relaxation. As the constraints

of OBP problem contain DC power flow equation and the unknown variable

xi appears in G matrix, the constraints on the OBP problem are nonlinear.

Therefore, the relaxations are also nonlinear which makes the outer approxi-

mation necessary as it is much easier to solve linear relaxations and perform

domain reduction, branching and pruning. Lagrangian/linear programming

duality is then used to develop domain reduction strategies. In particular,

duality based domain reduction strategy is used in branch and bound algo-

rithm [38]. A learning heuristic that improves initial branching decisions by

relaying data across siblings in a branch and bound tree is also used [38].

More importantly, at each iteration, how the branch and cut algorithm

chooses the next search node governs the structure of the search tree and

thus determines the performance of the algorithm and the memory it uses.

Priority based branching strategy is used in branch and cut algorithm and

has been proved to be very efficient [38]. In this OBP problem, there is a

very large search space on X and V , which makes the problem very difficult

to solve. We notice that branching on continuous vector V in nonlinear

programming may require infinitely many subdivisions. Fortunately, there

are underlying relations between binary variables X and continuous variables

V which is shown in (4.22). As X determines the value of continuous V , we

can take advantage of this relation between them and solve this problem more

efficiently. To be more specific, in our solution, we branch only on binary

variables xi which only creates two subproblems from each branching. We

will not miss any solution subspace because the solution space of V reduces

as the solution space of X reduces. In this way, with the help of the special

structure of the OBP problem, the efficiency of the algorithm at solving the

OBP problem is greatly improved.
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4.5 Results

To test this algorithm, we use three test benchmark [24, 30, 60] which were

also used in [37]. They are summarized in Table 4.1. We run all the tests on

a multi-core machine, which has Intel Core i5 processor of 3.10 GHz and 16

GB memory. We use constant geomagnetic electric field |E| = 1 and let the

direction be East to evaluate the performance of our solution.

Table 4.1: Test Benchmark

Benchmarks Bus No. Substation No. Transformer No.
Case NERC 6-bus 6 3 3
Case EPRI 20-bus 19 8 15
Case large 1875 865 756

In order to demonstrate the optimality and computational efficiency of our

method, we compare it with exhaustive search (ES) solution, which can find

the “optimal” solution by searching the entire solution space. ES enumer-

ates all the possible blocker placement combinations in a given power system,

performs GIC analysis and then picks the optimal one that gives the best

solution. We verify our results by comparing them with the results from

PowerWorld [60]. However, for a power system in the real world, there are

many transformers and thus many blocker placement solutions. It is impos-

sible to use ES to enumerate all the solutions and find the optimal solution.

For example, in the large benchmark used in this work, there are about 2756

possible ways to block the transformers, which is impossible for ES. We also

compared our algorithm with linear approximation based method previously

published in [37]. However, they assume to block transformers in a whole

substation. The drawback of this assumption will be discussed later in this

section.

4.5.1 Numerical Results on Small Systems

We test our algorithm on a small test system with 3 substations and 6

buses [24]. There are 3 transformers in the power system, and one of them

is auto transformer. Experimental results show that our algorithm can find

the optimal blocker placement solution given all number of blockers we can
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place. As shown in the QLoss−Nb curve in Fig. 4.2, there is 46.5 Mvar reac-

tive power loss if no blockers are placed. After placing the first blocker at the

conventional transformer, QLoss is reduced to 34.38 Mvar. If we place two,

the reactive power loss is reduced to 0. Based on the analysis in Fig. 4.2,

we do not need to place more than two blockers in the system as there is no

benefit to place the third blocker.

Figure 4.2: Blocker placement for NERC 6-bus system

We also test our algorithm on a system with 8 substations and 19 buses.

Notice that by convention, this benchmark is called 20-bus test system [37].

Figure 4.3 shows the optimal solution for OBP problem. Given the maximum

number of blockers that can be placed, our algorithm can find out the optimal

blocker placement solution that minimizes the reactive power loss. As the

number of blockers increases, reactive power loss decreases. We observe that

the decrease in reactive power loss is not always the same. The analysis in this

chapter can indicate the marginal gain of placing each blocker. For example,

we notice that there is a sharp decrease of reactive loss when we place the

third blocker. For all number of blockers we can place, our algorithm provides

the optimal solutions and is verified by ES. Under the circumstance of placing

a number of blockers in a real power system, we can make the decision by

doing a cost-benefit analysis based on the QLoss −Nb curve.

The previous method in [37] cannot always find the optimal solution for

all numbers of blockers that can be placed. For example, as shown in the
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Figure 4.3: Blocker placement for 20-bus system

results of [37], optimal solution cannot be found if we are allowed to place

blockers at 5 substations in the same 20-bus test system we are using here.

In addition, the previous method in [37] assumes the basic blocking unit to

be a substation which is not accurate enough. Since a blocker is physically

placed at a transformer instead of a substation and a substation can contain

several transformers, blocking a number of substations does not indicate how

many transformers are blocked and how many blockers are needed. Thus the

previous method in [37] cannot find the optimal blocker placement solution

given the max number of blockers available.

In this benchmark, there are 15 transformers while there are only 8 sub-

stations. Compared with the formulation of OBP problem in [37], the OBP

problem here is thorough and complete but more complex as well, and the

searching space is much larger. Solving this OBP problem optimally repre-

sents a major milestone for the blocker placement problem.

4.5.2 Numerical Results on Large System

In order to demonstrate the effectiveness of our algorithm in real world ap-

plication, we test our algorithm on a power system located in the upper

Midwestern United States, an equivalent system model built from the East-

ern Interconnection model. There are totally 756 transformers in the large
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Figure 4.4: Blocker placement for a large-scale system

system, with 78 high voltage transformers which are connected to 200 KV

networks. As discussed at the beginning of this section, ES cannot be used to

solve this problem because there are too many possible solutions that make

it impossible to search the entire solution space.

Our solution uses branch and cut algorithm and can efficiently reduce the

solution space by branching and bounding. Given enough time, which is

much less than it takes for ES to find the optimal solution, branch and cut

based algorithm can find the optimal solution as it only removes the solution

subspace that does not contain the optimal solution. When the N in the OBP

problem is large, the convergence rate sometimes becomes small. Although

we do not place that many blockers in reality, we collect the results for large

Ns to show the performance of our method and to make the results complete.

Due to the limitation on the time we have for collecting results, we set the

maximum running time to be 104 seconds when N is large and pick the best

solution found in the limited time.

Figure 4.4 shows the relationship between the number of blockers and the

minimum reactive loss. This analysis provides a lot of useful information. For

example, it is not very helpful to place just one blocker in the system. We

may want to place at least around 5 blockers to obtain a significant decrease

in reactive power loss. Also, it is not quite beneficial to place more than 200

blockers because the reactive power loss decreases very slowly as the number
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of blockers increases. In addition, experimental results show that we cannot

place too many blockers as it may violate the voltage constraints and make

the OBP problem infeasible. For example, if 700 blockers are placed, then

the voltage of some buses will become too high.

4.6 Conclusion

This chapter presents a method that can find the optimal solution for OBP

problem which mitigates the effects of GICs using branch and cut algorithm.

We formulate the OBP problem to MINLP and carefully design the branching

strategy to further reduce the searching efforts. The previous method suffers

from the fact that it cannot always find the optimal solution. However, it is

ideal to maximize the benefit, especially under the condition that the cost of

installing a blocker in a real power system is very high. As a result, a method

that can provide optimal solution is highly desirable. We demonstrate that

our method can provide optimal solution by testing it on two small test

systems and one large-scale power system. This solution can be used to

guide the installation of blockers in real power systems. Also, the marginal

benefit of placing a blocker can be obtained using this solution. Our method

can not only provide a solution to OBP problem, but also offer a framework

for solving OBP related problems. Our algorithm can be applied to solve a

large range of OBP related problems with different objective functions and

different constraints.
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CHAPTER 5

OPTIMAL BLOCKING DEVICE
PLACEMENT FOR GEOMAGNETIC
DISTURBANCE MITIGATION VIA

SIMULATED ANNEALING

5.1 Introduction

In the Chapter 4, we formulate the OBP problem as a mixed integer nonlinear

programming (MINLP) problem and develop a branch and cut (BC) based

algorithm to solve it. However, the BC method does not scale up well to

large-scale power systems. Furthermore, all previous methods suffer from

some significant limitations.

First, the impact of BD placement on neighboring interconnected systems

has never been studied. Previous studies show that blocking GICs through

one transformer will likely result in the redistribution of GICs to nearby

transformers [35, 37]. Since power systems are highly interconnected, when

blocking transformers in one system, it is necessary to evaluate and limit

the impact on neighboring systems. As a result, solving the block by sys-

tem (BBS) scenario for the OBP problem is very important as we do not

want to redistribute the damages to other interconnected systems. In the

BBS scenario, limiting the BD placement impact to other systems introduces

non-convex constraints to the OBP problem, which significantly increase its

complexity. Second, all previous methods do not use a realistic time-varying

geoelectric field (TVGF). The geoelectric field introduced by GMDs has been

assumed to be constant to simplify GIC and OBP analysis in previous stud-

ies [25,26,28,35,61]. However, the amplitude and direction of GMDs usually

keep changing violently throughout time [62]. As a result, it is more realis-

tic and accurate to evaluate GMD damage and solve OBP problems using

a TVGF. In addition, as stated in the TPL-007-2 Geomagnetic Disturbance

Reliability Standard [23] [63], utilities are currently required to conduct GMD
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vulnerability assessment using a TVGF in the March 13-14 1989 GMD event

that caused the Hydro Quebec blackout. This standard further motivates us

to consider the TVGF scenario for the OBP problem.

