
Do tax cuts produce more Einsteins? The impact of financial incentives 

vs. exposure to innovation on the supply of inventors

LSE Research Online URL for this paper: http://eprints.lse.ac.uk/102606/

Version: Published Version

Monograph:

Chetty, Raj, Bell, Alex, Jaravel, Xavier, Petkova, Neviana and Van Reenen, John 

(2019) Do tax cuts produce more Einsteins? The impact of financial incentives vs.

exposure to innovation on the supply of inventors. CEP Discussion Papers (1597).

Centre for Economic Performance, LSE, London, UK. 

lseresearchonline@lse.ac.uk
https://eprints.lse.ac.uk/ 

Reuse
Items deposited in LSE Research Online are protected by copyright, with all rights 
reserved unless indicated otherwise. They may be downloaded and/or printed for private 
study, or other acts as permitted by national copyright laws. The publisher or other rights 
holders may allow further reproduction and re-use of the full text version. This is 
indicated by the licence information on the LSE Research Online record for the item.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/237715193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ISSN 2042-2695 

CEP Discussion Paper No 1597 

January 2019 

Do Tax Cuts Produce More Einsteins? The Impact of 

Financial Incentives vs. Exposure to Innovation on the 

Supply of Inventors 

Alex Bell 

Raj Chetty 

Xavier Jaravel 

Neviana Petkova 

John Van Reenen 



 

   

Abstract 
Many countries provide financial incentives to spur innovation, ranging from tax incentives to research and 

development grants. In this paper, we study how such financial incentives affect individuals' decisions to pursue 

careers in innovation. We _first present empirical evidence on inventors' career trajectories and income 

distributions using de-identified data on 1.2 million inventors from patent records linked to tax records in the 

U.S. We find that the private returns to innovation are extremely skewed - with the top 1% of inventors 

collecting more than 22% of total inventors' income - and are highly correlated with their social impact, as 

measured by citations. Inventors tend to have their most impactful innovations around age 40 and their incomes 

rise rapidly just before they have high-impact patents. We then build a stylized model of inventor career choice 

that matches these facts as well as recent evidence that childhood exposure to innovation plays a critical role in 

determining whether individuals become inventors. The model predicts that financial incentives, such as top 

income tax reductions, have limited potential to increase aggregate innovation because they only affect 

individuals who are exposed to innovation and have no impact on the decisions of star inventors, who matter 

most for aggregate innovation. Importantly, these results hold regardless of whether the private returns to 

innovation are known at the time of career choice. In contrast, increasing exposure to innovation (e.g., through 

mentorship programs) could have substantial impacts on innovation by drawing individuals who produce high-

impact inventions into the innovation pipeline. Although we do not present direct evidence supporting these 

model-based predictions, our results call for a more careful assessment of the impacts of financial incentives and 

a greater focus on alternative policies to increase the supply of inventors. 
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I Introduction

The importance of innovation for economic growth (e.g., Romer 1990, Aghion and Howitt 1992) has

led to considerable policy interest in increasing rates of innovation. The most common approach to

spur innovation is to provide financial incentives to innovate, such as tax reductions or research and

development (R&D) grants. Although a large body of research has evaluated the impacts of such

financial incentives on behavior in firms (e.g., Hall and Rosenberg 2010), there has been less work

on how financial incentives affect whether individuals choose to become inventors – the “supply” of

inventors in the terminology of Romer (2000).

In this paper, we study how financial incentives affect individuals’ decisions to pursue careers

in innovation, in two steps. We first document a set of facts about inventors’ careers in the labor

market that shed light on the structure of returns to innovation. We then construct a stylized model

of career choice that matches these facts as well as other recent evidence to analyze how financial

incentives affect the supply of inventors.

In the first part of the paper, we analyze inventors’ careers using a longitudinal dataset covering

1.2 million inventors in the United States.1 This dataset was constructed by Bell et al. (2019) by

linking the universe of patent applications and grants in the U.S. between 1996 and 2014 to federal

income tax returns. These administrative data allow us to track inventors’ incomes and patent rates

from the beginning to the end of their careers in a comprehensive manner.

We find that the financial returns to innovation are highly skewed and highly correlated with

their scientific impact – two key facts which we show using our model imply that small changes

in financial incentives will not affect aggregate innovation significantly. The highest-paid 1% of

inventors (whose annual incomes exceed $1.6 million per year) earn more than 22% of total inventors’

income. The distribution of income among patent-holders is as skewed as the distribution of income

in the population as a whole. Individuals with highly cited patents have much higher incomes,

suggesting that the private benefits of innovation are correlated with their social returns.2

Next, we turn to the dynamics of inventors’ careers. We find that inventors tend to make their

highest-impact (most cited) discoveries when they are in their mid-forties, well after they make

initial career choices, consistent with the findings of Jones et al. (2014). Interestingly, inventors’

incomes tend to rise rapidly in the years just before patents are granted, consistent with Depalo and

Di Addario (2014). This result implies that much of the individual return to innovation comes not

from the patent itself – the component of inventors’ income that has received the most attention

in prior work (e.g., Van Reenen 1996, Kline et al. 2017) – but from associated business income and

salaries.

In the second part of the paper, we characterize the implications of our empirical findings

1Following prior work, we define an “inventor” as an individual who holds a patent. Patents provide a useful proxy
for innovation at scale, but have well-known limitations (e.g., Griliches 1990 and OECD 2009).

2We follow prior work (e.g., Jaffe et al. 1993) in using patent citations as a proxy for a patent’s technological merit
and social impact. Although citations are an imperfect proxy for impact, they are well correlated with other measures
of value, such as firm’s profits and market valuations (Scherer et al. 2000, Hall et al. 2005, Abrams et al. 2013, Kogan
et al. 2017).
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for policies to increase innovation using a simple model of career choice. We build a model that

matches both the facts on career trajectories described above and evidence from our companion

paper (Bell et al. 2019) on the importance of childhood exposure to innovation. In that paper –

which complements the present study by analyzing inventors’ lives before entering the labor market –

we showed that exposure to innovation during childhood has significant causal effects on children’s

propensities to invent. In particular, children whose families move to a high-innovation area at

young ages are more likely to become inventors. These impacts are technology-class and gender

specific. Children who grow up in a neighborhood or family with a high innovation rate in a specific

technology class are more likely to patent in exactly the same class. Girls are more likely to invent

in a particular class if they grow up in an area with more women (but not men) who invent in that

class. Since these gender- and technology class-specific impacts are unlikely to be driven by factors

that affect general human capital accumulation (such as the quality of schools), we conclude that

they must be driven by more narrow exposure effects – i.e., information or role model effects that

motivate some children to pursue innovation.

Motivated by these findings, we construct a model in which three factors determine whether

an individual pursues innovation: financial incentives, exposure to innovation, and preferences.

We model exposure as a stochastic binary variable: individuals who do not receive exposure to

innovation do not consider an inventor career, whereas those who receive exposure decide whether

to pursue innovation by maximizing expected lifetime utility as in Roy (1951) and Hsieh et al.

