
Developing the Knowledge of Number Digits in a child like
Robot

DI NUOVO, Alessandro <http://orcid.org/0000-0001-5308-7961> and
MCCLELLAND, James L.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25502/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DI NUOVO, Alessandro and MCCLELLAND, James L. (2019). Developing the
Knowledge of Number Digits in a child like Robot. Nature Machine Intelligence, 1,
594-605.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/237713077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Title

Developing the Knowledge of Number Digits
in a child-like Robot
Authors:

Alessandro Di Nuovo1*, James L. McClelland2
1 Sheffield Robotics, Department of Computing, Sheffield Hallam University, UK
2 Department of Psychology, Center for Mind, Brain and Computation, Stanford University, Stanford, CA, US

* Corresponding author. Email: a.dinuovo@shu.ac.uk

Abstract

Number knowledge can be initially boosted by embodied strategies, such as the use of fingers.
This article explores the perceptual process of grounding number symbols in artificial agents,
particularly the iCub robot - a child-like humanoid with fully functional five-fingered hands. It
studies the application of convolutional neural network models in the context of cognitive
developmental robotics, where the training information is likely to be gradually acquired while
operating rather than being abundant and fully available as in many machine learning scenarios.
The experimental analyses show increased efficiency of the training and similarities with studies
in developmental psychology. Indeed, the proprioceptive information from the robot hands can
improve accuracy in the recognition of spoken digits by supporting a quicker creation of a
uniform number line. In conclusion, these findings reveal a novel way for the humanization of
artificial training strategies, where the embodiment can make the robot's learning more efficient
and understandable for humans.

mailto:a.dinuovo@shu.ac.uk

Introduction

The embodied cognition theory affirms that human intelligence is formed not only by the brain
but shaped also by the body and the experiences acquired through it, such as manipulatives,
gestures, and movements1–4. Indeed, research in developmental psychology has shown that
embodied experiences help children in the learning of various cognitive skills by using limbs and
senses to interact with the surrounding environment and other human beings5.

Among the human cognitive skills that can be extended through bodily experiences, number
processing is particularly valuable because it can provide a window into the neuronal
mechanisms of high-level brain functions6. Numbers constitute the building blocks of
mathematics, a language of the human mind that can express fundamental properties of the
physical world and make the universe intelligible7. Therefore, understanding how the artificial
sensorimotor system embodies numerical processes can also help to answer the wider question
of how bodily (real or artificial) systems support and scaffold the development of abstract
cognitive skills8.

Within the embodied mathematics framework, fingers are spontaneous tools that play a crucial
role in developing number cognition until a level of basic arithmetic is achieved (for details see
recent reviews9,10). In particular, Gunderson et al.11 observed that young children can better
communicate their knowledge about numbers using hand gestures rather than words,
particularly for numbers that they have not yet learned in speech. In fact, one of the most
evident embodied interactions with cognition is the use of fingers to convey both cardinal and
ordinal aspects of numbers: finger montring12 refers to the use of finger configurations to
represent cardinal number information; finger counting and pointing gestures are used to
support ordinal representation for counting quantities or doing basic arithmetic operations13,14.
In a short review15, Di Luca and Pesenti have shown that "finger-counting/montring activities,
especially if practised at an early age, can contribute to a fast and deep understanding of
number concepts, which has an impact during the entire cycle of life by providing the sensory-
motor roots onto which the number concept grows". The essential role of motor contribution
was validated by Sixtus et al.16, who compared visual images versus actively produced finger
postures (motor priming), showing that only canonical motor finger posing has a significant
positive effect on number processing. The concept of embodied cognition extends the role of
fingers beyond just another external material (e.g. blocks, Cuisenaire rods) for learning how to
process numbers. Instead, internal finger-based representations provide a natural numerical
representation that facilitates the development of initial mathematical cognition17. More
specifically, Butterworth18 suggested that "without the ability to attach number representations
to the neural representations of fingers and hands in their normal locations, the numbers
themselves will never have a normal representation in the brain". These ideas from behavioural
research were confirmed and extended by recent neuroimaging research in the area of
embodied mathematics (a recent literature review can be found in19) where empirical studies

have suggested a neural link or even a common substrate for the representation of fingers and
numbers in the human brain20. In the neuroimaging data, neural correlates of finger and number
representations can be located in neighbouring or even overlapping cortex areas, e.g.21.
Therefore, it is suggested that finger processing may play a role in setting up the biological
neural networks on which more advanced mathematical computations are built22.

Importantly, numerous studies also showed a permanent neural link between finger
configurations and their cardinal number meaning in adulthood. For instance, researchers have
found that adult humans still activate the same motor cortex areas that control fingers while
processing digits and number words, even if motor actions are inhibited23. Tschentscher et al.24
hypothesized the link is the result of an association in the early stages of number learning when
finger configurations are used by both teachers and children to represent numbers while
explaining mathematical concepts. Indeed, hand gestures are often observed when teaching
mathematical concepts as a way to scaffolding students’ understanding25, especially when
communicating new material26. Several authors, e.g.27,28, show that children who observe
gesture while learning mathematics perform better than children who do not, and that gesture
during teaching encourages children to produce gestures of their own, which, in turn, can
enhance the training allowing them to consolidate and transfer the learning of abstract
concepts. However, while children often use fingers to support their early mathematical learning
and this habit correlates with better performance in initial stages, they do not need gestures in
later stages after they have successfully learned the basic concepts29. The use of fingers while
learning about numbers has also generated a debate between researchers in neurocognition
and education, with the latter concerned that relying on fingers can be detrimental for the later
numerical development. These authors recommend the use of finger representations only at
early stages, then to be replaced by concrete structured representations and, finally, mental
representations of numbers to perform numerical operations30.

An innovative approach for studying the embodied learning is Cognitive Developmental Robotics
(CDR), which was defined as the “interdisciplinary approach to the autonomous design of
behavioural and cognitive capabilities in artificial agents (robots) that takes direct inspiration
from the developmental principles and mechanisms observed in natural cognitive systems
(children)”31. The application of embodied theory in artificial agents is among the motivations
for designing new robotic platforms for research to resemble the shape of a human body, known
as “humanoids”, e.g. ASIMO32, and in particular that of a child, notably iCub33. One of the
postulates of CDR is that the humanization of the learning process can help to make artificial
intelligence more understandable for humans and may increase the acceptance of robots in
social environments34. CDR is still making its first steps, but it has already been successfully
applied in the modelling of embodied word learning as well as in the development of perceptual,
social, language and numerical cognition35,36, and recently extended as far as the simulation of
embodied motor and spatial imagery37,38.