The community is in need of a new algorithm that addresses the issues

mentioned above and can produce a high-quality solution in the given af-

fordable computational time. In respond, we developed a simulated anneal-

ing (SA) [39, 40] based algorithm that can accelerate the solution process,

produce a near-optimal solution in a relatively short time, and solve the

BBS and TVGF scenarios for OBP problems. When computational time is

not restricted, we can achieve the exact optimum since the SA algorithm

statistically guarantees global optimal [64]. The performance of the SA al-

gorithm depends highly on its optimization strategy. In this chapter, several

strategies are carefully designed and evaluated. We select one optimization

strategy that can find the high-quality solutions most efficiently. Instead of

concentrating on the physical modeling aspect of OBP problems, we focus

on the algorithmic and mathematical aspects of solving OBP problems. In

reality, different system operators have various practical considerations and

limitations. With this in mind, we solve several different and complex sce-

narios of OBP problems and demonstrate that our solution framework can

be easily extended to solve OBP problems with various configurations. To

sum up, our main contributions are as follows:

• We develop a fast SA method that can produce high-quality near-

optimal solutions for OBP problems.

• For the first time, we study the BD placement impact on interconnected

systems and solve for the BBS scenario.

• For the first time, we study the time-varying nature of geoelectric field

and solve for the TVGF scenario.

• We demonstrate that our SA method can be easily extended to solve

OBP problems with various configurations.

The rest of this chapter is organized as follows. In Section 5.2, we introduce

the formulation of the basic OBP problem, followed by the BBS and TVGF

scenarios. Section 5.3 describes our SA algorithm and the detailed SA design.

We present the numerical results in Section 5.4 and conclude in Section 5.5.
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5.2 OBP Problem Formulation

The modeling of GIC and their effects on power systems has been presented in

Section 4.2 in Chapter 4. The OBP problem is formulated as a mixed integer

nonlinear programming (MINLP) problem. Compared to the formulations

of the BD placement problems in previous studies [35–37], our formulations

are more thorough, complete and realistic. At the same time, it is also more

mathematically complex and more challenging to solve.

Similar to the OBP formulation in Section 4.3, for each transformer t,

we assign a binary variable xt ∈ {0, 1} to indicate whether there is a BD.

The expression xt = 0 represents that no BD is placed at transformer t

while xt = 1 represents that a BD is placed. The overall effects of GICs

on a power system can be quantified by the total reactive power losses over

all transformers, or by the maximum reactive power losses, also over all

transformers, as defined by

Qloss
total =

∑NT

t=1
Qloss
t =

∑NT

t=1
εt|Ieff

t |, (5.1)

Qloss
max =

NT
max
t=1

Qloss
t =

NT
max
t=1

εt|Ieff
t |. (5.2)

Besides the constraints in the OBP problem in (5.3), another important

yet difficult constraint is the limit on per-phase effective GIC. The ther-

mal assessment in [65] has shown that 75 A is a conservative threshold for

per-phase effective GIC and NERC has set the transformer thermal impact

screening criterion to 75 Amps in TPL-007-002 [63]. As a result, solving

OBP problems with this constraint is necessary. Throughout the chapter,

we will use either Qloss
total in (5.1) or Qloss

max in (5.2) as the objective function to

illustrate our formulation and solution. OBP problems using other metrics

can also be solved with the same solution framework. We will introduce the

formulation of the basic OBP problem, the block by system (BBS) scenario

and time-varying geoelectric field (TVGF) scenario in the rest of this section.

5.2.1 Basic OBP

Based on the formulation in (4.24), we add the per-transformer GIC con-

straint and condense the expressions to get the new formulation for the basic
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OBP problem. It is described as follows: Given a power system, the budget

on installing BDs and the maximum effective GIC constraint on individ-

ual transformers, find the optimal way to place these BDs so that Qloss
total is

minimized.

min
X

Qloss
total =

∑NT

t=1
εt|Ieff

t (X)|

s.t. H ~E = G(X)V (X)

Ieff
t (X) = Φ(X)V (X)∑NT

t=1
xt ≤ N

Ieff
t ≤ Imax,∀t

, (5.3)

where N is the maximum number of BDs, which is limited by the budget, and

Imax is the limit on per-phase effective GIC. Solving this MINLP problem is

not trivial. The total number of potential solutions is
(
NT
N

)
. Since there are

several hundred transformers in a typical power system, the solution space is

extremely large. For example, given 200 transformers and 10 BDs, the total

number of possible solutions is 2.24e16. It is impossible to enumerate all

possibilities, perform GIC analysis and find the best solution. On the other

hand, we want to find, or at least approach, the optimal solution because

each BD is very expensive.

5.2.2 Block By System (BBS) Scenario

Consider a power system A that is connected to another power system B,

and we are looking for the OBP solution for system A. Each system contains

a set of transformers, denoted by TA = {TA1 , TA2 , ...} and TB = {TB1 , TB2 , ...}.
For a transformer t in system B, let Qloss base

t be the reactive power losses

before any BD is placed in system A and Qloss
t be the reactive power losses

after placing BDs in system A. The impact on system B of placing BDs in

system A can be quantified by the percentage difference of the total reactive

power losses in system B before and after BDs are placed in system A.

∆Qloss
B =

∑
t∈TB Q

loss
t∑

t∈TB Q
loss base
t

− 1. (5.4)

In reality, system operators may consider limiting the impact on intercon-

nected systems to be non-negative or restrict the negative impact to a certain
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degree. The OBP problem’s BBS scenario is formulated as

min
X

Qloss
A =

∑
t∈TA

εt|Ieff
t (X)|

s.t. H ~E = G(X)V (X)

Ieff
t (X) = Φ(X)V (X)∑NT

t=1
xt ≤ N, ∆Qloss

B ≤ α

, (5.5)

where α is a number between 0 and 1 and represents how much negative

impact is allowed on system B.

5.2.3 Time-varying Geoelectric Field (TVGF) Scenario

In previous studies, the geoelectric field was assumed to be constant to sim-

plify GIC and OBP analysis. However, in reality, the amplitude and direction

of the geoelectric field usually keep changing [62]. Because geoelectric fields

with different amplitudes and directions can introduce significantly different

GICs into the same system, the optimal BD placement can be very different.

The assumption of a constant geoelectric field significantly limits the prac-

ticality of previous studies. In the TVGF scenario, we incorporate a TVGF

to provide better and more realistic solutions.

We use time series to facilitate the time-domain analysis of GMDs’ impacts

in OBP. Given a TVGF ~EΨ = {~Eψ, ψ ∈ Ψ}, we quantify the overall impact

of GMDs by the average GMDs’ impact during period Ψ. In this chapter we

use Ψ and ψ to represent time so that we can reserve T and t for transformers.

Let the time series start at ψ0 and end at ψ|Ψ|, so there are |Ψ| time intervals

in the time series. Denote Qloss
t (ψ) the reactive power loss at transformer

t at a particular time ψ. Because the damages on transformers are highly

correlated to the lasting time of GMDs, we use the time-weighted average

of Qloss
t (ψ) to measure the GMDs’ impact on a single transformer t for the

whole period Ψ, denoted by

Qloss
t (Ψ) = 〈Qloss

t (ψ)〉ψ∈Ψ =

∑|Ψ|−1
k=0 Qloss

t (ψk) ∗ (ψk+1−ψk
ψ|Ψ|−ψ0

)

|Ψ|

=

∑|Ψ|−1
k=0 εt|Ieff

t (~Eψk)| ∗ (ψk+1−ψk
ψ|Ψ|−ψ0

)

|Ψ|
,

(5.6)
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where ψk+1−ψk
ψ|Ψ|−ψ0

is the weight at time ψk, which represents the percentage-

wise duration of geoelectric field being ~Eψ. Similarly we can calculate the

time-weighted average per-phase effective GIC.

Ieff
t (Ψ) = 〈Ieff

t (ψ)〉ψ∈Ψ =

∑|Ψ|−1
k=0 Ieff

t (ψk) ∗ (ψk+1−ψk
ψ|Ψ|−ψ0

)

|Ψ|
. (5.7)

Similar to (5.1) and (5.2), the overall impact of GMDs on the whole power

system can be quantified by the sum of Qloss
t (Ψ) over all transformers or by

the maximum of Qloss
t (Ψ) over all transformers, as defined by

Qloss
total(Ψ) =

∑NT

t=1
Qloss
t (Ψ) =

∑NT

t=1
〈Qloss

t (ψ)〉ψ∈Ψ, (5.8)

Qloss
max(Ψ) = max

t
Qloss
t (Ψ) = max

t
〈Qloss

t (ψ)〉ψ∈Ψ, (5.9)

where Ieff
t (~Eψ) is the effective current injection at transformer t with con-

stant geoelectric field ~Eψ and 〈Qloss
t (ψ)〉ψ∈Ψ is the time-weighted average of

Qloss
t (ψ) in (5.6).

The Qloss
total(Ψ) metric focuses on the average impact of a GMD event. In

contrast, Qloss
max(Ψ) focuses on evaluating the worst damage a transformer

takes during Ψ. We use (5.8) to illustrate the formulation of OBP problem

in TVGF scenario:

min
X

Qloss
total(Ψ) =

∑NT

t=1
〈εt|Ieff

t (~Eψ)|〉ψ∈Ψ

s.t. H ~E = G(X)V (X),

Ieff
t (X) = Φ(X)V (X),∑NT

t=1
xt ≤ N,

Ieff
t (Ψ) ≤ Imax,∀t.

(5.10)

5.3 Solution Methods

As discussed in Section 5.1, all previous studies come with some limitations.

They are either not accurate or not scalable. More importantly, they can-

not solve OBP problems with realistic constraints, such as limiting the BD
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placement impact on other interconnected systems or using a TVGF. In this

chapter, we develop an SA method to tackle these issues. We will first outline

our SA method in detail and use it to solve the basic OBP problem using a

constant geoelectric field. Then, we extend our SA method to cover the BBS

and TVGF scenarios.

5.3.1 Simulated Annealing Algorithm

SA is a generic stochastic algorithmic approach for finding the global opti-

mum of an optimization problem that may have many local optima [39, 40].

It can handle cost functions with arbitrary degrees of nonlinearities, disconti-

nuities, and stochasticity and arbitrary boundary conditions and constraints.