(2016). To match our empirical findings on the return to innovation, we model payoffs in the

innovation sector using a Pareto distribution, focusing on the case where the skewness of the payoffs

is large, either due to differences in ex-ante abilities to innovate or ex-post shocks. We also assume

that inventors’ salaries are proportional to social impact of their inventions given our result that

citations and salaries are strongly correlated. Finally, we assume that exposure to innovation is

uncorrelated with individuals’ abilities to innovate – an assumption that is consistent with evidence

on heterogeneity across subgroups from Bell et al. (2019).

Using this model, we compare the impacts of two types of policies on innovation: increasing pri-

vate financial returns (e.g., by cutting top income tax rates) and increasing exposure (e.g., through

mentorship programs). The model implies that the potential to increase innovation by reducing

top taxes is limited, for three reasons. First, such policies only affect the subset of individuals

who have been exposed to the possibility of an inventor career. Second, if the returns to inno-

vation are forecastable at the point of career choice, such policies would only induce inventors of

marginal quality to enter the field rather than star inventors. In our data, the mean annual income

of those with patents in the top 1% of the citation distribution is more than $1 million between

ages 40-50. The decisions of these star inventors are unlikely to be affected by small changes in

financial incentives, making aggregate quality-weighted innovation relatively insensitive to tax rates

(Jaimovich and Rebelo 2017).3 Third, if the returns to innovation are uncertain at the point of

3Jaimovich and Rebelo (2017) establish a similar result in a neoclassical model of career choice with heterogeneous
abilities. Our results are consistent with theirs and make three further contributions. First, in the setting with
heterogeneous abilities that they consider, we derive a formula that can be directly calibrated using the parameters
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career choice, the elasticity of innovation with respect to top income tax rates is likely to be small

in a standard expected utility model because tax changes only affect payouts when inventors have

very high incomes and low marginal utility.

In contrast, the model implies that increasing exposure can have substantial impacts on quality-

weighted innovation by drawing individuals who would produce high-impact inventions (“Lost Ein-

steins” or “Lost Marie Curies”) into the innovation pipeline.4 Since exposure to innovation is

uncorrelated with individuals’ abilities to innovate, policies that increase exposure increase aggre-

gate quality-weighted innovation in direct proportion to their impact on the number of inventors.

This ability to attract more star inventors avoids the diminishing returns that set in from running

down the quality ladder of inventions when providing greater financial incentives.

It is important to keep several caveats in mind when interpreting the preceding conclusions.

First, the policy impacts described above are theoretical predictions from a stylized model that

matches certain empirical findings, but also rests on additional assumptions that are conventional

but untested (e.g., expected utility maximization). We believe that these theoretical predictions

are useful because directly identifying the impacts of taxation or other policies on career choice is

very challenging. Indeed, even state-of-the-art quasi-experimental studies (e.g., Akcigit et al. 2018)

identify short-run responses to financial incentives rather than long-term impacts on career choice.

Nevertheless, we caution that further work is needed to gauge the empirical relevance of our results.

Second, our analysis focuses exclusively on the decisions of individual inventors. Taxes and other

financial incentives could potentially affect innovation through many different channels, for instance

by changing the behavior of firms, other salaried workers who contribute to the innovation process,

or through general equilibrium effects (e.g., Lerner and Wulf 2007, Akcigit et al. 2017). Taxes may

also influence inventors’ behavior on other margins, such as how much effort to supply or where to

locate (Akcigit et al. 2016, Moretti and Wilson 2017), which are distinct from the extensive margin

career choice decisions we focus on here.

Finally, our analysis does not provide guidance on specific policies to increase exposure to in-

novation. The fact that some neighborhoods in America induce many more children to become

inventors suggests that it is feasible to design childhood environments that could significantly in-

crease aggregate innovation (Bell et al. 2019). How exactly one can replicate the impacts of such

environments in a cost-effective manner is a key question that we leave to future work.

The remainder of the paper is organized as follows. Section II discusses how our results con-

tribute to the prior literature. Section III presents empirical results on inventors’ career trajectories.

Section IV presents the model and comparative static results on the impacts of policy changes. Sec-

tion V concludes.

and relationships we estimate empirically, namely the degree of skewness of the income distribution of inventors and
the linear relationship between the social returns to innovation (as measured by citations) and inventors’ incomes.
Second, we also analyze the case where returns are not known at the point of career choice. Finally, we introduce
exposure effects into the model.

4Of course, one cannot conclude that aggregate welfare would be higher if these individuals were to enter innovation
rather than the careers they currently pursue, as those careers may be socially valuable as well. Our point here is
simply that if one takes the goal of increasing innovation as given, increasing exposure could be effective in achieving
that goal.
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II Related Literature

This paper contributes to the literature on financial incentives and innovation in two ways. First,

most previous work studies incentives to innovate within firms, while we focus on the career choices

of individuals. Second, prior work has focused primarily on “demand-side” policies such as tax

credits for research and development, in contrast with our focus on “supply-side” policies that

attempt to directly increase the number of inventors.

Firm-level vs. inventor-level studies. Most empirical work on innovation has focused on firms

(Griliches 1984, Hall and Rosenberg 2010), examining how innovation responds to the Intellectual

Property (IP) regime or to incentives for R&D. Most studies have found that incentives for R&D

have significant effects on innovation and R&D expenditures (see Becker (2015) for a survey). For

example, Dechezlepretre et al. (2016) and Chen et al. (2018)) show significant impacts of changes

in national tax rules, while Bloom et al. (2013) and Wilson (2009) find substantial effects of state-

specific R&D tax credits. Similarly, studies of direct R&D subsidies also find positive impacts on

innovation, especially for smaller firms (e.g., Howell 2017).

This focus on firms may be warranted because R&D and patenting are mainly conducted by

firms, rather than by individual inventors (Mowery and Rosenberg 1991). However, important

early-stage innovation sometimes still occurs outside corporations, such as the “garage” innovators

responsible for many of the technological giants of today, such as Apple, Facebook, Google, and

Microsoft. Moreover, it is ultimately individuals who choose whether or not to pursue careers in

innovation and join firms in the innovation sector. For these reasons, it is also valuable to study

the potential impacts of policies on individuals’ decisions.

There has been considerable theoretical work analyzing the role of individual inventors. Indeed,

most macroeconomic models of endogenous growth typically allow individuals to choose whether to

join an R&D sector or production sector (e.g., Romer 1990, Aghion and Howitt 1992, Jaimovich and

Rebelo 2017). In addition, much theoretical work analyzes optimal contracts between individuals

and CEOs, owner, and financiers (e.g., Pakes and Nitzan 1983, Aghion and Tirole 1994, Manso

2011, Ederer and Manso 2013).

However, there has been much less empirical work focusing on the behavior of individual inven-

tors because of a lack of longitudinal data that allows researchers to follow individual inventors over

time. In a classic study, Schmookler (1957) obtained patent data and studied the background of

57 American inventors. This line of careful biographical work using patent data has been followed

up by various papers, perhaps most ambitiously in the PATVAL database covering 9,017 European

patents (Giuri et al. 2007). Li et al. (2014) made an important step forward in this line of research

by disambiguating names of inventors in order to track individuals with multiple patents over time.