Yet, only a few attempts have been made so far to simulate embodied number learning in
robots39, mostly aimed at investigating finger counting with synthetic datasets. For example,
inspired by the earlier work by Alibali and Di Russo14, Ruciński et al.40 presented a model in
which pointing gestures significantly improve the counting accuracy of the humanoid robot iCub.
De La Cruz, Di Nuovo et al.41–43 investigated artificial models for learning finger counting (motor),
Arabic digit recognition (visual) and spoken digits (auditory), to explore whether finger counting
and its association with spoken or Arabic digits could serve to bootstrap number cognition.
Results of these experiments show that learning number word sequences together with finger
sequencing speeds up the building of the neural network's internal representations resulting in
patterns that better capture the similarities between numbers. In fact, the internal
representations of finger configurations can represent the ideal basis for the building of an
embodied number representation in the robot. Subsequently, Di Nuovo et al.44 presented a
deep learning model that was validated in a simulation of the embodied learning behaviour of
bi-cultural children, using different finger counting habits to support their number learning.
Recently, Di Nuovo45 presented a “shallow” embodied model for handwritten digit recognition,
which incorporates the link hypothesized by Tschentscher et al.24. Simulations showed how the
robot fingers could boost the performance and be as effective as the cardinal numerosity
magnitude that has been proposed to be the ideal computational representation for artificial
mathematical abilities46. Moving further to arithmetic, Di Nuovo47 investigated a Long Short-
Term Memory (LSTM) architecture for modelling the addition operation of handwritten digits
using an embodied strategy. The results confirm an improved accuracy in performing the
simultaneous recognition and addition of the digits, also showing a higher frequency of split-five
errors in line with what has been observed in studies with humans48.

All these studies provided valuable information about the simulation of artificial learning and
demonstrated the value of the CDR approach to study aspects of numerical cognition. However,
even if they apply machine intelligence methods, they lack generalization and applicability in this
field. Indeed, like many other CDR studies, those presented above are based on simple "shallow"
models trained on synthetic data, which was often created ad-hoc for the aim of the study. For
instance, early models41–43 were a simple recurrent network trained and tested on the same a
database of just 10 synthesized spoken number words and 5x2 black and white pixels visual
digits, also no alternate representations were compared. Vice versa, two recent studies45,47
made use of the popular MNIST database of real handwritten digits, but they made a somewhat
implausible setting in the context of early cognitive development, where speech usually
precedes and accompany writing. In order to significantly contribute to the progress of the state
of the art in machine intelligence, novel research is needed to properly contextualize the
simulations in developmental learning in deeper neural network architectures while showing
applicability to real datasets and problems.

In this article, we apply the CDR approach to the recognition of real spoken digits by presenting a
deep Convolutional Neural Network (CNN) architecture designed to apply the embodiment
principles by using the sensory-motor information from an artificial humanoid body, i.e. the

child-like robot iCub, which is one of the few platforms that has fully functional five-fingered
hands49. The spoken digits are taken from a novel open database for speech recognition, created
by Google to facilitate new applications50. Simulating the developmental plasticity of the human
brain, the models are trained using a two-stage approach, known as "transfer learning"51, in
which the robot learns first to associate spoken digits and finger representations, i.e. motor
patterns specifying the state of each of the robot's fingers (extended or open vs closed or
retracted). Then the network is extended with new layers to perform the classification into the
number classes by building upon the previously learned association. In a first scenario, the
training procedure simulates how children initially behave while learning to recognize symbolic
numerals (in the form of spoken digits), in particular when learning number words by repeating
them together with the corresponding finger sequence to help the transition from preverbal to
verbal counting and computation52. In a second scenario, we present a longitudinal analysis that
gives useful insights on how biologically inspired strategies can improve deep CNNs performance
in the context of applied robotics, where the training information is likely to be gradually
acquired while operating rather than being abundant and fully available as in the majority of
machine learning scenarios.

Recognising spoken digits in a cognitive developmental robot

This section presents the experimental results of the CNN architecture designed to simulate the
embodied learning to recognize spoken number digits in comparison with a standard non-
embodied baseline. Figure 1 presents the schematics of the baseline (left) and embodied (right)
networks. Three possible internal representations, two embodied and one control, are
considered and compared: (i) The cardinal numerosity using a thermometer representation. In
this representation, the first neuron in a set of nine is active for the number 1, the first two are
active for the number 2, etc. (ii) The iCub robot encoder values of the right and left hand when
displaying the finger representations of digits (See inset in Figure 1, and Supplementary Figure
1). These representations indicate the number magnitude by the number of open fingers,
though the numbers 3 and 4 as well as 8 and 9 involve only partially overlapping sets of fingers.
(iii) Random numbers in the range [0,1], which are used as the control for validation. As an
additional control condition, we also applied the transfer learning approach to the baseline
model by pre-training the convolutional blocks using the same random values as targets. Details
about the models, the embodied representations and the spoken digits database are in the
Methods section.

Fig. 1. Schematics of the artificial neural network architectures.

The baseline CNN architecture is on the left. The detail of the Conv2D blocks is on the top right. The
embodied architecture is created including the Embodied Layer (on the right). In the first stage, the layers
in red are those pre-trained to reproduce the embodied representation, e.g. output is the positions for the
robot's finger motors. After the pre-training, the embodied model is completed by linking, the Embodied
Layer to the final Dropout Layer, thus the full embodied architecture can be trained both to classify the
spoken digits and to reproduce the embodied representations.

Table 55 (Methods section) gives the summary of the layers with detail of the parameters, arguments and
initialization.

In the following, we label embodied models when the architecture in Figure 1 is trained with the
Cardinal Numerosity or the iCub robot fingers as targets for the Embodied layer. Cardinal
Numerosity can be considered the ideal embodied representation of number magnitude, while

the fingers are its real-world implementation. Instead, we define control model if the targets are
the random values. Two other conditions are: the simple baseline, which is the one that goes
straight from the Input to the Classification Layer on the left of Figure 1; the pre-trained
baseline, which is the same baseline architecture, where the CNN blocks are pre-trained similarly
to the control model using random values as targets. The baselines and the control model are
considered also as control conditions.

Scenario 1: Learning to process spoken digits while acquiring counting principles

This subsection presents a simplified simulation of the early number processing when children
initially learn the number digits while repeating them by rote together with the finger
representations52. The first phase includes the acquisition of the one-to-one principle, i.e.
assigning one counting word to each item in a set53. Indeed, in this scenario, the models are
initially pre-trained using a smaller subset of uniformly distributed examples. Examples were
grouped in batches formed by four sequences of the nine digits in their cardinal order.

Next, inspired by the children using finger representations while communicating number words,
this simulated number learning scenario continues by training the robot to classify the spoken
digits while reproducing the corresponding finger representations. This second training phase
can be associated to the acquisition of the cardinal principle, which is defined as learning that
“the last number spoken, when counting a set of items, tell how many items are in the set”53.
For a proper simulation of digit learning at this developmental stage, the appropriate
distribution of the training examples should follow the Zipf's empirical law that the frequency of
any word is inversely proportional to its frequency rank54. Therefore, as explained in the
methods section, we created an ad-hoc dataset to match the Zipfian distribution. Furthermore,
to simulate a gradual education like in the case of children, we considered three quotas (25%,
50%, 100%) of the Zipfian training sample from which we extracted three uniform sub-sets for
the pre-training.

