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Abstract

Despite numerous recent advances in the field of deep learning for artistic purposes,
the integration of these state-of-the-art machine learning tools into applications for
drawing and visual expression has been an underexplored field. Bridging this gap
has the potential to empower a large subset of the population, from children to the
elderly, with a new medium to represent and visualize their ideas. Paper Dreams is a
web-based canvas for sketching and storyboarding, with a multimodal user interface
integrated with a variety of machine learning models. By using sketch recognition,
style transfer, and natural language processing, the system can contextualize what
the user is drawing; it then can color the sketch appropriately, suggest related objects
for the user to draw, and allow the user to pull from a database of related images to
add onto the canvas. Furthermore, the user can influence the output of the models
via a serendipity dial that a↵ects how “wacky” the system’s outputs are. By process-
ing a variety of multimodal inputs and automating artistic processes, Paper Dreams
becomes an e�cient tool for quickly generating vibrant and complex artistic scenes.
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Title: Professor of Media Arts and Sciences
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Chapter 1

Introduction

Art has always been a important method of communication and expression, from

the 20,000-year-old Altamira cave drawings to current-day picture books for children.

With the rise of artificial intelligence (AI) and machine learning (ML) in many in-

dustries, it is logical that these state-of-the-art technologies would be applied toward

aiding cognitive and visual expression.

Current research in AI and art has been focused on using machine intelligence

to “create” art, from the transfer learning of artistic styles [1] to the generation of

dream-like images [2]. However, there is relatively little research in applying these

state-of-the-art machine learning algorithms and multimodal inputs toward aiding

users to visually express their ideas in a dynamic back-and-forth collaboration. Giving

people a sophisticated medium that helps them quickly generate and build on their

ideas can be empower them to create a wider variety of diverse artistic sketches that

can be generated by either the user or the algorithms alone.

In addition to empowerment, there are substantial concrete benefits to such a

system that encourages creative expression. For children, encouraging creativity from

a young age is correlated with mood improvement and development of crucial social

skills [3]. For many elderly populations, encouraging creative activity is associated

with emotional and physical responses such as increased optimism, alertness, and

perceptions of self-worth [4]; furthermore, for older people with dementia, art therapy

is associated with positive changes in mood and increased sociability [5]. With all
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these potential benefits in mind, this project was born.

Paper Dreams is a web-based multimodal creative platform for drawing that com-

bines human-drawn sketches and a variety of machine learning algorithms to facilitate

user expression. It uses sketch recognition, adaptive style transfer, and natural lan-

guage processing to calculate high-level semantic information and context about the

user’s intentions and generate the appropriate response from the system. For example,

if a person draws a cat, Paper Dreams recognizes they are drawing an cat, colors it

in cat-like colors, and then suggests related terms such as “dog” and “mouse,” which

the user can then easily add to the canvas. The user can also use a knob to adjust

the “wackiness” of the system, increasing the randomness of the suggested terms.

Because the user can either draw their own sketches or pull from Paper Dream’s

large database of sketches, it is accommodating of a variety of drawing capabilities,

from expert artists to “haven’t drawn in years”. Paper Dreams allows users to quickly

generate vibrant and complex sketches and provides functionalities dedicated towards

enabling an under-represented subset of population, such as children and the elderly,

who might not be able to use the currently available artistic tools.

I conducted my work in a joint e↵ort with the Paper Dreams team in the Fluid

Interfaces Lab in the MIT Media Lab, and my team members Guillermo Bernal and

Haripriya Mehta were instrumental in the implementation and training of the machine

learning models. While a fair amount of the work was collaborative, I will focus on

my individual contributions in this thesis.

In the following chapters, I will:

• Provide a review of the current tools available for artistic expression and discuss

their use cases (Chapter 2).

• Detail the implementation of the multimodal user interface and server back-end,

and discuss relevant design decisions (Chapter 3).

• Highlight my contributions to the machine learning tools in the back-end, from

generating a custom database for the sketch recognition to comparing the results

of di↵erent natural language processing implementations (Chapter 4).
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• Discuss unresolved issues in implementation and suggest directions for future

research (Chapter 5).

For a video demo and more information about this project, please visit:

https://www.media.mit.edu/projects/paper-dreams/overview/
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Chapter 2

Background

Drawing is one of the oldest methods of communication and artistic expression, even

predating written language [6]. It is a natural and essential form of visualization [7],

from children doodling their closet monsters to architects creating building plans.