What is more, it statistically guarantees global optimal given enough run-

ning time [64]. SA emulates the physical cooling process of a solid in a heat

bath. If this solid is cooled down slowly enough, its structure will eventually

be “frozen” at a minimum energy configuration. SA uses this strategy to

search for the optimal solution. The difficulty with traditional optimization

algorithms for solving the OBP problem is that while many methods can eas-

ily find a local optimum, they fall short of finding the global optimum. SA

uses two techniques in its searching strategy. First, it uses the “metropolis

algorithm”. In the searching process, SA probabilistically accepts worse so-

lutions which allows it to jump out of the basin that contains local optimum

and explore a larger solution space. As a result, SA can have a more exten-

sive search and potentially find the global optimum. Second, SA interprets

the slow cooling process as a slow decrease in the probability of accepting

worse solutions. Our SA algorithm is described in Algorithm 2. In the next

subsection, we will discuss the detailed design of our SA method.

5.3.2 SA Design for OBP Problems

It is worth mentioning that the configuration of SA is crucial and can solely

determine the effectiveness and efficiency of an SA algorithm. In this chapter,

we evaluated several different SA designs, compared their solution quality

and running time. We chose the best one to solve OBP problems. When

there is a trade-off between solution quality and running time, we select the
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Algorithm 2: Simulated Annealing Algorithm for OBP

1 Set initial temperature T = T0;
2 Generate a random initial BD placement solution s = s0;
3 Calculate the objective function E(s) in the OBP problem;
4 for k = 0 to MaxIterations do
5 Pick a neighbor, snew = neighbor(s);
6 if snew violates OBP constraints then
7 Set E(snew) =∞
8 else
9 Calculate E(snew) using (4.6)-(4.22);

10 end
11 Update temperature T = temperature(T0, k);
12 if E(snew) < E(s) then
13 Accept new solution s = snew;
14 else
15 if P (s, snew, T ) ≥ random(0, 1) then
16 Accept new solution s = snew;
17 end

18 end

19 end
20 if E(s) =∞ then
21 There is no feasible solution to the OBP problem;
22 end

saturation point where the improvement of solution quality approaches zero

with longer running time. We will also list some alternative SA configurations

we considered.

5.3.2.1 Solution Representation and State Space

In Algorithm 2, a state s corresponds to a BD placement solution, which

is represented by a binary vector X. Given NT transformers that can be

blocked and N BDs to place, the solution space contains
(
NT
N

)
possible states.

5.3.2.2 Objective Function

E(s) in Algorithm 2 represents the objective function in Equation (5.3). It

is analogous to the internal energy of the physical system in the respective

state.
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5.3.2.3 Neighborhood Structure and Neighbor Generator

The search space of the OBP problem can be modeled as a search graph with

verticals as all states and edges as candidate moves defined by neighbor().

The design of neighbor() is extremely critical to the performance of the SA

algorithm. As shown in Algorithm 2, SA first generates a random block-

ing solution s0. At each iteration, a neighbor state snew is generated using

neighbor() based on current state s. The SA algorithm probabilistically de-

cides whether to move the system to a neighbor state snew or to stay at state

s. This step is repeated until the system reaches a state that is good enough

or until a given computation budget has been exhausted. One essential re-

quirement here is that the neighbor() function must provide a sufficiently

short path on the search graph from any arbitrary state to any state that

may represent the global optimum. Intuitively, it means that the SA algo-

rithm can move to the global optimal state, from any state, quickly.

In our design, we also use the heuristic in the Metropolis-Hastings algo-

rithm [66], which has been proved to be effective. This heuristic tends to

generate snew that has an objective function value similar to that of current

state s. More specifically, we order the transformers’ indices in the binary

vector X in such a way that the transformers in the same substation have

consecutive indices and transformers that are geographically close to each

other also have close indices. Then neighbor() swaps 1 and 0 that are next to

each other in the binary vector X. Because of the local blocking effect [37],

swapping two adjacent transformers’ blocking decisions is expected to have

a modest effect on the objective function value, which is measured by re-

active power losses. This design allows us to move from any state to any

other state in NT (NT − 1) steps. In an alternative approach, we considered

generating neighbors by swapping two arbitrary transformers’ blocking deci-

sions, which could provide a somewhat shorter path (NT −1 swaps) from one

state to another. However, this design is likely to dramatically change the

objective function value because it is equivalent to moving a BD randomly in

the system. Experimental results also show that the former design performs

better.
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5.3.2.4 Initial Temperature and Stopping Criteria

The higher the initial temperature, the more likely the SA algorithm can find

a global optimal solution yet the longer it takes to converge. We evaluate

solution quality and running time with different initial temperatures. Fi-

nally, we choose an initial temperature T0 = 1000. This initial temperature

provides very good solution quality and the solution quality improvement

saturates at this point.

5.3.2.5 The Annealing Schedule

The annealing schedule defines how temperature T systematically decreases

as the searching proceeds. Temperature T is updated as

T = temperature(T0, k) = T0 ∗ βk, β = 0.95 (5.11)

where k is the iteration number. It ends with T = 0 at the end of the

algorithm. We experimented with different scheduling functions and scaling

factors β. With a larger β, the SA algorithm converges slower and will more

likely find a better solution. The scheduling function in (5.11) performs the

best. We chose 0.95 for β because the solution quality improvement saturates

at this point.

5.3.2.6 Acceptance Probability Function

The probability of moving from the current state s to a candidate new state

snew is specified by an Acceptance Probability Function (APF) P (s, snew, T ):

P (s, snew, T ) =

{
e
E(s)−E(snew)

T , ifE(snew) > E(s)

1 , ifE(snew) ≤ E(s)
. (5.12)

The APF function P (s, snew, T ) is positive when E(snew) > E(s) so that

it can prevent the algorithm from getting stuck at a local minimum. When

E(snew) > E(s), P (s, snew, T ) decreases as T decreases, which means that

the SA algorithm will be less likely to accept moves to worse solutions as it

cools down.
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5.3.3 SA for the BBS Scenario

To solve the BBS scenario using the SA method, we add an additional step in

Algorithm 2 to check if the BBS constraint is violated. If any BBS constraint

is violated, we set the objective function value to be infinite and continue.

Eventually, we will either get the optimal solution that does not violate the

BBS constraint or an infinite large objective function value, which indicates

that there is no solution to the OBP problem.

5.3.4 SA for the TVGF Scenario

The computation time increases significantly when solving the TVGF sce-

nario using the SA method as it takes a much longer time to evaluate the

objective function values. We parallelize the computation in our SA method

and the computation time for the TVGF scenario in (5.10) is reduced down

to almost the same as that for the basic OBP problem. With this paralleliza-

tion technique, we can easily extend our current SA method and solve the

OBP problem for a probabilistic time-varying geoelectric field with Monte

Carlo simulation.

5.4 Results

To validate our method, we use four GIC test systems of various sizes [24,30].

The test systems are summarized in Table 5.1. The 6-bus, 20-bus and large

test system were also used in [37] and [61]. The other one is a newly created

test case based on the UIUC 150-bus system. The PowerWorld simulator [60]

was used to process the data.

We ran the tests on a multi-core machine, featuring a 3.10 GHz Intel Core

i5 processor and 16 GB memory. First, we solve OBP problems under the

constant geoelectric field (CGF) scenario. Specifically, we took the common

approach of using an eastward constant ~E, where |~E| = 1. We then extend

our studies and solve OBP problems for CGFs of several different directions.

We evaluate the solution quality and the running time of our method and

compare them with previous methods. Secondly, we solve the OBP prob-
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lem under the BBS and TVGF scenarios and study the behaviors of BD

placement.

Table 5.1: Test Benchmark

Benchmarks Bus No. Substation No. Transformer No.
Case NERC 6-bus 6 3 3
Case 20-bus 19 8 15
Case 150-bus 150 20 46
Case large 1875 865 756

5.4.1 Numerical Results for the CGF Scenario

In order to demonstrate the optimality and computational efficiency of our

SA method, we compare it with two greedy search approaches, the relaxed

SOCP method, the BC method and the exhaustive search (ES) method. We

use the problem formulation in (5.3). Since all previous methods cannot

solve OBP problems with the maximum effective GIC constraint in (5.3),

we will first solve the basic OBP problem without GIC constraint as that

in [37, 61]. In Section 5.4.1.3, we will show the results for solving the OBP

problem with a maximum GIC constraint using our SA method. Although

the solutions from the ES method are guaranteed to be optimal, enumerating

all the solutions is not practical for a realistically large power system.

5.4.1.1 Basic CGF Scenario

We compare all methods on the 6-bus, 20-bus and 150-bus systems. As

mentioned earlier, greedy search based methods can also solve the CGF sce-

nario. We will evaluate two variations of greedy search based methods: Static

Greedy Search (SGS) and Iterative Greedy Search (IGS). Assume that we

will install N BDs. In SGS, we calculate GMD damages for all transformers

before placing any BD and select the top N transformers with the highest

GMD damages to block. In IGS, we iteratively select transformers to block

until we find all N transformers to block. At each iteration, we calculate the

GMD damages using the current BD placement and select the transformer

that has the highest GMD damage as the next one to block. The differ-

ence between SGS and IGS is that SGS calculates GMD damages for only
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Figure 5.1: Comparison of all methods using the 6-bus system (E=1V/km,
East)
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Figure 5.2: Comparison of all methods using the 20-bus system (E=1V/km,
East)
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Figure 5.3: Comparison of all methods using the 150-bus system
(E=1V/km, East)

one time while IGS calculates GMD damages N times. Because the relaxed

SOCP method can only provide blocking solutions at substation level, to

compare with this method, we show the results of blocking by substation in

this section.

The 6-bus system [24] is a small system with 3 transformers (T1-T3) and 3

substations. Experimental results show that relaxed SOCP, SA, BC and ES

can find the optimal BD placement solutions for any number of BDs while

SGS and IGS cannot. As shown in Fig. 5.1, Qloss
total is 46.24 MVar before

placing any BD. The optimal solution for N = 1 is to block T3 and Qloss
total is

reduced to 30.68 MVar. Both SGS and IGS select T1 to block because it has

the largest Qloss before installing any BDs. The optimal solution for N = 2

is to block T1 and T3, and accordingly Qloss
total is reduced to 0.