The models’ performance during the second training phase is presented in Figure 2, where the
graphs show the accuracy rate on the test set at the end of each training epoch. They include
the pre-trained baseline (blue lines), the embodied models with the iCub robot fingers (purple),
the Cardinal Numerosity (red), and the control model with random values (green). For all three
training sample sizes, we see a significant increase in the accuracy for the models using either
the Cardinality Numerosity or the iCub robot representation compared to either of the other
two control conditions, with a stronger initial effect for the smaller sample sizes where Cohen's
is d>1. Figure 2a,b,c show also that the accuracy on the test set grows fast until after around 22
epochs (median) when it starts to oscillate, as usual for CNN, with little or no improvement but
without significant overfitting. For this reason, we decided to stop the training after 25 epochs
and average the accuracies of the epochs with the lowest loss.

Fig. 2. Accuracy rate on the test set over epochs.
The accuracy rate of the embodied models (purple: robot; red: Cardinal Numerosity), pre-trained control
conditions (blue: randomly pre-trained baseline; green: random control model). a, small: pre-training 774
uniformly distributed examples; full-training 2193 examples with Zipfian distribution. b, medium: pre-
training 1548 uniformly distributed examples; full-training 4386 with Zipfian distribution. c, large: pre-
training 3096 uniformly distributed examples; full-training 8773 with Zipfian distribution.

Table 1 gives a comparative report of results after the first and the last epoch in the training.
Accuracy rates, standard deviations (SD) on the test set are shown for the embodied and control
conditions along with the Cohen's d for comparison against the pre-trained baseline. After the
first epoch (Table 1), the performance of the control model with random values was always
significantly inferior to the other two representations, indeed even if its average accuracy was
typically higher, the control model was not significantly better than the pre-trained baseline and
Cohen’s always indicated a small effect size (d<0.5).

Table 1. Accuracy rates for varying training example sizes and different representations.
Average accuracies (Acc) on the test set, with standard deviations (SD) and Cohen's d. Values in bold are
significantly (p<0.05) better (black) than the baseline. The best overall accuracy rate for each row is
highlighted in green (multiple in case of no statistical difference).

Training
examples

Baseline
(pre-trained)

Random values Cardinal Numerosity iCub robot fingers

(pre/full) Acc SD Acc SD d Acc SD d Acc SD d
Average after Epoch 1

774/2193 0.3950 0.0867 0.4009 0.0680 0.08 0.5386 0.0539 1.99 0.5396 0.0459 2.08
1548/4386 0.5811 0.0526 0.5926 0.0623 0.20 0.6766 0.0394 2.05 0.6798 0.0411 2.09
3096/8773 0.7592 0.0683 0.7692 0.0844 0.13 0.7946 0.0309 0.67 0.7940 0.0321 0.65

Final (average of epochs with lowest training loss)
774/2193 0.8535 0.0191 0.8508 0.0180 -0.14 0.8638 0.0147 0.60 0.8665 0.0176 0.71

1548/4386 0.8990 0.0170 0.9055 0.0120 0.44 0.9126 0.0076 1.03 0.9071 0.0097 0.58
3096/8773 0.9279 0.0098 0.9299 0.0098 0.20 0.9347 0.0110 0.65 0.9361 0.0053 1.04

The Cardinal Numerosity and the iCub Fingers represent the magnitude of the digits, which can
explain the better performance because they contribute to the acquisition of a more linear
number line, indeed they are faster at improving accuracy for bigger digits, which are more
difficult because they are less represented in the Zipfian distribution of the training set. The
correlation among improved numerical categorization, increasingly linear number line
estimation, and numerical magnitude in children was shown by Laski and Siegler55. To exemplify
the advantage, Table 2 summarizes the development of average accuracy rates for the groups of
smaller (1-4) and bigger (5-9) digits. This analysis allows relating to experimental data with
children, who can label small set sizes exactly (1–4) and larger set sizes approximately (5–9)
while learning the cardinal principle56. Without pretending to replicate the study, we note that
all our models shown a progression similar to what observed in children, who progress their
knowledge starting from the smaller numbers, then gradually improving the others following the
number line.

Table 2. Accuracy progression for smaller and bigger digits.
The table reports the average accuracy rates for smaller digits, from 1 to 4, bigger digits, from 5 to 9,
after epoch 1 and 25. Higher accuracies are in bold.

Pre/Full
Train Sizes

Baseline
(pre-trained)

Random
Values

Cardinal
Numerosity

iCub
Fingers

(1-4) (5-9) (1-4) (5-9) (1-4) (5-9) (1-4) (5-9)
Average after epoch 1

774/2193 0.578 0.172 0.601 0.181 0.707 0.360 0.723 0.350
1548/4386 0.776 0.388 0.758 0.424 0.806 0.540 0.815 0.537
3096/8773 0.865 0.638 0.868 0.664 0.879 0.713 0.879 0.704

Average after epoch 25
774/2193 0.904 0.799 0.902 0.793 0.905 0.810 0.903 0.813

1548/4386 0.934 0.862 0.935 0.871 0.941 0.890 0.928 0.878
3096/8773 0.950 0.905 0.952 0.910 0.955 0.919 0.952 0.917

It is interesting to note that we didn't found relevant differences between the Cardinal
Numerosity representation and the iCub finger configurations, except for the final performance
with medium training size, in which there is a medium effect (d=0.6312) in favour of the Cardinal
Numerosity. However, they both contributed equally in modelling a more uniform number line,
even if, in the case of the robot, there are the same numbers of simulated motor activations for
3 and 4 or 8 and 9. Besides, pertaining to any of the four kinds considered provides a jump start
for subsequent learning compared to the baseline with no pre-training (results not shown for
conciseness), as expected. A comparison with the simple baseline is discussed in detail in the
next subsection.

Scenario 2: A Longitudinal study of spoken digits recognition in embodied artificial agents

In this subsection, we present results of longitudinal experimentation on the development of
learning in artificial agents, i.e. how the performance evolves with the training and the number
of examples available for it. Indeed, to analyze the gradual development of spoken digits
recognition, we split the training examples and investigated the models' performance with
varying number of examples. For simplicity, in the following, we will refer to the groups as small
(128, 512, 1024), medium (2788, 5576), large (13942, 27884). The training and testing sets have
a pseudo-uniform distribution as specified in Table 4 (Methods section). In this experimental
scenario, the artificial learner used a portion (25%) of the training dataset for a quick pre-
training of the CNN blocks.

