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ABSTRACT

In this dissertation, we develop several data-driven frameworks for coordi-

nating distributed energy resources (DERs) in power distribution systems to

provide ancillary services including active power provision and reactive power

regulation. The proposed frameworks generally consist of three components,

namely (i) an input-output (IO) model of the system describing the relation

between the variables of interest to the problem, (ii) an estimator that pro-

vides estimates of the parameters that populate the model in (i), and (iii) a

controller that uses the model in (i) with the parameters estimated via (ii) to

determine the active and/or reactive power injection set-points of the DERs

by solving the optimal DER coordination problem (ODCP), which is cast

as a static optimization problem. We develop efficient estimation algorithms

that utilize measurements to estimate the parameters in the IO model. Spe-

cial emphasis is devoted to algorithms that address the potential collinearity

issue in the measurements, and formulations that significantly reduce the

number of parameters to be estimated.

The idea of data-driven coordination is also applied to address the prob-

lem of coordinating load tap changers (LTCs)—an important class of assets

used for voltage control in distribution networks—using only measurements

of voltage magnitudes. Different from the ODCP that is cast as a static

optimization problem, the optimal LTC coordination problem is cast as a

multi-stage decision-making problem and formulated as a Markov decision

process (MDP), in which the unknown power injections are modeled as un-

certainty sources. The MDP is solved via a reinforcement learning algorithm

to obtain a control policy that maps the voltage magnitude measurements

to the optimal tap positions.

The data-driven nature makes the proposed frameworks intrinsically adap-

tive and robust to changes in operating conditions and power distribution

system models, which are illustrated via extensive case studies.
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Prof. Veeravalli, who can always provide unique perspectives on problems

discussed. The collaboration with Prof. Veeravalli has led to the work in

Chapter 4. I am also very grateful to Prof. Başar, who has been with me
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CHAPTER 1

INTRODUCTION

In this chapter, we motivate the need to develop data-driven coordination

frameworks for assets in power distribution systems to provide ancillary ser-

vices. We then describe the power distribution model adopted throughout

this dissertation, and review some existing works that are relevant to the

problems addressed in the dissertation. Finally, we summarize the contents

of each chapter.

1.1 Motivation and Background

Modern power distribution systems are experiencing fundamental transfor-

mations in structure and functionality facilitated by rapid technological de-

velopments [1]. In particular, an increasing number of distributed energy re-

sources (DERs), e.g., rooftop solar PV installations, energy storage resources,

and demand response resources, are being integrated in power distribution

systems; this significantly increases the complexity of the system behavior.

These transformations pose serious challenges to system operations but also

bring numerous possibilities for innovations.

The uncertainty and variability in renewable-based generations may lead

to imbalances in both active and reactive power, imposing additional require-

ments on the amount of regulation power to be provided by the bulk system

[2], and causing voltage regulation problems in the power distribution system

to which they are connected [3]. Consequently, this requires efficient active

and reactive power controls in power distribution systems to provide ancillary

services so as to mitigate the impacts of the aforementioned problems. How-

ever, active power control is typically limited in power distribution systems;

meanwhile, reactive power control is provided by devices such as load tap

changers (LTCs) and fixed/switched capacitors, which are not designed to
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manage high variability in voltage fluctuations induced by renewable-based

generation. As such, active and reactive power controls that can efficiently

handle highly variable power changes are needed.

Fortunately, controllable DERs, which typically have fast-responding char-

acteristics, could potentially be utilized to provide necessary ancillary ser-

vices under appropriate coordination. Many research efforts addressed the

development of DER coordination schemes for active and reactive power con-

trol. While these approaches could effectively regulate frequency or voltage

given an accurate model of the power distribution system, they may fail in

the absence of an accurate power distribution system model. As such, DER

coordination schemes that are robust against model errors are yet to be inves-

tigated. The extensive deployment of advanced meters and communications

nowadays makes it possible to access more detailed operating states of power

distribution systems. Using system state measurements, DER coordination

frameworks that do not explicitly rely on system models can be developed

as an alternative approach for power control in power distribution networks;

thus, the ultimate objective of this dissertation is

Objective: To develop data-driven coordination frameworks for

fully utilizing the capability of assets, particularly DERs, in power

distribution systems to provide ancillary services. Specifically, the

following two problems will be investigated:

• active power provision problem, in which the total ac-

tive power exchanged between the power distribution system

and the bulk power system needs to equal to some amount

requested by the bulk system operator; and

• reactive power regulation problem, in which the voltage

magnitude at each bus needs be maintained within some pre-

specified range or stay close to some reference value.

The problem of coordinating the response of a collection of DERs to pro-

vide ancillary services, which we refer to as the optimal DER coordination

problem (ODCP), can be cast as a static optimization problem, the solu-

tion of which provides the optimal active and/or reactive power injection

set-points for the DERs. Thus, we will develop algorithms that utilize mea-

surements acquired from meters to estimate an input-output (IO) model
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relevant to the ODCP formulation associated with the specific problem. In-

deed, effective and efficient algorithms that can estimate an IO model are

key in the data-driven frameworks. Therefore, special emphasis is devoted to

algorithms that address the potential collinearity issue in the measurements,

as well as formulations that significantly reduce the number of parameters

to be estimated.

The data-driven coordination framework is also extended to address the

problem of coordinating load tap changers (LTCs)—an important class of

assets used for voltage control—using only measurements of voltage magni-

tudes. Different from the ODCP that is cast as a static optimization prob-

lem, the optimal LTC coordination problem is cast as a multi-stage decision-

making problem and is formulated as a Markov decision process (MDP),

in which the unknown power injections are modeled as uncertainty sources.

Efficient reinforcement learning algorithms need to be developed to solve

the MDP so as to obtain a control policy that maps the voltage magnitude

measurements to the optimal tap positions.

1.2 Preliminaries

In this section, we introduce the power flow model for balanced power distri-

bution systems adopted throughout this work. Specifically, a general power

flow model and a power flow model for radial power distribution systems are

reviewed.

1.2.1 Power Distribution System Model

Consider a balanced power distribution system represented by a directed

graph G = (N ,L) that consists of a set of buses indexed by the elements

in the set N = {0, 1, · · · , N}, and a set of distribution lines indexed by the

elements in the set L = {1, 2, · · · , L}. Each line ℓ ∈ L is associated with

a tuple (i, j) ∈ N × N , where i is the sending end and j is the receiving

end of a line, with the direction from i to j defined to be positive. Let

E = {(i, j)} ⊆ N × N denote the set of tuples that represent distribution

lines. Let rℓ and xℓ denote the resistance and reactance of line ℓ ∈ L. Define

r = [r1, · · · , rL]⊤ and x = [x1, · · · , xL]
⊤. Let Y = G + iB denote the
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bus admittance matrix of the power distribution system, where i =
√
−1,

and G,B ∈ R
(N+1)×(N+1). Let Vi and θi denote the magnitude and angle

of the voltage at bus i ∈ N , respectively. Define V = [V1, · · · , VN ]
⊤ and

θ = [θ1, · · · , θN ]⊤. Assume bus 0 corresponds to a substation bus and θ0 = 0,

which is the only connection of the power distribution system to the bulk

power system. Furthermore, assume that bus 0 is an ideal voltage source

that maintains a constant voltage magnitude, i.e., V0 is a constant.

Without loss of generality, assume there is at most one DER and/or load

at each bus, except bus 0, which does not have any DER or load. Let

N g = {1, · · · , n} denote the DER index set. Throughout this work, DERs

are assumed to be controllable. Uncontrollable DERs are modeled as negative

loads. Let pdi and qdi respectively denote the active and reactive power loads

at bus i ∈ N , and define pd = [pd1, · · · , pdN ]⊤, and qd = [qd1 , · · · , qN ]⊤. Let

pgi and qgi respectively denote the active and reactive power injections from

DER i ∈ N g, and define pg = [pg1, · · · , pgn]⊤, and qg = [qg1 , · · · , qgn]⊤. Let pg
i

and pgi respectively denote the minimum and maximum active power that

can be provided by DER i ∈ N g, and define pg = [pg
1
, · · · , pg

n
]⊤, and pg =

[pg1, · · · , pgn]⊤. Similarly, let qg
i
and qgi respectively denote the minimum and

maximum reactive power that can be provided by DER i ∈ N g, and define

qg = [qg
1
, · · · , qg

n
]⊤, and qg = [qg1, · · · , qgn]⊤.

Let pi and qi denote the net active and reactive power injections, respec-

tively, at bus i ∈ N , and define p = [p1, · · · , pN ]⊤, q = [q1, · · · , qN ]⊤; then

p = Cpg − pd, (1.1)

q = Cqg − qd, (1.2)

where C ∈ R
N×n is a matrix that maps the DER indices to the buses as

follows: the entry at the ith row, jth column of C is 1 if DER j is at bus i

and 0 otherwise.

General Power Flow Model

The quasi-steady-state behavior of the power distribution system at some

operating point, (θ,V ,p, q), can be characterized by the power balance equa-
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tions as follows:

gp(θ,V )− p = 0N , (1.3)

gq(θ,V )− q = 0N , (1.4)

where 0N denotes an N -dimensional all-zeros vector, and

gp(θ,V ) = [gp1(θ,V ), · · · , gpN(θ,V )]⊤,

gq(θ,V ) = [gq1(θ,V ), · · · , gqN(θ,V )]⊤,

with

gpi (θ,V ) =
∑

j∈N

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj)), (1.5)

gqi (θ,V ) =
∑

j∈N

ViVj(Gij sin(θi − θj)− Bij cos(θi − θj)), (1.6)

where Gij and Bij denote the (i, j)th entries of the matrices G and B, re-

spectively. Note that given p and q, θ and V can be computed by solving

(1.3) and (1.4). Once θ and V are known, p0 and q0 can be determined as

p0 = gp0(θ,V ) =
∑

j∈N

V0Vj(G0j cos(θj)− B0j sin(θj)), (1.7)

q0 = gq0(θ,V ) =
∑

j∈N

V0Vj(−G0j sin(θj) +B0j cos(θj)). (1.8)

Note that the active and reactive power that flows into the bulk power system

equals to −p0 and −q0, respectively.

Distribution Power Flow Model

We next introduce a power flow model for radial power distribution sys-

tems. Let f p
ℓ and f q

ℓ denote the active and reactive power that flows on line

ℓ ∈ L, respectively, and define f p = [f p
1 , · · · , f p

L]
⊤ and f q = [f q

1 , · · · , f q
L]

⊤.

The value of f p
ℓ is positive when the active power flow is from the sending

end to the receiving end of line ℓ, and negative otherwise. The value of f p
ℓ

is defined similarly. Let f ℓ denote maximum power flows on line ℓ ∈ L,
and define f = [f 1, · · · , fL]

⊤. With a little abuse of notation, we allow the

substitution of the subscript ℓ with ij, if line ℓ is associated with (i, j), e.g.,

5



f p
ij = f p

ℓ , rij = rℓ, and xij = xℓ.

Let vi denote the squared voltage magnitude at bus i ∈ N , i.e., vi = V 2
i .

For a radial power distribution system, the relation between squared voltage

magnitudes, power injections, and line power flows, can be captured by the

following distribution flow model [4]:

f p
ij = −pj +

∑

k:(j,k)∈E

f p
jk + rij

(f p
ij)

2 + (f q
ij)

2

vi
, (1.9)

f q
ij = −qj +

∑

k:(j,k)∈E

f q
jk + xij

(f p
ij)

2 + (f q
ij)

2

vi
, (1.10)

vi − vj = 2(rijf
p
ij + xijf

q
ij)− (r2ij + x2

ij)
(f p

ij)
2 + (f q

ij)
2

vi
. (1.11)

After dropping the nonlinear terms (nonlinear with respect to the squared

voltage magnitude), (1.9)–(1.11) can be further simplified to a linearized

distribution flow model, which is referred to as the LinDistFlow model, as

follows:

f p
ij = −pj +

∑

k:(j,k)∈E

f p
jk, (1.12)

f q
ij = −qj +

∑

k:(j,k)∈E

f q
jk, (1.13)

vi − vj = 2(rijf
p
ij + xijf

q
ij). (1.14)

Next, we write (1.12)–(1.14) in a matrix form. Let M̃ = [Miℓ] ∈(N+1)×L

denote the node-to-edge incidence matrix of the graph G defined as follows:

Miℓ = 1 and Mjℓ = −1 if line ℓ starts from bus i and ends at bus j, and all

other entries equal to zero. Letm⊤ denote the first row andM the remaining

(N×L)-dimensional matrix in M̃ . If the power distribution system is radial,

L = N , and M is invertible. Then, (1.12) and (1.13) can be written as

follows:

f p =M−1p, (1.15)

f q =M−1q. (1.16)

In practice, we are mostly concerned with active power flows on the distribu-

tion lines. To ease the notation, we drop the superscript p and let fℓ denote
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the active power flow on line ℓ ∈ L, and define f = [f1, · · · , fL]⊤.
Define v = [v1, · · · , vN ]⊤ and ṽ = v−v01N , where 1N is an N -dimensional

all-ones vector. Then, (1.14) can be written in the following matrix from:

ṽ = Rp +Xq, (1.17)

with

R = 2(M−1)⊤diag(r)M−1, (1.18)

X = 2(M−1)⊤diag(x)M−1, (1.19)

where diag(·) returns a diagonal matrix with the entries of the argument

on its diagonals. We refer to the matrices R and X collectively as voltage

sensitivity matrices.

1.3 Related Work

Previous works that are relevant to the problems addressed in this disser-

tation fall into three categories, which are to be detailed in the following

sections. Notwithstanding the abundance of work on model-based asset co-

ordination and data-driven approaches, there is very little prior work on

developing data-driven coordination frameworks that are adaptive to system

condition changes and robust to model errors for ancillary services.

1.3.1 Asset Coordination for Ancillary Service Provision

Model-based DER coordination for provision of ancillary services, including

frequency regulation [5–7], and voltage regulation [8–13], is an active area of

research. In [5], the authors proposed a distributed coordination scheme for

DERs to provide ancillary services in lossless systems. However, neglecting

system losses will result in a solution that fails to provide the exact amount

active power. In [6], the authors presented a framework to coordinate the

DERs to provide the primary frequency control using a droop-control scheme,

based on a power flow model with explicit consideration of losses. They also

proposed in [7] a real-time coordination algorithm for a virtual power plant,
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which is essentially a collection of DERs, to provide regulation leveraging

online primal-dual-type methods. With respect to the voltage regulation

problem, in [8], the authors proposed a two-stage distributed architecture

for voltage regulation in a power distribution system, where the required re-

active power injections are determined by each local controller in the first

stage and any deficiency is compensated in the second stage. Optimal power

flow (OPF) based DER coordination schemes for voltage regulation have also

been proposed in works such as [10–12]. For example, in [12], the authors

investigated the voltage regulation problem for an unbalanced power distri-

bution system, and proposed distributed algorithms for optimally setting the

tap ratios of LTCs and DERs based on a linearized power flow model.

In practice, LTCs are the most widely utilized assets in power distribution

systems to regulate the voltage magnitudes along the feeder. Conventionally,

the tap position of each LTC is controlled through an automatic voltage regu-

lator based on local voltage measurements [14]. This approach, albeit simple

and effective, is not optimal in any sense. Particularly, the voltage deviation

may not be minimized. In the context of transmission systems, transformer

tap positions are optimized jointly with active and reactive power genera-

tion by solving an OPF problem, which is typically cast as a mixed-integer

programming problem (see, e.g., [15–17] and references therein). Similar

OPF-based approaches are also adopted in power distribution systems. For

example, in [18], the authors cast the optimal tap setting problem as a rank-

constrained semidefinite program, which avoids the non-convexity and integer

variables, and thus can be solved efficiently.

These model-based approaches require complete system knowledge, includ-

ing active and reactive power injections, and transmission/distribution line

parameters. While it may be reasonable to assume that such information

is available for transmission systems, the situation in distribution systems

is quite different. Accurate line parameters may not be known and power

injections at each bus may not be available in real time, which prevents the

application of model-based approaches.
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1.3.2 Data-Driven Methods for Estimation and Control

The second line of works relevant to this dissertation focuses on data-driven

approaches to estimation and control problems. As an alternative to the

model-based approaches, data-driven methods have been demonstrated to

be very effective in such situations where models are not readily available

[19–26]. The fundamental idea behind data-driven approaches is to describe

the system behavior by a linear time-varying (LTV) IO model, and estimate

the parameters of this model—the so-called sensitivities—via regression using

measurements of pertinent variables [19, 20].

Many previous works have applied data-driven approaches to power sys-

tem problems, both in a steady-state setting [21–24], and a dynamical setting

[25,26]. For example, in [21], the authors developed a data-driven framework

to estimate linear sensitivity distribution factors such as injection shifting

factors [22]; they further proposed a data-efficient sparse representation to

estimate these sensitivities [22]. This framework was later tailored to the

problem of estimating the power flow Jacobian [23]. In [24], the authors

used the estimation framework proposed in [21] to solve the security con-

strained economic dispatch problem. The sensitivities have also been utilized

in voltage regulation problems [27–29]. For example in [29], the authors pro-

posed ambient signal based estimation methods for volt-to-var sensitivities in

transmission systems. They further developed data-driven sequential voltage

control methods based on estimated volt-to-var sensitivities and have proven

the effectiveness via simulations using realistic data. Data-driven approaches

have also been used to develop power systems stabilizers [25], and damping

controls [26]. We refer interested readers to [30] for a review of data-driven

approaches and their applications in a variety of other areas.

The sensitivities estimated from measurements enjoy several advantageous

properties, including adaptivity to changes in system conditions such as

topology reconfigurations or parameter changes. Yet, due to collinearity

in the measurements [31], the regression problem may be ill-conditioned,

thus resulting in large estimation errors [32]. Though numerical approaches

such as locally weighted ridge regression [31] and noise-assisted ensemble

regression [32] can be used to mitigate the impacts of collinearity, there is

no theoretical guarantee on the estimation errors. In addition, existing ap-

proaches require a significant number of measurements in order to obtain
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accurate estimates of the sensitivities. This may be feasible in transmission

systems equipped with phasor measurement units (PMUs), but it may be

impractical for power distribution systems.

1.3.3 Power System Multi-Stage Decision-Making under
Uncertainty

The last area of research relevant to this dissertation is multi-stage de-

cision making for power systems under uncertainty. Several methodolo-

gies can be applied to solve such problems, including stochastic program-

ming [33–35], robust programming [36,37], and reinforcement learning (RL)

[38–41]. Uncertainty in the uncontrollable variables is characterized using

scenarios in stochastic programming, uncertainty sets in robust program-

ming, and Markov processes in RL. Yet, a complete model of the system is

required in the stochastic or robust programming approaches. Models may

not be necessary in RL algorithms; however, a large number of samples that

potentially cover all possible control actions are needed to achieve satisfac-

tory performance. In the absence of a model, such samples are costly or even

impossible to obtain due to operational reliability concerns. As such, ap-

proaches that can effectively solve multi-stage decision-making problems for

the purpose of coordinating assets in power distribution systems to provide

ancillary services are still to be investigated.

1.4 Dissertation Organization

In this section, we give an overview of the organization of this dissertation.

Chapter 2: This chapter is concerned with the problem of DER coordi-

nation for active power provision, particularly in frequency regulation. We

formulate the ODCP of interest as a static optimization problem, the ob-

jective of which is to minimize some cost function constrained by the power

balance equation and DER capacity limits. This formulation requires an IO

model where the inputs are power injections and the output is the incremen-

tal total system loss. The coefficients in the IO model, or the so-called loss

factors (LFs), are estimated recursively by an estimator using power injection

10



measurements so as to adapt to various phenomena that impact the opera-

tion of the power system such as changes in the system operating conditions.

Using the estimated IO model, the controller can determine the DER power

injection set-points by solving the ODCP. In the proposed framework, the es-

timator and the controller work alternately on the same timescale; therefore,

we refer to this framework as a one-timescale framework.

Chapter 3: In this chapter, we continue studying the same problem studied

in Chapter 2 and extend the data-driven DER coordination framework to a

more general setting. A major shortcoming of the framework proposed in

Chapter 2 is that the performance of estimator may be poor in the pres-

ence of measurement collinearity. To resolve this issue and mitigate its im-

pact on estimation accuracy, we introduce random perturbations in the DER

power injections during the estimation process. The random perturbations

are injected on a timescale that is faster than the one at which the con-

troller updates the DER power injection set-points. Therefore, we refer to

the framework proposed in this chapter as a two-timescale framework, so as

to distinguish it from the one proposed in the Chapter 2.