Although the approach of linking together information from patent records has led to valuable

research, it has important limitations. First, there is little or no biographical information on in-

ventors (e.g., age or gender) or their backgrounds. Second, there is no capacity to track inventors’

incomes or other outcomes beyond patenting. In the last few years, administrative data have en-

abled researchers to overcome these challenges by matching patent records to other datasets with

4



much richer biographical information. Much of this research has been conducted using data from

Scandinavian registries (e.g., Toivanen and Vaananen 2012, Lindquist et al. 2015, Jung and Ejermo

2014, Aghion et al. 2017), while other work uses Census data and tax data from the United States

(Akcigit et al. 2017, Bell et al. 2019). These studies are beginning to yield a richer understanding

of the factors that affect who becomes an inventor, ranging from IQ and parental education (e.g.,

Aghion et al. 2017) to childhood exposure (Bell et al. 2019) and the impacts of taxation and other

policy changes (Akcigit et al. 2017, Akcigit et al. 2018).

Our empirical analysis contributes to this nascent literature by analyzing the dynamics of inven-

tors’ careers in the labor market in the United States. While some studies have presented evidence

on the returns to innovation in other countries (Toivanen and Vaananen 2012, Depalo and Di Ad-

dario 2014), there is little contemporary information on the returns to innovation in the United

States. Our empirical estimates – along with additional statistics on inventors’ income distributions

by year and citations that we report in our Online Data Tables – are useful in calibrating models

of innovation, yielding new insights into the effects of financial incentives on inventors’ behavior.

Demand-side vs. supply-side policies. Romer (2000) observes that most existing policies to

increase innovation focus on the “demand” side, shifting the demand curve for innovation outward by

subsidizing research and development. Romer notes that if the number of workers in the innovation

sector (“supply”) is fixed, then increasing demand for their skills may simply drive up their wages

with no effect on the quantity of innovation, consistent with the empirical findings of Goolsbee

(1998).

Given the potential limitations of demand-side policies, Romer (2000) calls for greater focus

on increasing the supply of inventors directly, e.g. by increasing the number of STEM graduates

(Freeman and Van Reenen 2009). Our study contributes to this agenda by directly analyzing what

policies can increase the supply of inventors. Importantly, we analyze impacts not just on the

total quantity of inventors but also the quality of those inventors – a feature that is critical for

our conclusion that increasing childhood exposure to innovation may have larger impacts on the

aggregate (quality-weighted) supply of inventors than changes in financial incentives.

III Evidence on Inventors’ Career Trajectories

In this section, we present a set of empirical results on inventors’ career trajectories. We begin by

briefly describing the data we use for this analysis and then turn to the results.

III.A Data

Sample Construction. We link data on the universe of patent applications and grants in the U.S.

between 1996 and 2014 to federal income tax returns to construct a de-identified panel dataset

of inventors, whom we define as patent applicants or recipients. This dataset is the same as that

constructed in Bell et al. (2019), and we therefore refer readers to Section II of that paper for details

regarding our data sources and sample construction.
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Our analysis sample in this paper consists of all inventors who were successfully linked to the

tax data, the “Full Inventors Sample” in Bell et al. (2019). 88% of individuals who applied for

or were granted a patent were successfully linked to the tax data, yielding an analysis sample of

approximately 1.2 million individuals. The sample is structured as a panel from 1996 to 2012, with

data in each year on individual’s incomes, patents, and other variables.

Income Definitions. We measure income as total individual income, which includes wage earn-

ings as well as self-employment income and capital income.5 For tax filers, total income is defined

as Adjusted Gross Income (as reported on the 1040 tax return) plus tax-exempt interest income

and the non-taxable portion of Social Security and Disability benefits minus the spouse’s W-2 wage

earnings (for married filers). For non-filers, total income is defined simply as wage earnings as

reported on form W-2. Individuals who do not file a tax return and who have no W-2 forms are

assigned an income of zero.6 Because the tax data does not record W-2 income prior to 1999, we

cannot reliably measure individual earnings prior to that year, and therefore measure individuals’

incomes only starting in 1999. Income is measured prior to the deduction of individual income taxes

and employee-level payroll taxes in 2012 dollars, adjusting for inflation using the consumer price

index (CPI-U).

Summary Statistics. Table I presents descriptive statistics for our analysis sample. The median

number of patent applications between 1996-2012 is 1 and the median number of citations per

inventor is also only 1. But these distributions are very skewed: the standard deviations of the

number of patent applications and citations are 11.1 and 118.1, respectively. The mean age of

inventors is 44 and 13% of inventors in the sample are women.

III.B Empirical Results

We now use these data to examine inventors’ career paths and outcomes after they enter labor

market. We establish four facts on the income distributions of inventors that are both of interest in

their own right and shed light on the effects of financial incentives on innovation when interpreted

using a standard model of career choice.

Fact 1: Returns to Innovation are Highly Skewed. We begin by characterizing the cross-sectional

distribution of inventors’ permanent incomes. We measure inventors’ permanent incomes by com-

puting their average annual incomes between the ages of 40 and 50. Since our data on individual

incomes begin in 1999 and end in 2012, we focus on individuals in our analysis sample who are born

between 1959 and 1962, for whom we see income at all ages between 40 and 50. These individuals

applied for or were granted patents between ages 34 and 53, as our patent data span 1996-2012.

The income distribution of inventors, plotted in Figure Ia, is extremely skewed. The median

annual income between ages 40-50 (in 2012 dollars) is $114,000, the mean is $192,000, and the 99th

percentile is $1.6 million. 22% of total income earned by inventors accrues to individuals in the top

5Wage earnings comprise 95% of total income for the average inventor (conditional on having total income above
$1,000).

6Importantly, these observations are true zeros rather than missing data. Because the database covers all tax
records, we know that these individuals have no taxable income.
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1% of the inventors’ income distribution, a top income share that is similar to the 23% top income

share in the mid-2000s in the population as a whole (Atkinson et al. 2011). The degree of inequality

among inventors is similar to that in the general population. In contrast, most other high-skilled

professions, such as medicine or law, have much more homogeneous income distributions; one of the

only other professions with comparable heterogeneity in income is the financial sector (Lockwood

et al. 2017). Innovation thus differs from many other high-skilled occupations in that a small group

of individuals obtain a large fraction of the returns.

Fact 2: Private Returns are Highly Correlated with Social Returns. Inventor’s incomes reflect

the private returns to innovation, which may differ from social returns. Prior work has used the

future citations to a patent as a measure of its scientific impact and social value (e.g., Jaffe et al.

1993). Figure Ib shows that the private returns to patents are highly correlated with their scientific

impact, as measured by citations. It presents a binned scatter plot of average annual income between

ages 40-50 vs. the total number of citations an inventor obtains. We restrict the sample to patent

applications in 1996 in this figure to maximize the time horizon over which we can measure future

citations. The figure is constructed by dividing citations into 21 bins and plotting mean income

vs. mean citations within each bin. The first 19 bins include inventors in the first 19 ventiles (5%

bins) of the citations distribution, while the last two bins plot the same relation for the 95th to

98th percentiles and the 99th percentile of the citation distribution. There is a strong positive

relationship between citations and income. Notably, inventors who have patents in the top 1%

of the citation distribution earn more than $1 million per year between ages 40 and 50, showing

that individuals with highly impactful innovations from a scientific perspective obtain large private

returns over their lifetimes.