Figure 3 presents the history of the average accuracy rate on the test set at the end of each
epoch. The graph (a) is for the small group, (b) for the medium and (c) for the large. As seen in
the previous experiment, we avoided significant overfitting thanks to the use of common
strategies like mini-batches, batch normalization layers, and dropout layers.

Fig. 3. Accuracy rate on the test set over epochs.
The accuracy rate of the embodied models (purple: iCub Robot fingers; red: Cardinal Numerosity), and
control conditions (blue: Simple Baseline; green: Control Model with random values). a, small: pre-
training: 32, 128, 256; training 128, 512, 1024 examples. b, medium: pre-training 697, 1394; full-training
2788,5576. c, large: pre-training 3485, 6971; full-training 13942, 27884. In the groups, training with
bigger sets always achieved higher accuracy and there is no overlap among the lines of different groups.
The only exception is the simple baseline, which is in light blue in a because the line for 1024 starts below
the previous case (512). For clarity, in b and c it is specified the training set size for the blue lines
(baseline). In c the black lines at the top identify the best overall results.

Results of the longitudinal experiment are summarized in Table 3, which presents the embodied
models in a comparison against two control conditions: control model with the random values
(first columns), and the simple baseline (last columns). Accuracies on the test set are calculated
averaging the results of the epochs with lowest training loss at half-way (25 epochs) and the end
of the training (50 epochs). The last part of Table 3 reports the first epoch when average
accuracy was greater than 99% of the baseline’s final accuracy. This is a measure of how fast the
training converges. We see that control conditions reached the same accuracy of the embodied
models after more training repetitions (epochs). Exceptions were in the medium group, Figure
3b, where the control model was as accurate as the embodied models earlier, i.e. after 10
epochs (2788) and it is almost as good as the embodied models since the beginning (5576).

Table 3. Summary of the results on the test set.
Average accuracy rates (Acc) on the test set, with Standard Deviations (SD) and Cohen's d. Accuracy rates
are highlighted in green when significantly (p<0.05) better than baseline, in bold when significantly
(p<0.05) better (black) or worse (red) than the control model with random values. The final rows of this
table show the median epochs when test accuracy was greater than 99% of the baseline’s final average
accuracy. Supplementary Table 2 reports the p-values for all the pairs considered in this table.

Training
examples Random values Cardinal Numerosity iCub robot fingers Baseline

(pre/full) Acc STD Acc SD d Acc SD d Acc SD d
After Epoch 25 (average of testing after epochs with lowest training loss)

32/128 0.3602 0.035 0.3800 0.028 0.625 0.3828 0.024 0.748 0.3558 0.027 -0.140
128/512 0.6462 0.030 0.6816 0.026 1.252 0.6847 0.017 1.571 0.6148 0.034 -0.985

256/1024 0.8095 0.017 0.8243 0.010 1.039 0.8255 0.016 0.975 0.7663 0.016 -2.604
697/2788 0.9143 0.007 0.9126 0.008 -0.234 0.9139 0.006 -0.056 0.9003 0.008 -1.796

1394/5576 0.9384 0.006 0.9426 0.005 0.745 0.9424 0.005 0.723 0.9317 0.006 -1.125
3485/13942 0.9584 0.004 0.9607 0.002 0.727 0.9613 0.003 0.872 0.9587 0.003 0.084
6971/27884 0.9677 0.002 0.9698 0.002 0.861 0.9694 0.002 0.690 0.9688 0.002 0.483

Final (average of testing after epochs with lowest training loss)
32/128 0.4093 0.027 0.4186 0.019 0.402 0.4203 0.029 0.394 0.4000 0.028 -0.341

128/512 0.7213 0.018 0.7308 0.018 0.525 0.7327 0.025 0.524 0.6960 0.025 -1.172
256/1024 0.8487 0.011 0.8484 0.010 -0.024 0.8472 0.014 -0.119 0.8340 0.013 -1.263
697/2788 0.9230 0.006 0.9222 0.005 -0.133 0.9230 0.005 -0.007 0.9166 0.006 -1.060

1394/5576 0.9463 0.004 0.9470 0.004 0.195 0.9474 0.004 0.285 0.9419 0.005 -0.977
3485/13942 0.9630 0.003 0.9648 0.002 0.676 0.9639 0.002 0.339 0.9625 0.003 -0.150
6971/27884 0.9714 0.002 0.9721 0.001 0.455 0.9716 0.002 0.125 0.9716 0.002 0.120

Epoch when testing accuracy was greater than 99% of the Baseline's Final Average Accuracy
32/128 44 36 35 43

128/512 36 29 27 45
256/1024 31 27 29 46
697/2788 17 19 19 34

1394/5576 16 15 16 22
3485/13942 13 11 10 14
6971/27884 12 6 9 14

In summary, the longitudinal experiments confirmed that the embodied models were more
effective learners than the control conditions, indeed, they achieved higher recognition
accuracies in fewer epochs, especially with the smaller training sets. The embodied models were
significantly more successful than the baseline, with exceptions in the larger group, when they

achieved a higher accuracy but there was no statistical difference. The embodied models were
often more accurate than the control model, with some exceptions, e.g. when training with 1024
and 2788 examples after 50 epochs. However, while embodied models were the best until
around 25 epochs, their advantage usually decreased with the training, often lacking statistically
significant difference if compared to the control model final accuracy. These results can be
linked to the transition from early to mature mathematical cognition in children, who initially
perform better when they can use finger representations, then, gradually abandon them for
other strategies29.

Comparing the embodied models’ representations, the two were statistically equivalent in terms
of performance (see Supplementary Table 2). This confirmed that the physically embodied
representation is as good as the pure cardinality representation, while it captures the real motor
activation data of the robot. Supplementary Table 3 shows a comparison among the control
conditions. As seen in the previous scenario, the comparison evidenced that the control model
has often a higher final accuracy, but it was not significantly different than the pre-trained
baseline. However, the pre-trained baseline was slower than the control model, i.e. it often
reached the peak accuracy later.

Conclusions

Recent studies in developmental psychology and cognitive neuroscience demonstrated a pivotal
role of fingers in developing number cognition. Inspired by these studies, this article investigated
the perceptual process of recognizing spoken digits in deep, convolutional neural networks by
embodying them in the humanoid robot iCub's fingers in the training. In particular, finger
representations replicated activations in motor cortex when processing numbers that reflect the
hand used for counting as seen in humans24.