Chapter 4: In this chapter, we adapt the data-driven DER coordination

framework to address the problem of DER coordination for reactive power

regulation. The goal here is to determine optimal DER power injections that

minimize the voltage excursions outside a desirable voltage range, while re-

lying only on an incomplete model of the power distribution system. To this

end, we adopt the LinDistFlow model as the IO model where the inputs are

power injections and the outputs are the deviations of squared voltage mag-

nitudes. The coefficients in the IO model are voltage sensitivities that can

be computed using information on the network topology and the line param-

eters. Assuming the knowledge of feasible network topology configurations

and distribution line resistance-to-reactance (r-to-x) ratios, we propose an

estimator that can determine the true network topology configuration and es-

timate the corresponding line parameters from a few measurements of voltage

magnitudes and power injections. Using the estimated voltage sensitivities,

the optimal DER power injections can be readily determined by solving a

convex ODCP.
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Chapter 5: In this chapter, we address the problem of setting the tap po-

sitions of LTCs for voltage regulation under uncertain load dynamics. The

objective is to find a policy to determine the tap positions that only uses

measurements of voltage magnitudes and topology information so as to min-

imize the voltage deviation across the system. We formulate this problem as

an MDP, and propose a batch RL algorithm to solve it. By taking advantage

of the LinDistFlow model, we propose an effective algorithm to estimate the

voltage magnitudes under different tap settings, which allows the RL algo-

rithm to explore the state and action spaces freely offline without impacting

the system operation. To circumvent the “curse of dimensionality” resulting

from the large state and action spaces, we propose a sequential learning al-

gorithm to learn an action-value function for each LTC, based on which the

optimal tap positions can be directly determined.

Chapter 6: In this chapter, we summarize the works presented in this

dissertation, draw some conclusions, and provide some directions for future

work.
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CHAPTER 2

DER COORDINATION FOR ACTIVE

POWER PROVISION: A ONE-TIMESCALE

FRAMEWORK

2.1 Introduction

Frequency regulation services are by-and-large provided by conventional syn-

chronous generators. However, with the deepening penetration of renewable-

based generation resources, the frequency regulation requirements will be sig-

nificantly increased [42]. Consequently, synchronous generators alone may be

insufficient to meet the regulation requirements. Moreover, such conventional

synchronous generators usually suffer from poor performance when providing

regulation services [43]. To overcome the aforementioned challenges, DERs

such as energy storage resources and plug-in vehicles, are also allowed to pro-

vide such services [44–46]. In the meantime in the US, driven by Order 755

from the Federal Energy Regulatory Commission [47], performance-based

regulation markets have emerged as an effective means to incentivize the

provision of high-quality frequency regulation services from resources includ-

ing conventional generators and DERs [43, 48, 49]. In a performance-based

regulation market, resources are incentivized to track the instructed regu-

lation signal accurately since otherwise they will incur loss of performance

payments [43]. Compared to conventional generators, DERs typically enjoy

much faster-responding capabilities, and can potentially track the regulation

signal better.

In this chapter, we focus on the problem of DER coordination for active

power provision, specifically, the provision of frequency regulation services.

The ODCP of interest here is to coordinate the response of the DERs in

a power distribution system to collectively provide a requested amount of

active power, the so-called regulation power, to the bulk power system to

which the power distribution system is connected. We address the ODCP by

taking a data-driven approach that explicitly takes into account system losses
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yet without reliance on power system models. To this end, we formulate the

ODCP as a static optimization problem that minimizes some cost function

and is constrained by the power balance equation and DER capacity limits.

In order to provide the exact amount of regulation power, it is necessary to

explicitly consider the impacts of total system active power loss (simply re-

ferred to as the total system loss), which is a nonlinear function of the voltage

magnitudes and angles, as well as the network parameters, when determining

the regulation power provided by each DER. As such, in the ODCP formu-

lation, we adopt an IO model where the inputs are power injections and the

output is the incremental total system loss. The coefficients in the IO model

are LFs—linear sensitivities of the total system loss with respect to changes

in power injections—that explicitly capture the impacts of both active and

reactive power injections on system losses. The LFs are conventionally com-

puted from power flow models and have been applied in locational marginal

price computation in electricity markets [50, 51] and sizing and allocation of

DERs in power distribution systems [52]. In the proposed framework, the

LF will be estimated in an online fashion using measurements acquired from

the system, and updated in real time so as to adapt to various phenomena

that impact the operation of the power system.

An important characteristic of the proposed framework is that the timescale

at which the estimator updates its sensitivity estimates and that at which the

controller updates the DER active power injection set-points are the same;

thus, we refer to this framework as a one-timescale framework.

The remainder of this chapter is organized as follows. The LFs and the

ODCP of interest are introduced in Section 2.2. A recursive estimator for

the LFs is proposed in Section 2.4. Then, in the same section, a data-

driven coordination framework is developed based on the estimated LFs.

We illustrate the application of the proposed framework in Section 2.5 and

summarize this chapter in Section 2.6.

2.2 Preliminaries

In this section, we introduce the LFs that are used to approximate the total

system loss in a power system. In addition, we describe the ODCP for the

provision of frequency regulation services.
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2.2.1 Loss Factors

Consider the balanced power distribution system introduced in Section 1.2.1.

Let y denote the active power that flows from the power distribution system

into the bulk power system. We adopt the convention that y is negative

when the power distribution system is importing power and positive when it

is exporting power. We can conceptually express y as a function of p and q

as follows:

y = h(p, q). (2.1)

For given p and q, the total system loss, denoted by l(p, q), is given by

l(p, q) = 1⊤
Np− h(p, q), (2.2)

where 1N is an N -dimensional all-ones vector. The partial derivatives of

the total system loss with respect to active and reactive power injections at

each bus are referred to as the LFs. Let Λp
i and Λq

i respectively denote the

partial derivatives of the total system loss with respect to the active and

reactive net power injections at bus i ∈ N ; we refer to Λp
i as the active LF

at bus i, and Λq
i as the reactive LF at bus i. Define Λp = [Λp

1, · · · ,Λp
N ]

⊤ and

Λq = [Λq
1, · · · ,Λq

N ]
⊤. Then, it follows from (2.2) that

(Λp)⊤ =
∂l

∂p

∣
∣
∣
∣
p,q

= 1⊤
N −

∂h

∂p

∣
∣
∣
∣
p,q

, (2.3)

(Λq)⊤ =
∂l

∂q

∣
∣
∣
∣
p,q

= − ∂h

∂q

∣
∣
∣
∣
p,q

, (2.4)

where the partial derivatives of h with respect to p and q are row vectors.

Therefore, for given small ∆p and ∆q (with respect to some p and q), the

incremental total system loss associated with ∆p and ∆q can be approxi-

mated by

∆l(p, q) ≈ (Λp)⊤∆p+ (Λq)⊤∆q. (2.5)

Then, by using (2.1), (2.3), and (2.4), we can obtain the change in y, denoted
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by ∆y, as follows

∆y ≈ (1N −Λp)⊤∆p− (Λq)⊤∆q. (2.6)

It is clear from (2.6) that the impacts from reactive power injections on the

total system loss cannot be neglected. When active power injections change,

the reactive power injections may change accordingly based on some specific

rules (possibly as a result of a feedback control action). Both ∆p and ∆q

will lead to changes in the total system loss. Thus, in order to determine the

incremental total system loss after active power injections change, it is neces-

sary to know the reactive power control policies implemented throughout the

system. If ∆p is small, we can approximately represent ∆q as ∆q ≈ Φ∆p,

where Φ ∈ R
N×N is the reactive power response sensitivity matrix at the

operating point defined by (θ,V ,p, q). Using this approximation, together

with (2.5) and (2.6), ∆l(p) and ∆y can be represented as a linear function

of ∆p as follows:

∆l(p, q) ≈ Λ⊤∆p, (2.7)

∆y ≈ (1N −Λ)⊤∆p, (2.8)

where Λ = Λp +Φ⊤Λq; we refer to the entries of Λ as the total LFs.

It is important to emphasize that the total LFs depend strongly on the

reactive power control policies. In the simple case where no reactive power

control is employed, i.e., Φ = 0, the total LFs are identical to the active LFs.

However, in general, Φ can be hardly derived from models.

2.2.2 Optimal DER Coordination Problem

Let pg0i denote the nominal power injection from DER i, and define pg0 =

[pg01 , · · · , pg0n ]⊤. Similarly, let pd0i denote the nominal power demanded by

the load at bus i, and define pd0 = [pd01 , · · · , pd0N ]⊤. In addition, let y0 denote

the nominal active power that flows from the power distribution system to

the bulk power system. Let ρ denote the regulation signal sent by the bulk

power system operator to the power distribution system and let ρ[k] denote

its value at time instant k. We adopt the convention that if ρ is positive,

then the power distribution system must regulate upwards, i.e., the total
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amount of power it imports must be decreased or the total amount of power

it exports must be increased.

Usually, the operator sends a single value every 2 to 4 seconds. Therefore,

the duration between two time instants is 2 to 4 seconds. Let pg0i [k] and pgi [k]

denote the nominal power and actual power injected by DER i at time instant

k. The nominal power injection may vary with time; hence its dependence

of k. For example, pg0i [k] may increase/decrease during a period so as to

follow forecasted load changes. Then, we can define the regulation power

provided by DER i in time interval k as ρgi [k] = pgi [k] − pg0i [k]. In addition,

define ρg = [ρg1, · · · , ρgn]⊤. Let ρgi and ρg
i
respectively denote the maximum

up and down regulation capacities of DER i, and define ρg = [ρg1, · · · , ρgn]⊤
and ρg = [pg

1
, · · · , pg

n
]⊤. Then, at time instant k, the problem is to determine

ρg[k] satisfying the following two constraints:

[C1.] ρg ≤ ρg[k] ≤ ρg, i.e., DER up and down regulation capacity constraints

are satisfied; and

[C2.] y[k] = y0[k] + ρ[k], i.e., the total amount of regulation power provided

to the bulk power system is ρ[k],

while all loads within the power distribution system are balanced, i.e., equa-

tion (2.8), which is used to approximately model the power balance in the

system, is satisfied for some q.1 Note that ρ[k] and all the measurements

are obtained at time instant k, and the loads are assumed to be constant

between two time instants. Also, the computation of ρg[k] is assumed to be

instantaneous. The DERs will be instructed to provide pg[k] immediately af-

ter the computation is completed, and their power outputs will remain fixed

until the beginning of the next time instant.

In a lossless power distribution system, the sum of ρgi [k]’s must equal to

ρ[k]; however, this is not the case in the actual power distribution system

that has losses. As such, it is important to explicitly take into account the

system losses in order for the DERs to provide the exact amount of regulation

power to the bulk power system. Also, while there may exist multiple ways

to choose a ρg[k] that solves the DER coordination problem, we can select

one that is optimal with respect to some objective function. For example,

1Some qi’s are purely determined by the reactive power consumed by the loads, but

some may be determined as the result of reactive power control schemes as explained later.
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we may select a ρg[k] that minimizes the incremental total system loss or

costs, or one that minimizes the norm of the regulation power vector, or a

combination of these various objectives.

2.3 Model-based Loss Factors

In this section, we first derive an expression for the LFs based on the nonlin-

ear power flow model. Consider the same power distribution system model

described in Section 2.2.1. Assume gpi and gqi , ∀i ∈ Ñ , are continuously

differentiable. Changes in the net active and reactive power injections with

some nominal values p and q, denoted respectively by ∆p and ∆q, will result

in changes in ∆θ and ∆V . Assume ∆p and ∆q are sufficiently small, then

the following relation holds:

[

Jpθ Jqθ

JpV JqV

][

∆θ

∆V

]

≈
[

∆p

∆q

]

, (2.9)

where

Jpθ =
∂gp

∂θ

∣
∣
∣
∣
θ,V

∈ R
N×N , JpV =

∂gp

∂V

∣
∣
∣
∣
θ,V

∈ R
N×N ,

Jqθ =
∂gq

∂θ

∣
∣
∣
∣
θ,V

∈ R
N×N , JqV =

∂gq

∂V

∣
∣
∣
∣
θ,V

∈ R
N×N .

Assuming

[

Jpθ Jqθ

JpV JqV

]

is invertible around the operating point (θ,V ,p, q),

we further define

[

Γθp Γθq

ΓV p ΓV q

]

=

[

Jpθ Jqθ

JpV JqV

]−1

, (2.10)

where Γθp,Γθq,ΓV p,ΓV q ∈ R
N×N . It follows from (2.9) that

[

∆θ

∆V

]

≈
[

Γθp Γθq

ΓV p ΓV q

][

∆p

∆q

]

. (2.11)

Changes in the net active power injections at bus 1, which equals to −∆y,
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can be approximated by

−∆y ≈ ∂gp0
∂θ

∣
∣
∣
∣
θ,V

∆θ +
∂gp0
∂V

∣
∣
∣
∣
θ,V

∆V . (2.12)

Plugging (2.11) into (2.12) leads to

−∆y ≈
(

∂gp0
∂θ

∣
∣
∣
∣
θ,V

Γθp +
∂gp0
∂V

∣
∣
∣
∣
θ,V

ΓV p

)

∆p

+

(

∂gp0
∂θ

∣
∣
∣
∣
θ,V

Γθq +
∂gp0
∂V

∣
∣
∣
∣
θ,V

ΓV q

)

∆q. (2.13)

As such, it follows from (2.13) that

−
(

∂h

∂p

∣
∣
∣
∣
p,q

)⊤

≈ ∂gp0
∂θ

∣
∣
∣
∣
θ,V

Γθp +
∂gp0
∂V

∣
∣
∣
∣
θ,V

ΓV p, (2.14)

−
(

∂h

∂q

∣
∣
∣
∣
p,q

)⊤

≈ ∂gp0
∂θ

∣
∣
∣
∣
θ,V

Γθq +
∂gp0
∂V

∣
∣
∣
∣
θ,V

ΓV q. (2.15)

Substituting (2.14) and (2.15) into (2.3) and (2.4) gives the model-based

active and reactive LFs.

2.4 Coordination Framework

In this section, we propose a data-driven framework for coordinating the

DERs so as to provide frequency regulation services. We first propose a re-

cursive algorithm to estimate the LFs. The LFs obtained via this estimation

method capture the most up-to-date operating conditions. We will then use

the estimated LFs to develop a formulation of the ODCP. Thus, when choos-

ing their set-points, as determined by the solution of the ODCP problem,

the DERs are adapting to changes in operating conditions.

2.4.1 Recursive Loss Factor Estimator

The computation of the LFs using the model-based approach requires the

knowledge of system operating conditions, as well as accurate models of any
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reactive power control schemes implemented; however, in practice, it may

be difficult to obtain all this information. As an alternative approach, we

propose a data-driven approach for estimating LFs, which is built upon the

recursive weighted least-squares estimation (RWLS) method.

Suppose at time instant k, we have k consecutive measurements of y and

p, denoted by y[0], · · · , y[k − 1], p[0], · · · ,p[k − 1], respectively. Define the

change in the power injection vector at time instant t as ∆p[t] = p[t]−p[t−1],
where

p[t] = C(pg0[t] + ρg[t])− pd[t], (2.16)

p[t− 1] = C(pg0[t− 1] + ρg[t− 1])− pd[t− 1], (2.17)

with C as in (1.1). Let ∆y[t] denote the change in the active power injection

into the network from the bulk power system at time instant t that results

from ∆p[t], i.e., ∆y[t] = y[t] − y[t − 1]. Then, for sufficiently small ∆p[t],

and assuming Λ remains relatively constant over time, it follows from (2.8)

that

∆p[t]⊤(1N −Λ) ≈ ∆y[t]. (2.18)

Then, by stacking the equation in (2.18) for t = 0, 1, · · · , k − 1, we obtain

the following system of equations:







∆p[1]⊤

...

∆p[k − 1]⊤






(1N −Λ) ≈







∆y[1]
...

∆y[k − 1]






. (2.19)

When k is sufficiently large, (2.19) becomes overdetermined, and thus, we can

use weighted least-squares to obtain an estimate of Λ at instant k, denoted

by Λ̂[k], as follows:

Λ̂[k] = 1N − F [k]A[k]⊤W [k]b[k], (2.20)

where W [k] ∈ R
(k−1)×(k−1) is a positive definite symmetric weight matrix,
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and

A[k] =







∆p[1]⊤

...

∆p[k − 1]⊤






, (2.21)

b[k] =







∆y[1]
...

∆y[k − 1]






, (2.22)

F [k] =
(
A[k]⊤W [k]A[k]

)−1
. (2.23)

When a new set of measurements, y[k] and p[k], becomes available at k,

we can update the LF estimate from Λ̂[k] to Λ̂[k + 1] as follows [53]:

Λ̂[k + 1] = Λ̂[k]− F [k + 1]∆p[k](∆y[k]−∆p[k]⊤(1N − Λ̂[k])), (2.24)

where γ ∈ (0, 1] is the forgetting factor for the measurements, and

F [k + 1] =
1

γ

(

F [k]− 1

γ +∆p[k]⊤F [k]∆p[k]
F [k]∆p[k]∆p[k]⊤F [k]

)

.

(2.25)

Thus, using (2.24), the LFs can be updated using new measurements with

little computational effort.

2.4.2 LF-based ODCP Formulation

Using the LFs estimated using the procedure above, we can now develop a

formulation for the ODCP. At time instant k, the estimated total LFs, Λ̂[k],

is available. Then, for sufficiently small ∆p[k], it follows from (2.18) that

∆y[k] ≈ (1N − Λ̂[k])⊤∆p[k]. (2.26)

Now, given ρ[k], we would like to choose ρg[k] in some optimal fashion so

that y[k] tracks the regulation signal, i.e., y[k] = y0[k] + ρ[k]. Thus, by using
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the incremental model in (2.26), we have that

∆y[k] = y[k]− y[k − 1]

= (y0[k] + ρ[k])− y[k − 1]

= (1N − Λ̂[k])⊤∆p[k], (2.27)

with

∆p[k] = p[k]− p[k − 1]

= C(pg0[k] + ρg[k])− pd[k]−C(pg0[k − 1] + ρg[k − 1]) + pd[k − 1].

(2.28)

Then, by choosing the minimization of a weighted sum of the incremental

losses and the L2-norm (denoted by ‖·‖) of the regulation power vector as

the optimality criterion, the ODCP to be solved at time instant k can be

formulated as follows:

ρg[k] = argmin
z∈[ρg,ρg]

Λ̂[k]⊤∆p[k] +
η

2
‖z‖2 (2.29)

subject to

y0[k] + ρ[k]− y[k − 1] = (1N − Λ̂[k])⊤∆p[k], (2.30)

C(pg0[k − 1] + ρg[k − 1])− pd[k − 1] = C(pg0[k] + z)− pd[k]−∆p[k],

(2.31)

where η ≥ 0, z = [z1, · · · , zn]⊤, with zi being the regulation power provided

by DER i, which is to be determined. Note that at time instant k, y[k − 1],

pd[k − 1], pg0[k − 1], ρg[k − 1], y0[k], pd[k], pg0[k], and ρ[k] are known. The

ODCP is a quadratic program with one equality constraint, which can be

solved efficiently by the lambda iteration method [54].

Alternatively, we can also formulate the ODCP using Λp, Λq, Φ, which can

be estimated in a similar manner as that described in Section 2.4.1. Yet, the

estimation process would require at least twice the number of measurements

(both active and reactive power injections), and more computational effort.

As such, the total LF-based formulation is more desirable.
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Figure 2.1: The closed-loop DER coordination framework.

2.4.3 Interaction between LF Estimator and ODCP Solver

The closed-loop interaction between the LF estimator, the controller that

solves the ODCP, and the power distribution system, is illustrated via the

block diagram in Fig. 2.1. At time instant k, the LF estimator provides

Λ̂[k], i.e., the estimate of the total LFs based on some measurements taken

up to time instant k − 1. Then, the vector of estimated LFs, Λ̂[k], is sent

to the controller. The controller also receives loads pd[k], the requested

regulation power ρ[k], and solves the ODCP to determine ρg[k]. Then, DERs

are instructed to change their set-points so as to provide ρg[k]. A new set of

measurements will be available after the DER set-points are modified. The

new measurements will be used in the LF estimator to dynamically update

the estimated values of the total LFs and obtain Λ̂[k+1], which will be used

in ODCP to compute the optimal regulation power from DERs for the next

time interval.

Note that in the proposed framework, the estimator and the controller

work on the same timescale, as illustrated in Fig. 2.2. In this one-timescale

framework, the estimator updates its sensitivity estimates at each time in-

stant, after which the controller updates the DER active power injection

set-points at the same time instant.

2.5 Numerical Simulation

In this section, we illustrate the application of the proposed framework

through numerical simulations. The differences between active, reactive, and

total LFs are also illustrated. The accuracy of the estimated LFs, as well as

the performance of the framework, is studied for a case where the nominal

loads are kept constant, and a case where there are load changes.
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Figure 2.3: The IEEE 33-bus distribution test feeder.