Having characterized the cross-sectional distribution of inventors’ incomes, we now turn to the

dynamics of innovation and income over inventors’ careers.

Fact 3: Innovation Rates Peak in Mid-Career. Figure IIa plots the cross-sectional age distri-

bution of individuals who filed a patent application in 2000 that was subsequently granted. The

modal age of patenting is 38, with symmetric declines at younger and older ages, consistent with

Jones et al. (2014). This pattern is partly driven by the fact that the fraction of people who work

falls at older ages. Figure IIb plots the fraction of workers in the population (individuals with

positive W-2 earnings) who patent in 2000 by age. Innovation per worker still peaks around 40,

but falls more gradually at older ages, with a 33% decline from age 40 to 60. Figure IIc plots the

fraction of workers whose patents went on to become highly-cited (in the top 5% of patents filed

in 2000) by age. The rate of high-impact innovation falls by 66% from age 40 to 60. This result

is broadly consistent with Acemoglu et al.’s (2014) hypothesis that the “young and restless” have

higher impact discoveries, although individuals’ most impactful innovations tend to come in the

middle rather than at the beginning of their professional careers.

Fact 4: Most Returns are Accrued Before Patents are Granted. Finally, we examine the dynamics

of income over inventors’ careers. Figure IIIa plots the median income of individuals who apply

for a patent at age 30, 40, or 50. In each case, we see a steep increase in income in the years
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immediately preceding the patent application, following by a leveling off or decline. Figure IIIb

generalizes this analysis using an event study framework, defining year 0 as the year in which an

individual files a patent application and other years relative to this reference year (e.g., +1 is the

year after the application).7 Consistent with the findings in Figure IIIa, median and mean incomes

rise sharply and peak at the point of patent application, similar to Depalo and Di Addario’s (2014)

findings in Italian data. We also find a similar trajectory in the upper tail: the 99th percentile of the

distribution peaks at $1.8 million shortly after the year of application and falls slightly thereafter.

Figure IIIc presents event studies of median income for three groups: unsuccessful applications

(patents that were not granted before 2014), all granted patents, and highly-cited patents (those in

the top 5% of the citation distribution among all patents granted in the same year). As noted above,

individuals with highly-cited patents have higher incomes, and much of that higher income again

comes from a much steeper earnings trajectory in the years prior to the point of patent application.

The results in Figure III suggest that a patent application marks the peak of a successful career in

innovation rather than an event that itself produces high returns, perhaps because the patent event

itself is not news to the firm or the market. Indeed, patent royalties account for less than 3% of

income even for inventors with highly cited patents five years after a patent is granted.8

In summary, the private returns to innovation are highly skewed and correlated with their

scientific impact. In addition, returns may be uncertain at the time of career choice, as the most

impactful inventions tend to occur around age 40, and incomes tend to rise rapidly only shortly

before that point. In the next section, we show that these facts imply that changes in financial

incentives are unlikely to have large effects on rates of innovation in standard models of career

choice.

IV A Model of Inventors’ Careers

In this section, we develop a model of inventor career choice that broadly matches the empirical

findings above as well as the evidence on the importance of childhood exposure effects in determining

whether individuals pursue a career in innovation from Bell et al. (2019). Our model builds on recent

models of innovation and career choice (e.g. Hsieh et al. 2016, Jaimovich and Rebelo 2017) in two

ways. First, we introduce a role for exposure, whereby some people do not consider a career in

innovation irrespective of incentives, e.g., because of a lack of awareness. Second, we allow for the

possibility that the returns to innovation may be partly uncertain to the individual at the point of

career choice in light of our findings above on the earnings trajectories of inventors.

We first describe the setup of the model and then present comparative static results on the

effects of changes in financial incentives and exposure to innovation. Derivations and proofs are

given in the Appendix.

7We limit the sample to individuals who file patent applications between ages 35 and 50. For individuals who file
multiple patents in this age window, we choose one of the patents at random.

8Of course, some very high value patents may have significant causal impacts on the wages of an inventor and her
co-workers (Van Reenen 1996, Kline et al. 2017).
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IV.A Model Setup

A continuum of agents, indexed by i (with total mass one), choose to enter one of two sectors: the

innovation sector (I) or another sector (Ī). There are three factors that govern each agent’s choice

of occupation: financial payoffs, exposure, and preferences.

Financial Payoffs. Outside the innovation sector, agents receive a fixed wage wĪ . In the innova-

tion sector, agents’ payoffs are determined by their innovation-specific abilities αi ≥ 1, which follow

a Pareto distribution Fα(α) = 1−
(

1
α

)βα , and a stochastic shock πi ≥ 1 that is independently drawn

from a different Pareto distribution Fπ(π) = 1−
(

1
π

)βπ . The Pareto shape parameters βπ ≥ 1 and

βα ≥ 1 govern the skewness of the payoffs. Agents know their ability αi when deciding whether or

not to enter the innovation sector but do not know πi.
9 Agent i’s realized payoff from entering the

innovation sector is given by the product of ability and the stochastic shock:

ri ≡ αi ·
βα − 1

βα
· πi

βπ − 1

βπ
.

With this specification, changes in the shape parameters βπ and βα affect the skewness of payoffs

while leaving the mean return E[ri] unchanged. The skewness of the payoffs is decreasing in the

shape parameters; when the shape parameters approach one, the distribution of payoffs becomes

infinitely skewed. We assume that wages and returns to innovation are fixed, and in particular do

not respond to the number of individuals who enter each sector.

Individuals must pay a tax τ on their incomes in the innovation sector, resulting in a net-of-tax

payoff to innovation of (1− τ)ri.
10 This tax τ can equivalently be interpreted as a cost of entering

innovation, as in Hsieh et al. (2016).11

Exposure. Individuals’ decisions are influenced by whether they are exposed to innovation. We

model exposure as a binary variable λi that follows a Bernoulli distribution λi ∼ B(λ). Individuals

who do not receive exposure to innovation (λi = 0) never pursue innovation, while those who receive

exposure (λi = 1) choose their sector by maximizing expected lifetime utility.

Importantly, we assume that the probability of exposure to innovation is uncorrelated with

individuals’ abilities to innovate. This assumption is motivated by evidence from Bell et al. (2019)

that individuals who are less exposed to innovation – e.g., women, minorities, and children from

low-income families – do not appear to have different latent abilities to innovate, as measured for

instance by their math test scores early in childhood.

9The stochastic returns πi can be interpreted either as the inherently stochastic component of financial rewards to
innovation (e.g., an invention may be a commercial success or failure due to many factors), or as the component of an
inventor’s ability which is revealed ex-post (after choosing an inventor career) and could not be anticipated ex-ante

(before career choice).
10We assume that the tax applies only to the innovation sector as a simple way to capture the fact that top income

tax rates may affect the payoffs to innovation (which can sometimes be very high) more than payoffs to other careers
that have lower (fixed) salaries. Insofar as taxes also affect payoffs in other sectors, career choices will be less sensitive
to tax rates, reinforcing our results below.