The 20-bus system [30] is medium-sized, with 15 transformers and 8 sub-

stations. As shown in Fig. 5.2, for any given number of substations to block,

the BC and SA methods can always find the optimal solutions, while the SGS,

IGS and relaxed SOCP method may not. For example, the relaxed SOCP

method cannot find the optimal solution when blocking 4 substations and it

can only reduce the Qloss
total down to 70.7 MVar while the optimal solution is
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36.45 MVar. Similarly, the SGS method cannot find optimal solutions for

blocking 4 and 5 substations and the IGS method cannot find optimal solu-

tions for blocking 3, 4 and 5 substations. The IGS method fails to find the

optimal solution for blocking 4 substations because there is a local minimum

trap. The optimal solution for blocking 2 substations is {S4, S6}, leading to

the next substation of highest Qloss to S8. However, due to local blocking

effect, blocking S8 will increase Qloss at S3 and S5. Actually, the the op-

timal blocking solution for 3 substations is {S1, S4, S6}. The SGS method

also fails to find optimal solutions for similar reasons. These two methods

cannot assess global optimality of the whole system when solving the OBP

problems. The SA method performs significantly better than other meth-

ods here. In addition, we observe that the marginal gain of blocking each

additional substation could vary, confirming the combinatorial nature of this

problem.

The 150-bus system is medium-sized, with 46 transformers and 20 substa-

tions. The benchmark solution by ES is not available here due to the size

of the system. As shown in Fig. 5.3, for any given number of substations to

block, the BC and SA methods can always achieve the best solutions com-

pared to all other methods, corroborating their effectiveness in attaining the

optimal solutions.

5.4.1.2 CGFs in Multiple Directions

The 20-bus system [30] has been tested using CGFs in multiple directions

for minimizing both Qloss
total in (5.1) and Qloss

max in (5.2). We will present results

for using two representative CGF directions: eastward and northward. Here,

we use transformer as the basic blocking unit. Since the relaxed SOCP

method cannot provide blocking solutions at the transformer level, it is not

included for comparison. Figures 5.4 and 5.5 show the results for eastward

and northward CGFs using Qloss
total. Figures 5.6 and 5.7 show the results for

eastward and northward CGFs using Qloss
max. In all four cases, the magnitude

of GF is 1 V/km

As shown in Fig. 5.4 - 5.7, both BC and SA methods can find optimal

solutions while SGS and IGS methods suffer from low solution quality. Ex-

perimental results also show that BD placement by transformer is sensitive

to the directions of GFs. Specifically, the minimal Qloss
total and Qloss

max are differ-
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Figure 5.4: Comparison of all methods using the 20-bus system and Qloss
total

for 1V/km, eastward CGF (block by transformer)
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Figure 5.5: Comparison of all methods using the 20-bus system and Qloss
total

for 1V/km, northward CGF (block by transformer)
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Figure 5.6: Comparison of all methods using the 20-bus system and Qloss
max

for 1V/km, eastward CGF (block by transformer)
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Figure 5.7: Comparison of all methods using the 20-bus system and Qloss
max

for 1V/km, northward CGF (block by transformer)
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ent between using eastward GF and northward GF for some number of BDs.

By comparing Fig. 5.4 with Fig. 5.5, we observe that, on average, the 20-

bus system is more sensitive to eastward GF at higher reactive power losses.

However, between Fig. 5.6 and Fig. 5.7, the Qloss
max levels are similar under

both GF directions. More importantly, the optimal blocking solutions are

very different between using these two GFs. As a result, it is not sufficient

to measure the GMDs impact or make BD placement decisions using a single

CGF direction.

In addition, the optimal BD placement solutions are not always the same

between minimizing Qloss
total and Qloss

max even under fixed GF directions. This

implies the objective function is critical in determining the BD placement

solutions. More in-depth study is needed to understand the best objective

function to use. Again, greedy search based methods have proven ineffective

in solving the OBP problem. Neither SGS or IGS can provide satisfactory

solutions due to the local blocking effect. This is extremely important when

using Qloss
max as objective function. For example, in Fig. 5.7, when block-

ing 1 transformer, the SGS method would redistribute the GIC to nearby

transformers in the same substation and accordingly increase Qloss
max.

These observations speak for the importance of the ensuing TVGF scenario

studies, which can account for the average impact of GMDs in practical

systems.

5.4.1.3 CGF Scenario with Max GIC Constraints

The new feature of our proposed SA method is to solve OBP problems with

different max GIC constraints and compare the results. In this experiment,

we use the 20-bus system and a 2 V/km eastward CGF. Figure 5.8 shows

the minimal Qloss
total under different GIC constraints. The incomplete lines

indicate that there are no feasible solutions at lower max GIC limits and

smaller number of BDs. For example, before installing any BDs, the maxi-

mum per-phase effective GIC is 137 A. When the GIC limit is 75 A, there

is no feasible solution with less than 3 BDs. In addition, the GIC constraint

affects the minimal Qloss
total that can be obtained. The larger the max GIC

limit, the smaller the objective function in the OBP can be. Further inves-

tigation shows that the BD placement solutions are also different depending

on the GIC limits. For example, when placing 2 BDs, the blocking solution
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Figure 5.8: BD placement under different GIC constraints (E=2V/km,
East)

is {T1, T7} when the GIC limit is 125 A, and is {T8, T9} when the GIC limit is

150 A or higher. Therefore, the ability to include the Max GIC limit makes

our proposed SA method more suitable for practical system studies.

5.4.1.4 CGF Scenario for a Large System

In order to demonstrate the effectiveness of our method in real-world appli-

cations, we test our method on a system located in the upper Midwestern

United States, with neighboring systems built from equivalents of the Eastern

Interconnection. In total, there are 756 active transformers in this system,

with 78 high voltage transformers. The ES method cannot be used to solve

the OBP problem here because the size of the power system is too large. For

example, there are 1.58e22 possible solutions when placing only 10 BDs. For

the BC method, we generously restrict the maximum running time to be 48

hours and pick the best solution found within this time limit. The running

time of the BC method depends heavily on the search graph of the OBP

problem and the branching heuristics. For example, if the BC method can

quickly prune several “nodes” in the early phases, it can converge faster [38].
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Figure 5.9: BD placement for the large-scale system (block by substation)
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Figure 5.11: BD placement for the large-scale system (block by transformer)

In practice, there are some converging and memory consumption issues for

the BC method. We notice the BC method can handle cases with up to 40

BDs without any converging issues. Convergence issues start to appear when

there are more than 45 BDs. Multiple runs with different BC options, includ-

ing branching strategies, relaxation options and many others, are necessary

to achieve convergence at higher number of BDs [38,67]. When blocking 100

or more transformers, we observe that BC methods cannot converge within

48 hours. We solve the OBP problems for 30 different N values between 0

and 200. The solution quality, measured by the total reactive power losses,

and running time for all methods (block by substation) are shown in Fig. 5.9

and Fig. 5.10.

Overall, the SA method provides much better mitigation results than the

relaxed SOCP method and is still comparable to the BC method when N

is large. However, the BC method is not scalable as N increases. Clearly,

the SA method is much faster than the BC method and the relaxed SOCP

method when N is large. In terms of the achieved Qloss
total values, the solutions

provided by the relaxed SOCP method are 32.31% worse than those gener-

ated by the SA method. On the other hand, the solutions provided by the
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BC method are only 4.75% better than those provided by the SA method.

On average, the SA method is 7.4 times faster than the BC method and

is 1.3 times faster than the relaxed SOCP method. When N is large (e.g.

N = 200), the SA method can be 12.2 times faster than the BC method. The

running time of the SA method fluctuates a lot because of its random nature.

Also, it has to take a certain number of iterations to “cool down” no matter

how small N is. Hence, it is slower than the relaxed SOCP method when

N is relatively small. Figure 5.11 shows the solutions of blocking by trans-

former using the BC and SA methods. Data from the relaxed SOCP method

is absent as it cannot provide BD placement solutions by transformer. The

results show a similar pattern as in Fig. 5.9. The SA method is very effective

and it provides high-quality solutions. Solution quality from SA method only

falls short by 5.0% when compared to the BC method.

5.4.2 Numerical Results for the BBS Scenario

To test the BBS scenario, we use the 20-bus system and divide it into two

sub-systems based on their geographical locations [30]. System A contains

substations 1, 2, 4, and system B contains the rest of the substations. Fig-

ure 5.12 shows the total reactive power losses in system A using the formu-

lation in (5.5) with different BBS constraints, quantified by α. The α value

controls how much negative impact is allowed on interconnected systems.

Experimental results show that placing BDs in one system can indeed intro-

duce negative impact on neighboring interconnected systems and the BBS

constraints do change the optimal solutions significantly. The stricter the

BBS constraint, which corresponds to a smaller α value, the less room there

is to achieve a better solution for the target system.

As shown in Fig. 5.12, if we do not allow any negative impact on system B

(α = 0), there is no valid solution for placing any number of BDs (represented

by infinite Qloss
A ). If we allow 1% negative impact on system B (α = 1%),

when placing 1 BD in system A, the optimal solution can only reduce 0.23

MVar reactive power losses, which is far less than the optimal solution that

reduces 23.75 MVar losses at no BBS constraint. If we allow 10% negative

impacts on system B (α = 10%), the BBS constraints do not change the

optimal solutions for placing 1 and 2 BDs, while they significantly affect
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Figure 5.12: BD placement for with different BBS constraints using the
20-bus system

the optimal solutions for placing 3 and 4 BDs. The BBS constraints do

not change the optimal solutions if we allow 30% or more negative impact

on system B (α ≥ 30%), which means that the largest impact on system B

from placing BDs in system A is less than 30% of
∑

t∈TB Q
loss base
t . The GIC’s

local blocking effect is the reason behind this behavior. When a transformer is

blocked, the GICs will flow to its nearby transformers. To further understand

this behavior, let us take a closer look at the results. Before placing any BD,

Qloss
A is 104.48 MVar. Now consider the case of placing 1 BD in system

A. When α = 1%, the optimal solution is blocking T14 and Qloss
A = 104.25

MVar. When α = 10%, the optimal solution is blocking T1 and Qloss
A =

80.73 MVar, which is much better than the solution for α = 1%. Note

that transformer T1 is the only transformer in its substation, while there are

three transformers in T14’s substation. Because of GIC’s local blocking effect,

blocking T1 redistributes the GICs through T1 to transformers nearby, which

include transformers in system B. Transformer T14 is also close to system
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B. However, blocking T14 redistributes most of the GIC flowing through T14

to transformer T13 in the same substation, which is still in system A. As a

result, compared to blocking T14, blocking T1 is more beneficial to system A

but has larger negative impact on system B. This is why the SA method

chooses to block T14 when α is small and T1 when α is large. Also, we can

achieve lower reactive power losses with a larger α value.