Simulation results showed that the robot’s fingers boost the performance by setting up the
network and augmenting the training examples when these were numerically limited. This is a
common scenario in robotics, where robots will likely learn from a small amount of data. Results
can be related to some behaviours also observed in several human studies in developmental
psychology and neuroimaging. Overall, the hand-based representation provided our artificial
system information about magnitude representations that improved the creation of a more
uniform number line, as seen in children55,56. Interestingly, our results also indicate that accuracy
can be increased by pre-training convolutional blocks with a uniform subset taken from a non-
uniform training set. Furthermore, longitudinal experimentation showed that the performance
improvement from the representation of the robot's fingers was reduced with experience,
similarly to the transition from early to mature mathematical cognition in children, who initially
perform better when they can use fingers, but, after they grow in experience, gradually abandon
finger representations without affecting accuracy29.

Comparative analyses showed that the embodied strategy can represent a novel approach to
increase efficiency in training deep neural networks also outside the contexts of robotics.

Importantly, this is the first time that cognitive developmental robotics is demonstrated to be
effective against the standard approach in benchmark machine learning problem. Indeed, we
saw performance improvements with other synthetic representations too, like the Cardinal
Numerosity or, in some conditions, even vectors of randomly generated values. While the
Cardinal Numerosity showed similar performance to the iCub fingers, the control model with
random values often underperformed and was not significantly different from the other control
conditions.

However, like their biological counterparts, the robot's fingers seem better suited than other
synthetic representations for simulating early mathematical education in interactive scenarios
with a child-like robot. Indeed, they are more likely to be presented and intuitively understood
by humans without requiring advanced communication by the robot. For instance, examples of
spoken digits can be proactively acquired by the robot by showing finger representations and
asking: "what number is this?" Also, human teachers may simply open and close the robot's
fingers to instruct the robot or correct the representation in case of error.

In conclusion, we believe that these findings validate the cognitive developmental robotics
approach as a tool for implementing the embodied cognition ideas, and for further developing
machine intelligence while making artificial learning more intuitive for humans.

Methods

The Google Tensorflow Speech commands dataset
To provide a realistic numerical challenge to our models, we used a new publicly available
benchmark in machine learning: the Google Tensorflow Speech commands dataset50. The
accompanying paper reports a basic benchmark of 88.2% (on the whole database of spoken
commands) and the best result reported in the Leaderboard of the 2017 TensorFlow Speech
Recognition Challenge57 was 91.06% on the first version of the database.

Here, we used the second version of the database, which contains 105,829 one-second long
utterances of 35 short words, by thousands of different people. The digits are around one-third
of the database, which includes 34,856 spoken digits from 1 to 9 that we randomly split into 80%
(27,884) training set and 20% (6,972) testing set. For Scenario 1, we aimed at standard child
development scenario, where analysis of number word frequencies in natural corpora54,58
suggests that smaller numbers are more frequent than larger numbers. This implied that
frequencies of digits should decrease proportionally to their numerical magnitude. For this
reason, we created an ad-hoc training dataset with a Zipfian distribution by extracting examples
with frequency 1/N, where N is the numerical value of the digit. The distribution of the examples
for each scenario is presented in Table 4.

The original files are 16-bit little-endian PCM-encoded in the WAVE format at a 16KHz sample
rate. For our experiments, these were preprocessed using a standard approach the makes use of
the short-time Fourier transform (STFT). The resulting samples are 90x63 STFT spectrograms,

which were rescaled to be in the range [0,1], which is optimal for training artificial neural
networks.

Note that in this study we didn't include the zeros because there is no finger representation that
can be associated. This is coherent with all empirical studies about embodied arithmetic in the
literature, where tasks usually don't include the zero, e.g.11,24, because of its special status
among numbers.

Table 4. Dataset distributions.
The table gives the number of the spoken digits from 1 to 9 in the test set and train sets for each
Scenario. In Scenario 1, the train is created extracting examples from the original dataset in such a way
the distribution was Zipfian, then the pre-train was derived from the train using the same number of
examples for each digit. In Scenario 2, from the full training dataset, we derived various subsets with the
same distribution of the original.

Digit 1 2 3 4 5 6 7 8 9 TOT
Test 788 708 763 733 811 821 794 742 812 6,972

Scenario 1: Initial learning (reduced dataset)
Pre-train
(uniform) 344 344 344 344 344 344 344 344 344 3,096

Train
(Zipfian) 3102 1551 1034 775 620 517 443 387 344 8,773

Scenario 2: Original semi-uniform distribution (full dataset)
Train

(100%) 3102 3172 2964 2995 3241 3039 3204 3045 3122 27,884

In our experiments, the database is split into smaller sets in order to simulate a gradual course
of education typical for the children, by investigating the models' performance of varying size of
training examples. This also allows gaining information on the efficacy and efficiency of the
proposed embodied strategy in scenarios where examples are scarce. The division is obtained
simply by taking a sequence of consecutive examples from the main database. The sequences
are varied among the 32 runs, Algorithm 1 describes the procedure. For Scenario 1, the sizes
considered were 25%, 50% and 100% of the Zipfian dataset. For Scenario 2, we aimed at a more
fine-grained analysis with 7 set sizes. The 3 smallest sizes were selected as multipliers of the
minibatch size (32), while the others were respectively 10%, 20%, 50% and 100% of the training
dataset.

The source code of the implementation can be found in the GitHub repository (files:
generator.py; dataset.py; zipfian.py - link in the acknowledgements). Supplementary Figure 2
shows examples of the spectrograms.

Simulated internal representations
Three fixed codes are used to simulate the embodied representations of the digits from 1 to 9:

• The cardinal numerosity, which represents a cardinal number N with the same quantity of
ones. If the number of available digits for the representation is greater than N, then zeros
are included to fill. In our case, we used 9 digits to represent the numbers, with 1
represented as 100000000 and 9 as 111111111 and, for instance, the representation of N=4
is 111100000. The cardinal numerosity has cognitive plausibility and it has been shown to
facilitate learning for symbolic and ordinal representations 59. Indeed, neural network
models based on the numerosity representation can account for a wide range of empirical
data 46. In the context of this article, the cardinal numerosity is an abstract representation,
however, it could synthetically represent a set of objects that the robot can produce, which
an alternate method to the use of fingers while learning about numbers.

• The iCub robot encoder values for the finger representations. The iCub is an open-source
humanoid robot platform designed to facilitate embodied artificial intelligence research33.
The iCub provides motor proprioception (joint angles) of the fingers’ motors, for a total of 7
degrees of freedom (DoF) for each hand as follows: 2 DoF for the thumb, index, and middle
fingers, and one for controlling both ring and pinky fingers, which are coupled together60.
However, this limitation is also common in human beings, who often can't freely move these
two fingers independently61. To overcome the possible distortion by unbalanced
representations, the contribution of the motors controlling two fingers is double; therefore,
we have 16 inputs, we normalized in the [0,1] range. Pictures of the iCub finger
representations are in Supplementary Figure 1, which shows the right hand. Note that the
finger configurations of each hand are replicating the American Sign Language number
representation from 1 to 5. Indeed, the representations with the left hand are specular, and
they are used in addition to the fully open right hand to represent numbers from 6 (5+1) to 9
(5+4). The finger representations of the American Sign Language were selected to represent
the embodied internal representation as an appropriate solution to a limitation of the iCub
hand. Also, some physical limitation prevents some fingers to be fully opened or closed, e.g.
the thumb, see the supplementary video of the iCub counting from 1 to 10. The numerical
values of the encoders can be found in the file named “robot.cvs” in the “database” folder of
the GitHub repository (the link is in the acknowledgements).