11In Hsieh et al.’s model, the barriers to entry τ vary across subgroups (e.g., women and minorities effectively face
higher tax rates). Our model can be interpreted as applying to one such subgroup; the comparative static results
below show how differences in τ affect innovation rates across subgroups.

9



Preferences. To obtain closed-form solutions, we assume that agents have constant relative risk

aversion (CRRA) utility functions, although all of the qualitative results that follow hold with any

smooth and concave utility function. Let u(ci) =
c1−θ
i

1−θ
denote agent i’s utility as a function of

consumption ci, with θ ≥ 0.

IV.B Agent Behavior

We now characterize agents’ career choices and aggregate innovation rates.

Working in the innovation sector yields expected utility V I
i = Eπ [u (ri · (1− τi))]. Agent i there-

fore enters the innovation sector if λiV
I
i > V Ī

i = u(wĪ). It is straightforward to show that agents

follow a threshold rule when deciding whether to enter innovation: there is an ability threshold ᾱ

such that all agents with innovation-specific ability αi > ᾱ enter the innovation sector. Taking into

account exposure effects, the share of agents who become inventors is therefore

φ = λ · (1− Fa(ᾱ)). (1)

We show in the appendix that under our functional form assumptions, we can obtain a closed-form

expression for the share of inventors:

φ = κφ · λ(1− τ)βα , (2)

where κφ =
(

βπ−1
wĪβπ

βα−1
βα

)βα
(

βπ

βπ+θ−1

)
βα
1−θ

≥ 0.

Given the evidence in Figure Ib above that inventors’ salaries are proportional to their patent

citations on average, we assume that the social value of innovation is si = ν · ri, where ν > 0. We

define aggregate quality-weighted innovation as

Φ = φE[ν · ri|αi > ᾱ]. (3)

Intuitively, aggregate innovation depends upon the number of inventors (φ) and the average quality

of their innovations. Again, we can obtain a closed-form expression for aggregate innovation:

Φ = κΦ · λ(1− τ)βα−1, (4)

where κΦ = ν
(

βπ−1
wĪβπ

βα−1
βα

)βα−1 (
βπ

βπ+θ−1

)
βα−1

1−θ
≥ 0.

In the next two subsections, we characterize how changes in tax rates (τ) and exposure (λ) affect

φ and Φ.

IV.C Effects of Changes in Financial Payoffs

The following proposition characterizes the impact of reducing the tax rate τ (which can be inter-

preted as an increase in the financial return to innovation or as a reduction in barriers to entry) on

innovation.
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Proposition 1. Reducing the tax rate (τ) increases the fraction of inventors (φ) and aggregate

innovation (Φ).

The magnitude of the response is characterized by three properties:

1. [ Exposure dampening] The absolute impact of changes in τ on φ and on Φ are proportional

to exposure λ.

2. [ Forecastable returns] When returns to innovation vary purely because of heterogeneity in

ability known at time of career choice (βπ → ∞), the elasticities of φ and Φ with respect to (1− τ)

converge to ǫφ,(1−τ) → βα and ǫΦ,(1−τ) → βα−1. As the skewness of the ability distribution increases

(βa → 1), the elasticity of Φ with respect to (1− τ) converges to zero.

3. [Stochastic returns] As the skewness of stochastic returns to innovation increases (βπ → 1),

at a given initial level of innovation φ0, the elasticities of φ and Φ with respect to (1 − τ) both

converge to zero if θ > 0: ǫφ,(1−τ) → 0 and ǫΦ,(1−τ) → 0.

The first result in Proposition 1 (exposure dampening) implies that the response of the number

of inventors (and in turn of aggregate innovation) to changes in financial incentives is muted when

exposure to innovation is low. Naturally, only the agents who are exposed to innovation respond to a

change in τ . Given Bell et al.’s (2019) evidence that rates of innovation are low in many subgroups of

the population because of a lack of exposure, this result implies that changes in financial incentives

may have very muted effects on the number of inventors.12

The second result in Proposition 1 (forecastable returns) focuses on the case where heterogeneity

in inventors’ incomes is driven entirely by known differences in abilities rather than stochastic shocks.

In this case, the elasticity of aggregate innovation Φ with respect to changes in financial returns is

determined purely by the skewness of the distribution of innovation abilities. The elasticity falls as

the skewness of the ability distribution rises (βα → 1) because there are fewer individuals who are

on the margin of entering the innovation sector, whose decisions would be influenced by small tax

changes. Moreover, aggregate quality-weighted innovation (Φ) is less responsive to changes in the

tax rate τ than the number of agents entering innovation (φ), as shown by Jaimovich and Rebelo

(2017). Intuitively, the marginal entrants who enter the innovation sector because of a reduction

in the tax rate τ must have lower ability than the average inventor already in the sector, thereby

increasing quality-weighted innovation by less than the total number of inventors. As the ability

distribution becomes more skewed (βα → 1), the elasticity of quality-weighted innovation with

respect to the tax rate converges to zero. In the limiting case, aggregate innovation is driven by a

small fraction of star inventors whose behavior is insensitive to taxes because they have very high

earnings in the innovation sector relative to the outside option.

Figure IVa illustrates this result by plotting the number of inventors φ and quality-weighted

innovation Φ as a function of the tax rate on inventors’ earnings. In this simulation, we set βπ = ∞

12Although the absolute impacts of tax changes ( dφ
dτ

and dΦ
dτ

) are proportional to exposure λ, the elasticities of φ
and Φ with respect to τ are invariant to λ. A lower value of λ reduces the rate of initial innovation at the same rate
as the derivatives, leaving the elasticity (percentage impacts) unchanged.
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(no stochastic shocks) and the skewness of the ability distribution βα = 1.26 to match the Pareto

shape parameter of 1.26 estimated using the inventors’ empirical earnings distribution shown in

Figure I. Both φ and Φ are normalized to 100% at a tax rate of τ = 0. As predicted by the

proposition, the number of inventors declines much faster than total innovation as the tax rate on

inventors’ earnings increases. For example, at a tax rate of τ = 40% on inventors’ earnings, the

total number of inventors φ is 48% smaller than it would be in the absence of taxes (τ = 0), but

aggregate quality-weighted innovation Φ is only depressed by 12.5%. While the exact numbers nat-

urally depend upon model specification, these calculations suggest that aggregate quality-weighted

innovation may not be very sensitive to small changes in tax rates under parameters that match

the empirical distribution of inventors’ incomes.