2.5.1 Simulation Setup

A modified 33-bus distribution test feeder from [4], the topology of which is

shown in Fig. 2.3, is used for all numerical simulations. The total nominal

active load is 3720 kW, and the total reactive load is 2300 kVar. The nominal

loads are shown in Fig. 2.4. There are three DERs, DER 1, DER 2, and

DER 3, located at buses 11, 24, and 32, respectively, with their respective

capacities being 2300 kW, 1500 kW, and 1200 kW. We assume the regulation

capacity of each DER equals to 10% of its total capacity. The nominal active

powers of DER 1, DER 2, and DER 3 are 2000 kW, 1000 kW, and 800 kW,

respectively, while their respective nominal reactive powers are 0 kVar, 0

kVar, and 162.6 kVar. We assume the reactive power control at buses 0 and

11 aims to maintain a constant voltage magnitude of 1 p.u. while no reactive

power control is employed at any other buses. Throughout the simulation,

we set η = 1 and γ = 0.97.

In the simulation, the power demanded by load i is generated using P d
i [k] =

P d0
i (1 + νi), where P d0

i denotes the demand nominal value, and νi is a zero-

mean Gaussian random variable with standard deviation being σi = 0.01

24



0 5 10 15 20 25 30

bus

0

200

400

600

lo
ad

 (
k

W
/k

V
ar

) active

reactive

Figure 2.4: The nominal loads in the IEEE 33-bus distribution test feeder.

0 5 10 15 20 25 30

bus

-0.05

0

0.05

0.1

0.15

0.2

L
F

 (
p

.u
./

p
.u

.)

active

reactive

total

Figure 2.5: Actual LFs at nominal loads.

[23]. The term P d0
i νi models random load fluctuations, which are assumed

to be independent of each other. The regulation signal is taken from PJM

[55]. This signal is updated every two seconds; correspondingly, we update

the DER set-pints every two seconds.

The actual LFs are obtained through the following procedures. First, by

solving the ac power flow using Matpower [56], we compute the change in the

total system loss caused by a sufficiently small amount of change in the net

injection at each bus. Then, the actual LFs can be obtained as the quotient

of the change in the total system loss that results from the aforementioned

computation and the change in the net injection at each bus. The actual LFs

at the nominal operating point are shown in Fig. 2.5. As can be seen from

Fig. 2.5, the active LFs, reactive LFs, and the total LFs have distinct values.

Therefore, in the absence of the knowledge of Φ, we can hardly obtain the

accurate total LFs from the model.
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Figure 2.6: Error of LF approximation.

2.5.2 LF Approximation Error

The LFs can be used to linearly approximate the nonlinear loss function; as

such, computing system losses using LFs may incur errors. We compare the

incremental total system loss approximated using the total LFs with their

actual values obtained by directly solving the power flow equations. The

results are presented in Fig. 2.6, where the incremental losses are normalized

using the total system loss at the nominal operating point, and the incre-

mental power injection is normalized using the nominal total loads. The

results in Fig. 2.6 indicate that the LFs are effective in computing the ap-

proximate losses when the incremental power injections are relatively small,

which is suitable for the application considered in this chapter, i.e., coordi-

nating DERs to provide frequency regulation services.

2.5.3 LF Estimation Accuracy

Next, we show the accuracy of the total LFs estimated using the data-driven

approach as measured by the mean absolute error (MAE). Given the actual

total LFs, Λ[k], and the estimated total LFs, Λ̂[k], the MAE of the LF

estimation, denoted by ε[k], is calculated as follows:

ε[k] =
1⊤
N |Λ̂[k]−Λ[k]|

N
. (2.32)

Assume we have an initial estimation of Λ̂ and F at 0 s, which corresponds

to time instant 0, obtained by solving (2.19). The LFs estimated using the
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data-driven approach (indicated by “measurement”) and the model-based

approach (indicated by “model”) are shown in Fig. 2.7, together with the

actual LFs (indicated by “actual”). Note that in the model-based approach,

the active LFs are used as estimates for the total LFs. At time instant 0,

ε[0] = 0.0051 in the data-driven approach, which is relatively small. Yet,

we have ε[0] = 0.0593 for the model-based approach, which is one order of

magnitude greater than the values obtained using the data-driven approach.

This is expected since the impacts of reactive LFs on the total LFs are

ignored in the model-based approach due to the lack of knowledge of Φ.

As such, in later simulations, results from the model-based approach are no

longer presented. After the first estimation, the RWLS algorithm is used

to dynamically update Λ̂ and F . The LF estimation errors between 0 s

and 300 s are presented in Fig. 2.8. The average estimation error in the

data-driven approach is 0.0037.
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Figure 2.9: LF estimation errors under operating point change.

To illustrate the adaptivity of the data-driven approach to operating point

changes, we simulate a case where the nominal loads increase linearly by 20%

from 60 s to 120 s. In the meantime, the nominal active power injections from

DERs also increase commensurably. Under this setup, the LF estimation er-

rors during the time interval (0, 300] s are presented in Fig. 2.9. The average

estimation error in the data-driven approach is 0.0077, while the maximum

estimation error is 0.0288. The estimation errors start to increase when the

operating point begins to change at 60 s and starts to decrease when the

changes end at 120 s. This is intuitively reasonable since the during the time

when the operating point changes, the majority of existing measurements

provide information on old operating points, based on which we can hardly

get accurate estimates at the current operating point. After the operating

point change ends, the newly obtained measurements provide more informa-

tion on the new operating point and the impacts from the measurements on

the old one decay due to the weights we assigned.

2.5.4 Quantification of Frequency Regulation Performance

The proposed framework is compared with the participation factor (PF)

based coordination approach, where the PFs are nonnegative real numbers

that are proportional to the regulation capacity of each DER and sum up

to 1. The total incremental changes in the active loads and the requested

regulation power are allocated to each DER based on the PFs. The effec-

tiveness of the proposed framework for frequency regulation is measured by

a performance score, the value of which at time instant k is computed as
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Figure 2.11: Performance scores of DERs providing frequency regulation
services.

follows:

1−
∑k

t=0 |y[t]− y0[t]− ρ[t]|
∑k

t=0 |ρ[t]|
. (2.33)

The frequency regulation performances using the PF-based approach, the

LF-based approach with estimated total LFs, as well as the LF-based ap-

proach with actual total LFs, are compared in Figs. 2.10 and 2.11. The

average performance score obtained using the PF-based approach is 0.8756;

that obtained using the LF-based approach with estimated total LFs is

0.9991; and that obtained using the LF-based approach with actual total

LFs is 0.9992. Obviously, the LF-based approaches perform much better

than the PF-based approach where system losses are ignored. Moreover, the

estimated-LF based approach performs almost equally as well as the actual-

LF based approach.

Next, we evaluate the performance scores under the same operating point
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changes described in Section 2.5.3. Figure 2.12 shows the frequency regu-

lation performances obtained using the LF-based approach with actual LFs

and estimated LFs. As is shown in Fig. 2.12, the regulation power still

tracks regulation signal accurately under operating point change. The av-

erage performance score using LF-based approach with estimated total LFs

is 0.9988, and that obtained using the LF-based approach with actual total

LFs is 0.9992. The slight decrease in the performance score obtained using

the estimated LFs is caused by the decrease in the estimation accuracy of

the total LFs. As explained in Section 2.5.3, the operating point changes

have impacts on the estimation accuracy of the total LFs, which directly

impacts the determination of regulation power provided by each DER. Yet,

the performance score decrease is negligible, showing the adaptivity of the

propose framework.
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2.6 Summary

In this chapter, we have proposed a data-driven coordination framework for

DERs connected to a lossy power distribution system to collectively provide

frequency regulation services to a bulk power system. The framework consists

of a recursive LF estimator and a controller that solves the ODCP formulated

using the estimated LFs. The estimator updates its sensitivity estimates at

the same timescale at which the controller updates the DER active power

injection set-points. The proposed LF estimator is capable of obtaining an

accurate estimate of the LFs that can capture the impacts of both active and

reactive power injections on system losses with little computational effort.

The inherent nature of the estimator makes it adaptive to system condition

changes. Numerical simulation demonstrated that the proposed framework

is more effective in coordinating the DERs to provide frequency regulation

services, compared to the approach in which system losses are neglected.

The work presented in this chapter was published in [57].
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CHAPTER 3

DER COORDINATION FOR ACTIVE

POWER PROVISION: A TWO-TIMESCALE

FRAMEWORK

3.1 Introduction

In this chapter, we continue studying the problem of coordinating the re-

sponse of a set of DERs in a power distribution system so that they col-

lectively provide some amount of active power to the bulk power system.

A major shortcoming of the framework proposed in Chapter 2 is that the

performance of the estimator may be poor in the presence of measurement

collinearity. In this chapter, we propose an improved data-driven DER coor-

dination framework that can resolve the measurement collinearity issue and

mitigate its impact on estimation accuracy.

The proposed framework consists of three components, namely (i) a model

of the system describing the relation between the variables of interest to the

problem, i.e., DER active power injections and power exchanged between

the distribution and bulk power systems, (ii) an estimator, which provides

estimates of the parameters that populate the model in (i), and (iii) a con-

troller that uses the model in (i) with the parameters estimated via (ii) to

determine the active power injection set-points of the DERs by solving the

ODCP. Specifically, an LTV IO model is adopted as the system model to

capture the relation between the DER active power injections (inputs) and

the total active power exchange (output). The parameters in this model are

estimated by the estimator via the solution of a box-constrained quadratic

program, obtained by using the projected gradient descent (PGD) algorithm.

The focus in this chapter is on the development of an estimation algorithm

that can efficiently and effectively estimate the parameters in the IO model.

Inspired by ideas in power system identification [58, 59], we introduce ran-

dom perturbations in the DER active power injections during the estimation

process to resolve the potential collinearity issue in the measurements used
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by the estimator. The random perturbations are injected on a timescale that

is faster than the one at which the controller updates the DER active power

injection set-points. Therefore, we refer to the data-driven framework pro-

posed in this chapter as a two-timescale framework, so as to distinguish the

one proposed in Chapter 2.

We show that the estimation algorithm converges almost surely (a.s.) un-

der some mild conditions, i.e., the estimated parameters converge to the true

parameters a.s., and the total provided active power also converges to the

required amount, as long as the DERs have collectively enough incremental

capacity. Using the estimated IO model, the ODCP to be solved by the

controller can be formulated as a convex optimization problem, which can

be solved easily.

The remainder of this chapter is organized as follows. The IO system

model and the ODCP of interest are described in Section 3.2. The com-

ponents of the data-driven DER coordination framework are presented in

Section 3.3. A description of the algorithm used in the framework, as well as

its convergence analysis, is provided in Section 3.4. The proposed framework

is demonstrated via numerical simulations on a IEEE 123-bus distribution

test feeder in Section 3.5. We summarize this chapter in Section 3.6.

3.2 Preliminaries

In this section, we introduce the IO system model adopted in this chapter

and then review the ODCP for the active power provision problem.

3.2.1 Input-Output System Model

Let y denote the active power exchanged between the distribution and bulk

power systems via bus 0, defined to be positive if the flow is from the sub-

station to the bulk power system. Conceptually, y can be represented as a

function of pg, qg, pd, qd. Note also qg is typically set according to some

specific reactive power control rules to achieve certain objectives such as con-

stant voltage magnitude or constant power factor, and thus is a function of
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pg,pd, qd. Then, y can be written as a function of pg,pd, qd as follows:

y = h(pg,pd, qd), (3.1)

where h(·) captures the impacts from both the physical laws as well as reac-

tive power control. We emphasize that although the voltage control problem

is not explicitly modeled here, we assume certain voltage control schemes

exist in the power distribution system such that the voltage profile will be

maintained within an acceptable range. Indeed, voltage control schemes may

have a significant impact on h.

Note that the explicit form of h is difficult to obtain; however, we can make

the following assumption on h:

Assumption 1. The function h is differentiable and its first order partial

derivatives with respect to pg belong to [b1, b1], where b1, b1 are some known

constants. In addition, ∂h
∂pg is a Lipschitz function, i.e., there exists b2 > 0

such that ∥
∥
∥
∥

∂h

∂pg

∣
∣
∣
∣
a

− ∂h

∂pg

∣
∣
∣
∣
b

∥
∥
∥
∥
≤ b2‖a− b‖,

where a, b ∈ [pg,pg].

Assumption 1 implies that, for fixed loads, the rate of change in y is

bounded for bounded changes in the DER active power injections. In addi-

tion, the total active power provided to the bulk power system will increase

when more active power is injected in the power distribution system. This as-

sumption holds when the system is at a normal operating condition without

line congestions.

3.2.2 Optimal DER Coordination Problem

The DERs in the distribution system can collectively provide active power

to the bulk power system as quantified by the power exchange between both

systems at the substation bus. For example, the DERs can provide demand

response services or frequency regulation services to the bulk power system;

in both cases, the DERs need to be coordinated in such a way that the total

active power provided to the bulk power system, y, tracks some pre-specified

value, denoted by y⋆. The objective of the ODCP is to determine the DER
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active power injections, pg, that minimize some cost function, e.g., one that

reflects the cost of active power provision, while respecting to the following

constraints:

[C1.] the active power exchanged between the distribution and bulk power

systems via bus 0, y, tracks some pre-specified value y⋆;

[C2.] the active power injection from each DER i ∈ N g, does not exceed its

corresponding capacity limits, i.e., pg ≤ pg ≤ pg;

[C3.] the power flow on each line ℓ ∈ L, does not exceed its maximum ca-

pacity, i.e., −f ≤ f ≤ f .

While constraint C2 is a hard constraint that cannot be violated, constraint

C3 may be allowed to be violated slightly for a short period. The ODCP

can be formulated as the following optimization problem:

minimize
pg∈[pg,pg]

c(pg), (3.2)

subject to

h(pg,pd, qd) = y⋆, (3.3)

−f ≤M−1(Cpg − pd) ≤ f , (3.4)

where c(·) denotes the cost function of the active power injections, M is

the reduced node-to-edge incidence matrix as in (1.15), C is the mapping

matrix between DER indices and buses as in (1.1). Note that active power

losses are taken into account when computing the active power exchange in

(3.3), but are ignored when computing the active power line flows in (3.4),

which is based on (1.15). The ODCP in (3.2)–(3.4) extends the ODCP in

(2.29)–(2.31) with a more general cost function and the consideration of line

flow constraints.

This problem is difficult, however, when the model describing the power

exchange with the bulk power system, as captured by h, is unknown.
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3.3 Coordination Framework

In this section, we describe the building blocks of the proposed framework,

namely an LTV IO model, an estimator, and a controller.

3.3.1 Overview

The DER coordination framework consists of three components, namely (i)

an LTC model of the system describing the relation between y and u, (ii)

an estimator that provides estimates of the parameters—the so-called sensi-

tivity vector—that populate the model in (i), and (iii) a controller that uses

the model in (i) with the parameters estimated via (ii) to solve the ODCP

in (3.2)–(3.4). This framework works on two timescales—a slow one and a

fast one, as illustrated in Fig. 3.1. On the slow timescale, the controller

determines the DER active power injection set-points by solving the ODCP

periodically. The sensitivity vector is also updated by the estimator period-

ically. However, during each update of the sensitivity vector, the estimator

needs to take actions in several iterations on a fast timescale. Since the sen-

sitivity vector may not change significantly in a short time, it is used in the

ODCP for several time instants before it is updated again. Before we proceed

to presenting the detailed components in the proposed framework, we make

the following assumption:

Assumption 2. pd and qd are constant during the estimation process; there-

fore, changes in y that occur across iterations in the estimation process de-
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pend only on changes in pg.

Remark 1. Assumption 2 allows us to determine the impacts of the DER

active power injections on the output. When the load variability is signifi-

cant enough so that it cannot be neglected during the estimation process, it

becomes necessary to measure the loads and determine their impacts on the

output as well. This is beyond the scope of the dissertation, and therefore

we will leave it as future work.

3.3.2 Input-Output System Model

For notational simplicity in the later development, define u = pg, u = pg,

u = pg, and π = [(pd)⊤, (qd)⊤]⊤; then, (3.1) can be written as:

y = h(u,π). (3.5)

Unless otherwise noted, throughout this chapter, x[k] denotes the value

that some variable x takes at iteration k. It follows from (3.5) and Assump-

tion 2 that y[k−1] = h(u[k−1],π) and y[k] = h(u[k],π). Then, by the Mean

Value Theorem, there exists ak ∈ [0, 1] and ũ[k] = aku[k] + (1− ak)u[k − 1]

such that

y[k]− y[k − 1] = h(u[k],π)− h(u[k − 1],π)

= φ[k]⊤(u[k]− u[k − 1]),

where φ[k]⊤ = [φ1[k], · · · , φn[k]] =
∂h

∂u

∣
∣
∣
∣
ũ[k]

,1 is referred to as the sensitivity

vector at iteration k. Note that φ = 1n−CΛ, where Λ is the total LF vector

as in (2.7). It follows from Assumption 2 that φi[k] ∈ [b1, b1], i = 1, · · · , n.
Therefore, at any iteration k, (3.5) can be transformed into the following

equivalent LTV IO model:

y[k] = y[k − 1] + φ[k]⊤(u[k]− u[k − 1]). (3.6)

1We adopt the convention that the partial derivative of a scalar function with respect

to a vector is a row vector.
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3.3.3 Estimator on Fast Timescale

As illustrated in Fig. 3.1, the estimator updates the sensitivity vector across

several iterations on the fast timescale. At iteration k, the objective of the

estimator is to obtain an estimate of φ[k], denoted by φ̂[k], using measure-

ments collected up to iteration k, i.e., y[k−1],u[k−1], y[k−2],u[k−2], · · · ;
we formulate this estimation problem as follows:

φ̂[k] = argmin
φ̂∈B

Je(φ̂) =
1

2
(y[k − 1]− ŷ[k − 1])2, (3.7)

subject to

ŷ[k − 1] = y[k − 2] + φ̂⊤(u[k − 1]− u[k − 2]), (3.8)

where B = [b1, b1]
n, Je(·) is the cost function of the estimator, and ŷ[k − 1]

is the value of y[k− 1] estimated by the IO model at iteration k. Essentially,

the estimator aims to find φ̂ that minimizes the squared error between the

estimated value and the true value of y. Then, φ̂[k] is used in the controller

to determine the control for the next time instant.

During the estimation process, it is still necessary to track the output

target. Therefore, at each iteration, the control is set based on the solution

to the following problem:

u[k] = argmin
u∈U

Jc(u) =
1

2
(y⋆ − ŷ[k])2, (3.9)

subject to

ŷ[k] = y[k − 1] + φ̂[k]⊤(u− u[k − 1]), (3.10)

where U = [u,u], and Jc(·) is the cost function. Note that φ̂[k] is used in

(3.10) to predict the value of y[k] for a given u. Different from the ODCP

in (3.2)–(3.4), the objective of the controller during the estimation process

is to ensure that the output tracks the target and there may exist multiple

solutions to this problem. This objective is chosen such that the DER active

power injections behave in a way that can improve the estimation accuracy,

as will be shown later in Section 3.4.
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3.3.4 Controller on Slow Timescale

As illustrated in Fig. 3.1, the controller solves the ODCP to determine the

least-cost active power set-points for DERs on the slow timescale. Meanwhile,

it also forces the DERs to inject random active power perturbations at each

iteration on the fast timescale. The ODCP to be solved by the controller is

as follows:

minimize
pg∈[pg,pg]

c(pg), (3.11)

subject to

y + φ̂⊤(pg − p̃g) = y⋆, (3.12)

−f ≤M−1(Cpg − pd) ≤ f , (3.13)

where y is the output and p̃g is the DER active power injection vector at

the beginning of the current time instant, and φ̂ is the up-to-date sensitivity

vector. When c is a convex function, (3.11)–(3.13) is a convex problem and

therefore can be solved easily with convergence guarantees. This formulation

is obtained by replacing (3.3) with the estimated IO model in (3.12).

3.4 Estimation Algorithm and Its Convergence

The ODCP in (3.11)–(3.13) can be solved using existing algorithms for convex

optimization and thus we do not discuss it in more detail here. In this section,

we focus on the problem faced by the estimator and propose a PGD based

algorithm to solve it. We then provide convergence results for the proposed

algorithm.

3.4.1 Estimation Algorithm

We first describe the basic workflow of the proposed algorithm. Each itera-

tion consists of an estimation step and a control step. At the beginning of

iteration k, y[k − 1] is available to the estimator, which uses it to update

the estimate of the sensitivity vector. The updated estimate of the sensi-

tivity vector, φ̂[k], is then used in the controller to determine the control,
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u[k]. Then, the DERs are instructed to change their active power injection

set-points based on u[k]. At time instant k + 1, the estimation and control

iterations are repeated once y[k] becomes available. The sequential process

described above, which happens on the fast timescale, is illustrated as follows:

· · ·u[k − 1]→ y[k − 1]→ φ̂
︸ ︷︷ ︸
estimation step

control step
︷ ︸︸ ︷

[k]→ u[k]→ y[k]→ φ̂[k + 1] · · ·

Problems (3.7)–(3.8) and (3.9)–(3.10) can be solved using the PGDmethod

(see, e.g., [60]). Let PV1→V2
denote the projection operator from a vector

space V1 to its (arbitrary) subspace V2, i.e.,

PV1→V2
(v1) = argmin

v2∈V2

‖v2 − v1‖,

where v1 ∈ V1. For ease of notation, when the vector space to which v1

belongs is unambiguous, we simply write PV2
(v1) instead of PV1→V2

(v1).