• Random numbers in the range [0,1] as "control" representations. In this case, 9 vectors of 16
random numbers are created and associated with the numbers. These representations are
generated for each run and remain stable for the entire training. Random representations
are included as a "control group" to confirm the performance contribution is due to the
embodied signals rather than other factors.

It should be noted that arbitrary random gestures could be suitable in computer simulations for
control conditions, but it is unlikely that they can be successful in realistic scenarios because
they will require preliminary training to be executed and it is unlikely human teachers can be
precise in repeating them, i.e. there will be significant noise and systematic errors to disrupt the
training.

Deep Learning architecture for simulating embodied learning
To explore the embodied learning of numbers in the iCub robot, we designed a baseline and an
embodied connectionist model for classifying spoken digits. These models are based on a Deep
CNN classifier with 19 layers, of which the first 13 layers are shared between spoken digits

recognition and embodied motor control. CNN is an essential part of the network for selecting
the right features to present to the actual classifier, i.e. the hidden and classification layers, but
they only account for 20-25% of the trainable parameters of our models.

Architectures based on CNN networks are naturally fit to implement the "transfer learning"
approach because the convolutional layers can extract inherent properties from examples,
which can be independent on the problem and, therefore, be generalized and used as a base for
different problems. This strategy saves computational resources (time and memory) because the
convolutional blocks have 73,632 parameters, which represent just 20.83% the full embodied
model, which in total has 353,545 parameters when trained with the iCub fingers.

Table 5. Summary of the CNN architecture.

The rows reports the type, the size of the output, input and output links, the number of trainable
parameters, the arguments and the initialization function for each layer. The baseline includes all the
layers, except the 15 (“embodied”), which is part of the Embodied network only.

Layer Type
Output
Shape

Input
Layer(s)

Output
Layer(s)

N. Param. Arguments Initialization

1 Inputs 90x63 - 2

Range=[0,1]
2 Conv2D 90x63 1 3 640 filters=64, size=3x3; He uniform
3 Pooling 32x32 2 4

size=3x3; stride=3x2

4 BatchNorm 30x32 3 5 256

5 Dropout 30x32 4 6 probability=0.25
6 Conv2D 15x16 5 7 36928 filters=64, size=3x3; He uniform
7 Pooling 15x16 6 8

size=3x3; stride=2x2

8 BatchNorm 15x16 7 9 256

9 Dropout 15x16 8 10 probability=0.25

10 Conv2D 8x8 9 11 18464 filters=32, size=3x3; He uniform
11 Pooling 8x8 10 12

size=3x3; stride=2x2

12 BatchNorm 8x8 11 13 128

13 Dropout 8x8 12 14 probability=0.25
14 Flatten 2048 13 15&16
15 Embodied 9 or 16 14 18 function=Sigmoid Glorot uniform
16 Dense 128 14 17 262272 function=ReLU Glorot uniform
17 BatchNorm 128 16 18 512
18 Dropout 128 15&17 19 probability=0.5
19 Dense 9 19 - 1161-1305 function=Softmax Glorot uniform

The baseline is a relatively simple but effective deep CNN architecture that includes a sequence
of 3 classical two-dimensional convolutional blocks, which altogether have 73,632 trainable
parameters, while the baseline network includes a total of 320,041 trainable parameters. The
embodied model is created by extending the baseline by adding a dense layer named
“Embodied” (15 in Table 5), which serves both as an output for the embodied representations
associated to the spoken digits and provide these representations as an input to the final

classification layer (19). With the additional layer, there are two weighted connections, which
extend the number of trainable parameters to 353,545. The embodied model is trained in two
steps: first, the shared CNN blocks and the "embodied layer" (red in Figure 1, Layers 1-15 in
Table 5) are trained to associate digit images to embodied representations, then the remaining
layers (blue in Figure 1, 16-19 in Table 5) are connected and the full model is tuned to classify
the spoken digits. In the full training phase, the loss is the weighted sum of the losses for the
two outputs, both weighted 1.0. Unless otherwise stated, the layers are regular densely
connected layers, where all units are connected to the others.

From the machine learning point of view, the embodied strategy could be also seen as a bio-
inspired alternative to the "auxiliary" classifiers that were introduced in the Google Inception
network to prevent the middle part of the network from "dying out" because of the limitations
of backpropagation algorithms in propagating the error through the many layers of deep CNN62.

The network parameters, e.g. number of units for each layer, were set on the baseline via a trial-
and-error procedure using the final performance (accuracy) as a criterion for the selection. In
fact, the baseline model, when fully trained, can achieve a final accuracy of over 97% with the
test set.

Neural Network Implementation details
To improve the understanding of the article, we give an overview of the layers that compose the
architectures and the methods used for learning in the following subsections. The overview is
not intended to be exhaustive; the aim is to facilitate the general understanding of the methods
used in this work and to point the inexperienced reader towards the relevant sources. The
models were implemented, trained and tested using python and Keras 2.2.463 high-level APIs
running on top of TensorFlow 1.8.064. Greater detail can be found in the documentation of these
tools available from the respective websites.

The ReLU layer

The label ReLU is commonly used to identify a layer with Rectified Linear Units, which apply a
non-saturating activation function:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max (0, 𝑥𝑥)

It increases the nonlinear properties of the decision function and of the overall network. In our
models, the ReLU layers proved to be more effective than the classical sigmoid.

The Sigmoid layer

A sigmoid layer is formed of units with the most common transfer function for artificial neural
networks, the sigmoid:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
𝑅𝑅𝑥𝑥

𝑅𝑅𝑥𝑥 + 1

The Convolutional layer

Convolutional layers characterize the Convolutional Blocks, they are one of the most successful
instruments in building deep learning architectures65,66, which represent the current state of the
art in computer vision and they are inspired by biological organization and process of the visual
cortex in animals and humans67. The convolutional layers enable artificial neural networks to
extract the main features from an image and recognize patterns by learning about the shapes of
objects.

In a convolutional layer, each unit is repeatedly activated by a receptive field (typically
rectangular), which is connected via a weight vector (a filter) to single input sensory neurons.
The receptive field is shifted step by step across a 2-dimensional array of input values, e.g. the
frequency for a time step.