The incorporation of a drawing modality to user interfaces for design and art has

inherent benefits in aiding a user’s ability to express their ideas.

2.1 Drawing and User Interfaces

In 1963, Ivan Sutherland pioneered research into the field of communication between

the user and an interface with his Sketchpad program [8]. Using a “light pen”, a user

could draw lines and circles directly onto the interface, and save combinations for use

in future drawings. It was a novel method of interaction, preceding the invention of

finger-based touchscreens and even computer mice, on the first interactive graphical

user interface (GUI). While the Sketchpad itself was impossible to release publicly (it

ran on customized hardware), the ideas introduced in Sutherland’s thesis regarding

Sketchpad are still widely used today to shape the development of drawing user

interfaces.

In 1996, Mark Gross and Ellen Do, recognizing the importance of freehand draw-

ing for creative design, created Electronic Cocktail Napkin [9], a user interface that

allowed users to quickly draw diagrams and then recognized and processed those
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diagrams into a higher level understanding of the drawing. However, given the com-

putational di�culty of recognition at that time, Ambiguous Intentions focused on

diagramming rather than sketching, as lower-level diagrams (“box”) were easier to

process than higher-level sketches (“horse”). Similar technologies were developed for

a variety of purposes: engineering design (ASSIST - A Shrewd Sketch Interpretation

and Simulation Tool [10]), user interface design (SILK - Sketching Interfaces Like

Krazy [11]), and garment design (KnitSketch [12]). All these programs incorporate

some form of sketch recognition, i.e., generating higher-level semantic information

such as a “square” or “chair” from user strokes. However, most of these systems

use a rule-based system for their sketch recognition and manipulation, limiting the

variety of sketches that could be drawn and understood, and thus limiting the scope

of what the user could draw.

Current machine learning sketch recognition models eliminate the need for these

rule-based systems and are easily adaptable to a wider variety of sketches. Paper

Dreams expands on this previous research on graphical drawing user interfaces, incor-

porating current state-of-the-art machine learning to create a more dynamic system

for artistic expression.

2.2 Current Artistic Aids

Some publicly available artistic applications integrate a sketching capability in their

interface, similar to those discussed in the previous section, while many others are

click/command-focused for optimized usability with the classic mouse and keyboard

modalities. Most current electronic technologies available for creating visualizations

are either very low-level, allowing the user a high amount of control over the output,

or are fully automated, giving the user relatively little control over the output. In

comparison, Paper Dreams allows the user to think about their sketch on a higher

conceptual level, in the form of ideas and objects and their relationships, input their

ideas via a drawing capability, and generate the visual output accordingly.
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2.2.1 Graphics Editors

Graphics editors are low-semantic-level aids, i.e. they do not have a context or internal

understanding of what the user is creating. Many of them are command-based (“trace

the path of my mouse in red” or “put a red line from here to there”), which means

that users can make very customized outputs but the creation process can be very

slow.

Canvas Focused Software

Microsoft Paint (and the wide variety of similar pixel-based drawing canvases- even

macOS’s Preview) are often the first graphics editors that people are exposed to.

They’re extraordinarily simple to learn given their intuitive similarity to drawing and

painting in real life; the user can usually pick a color and begin drawing right away.

With options ranging from di↵erent paintbrushes to layers, a user can slowly build

up a complex image. Paper Dreams uses the intuitive user interface of the drawing

canvas, but incorporates higher level semantic understanding of what the user is

drawing to automate some parts of the creation process, such as coloring (adaptive

texturization).

Vector Focused Software

Adobe Photoshop and Adobe Illustrator are some of the most well known graphics

editors- the former is based on pixel manipulation, while the latter used for vector-

based image generation. Other similar editors include Inkscape and GIMP. These

applications a↵ord a immense amount of control to the user while creating and ma-

nipulating objects. This class of graphics editors has implemented a large variety of

algorithms for manipulating the objects on the canvas in various ways; in exchange,

they often have a steeper learning curve for the user. Paper Dreams uses the semantic

information it has to automate some of the processes that might be harder for users

to understand, such as creating custom gradients to color an object.
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Digital Art Focused Software

Some software specialized for creating digital art, such as Artweaver and Corel Painter,

combine many of the features of a canvas-based application with the higher-level fea-

tures of a Photoshop-type application. These programs a↵ord a large amount of

control to the user for creating their artistic vision, but require the user to execute

each step to build toward their ideas (e.g., painting each stroke, choosing layers,

adding objects). Other applications that focus on creating art such as comics and

cartoons (e.g. Clip Studio Paint and Toondoo) simplify this process to a drag-and-

drop of images and icons, but can thus be limiting for the user. In comparison to

these technologies, Paper Dreams’s automation of certain artistic steps, but focus on

user control and an intuitive drawing/canvas based input, enables the user to rapidly

generate sketches and ideas with a high degree of personalization.