The third result in Proposition 1 (stochastic returns) focuses on the case where heterogeneity in

inventors’ incomes is driven primarily by unforecastable shocks rather than known ability hetero-

geneity, i.e. where βπ → 1. The level of innovation φ converges to 0 as βπ → 1 when θ > 0 because

the expected value of innovation VI falls to 0 as the variance of payoffs grows large, holding the

mean payoff fixed, when individuals are risk averse. To obtain comparative statistics at the same

level of innovation φ0 as in the case with pure ability heterogeneity analyzed above, we reduce the

wage in the non-innovation sector wĪ as βπ → 1 to keep the fraction of inventors fixed at φ0.
13

In this setting, as the skewness of stochastic shocks rises, both the elasticities of the number

of inventors and quality-weighted innovation with respect to tax rates converge to zero if agents

are risk averse (θ > 0). The logic underlying this result is easiest to understand in the context of

a limiting example with two states of the world: a bad state in which innovation has zero return

and a good state in which innovation has a large payoff, say $10 million. In the bad state, taxes

have no impact on utility. In the good state, a slightly smaller payout (e.g., $9 million instead of

$10 million) does not reduce an agent’s incentive to become an inventor by very much because the

marginal utility of consumption is already low this far out in the income distribution. Intuitively,

when returns are very skewed, taxes only affect inventors’ payoffs when they are very deep in the

money and are not sensitive to financial incentives, resulting in small behavioral responses. Put

differently, when innovation has very risky payoffs, inventors must enter innovation partly because

of its non-monetary benefits, making their behavior less sensitive to financial incentives.

Figure IVb illustrates this result by plotting innovation rates vs. taxes when the heterogeneity

in inventors’ incomes is driven primarily by stochastic shocks rather than differences in ability.

We calibrate the model so that stochastic returns account for 90% of the skewness in inventors’

earnings and the income distribution has a Pareto shape parameter of 1.26 as above.14 We consider

two cases: θ = 0 (risk neutral agents, linear utility) and θ = 1 (risk averse agents, log utility).

With linear utility, taxes have very large effects: a tax rate of τ = 40% reduces quality-weighted

13Formally, we change wĪ to κ(βπ) ·wĪ as we vary βπ, choosing the scaling factor κ to keep the fraction of inventors
at φ0, which one can interpret as a fixed (empirically observed) level of innovation. See Appendix for further details.

14Formally, we set βπ and βα such that s ≡

(

βπ

βπ−1
− 1

)

/
(

βα

βα−1
− 1 + βπ

βπ−1
− 1

)

= 0.9 and the equilibrium income

distribution has a shape parameter of 1.26. We retain 10% of skewness from variation in ability because the model is
degenerate if we only allow for heterogeneity from stochastic shocks, since there is no source of ex-ante heterogeneity
across agents other than ability in our model.
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innovation Φ by 70.5% relative to the benchmark with no taxes. But when agents are risk averse,

taxes have modest effects: Φ falls by only 9.4% from the no-tax benchmark when τ = 40%. These

calculations suggest that tax changes are likely to have modest effects on aggregate innovation even

when the returns to innovation are uncertain, under the standard assumption that individuals have

diminishing marginal utilities of consumption.

In sum, Proposition 1 implies that the decisions of individuals who contribute most to aggregate

innovation are unlikely to be very sensitive to small changes in financial incentives in canonical mod-

els of career choice that match our empirical findings regarding the skewness of inventors’ incomes

and the correlation between private and social returns. Importantly, the second and third results

in Proposition 1 show that this conclusion holds regardless of whether the returns to innovation are

known at the point of career choice or not.

IV.D Effects of Changes in Exposure

We now contrast the impact of changes in financial incentives with the impact of changes in exposure

(λ) on rates of innovation.

Proposition 2. The elasticities of the number of inventors and aggregate innovation with respect

to exposure λ are both equal to one: ǫΦ,λ = ǫφ,λ = 1.

Proposition 2 shows that, unlike the impact of changes in financial payoffs, the impact of chang-

ing exposure is invariant to the skewness of the distribution of inventors’ earnings or other pa-

rameters of the model. Increasing exposure simply scales up the fraction of individuals who enter

innovation. For instance, increasing λ from 10% to 20% mechanically doubles the (randomly se-

lected) set of individuals who are exposed to and enter the innovation sector. This doubles aggregate

quality-weighted innovation as well given our assumption that exposure is uncorrelated with indi-

viduals’ abilities to innovate.

Proposition 2 implies that there may be great potential to increase aggregate innovation by

increasing exposure in a subgroup g that currently has few inventors if the low rate of innovation

φg in that group is due to a lack of exposure (in which case there is scope to increase λg) rather

than high barriers to entry τg. One way to determine whether the low innovation rate is driven by

exposure effects or barriers to entry is by examining the average quality of inventions for inventors

in that subgroup. The following corollary formalizes this result:

Corollary 1. If the distribution of innovation abilities does not vary across groups, differences

in the average quality of inventions reveal whether differences in innovation rates arise from barriers

to entry or exposure effects.

1. [Barriers to entry] Groups that face higher barriers to entry τ have higher-quality inventions

conditional on inventing: φ declines with τ , while E[ν · ri|αi > ᾱ] increases with τ .
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2. [Exposure] Groups that have less exposure to innovation λ have the same quality of inventions

conditional on inventing: φ declines with λ, but E[ν · ri|αi > ᾱ] does not vary with λ.

The first result in this corollary follows from the logic in the second part of Proposition 1. The

marginal inventor who is screened out as barriers to entry rise is of lower quality than the average

inventor. The inventors who remain in groups that face high costs of entering innovation thus have

higher quality patents on average. The second result follows from the logic underlying Proposition

2. Since an increase in exposure simply draws in randomly selected inventors, groups that have less

exposure do not have inventors of different quality on average.

Bell et al. (2019, Figure XI) show that in practice, individuals from under-represented groups

– e.g., children from low-income families, women, and minorities – who become inventors do not

have higher-quality patents on average, as measured by their citations per patent or incomes. Based

on Corollary 1, these findings are consistent with the hypothesis that the low rates of innovation

among certain groups are driven primarily by a lack of exposure rather than fixed costs of entry that

screen out inventors of marginal quality, as in Hsieh et al. (2016). Put differently, subgroups with

few inventors are just as under-represented among “star” inventors as they are among inventors

as a whole. Hence, there may be substantial scope to increase aggregate innovation by increasing

exposure among such groups; indeed, Bell et al. (2019) find that the number of inventors in the

U.S. would quadruple if women, minorities, and children from low-income families were to invent

at the same rate as white men from high-income families.

V Conclusion

Many countries provide substantial financial incentives to spur innovation through R&D tax credits

and direct grants. Indeed, the potential for higher rates of innovation and entrepreneurship is

frequently cited as an argument for reductions in top income tax rates. In this paper, we studied

the impacts of financial incentives on one important margin that contributes to aggregate innovation:

the supply of inventors. Using new panel data covering virtually all inventors in the U.S. from 1996-

2012, we first showed that the private returns to innovation (measured by inventors’ incomes in tax

records) are extremely skewed, highly correlated with their scientific impact, and are often largest

in the middle of individuals’ careers. We then constructed a stylized model of career choice that

matches these facts as well as evidence from our companion paper (Bell et al. 2019) showing that

childhood exposure to innovation plays a critical role in determining whether individuals become

inventors.