Define the tracking error at iteration k as e[k] = y[k] − y⋆. In addition,

define ∆y[k] = y[k] − y[k − 1] and ∆u[k] = u[k] − u[k − 1]. The partial

derivative vector of Je(φ̂) with respect to φ̂ is

∂Je(φ̂)

∂φ̂
= ∆u[k − 1](∆u[k − 1]⊤φ̂−∆y[k − 1]), (3.14)

and that of Jc(u) with respect to u is

∂Jc(u)

∂u
= φ̂[k](φ̂[k]⊤(u− u[k − 1]) + e[k − 1]). (3.15)

Instead of solving these two problems to completion, we iterate the PGD

algorithm that would solve them for one step at each iteration. Specifically,

at iteration k, we evaluate the new gradient at φ̂[k − 1] and u[k − 1] and

iterate once. Thus, by using (3.14) and (3.15), the update rules for φ̂ and u,

respectively, are

φ̂[k] = PB

(

φ̂[k − 1]− αk∆u[k − 1](∆u[k − 1]⊤φ̂[k − 1]−∆y[k − 1])
)

,

(3.16)

u[k] = PU

(

u[k − 1]− βke[k − 1]φ̂[k]
)

, (3.17)
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Algorithm 3.1: Estimation Algorithm

Input:
y: output
y⋆: output tracking target
δ: maximum allowed tracking error
φ̂0: initial estimate of sensitivity vector
u0: initial DER active power injection set-point

Output:
u: DER active power injection set-point
φ̂: estimate of sensitivity vector

Initialization: set φ̂[0] = φ̂0, u[−1] = u[0] = u0, obtain
measurement of y[−1], set k = 1
while |e[k]| > δ do

obtain new measurement of y[k − 1]
compute e[k − 1] = y[k − 1]− y⋆

compute ∆y[k − 1] = y[k − 1]− y[k − 2]
compute ∆u[k − 1] = u[k − 1]− u[k − 2]
update the sensitivity vector estimate according to

φ̂[k] =PB

(

φ̂[k − 1]− αk∆u[k − 1]

(∆u[k − 1]⊤φ̂[k − 1]−∆y[k − 1])
)

update the control vector, u, according to

u[k] = PU

(

u[k − 1]− βke[k − 1]W [k]φ̂[k]
)

change DER active power injections to u[k]
set k = k + 1

end

where αk > 0 and βk > 0 are estimation and control step sizes at iteration k.

In order to resolve the potential issue of collinearity in the measurements

used by the estimator, we introduce random perturbations during the es-

timation process. Define W [k] = diag(w1[k], . . . , wn[k]), where wi[k]’s are

independent random variables that follow a Bernoulli distribution with a

probability parameter of 0.5. Then, the control update rule in (3.17) is mod-

ified, resulting in:

u[k] = PU

(

u[k − 1]− βke[k − 1]W [k]φ̂[k]
)

. (3.18)
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Intuitively, this means that, at each iteration, the control of each DER is

updated with probability 0.5. The random perturbation in the control is key

to establish convergence of the parameter estimation process. The estima-

tion algorithm, along with its initialization, is summarized in Algorithm 3.1,

where u0 is the vector of DER active power injections at the beginning of the

time instant at which the estimation starts and φ̂0 is the up-to-date estimate

of the sensitivity vector at the beginning of the same time instant.

3.4.2 Convergence Analysis

The convergence analysis of the control step during the estimation process

relies on the following two lemmas.

Lemma 1. There exists φ̄[k] satisfying 0n ≤ φ̄[k] ≤ φ̂[k], such that (3.18)

is equivalent to

u[k] = u[k − 1]− βke[k − 1]W [k]φ̄[k].

Also, φ̄[k] = 0n if and only if u[k] = u or u[k] = u. Furthermore, if u[k] 6= u
and u[k] 6= u, there exists i ∈ N g such that φ̄i[k] = φ̂i[k] ∈ [b1, b1].

Proof. If u[k−1]−βke[k−1]W [k]φ̂[k] ∈ U , then we simply set φ̄[k] = φ̂[k].

Without loss of generality, first consider the case where the following holds

for some i ∈ N g:

ui[k − 1]− βke[k − 1]wi[k]φ̂i[k] > ui. (3.19)

Then, e[k − 1] < 0 and wi[k] > 0 since otherwise (3.19) cannot hold. There-

fore,

ui[k] = PU(ui[k − 1]− βke[k − 1]wi[k]φ̂i[k]) = ui. (3.20)

Let φ̄i[k] =
ui[k − 1]− ui

βke[k − 1]wi[k]
; by definition, φ̄i[k] = 0 if and only if ui[k− 1] =

ui. Then, we have that:

ui[k] = ui[k − 1]− βke[k − 1]wi[k]φ̄i[k]. (3.21)
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If follows from (3.19), (3.20), and (3.21) that

βke[k − 1]φ̂i[k]wi[k] < βke[k − 1]φ̄i[k]wi[k], (3.22)

which leads to 0 ≤ φ̄i[k] < φ̂i[k]. A similar argument can be used to for the

case where ui[k − 1]− βke[k − 1]wi[k]φ̂i[k] < ui and for some i ∈ N g.

If u[k] 6= u and u[k] 6= u, then there exists i ∈ N g such that ui < ui[k] <

ui, which implies

ui[k] = ui[k − 1]− βke[k − 1]wi[k]φ̂i[k]. (3.23)

Therefore, φ̄i[k] = φ̂i[k]. Consequently, φ̄i[k] = φ̂i[k] ∈ [b1, b1]. It can be

easily seen that if U is sufficiently large and no DER hits its capacity limits,

then φ̄[k] = φ̂[k].

Lemma 2. Let Xk, k = 1, 2, · · · , be independently identically distributed

(i.i.d.) random variables. Assume Xk > 0 and E [Xk] ∈ (0, 1), where E

denotes expectation. Let Yk =
∏k

i=1Xi. Then, limk→∞ Yk = 0 a.s.

Proof. Note that Yk = exp
(
∑k

i=1 logXi

)

, where exp (·) denotes the expo-

nential function. By the Strong Law of Large Numbers (see Proposition 2.15

in [61]), we have that

lim
k→∞

k∑

i=1

1

k
logXi = E [logX1] , a.s. (3.24)

By Jensen’s inequality (see Theorem 2.18 in [61]), we have that

E [logX1] ≤ logE [X1] < 0. (3.25)

Therefore,

lim
k→∞

k∑

i=1

k
1

k
logXi = −∞, a.s., (3.26)
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which leads to

lim
k→∞

Yk = lim
k→∞

exp

(
k∑

i=1

k
1

k
logXi

)

= exp

(

lim
k→∞

k∑

i=1

k
1

k
logXi

)

= 0, a.s.; (3.27)

this completes the proof.

Using Lemma 1 and Lemma 2, we can prove the following convergence

result for the control step:

Theorem 1. Using the estimation update rule in (3.16) and the control

update rule in (3.18) with βk ∈ ( ǫ

b2
1

, 1

nb
2

1

), where 0 < ǫ <
b2
1

nb
2

1

is a given pa-

rameter, the system attains one of the following equilibria: 1) e[k] converges

to 0 a.s.; 2) e[k] converges to some positive constant and u[k] stays at u; 3)

e[k] converges to some negative constant and u[k] stays at u. In all cases,

limk→∞∆u[k] = 0n, where 0n ∈ R
n is an all-zeros vector.

Proof. By (3.6), we have that

e[k]− e[k − 1] = φ[k]⊤∆u[k]. (3.28)

By Lemma 1, we have that

∆u[k] = −βke[k − 1]W [k]φ̄[k], (3.29)

where 0n ≤ φ̄[k] ≤ φ̂[k]. Substituting (3.29) into (3.28) leads to

e[k] = (1− βkφ[k]
⊤W [k]φ̄[k])e[k − 1]. (3.30)

Define ρk = 1− βkφ[k]
⊤W [k]φ̄[k], then

e[k] = e[0]
k∏

i=1

ρi. (3.31)

By Assumption 2, 0 < b1 ≤ φi[k] ≤ b1. In addition, it follows from Lemma

1 that 0 ≤ φ̄i[k] ≤ φ̂i[k] ≤ b1. Therefore, φ[k]
⊤W [k]φ̄[k] can be bounded as
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follows:

0 ≤ φ[k]⊤W [k]φ̄[k] =

n∑

i=1

wi[k]φi[k]φ̄i[k] ≤ nb
2

1. (3.32)

Since βk < 1

nb
2

1

, then all e[k] has the same sign for all k (positive if e[0] > 0,

and negative otherwise). As a result, the entries of ∆u[k] always have the

same sign by (3.29).

(a) If e[k] = 0 for some k ∈ N, then ∆u[k + 1] = 0n. The control and

estimation algorithms will stop updating according to (3.16) and (3.18). In

this case, u[k] may equal to u or u or neither, and the system attains an

equilibrium.

(b) Now suppose e[k] 6= 0, ∀k ∈ N. Since the increments of u always have

the same sign, the entries of u cannot hit their bounds in different directions,

i.e., some hit their lower bounds while others hit their upper bounds.

(b.1) If u[k] = u for some iteration k, then e[k] > 0, ∀k ∈ N. By (3.18), we

have that

u[k + 1] = PU(u− βke[k]W [k + 1]φ̂[k + 1]) = u. (3.33)

Thus, ∆u[k+1] = 0n, which leads to e[k+1] = e[k] by (3.28). Therefore, u

will equal to u and e[k′] = e[k] > 0 for all k′ > k.

Similarly, when u[k] = u, u will be equal to u, and e will be equal to

e[k] < 0 in all future time intervals. The system attains an equilibrium in

both cases.

(b.2) If u[k] 6= u and u[k] 6= u, ∀k ∈ N, by Lemma 1, there exists i ∈ N g

such that φ̄i[k] ∈ [b1, b1]. Then,

φ[k]⊤W [k]φ̄[k] =

n∑

i=1

φi[k]φ̄i[k]wi[k] ≥ b21wi[k]. (3.34)

Thus, by using (3.32) and (3.34), it follows that ρk ∈ [1−βknb
2

1, 1−βkb
2
1wi[k]].

Define ρk = 1 − ǫwi[k], then ρk equals to 1 − ǫ or 1, each with probability

0.5, and E [ρk] = 1 − ǫ
2
∈ (0, 1). Note that 0 < ǫ <

b2
1

nb
2

1

implies ρk > 0. By
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Lemma 2,

lim
k→∞

k∏

i=1

ρi = 0, a.s. (3.35)

When βk ∈ ( ǫ

b2
1

, 1

nb
2

1

), 0 ≤ ρk ≤ ρk. Then, in an a.s. sense,

lim
k→∞
|e[k]| = |e[0]| lim

k→∞

k∏

i=1

ρi ≤ |e[0]| lim
k→∞

k∏

i=1

ρi = 0. (3.36)

Since |e[k]| ≥ 0, limk→∞ |e[k]| = 0 a.s. In addition, by (3.29), limk→∞∆u[k] =

0n a.s.

Remark 2. If U is sufficiently large and no DER hits the capacity limits, then

φ̄[k] = φ̂[k] and φ[k]⊤W [k]φ̄[k] ≥ b21
∑n

i=1wi[k]. Following a similar argu-

ment as in part (b.2) in the proof of Theorem 1, we can show e[k] converges

to 0 a.s. when βk ∈ ( ǫ

nb2
1

, 1

nb
2

1

), where 0 < ǫ <
b2
1

b
2

1

.

Theorem 1 shows something intuitive, i.e., the tracking error will be posi-

tive (negative) if the requested active power is less (more) than the minimum

(maximum) amount of active power the DERs can provide; otherwise, the

tracking error goes to zero a.s.

We note that ǫ has a direct impact on the convergence rate of the control

algorithm. This is more obvious in a deterministic setting, when the control

update rule in (3.17) is used instead of the one in (3.18). A result on the

convergence rate is given in the following corollary.

Corollary 1. Assume u[k] 6= u and u[k] 6= u, ∀k ∈ N. Using the estimation

update rule in (3.16) and the control update rule in (3.17) with βk ∈ ( ǫ

b2
1

, 1

nb
2

1

),

where ǫ > 0 is a given parameter, e[k] converges to 0 at a rate smaller that

1− ǫ, i.e.,
∣
∣
∣

e[k]
e[k−1]

∣
∣
∣ < 1− ǫ.

Proof. When the control update rule in (3.17) is used instead of the one in

(3.18),

e[k] = (1− βkφ[k]
⊤φ̄[k])e[k − 1]. (3.37)

If u[k] 6= u and u[k] 6= u, φ[k]⊤φ̄[k] = φi[k]φ̄i[k] ≥ b21. Define ρk = 1 −
βkφ[k]

⊤φ̄[k]. When βk ∈ ( ǫ

b2
1

, 1

nb
2

1

), ρk < 1 − ǫ. Therefore,
∣
∣
∣

e[k]
e[k−1]

∣
∣
∣ = ρk <

1− ǫ.
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Next, we establish the convergence of the estimation step. Define the

estimation error vector at iteration k as ε[k] = φ̂[k]− φ[k]. Since both φ̂[k]

and φ[k] are bounded, ε[k] is also bounded. Define ∆φ[k] = φ[k]−φ[k− 1].

The convergence analysis of the estimation step uses some convergence

results for ∆φ[k], which are presented next.

Lemma 3. Let Xk, k = 1, 2, · · · , be i.i.d. random variables that take value

1 with probability 0.5, or some constant x ∈ (0, 1), also with probability 0.5.

Let Yk =
∏k

i=1Xi and Z =
∑∞

i=1 Yi. Then, Z is bounded a.s.

Proof. Let K denote the maximum number of 1’s that appear continuously

in the sequence {Xk}; then, the sequence {Yk} will have a new (smaller)

value at most after K + 1 steps. We claim Z is unbounded only if K is

infinite. Suppose Xj = x, and Xk = 1 for k = j + 1, · · · , j + m, then

Yj = Yj+1 = · · · = Yj+m and
∑j+m

i=j Yj = (m+ 1)Yj ≤ (K + 1)Yj. Therefore,

Z =
∞∑

i=1

Yi ≤ (K + 1)
∞∑

i=0

xi =
K + 1

1− x
. (3.38)

It follows from (3.38) that Z is unbounded only if K is infinite. However,

P {M =∞} ≤ P {Xi+1 = · · · = Xi+K = 1, for some i} = 1
2∞

= 0, where P

denotes probability. Thus, Z is bounded a.s.

Lemma 4. Using estimation update rule (3.16) and control update rule

(3.18), with βk ∈ ( ǫ

nb2
1

, 1

nb
2

1

), where 0 < ǫ <
b2
1

b
2

1

is a given parameter, then

lim
k→∞
‖∆φ[k]‖ = 0, a.s. (3.39)

and

∞∑

k=1

‖∆φ[k]‖ <∞, a.s. (3.40)

Proof. If follows from the proof of Theorem 1 that the entries of ∆u[k] always

have the same sign. First consider the case where ∆u[k] ≥ 0n for all k ∈ N.

Note that φ[k]⊤ =
∂h

∂u

∣
∣
∣
∣
ũ[k]

, where ũ[k] = aku[k] + (1 − ak)u[k − 1] with

ak ∈ [0, 1], i.e., u[k − 1] ≤ ũ[k] ≤ u[k]. Similarly, φ[k − 1]⊤ =
∂h

∂u

∣
∣
∣
∣
ũ[k−1]

,
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where u[k − 2] ≤ ũ[k − 1] ≤ u[k − 1]. Thus, by Assumption 2, we have that

‖∆φ[k]‖ ≤ b2‖ũ[k]− ũ[k − 1]‖
≤ b2‖u[k]− u[k − 2]‖
= b2‖∆u[k] + ∆u[k − 1]‖
≤ b2(‖∆u[k]‖+ ‖∆u[k − 1]‖). (3.41)

Since limk→∞‖∆u[k]‖ = 0 a.s. by Theorem 1, as a result, limk→∞(‖∆u[k]‖+
‖∆u[k − 1]‖) = 0 a.s., which gives

lim
k→∞
‖∆φ[k]‖ = 0, a.s. (3.42)

Assume u[k] = 0n for all k < 0, then we have that

∞∑

k=1

‖∆φ[k]‖ ≤
∞∑

k=1

b2(‖∆u[k]‖+ ‖∆u[k − 1]‖)

≤ 2b2

∞∑

k=0

‖∆u[k]‖

≤ 2b2

∞∑

k=0

‖βkW [k]φ̂[k]e[k − 1]‖

≤ 2b2

nb
2

1

√
nb1

∞∑

k=0

|e[k − 1]|

=
2b2√
nb1

∞∑

k=−1

|e[k]|. (3.43)

Recall that ρk equals to 1 − ǫ or 1, each with probability 0.5, where ρk is

defined in the proof of Theorem 1. Therefore, by Lemma 3,
∑∞

k=1

∏k

i=1 ρi is

bounded a.s. When βk ∈ ( ǫ

b2
1

, 1

nb
2

1

), 0 ≤ ρk ≤ ρk, and

∞∑

k=0

|e[k]| = |e[0]|(1 +
∞∑

k=1

k∏

i=1

ρi) ≤ |e[0]|(1 +
∞∑

k=1

k∏

i=1

ρi). (3.44)

As a result,
∑∞

k=−1 |e[k]| is bounded a.s. since |e[−1]| is also bounded. The

case where ∆u[k] ≤ 0n for all k ∈ N can be proved similarly.

The convergence analysis of the estimation step also relies on the following

lemma (see Theorem 1 in [62]).
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Lemma 5. Let Xk, Yk, Zk, k = 1, 2, · · · , be non-negative variables in R such

that
∑∞

k=0 Yk < ∞, and Xk+1 ≤ Xk + Yk − Zk, then Xk converges and
∑∞

k=0Zk <∞.

Using Lemma 4 and Lemma 5, we can prove the following convergence

result for the estimation step:

Theorem 2. Using the estimation update rule in (3.16) and the control

update rule (3.18), with αk+1 = 2
‖∆u[k]‖2 , βk ∈ ( ǫ

nb2
1

, 1

nb
2

1

), where 0 < ǫ <
b2
1

b
2

1

is a given parameter, if u[k] ∈ (u,u) and e[k] 6= 0, ∀k ∈ N, then ‖ε[k]‖
converges to 0 a.s.

Proof. Consider an arbitrary sample path. Without loss of generality, assume

e[k] < 0, it follows from Theorem 1 that e[k] < 0, ∀k ∈ N. Since u[k] ∈
(u,u), ∀k ∈ N, (3.18) becomes

∆u[k] = −βke[k − 1]W [k]φ̂[k]. (3.45)

It follows from (3.6) and (3.16) that

φ̂[k + 1] = PB(φ̂[k]− αk+1∆u[k]∆u[k]
⊤ε[k]). (3.46)

By definition, the estimation error at iteration k is

ε[k + 1] = PB(φ̂[k]− αk+1∆u[k]∆u[k]
⊤ε[k])− φ[k + 1]. (3.47)

Since φ[k + 1] = PB(φ[k + 1]), by the non-expansiveness of the projection

operation (see Proposition 1.1.9 in [63]), then

‖ε[k + 1]‖ ≤ ‖ε[k]− αk+1∆u[k]∆u[k]
⊤ε[k]−∆φ[k + 1]‖

≤ ‖ε[k]− αk+1∆u[k]∆u[k]
⊤ε[k]‖+ ‖∆φ[k + 1]‖. (3.48)

Let g(αk+1) = ‖ε[k]− αk+1∆u[k]∆u[k]
⊤ε[k]‖2; then, g attains its minimum

at αk+1 =
1

‖∆u[k]‖2 , which is

‖ε[k]‖2 − (ε[k]⊤
∆u[k]

‖∆u[k]‖)
2 = ‖ε[k]‖2 − (ε[k]⊤

W [k]φ̂[k]

‖W [k]φ̂[k]‖
)2. (3.49)

Define cos θk = ε[k]⊤

‖ε[k]‖
W [k]φ̂[k]

‖W [k]φ̂[k]‖
. Consequently, g(αk+1) = (1− sin2 θk)‖ε[k]‖2,
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and

‖ε[k + 1]‖ ≤ | sin θk|‖ε[k]‖+ ‖∆φ[k + 1]‖. (3.50)

Let Xk = ‖ε[k]‖, Yk = ‖∆φ[k + 1]‖, and Zk = (1− | sin θk|)‖ε[k]‖. Then,
Xk+1 ≤ Xk + Yk − Zk. Also,

∑∞
k=0 Yk =

∑∞
k=1‖∆φ[k]‖ < ∞ by Lemma 4.