2.2.2 Machine Learning for Art

In contrast to the design of a user interface and set of tools to enable the user’s visual

expression, machine learning models focus on the generation of artistic output based

on user input. Paper Dreams is the union of these two approaches- an intuitive user

interface for input and an intelligent set of system models for output.

Google - Magenta

Google’s Magenta project [13] focuses on the applications for machine learning on art

and music, with everything from a magic sketchpad that attempts to finish what the

user is drawing based on Sketch-RNN [14], to a deep learning network that attempts

to generate a mixed musical style based on two di↵erent user-inputted tracks. Sketch-

RNN was a critical inspiration for the back-and-forth dynamic of Paper Dreams- with

Sketch-RNN, the user first draws a set of strokes, and then the system draws a series

of strokes on top of the user drawing. The user can then draw on top of the combined

user-and-system drawing. However, this implementation means the user has little

direct control over the system drawing and thus the final output image, except asking
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the system to try again. Paper Dreams o↵ers the user more control over their drawing,

while still enabling the user to create quickly.

Paper Dreams builds on the concepts from the Magenta projects, integrating many

models (sketch recognition, style transfer, natural language processing) together to

increase the accuracy of each model for the user. In addition, Paper Dreams hopes to

make these tools more accessible to the general public by creating an incorporative

platform for the user to create via an interactive back-and-forth dynamic, similar to

that of Sketch-RNN.

NVIDIA - GauGAN

During the course of this thesis, NVIDIA announced GauGAN, a machine learn-

ing algorithm that can generate photorealistic landscapes from user pixel paintings

in almost real-time using semantic information [15], as seen in Figure 2-1. These

algorithms have great potential to further enhance the quality of visual expression

(imagine being able to draw anything, such as zebra, and produce a photograph-like

image output!) By leveraging these machine learning innovations and incorporating

them into user-focused applications such as Paper Dreams, users can create fantastic

scenes from simple mouse and pen strokes.
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Figure 2-1: Using NVIDIA’s GauGAN, a Microsoft Paint-like drawing (left) can
produce a photo-realistic output (right). Image from Matt Burn’s TechCrunch article
about GauGAN [16].
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Chapter 3

Web-Based Canvas Application

3.1 User Interface

Many of the publicly available artistic tools, such as Adobe Illustrator, often take

many hours of regular use before the user can learn to create what they are visualizing,

despite the plethora of tutorials and 30-day crash courses available online. In contrast,

Paper Dreams contains a minimalistic interface (Figure 3-1), with its main focus on

the canvas and available space for sketching. Preliminary user tests suggest that users

often feel comfortable with the interface in under half an hour of use, potentially due

to the natural ease of human expression through drawing and sketching.

We opted for a web-based application over a native application (i.e., one down-

loaded directly onto a device) to increase accessibility to a larger subset of our target

population. Our application can be used by anyone with access to an electronic device

with internet and a browser, such as a laptop or tablet. In addition, this circumvents

the need to develop distinct apps for di↵erent mobile devices, e.g., a Swift-based app

for iOS and a Java-based app for Android, and allows us to collect data on what users

are drawing in order to improve our database.
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Figure 3-1: Overall user interface, with important subsections marked.

3.2 Architecture

The system is a client-server architecture, with the front-end client side browser (op-

timally Google Chrome) making requests to and from a back-end web server. The

web server was built using Flask [17], a lightweight and easily customizable Python

server framework. As seen in Figure 3-2, the browser passes the user-drawn sketch

(referred to as a Canvas Generated Image) to the server, which can return one or

more of the following:

1. A label from the sketch recognition, identifying the current sketch. There are

125 possible classes for the label to be chosen from, as the sketch recognition

was trained on the 125-class Sketchy dataset. A list of the classes can be found

in Appendix A.

2. A texture from the adaptive coloring (style transfer), based on the current

Canvas Generated Image and the label from the sketch recognition.
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3. Other classes associated with the current label, e.g. [“orange”, “pear”, “pineap-

ple”] for the label “apple.”

The user interface on the browser was built with HTML, Javascript, and CSS, with

an HTML5 canvas being used as the drawing surface. The Flask server currently runs

locally on a computer with a GPU (Graphics Processing Unit), allowing the server

to use the GPU for the powerful computing needed for the adaptive texturization.