5.4.3 Numerical Results for the TVGF Scenario

We use the 20-bus system to test SA method in the TVGF scenario. We use

the TVGF from the “benchmark” GMD event [62] in NERC TPL-007-2 stan-

dard [23] [63]. We also run the same set of experiments using a similar TVGF

from the “supplement” GMD event [68]. As the results are similar for both

events, we will only present the benchmark GMD event, with the waveform

shown in Fig. 5.13. Moreover, Fig. 5.14 presents its magnitude while Fig.

5.15 shows the histogram of the angle. Note that Northward direction cor-
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Figure 5.13: Time-varying geoelectric field waveform (red: northward, blue:
eastward)

85



0 500 1000 1500
Time (min)

0

1

2

3

4

5

6

7

8

9

G
e
o
e
le

c
tr

ic
 F

ie
ld

 M
a
g
n
it
u
d
e
 (

V
/k

m
)

Figure 5.14: Magnitudes of the benchmark TVGF
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Figure 5.15: Histogram of the angles in the benchmark TVGF
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responds to 0◦ in angle while Eastward to 90◦. Hence, the benchmark event

is shown to align more with the East-West axis than the North-South one.

We use the problem formulation in (5.10) and first limit the time-weighted

average per-phase effective GIC at 75 A in Sections 5.4.3.1 and 5.4.3.2. We

then study the impact of varying maximum GIC constraints in the TVGF

scenarios in Section 5.4.3.3.

5.4.3.1 Comparison of Multiple TVGFs

We consider both Qloss
total(Ψ) in (5.8) and Qloss

max(Ψ) in (5.9) in this study. To

better assess the impact of TVGFs, we also rotate the benchmark event by a

range of angles in [30◦, 150◦] for studying the BD placement. This is because

the problem is exactly symmetric with a 180◦ difference in GF angle.

Figures 5.16 and 5.17 show the BD placement solutions for the benchmark

TVGF (0◦) and the rotated TVGFs using Qloss
total(Ψ) and Qloss

max(Ψ). Clearly,

transformers and BD placement solutions are sensitive to the directions of

the GFs. In Fig. 5.16, for all TVGFs, the minimal Qloss
total(Ψ) follows a similar

decreasing trend as the number of BDs increases. These results are par-

0 5 10 15

Number of BDs

0

50

100

150

Q
L

o
s
s

T
o

ta
l(Ψ

) 
(M

V
A

R
)

0°
30°
45°
60°
90°
120°
135°
150°

Figure 5.16: BD placement for the TVGF scenario (Qloss
total(Ψ))
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Figure 5.17: BD placement for the TVGF scenario (Qloss
max(Ψ))

ticularly helpful for planning stage studies. We also notice that the best

BD placement solutions are different depending on rotating angles. For ex-

ample, when placing 3 BD devices, the optimal solutions for TVGFs with

0◦, 15◦, 30◦, 165◦ rotations are {T1, T8, T9}, while those are {T1, T6, T7} for all

other rotations.

As shown in Fig. 5.17, when measuring Qloss
max(Ψ), not all TVGFs fol-

low the same decreasing trend as the number of BDs increases. The bene-

fits of placing the first 4 BDs for TVGFs with 0◦, 30◦, 45◦, 90◦ rotations are

slightly less significant than those for other TVGFs. Similarly, the most ef-

fective BD placement solutions are different. For example, when placing 3

BD devices, the optimal solutions for TVGFs with 15◦, 30◦, 45◦ rotations are

{T1, T12, T13}, while those are {T1, T6, T7} for all other rotations. Because

rotating TVGFs actually shifts the distribution of GFs’ angles by a certain

degree, these results indicate that the distribution of the angles of GFs plays

a key role in assessing the impact of GMD and the blocking behaviors of the

system.
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5.4.3.2 Comparison between TVGF and CGF

We also compared the solutions for the OBP problem using TVGF and CGF.

To make a fair comparison, we selected several constant GFs based on the

benchmark TVGF. First, we use the average magnitude (0.6526 V/km) and

average angle (4.48◦) of the benchmark TVGF to compose one of the constant

GFs. We also choose 4 constant GFs in 4 directions (North, East, Northeast

and Northwest) using the same magnitude (0.6526 V/km). In fact, we have

run experiments using CGFs in additional directions. Since the observations

are very similar, we only pick the 4 representative directions. In the CGF

scenario, the reactive power losses is the same for all ψ in the period Ψ, which

means that Qloss
total(Ψ) = Qloss

total(ψ) and Qloss
max(Ψ) = Qloss

max(ψ). Therefore, with

a CGF, it is equivalent to solving the basic OBP problem in (5.3) using the

total and maximum reactive power losses in (5.1) and (5.2).

Figures 5.18 and 5.19 show the comparisons of the TVGF scenario and

various CGF scenarios. Experimental results show that the behavior of the

power system under TVGF cannot be approximated by using any single

CGFs. Experimental results again confirm that GMDs impact on trans-

formers and BD placement solutions are sensitive to the directions of GFs.
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Figure 5.18: BD placement for the TVGF and CGF scenarios (Qloss
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89



0 5 10 15
Number of BDs

0

5

10

15

20

25

30

Q
lo

s
s

m
a

x
(Ψ

) 
(M

V
A

R
)

TVGF
CGF (Avg TVGF Magnitude and Angle)
CGF (Avg TVGF Magnitude, 0°)
CGF (Avg TVGF Magnitude, 45°)
CGF (Avg TVGF Magnitude, 90°)
CGF (Avg TVGF Magnitude, 135°)

Figure 5.19: BD placement for the TVGF and CGF scenarios (Qloss
max(Ψ))

For example, before placing any BD, Qloss
total(Ψ) and Qloss

max(Ψ) are all different

between using TVGF and CGF. A similar pattern exists when installing 1

to 10 BDs. More importantly, the BD placement solutions (X) are different

between using TVGF and CGF for both objective functions. For exam-

ple, when installing 3 BDs to minimize Qloss
total(Ψ) (Fig. 5.18), the optimal

solutions are to block transformer {T1, T8, T9} for TVGF and CGF (90◦),

{T1, T12, T13} for CGF (135◦), and {T1, T6, T7} for the rest. When installing

3 BDs to minimize Qloss
max(Ψ) (Fig. 5.19), the optimal solutions are to block

transformer {T1, T6, T7} for TVGF and CGF (45◦), {T3, T6, T7} for CGF (Av-

erage of TVGF), {T6, T7, T11} for CGF (0◦), {T1, T8, T9} for CGF (90◦), and

{T1, T12, T13} for CGF (135◦). These observations confirm again that the ob-

jective function and GMD event scenarios would affect the solutions of the

OBP problem.

Hence, our experiments show that the input GMD event along with the

distribution of TVGF’s angles and magnitudes would play a key role in de-

termining the BD placement solutions. Since future GMD events are hard to

predict, generating a synthetic TVGF using the distribution of GF’s angles

and magnitudes in previous significant GMD events may be worth consider-
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ing for assessing GMDs’ impact and solving OBP problems. This is exactly

why we have used the benchmark GMD event for the TVGF studies. Re-

gardless of the input GMD event, our proposed SA method is guaranteed to

solve the OBP problems effectively and efficiently.

5.4.3.3 TVGF Scenario with Max GIC Constraints

To demonstrate the capability and flexibility of our SA method, we further

consider the maximum GIC limit constraints. Figures 5.20 and 5.21 show

the minimal Qloss
total(Ψ) and Qloss

max(Ψ) under different GIC limits. Again, the

incomplete lines are due to the feasibility issue. For example, when GIC

limit is 25 A, at least 3 BDs are required to keep all Ieff
t (Ψ) under limit. The

observation here is similar to that in Fig. 5.8. The larger the max GIC limit,

the smaller the objective function in the OBP can be.

As shown in Fig. 5.20 and Fig. 5.21, when the GIC limit is 75 A, there is

no additional impact on the blocking solutions. This behavior is of course

dependent on how we limit effective GIC over time, the choice of objective

function, and the duration of the TVGF. Note that in Fig. 5.8, an 150 A limit
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is needed for the CGF scenario. This comparison implies that the max GIC

limit may be less of a concern for TVGF scenario. This is perhaps because

the varying angle and magnitude of GFs during the TVGF event could reduce

the max GIC levels when the temporal averaging effects are considered. Since

the peaks of the benchmark GMD event are random and isolated (shown in

Fig. 5.13), the thermal impact of TVGF on transformers is less severe than

that of a fixed CGF. Therefore, with the capability of including max GIC

limits, our proposed SA method is very suitable for practical system planning

studies under realistic TVGF scenarios.

5.5 Conclusion

This chapter presents a simulated annealing (SA) based method that can

solve various scenarios of the optimal blocking device placement (OBP) prob-

lem, by which effects of geomagnetically induced currents (GICs) are miti-

gated. We study the basic OBP problem, the OBP problem with maximum

effective GIC constraints and two new scenarios, the block by system (BBS)
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and time-varying geoelectric field (TVGF) scenarios, which have never been

studied before. We solved the OBP problem with the maximum effective

GIC constraint for individual transformers, which is necessary in practice.

In the BBS scenario, we solve the OBP problem for more realistic use cases

where we consider impact on other systems. In the TVGF scenario, we use a

more realistic geoelectric field, which varies over time, in GMD modeling to

better estimate and mitigate the real GMDs impact. In the OBP problem,

considering these three new scenarios greatly improves the GIC modeling. At

the same time, the mathematical complexity of the problem is increased sig-

nificantly and it becomes much more difficult to solve. All previous methods

fall short on solving these new scenarios. In this chapter, a novel SA method

is developed to tackle the challenge. We compared the solution quality and

the running time between our SA method and methods from previous works.