Our model predicts that financial incentives have limited potential to increase aggregate inno-

vation because (i) they only affect individuals who are exposed to innovation and (ii) they have

no impact on the decisions of star inventors who matter most for aggregate innovation, because

the private financial returns to high-impact innovations are already quite large. Although lower

income tax rates do increase the number of inventors, their impact on aggregate (quality-weighted)

innovation is likely to be quantitatively small. In contrast, increasing exposure to innovation could
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have substantial impacts on innovation by drawing more star inventors (“Einsteins”) into the field.

Our analysis implies that widely-used neoclassical models of career choice cannot generate large

elasticities of quality-weighted inventor supply with respect to financial incentives when calibrated

to match empirical evidence on the returns to innovation. This result points to two directions for

further work: more careful assessment of the impacts of financial incentives and consideration of

alternative policies to increase the supply of innovation.

In the context of financial incentives, it would be useful to test the predictions of our model

regarding career choice decisions, perhaps by building on recent quasi-experimental studies of taxes

and innovation (e.g., Moretti and Wilson 2017, Akcigit et al. 2018). Such analyses would both

shed light on the empirical relevance of our predictions and elucidate how standard models of career

choice must be modified to fit the empirical findings. In particular, if taxes affect rates of innovation

significantly, they may do so through other mechanisms beyond career choice, such as the behavior

of inventors within firms, agglomeration patterns, or general equilibrium effects.

A second natural direction for future work is to explore other policies to increase the supply of

inventors beyond financial incentives. We focused here on one such possibility: increasing exposure

to innovation during childhood. Changes in exposure could have substantial effects: for instance,

Bell et al. (2019) estimate that moving a child from a metropolitan area that is at the 25th per-

centile of the distribution in terms of inventors per capita to the 75th percentile would increase a

child’s probability of becoming an inventor by 37%. Developing feasible policies that could provide

such exposure without having to move families would be very valuable. More broadly, identifying

policies that escape the diminishing marginal returns of financial incentives by drawing star inven-

tors into the innovation pipeline – whether through exposure, human capital investments, or other

interventions – could greatly increase the supply of innovation.
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Mean Median Std. Dev.

Patent Grants 3.0 1.0 6.5

Patent Applications 3.2 1.0 11.1

Patent Citations 26.2 1.0 118.1

Number of Collaborators 4.7 2.0 8.2

Age at Application 43.7 43 11.5

Individual Wage Earnings ($)
111,457 83,000 140,463

Total Individual Income ($) 188,782 100,000 567,813

Female Share 13.1%

Number of Individuals in Sample 1,200,689

 TABLE I

Summary Statistics for Inventors Analysis Sample

Notes: This table presents summary statistics for the 1,200,689 inventors used in the empirical analysis.

We define individuals as inventors if they were listed as an inventor on a patent application between 2001-

2012 or grant between 1996-2014 and linked to the tax data. Citations are measured as total patent

citations between 1996-2014. The number of collaborators is measured as the number of distinct

individuals that the inventor has ever co-authored a patent grant or application with in our linked dataset.

For individuals with more than one patent application, age at application is the age at a randomly selected

patent application filing. Incomes are measured in 2012. Individual wage earnings is defined as total

earnings reported on an individual's W-2 forms. Total individual income is defined for tax filers as

Adjusted Gross Income (as reported on the 1040 tax return) minus the spouse's W-2 wage earnings (for

married filers). For non-filers, total individual income is defined as wage earnings. Wage earnings are top-

coded at $1 million and total individual income is top-coded at $10 million. Median income variables are

rounded to the nearest thousand dollars. See Section II.A and Bell et al. (2019) for further details on

sample and variable definitions.



FIGURE I: Cross-Sectional Income Distribution of Inventors

A. Inventors’ Income Distribution, Ages 40-50
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Notes: This figure is reproduced from Online Appendix Figure V of Bell et al. (2019). In both panels, the sample

consists of all individuals in our full inventors sample born between the ages of 1959-1962, for whom we see income at

all ages between 40 and 50. Income is measured at the individual level and includes both labor and capital income;

see Section II for details. Panel A plots a kernel density of the distribution of inventors’ income, measured as mean

annual income over ages 40-50 in 2012 dollars. For scaling purposes, the top and bottom percentiles of the distribution

are omitted when plotting this density. Panel B presents a binned scatter plot of average annual income between ages

40 and 50 vs. the total number of citations an inventor obtains. For this panel, we further limit the sample to the

13,875 individuals who applied for a patent in 1996 to maximize the time horizon over which we can measure future

citations. This plot is constructed by dividing citations into 21 bins and plotting mean income vs. mean citations

within each bin. The first 19 bins include inventors in the first 19 ventiles (5% bins) of the citations distribution,

while the last two bins plot the same relation for the 95th to 98th percentiles and the 99th percentile of the citation

distribution. The best fit line and slope shown on the figure are estimated using an OLS regression on the 21 points,

weighted by the number of inventors in each bin. The standard error of the slope estimate is reported in parentheses.



FIGURE II: Age Profile of Innovation

A. Age Distribution of Individuals who Patent in 2000
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C. Fraction of Workers with Highly-Cited Patents, by
Age
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Notes: This figure examines the age distribution of inventors. The sample consists of individuals in our full inventors

sample who applied for a patent in 2000 that was subsequently granted. Panel A presents a kernel density of the age

distribution of these inventors. Panel B plots the fraction of workers (individuals with positive W-2 earnings) who

patent in 2000 by age. Panel C plots the fraction of workers who filed a patent application in 2000 that went on to

become highly-cited (in the top 5% of the distribution). The curves in Panels B and C are cubic splines.



FIGURE III: Income Profiles of Inventors

A. Median Income by Age
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C. Event Study of Median Income around Patent
Application, by Patent Quality
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Notes: This figure plots the income profiles of inventors before and after they file patent applications using all

individuals for whom the relevant data is available in our full inventors sample. Income is measured as total income

(including wage earnings and capital income) at the individual level; see Section II for details. Panel A plots the

median incomes by age of inventors who file a patent application at either age 30, 40, or 50 over the range of ages

for which their incomes are observed (between 1996-2012). Panel B generalizes this analysis using an event study

framework, defining year 0 as the year in which an individual files a patent application and other years relative to

this reference year (e.g., +1 is the year after the application). In this panel, we limit the sample to individuals

who file patent applications between ages 35 and 50. For individuals who file multiple patents in this age window,

we choose one of the patents at random to define the reference year. We plot the mean and median (left y axis)

and 99th percentile (right y axis) of the income distribution of inventors in each year relative to the event year.

Panel C replicates the median income series in Panel B, separating inventors into three groups: those whose patent

applications were not granted; those whose applications were granted; and those with patents granted that went on

to have citations in the top 5% of the distribution relative to other patents granted in the same year.



FIGURE IV: Predicted Impacts of Tax Rates on Innovation

A. Forecastable Returns
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B. Stochastic Returns
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Notes: This figure plots the fraction of inventors (φ) and aggregate quality-weighted innovation (Φ) vs. the tax rate

on inventors’ earnings predicted by our model of career choice. Panel A considers the case where the variation in

private financial returns to innovation is driven purely by differences in ability across inventors and hence is perfectly

forecastable at the time of career choice. Panel B considers the case where the variance in private returns come

primarily from stochastic shocks, with a coefficient of relative risk aversion θ = 0 (linear utility) or 1 (log utility).