As will be discussed in Section 5.2, this need for computing means the application is

currently not deployable online. Either a cloud computing service such as Amazon

Web Services (AWS) will need to be incorporated, or our adaptive coloring model

must be adapted to work with TensorFlow.js [18], a streamlined Javascript-based

data processing library.

Figure 3-2: The browser passes the Canvas Generated Image to the server, and the
server returns the associated label from the sketch recognition, the texture from the
style transfer, and the associated words to the label.
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3.2.1 Modalities

Through perceptual modalities such as sight, touch, hearing, and other senses, hu-

mans regularly interact with the world in a multimodal manner. Through the combi-

nation of these separate inputs, humans can create a more sophisticated perceptual

model of their environment and surroundings [19]. By incorporating modalities such

as touch and speech in addition to the standard keyboard and mouse input, individ-

uals can customize how they interact with Paper Dreams. For example, a user on a

laptop might default to using mouse and text, but a user on an iPad might prefer

to draw with a stylus (touch) and speak to the system instead. In both cases, the

user makes use of their modality options to create an enriched input into the system.

Figure 3-3 shows where the various modalities might be used.

Figure 3-3: While the entire canvas is touch and mouse-responsive, the touch modality
is especially crucial for potential users who want to draw on the canvas with a stylus
or similar pen-type implement.
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Touch

While the user can draw on the canvas with a mouse, the interface is also touch-

responsive. This allows direct manipulation in the case of children via finger drawing,

or for those who desire a more accurate drawing experience, the use of a stylus on a

touch surface (e.g. iPad or drawing tablet.)

Speech and Text

The user can also enter speech or text input into the system; the system then uses

natural language processing (via spaCy, a Python-based natural language processing

library) to pull the classes closest to what the user requested. For example, the user

can request “a forest filled with birds and flowers”, and Paper Dreams will return

examples of the classes “tree”, “songbird”, and “flower,” which the user can then add

to their drawing in whatever location and at whatever scale they prefer.

3.2.2 Control Buttons

The user interface contains four main control buttons, as can been seen in Figure 3-4.

The “Turn On Coloring” button turns the coloring on and o↵, and the “Download”

button allows the user to get a PNG version of their current drawing. Two of the

buttons (“Sketch Recognition” and “Add New Object”) temporarily resolve issues

that will be discussed below.

Figure 3-4: Control buttons on the user interface.
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Sketch Recognition

The sketch recognition model currently works best on a finished sketch; however,

Paper Dreams cannot tell when the user has completed their drawing. Therefore,

the user must press the “Sketch Recognition” button to allow the system to know

when the user is finished with their current sketch. However, as will be discussed

in Section 4.1, we are currently working on a partial sketch recognition system that

can potentially recognize a sketch before it is completed, removing the need for this

button in future iterations of Paper Dreams.

Add New Object

Similarly, Paper Dreams cannot tell when the user is finished with their current

sketch and would like to start a new one. The “Add New Object” button that tells

the system that the user is ready to start drawing and coloring a new sketch, and to

not change the sketches that are already on the canvas.

3.2.3 Serendipity Wheel

The serendipity wheel, as seen in Figure 3-5, uses the label from the sketch recognition

to generate a list of classes that the user can add to their sketch and allows the user

to control how closely associated the list is to the current drawing. The three tabs in

the wheel in Figure 3-6 correspond to increasing unrelatedness (lighter being closely

related, darker being less related.) For example, from the label “cat”, a closely

related list could contain [“dog”, “mouse”, “squirrel”] and a relatively unrelated or

serendipitous list could contain [“rocket”, “ship”, “teapot”]. These lists are generated

from the similarity map (Figure 3-7) for the label; if the user requests classes that

are very related to the label, the system will pull objects with high similarity values

to the label. The generation of this map will be discussed in Section 4.3.
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Figure 3-5: The serendipity wheel controls the related words in the inspiration bar
and is generated from the sketch recognized label “volcano”.
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Figure 3-6: Serendipity Wheel, with an example of the associations it would suggest
for each tab when given the label “cat”.

Figure 3-7: An example of the relationship between “cat” and eight other various
classes, with example association regions labeled. High values under each class cor-
respond to high “similarity” between the label and that class.