For the basic OBP problem, we demonstrated that, with the SA design in

this chapter, the solution quality of the SA method is close to that of the BC

method and is much better than that of the relaxed SOCP method. Note

that the SA algorithm statistically guarantees global optimal when the run

time is not restricted. In cases where higher quality solution is required, we

can always tune the SA design to accommodate that. In terms of running

time, the SA method is much faster than the BC method and is even faster

than the relaxed SOCP method when the number of BDs is large. More

importantly, we demonstrate that the SA method can handle the three new

scenarios mentioned above. Covering these new scenarios represents a major

milestone for mitigating the effects of GICs as they are crucial in realistic and

practical applications. Furthermore, as shown in the chapter, the SA method

we proposed offers a framework that solves not only the specific OBP prob-

lems formulated in this chapter, but also OBP-related problems with various

objective functions and constraints.
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CHAPTER 6

POISONING ATTACK ON SHORT-TERM
LOAD FORECASTING

Short-term load forecasting systems for power grids have demonstrated high

accuracy and have been widely employed for commercial use. However, clas-

sic load forecasting systems, which are based on statistical methods, are

subject to vulnerability from training data poisoning. In this chapter, we

demonstrate a data poisoning strategy that effectively corrupts the forecast-

ing model even in the presence of outlier detection. To the best of our knowl-

edge, poisoning attack on short-term load forecasting with outlier detection

has not been studied in previous works. Our method applies to several fore-

casting models, including the most widely-adapted and best-performing ones,

such as multiple linear regression (MLR) and neural network (NN) models.

Starting with the MLR model, we develop a novel closed-form solution to

quickly estimate the new MLR model after a round of data poisoning with-

out retraining. We then employ line search and simulated annealing to find

the poisoning attack solution. Furthermore, we use the MLR attacking so-

lution to generate a numerical solution for other models, such as NN. The

effectiveness of our algorithm has been tested on the Global Energy Fore-

casting Competition (GEFCom2012) data set with the presence of outlier

detection.

6.1 Introduction

In the era of internet of things, cybersecurity is of growing concern to power

industries [41]. As power systems benefit from stronger connectivity and ad-

vanced probabilistic modeling, they also become more vulnerable to attacks

that target these aspects. Malicious cyberbehaviors and technologies that

used to challenge security in areas unrelated to power systems, such as in-

formation integrity or privacy, have suddenly started to endanger the safety
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of large-scale smart grids [69]. Short-term load forecasting (STLF) is one of

many aspects that are subject to these attacks. Today, accurately conducting

STLF is essential to power systems [42]. The power industry relies heavily

on accurate predictions to increase efficiency, reduce waste and maintain sta-

bility. If the forecast is corrupted, not only could there be financial losses, in

extreme but realistic cases, the bulk power system assets could be damaged,

resulting in safety hazards. Among many cybersecurity issues, data integrity

attacks, where malicious attackers access and modify sensitive data, pose a

great threat to STLF.

Over the past years, many methods were proposed to conduct STLF [42]. A

regression model was first introduced in [70] and many regression-based mod-

els were later proposed to further improve the forecasting accuracy [71, 72].

In GEFCom 2012 [73], a regression-based model won the top place [74].

Researchers also approach the problem using other methods such as arti-

ficial neural network [75–77], support vector machine [78], and fuzzy logic

regression [79]. For all of the statistical methods mentioned above, integrity

of training data is essential. People face a dilemma: on one hand, these

probabilistic models have demonstrated very impressive performance; on the

other hand, it is hard to abstract any information from these model that

can be easily understood by humans. These methods are purely data driven;

all meaningful rules or guidelines resulting from these methods, whether in-

spiring or totally wrong and damaging, are extracted from, and only from,

the training data. This is the reason why the community should pay close

attention to the data integrity of the load forecasting system.

The authors of [80] pioneered the research on data integrity attacks on

load forecasting systems. They conducted studies to understand how poor

training data could affect forecasting accuracy. This work simulates the ran-

dom attack by selecting k% of the training data and multiplying the original

load by 1+p%, where p follows a normal or uniform distribution. The attack

is only noticeable when the amount of data to attack and the magnitude of

the change are large. For example, without any attack, the mean absolute

percentage error (MAPE) using the original vanilla model in [80] is 5.22%.

For a normally-distributed (p ∼ N (µ, σ2)) attack, to reach the attack goal

of increasing MAPE from 5.22% to 10%, the random attack needs to modify

30% of the data with µ = 0.4 when σ = 0.4. This implies that on average,

30% of the original load values need to be 1.4X their original value. There-
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fore, the random attack is not realistic as it can easily be identified by visual

inspection of the historical load curve, let alone if there is a dedicated outlier

detector.

To the best of our knowledge, no previous work has considered developing

an attacking strategy that not only modifies the training data effectively,

but also fools an outlier detector. In this chapter, we will present a data

poisoning algorithm that reduces forecasting accuracy without setting off an

outlier detector. We will start with MLR model and extend our study to

other models, including neural networks. Before we illustrate the details

of our attaching strategy in Section 6.3, we first cover the background in

Section 6.2. We then present our experimental findings in Section 6.4. We

conclude our work in Section 6.5. Future research directions have also been

proposed in the same section.

6.2 Preliminaries

6.2.1 Short-term Load Forecasting

In STLF problem, load in the short-term future is forecasted using informa-

tion such as historical load, date and time, and temperature. Many statisti-

cal models [42, 70–79, 81], have been proposed to solve this problem. In this

section we will discuss two of the most representative and best performing

models that are widely used for load forecasting. Nonetheless, our numerical

solution can be applied to a wide range of other models.

6.2.1.1 Load Forecasting Models

We will first discuss the multiple linear regression (MLR) model [82]. It at-

tempts to learn the relationship between multiple explanatory variables and

a scalar response variable by fitting a linear mapping between them. It has

been proven effective for load forecasting [72]. Note that the model con-

structed by MLR can be non-linear when the explanatory variables contain

non-linear terms. Since the goal is to predict load in the future, time and

temperature are treated as explanatory variables, and the load is treated as
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a response variable. The MLR model is usually fitted using the least squares

method [82].

In [70], linear regression is proposed to solve the load forecasting problem.

Later, [71] proposed to use 24 MLR models to forecast load in 24 hours.

Several other regression models were proposed in [72], [81]. Although there

are many variations of this method, their core concept is similar. In this

chapter, we will use the vanilla benchmark model in GEFCom2012, which

is also used in [74, 80], to establish a fair comparison with previous studies.

It is worth mentioning that our method works for various linear regression

models and does not depend on any specific model. This vanilla model [80]

is defined as

Y = Xβ

=β0 + β1χT + β2χM + β3χHχW + β4χtχH + β5χ
2
tχH

+ β6χ
3
tχH + β7χtχM + β8χ

2
tχM + β9χ

3
tχM ,

(6.1)

where χT is a nature number that represents a linear trend, χM is a 12-

dimensional class variable representing 12 months of a year, χW is a 7-

dimensional class variable representing 7 days of a week, χH is a 24-dimensional

class variable representing 24 hours of a day, χt represents the temperature

and β is the parameter for the MLR model. In total, β in the vanilla model

has 289 dimensions. In this chapter, we generate the 289-dimensional train-

ing data {X, Y } = {(xi, yi), i = 1, 2, ..., n} using the original temperature,

date and time, and load information in the data set. The parameters for

MLR model are obtained by solving a least squares problem

min
β

∑
x∈X

(y − ŷ)2 = (Y −Xβ)T (Y −Xβ). (6.2)

Neural networks (NNs) have also been widely used for load forecasting

[75–77]. Similar to MLR, NN also attempts to learn the relationship between

explanatory variables (temperature and time) and load. Thus, NN usually

takes temperature and time data as input and outputs the load. To have

a fair comparison with previous studies, we adopt a feed-forward neutral

network [72] that was also used in [80]. This NN has 45 input neurons,

including month of a year, day of a week, hour of a day, temperature and
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trend, and has one output neuron, which represents load. It has one hidden

layer with 22 neurons and is fully connected.

6.2.1.2 Outlier Detection

Outlier detection is a well established area of study [83, 84]. We use the

outlier detection method developed in [85] for reference. This approach has

been proven to be effective in the GEFCom competition. The method first

trains a benchmark model using all of the historical data and calculates the

absolute percentage error (APE) for each hourly load. The data points with

APE values larger than a certain threshold φ ( φ = 50%) are treated as

outliers. For these outliers, the machine learner will replace the original data

with predicted values in the training process. This predicted value is also

called the regulated value. We will show that our attacking method can also

fool purely statistics-based outlier detection method in Section 6.3.

6.2.2 Poisoning Attack

Machine learning algorithms rely on training data to generate predictive

models. Poisoning attack contaminates the learner’s training data to mislead

the model from being accurate and it has recently caught attention in the

machine learning research community [86,87].

6.2.2.1 Attacking Model

In load forecasting, the training data include date and time, temperature

and load. In this chapter, we assume that attackers only have the ability

to modify temperature and load data. To ensure that the data attack is

realistic, we do not allow attackers to modify the date and time as these

modifications can easily be detected.

6.2.2.2 Attacking Goal

The goal of a poisoning attack is to reduce the accuracy of load forecasting

while not being detected by any outlier detector. Specifically, we maximize

a loss function over a selected data set {Xa, Ya}. We can achieve certain
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attacking goals by choosing the desired data set. For example, we can choose

the original testing data set {Xt, Yt} to attack the overall load forecasting

accuracy or we can choose to use peak hour data to attack peak hour load

forecasting accuracy. Denote β the model obtained from training data {X, Y }
and ŷi the predicted load for input xi using model β. The poisoning attack

problem can then be formulated as

max
X,Y

L({X, Y }, {Xa, Ya}) =
∑

{xa,ya}∈{Xa,Ya}

(ya − ŷa)2

s.t. IsOutlier({x, y}) = False, ∀ {x, y} ∈ {X, Y },
(6.3)

where L is the loss function, where we use l2-norm to measure the loss of the

model over the selected data set {Xa, Ya} and the constraint here is none of

the poisoned training data shall be flagged as an outlier.