Therefore, by Lemma 5, ‖ε[k]‖ converges, and∑∞
k=1(1−| sin θk|)‖ε[k]‖ <∞,

which further implies limk→∞(1−| sin θk|)‖ε[k]‖ = 0. Let ε⋆ denote the limit

of ‖ε[k]‖; then,

lim
k→∞
| sin θk|‖ε[k]‖ = lim

k→∞
(| sin θk| − 1)‖ε[k]‖+ lim

k→∞
‖ε[k]‖

= ε⋆. (3.51)

Next, we show ε⋆ = 0 by contradiction. Assume ε⋆ > 0. Since both ‖ε[k]‖
and | sin θk|‖ε[k]‖ converge to ε⋆,

lim
k→∞
| sin θk| =

limk→∞ | sin θk|‖ε[k]‖
limk→∞‖ε[k]‖

= 1, (3.52)

which implies | cos θk| converges to 0. Since ‖ε[k]‖ and ‖W [k]φ̂[k]‖ are

bounded, then |ε[k]⊤W [k]φ̂[k]| converges to 0. Define Ei[k] = {wj[k] =

1 if j = i, wj[k] = 0 otherwise}; then P {Ei[k]} = 1
2n
. Thus,

∑∞
k=1 P {Ei[k]}

equals to ∞. Also note that Ei[k], k ∈ N, are independent. By the Borel-

Cantelli Lemma (see Lemma 1.3 in [61]), P {Ei[k] infinitely often} = 1; there-

fore, there are infinitely many time instants that wi[k] = 1 and wj[k] =

0 for all j 6= i. Let Ki denote the set of such time instants. Then

|ε[k]⊤W [k]φ̂[k]| = |εi[k]φ̂i[k]| for k ∈ Ki. The sequence {|εi[k]φ̂i[k]|, k ∈ Ki}
is a subsequence of {|ε[k]⊤W [k]φ̂[k]|}; therefore, it also converges to 0. Note

that φ̂[k] > 0; thus, εi[k] converges to 0. Since i is arbitrary, we conclude

that ‖ε‖[k] converges to 0, which implies ε⋆ = 0, contradiction. Since this

result holds for all sample paths, then we conclude that ‖ε[k]‖ converges to
0 a.s.

The intuition is that the estimation error goes to zero if the system can be

continuously excited (guaranteed by the condition u[k] ∈ (u,u) and e[k] 6= 0,

∀k ∈ N).
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Figure 3.2: IEEE 123-bus distribution test feeder.

3.5 Numerical Simulation

In this section, we illustrate the application of the proposed DER coordina-

tion framework and validate the theoretical results presented earlier. From

a practical point of view, the timescale separation illustrated in Fig. 3.1 is

critical for the applicability of the proposed framework. Specifically, the es-

timation process needs to be much faster than the timescale governing the

load changes. The DERs, which are typically power electronics interfaced,

can respond very quickly, on a timescale of millisecond to second [64]. In this

simulation, we set the duration between two iterations to be 100 ms. We will

show later that under this setup, the requirements on the time separation

can be reasonably met.

A modified three-phase balanced IEEE 123-bus distribution test feeder

from [65] (see Fig. 3.2 for the one-line diagram) is used for all numerical sim-

ulations. This balanced test feeder has a total active power load of 3000 kW,

and a total reactive power load of 1575 kVAr. DERs are added at buses

19, 26, 38, 49, 56, 64, 78, 89, 99. We assume each DER can output active
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power from 0 kW to 100 kW. Therefore, the maximum DER active power

injections account for 30% of the nominal loads. To illustrate the impacts

of reactive power control, we assume all DERs operate at unity power fac-

tor except DERs at buses 78 and 89, which are assumed to have enough

reactive power capacity and maintain a constant voltage magnitude of 0.95

p.u. Yet, we would like to emphasize that the proposed algorithm is agnos-

tic to the underlying reactive power control scheme and also works under

other reactive power control schemes. In addition, to validate the effective-

ness of the proposed algorithm under different operating conditions of the

power distribution system, we assume there are some uncontrollable renew-

able energy resources in the power distribution system, which are modeled as

negative loads. The underlying nonlinear power flow problem is solved using

Matpower [56].

In all subsequent simulations, we set b1 = 0.8, b1 = 1.2, which are reason-

able values for real power systems. Intuitively, these values indicate that the

percentage of active power losses will be no greater than 20% of the total

active power injections. Note that the exact value of b2 is not necessary.

Under this simulation setting, as given in Theorem 1, the upper bound of

the control step size is 1

nb
2

1

≈ 0.0694.

We note that comprehensive simulations including the two timescales can

be done using data such as ones adopted in [18]. However, since the ODCP

to be solved on the slow timescale is a standard problem, we will mainly

focus on simulations for the fast timescale, where our major contributions

lie.

3.5.1 Case I

In this case, we assume the power distribution system is importing energy

from the bulk power system with y = −3110 kW. This corresponds to the

situation where the uncontrollable renewable energy resources are not gener-

ating more active power than that needed by the loads. In addition, we set

φ̂0 = 1n and u0 = 0n.

Tracking Performance During Estimation

For y⋆ = −3000 kW and a constant step size βk = 0.02, the DER active
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Figure 3.3: DER active power injections for βk = 0.02 and y⋆ = −3000 kW
in Case I. (Legends indicate DER buses.)
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Figure 3.4: Tracking error for βk = 0.02 under various tracking targets in
Case I. (Legends indicate values of y⋆.)

power injections are shown in Fig. 3.3. The non-smoothness in the active

power profiles is caused by the random perturbation imposed on the control

step. Also as shown in Fig. 3.4, the convergence rate of the tracking error

is not affected by the tracking target, i.e., the total active power required

from the bulk power system. The tracking error e[k] under various constant

control step sizes is shown in Fig. 3.5. As expected, a larger step size will

reduce the tracking error faster than a small step size.

Estimation Accuracy

With βk = 0.02 and y⋆ = −3000 kW, true and estimated sensitivities are

compared in Table 3.1 and the MAE of estimation errors, i.e.,
∑n

i=1 |εi[k]|/n,
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Table 3.1: Estimated Sensitivities in Case I After 60 Iterations

bus 19 26 38 49 56

true 1.0394 1.0413 1.0426 1.0454 1.0467
estimate 1.0342 1.0390 1.0440 1.0468 1.0421

bus 64 78 89 99

true 1.0702 1.0703 1.0749 1.0711
estimate 1.0696 1.0697 1.0817 1.0702
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Figure 3.6: MAE of estimation errors with βk = 0.02 in Case I. (Legends
indicate the values of initial estimates.)

is plotted in Fig. 3.6. The estimated sensitivities are very close to their true

values after 60 steps, which corresponds to 6 s. Note that φ̂0 has an important

impact on the convergence of the sensitivity estimation algorithm. As can
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estimation step sizes in Case I. (Legends indicate values of αk.)
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Figure 3.8: MAE of estimation errors under various control step sizes in
Case I. (Legends indicate values of βk.)

be seen from Fig. 3.6, when the initial values of the estimated sensitivities

are set to 1.05, which is closer to their true values, it takes much less time

to obtain a small estimation error.

While the estimation step size, αk, in the proposed algorithm is adaptive,

we also investigate the case when αk is chosen to be constant. Figure 3.7

shows the MAE of estimation error under various constant estimation step

sizes. As can be seen from Fig. 3.7, the MAE of estimation will converge to

some non-zero constant under constant estimation step sizes.

The impact of the control step sizes on the estimation accuracy is also

investigated. Figure 3.8 shows the MAE of estimation errors under various

control step sizes. With a large control step size, the tracking error converges
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Figure 3.9: Tracking error for βk = 0.02 under various tracking targets in
Case II. (Legends indicate values of y⋆.)

to 0 quickly, leading to a situation where the system cannot get sufficient

excitation and consequently, the estimation errors cannot be further reduced.

3.5.2 Case II

In this case, we assume the power distribution system is exporting energy to

the bulk power system with y = 1000 kW. This corresponds to the situation

where the uncontrollable renewable energy resources are generating much

more active power than that needed by the loads. We set φ̂0 = 1n and

u0 = 0n.

Tracking Performance During Estimation

Using a constant step size βk = 0.02, the convergence rate of the tracking

error under various tracking target is shown in Fig. 3.9. Similar to results in

Case I, the convergence rate is not affected by the tracking target.

Estimation Accuracy

With βk = 0.02 and y⋆ = 1100 kW, true and estimated sensitivities are

compared in Table 3.2 and the MAE of estimation errors is plotted in Fig.

3.10, respectively. Similar to the results in Case I, the estimated sensitivities

are very close to their true values after 60 steps. This verifies that the

proposed estimation algorithm can effectively estimate the sensitivities under

different operating conditions of the power distribution system.
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Table 3.2: Estimated Sensitivities in Case II After 60 Iterations

bus 19 26 38 49 56

true 0.9533 0.9526 0.9518 0.9509 0.9254
estimate 0.9588 0.9512 0.9497 0.9475 0.9285

bus 64 78 89 99

true 0.8872 0.8477 0.8488 0.8700
estimate 0.8854 0.8536 0.8396 0.8707
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Figure 3.10: MAE of estimation errors with βk = 0.02 in Case II.

We note that the performance of the proposed estimation algorithm is

independent of the number of DERs. To see this, we simulate a case where

the DER at bus 99 gets disconnected and consequently there are 8 DERs left

in the power distribution system. The sensitivities at these 8 DER buses can

still be estimated effectively, as is shown in Fig. 3.11.

3.5.3 Case III

In this case, we illustrate how the proposed framework handles line conges-

tions. The setup is the same as Case II except that the tracking target is

y⋆ = 1500 kW. We set the capacity limit of line (55, 56) to 40 kW to create

congestion. For simplicity, all other lines are assumed to have an infinite

capacity; yet, we would like to emphasize that the proposed framework can

handle multiple congestion of multiple lines. The objective function in the

ODCP is assumed to be c(pg) = ‖pg − p̃g‖2, where p̃g is the current DER

active power injection vector as used in (3.11). Intuitively, this objective
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Figure 3.11: MAE of estimation errors with βk = 0.02 in Case II with 8
DERs.

function will favor the solution with the least change in the DER active

power injections.

The estimation algorithm is first run to obtain an estimate of the sensitivity

vector. After the estimation algorithm ends, the DER at bus 56 is generating

51.3 kW, which exceeds the capacity limit of line (55, 56). The ODCP is run

afterwards to adjust the active power set-points of the DERs. Figure 3.12

shows the DER active power set-point before and after solving the ODCP.

The DER at bus 56 is dispatched down to 40 kW, which conforms with

the capacity limit of line (55, 56). All other DERs are dispatched up such

that the active power exchanged between the distribution and bulk power

systems still equals to 1500 kW. We note that line (55, 56) is overloaded for

a short period during the estimation process but it is quickly restored to a

normal loading level after the DER active power set-points are adjusted via

the ODCP.
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Figure 3.12: DER active power set-point before and after solving the
ODCP in Case III.

3.6 Summary

In this chapter, we have proposed a data-driven coordination framework

for DERs in a lossy power distribution system, the model of which is not

completely known, to collectively provide some pre-specified amount of active

power to a bulk power system at a minimum generating cost, while respecting

distribution line capacity limits. The proposed framework consists of an LTV

IO model, an estimator, and a controller.

We have shown that using the estimation algorithm proposed in the frame-

work, the estimated parameters converge to the true parameters a.s., and the

total provided active power converges to the required amount during the esti-

mation process. The data-driven nature of this framework makes it adaptive

to various system operating conditions. We validated the effectiveness of the

proposed framework through numerical simulations on a modified version of

the IEEE 123-bus test feeder.

The work presented in this chapter was published in [66].
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CHAPTER 4

DER COORDINATION FOR REACTIVE

POWER REGULATION

4.1 Introduction

In this chapter, we address the problem of DER coordination for reactive

power regulation, or equivalently, voltage control, so as to maintain the volt-

age magnitude at each bus in a radial power distribution system within a

desirable range. Following the same spirit of the data-driven approaches

pursued in previous chapters, we propose a data-driven DER coordination

framework for voltage control that consists of three fundamental building

blocks: (i) an IO model that captures the relation between the voltage mag-

nitudes and power injections, (ii) an estimator of the IO model based on

measurements, and (iii) a controller that solves an ODCP—the objective

of which is to minimize the voltage excursions outside a desirable voltage

range—that uses the IO model estimated in (ii).

Specifically, we will take advantage of the LinDistFlow model to simplify

the nonlinear relationships between voltage magnitudes and power injections.

The coefficients of the LinDistFlow model are essentially the sensitivities of

the squared voltage magnitudes with respect to active and reactive power

injections, referred to as the voltage sensitivities, and can be computed di-

rectly using system topology and line parameter information. Assuming the

knowledge of feasible topology configurations and distribution line “r-to-x”

ratios, which are typically available and do not change during a relatively

short time period, the true topology configuration and corresponding line

parameters can be estimated effectively using a few voltage magnitude and

power injection measurements. Using the estimated voltage sensitivities, the

optimal DER power injections can be readily determined by solving a convex

ODCP. Theoretical analysis shows that the voltage sensitivities of interest

are easily identifiable.
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The remainder of the chapter is organized as follows. In Section 4.2, the IO

model adopted in this chapter and the voltage regulation problem are intro-

duced. The details of the proposed data-driven DER coordination framework

for reactive power regulation are presented in Section 4.3. The identifiability

of the voltage sensitivities is analyzed in Section 4.4. The effectiveness of

the proposed framework is validated in Section 4.5 through numerical simu-

lations. We summarize this chapter in Section 4.6.

4.2 Preliminaries

In this section, we briefly review the IO model adopted in this chapter and

describe the ODCP of interest.

4.2.1 Input-Output System Model

Consider the power distribution system described in Section 1.2.1. The rela-

tion between the vector of squared voltage magnitude deviation v, and the

vectors of active and reactive power injections, p and q, is recapped here as

follows:

ṽ = Rp +Xq, (4.1)

where ṽ is a vector of difference between squared voltage magnitudes for

buses 1 to N and that for bus 0; p and q are vectors of active and reac-

tive power injections, respectively; R = 2(M−1)⊤diag(r)M−1, and X =

2(M−1)⊤diag(x)M−1 in which r and x are vectors of line resistances and

reactances, respectively; and M is the reduced node-to-edge incidence ma-

trix. The inputs in (4.1) are the active and reactive power injections, while

the outputs are the deviations of squared voltage magnitudes.

Note that the topology of the power distribution system is uniquely de-

termined by M ; therefore, we also refer to M as the system topology con-

figuration. A power distribution system may be operated under various fea-

sible topology configurations. Let M = {M1, · · · ,Mτ} denote the set of

τ feasible topology configurations of the power distribution system. Note

that each topology configuration is associated with a vector of “r-to-x” ra-
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tios. Let ζℓ denote the “r-to-x” ratio of line ℓ, i.e., rℓ/xℓ = ζℓ, and define

ζ = [ζ1, · · · , ζL]⊤. Let Z = {ζ1, · · · , ζτ} denote the set of τ “r-to-x” ratio

vectors associated withM.

4.2.2 Optimal DER Coordination Problem

The objective here is to maintain the voltage magnitude at each bus i ∈ N ,

of the power distribution system within a pre-specified interval [V i, V i], 0 ≤
V i ≤ V i. Voltage regulation in power distribution systems can be effectively

accomplished by a two-timescale architecture (see, e.g., [10]), where on the

slow timescale, slower actuation devices including load tap changers and

capacitor banks are adjusted to minimize voltage deviations from the desired

range, and on the fast timescale, fast actuators such as DERs are dispatched.

In this chapter, we focus solely in the later mechanism for achieving voltage

regulation on the fast timescale. Then, the problem is to determine DER

active and reactive power injections so that

[C1.] the active and reactive power injections from each DER i ∈ N g do not

exceed its corresponding capacity limits, i.e., pg ≤ pg ≤ pg, qg ≤ qg ≤
qg; and

[C2.] the voltage magnitude at each bus i ∈ N is within the pre-specified

interval, i.e., V i ≤ Vi ≤ V i.

In addition, among all feasible values of pg and qg, we would like to select

the ones that minimize some cost function, which reflects the cost of voltage

deviations as well as the cost of active and reactive power provision.

Except for M and Z, which are known, we assume no prior information

on the voltage sensitivity matrices. The voltage regulation problem cannot

be solved without knowing the voltage sensitivity matrices. Therefore, we

will resort to a data-driven approach to estimate voltage sensitivity matrices

from measurements of voltage magnitudes and power injections.

4.3 Coordination Framework

In this section, we propose a data-driven DER coordination framework for

voltage regulation. We first give an overview of the framework and then
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Figure 4.1: Data-driven voltage regulation framework.

present the details of its fundamental building blocks.

4.3.1 Framework Overview

The proposed DER coordination framework consists of three components:

an IO model that takes DER power injections as inputs and squared voltage

magnitudes deviations as outputs, a voltage sensitivity estimator and a volt-

age controller. The interaction between the different components and the

power distribution system is illustrated via the block diagram in Fig. 4.1.

The estimator component contains a topology estimator that determines the

topology configuration of the power distribution system, i.e., it determines

M , and a parameter estimator that estimates the line parameters r and x

using measurements of power injections and voltage magnitudes. The esti-

mates of the voltage sensitivity matrices R and X, denoted respectively by

R̂ and X̂ , are computed from estimates ofM , r, and x. After that, R̂ and

X̂ are sent to the voltage controller. The voltage controller then computes

the set-points for the DER active and reactive power injections that mini-

mize some cost function subject to constraints C1 and C2. The DERs will

be instructed to inject the amount of active and reactive power determined

by the voltage controller. A new set of measurements will be available once

the DERs have modified their power injections. These measurements will be

used by the estimator to update R̂ and X̂ so as to reflect any changes in

them. The detailed formulations for the voltage sensitivity problem and the

voltage regulation problem are presented next.
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4.3.2 Voltage Sensitivity Estimator

At time instant k+1, assume we have measurements V0[t], V [t], p[t], q[t], t =

0, 1, · · · , k, where the index t indicates that the corresponding measurement

is obtained at time instant t. To reduce the computational burden, we select

a subset of measurements, denoted by K = {k − m, · · · , k}. The voltage

sensitivities can be estimated based on the LinDistFlow model in (4.1). The

goal of the voltage sensitivity estimator at time instant k is to estimate the

values ofR andX from the measurements obtained at the time instants in K.
We propose a voltage sensitivity estimator that consists of two components: a

parameter estimator and a topology estimator. The former aims to estimate

the line parameters given the topology configuration, i.e.,M , while the later

aims to determine M from M based on the results from the parameter

estimator.

Parameter estimator

For a givenM ∈M, estimating R and X boils down to estimating r and

x. Let r̂ and x̂ denote the estimates of r and x, respectively. We can then

formulate the parameter estimation problem by using the relation in (4.1) as

(r̂, x̂) = argmin
(r,x)

∑

t∈K

ηk−t‖Rp[t] +Xq[t]− ṽ[t]‖2, (4.2)

subject to

R = 2(M−1)⊤diag(r)M−1, (4.3)

X = 2(M−1)⊤diag(x)M−1, (4.4)

where η ∈ (0, 1] is a forgetting factor. Essentially, the objective of the param-

eter estimator is to find the line parameters that fit the LinDistFlow model

best for a given topology configuration.

We next show that (4.2)–(4.4) has a closed-form solution. First note that

the matrix diag(x) can be decomposed as follows:

diag(x) =

L∑

ℓ=1

xℓeℓe
⊤
ℓ , (4.5)

where eℓ is the ℓth basis vector in R
L, i.e., all entries in eℓ are 0 except the
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ℓth entry, which is equal to 1. Using (4.5), we obtain that

Xq[t] = 2(M−1)⊤diag(x)M−1q[t]

= 2(M−1)⊤
L∑

ℓ=1

xℓeℓe
⊤
ℓ M

−1q[t]

=
L∑

ℓ=1

Γℓq[t]xℓ, (4.6)

where Γℓ = 2(M−1)⊤eℓe
⊤
ℓ M

−1. Similarly,

Rp[t] =

L∑

ℓ=1

Γℓp[t]rℓ

=
L∑

ℓ=1

Γℓζℓp[t]xℓ. (4.7)

Let ρℓ[t] = η
k−t
2 (ζℓp[t] + q[t]), ℓ ∈ L, and define

Ψ[k] =







Γ1ρ1[k −m] · · · ΓLρL[k −m]
...

...
...