3.3 System Context

Integrated into the user interface and program is the system context: what Paper

Dreams believes is the current focus of the user. It could be the most recently drawn
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sketch or the most recently typed sentence; the system will process it di↵erently

depending on what the user is doing. For example, if the last input were a text input,

the system would generate related words from the text rather than from the image

on the canvas. If the user were exploring options in the inspiration bar, the program

would generate further options from the classes there.

3.3.1 Drawing Capabilities

Paper Dreams supports a variety of drawing capabilities, from an creator who prefers

to draw their entire sketch by hand to an individual who might have no experience

drawing animals. Users can draw everything from detailed landscapes with a variety

of animals and background features to an abstract set of squares and circles. As

shown in Figure 3-8, the user can select from the list of related objects, pulling up a

database of images from the server that they can then put onto the canvas. They can

select the precise location and size for the object by drawing a circle on the canvas.

Paper Dream’s database of images is currently composed of images from the Sketchy

Dataset [20], the TU Berlin Sketch Dataset [21], and images generated by our team.

In the future, the database will be user-adaptable; users will be able to draw and

label sketches and classes that do not currently exist in our database. Other users

can then use those drawings in their sketches, and we can train and improve our own

models based on what users are drawing.

3.4 Canvas Generated Image

As seen in Figure 3-2, Paper Dreams generates an Canvas Generated Image of what

is currently on the canvas to pass to the Flask server for processing. However, the

Canvas Generated Image need to be either exactly 512 by 512 pixels, or 256 by 256

pixels, for the trained machine learning models; the canvas itself is usually around

2000 pixels large. Because the user can draw at any size, the image from the canvas

needs to be scaled and cropped appropriately to fit into the 512 by 512 pixel image.

In addition, because the user does not necessarily draw in the center of the canvas,
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Figure 3-8: The user can click on any of the related terms, pull a series of images
from our database, and add any image from that series to the canvas by drawing a
circle in the location and size they would like the image to be.

the image needs to be re-centered in the Canvas Generated Image as well.

Paper Dreams originally grabbed the image from the canvas directly by calculating

the bounds based on the size of the image, and then cropping the appropriate part of

the canvas. However, there was an unexpected issue with this approach- the resulting

image did not resemble the images on which the sketch recognition was trained. The

Paper Dreams canvas returned images with di↵erent line widths (see Figure 3-9)

because the line widths were also scaled along with the image itself; however, the

sketch recognition training set always had constant line widths (Figure 3-11).

I resolved this issue with an SVG-inspired approach- I saved the paths being

drawn, and redrew them onto a constant 512 pixel by 512 pixel canvas as paths, which

allowed me to set a custom line width on the 512 by 512 canvas. After analyzing the
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Figure 3-9: Canvas Generated Image, using the raw image from the canvas. Because
of the especially large di↵erence in scale, the final images vary in line thickness and
pixelation.

training dataset for the sketch recognition, I calculated the correct line widths and

produced the Canvas Generated Images in Figure 3-10. A comparison of the outputs

from both methods to the images from the sketch recognition training set can be

found in Figure 3-11.
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Figure 3-10: Canvas Generated Image, using the path save method for constant line
width. Despite the large di↵erence in scale, the final image has constant line width.
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Figure 3-11: The Canvas Generated Image pulled from paths (bottom right) resembles
the Sketchy Training set (top) more closely than the images pulled from the canvas
(bottom left).
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Chapter 4

Integration with Machine Learning

Sketch recognition has been a critical component of Paper Dreams from the conception

of this project. By understanding what the user is drawing, the system gathers

the contextual information that a↵ects the output of the other integrated machine

learning models (as shown in Figure 4-1). Paper Dreams incorporates three routes

of intelligent modeling: sketch recognition, style transfer based on the recognized

object (adaptive texturization), and generating associated classes via natural language

processing (NLP) similarity on the recognized object. The integration of these models

is dependent on utilizing information from one model (such as a sketch recognition

label) in another (such as texturization) to get an accurate output from the latter

model.

4.1 Sketch Recognition

Paper Dreams currently performs sketch recognition on a completed user drawing.

Our present recognition architecture is based on the deep learning network Sketch-

a-net, which claims one of the highest accuracy rates on human sketches [22]. The

Paper Dreams team trained the eight-layer convolutional neural net (CNN) from

Sketch-A-Net on the 125 classes in the Sketchy Dataset, and found that we had a 75%

accuracy rate across those 125 classes. However, while we can use our architecture for

recognizing incomplete or “partial” sketches, the resulting labels are often incorrect
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Figure 4-1: From an image of the current canvas, the system can generate the appro-
priate label, texture, and associated classes. Note that the sketch recognition a↵ects
the output of both other models.

until enough defining features are drawn.