The Max Pooling layer

Another important concept of CNNs is pooling, which is a form of non-linear down-sampling.
There are several non-linear functions to implement pooling amongst which max pooling is the
most common because it has been shown that max pooling can give a better performance than
other pooling operations68. The Pooling layer partitions the input image into a set of non-
overlapping rectangles and, for each such sub-region, outputs the maximum. The pooling layer
serves to progressively reduce the spatial size of the representation, to reduce the number of
parameters and amount of computation in the network, and hence to also control overfitting.
The pooling operation provides another form of translation invariance.

The Classification layer

The final layer of the models ("Classification_Layer") uses the softmax transfer function that
naturally ensures all output values are between 0 and 1, and that their sum is 1. The output of a
softmax classifier is a probability/likelihood; a classification output layer is also trained to
transform the probabilities into one of the classes. The total number of classes considered in our
experiment is 9, which corresponds to the digits from 1 to 9.

The softmax function used is as follows:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝒙𝒙, 𝑠𝑠) =
𝑅𝑅𝑥𝑥𝑖𝑖

∑ 𝑅𝑅𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

where the vector x is the net input to a softmax node, and n is the number of nodes in the
softmax layer.

The Other Layers

The other layers included in our models are:

• The Dropout layer, which operates by randomly dropping a fraction of input at each
update at training time. Dropout layers help to prevent overfitting69. The drop rate of the
dropout layers in the three Convolutional blocks is 0.25, while the last drop rate is 0.5.

• The Flatten layer, which reshapes multidimensional inputs into one-dimensional output
vector. This layer doesn't apply a transfer function and it is transparent to the learning,
but it is needed to enable the transition from Convolutional layers to standard layers.

• The Batch Normalization (BatchNorm) layer, which scales the output of the previous
layer by standardizing the activations of each input variable per mini-batch. This has the
effect of inducing a more predictive and stable behaviour of the gradients, which allows
faster training70.

The dropout and batch normalization layers are inserted to reduce overfitting and improve
generalization performance.

Initializers

The layer initializers used were:

• He Uniform71, which uses a uniform distribution within [−�6 𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛⁄ , +�6 𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛⁄] where
𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛 is the number of inputs of the layer.

• Glorot Uniform72, which draws samples from a uniform distribution within

[−�6 (𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛 + 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)⁄ , +�6 (𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛 + 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)⁄] where 𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛 is the number of inputs of
the layer, while 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 is the number of outputs.

Algorithms for training the networks

After some preliminary tests with the optimization algorithms included in the Keras framework,
we selected two adaptive learning methods, based on stochastic gradient descent, for training
the models: RMSprop and Adam. As recommended, we left the parameters of this optimizer at
their default values, which follow those provided in the original publications cited below. The
training was executed in mini-batches of 16 or 32 examples, full and pre-training respectively.
The use of mini-batches proved to improve the generalization of the network, i.e. the accuracy
in the test set.

The Root Mean Square Propagation (RMSprop) method74 is a gradient-based method that
maintains per-parameter learning rates, which are divided by a moving average 𝑣𝑣�(𝜃𝜃, 𝑠𝑠) of the
squared gradient for each model parameter 𝜃𝜃:

𝜃𝜃(𝑠𝑠 + 1) = 𝜃𝜃(𝑠𝑠) −
𝜂𝜂

�𝑣𝑣�(𝜃𝜃, 𝑠𝑠)
∙
𝜕𝜕𝑅𝑅
𝜕𝜕𝜽𝜽

(𝑠𝑠)

Where 𝜕𝜕𝜕𝜕
𝜕𝜕𝜽𝜽

(𝑠𝑠) is the gradient of the loss function 𝑅𝑅(𝑠𝑠) at epoch t, 𝜂𝜂 is the learning rate, which, in

our experiments, has been set as 0.001. The moving average 𝑣𝑣�(𝜃𝜃, 𝑠𝑠) is calculated as:

𝑣𝑣�(𝜃𝜃, 𝑠𝑠) = 𝛾𝛾 ∙ 𝑣𝑣�(𝜃𝜃, 𝑠𝑠 − 1) + (1 − 𝛾𝛾) ∙ �
𝜕𝜕𝑅𝑅
𝜕𝜕𝜃𝜃

(𝑠𝑠)�
2

where 𝛾𝛾 is 0.9 as suggested in 73. RMSprop can be seen as a mini-batch version of Rprop74.

The Adaptive Moment Estimation algorithm (Adam)75 combines the advantages of RMSprop and
Adagrad. In fact, Adam is widely used in the field of deep learning because it is fast and achieves
good results. Like the RMSprop, Adam also makes use of a moving average of the squared
gradient 𝑣𝑣�(𝜃𝜃, 𝑠𝑠), but it keeps an exponentially decaying average of past gradients 𝑠𝑠�(𝜃𝜃, 𝑠𝑠),
similar to the momentum. Adam's parameter update is given by:

𝜃𝜃(𝑠𝑠 + 1) = 𝜃𝜃(𝑠𝑠) − 𝜂𝜂
𝑠𝑠�(𝜃𝜃, 𝑠𝑠)
�𝑣𝑣�(𝜃𝜃, 𝑠𝑠)

Specifically, 𝑣𝑣�(𝜃𝜃, 𝑠𝑠)and 𝑠𝑠�(𝜃𝜃, 𝑠𝑠) are calculated using the parameters 𝛽𝛽1 and 𝛽𝛽2 to control the
decay rates of these moving averages:

𝑠𝑠�(𝜃𝜃, 𝑠𝑠 + 1) = 𝑚𝑚(𝜃𝜃,𝑜𝑜)
1−𝛽𝛽1

𝑡𝑡 where 𝑠𝑠(𝜃𝜃, 𝑠𝑠) = 𝛽𝛽1 ∙ 𝑠𝑠(𝜃𝜃, 𝑠𝑠 − 1) + (1 − 𝛽𝛽1) ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

(𝑠𝑠)

𝑣𝑣�(𝜃𝜃, 𝑠𝑠 + 1) = 𝑣𝑣(𝜃𝜃,𝑜𝑜)
1−𝛽𝛽2

𝑡𝑡 where 𝑣𝑣(𝜃𝜃, 𝑠𝑠) = 𝛽𝛽2 ∙ 𝑣𝑣(𝜃𝜃, 𝑠𝑠 − 1) + (1 − 𝛽𝛽2) ∙ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

(𝑠𝑠)�
2

Note that 𝛽𝛽1𝑜𝑜 and 𝛽𝛽2𝑜𝑜 denote the parameters 𝛽𝛽1 and 𝛽𝛽2 to the power of 𝑠𝑠.

Good default settings are 𝜂𝜂 = 0.001, 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.999. These values are used in our
experiments.

In our experiments, the Adam algorithm was used in training the final classifiers, while the
RMSprop was used in the regression tasks where it showed the best performance, i.e. when the
learning target was the embodied representations to pre-train the CNN layers.