Γ1ρ1[k] · · · ΓLρL[k]






, (4.8)

and

ψ[k] = [η
m
2 ṽ[k −m]⊤, · · · , η 0

2 ṽ[k]⊤]⊤. (4.9)

Note that Ψ[k] ∈ R
(m+1)N×L and ψ[k] ∈ R

(m+1)N are dependent on K. Then
(4.2) can be equivalently formulated in the classical form of a linear regression

problem as follows:

minimize
x

‖Ψ[k]x−ψ[k]‖2, (4.10)

the solution of which is given by

x̂ = Ψ[k]†ψ[k], (4.11)

where Ψ[k]† = (Ψ[k]⊤Ψ[k])−1Ψ[k]⊤ denotes the pseudo-inverse of Ψ[k].

When Ψ[k]⊤Ψ[k] is singular, Ψ[k]† can be obtained via singular value decom-
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position (SVD). Note that Ψ[k] needs to have full rank, i.e., rank(Ψ[k]) = L,

in order to be able to estimate x. The resistance vector is estimated as

r̂ = diag(ζ)x̂. (4.12)

Topology estimator

Define a residual vector, denoted by ε, as follows:

ε = R̂p+ X̂q − ṽ, (4.13)

where

R̂ = 2(M−1)⊤diag(r̂)M−1, (4.14)

X̂ = 2(M−1)⊤diag(x̂)M−1. (4.15)

Given a set of measurements, we can compute a residual vector for each

M ∈M.

The objective of the topology estimator is to find M ∈ M such that a

weighted sum of ‖ε‖ over several time instants is minimized. At time instant

k + 1, the topology estimation problem can be formulated as:

M̂ = argmin
M∈M

ǫM , (4.16)

with

ǫM =
∑

t∈K

ηk−t‖ε[t]‖, (4.17)

where ε[t] is computed through (4.13) to (4.15). We refer to ǫM as the

residual error associated with topology configuration M . Essentially, the

topology estimator selects the topology under which the residual error ǫM

is minimized, where the line parameters are estimated by the parameter

estimator. The intuition here is that different topology configurations will

impose different structural constraints on voltage sensitivity matrices, which

consequently impacts the residual error. The true topology configuration is

expected to result in the least residual error. The voltage sensitivity estima-
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Algorithm 4.1: Voltage Sensitivity Estimation

Input:
M: set of feasible topology configurations
Z: set of “r-to-x” ratio vectors
p[t], q[t], v[t]: active power, reactive power, voltage magnitude

measurements, t ∈ K
Output:

M̂ : estimated topology configuration
r̂, x̂: estimated line parameters

for M ∈M, ζ ∈ Z do
Construct Ψ and ψ according to (4.8) and (4.9)
Compute pseudo-inverse of Ψ, i.e., Ψ†

Compute line parameters using

x̂ = Ψ†ψ,

r̂ = diag(ζ)x̂

Compute voltage sensitivities using

R̂ = 2(M−1)⊤diag(r̂)M−1

X̂ = 2(M−1)⊤diag(x̂)M−1

Compute the residual error via

ǫM =
∑

t∈K

ηk−t‖R̂p[t] + X̂q[t]− ṽ[t]‖2

end

Select topology configuration M̂ according to

M̂ = argmin
M∈M

ǫM

Select line parameters r̂, x̂ to be the ones associated with M̂

tion algorithm is summarized in Algorithm 4.1.

4.3.3 Voltage Controller

The voltage controller aims to determine the set-points for the DER active

and reactive power injections while meeting all requirements discussed in

Section 4.2.2. Note that for a given set of power injections, the resulting
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voltage magnitude at each bus can be estimated using (4.1), where R̂ and

X̂ are used instead of R and X. Define v = [V 2
1, · · · , V 2

N ]
⊤ and v =

[V
2

1, · · · , V
2

N ]
⊤. Then, the voltage control problem can be formulated as

the following convex program:

minimize
pg,qg

c(pg, qg) (4.18)

subject to

v = R̂(Cpg − pd) + X̂(Cqg − qd) + v01N , (4.19)

pg ≤ pg ≤ pg, (4.20)

qg ≤ qg ≤ qg, (4.21)

with

c(qg) =(pg)⊤W ppg + (qg)⊤W qqg

+ β1‖[v − v]+‖2 + β2‖[v − v]+‖2, (4.22)

where W p = diag(wp
1, · · · , wp

n), W
q = diag(wq

1, · · · , wq
n) are non-negative

diagonal matrices, and the operator [·]+ returns its argument if the argument

is positive and zero otherwise, and β1 and β2 are non-negative weights. The

first two terms of c(·) are the costs associated with the active and reactive

power injections, respectively, while the last two terms penalize the violation

of constraint C2.

Constraint (4.19) is the LinDistFlow model, which is used to predict the

voltage magnitudes for given power injections. Note that pd and qd are

measured before solving the voltage control problem. Solving (4.18)–(4.21)

gives the optimal set-points for the DER active and reactive power injections.

4.4 Voltage Sensitivity Identifiability

In this section, we first introduce the path matrix and then analyze the

conditions under which the line parameters and correspondingly voltage sen-

sitivities can be identified.
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4.4.1 Path Matrix

Let Pi ⊆ L denote the set of lines that form a path from bus 0—referred to

as the root—to bus i. Since the power distribution system is radial, then Pi

is unique (see Theorem 2.1.4 in [67]). Bus i is a leaf if for all j ∈ N \ {i},
(i, j) /∈ E , i.e., there are no distribution lines starting at bus i. We say bus i

is closer to the root than bus j if |Pi| < |Pj |, where | · | denotes the cardinality
of a set. In defining M , we choose the sending end of a line to be the bus

that is closer to the root. Let P = [Pℓi] ∈ R
L×N denote the path matrix of

G, with Pℓi = 1 if line ℓ is on Pi, and all other entries equal to zero. Under

this setup, the relation between P and M is given by the following lemma.

Lemma 6. P and M are related as follows: M−1 = −P . (see also Theo-

rem 2.10 in [68].)

Proof. Consider the entry at the ith row and jth column in MP , which is
∑L

ℓ=1MiℓPℓj.

1. Consider first the case when i = j. If line ℓ is not connected to bus i,

then Miℓ = 0. If line ℓ starts at bus i, then Miℓ = 1 and Pℓi = 0

(because line ℓ is not on Pi—the path from the root to bus i). If

line ℓ ends at bus i, then Miℓ = −1 and Pℓi = 1. Obviously, there

is one line that ends at bus i. Moreover, such a line is unique since

otherwise there would be two paths from the root to bus i. Therefore,
∑L

ℓ=1MiℓPℓi = MiℓiPℓii = −1, where line ℓi ∈ L is the line that ends at

bus i.

2. Next consider the case where i 6= j. Similar to the previous case, we

only need to consider the lines that start from or end at bus i.

(a) If line ℓ ends at bus i, then Miℓ = −1. If ℓ /∈ Pj , then Pℓj = 0

and MiℓPℓj = 0. If ℓ ∈ Pj , then Pℓj = 1. In the latter case,

there must exist a unique line ℓ′ ∈ Pj that starts at bus i. Then

MiℓPℓj +Miℓ′Pℓ′j = −1 + 1 = 0. Therefore,
∑L

ℓ=1MiℓPℓj = 0.

(b) If line ℓ starts at bus i, then Miℓ = 1. If ℓ /∈ Pj, then Pℓj = 0

and MiℓPℓj = 0. If ℓ ∈ Pj , then Pℓj = 1. In the latter case, there

must exist a unique line ℓ′ ∈ Pj that ends at bus i. Similar to the

previous argument,
∑L

ℓ=1MiℓPℓj = 0.
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To summarize,
∑L

ℓ=1MiℓPℓj equals to 1 if i = j and 0 otherwise; therefore,

M−1 = −P .

The path matrix plays an important role in the identifiability analysis of

the voltage sensitivities to be detailed next.

4.4.2 Identifiability Analysis

Before presenting the result on the identifiability of voltage sensitivities, we

introduce the concept of downstream buses.

Definition 1. If line ℓ ∈ Pi, ℓ ∈ L, i.e., line ℓ is on the path from the root

to bus i, then bus i is a downstream bus of line ℓ. The set of downstream

buses of line ℓ is denoted by Nℓ.

As discussed in Section 4.3.2,Ψ[k] needs to have a full rank, i.e., rank(Ψ[k])

equals to L, in order to estimate x according to (4.11). When Ψ does not

have a full rank, some of the line parameters cannot be estimated from the

measurements. The main results for the voltage sensitivity identifiability is

stated as follows:

Theorem 3. The parameters of line ℓ ∈ L are identifiable if and only if the

following condition is satisfied for some t ∈ K:
∑

i∈Nℓ

ζℓpi[t] + qi[t] 6= 0. (4.23)

Proof. Using the path matrix, Γℓ can be written as Γℓ = 2P⊤eℓe
⊤
ℓ P . Note

that P⊤eℓ is the ℓth column of P⊤ and Γℓ is a rank-one matrix. Let πℓ =

P⊤eℓ, then P
⊤ = [π1, · · · ,πL]. Thus,

Γℓ = 2P⊤eℓe
⊤
ℓ P

= 2πℓπ
⊤
ℓ , (4.24)

and Ψ[k] can be written as

Ψ[k] = 2







π1π
⊤
1 ρ1[k −m] · · · πLπ

⊤
LρL[k −m]

...
...

...

π1π
⊤
1 ρ1[k] · · · πLπ

⊤
LρL[k]






. (4.25)
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Let L = L0∪L1, where L1 and L0 are the index sets of lines that meet and

do not meet the conditions in (4.23), respectively. Without loss of generality,

the lines can be re-labeled so that L0 corresponds to the left columns of Ψ

and L1 to the right columns of Ψ. If line ℓ ∈ L0, then ∀t ∈ K,
∑

i∈Nℓ

ζℓpi[t] + qi[t] = 0. (4.26)

Note that the ith entry in πℓ is 1 if and only if bus i is a downstream bus

of line ℓ. Essentially, the non-zero entries in πℓ, which are ones, indicate the

downstream buses of line ℓ. Therefore, it follows from (4.26) that, ∀t ∈ K:

π⊤
ℓ ρℓ[t] = 0. (4.27)

Consequently, all entries in the ℓth column of Ψ[k] are zero, and the value of

xℓ does not affect the objective function in (4.10). Under such condition, xℓ

cannot be identified. For line ℓ ∈ L0, we can remove the ℓth column of Ψ[k],

the ℓth entry of x and ψ[k] to obtain a reduced-size estimation problem.

Next we show that the line parameter can be identified as long as condition

(4.23) is satisfied. Without loss of generality, we assume L1 = L since other-

wise we can remove the left columns in Ψ that correspond to L0 to obtain a

reduced problem. Then, (4.27) is satisfied for all ℓ ∈ L and for some t ∈ K.
Assume rank(Ψ[k]) < L, then there exist a1, · · · , aL ∈ R, which are not all

zero, such that

Ψ[k][a1, · · · , aL]⊤ = 0mL, (4.28)

where 0mL is an mL-dimensional all-zeros vector. Without loss of generality,

assume a1, · · · , aL′ are not zero, while aL′+1, · · · , aL are all zero, where 1 <

L′ ≤ L. Then, it follows from (4.25) and (4.28) that

L′
∑

l=1

alπ
⊤
l ρl[t]πl = 0L. (4.29)

Since π1, · · · ,πL′ are linear independent, then alπ
⊤
l ρl[t] = 0 for ℓ = 1, · · · , L′.

However, since for any ℓ ∈ L there exists some t ∈ K such that π⊤
ℓ ρℓ[t] = 0,

then aℓ = 0 for ℓ = 1, · · · , L′, which leads to a contradiction. Therefore,
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rank(Ψ[k]) = L and the line parameters can be identified.

The voltage sensitivity matrices can be readily computed if all line pa-

rameters can be identified. If some line parameter cannot be identified, the

resulting voltage sensitivity matrices may not be accurate. This, however,

will not have any impact on the approximate relation between voltage mag-

nitudes and the active and reactive power injections in (4.19) since in such

cases the line parameter does not affect the voltage magnitudes anyway.

Specifically, if follows from (4.1), (4.6), and (4.7) that

ṽ[t] = Rp[t] +Xq[t]

= 2
L∑

ℓ=1

πℓπ
⊤
ℓ ρ[t]xℓ, (4.30)

in which π⊤
ℓ ρ[t] = 0 if xℓ cannot be identified. Therefore, for the purpose of

solving the optimization problem in (4.18), the proposed voltage sensitivity

estimation algorithm is still effective.

If we think of ζℓpi[t]+qi[t] as some “combined power” (in the sense that it is

a combination of active and reactive power), then (4.23) essentially indicates

that the sum of combined power injection at all downstream buses of line

ℓ is nonzero, or equivalently, there exists some combined power flow on line

ℓ. For any line for which the receiving end is a leaf, its parameter can be

identified as long as the combined power injection at the receiving end is

nonzero.

4.5 Numerical Simulation

In this section, we validate the effectiveness of the proposed framework using

a modified three-phase balanced IEEE 123-bus distribution test feeder from

[65], the topology of which is shown in Fig. 4.2. There are six switches, four

of which are normally closed while the other two are open so as to ensure

the system maintains a radial topology at all times. Under Assumption A2,

this feeder has nine possible topology configurations as listed in Table 4.1,

among which configuration 0 is the nominal one.

The loads are constructed based on historical hourly active power load

data from a residential building in San Diego [69]. Specifically, the historical
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Figure 4.2: IEEE 123-bus distribution test feeder.

Table 4.1: Switch Status Under Feasible Topology Configurations

config. s1 s2 s3 s4 s5 s6

0 closed closed closed closed open open
1 closed closed open closed closed open
2 closed closed closed open open closed
3 closed closed open closed open closed
4 closed open closed closed open closed
5 open closed closed closed open closed
6 closed closed open open closed closed
7 closed open open closed closed closed
8 open closed open closed closed closed

hourly active power load data are first normalized such that the maximum

active load becomes 1. Then, the time granularity of the normalized active

power load is increased to 1 second through a linear interpolation. Let d[k]

denote the kth value in the normalized 1-second active power load time series.

Each value in the resulting normalized 1-second system total active power

load data time series is further multiplied by a normally distributed variable,
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the mean and standard deviation of which is 1 and 0.01, respectively. Then,

the active and reactive power demanded by load i is constructed as follows:

pdi [k] = pd0i d[k](1 + 0.01µp[k]),

qdi [k] = qd0i d[k](1 + 0.01µq[k]),

where pd0i and qd0i are the nominal active and reactive power demanded by

load i, µp and µq are two standard Gaussian random variables.

Four DERs are added at buses 76, 97, 105, 112, respectively, with reactive

power outputs taking values in the interval [−200, 200] kVAr. We set the

weights in (4.22) to wp
i = 1 + 0.1i and wq

i = 1 + 0.1i, for i ∈ N g. For

simplicity, the active power outputs from DERs are fixed at zero; yet, the

proposed methodology can be directly applied to cases in which the active

power outputs from DERs are nonzero. The minimum and maximum voltage

magnitudes are 0.95 p.u. and 1.05 p.u., respectively. In addition, in (4.22),

we set β1 = β2 = 1 × 105. Unless otherwise specified, the forgetting factor

η is set to 1, and the underlying topology configuration is configuration 0,

i.e., the nominal one. While the LinDistFlow model was adopted for the

analysis, in the simulations, we use a full nonlinear power flow model and

solve it using Matpower [56].

4.5.1 Estimation Accuracy

Throughout this part, the DERs do not inject any reactive power into the

power distribution system.

Noise-free case

We first evaluate the accuracy of the proposed estimation algorithm in the

case where the measurements are noise-free. The algorithm is evaluated in

100 Monte Carlo simulation runs under various loading conditions. In each

simulation run, 10 sets of measurements are used to compute the residual

error. Residual errors are computed for each feasible topology configura-

tion inM, while the underlying true topology configuration is one of them.

Residual errors associated with topology configurations 0−3 and 6, when the

underlying topology configuration is configuration 6, are shown in Fig. 4.3.
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Figure 4.3: Residual errors under different topology configurations with 10
sets of noise-free measurements. (Legends indicate topology configurations.)
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Figure 4.4: Estimated and true values of line reactances using 10 sets of
noise-free measurements.

Residual errors associated with topology configurations 4, 5, 7, 8 are at least

one order of magnitude larger than those of the other configurations, and are

hence not plotted. Note that the case with the underlying topology config-

uration being configuration 6 is the one where the residual error differences

between topology configurations are the smallest. Yet, it is still obvious that

the true topology configuration results in the minimum residual error, which

is one order of magnitude smaller than those of other configurations.

The parameter estimation accuracy is evaluated using the mean absolute

percentage error (MAPE), given by 1
L

∑L

ℓ=1 |x̂ℓ/xℓ − 1| for x̂, and given by
1
L2

∑L

i=1

∑L

j=1 |X̂ij/Xij − 1| for X̂. Figure 4.4 shows the estimated line reac-

tances in one simulation run and one set of measurements is utilized. When

one set of measurements is utilized, a typical MAPE is 0.11% for x̂ and 1.16%

for X̂, both of which are really small. We note that the loading conditions
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Figure 4.5: Impacts of errors in r-to-x ratios on parameter estimation
accuracy in the noise-free case.
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Figure 4.6: Residual errors under different topology configurations with 60
sets of noisy measurements. (Legends indicate topology configurations.)

of the power distribution system do not affect the accuracy of the proposed

algorithm. The r-to-x ratios of all lines are assumed to be known. Figure

4.5 shows that the MAPE is almost linear with respect to the r-to-x ratio

errors. Therefore, relatively small error in the r-to-x ratios will not result in

a significant increase in the parameter estimator error.

Noisy case

To see the impacts of measurement noise, we add a white Gaussian noise

to all measurements such that the signal-to-noise ratio (SNR) is 92 dB, as

adopted in [70]. More measurements across time are required to obtain a

good estimation accuracy in the presence of measurement noise. The algo-
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Figure 4.7: Impacts of measurement numbers on parameter estimation
accuracy in the noisy case.

rithm is again evaluated in 100 Monte Carlo runs under the same setup as

the noise-free case, except that 60 sets of measurements—corresponding to

measurements collected in 1 minute—are used to compute the residual error.

Residual errors associated with configurations 0− 3 and 6 are shown in Fig.

4.6. Note that residual errors associated with topology configurations 4, 5, 7, 8

are one order magnitude larger than those of the other configurations, and

are hence not plotted. The true topology configuration, i.e., configuration

6, still results in the minimum residual error. We note that increasing the

number of measurements across time generally leads to a higher accuracy in

identifying the topology configuration.

The number of measurements has a direct impact on the estimation accu-

racy. As shown in Fig. 4.7, the MAPE of x̂ drops quickly when increasing

the number of measurements, approximately from 31.9% with one set of mea-

surements to 2.51% when 300 sets of measurements are used. The MAPE

of X̂—which is what really matters—is relatively insensitive to the num-

ber of measurements, being around 1.17%. Indeed, this result illustrates the

effectiveness of the proposed estimation algorithm.

Figure 4.8 shows the impacts of SNR on parameter estimation accuracy

when 300 sets of measurements are used. When the SNR is beyond 50 dB, the

MAPE of the voltage sensitivity matrix is within 3.6%, which is relatively

small. In the rest of the simulation, we assume a SNR of 92 dB for all

measurements.
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Figure 4.8: Impacts of SNR on parameter estimation accuracy when 300
sets of measurements are used.
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Figure 4.9: Minimum residual error under topology reconfiguration.

Accuracy under topology reconfiguration

The proposed algorithm works well not only under a fixed topology con-

figuration but also when topology reconfiguration occurs. To illustrate this,

we simulate a case where the underlying topology configuration is changed

from configuration 0 to configuration 3 at 31 s. A total of 60 sets of mea-

surements are used to compute the voltage sensitivities, i.e., |K| = 60. The

forgetting factor η is set to 0.6. The minimum residual error and the corre-

sponding estimated topology configuration are shown in Figs. 4.9 and 4.10,

respectively. A jump in the minimum residual error is observed when the

topology is reconfigured. The new topology is successfully identified after

6 s. Correspondingly, the MAPE of X̂ is also reduced to less than 2% after

6 s, as shown in Fig. 4.11.
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Figure 4.10: Estimated topology configuration under topology
reconfiguration.
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Figure 4.11: MAPE of X̂ under topology reconfiguration.
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Figure 4.12: Voltage profiles with model-based voltage regulation scheme
under topology reconfiguration.
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Figure 4.13: Voltage profiles with proposed voltage regulation scheme under
topology reconfiguration.
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Figure 4.14: DER reactive power injections with proposed voltage
regulation under topology reconfiguration.

4.5.2 Voltage Control Performance

Next, we show the performance of the voltage regulation framework proposed

in Section 4.3 in the same case as the one in the previous section with topology

reconfiguration, where the underlying topology configuration is changed from

configuration 0 to configuration 3 at 31 s. A model-based voltage regulation

scheme, which uses the voltage sensitivity matrices in (4.19) computed from

the LinDistFlow model but is not aware of the topology reconfiguration,

is used for the purpose of comparison. The voltage profiles with the model-

based and the proposed voltage regulation schemes are presented in Figs. 4.12

and 4.13, respectively, and the DER reactive power injections are shown in

Fig. 4.14. It is clear from the results that the proposed data-driven voltage

regulation framework is very effective and efficient in restoring the voltage
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magnitudes to the desirable range. This illustrates the adaptivity of our

voltage regulation framework to system condition changes such as topology

reconfiguration.