Paper Dreams currently has no way of detecting when the user has drawn enough

features for a positive sketch identification. The system temporarily resolves this issue

by having the user click a button to call the recognition after they finish their sketch,

but the Paper Dreams team is working on incorporating a more sophisticated partial

recognition system based on DeepSketch 2 [23] that will allow us to predict what a

user is drawing at various stages of completion, which allows for a full real-time im-

plementation of sketch recognition. The partial sketch recognition uses information

from the order and placement of the most recently drawn strokes to make its pre-

dictions; for example, if the head of a horse is commonly the first body part drawn,
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then the partial sketch recognition system will associate head-like strokes to a higher

probability of being a horse.

In order to generate a training set for this partial sketch recognition architecture,

I parsed the SVG images from the Sketchy and TU Berlin databases into a series of

“progressive” partial sketches that represent the drawing at these various stages of

completion (20%, 40%, 60%, 80%, 100%). Because SVGs are made up of a variety

of path elements in the order they were drawn, I split the number of paths into five

approximately equally spaced sections, and drew each section progressively onto each

image. The final partial sketch dataset contains approximately 400,000 images from

186 classes, some of the results of which can be found in Figure 4-2.

Figure 4-2: A series of five generated progressive sketches, given an original SVG
image, for the partial recognition.
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4.2 Style Transfer / Adaptive Texturization

Paper Dreams currently supports coloring 186 distinct classes, including the 125

classes from the Sketchy Dataset (a full list of the included classes can be found

in Appendix A). It would be impractical to train and store a single style-transfer

model for all 186 classes, or a single model for each individual class. Therefore,

the classes are separated into fifteen di↵erent models, each encompassing a relevant

subset of the classes. For example, “butterfly”, “scorpion”, “hedgehog”, and “cat”

are all processed by the “animal” model; other models include “plants”, “buildings”,

“transportation”, and “fruit”. The sketch-identified label is associated with a model,

and the Canvas Generate Image is processed by that model to return an appropriate

texture (as shown in Figure 4-3.)

Figure 4-3: Using the Canvas Generated Image and the label from the Sketch recog-
nition, the texturization model passes the image through the appropriate model to
get an appropriate texture.
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4.2.1 Pix2Pix via ml5.js

Because of Paper Dream’s web-based interface, it would be ideal to use a Javascript-

based machine learning framework such as Tensorflow.js that is optimized for deploy-

ment on web applications. The ml5.js library [24] is built on top of Tensorflow.js, and

contains an implementation of Pix2Pix, a Pytorch-based adversarial net designed for

image-to-image translation [25]. However, I found that the images would often ap-

pear to “bleed” outside the lines of the sketch, as shown in Figure 4-4. This made it

di�cult to draw more than one object on the canvas; the textures would often overlap

between di↵erent objects. In addition, each model often took a few seconds to load,

making it di�cult to seamlessly switch from one model from another (and causing a

noticeable delay on the user side.)

Figure 4-4: Pix2Pix via ml5.js: Input sketch and corresponding output texture. Note
that the texture is not contained within the sketch.

4.2.2 Pix2PixHD

The Paper Dreams team then looked into Pix2PixHD [26], NVIDIA’s Pytorch im-

plementation of image-to-image translation. Pix2PixHD uses a deep learning neural

network to calculate object boundaries and incorporates that semantic information
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into creating more realistic and higher definition textures [27]. Pix2PixHD generates

textures with significantly less “bleeding” than Pix2Pix via ml5.js, which we then

filter further to remove some of the extra pixels in our current iteration of Paper

Dreams. While Pix2PixHD is a significant improvement in texturization (as can be

seen Figure 4-3, where there is a wide variety of di↵erent objects in the scene), it

unfortunately requires some sort of GPU (Graphics Processing Unit) on either a lo-

cal computer or via a cloud-based computing service. This currently limits us to

using the application on a computer with a GPU, and prevents us from deploying the

application online.

4.3 NLP and Associated Concepts

In natural language processing (NLP), cosine similarity is a classic metric for mea-

suring the similarity between two words [28]. Each of the words (or concepts) is first

turned into an n-dimensional vector, based on its frequency in the training set of

documents. The value of n is dependent on the model used, but generally is in the

hundreds or thousands. The similarity between two word vectors, A and B, can then

be calculated according to Equation 4.1, where ||A|| and ||B|| are the L2 norms of ~A

and ~B respectively.