6.3 Methods

To attack load forecasting models, we start with the MLR model as it has

many good mathematical properties. Then we will describe the numeric

approach for attacking load forecasting using the NN Model.

6.3.1 Attack Multiple Linear Regression Model

The goal here is to poison the training data and reduce the forecasting ac-

curacy while not being detected by an outlier detector. It is obviously im-

possible to enumerate all possible poisoning attacks to training data, retrain

the model and identify the optimal poisoning attack solution. The bottle-

neck here is the solution space of poisoning attack and the running time of

model retraining. The ability to quickly estimate the behavior of the new

model without retraining is the key to solve this problem. In this chapter, we

develop a closed-form solution for estimating the new model after poisoning

without the need of retraining.

Denote the training data {X, Y } where X includes date and time, temper-

ature, and Y represents load. We use the well-known and accurate vanilla

model [80] in (6.1). We will first discuss the scenario of attacking only load

99



data in Y (Section 6.3.2) and then extend it to attacking both temperature

in X and load data in Y (Section 6.3.3). The reason we separate these two

scenarios is that temperature is treated as an explanatory variable, thus the

mathematical properties are dramatically different for these two scenarios.

6.3.2 Attack Load Only

In this scenario, the data attribute subject to attack is only the historical

load. As shown in [82], given training data {X, Y }, solving (6.2) yields the

MLR model, denoted by β̂:

β̂ = (XTX)−1XTY. (6.4)

We choose to maximize the l2-norm loss over the original testing data set

{Xt, Yt}. Therefore, based on (6.3), the mathematical formulation of the

attacking goal becomes

L({X, Y }, {Xt, Yt}) =
∑

{xt,yt}∈{Xt,Yt}

(yt − ŷt)2. (6.5)

Note that the predicted load ŷt can be calculated by

ŷt = xtβ̂. (6.6)

Therefore, the attack goal, or the objective function to maximize, in the

poisoning attack problem becomes

L =
∑

{xt,yt}∈{Xt,Yt}

(yt − ŷt)2 = (Yt −Xtβ̂)T (Yt −Xtβ̂). (6.7)

The partial derivative of L over β̂ can be calculated by

∂L

∂β̂
=2(XtX

T
t β̂ −XT

t Yt)

=2(XtX
T
t (XTX)−1XTY −XT

t Yt).

(6.8)
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Algorithm 3: Line Search based Poisoning Attack Algorithm

1 Set Y0 = Y ;
2 Set converge counters and thresholds for Y and L;
3 for k = 0→ kmax (max training iterations) do
4 Set Y 0

k = Yk;
5 for j = 0→ jmax (max line search iterations) do
6 Compute the descent direction pj using (6.10);

7 Choose αj to “loosely” minimize h(αj) = L(Y j
k + αpj) over

α ∈ R+;

8 Update Y j+1
k = Y j

k + αpj;

9 end

10 if Y jmax+1
k is outlier then

11 Set Yk+1 = Yk;
12 else

13 Set Yk+1 = Y jmax+1
k ;

14 Update surrounding points to smooth the load curve;

15 end
16 Stop if S or L converges;

17 end

With (6.4), the partial derivative of β̂ over Y becomes

∂β̂

∂Y
= (XTX)−1XT . (6.9)

As a result, the derivative of L over Y can be calculated as

∂L

∂Y
=2(XTX)−1XT (XT

t Xtβ̂ −XT
t Yt)

=2(XTX)−1XT (XT
t Xt(X

TX)−1XTY −XT
t Yt).

(6.10)

The satisfying property here is that we need not re-train the model to

estimate the loss function value after a small change. This closed-form model

estimation enables the search for the poisoning solution. As described in

Algorithm 3, we use a line search algorithm to search along the gradient

for the poisoning solution. For each point that we attack, we also modify

the surrounding points accordingly to smooth the curve using polynomial

interpolation. If the current poisoning solution is an outlier, we set it to the

corresponding regulated value to ensure that the attack is not detectable.
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6.3.3 Attack Both Temperature and Load

In this scenario, we will discuss how to conduct poisoning attack on both tem-

perature and load. We will first discuss model estimation and then present

the poisoning attack algorithm.

6.3.3.1 Model Estimation

Similar to Algorithm 3, we first estimate the model β after modifying training

data without retraining. In this case we use a similar loss function to measure

the attacking goal.

Attack Goal = L({X, Y }, {Xt, Yt}). (6.11)

Let β̂(−i) be the trained model without training point xi, β̂
(+δ) be the trained

model with additional point xδ, and ŷi be the predicted value for point {xi, yi}
using model β̂. Denote (X(−i), Y (−i)) as the training input after removing

one point {xi, yi}. With (6.4), the new model can be calculated by

β̂(−i) = (X(−i)TX(−i))−1X(−i)TY (−i). (6.12)

Removing xi and yi is equivalent to removing one row from X and Y . As

a result

X(−i)TX(−i) = XTX − xTi xi, (6.13)

X(−i)TY (−i) = XTY − xTi yi. (6.14)

With the Sherman-Morrison formula,

(XTX − xTi xi)−1

= (XTX)−1 +
(XTX)−1xTi xi(X

TX)−1

1− xi(XTX)−1xTi
.

(6.15)

Denote hat matrix

H = X(XTX)−1XT . (6.16)

It is obvious that Hii = xi(X
TX)−1xTi . Note that

β̂ = (XTX)−1XTY , (6.17)
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ŷi = xiβ̂. (6.18)

Then we have

β̂(−i) =(X(−i)TX(−i))−1X(−i)TY (−i)

=(XTX − xTi xi)−1(XTY − xTi yi)

=((XTX)−1 +
(XTX)−1xTi xi(X

TX)−1

1−Hii

)(XTY − xTi yi)

=β̂ − (XTX)−1xTi yi +
(XTX)−1xTi ŷi

1−Hii

− (XTX)−1xTi Hiiyi
1−Hii

=β̂ − (XTX)−1xTi
1−Hii

(yi − ŷi).

(6.19)

This equation indicates that we can calculate the new model β̂(−i) with

just X,H, xi, yi and ŷi. As a result, there is no need for retraining on

(X(−i), Y (−i)). Similarly if we added a new point {xk, yk} to the input train-

ing data (X, Y ), we have

β̂(+k) = β̂ +
(XTX)−1xTk

1−Hii

(yk − ŷk). (6.20)

If we replace {xi, yi} with {xi + δ, yi + δ}, denoted by {xδ, yδ}, we can

approximate the model by

β̂(−i,+δ) = ˆβ(−i)
(+δ)

=β(−i) +
(X(−i)TX(−i))−1xTδ

1− xδ(X(−i)TX(−i))−1xTδ
(yδ − ŷδ(−i)).

(6.21)

Denote Hδδ
.
= xδ(X

(−i)TX(−i))−1xTδ , as xδ → xi, yδ → yi

Hδδ = xδ[(X
TX)−1 +

(XTX)−1xix
T
i (XTX)−1

1− xTi (XTX)−1xi
]xTδ

≈ Hii +
H2
ii

1−Hii
=

Hii

1−Hii
.

(6.22)

With (6.19), as xδ → xi, yδ → yi, we have

yδ − ŷδ(−i) = yδ − xδβ̂(−i) =
1

1−Hii

(yi − ŷi). (6.23)
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Therefore, (6.21) can be expressed as

β̂(−i,+δ)|{xδ→xi,yδ→yi} =

=β̂(−i) +
(X(−i)TX(−i))−1xTi

1− 2Hii

(yi − ŷi).
(6.24)

Different from the scenario in 6.3.2, we cannot directly calculate gradient.

As shown in (6.4), there is no simple closed-form solution for calculating the

derivative of β over X. With (6.24), we can estimate the model β̂(−i,+δ) with-

out retraining the model after making a small change to one training point.

We then use a simulated annealing based algorithm to find the poisoning

attack solution for this scenario.

6.3.3.2 Simulated Annealing (SA) based Poisoning Attack Algorithm

The SA-based poisoning strategy is described in Algorithm 4. Unlike the pre-

vious case, we use SA in the inner loop to search for the poisoning solution

that maximizes L. Similar to Algorithm 3, we iteratively verify and regulate

the poisoning solution in the outer loop to ensure that the poisoning attack

is not detectable. SA is a generic stochastic algorithmic approach for finding

the global optimum of an optimization problem that may have many local

optima [39, 40]. It can handle cost functions with arbitrary degrees of non-

linearities, discontinuities, stochasticity, arbitrary boundary conditions and

constraints. It first selects an initial solution and iteratively searches for the

optimal solution by emulating the physical cooling process of a solid in a heat

bath. In the searching process, SA probabilistically accepts worse solutions

which allows it to jump out of the basin that contains local optimum and

explore a larger solution space.