4.6 Summary

In this chapter, we have proposed a data-driven voltage regulation framework

for DERs in a balanced radial power distribution system. This framework

utilizes the LinDistFlow model that approximates the nonlinear relation be-

tween the voltage magnitudes and power injections, and estimates its param-

eters indirectly by estimating the topology configuration and the correspond-

ing line parameters. In particular, by exploiting the structural characteristics

of the power distribution system, the proposed estimation algorithm for the

voltage sensitivities requires much less data than existing algorithms. Using

the estimated voltage sensitivities, the optimal DER power injections can be

readily determined by solving a convex optimization problem.

Our theoretical analysis shows that the voltage sensitivities of interest are

easily identifiable. The inherent data-driven nature of the framework makes

it adaptive to changes in system operational conditions, such as topology

reconfigurations. Numerical simulations demonstrated that the voltage sen-

sitivities can be estimated accurately using a few sets of measurements even

under topology reconfiguration, consequently guaranteeing good voltage reg-

ulation performance.

The work presented in this chapter was published in [71] and submitted

for publication in [72].
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CHAPTER 5

OPTIMAL TAP SETTING OF LOAD TAP

CHANGERS

5.1 Introduction

In this chapter, we develop an algorithm that can find a policy for deter-

mining the optimal tap positions of the LTCs in a power distribution system

under uncertain load dynamics without any information on power injections

or line parameters; the algorithm requires only voltage magnitude measure-

ments and system topology information. Specifically, the optimal tap setting

problem is cast as an MDP, which can be solved using RL algorithms. Yet,

adequate state and action samples that sufficiently explore the MDP state

and action spaces are needed. However, it is hard to obtain such samples in

real power systems since this requires changing tap settings and other con-

trols to excite the system and record voltage responses, which may jeopardize

system operational reliability and incur economic costs. To circumvent this

issue, we take advantage of a linearized power flow model and develop an ef-

fective algorithm to estimate voltage magnitudes under different tap settings

so that the state and action spaces can be explored freely offline without

impacting the real system.

The dimension of the state and action spaces increases exponentially as the

number of LTCs grows, which causes the issue known as the “curse of dimen-

sionality” and makes the computation of the optimal policy intractable [73].

To circumvent the “curse of dimensionality,” we propose an efficient batch

RL algorithm—the least squares policy iteration (LSPI) based sequential

learning algorithm—to learn an action-value function sequentially for each

LTC. Once the learning of the action-value function is completed, we can

determine the policy for optimally setting the LTC taps. We emphasize that

the optimal policy can be computed offline, where most computational bur-

den takes place. However, when executed online, the required computation
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to find the optimal tap positions is minimal. The effectiveness of the pro-

posed algorithm is validated through simulations on two IEEE distribution

test feeders.

The remainder of the chapter is organized as follows. A modified version of

the LinDistFlow model that includes the effect of LTCs, and the optimal tap

setting problem, are introduced in Section 5.2. A primer on MDPs and the

LSPI algorithm is provided in Section 5.3. An MDP-based formulation for

the optimal tap setting problem is presented in Section 5.4 and an algorithm

to solve this problem is proposed in Section 5.5. Numerical simulation results

on two IEEE test feeders are presented in Section 5.6. We summarize this

chapter in Section 5.7.

5.2 Preliminaries

In this section, we modify the LinDistFlow (see Section 1.2.1) to include the

effect of LTCs.

5.2.1 Power Flow Model

The LinDistFlow model in (1.17) can be rewritten as follows:

M⊤v +mv0 = 2diag(r)M−1p+ 2diag(x)M−1q, (5.1)

where M is the reduced node-to-edge incidence matrix, p and q are vectors

of active and reactive power injections, respectively, r and x are vectors of

line resistances and reactances, respectively, v is a vector of squared voltage

magnitudes for buses 1 to N , and v0 is the squared voltage magnitude for

bus 0.

The standard model for an LTC in the literature is shown in Fig. 5.1

(see, e.g., [14]), where i =
√
−1, line ℓ is associated with (i, j), and tℓ is

the tap ratio of the LTC on line ℓ. Typically, the tap ratio can possibly

take on 33 discrete values ranging from 0.9 to 1.1, by an increment of 5/8%

p.u., i.e., tℓ ∈ T = {0.9, 0.90625, · · · , 1.09375, 1.1} [14]. Let ∆tℓ ∈ ∆T =

{0,±0.00625, · · · ,±0.19375,±0.2} denote a feasible LTC tap ratio change.

We index the 33 tap positions by −16, · · · ,−1, 0, 1, · · · , 16 for convenience.
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Figure 5.1: Load tap changer model.

Let Lt denote the set of lines with LTCs and let |Lt| = Lt, where | · |
denotes the cardinality of a set. For line ℓ that is associated with (i, j), if

ℓ ∈ Lt, the voltage relation in the LinDistFlow model needs to be modified

as follows:
1

t2ℓ
vi − vj = 2(rℓpij + xℓqij). (5.2)

Define t = [tℓ]
⊤ and ∆t = [∆tℓ]

⊤, ℓ ∈ Lt. Let M̃(t) = [M̃iℓ(t)] ∈ R
(N+1)×L,

with M̃iℓ(t) = 1 and M̃jℓ(t) = −1 if line ℓ ∈ L\Lt, M̃iℓ(t) =
1
t2
ℓ

and M̃jℓ(t) =

−1 if line ℓ ∈ Lt, and all other entries equal to zero. Let m(t)⊤ denote the

first row of M̃(t) andM(t) the matrix that results by removingm(t)⊤ from

M̃(t). The matrixM(t) is non-singular when the power distribution system

is connected. Then, the modified matrix-form LinDistFlow model that takes

into account the LTCs is given by:

M(t)⊤v +m(t)v0 = 2diag(r)M−1p+ 2diag(x)M−1q. (5.3)

5.2.2 Optimal Tap Setting Problem

To effectively regulate the voltages in a power distribution system, the tap

positions of LTCs need to be set appropriately. The objective of the optimal

tap setting problem is to find a policy π that determines the LTC tap ratio so

as to minimize the voltage deviation from some reference value, denoted by

v⋆, based on current tap ratios and measurements of the voltage magnitudes,

i.e., π : (t, v) → ∆t, t ∈ T Lt

, v ∈ R
N ,∆t ∈ ∆T Lt

. Throughout this

chapter, we make the following two assumptions:

A1. The system topology is known but line parameters are unknown.
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A2. The active and reactive power injections are not measured and their

probability distributions are unknown.

5.3 Markov Decision Process and Batch Reinforcement

Learning

In this section, we provide some background on MDPs and the batch RL

algorithm, a type of data-efficient and stable algorithm for solving MDPs

with unknown models.

5.3.1 Markov Decision Process

An MDP is defined as a 5-tuple (S,A,P,R, γ), where S is a finite set of

states; A is a finite set of actions; P is a Markovian transition model that

denotes the probability of transitioning from one state into another after

taking an action; R : S × A × S → R is a reward function such that, for

s, s′ ∈ S and a ∈ A, r = R(s,a, s′) is the reward obtained when the system

transitions from state s into state s′ after taking action a; and γ ∈ [0, 1) is

a discount factor (see, e.g., [74]).1 We refer to the 4-tuple (s,a, r, s′), where

s′ is the state following s after taking action a and r = R(s,a, s′), as a

transition.

Let S[k] and A[k] denote the state and action at time instant k, respec-

tively, and R[k] the reward received after taking action A[k] in state S[k].

Then, Pk(s
′|s,a) := P {Sk+1 = s

′|S[k] = s,A[k] = a} is the probability of

transitioning from state s into state s′ after taking action a at time instant

k. Throughout this chapter, we assume time-homogeneous transition proba-

bilities, hence we drop the subindex k and just write P(s′|s,a).
Let R̄ : S × A → R denote the expected reward for a state-action pair

(s,a); then, we have

R̄(s,a) = E [R] =
∑

s′∈S

R(s,a, s′)P(s′|s,a), (5.4)

1These definitions can be directly extended to the case where the the set of states is

infinite. Due to space limitation, this case is not discussed in detail here.
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where E [·] denotes the expectation operation. The total discounted reward

from time instant k and onwards, denoted by G[k], also referred to as the

return, is given by

G[k] =

∞∑

i=k

γi−kR[i]. (5.5)

A deterministic policy π is a mapping from S to A, i.e., a = π(s), s ∈
S,a ∈ A. The action-value function under policy π is defined as follows:

Qπ(s,a) = E [G[k]|S[k] = s,A[k] = a;π] , (5.6)

which is the expected return when taking action a in state s, and following

policy π afterwards. Intuitively, the action-value function quantifies, for a

given policy π, how “good” the state-action pair (s,a) is in the long run.

LetQ∗(·, ·) denote the optimal action-value function—the maximum action-

value function over all policies, i.e., Q∗(s,a) = maxπ Qπ(s,a). All optimal

policies share the same optimal action-value function. Also, the greedy policy

with respect to Q∗(s,a), i.e., π∗(s) = argmaxa Q
∗(s,a) is an optimal pol-

icy. Then, it follows from (5.5) and (5.6) that Q∗(s,a) satisfies the following

Bellman optimality equation (see, e.g., [73]):

Q∗(s,a) = R̄(s,a) + γ
∑

s′∈S

P(s′|s,a)max
a′∈A

Q∗(s′,a′). (5.7)

The MDP is solved if we find Q∗(s,a), and correspondingly, the optimal

policy π∗. It is important to emphasize that (5.7) is key in solving the MDP.

For ease of notation, in the rest of this chapter, we simply write the Q∗(s,a)

as Q(s,a).

When both the state and the action sets are finite, the action-value function

can be exactly represented in a tabular form that covers all possible pairs

(s,a) ∈ S ×A. In this case, if P is also known, then the MDP can be solved

using, e.g., the so-called policy iteration and value iteration algorithms (see,

e.g., [73]). If P is unknown but samples of transitions are available, the MDP

can be solved by using RL algorithms such as the Q-learning algorithm (see,

e.g., [75]).
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5.3.2 Batch Reinforcement Learning

When S is not finite, conventional Q-learning based approaches require dis-

cretization of S (see, e.g., [39] and [76]). The discretized state space will

better approximate the original state space if a small step size is used in the

discretization process, yet the resulting MDP will face the “curse of dimen-

sionality.” A large step size can alleviate the computational burden caused

by the high dimensionality of the state space, but at the cost of potentially

degrading performance significantly.

More practically, when the number of elements in S is large or S is not fi-

nite, the action-value function can be approximated by some parametric func-

tions such as linear functions [74] and neural networks [77], or non-parametric

functions such as decision trees [78]. Let Q̂(·, ·) denote the approximate op-

timal action-value function. Using a linear function approximation, Q̂(s,a)

can be represented as follows:

Q̂(s,a) = w⊤φ(s,a), (5.8)

where φ : S ×A → R
f is a feature mapping for (s,a), which is also referred

to as the basis function, and w ∈ R
f is the parameter vector.

A class of stable and data-efficient RL algorithms that can solve an MDP

with function approximations are the batch RL algorithms—“batch” in the

sense that a set of transition samples are utilized each time—such as the

LSPI algorithm [74], which is considered to be the most efficient one in this

class. We next explain the fundamental idea behind the LSPI algorithm.

Let D = {(s,a, r, s′) : s, s′ ∈ S,a ∈ A} denote a set (batch) of transition

samples obtained via observation or simulation. The LSPI algorithm finds

the best w that fits the transition samples in D in an iterative manner. One

way to explain the intuition behind the LSPI algorithm is as follows (the

readers are referred to [74] for a more rigorous development). Define

g(w) =
∑

(s,a,r,s′)∈D

(Q(s,a)−w⊤φ(s,a))2. (5.9)

Let wi denote the value of w that is available at the beginning of iteration
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i. At iteration i, the algorithm finds wi+1 by solving the following problem:

wi+1 = argmin
w

g(w), (5.10)

which is an unconstrained optimization problem. The solution of (5.10) can

be computed by setting the gradient of g(·) to zero as follows:

∂g

∂w
= −2

∑

(s,a,r,s′)∈D

(Q(s,a)−w⊤φ(s,a))φ(s,a) = 0f . (5.11)

Note that the true value of Q(s,a) is not known and is substituted by

the so-called temporal-difference (TD) target, r + γw⊤φ(s′,a′), where a′ =

argmaxa∈Aw
⊤
i φ(s

′,a) is the optimal action in state s′ determined based

on wi. Note that the TD target is a sample of the right-hand-side (RHS)

of (5.7), which serves as an estimate for the RHS of (5.7). We emphasize

that despite Q(s,a) being substituted by r+ γw⊤φ(s′,a′), the true optimal

action-value function is not a function of w; therefore, the gradient of g with

respect to w is taken before the Q(s,a) is approximated by the TD target,

which does depends on w. Then, after replacing Q(s,a) with the TD target,

(5.11) has the following closed-form solution:

wi+1 =




∑

(s,a,r,s′)∈D

φ(s,a)(φ(s,a)− γφ(s′,a′))⊤





−1
∑

(s,a,r,s′)∈D

φ(s,a)r.

(5.12)

Intuitively, at each iteration, the LSPI algorithm finds the w that mini-

mizes the mean squared error between the TD target and Q̂(s,a) over all

transition samples in D. This process is repeated until change of w, defined

as ‖wi+1 − wi‖, where ‖·‖ denotes the L2-norm, becomes smaller than a

threshold ε, upon which the algorithm is considered to have converged.

The LSPI algorithm has the following three advantageous properties. First,

linear functions are used to approximate the optimal action-value function,

which allows the algorithm to handle MDPs with high-dimensional or con-

tinuous state spaces. Second, at each iteration, a batch of transition samples

is used to update the vector w parameterizing Q̂(·, ·), and these samples are

reused at each iteration, thus increasing data efficiency. Third, the optimal
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parameter vector is found by solving a least-squares problem, resulting in a

stable algorithm. We refer interested readers to [74] for more details on the

convergence and performance guarantee of the LSPI algorithm.

5.4 Optimal Tap Setting Problem Formulation

In this section, we formulate the optimal tap setting problem as an MDP as

follows:

State space

Define the squared voltage magnitudes at all buses but bus 0 and the tap

ratios as the state, i.e., s = (t, v), which has both continuous and discrete

variables. Then, the state space is S ⊆ T Lt × R
N .

Action space

The actions are the LTC tap ratio changes, i.e., a = ∆t, and the action

space is the set of all feasible values of LTC tap ratios, i.e., A = ∆T Lt

. In

the optimal tap setting problem, the action is discrete. The size of the action

space increases exponentially with the number of LTCs.

Reward function

The objective of voltage regulation is to minimize the voltage deviation as

measured by the L2 norm. As such, when the system transitions from state

s = (t, v) into state s′ = (t′, v′) after taking action a = ∆t := t′ − t, the
reward is computed by the following function:

R(s,a, s′) = − 1

N
‖v′ − v⋆‖. (5.13)

Transition model

To derive the transition model P, note that it follows from (5.3) that

v′ =(M(t′)⊤)−1(ξ +M(t)⊤v +m(t)v0 −m(t′)v0), (5.14)

where ξ = 2diag(r)M−1(p′ − p) + 2diag(x)M−1(q′ − q), and p′ and q′ are
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active and reactive power injections that result into v′, respectively. Then,

the transition model P(s′|s,a) can be derived from the probability density

function (pdf) of (v′|v, t,∆t), which can be further computed from the pdf of

(ξ|v, t,∆t). However, under Assumptions A1 and A2, the line parameters

as well as the probability distributions of active and reactive power injections

are unknown; thus, the transition model is not known a priori. Therefore,

we need to resort to RL algorithms that do not require an explicit transition

model to solve the MDP.

5.5 Optimal Tap Setting Algorithm

In this section, we propose an optimal tap setting algorithm, which consists

of a transition generating algorithm that can generate samples of transitions

in D, and an LSPI-based sequential learning algorithm to solve the MDP.

Implementation details such as the feature selection are also discussed.

5.5.1 Overview

The overall structure of the optimal tap setting framework is illustrated in

Fig. 5.2. The framework consists of an environment that is the power dis-

tribution system, a learning agent that learns the action-value function from

a set of transition samples, and an acting agent that determines the op-

timal action from the action-value function. Define the history to be the

sequence of states, actions, and rewards, and denote it by H, i.e., H =

{s[0],a[0], r[0], s[1],a[1], r[1], · · · }. Specifically, the learning agent will use

the elements in the set H together with a virtual transition generator to gen-

erate a set of transition samples D according to some exploratory behavior

defined in the exploratory actor. The set of transition samples in D is then

used by the action-value function estimator—also referred to as the critic—to

fit an approximate action-value function using the LSPI algorithm described

earlier. The learning agent, which has a copy of the up-to-date approximate

action-value function from the learning agent, finds a greedy action for the

current state and instructs the LTCs to follow it.

Note that the learning of the action-value function can be done offline by

the learning agent, which is capable of exploring various system conditions
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Figure 5.2: The batch RL based framework for optimal tap setting.
(Dotted line indicates the critic is optional for the exploratory actor.)

through the virtual transition generator based on the history H, yet without
directly interacting with the power distribution system. This avoids jeopar-

dizing system operational reliability, which is a major concern when applying

RL algorithms to power system applications [40].

5.5.2 Virtual Transition Generator

The LSPI algorithm (as well as all other RL algorithms) requires adequate

transition samples that spread over the state and action spaces S ×A. How-
ever, this is challenging in power systems since the system operational re-

liability might be jeopardized when exploring randomly. One way to work

around this issue is to use simulation models, rather than the physical system,

to generate virtual transitions. To this end, we develop a data-driven virtual

transition generator that simulates transitions without any knowledge of the

active and reactive power injections (neither measurements nor probability

distributions) or the line parameters.

The fundamental idea is the following. For an actual transition sample

(s,a†, r†, s† = (t†, v†)) that is obtained from H, the virtual transition gener-
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ator generates a new transition sample (s,a‡, r‡, s‡ = (t‡, v‡)), where a‡ is

determined from s according to some exploration policy (to be defined later)

that aims to explore the state and action spaces. Replacing a† in the first

transition sample with a‡, the voltage magnitudes will change accordingly.

Assume the same transition of the power injections in these two samples,

then the RHS of (5.3) does not change. Thus, v‡ can be readily computed

from v† by solving the following set of linear equations:

M(t‡)⊤v‡ +m(t‡)v0 =M(t†)⊤v† +m(t†)v0. (5.15)

Since the only unknown in (5.15) is v‡ ∈ R and M(t‡) ∈ R
N×N is invertible,

we can solve for v‡ as follows:

v‡ = (M(t‡)⊤)−1(M(t†)⊤v† +m(t†)v0 −m(t‡)v0). (5.16)

For ease of notation, we simply write (5.16) as

v‡ = ϕ(v†, t†, t‡). (5.17)

This property allows us to estimate the new values of voltage magnitudes

when the tap positions change without knowing the exact values of power

injections and line parameters. The virtual transition generating procedure

is summarized in Algorithm 5.1.

5.5.3 LSPI-based Sequential Action-Value Function Learning

Given the transition sample set D, we can now develop a learning algorithm

for Q̂(s,a) based on the LSPI algorithm. While the LSPI is very efficient

when the action space is relatively small, it becomes computationally in-

tractable when the action space is large, since the number of unknown pa-

rameters in the approximate action-value function is typically proportional

to |A|, which increases exponentially with the number of LTCs. To over-

come the “curse of dimensionality” that results from the size of the action

space, we propose an LSPI-based sequential learning algorithm to learn the

action-value function.