Similarity( ~A, ~B) =
~A · ~B

||A|| · ||B|| (4.1)

Because the speech/text modality in the user interface is build with the spaCy

software library [29], we originally used spaCy’s vectorization for each word to calcu-

late the similarity between words/labels.

However, there was an issue: spaCy is built to process on the single word level.

Approximately 15% of our labels are compound words, i.e. multi-word phrases such

as “hot air balloon” that have a single meaning that is more than “hot”, “air”, and

“balloon” by themselves. (For reference, a full list of the available classes in the Paper

Dreams dataset can be found in Appendix A.) This can have a significant impact on

the overall results; the relationship between “mouse” and “cat” is very di↵erent from
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the relationship between “computer mouse” and “cat.” The spaCy library would

return two values for the relationship between “computer mouse” and “cat”: one for

“computer” and “cat” and another for “mouse” and “cat.”

To resolve this, I attempted to use the Natural Language Toolkit (NLTK) library

[30], which does support some bi and tri-gram words (such as “computer mouse” and

“hot air balloon”, respectively), but found that it was not robust enough to process

a significant portion of our compound word classes (as the words have to be defined

in the NLTK library.) For example, “t shirt” is not in the NLTK library.

Finally, I used sense2vec [31], a Python library trained on Reddit comments de-

signed to extract multiple possible meanings (or “senses”) and subsequent embeddings

from the input word/label [32]. Sense2vec was able to calculate similarity values for

nearly all classes in our dataset, with the exception of unusual noun phrases such

as “person walking.” I then calculated the cosine similarities between the main label

and all other classes in order to generate a mapping such as the one seen in Figure

4-5, where 9 is the mostly closely related value and 0 is unrelated. This graph is then

used for the serendipity wheel, as discussed in Section 3.2.3.

Figure 4-5: An example of the relationship between “cat” and eight other classes of
varying similarity (9 being most closely related). In practice, there are 185 total other
classes in each graph for a label.
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Chapter 5

Future Work

Beyond our current work on partial sketch recognition, the Paper Dreams team feels

that evaluation of and feedback for our current user interface is critical for under-

standing how users interact with our system. Therefore, we plan to conduct user

studies for in-person feedback and are building towards an online deployment of our

web application.

5.1 User Studies

We received approval from the MIT Committee on the Use of Humans as Experi-

mental Subjects (COUHES) for working with children and parents and are beginning

the process of designing our user study and reaching out to the community. We have

run two informal pilot studies on approximately 50 individuals, and found that users

overall found Paper Dreams very engaging and interactive. Nearly all users gave

positive feedback regarding the automatic coloring and related class suggestions, and

many users (approximately 75%) wanted to know whether the application would be

available from their own devices. However, we also found that there is room for im-

provement in the user interface (UI) design- the images for the control buttons and

on the serendipity wheel were often unintuitive for small children, and many users

wanted to drag images from our database onto the canvas (rather than drawing a

circle to select the size and location of the image).
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In our future studies, we hope to address the following questions:

• How quickly can new users learn to use the application? (How intuitive is the

interface? Are there potentially confusing UI features that can be improved?)

• What do users think the various buttons do vs what do they actually do? For

instance, what do users think is changing when they turn the serendipity wheel?

• Do users feel that they can put ideas onto the storyboard more quickly and

easily compared to other methods? If not, what medium would they prefer to

use and why?

• What new features would be helpful/useful for users? Is there something they

wish they could do, but cannot with the current interface and system?

5.2 Online Deployment

As discussed in Section 4.2.2, the Pix2PixHD high-definition adaptive texturization

is currently running locally on a computer with GPU processing power, and thus

restricts our web application to running on a local server on that same computer. In

order to make Paper Dreams fully deployable and available to the public as a web

application, the adaptive texturization must be modified such that it either:

1. Runs on a cloud-based computing service, such as Amazon Web Services (AWS)

or Microsoft Azure, with the GPU power to handle a high volume of requests.

2. Runs on the Javascript-based Tensorflow.js, which requires balancing optimiza-

tions in memory and data processing with the quality of the output texture.

3. Makes calls to the local GPU via a web-based API, e.g., WebSockets.

The Paper Dreams team is currently exploring the latter two options, as the former

is too cost-prohibitive for our purposes. After the application is available online, we

will implement functionalities for users to dynamically add classes and sketches to
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our sketch database, thus increasing the size and scope of what Paper Dreams can

provide for users and providing more data for us to improve our machine learning

models.
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Chapter 6

Conclusion

While there has been an explosion of artificial intelligence-based software for art in

the last few years, individuals such as children and the elderly often do not have access

to these state-of-the-art machine learning models that are currently being developed.