At each outer iteration, the point {xi, yi} with the highest influence value

[82] will be modified. In the inner SA loop, similar to (6.10), we calculate

the partial derivative ∂L
∂yi

and modify the selected point based on it. We

also ensure that the modification is less than 1% for both temperature and

load. The modified point is the neighbor of the current point and will be

used in the next SA iteration. The annealing schedule, which defines how SA

temperature T systematically decreases as the searching proceeds, is defined
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Algorithm 4: SA based Poisoning Attack Algorithm

1 Set {X0, Y0} = {X, Y };
2 Set converge counters and thresholds for S and L;
3 for k = 0 → kmax (max converge iterations) do
4 Set initial temperature T = T0;
5 Set initial solution S0

k = {Xk, Yk};
6 for i = 0→ imax (max SA iterations) do
7 Pick a neighbor, Snewk = neighbor(Sik);
8 Estimate objective function values, L(Sik) and L(Snewk ), using

(6.24);
9 Update SA temperature T = temperature(T0, i);

10 if P (Sik, S
new
k , T ) ≥ random(0, 1) then

11 Accept new solution Si+1
k = Snewk ;

12 else

13 if Simax+1
k is outlier then

14 {Xk+1, Yk+1} = {Xk, Yk};
15 else
16 {Xk+1, Yk+1} = Simax+1

k = {X imax+1
k , Y imax+1

k };
17 Update surrounding points to smooth the temperature and

load curve;

18 Stop if S or L converges.

as

T = temperature(T0, k) = T0 ∗ ηi, η = 0.95 (6.25)

where i is the iteration number and T0 is the initial SA temperature. We set

a high initial SA temperature (T0 = 1000) so that the SA algorithm may find

a good solution in the full solution space. Last, the probability of moving

from the current state S to a candidate new state Snew is specified by an

acceptance probability function (APF) P (S, Snew, T ):

P (S, Snew, T ) =

{
e
L(Snew)−L(S)

T , ifL(Snew) < L(S)

1 , ifL(Snew) ≥ L(S)
. (6.26)

The APF function P (S, Snew, T ) is positive when L(Snew) < L(S) so that

it can prevent the algorithm from getting stuck at a local minimum. When

L(Snew) < L(S), P (S, Snew, T ) decreases as T decreases, which means that

the SA algorithm will be less likely to accept moves resulting in a worse

solution as it cools down.
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6.3.4 Constructing Final Poisoning Solution

As shown in (6.1), the input features to MLR are not the organic date and

time, temperature, and load. When attacking both temperature and load,

we will need an additional step to compute the attacking solution for temper-

ature. We first use the poisoning strategy in Algorithm 4 to find the poison-

ing solutions for the nonlinear terms (χtχH , χ
2
tχH , χ

3
tχH , χtχM , χ

2
tχM , χ

3
tχM)

and then solve a group of nonlinear equations to construct the final poisoning

solutions for temperature. In this chapter, the standard implementation of

Trust-Region Dogleg Method in Matlab [88] is employed. We notice that the

MLR model can estimate the load curve well and has forecasting accuracy

comparable to other models, including NN [74]. In other words, other load

forecasting models can be fitted by MLR. As a result, we use the numerical

poisoning solutions developed for MLR to attack other models.

6.4 Results

6.4.1 Load Forecasting Data

The data set we use in this chapter comes from The 2012 Global Energy Fore-

casting Competition (GEFCom2012) [74]. This data set is widely adapted in

the load forecasting research community [73, 80]. The data set contains 4.5

years of load data for 21 zones (20 zones and the whole system that contains

all zones) and temperature information for 11 stations from a US utility. The

resolution of the data goes down to the scale of one hour. It ranges from the

1st hour of 2004/1/1 to the 6th hour of 2008/6/30. In this chapter, the same

setup as that of [80] is shared across experiments to ensure fair comparisons.

More specifically, we use the load data in 2005 and 2006 as training data and

the load data in 2007 as test data. In this experiment, we only allow up to

10% of data to be attacked. There are 17520 data points in the training data

set and the number of points that can be attacked is up to 1752. We also

follow the methodology in [80,89] to handle temperature data.
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6.4.2 Numerical Results

We implemented a baseline MLR and achieved the same mean APE (5.22%)

as that in [80]. We compared the poisoning attacking performance among

three different scenarios, including the strategic attack on load only in Sec-

tion 6.3.2, the strategic attack on temperature and load in Section 6.3.3,

and the random attack on temperature and load using a normal distribu-

tion (p ∼ N (0.5, 0.52) with the methodology from [80]. For random attack,

we also ran experiments to check the attacking effectiveness using a uniform

distribution. Since there is no fundamental difference between normal and

uniform distributions, we only keep results of normally-distributed attack

for simplicity. In this experiment, we conduct random attack 20 times and

take the average of them as the final attacking performance. We measure

the attack performance by the mean APE and maximum APE. It is worth

mentioning that randomly modify training data cannot fool outlier detectors.

As a matter of fact, these attacks can easily be spotted by visual inspection.
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Figure 6.1: Mean APE for poisoning attack on load forecasting
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Figure 6.2: Max APE for poisoning attack on load forecasting

Figures 6.1 and 6.2 show the results of mean APE and max APE for

all three attacking scenarios in the aggregated zone (Zone 21). Poisoning

both temperature and load has better attacking performance (higher mean

and max APE) than just poisoning the load. This finding makes sense be-

cause the forecasts depend on both temperature and load, and are also very

sensitive to the nonlinear terms with xt in (6.1). As we can see, strategic

poisoning attacks perform much better than random poisoning attack. On

average, when comparing the increase of mean APE, our non-detectable at-

tacking method that poisons both temperature and load is 5X better than

the detectable random attack.

Let us take a closer look at how the distribution of APEs changes after

poisoning attack. Figures 6.3 - 6.5 show the histograms of APEs when at-

tacking 10% of the training data. We can see that strategic poisoning attack

on both temperature and load has more points with larger APE than the

other two. Both strategic poisoning attacks move the distribution towards

the right side more significantly than the random attack. We also notice that

the random attack sometimes makes significant changes to some points and
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Figure 6.3: Histogram of APE for random attack

Figure 6.4: Histogram of APE for strategic attack on load
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Figure 6.5: Histogram of APE for strategic attack on both temperature and
load

these points trigger outlier detection, while our algorithms always limit the

attack within the undetectable range to avoid detection. We trained our NN,

with the same architecture as that of [80], using the deep learning toolbox

Keras [90]. We found that the solutions and attacking performance for NN

are almost identical to those for MLR, so we will not re-present a similar set

of results here. Considering that both MLR and NN models achieve very

similar forecasting accuracy, it is reasonable to expect that the same set of

poisoned data resulted in similar outcomes from these two models.

6.5 Conclusion

Short-term load forecasting (STLF) models for power grids are vulnerable to

training data poisoning attacks. In this chapter, we developed a poisoning

strategy that can corrupt energy load forecasting model even in the presence

of outlier detection. Our closed-form model estimation technique, line search

and simulated annealing based methods have been shown to be effective in the
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presence of an outlier detector. In the future, we would like to explore a wider

variety of strategies to generate attacking samples that are more effective

and harder to detect. Deep learning based methods such as variational auto-

encoder and generative adversarial networks (GANs) might shed light on our

study. We are also interested in applying the techniques to a wider variety

of forecasting models.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we solved several key challenges in smart grids to improve

their efficiency and reliability from different angles. The approaches include

a variety of optimization methods, high-performance computing techniques

and machine learning algorithms. Furthermore, we take into account the

scalability of our approaches for the applicability to large-scale smart grids,

which has been shown in the experimental results.

In Chapters 2 and 3, we introduced the fast ACOPF algorithm and the

ClusRed algorithm that can solve ACOPF and POPF much faster while

maintaining high accuracy. They help improve the efficiency and reliabil-

ity of smart grids. In Chapter 2, we presented the fast ACOPF algorithm

that uses power system network reduction to speed up the computation of

ACOPF problems. Experimental results show that this approach can achieve

1.32× to 7.01× speedup over full ACOPF while introducing just 0.54% error

on average. The computation time of the proposed algorithm grows almost

linearly. We demonstrated its robustness by showing that as long as the

original ACOPF can converge, our method can also converge. Compared to

the widely used DCOPF, we reduce the error by 77.6% on average. In Chap-

ter 3, we presented a fast clustering and NR based cumulant method, the

ClusRed algorithm, that can solve POPF much faster and more accurately.

A new linear mapping matrix based on NR has shown better performance

than previous approaches. Experimental results demonstrate that ClusRed

can achieve several thousandfold speedup compared to MCS and up to 4.57X

compared to previous CMs for large-scale smart grids. On average, we im-

prove the worst estimation accuracy of mean value by 32.08% and standard

deviation value by 36.76%. The fast OPF and ClusRed methods can be used

to solve ACOPF and POPF problems for large-scale smart grid in many

applications, such as market management and reliability analysis.
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In Chapters 4 and 5, we designed and implemented the BC and SA meth-

ods that can solve OBP problems, which mitigate the effects of GICs. We

first show that the BC method can provide optimal solution for the basic

OBP problem. Then we study several new scenarios, including the basic

OBP problem with per-transformer GIC constraint, the block by system

(BBS) scenario where the impact on neighboring systems is limited, and the

time-varying geoelectric field (TVGF) scenario where a more realistic geo-

electric field, which varies over time, is used in GMD modeling to better

estimate and mitigate the real GMDs impact. None of them has ever been

studied before. In addition, the mathematical complexity of the OBP prob-

lem increased significantly for these new scenarios and it becomes much more

difficult to solve. For the first time, we solve the OBP problem for these sce-

narios by introducing the novel SA method. For the basic OBP problem, we

demonstrated that the solution quality of the SA method is close to that of

the BC method and is much better than that of the relaxed SOCP method.

In terms of running time, the SA method is much faster than the BC method

and is even faster than the relaxed SOCP method when the number of BDs is

large. More importantly, we demonstrate that the SA method can handle the

three new scenarios mentioned above. Covering these new scenarios repre-

sents a major milestone for mitigating the effects of GICs as they are crucial

in realistic and practical applications. Furthermore, the SA method offers a

framework that solves not only the specific OBP problems formulated in this

dissertation, but also OBP-related problems with various objective functions

and constraints. Further investigations are recommended for the following

directions: (1) Accurately modeling of the damages from GMDs and the se-

lection of objective function in the OBP problems; (2) Low cost and flexible

devices for mitigating the effects of GMDs.

In Chapter 6, we studied poisoning attack on short-term load forecasting

(STLF) systems in power grids. We built a first-of-its-kind poisoning strategy

that can corrupt the energy load forecasting model even in the presence of

outlier detection. Our closed-form model estimation technique, line search

and simulated annealing based methods have been shown to be effective in

the presence of an outlier detector. As more and more data-driven methods

are used in smart grids, it is extremely critical to protect data integrity and

enhance system reliability. It would be desirable to explore a wider variety

of strategies to poison training data that are more effective and harder to
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detect. Deep learning based methods such as variational auto-encoder and

generative adversarial networks (GANs) might shine light. It would also be

interesting to apply the techniques to a wider variety of forecasting models.

Furthermore, it would be interesting to generate a defensive algorithm for

such attacks.

In conclusion, this dissertation contributed to the efficiency and reliability

of smart grids by introducing novel high-performance algorithms to solve

complex optimization problems. Furthermore, it applied machine learning

algorithms to poisoning attacks on STLF systems and demonstrated the

necessity of data integrity protection in smart grids.
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