The key idea is the following. Instead of learning an approximate optimal
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Algorithm 5.1: Virtual transition Generating

Input:
H: history
D: number of transition samples
v⋆: reference value of squared voltage magnitudes
exploration policy

Output:
D: transition sample set

Initialize D ← ∅

for d = 1, · · · , D do
Choose a transition sample (s,a†, r†, s† = (t†, v†)) from H
Select a‡ according to exploration policy and set t‡ = t† + a‡ (t‡

is restricted to elements in T Lt

)
Estimate v‡ following a‡ as v‡ = ϕ(v†, t†, t‡)
Compute the reward by r‡ = − 1

N
‖v‡ − v⋆‖

Add (s,a‡, r‡, s‡ = (t‡, v‡)) to D
end

action-value function for the action vector a, we learn a separate approximate

action-value function for each component of a. To be more specific, for each

LTC l, l = 1, · · · , Lt, we learn an approximate optimal action-value function

Q̂(l)(s, a(l)) = φ(l)(s, a(l))⊤w(l), where a(l) is the lth component of a, and

φ(l)(·, ·) is a feature mapping from S×∆T to Rf . During the learning process

ofw(l), the rest of the LTCs are assumed to behave greedily according to their

own approximate optimal action-value function. To achieve this, we design

the following exploration policy to generate the virtual transition samples

D used when learning w(l) for LTC l. In the exploration step in Algorithm

5.1, the tap ratio change of LTC l is selected uniformly in ∆T (uniform

exploration), while those of others are selected greedily with respect to the

up-to-date Q̂(l)(·, ·) (greedy exploration). Then, the LSPI algorithm detailed

in Algorithm 5.2, where c is a small positive pre-condition number and w
(l)
0

is the initial value for the parameter vector, is applied to learn w(l). This

procedure is repeated in a round-robin fashion for all LTCs for J iterations,

in each of which w
(l)
0 is set to the up-to-date w(l) learned in the previous

iteration or chosen if it is in the first iteration. The value of J is set to 1 if

there is only one LTC and is increased slightly when there are more LTCs.

Note that a new set of transitions D is generated when learning w(l) for

different LTCs at each iteration. Using this sequential learning algorithm,
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Figure 5.3: Timeline for LTC tap setting.

the total number of unknowns is then proportional to Lt|∆T |, which is far

fewer compared to |∆T Lt | as in the case where the approximate optimal

action-value function for the entire action vector, a, is learned.

A critical step in implementing the LSPI algorithm is constructing features

from the state-action pair (s, a(l)) for LTC l; we use radial basis function

(RBFs) to this end. The feature vector for a state-action pair (s, a(l)), i.e.,

φ(l)(s, a(l)), is a vector in R
f , where f = (κ + 1) × |∆T | and κ is a pos-

itive integer. The feature vector φ(l)(s, a(l)) has |∆T | segments, each one

of length κ + 1 corresponding to a tap change in ∆T , i.e, φ(l)(s, a(l)) =

[ψ⊤
1 , · · · ,ψ⊤

|∆T |]
⊤, where ψi ∈ R

κ+1, i = 1, · · · , |∆T |. Specifically, for s =

(t, v) and a(l) being the ith tap change in ∆T , ψj = 0κ+1 for j 6= i, and

ψi = [1, e−
‖ṽ−v̄1‖

σ2 , · · · , e−
‖ṽ−v̄κ‖

σ2 ]⊤, where σ > 0, ṽ = ϕ(v, t, t̃) with t̃ being

obtained by replacing the lth entry in t with 1, and v̄i, i = 1, · · · , κ are pre-

specified constant vectors in R
N referred to as the RBF centers. The action

a(l) only determines which segment will be non-zero. Thus, ṽ is indeed the

squared voltage magnitudes under the same power injections if the tap of

LTC l is at position 0. Each RBF computes the distance between v′ and

some pre-specified squared voltage magnitudes.

5.5.4 Tap Setting Algorithm

The tap setting algorithm, the timeline of which is illustrated in Fig. 5.3,

works as follows. At time instant k, a new state s[k] as well as the reward

following the action ak−1, rk−1, is observed. Let ∆T denote the time elapsed

between two time instants. Every K time instants, i.e., every K∆T units

of time, w(l) is updated by the learning agent by executing the LSPI-based

sequential learning algorithm described in Section 5.5.3. The acting agent
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Algorithm 5.2: LSPI for Single LTC

Input:
l: index of LTC
D: transition sample set
φ(·, ·): basis function
γ: discount factor
ε: convergence threshold
δ: pre-condition number
w

(l)
0 : initial parameter vector of approximate optimal

action-value function for LTC l
Output:

w(l): updated parameter vector of approximate optimal
action-value function for LTC l
Initialize w

(l)
−1 = 0f and i = 0

while ‖w(l)
i −w(l)

i−1‖ > ε or i = 0 do
Initialize B0 = cIf×f and b0 = 0f , set j = 1
for (s,a, r, s′) ∈ D do

a(l)
′
= argmaxa∈∆T φ(s

′, a)⊤w
(l)
i

Bj = Bj−1 + φ(s, a
(l))(φ(s, a(l))− γφ(s′, a(l)

′
))⊤

bj = bj−1 + φ(s, a
(l))r

Increase j by 1

end

w
(l)
i+1 = B

−1
|D|b|D|, increase i by 1

end

Set w(l) = w
(l)
i

then finds a greedy action for the current state s[k] and sends it to the LTCs.

In order to reduce the wear and tear on the LTCs, the greedy action for the

current state s[k] is chosen only if the difference between the action-value re-

sulting from the greedy action, i.e., max
a∈∆T

φ(s[k], a)⊤w(l), and that resulting

from the previous action, i.e., φ(s[k], a
(l)
k−1)

⊤w(l), is larger than a thresh-

old ǫ. Otherwise, the tap positions do not change. The above procedure is

summarized in Algorithm 5.3.

5.6 Numerical Simulation

In this section, we apply the proposed methodology to the IEEE 13-bus and

123-bus test feeders from [65].
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Algorithm 5.3: Optimal Tap Setting

Input:
K: update period
J : number of learning iterations
ǫ: minimum action-value change

for k = 1, 2, · · · do
Obtain r[k − 1] and s[k], and add them into H
if k mod K = 0 then

for j = 1, · · · , J do
for l = 1, · · · , Lt do

Run Algo. 5.1 to generate D using uniform exploration
for LTC l and greedy exploration for other LTCs

Run Algo. 5.2 with w
(l)
0 set to the current w(l)

end

end

end
for l = 1, · · · , Lt do

Set a(l)[k] = argmax
a∈∆T

φ(s[k], a)⊤w(l) if

max
a∈∆T

φ(s[k], a)⊤w(l) − φ(s[k], a(l)[k − 1])⊤w(l) > ǫ

Set a(l)[k] = a(l)[k − 1] otherwise

end
Add a[k] to H and adjust tap ratios based on a[k]

end

5.6.1 Simulation Setup

The power injections for these two test feeders are constructed based on

historical hourly active power load data from a residential building in San

Diego over one year [69]. Specifically, the historical hourly active power load

data are first scaled up so that the maximum system total active power load

over that year for the IEEE 13-bus and 123-bus distribution test feeders

are 6.15 MW and 12.3 MW, respectively. These numbers are chosen so

that the resulting voltage magnitudes fall outside of the desired range at

some time instants. Then, the time granularity of the scaled system total

active power load is increased to 5 minutes through a linear interpolation.

Each value in the resulting five-minute load data is further multiplied by

a normally distributed variable, the mean and standard deviation (SD) of

which are 1 and 0.02, respectively. The active power load profile at each bus is

constructed by pseudo-randomly redistributing the system total active power
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Figure 5.4: Typical load and voltage profiles in the IEEE 13-bus test feeder
in July.

load among all load buses. Each load bus is assumed to have a constant power

factor of 0.95. While only load variation is considered in the simulation, the

proposed methodology can be directly applied to the case with renewable-

based resources, which can be modeled as negative loads. Figure 5.4 shows

the typical active power load profiles in July at each bus in the IEEE 13-

bus distribution test feeder, as well as the corresponding voltage magnitudes

under the nominal LTC tap ratio, i.e., the LTC tap ratio equals to 1.

We first verify the accuracy of the virtual transition generating algorithm.

Specifically, assume the voltage magnitudes are known for some unknown

power injections under a known tap ratio of 1. Then, when the tap ratio

changes, we compute the true voltage magnitudes under the new tap ratio,

denoted by v, by solving the full ac power flow problem, and the estimated

voltage magnitudes under new tap ratio, denoted by v̂, via (5.17). Simulation

results indicate that the voltage approximation error, which is defined to be

the maximum absolute difference between the true and the estimated voltage

magnitude, i.e., ‖v − v̂‖∞, is smaller than 0.001 p.u., which is accurate

enough for the application of voltage regulation addressed here. The voltage

97



-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16
tap position

0.00

0.25

0.50

0.75

1.00

vo
lt
.
ap
pr
ox
.
er
ro
r
(×

1
0
−
3
p.
u.
)

mean

range

Figure 5.5: Voltage approximation error. (Position 0 corresponds to tap
ratio 1.)

approximation error for the IEEE 13-bus test feeder is presented in Fig. 5.5.

The result for the IEEE 123-bus test feeder is similar.

5.6.2 Case Study on the IEEE 13-bus Test Feeder

Assume v⋆ = 1N , where 1N is an all-ones vector in R
N In the simulation, 21

RBF centers are used, i.e., κ = 21. Specifically, v̄i = (0.895 + 0.005i)2 × 1N ,

i = 1, · · · , 21. The duration between two time instants is ∆T = 5 min.

The policy is updated every 2 hours, i.e., K = 24. In each update, actual

transition samples are chosen from the history over the same time interval

in the previous 5 days, which are part of H, and new actions are chosen

according to the exploration policy described in Section 5.5.3. A total number

of D = 6000 virtual transitions are generated using Algorithm 5.1. Since

this test feeder only has one LTC, there is no need to sequentially update the

approximate action-value function, so we set J = 1. Other parameters are

chosen as follows: γ = 0.9, ε = 1× 10−5, ǫ = 1× 10−4, c = 0.1, and σ = 1.

Assuming complete and perfect knowledge of the system parameters as

well as active and reactive power injections for all time instants, we can find

the optimal tap position that results in the highest reward by exhaustively

searching the action space, i.e., all feasible tap ratios, at each time instant. It

is important to point out that, in practice, the exhaustive search approach is

infeasible since we do not have the necessary information, and not practical

due to the high computational burden. Results obtained by the exhaustive
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Figure 5.6: LTC tap positions and rewards in IEEE 13-bus test feeder.

search approach and the conventional tap setting scheme (see, e.g., [14]),

in which the taps are adjusted only when the voltage magnitudes exceed

a desired range, e.g., [0.9, 1.1] p.u., are used to benchmark the proposed

methodology.

Figure 5.6 shows the tap positions (top panel) and the rewards (bottom

panel) under different approaches. The rewards resulted from these two

approaches are very close. The daily mean rewards, i.e., ρ = 1
288

∑288
k=1 r[k],

where r[k] is the reward at time instant k as defined in (5.13), obtained by the

batch RL approach and the exhaustive search approach are ρ = −4.279×10−3

and ρ = −4.156 × 10−3, respectively, while that under the conventional

scheme is ρ = −19.26 × 10−3. The tap positions under the batch RL ap-

proach and the exhaustive search approach are aligned during most of the

time during the day. Note that the tap position under the conventional

scheme remains at 0 since the voltage magnitudes are within [0.9, 1.1] p.u.,

and is not plotted. Figure 5.7 shows the voltage magnitude profiles under

the different tap setting algorithms. The voltage magnitude profiles under

the proposed batch RL approach (see Fig. 5.7, center panel) are quite similar

to those obtained via the exhaustive search approach (see Fig. 5.7, bottom
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Figure 5.7: Voltage magnitude profiles in IEEE 13-bus test feeder.

panel); both result in a higher daily mean reward than that resulted from

the conventional scheme (see Fig. 5.7, top panel). Algorithm 5.2 typically

converges in about 30 seconds, and the batch RL approach is faster than the

exhaustive search approach by several orders of magnitude.

While the policy in the above simulation is updated using data over 2

hours, we also study cases when the policy is updated using data over a

longer time period, i.e., when K is larger than 24. Table 5.1 shows the mean

and SD of rewards over one day when the policy is updated using data over

different periods, when |D| is 50 times the number of actual transitions during

100



Table 5.1: Rewards Under Various Policy Update Periods

update period (hour) 2 4 6 8 24

reward mean (×10−3) -4.279 -4.290 -4.390 -4.347 -4.501
reward SD (×10−3) 1.436 1.423 1.480 1.529 1.601

the same time period over the previous 5 days. As can be seen, learning a

policy using data over a shorter period reduces the required amount of data,

while achieving an equally good result.

5.6.3 Case Study on the IEEE 123-bus Test Feeder

We next test the proposed methodology on the IEEE 123-bus test feeder. In

the results for the IEEE 13-bus test feeder reported earlier, while the LTC has

33 tap positions, only a small portion of them is actually used. This motivates

us to further reduce the action space by narrowing the action space to a

smaller range. Specifically, we can estimate the voltage magnitudes under

various power injections and LTC tap positions using (5.17). After ruling

out tap positions under which the voltage magnitudes will exceed the desired

range, we eventually allow 9 positions, from −8 to 0, for two LTCs, and 5

positions, from 0 to 5, for the other two LTCs. Here, κ = 11 RBF centers

are used. Specifically, v̄i = (0.94 + 0.01i)2 × 1N for all LTCs except for the

one near the substation, for which v̄i = (0.89+0.01i)2×1N , i = 1, 2, · · · , 11.
A total number of D = 3600 virtual transitions are generated in a similar

manner as in the IEEE 13-bus test feeder case. The number of iterations

in the LSPI-based sequential learning algorithm is set to J = 3. Other

parameters are the same as in the IEEE 13-bus test feeder case.

Figures 5.8 and 5.9 show the tap positions and rewards, respectively, under

the batch RL approach and the exhaustive search. The daily mean rewards

obtained by the batch RL approach and the exhaustive search approach are

ρ = −1.646×10−3 and ρ = −1.402×10−3, respectively, while that under the

conventional scheme is ρ = −7.513×10−3. While the tap positions differ, the

rewards resulting from these two approaches are very close. Note that the

tap changes are smoother in the proposed approach since we have enforced a

minimum action-value function change requirement to trigger a tap change

action. The voltage magnitude profiles are shown in Fig. 5.10.
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Figure 5.8: LTC tap positions in IEEE 123-bus test feeder.
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Figure 5.9: Rewards in IEEE 123-bus test feeder.

Figure 5.11 shows the rewards over one week. As can be seen from Fig.

5.11, the voltage regulation performance achieved by the proposed approach

is in general close to that achieved by the exhaustive search approach.
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Figure 5.10: Voltage magnitude profiles in IEEE 123-bus distribution test
feeder.

5.7 Summary

In this chapter, we formulated the optimal tap setting problem of LTCs in

power distribution systems as an MDP and proposed a batch RL algorithm

to solve it. To obtain adequate state-action samples, we developed a virtual

transition generator that estimates the voltage magnitudes under different

tap settings. To circumvent the “curse of dimensionality”, we proposed an

LSPI-based sequential learning algorithm to learn an action-value function

for each LTC, based on which the optimal tap positions can be determined
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Figure 5.11: Rewards in IEEE 123-bus test feeder over 7 days.

directly. The proposed algorithm can find the policy that determines the

optimal tap positions that minimize the voltage deviation across the sys-

tem, based only on voltage magnitude measurements and network topology

information, which makes it more desirable for implementation in practice.

Numerical simulation on two IEEE distribution test feeders validated the

effectiveness of the proposed methodology.

The work presented in this chapter is submitted for publication in [79].
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CHAPTER 6

CONCLUDING REMARKS

In this chapter, we summarize this dissertation and highlight the main con-

tributions to the development of data-driven frameworks for coordinating

assets in power distribution systems for the ancillary service provision. We

conclude this chapter with a discussion of future work that needs to be done.

6.1 Dissertation Summary and Contributions

In Chapter 1, we first presented the motivation to develop data-driven frame-

works for coordinating assets in power distribution systems in order to pro-

vide ancillary services. We then described the power distribution system

model adopted throughout this dissertation, particularly, the LinDistFlow

model, which enables the development of efficient data-driven estimation or

coordination algorithms. We also reviewed some of the relevant works and

discussed their shortcomings. We ended this chapter by summarizing the

contributions and contents of this dissertation.

In Chapter 2, we proposed a data-driven framework for DER coordination

for the purpose of active power provision, particularly, provision of frequency

regulation services. A key element in this chapter is the concept of loss fac-

tors (LFs), which are essentially sensitivities that allow the approximation

of the incremental total system losses. We developed a recursive estimator

for estimating the LFs and a controller that solves the ODCP formulated

using the estimated LFs. The estimator updates its sensitivity estimates at

the same timescale at which the controller updates the DER active power

injection set-points. The proposed LF estimator is capable of obtaining an

accurate estimate of the LFs that can capture the impacts of both active

and reactive power injections on system losses with little computational ef-

fort. We showed through numerical simulation that the proposed framework
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is more effective in coordinating the DERs to provide frequency regulation

services, compared to the approach in which system losses are neglected.

The main contribution in this chapter is the one-timescale data-driven DER

coordination framework.

In Chapter 3, we continued focusing on the problem of coordinating DERs

for active power provision. A key issue addressed in this chapter is the poten-

tial collinearity in the measurements, which may deteriorate the estimation

accuracy. We resolved this issue by introducing random perturbations in the

DER active power injections during the estimation process. The estimator

works on a fast timescale at which random perturbations are injected, while

the controller works on a slow timescale. Under some mild assumptions, we

showed that, in an a.s. sense, the estimated parameters converge to their true

values, and the total active power exchanged between both systems also con-

verges to the required amount during the estimation process. We validated

the effectiveness of the proposed framework through numerical simulations

on a modified IEEE 123-bus distribution test feeder. The main contribu-

tions in this chapter include the two-timescale coordination framework, the

estimation algorithm with random perturbation, as well as its convergence

analysis.

In Chapter 4, we developed a data-driven DER coordination framework

for reactive power regulation, i.e., voltage regulation, in power distribution

systems. A fundamental difficulty in this problem is that the number of

parameters to be estimated by the estimator, i.e., the voltage sensitivities,

is much larger than that in the active power provision problem; thus, more

measurements are required in order to get an accurate estimate. By exploit-

ing the structural characteristics of radial power distribution systems, we

reformulated the estimation problem into a much simpler one and reduced

the number of parameters to be estimated significantly. Thus, the estimator

requires much less data to obtain an accurate estimate. We show through

numerical simulations that the framework is effective and efficient in coor-

dinating the DERs to provide voltage regulation. The main contribution in

this chapter is the efficient estimation algorithm for the voltage sensitivities.

In Chapter 5, we formulated the optimal tap setting problem of LTCs as

an MDP and proposed a batch RL algorithm to solve it. We developed a

virtual experience generating algorithm that can estimate the voltage mag-

nitudes under different tap settings, which allows us to obtain adequate state
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action samples required by the learning algorithm. To circumvent the “curse

of dimensionality”, we proposed an LSPI based sequential learning algorithm

to learn an action value function for each LTC, based on which the opti-

mal tap positions can be determined directly. The proposed algorithm can

find the policy that determines the optimal tap positions that minimize the

voltage deviation across the system, based only on the voltage magnitude

measurements and the topology information, which makes it more desirable

for implementation in practice. We validated the effectiveness of the pro-

posed batch RL based algorithm via numerical simulation on the two IEEE

distribution test feeders. The main contributions in this chapter include the

formulation of the LTC tap setting problem as an MDP and the development

of efficient batch RL algorithm to solve this MDP.

6.2 Conclusions and Future Work

In this dissertation, we have developed several data-driven frameworks for

coordinating assets such as DERs and LTCs in power distribution systems

to provide ancillary services. The proposed frameworks assume no prior

information on the power distribution system model, except knowledge of

the feasible network topology configurations and distribution line ‘r-to-x‘

ratios in some instances, and mainly rely on measurements; this makes the

framework adaptive and robust to changes in operating conditions and power

distribution system models.

While the primary focus in this dissertation is on three-phase balanced

power distribution systems that have a radial topology, in future work it

will be necessary to extend the data-driven asset coordination frameworks

to three-phase unbalanced power distribution systems with possibly a mesh

topology. In addition, it would be worthwhile to integrate the several pro-

posed data-driven DER coordination frameworks, which focus on different

problems in power distribution systems, into one that can deal with multiple

problems simultaneously.
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strategies for wholesale energy and regulation markets,” IEEE Transac-
tions on Power Systems, vol. 33, no. 6, pp. 7305–7308, 2018.

[50] E. Litvinov, T. Zheng, G. Rosenwald, and P. Shamsollahi, “Marginal loss
modeling in LMP calculation,” IEEE Transactions on Power Systems,
vol. 19, no. 2, pp. 880–888, 2004.

[51] D. Q. Hung and N. Mithulananthan, “Multiple distributed generator
placement in primary distribution networks for loss reduction,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1700–1708,
2013.

[52] N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach
for DG allocation in primary distribution network,” International Jour-
nal of Electrical Power & Energy Systems, vol. 28, no. 10, pp. 669–678,
2006.

[53] S. O. Haykin, Adaptive Filter Theory. Pearson Higher Ed, 2013.

[54] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control. John Wiley & Sons, 2012.

112



[55] PJM, “RTO regulation signal data,” 2017. [Online]. Available:
http://www.pjm.com/markets-and-operations/ancillary-services.aspx

[56] R. D. Zimmerman, C. E. Murillo-Sánchez, R. J. Thomas et al., “MAT-
POWER: Steady-state operations, planning, and analysis tools for
power systems research and education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12–19, 2011.
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