Paper Dreams takes one step toward filling this gap by creating an intuitive interface

and application that is customized for aiding the user in their visual expression.

Users are empowered to quickly create diverse artistic sketches in a collaborative

e↵ort between the user and the system, and an integrated set of machine learning

models allows for an intelligent response from the system.

In order to facilitate this interaction, I implemented a web-based application for

generating complex artistic scenes from a higher semantic level (idea-focused rather

than individual command-focused) using HTML, Javascript, CSS, and Flask. I then

integrated this interface with background machine learning models, which allows cru-

cial information such as labels to be passed from sketch recognition to other ML

models for a more accurate system response. To support these models, I generated

a variety of data collecting and data processing algorithms, starting with producing

a path-based Canvas Generated Image and culminating in the creation of a partial

sketch recognition database for use in future research. I explored ml5.js for image-to-

image style transfer for hand-drawn sketches and applied a variety of di↵erent natural

language processing libraries for determining similarities between classes, thus creat-

ing a representation for their relationship that can then be controlled by the user via
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a “serendipity wheel.” Paper Dreams is a platform filled with user functionalities, and

presents the user with a variety of ways to control and influence their output.

Preliminary studies suggest a strong engagement with users, and the solid po-

tential for Paper Dreams as an e↵ective medium for sketching and visual expression.

The work performed in this thesis provides a base for future versions of Paper Dreams

and for research on the augmentation of user expression and creativity via human-

computer interfaces and machine learning.

50



Appendix A

List of Classes
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Table A.1: The 125 Classes in the Sketchy Dataset, used for sketch recognition.
airplane chicken hedgehog pistol songbird

alarm clock church helicopter pizza spider
ant couch hermit crab pretzel spoon
ape cow horse rabbit squirrel
apple crab hot air balloon raccoon starfish
armor crocodilian hotdog racket strawberry
axe cup hourglass ray swan

banana deer jack o lantern rhinoceros sword
bat dog jellyfish rifle table
bear dolphin kangaroo rocket tank
bee door knife sailboat teapot

beetle duck lion saw teddy bear
bell elephant lizard saxophone tiger
bench eyeglasses lobster scissors tree
bicycle fan motorcycle scorpion trumpet
blimp fish mouse sea turtle turtle
bread flower mushroom seagull umbrella

butterfly frog owl seal violin
cabin geyser parrot sedan volcano
camel gira↵e pear shark wading bird
candle guitar penguin sheep wheelchair
cannon hamburger piano shoe windmill
castle hammer pickup truck skyscraper window
cat harp pig snail wine bottle
chair hat pineapple snake zebra
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Table A.2: The 186 Classes in the Paper Dreams Dataset, used in NLP and coloring.
airplane computer monitor ice cream cone raccoon strawberry
alarm clock computer mouse jack o lantern race car submarine
ant couch jellyfish racket sun
ape cow kangaroo radio suv
apple crab key rainbow swan
armor crocodilian keyboard ray sword
axe cup knife rhinoceros t shirt
backpack deer laptop rifle table
banana dinosaur lion rocket tank
basket dog lizard rooster teapot
bat dolphin lobster sailboat teddy bear
bear door megaphone satellite telephone
bee dragon microphone satellite dish tent
beetle duck microscope saw tiger
bell elephant monkey saxophone toilet
bench eyeglasses moon scissors tomato
bicycle fan motorcycle scorpion tractor
blimp fish mouse screwdriver train
brain flower mushroom sea turtle tree
bread flying bird octopus seagull trombone
bridge flying saucer owl seal truck
bulldozer frog palm tree sedan trumpet
bus frying pan panda shark turtle
bush geyser parachute sheep tv
butterfly gira↵e parrot ship umbrella
cabin guitar pear shoe violin
cactus hamburger penguin skyscraper volcano
camel hammer person sitting snail wading bird
candle harp person walking snake walkie talkie
cannon hat piano songbird wheelchair
carrot hedgehog pickup truck space shuttle windmill
castle helicopter pig speed boat window
cat hermit crab pineapple spider wine bottle
cell phone horse pistol sponge bob zebra
chair hot air balloon pizza spoon
chicken hotdog potted plant squirrel
church hourglass pretzel standing bird
cloud house rabbit starfish
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