The shape parameters for the Pareto distributions of stochastic returns and innovation abilities, denoted βπ and

βα in the model, are chosen such that the inventors’ earnings distribution generated by the model matches the

Pareto shape parameter of 1.26 estimated using inventors’ empirical earnings distribution in Figure I, i.e. such that
βπ

βπ−1

βα

βα−1
= 1.26

1.26−1
. In Panel B, stochastic returns account for 90% of total skewness in inventors’ earnings, i.e.

s ≡

(

βπ

βπ−1
− 1

)

/
(

βα

βα−1
− 1 + βπ

βπ−1
− 1

)

= 0.9. In each series, the level of innovation is normalized to 100% when

the tax rate is 0. The normalized values are invariant to the other parameters of the model (wĪ , λ, and θ in Panel A).



APPENDIX: DERIVATIONS AND PROOFS

In this appendix, we first present analytical formulas for the key expressions in our model, then
describe the comparative statics of interest, and finally present proofs of the propositions in Section
IV.

Analytical Formulas. Expected utility in the innovation sector for agent i is given by:

V I
i =

∫

∞

1

((1− τ) · βπ−1
βπ

x · βα−1
βα

αi)
1−θ

1− θ
dFπ(x) =

βπ

βπ + θ − 1

(

βπ − 1

βπ

)1−θ ((1− τ) · βα−1
βα

αi)
1−θ

1− θ

Since
∂V I

i

∂αi
> 0 and the outside wage is fixed, there is an ability cutoff beyond which all agents enter

the innovation sector. This cutoff is characterized by:

V Ī = V I
ᾱ

⇒
(wĪ)

1−θ

1− θ
=

βπ

βπ + θ − 1

(

βπ − 1

βπ

)1−θ ((1− τ) · βα−1
βα

ᾱ)1−θ

1− θ

⇒ ᾱ =
wĪ

1− τ

βπ

βπ − 1

βα

βα − 1

(

βπ + θ − 1

βπ

)
1

1−θ

It follows that the fraction of agents entering the innovation sector is:

φ = λ · (1− Fα(ᾱ)) = λ ·

(

1− τ

wĪ

)βα
(

βπ − 1

βπ

βα − 1

βα

)βα
(

βπ

βπ + θ − 1

)
βα
1−θ

. (1)

Aggregate innovation is given by

Φ = ν
βπ − 1

βπ

βα − 1

βα
λ

∫

∞

ᾱ

xdFα(x)

∫

∞

1
ydFπ(y)

= λ · ν

(

βπ − 1

βπ

βα − 1

βα

)βα−1(1− τ

wĪ

)βα−1(
βπ

βπ + θ − 1

)

βα−1

1−θ

(2)

The expected quality of innovations conditional on inventing is:

E[ν · ri|αi > ᾱ] =
Φ

φ
= ν

βα

βα − 1

βπ

βπ − 1

wĪ

1− τ

(

βπ + θ − 1

βπ

)
1

1−θ

(3)

Comparative Statics. Our goal is to compute elasticities of innovation with respect to tax rates
in two scenarios, holding fixed the fraction of inventors at a given (empirically observed) level: (a)
the case where βπ → ∞ (i.e., there are no stochastic shocks) and (b) the case where βπ → 1 (i.e.,
the skewness of stochastic shocks grows arbitrarily large).

In the first case, we simply compute the elasticities of φ and Φ with respect to the net-of-tax
rate 1 − τ around the level of innovation φ0 that prevails when βπ → ∞. Using equations (1) and
(2), these elasticities are:

ǫφ,(1−τ) =
dφ

d(1− τ)

1− τ

φ
= βα, (4)

ǫΦ,(1−τ) =
dΦ

d(1− τ)

1− τ

Φ
= βα − 1. (5)



In the second case, the level of innovation φ converges to 0 as βπ → 1 when θ > 0 because
the expected value of innovation VI falls to 0 as the variance of payoffs grows large holding the
mean payoff fixed. To obtain comparative statistics that are comparable to the first case, we hold
the fraction of inventors fixed at φ0 (the same level as in the first case) by varying the wage in
the non-innovation sector wĪ as βπ → 1. In particular, we change wĪ to κ(βπ) · wĪ as we vary βπ,
choosing the scaling factor κ to keep the fraction of inventors at φ0 as a function of βπ. Formally,
for a given change in skewness from a reference level βB

π to the level of interest βπ, κ(βπ) is chosen
such that the threshold to enter innovation ᾱ(βπ, κ) = ᾱ(βB

π ), i.e.

κ(βπ) =
βπ − 1

βπ

βB
π

βB
π − 1

(

βπ

βπ + θ − 1

βB
π + θ − 1

βB
π

)

1

1−θ

. (6)

At any given level of βπ, the elasticity of innovation with respect to the net-of-tax rate around the
original fraction of inventors φ0 is:

ǫφ,(1−τ) =
dφ

d(1− τ)

1− τ

φ ·
(

1
κ

)βα
= βα · κ(βπ)

βα .

When the reference level of skewness βB
π → ∞ (i.e., when wĪ is adjusted to hold the fraction of

inventors fixed at φ0), the elasticity of innovation w.r.t. 1− τ is:

ǫφ,(1−τ) = βα

(

βπ − 1

βπ

)βα
(

βπ

βπ + θ − 1

)
βα
1−θ

(7)

Likewise, the elasticity of aggregate innovation (Φ) w.r.t. the net of tax rate (1− τ) is:

ǫΦ,(1−τ) =
dΦ

d(1− τ)

1− τ

Φ · (κ)1−βα
= (βα − 1)

(

βπ − 1

βπ

)βα−1(
βπ

βπ + θ − 1

)

βα−
1

1−θ

(8)

Propositions. With these expressions in hand, it is straightforward to establish the propositions
and corollaries in Section 4.

Proof of Proposition 1. (1) and (6) imply dφ
d(1−τ) = λ ·

βα(1−Fα(ᾱ0))
(

βπ
βπ−1

)βα
(

βπ+θ−1

βπ

)

βα
1−θ

1−τ
; (2)

and (6) imply dΦ
d(1−τ) = λ ·

(βα−1)(1−Fα(ᾱ0))
βα−1

βα

(

βπ
βπ−1

)βα−1(
βπ+θ−1

βπ

)

βα−1

1−θ

1−τ
; as βπ → ∞, (4) and (5)

establish that ǫφ,(1−τ) → βα and ǫΦ,(1−τ) → βα − 1; as βπ → 1 with θ > 0, (7) and (8) imply that
ǫφ,(1−τ) → 0 and ǫΦ,(1−τ) → 0.

Proof of Proposition 2. (1) implies ǫφ,λ = 1 and (2) implies ǫΦ,λ = 1.

Proof of Corollary 1. (3) implies that E[ν · ri|αi > ᾱ] is increasing in τ and (1) implies that
φ is declining with τ ; (3) implies that E[ν · ri|αi > ᾱ] does not vary with λ and (1) implies that φ
is declining with λ.
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