Loss function

The Loss function 𝑅𝑅(𝑠𝑠) was the Cross-entropy function, which computes the performance given
by network outputs and targets in such a way that extremely inaccurate outputs are heavily
penalized, while a very small penalty is given to almost correct classifications.

The calculation of the Cross-entropy depends on the task: Categorical 𝐻𝐻𝐶𝐶 when classifying into
the number classes; Binary 𝐻𝐻𝐵𝐵 predicting the embodied representations.

In the case of classification, the output 𝒑𝒑 is a categorical vector of N probabilities that represent
the likelihood of each of the N classes with ∑𝒑𝒑 = 1, while 𝒚𝒚� is a one-hot encoded vector (1 for
the target class, 0 for the rest). The Categorical cross-entropy 𝐻𝐻𝐶𝐶 is calculated as the average of
the cross-entropy of each pair of output-target elements (classes):

𝐻𝐻𝐶𝐶 =
1
𝑁𝑁
�−𝑦𝑦𝚤𝚤� ∙ log(𝑝𝑝𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

When the target is the embodied representation, the output is a vector 𝒛𝒛 of 𝐾𝐾 independent
elements. The cross-entropy can be calculated considering 2 binary classes: one corresponds to
the target value, zero otherwise. In this case, the loss function is calculated using the binary
cross-entropy expression:

𝐻𝐻𝐵𝐵 =
1
𝐾𝐾
�−𝑦𝑦𝚤𝚤� ∙ log(𝑧𝑧𝑖𝑖) − (1 − 𝑦𝑦𝚤𝚤�) ∙ log(1 − 𝑧𝑧𝑖𝑖)
𝐾𝐾

𝑖𝑖=1

Training and testing procedures
We ran the training 32 times with random parameters initializations. The stopping criterion was
a fixed number of epochs (25 for the first experiment and all the pre-training, 50 for the second).
The final performance is calculated as the average of the accuracies on the test set after the
epoch with the lowest loss for each run. The following pseudo-code summarizes the training and
testing procedure for our experiments.
For clarity, details on the statistical analysis used are given in the Supplementary Information.

Algorithm 1. Pseudo-algorithm of the training procedure.

Note that, in the case of 128,512 and 1024 examples, all runs had a different portion of the
training set, while in the other cases they cycle among 10,5,2 folds of the training set.

N = 27884 #number of training examples

For i ∈ [1,32] #number of runs for each model was 32

Random = generate_random_normal_distribution(9;[0,1]) #generates 9 representations
 each has 16 random values in [0,1]

 For each K ∈ {{2193,4386,8773} #Scenario 1: Zipfian distribution
|{128,512,1024,2788,5576,13942,27884}} #Scenario 2: standard semi-uniform distribution

 train_interval = [(K*((i-1)%(int(N/K))),K*(i%int(N/K))}] #the train interval covers
 as much of the training
 dataset as possible.

train(convolutional_blocks,
 optimizer=rmsprop,
 epochs=25,
 mini-batches_size=32
 input=MNIST_TRAIN[pre-train_interval],
 output=(random|num_mag|robot)) #embodied architecture only

 train(full_model, optimizer=adam,
 epochs=(25|50) #25 for experiment 1; 50 for experiment 2
 mini-batches_size=16
 input= SPOKEN_DIGITS_TRAIN[train_interval],
 main_output=(classes),embodied_output=(random|num_mag|robot),
 loss=1.0*classifier_loss+1.0*embodied_loss) #full training

 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑦𝑦𝑖𝑖(𝑘𝑘, 𝑅𝑅𝑝𝑝𝑠𝑠𝑎𝑎ℎ) =evaluate(full_model, input= SPOKEN_DIGITS_TEST)

References
1. Glenberg, A. M. Embodiment as a unifying perspective for psychology. Wiley Interdiscip.

Rev. Cogn. Sci. 1, 586–596 (2010).
2. Wilson, M. Six Views of Embodied Cognition. Psychon. Bull. Rev. 9, 625–636 (2002).
3. Pfeifer, R., Bongard, J. & Grand, S. How the body shapes the way we think: a new view of

intelligence. (MIT press, 2007).
4. Shapiro, L. The Routledge handbook of embodied cognition. (Routledge, 2014).
5. Dackermann, T., Fischer, U., Nuerk, H. C., Cress, U. & Moeller, K. Applying embodied

cognition: from useful interventions and their theoretical underpinnings to practical
applications. ZDM - Math. Educ. 49, 545–557 (2017).

6. Nieder, A. The neuronal code for number. Nat. Rev. Neurosci. 17, 366 (2016).
7. Barrow, J. D. New theories of everything: the quest for ultimate explanation. (Oxford

University Press, 2008).
8. Lakoff, G. & Nuñez, R. Where Mathematics Comes From: How the Embodied Mind Brings

Mathematics into Being. (Basic Books, 2000).
9. Soylu, F., Lester Jr., F. K. & Newman, S. D. You can count on your fingers: The role of

fingers in early mathematical development. J. Numer. Cogn. 4, 107–135 (2018).
10. Goldin-Meadow, S., Levine, S. C. & Jacobs, S. Gesture’s role in learning arithmetic (eds.

Edwards, L. D., Ferrara, F. & Moore-Russo, D.) 50-64 (Information Age Publishing, 2014).
11. Gunderson, E. A., Spaepen, E., Gibson, D., Goldin-Meadow, S. & Levine, S. C. Gesture as a

window onto children’s number knowledge. Cognition 144, 14–28 (2015).
12. Di Luca, S. & Pesenti, M. Masked priming effect with canonical finger numeral

configurations. Exp. Brain Res. 185, 27–39 (2008).
13. Domahs, F., Kaufmann, L. & Fischer, M. H. Handy numbers: Finger counting and numerical

cognition. (Frontiers E-books, 2014).
14. Alibali, M. W. & DiRusso, A. A. The function of gesture in learning to count: More than

keeping track. Cogn. Dev. 14, 37–56 (1999).
15. Di Luca, S. & Pesenti, M. Finger numeral representations: more than just another symbolic

code. Front. Psychol. 2, 272 (2011).
16. Sixtus, E., Fischer, M. H. & Lindemann, O. Finger posing primes number comprehension.

Cogn. Process. 18, 237–248 (2017).
17. Klein, E., Moeller, K., Willmes, K., Nuerk, H.-C. & Domahs, F. The Influence of Implicit

Hand-Based Representations on Mental Arithmetic. Front. Psychol. 2, 197 (2011).
18. Butterworth, B. The Mathematical Brain. (McMillan, 1999).
19. Peters, L. & De Smedt, B. Arithmetic in the developing brain: A review of brain imaging

studies. Dev. Cogn. Neurosci. 30, 265–279 (2018).
20. Andres, M., Michaux, N. & Pesenti, M. Common substrate for mental arithmetic and

finger representation in the parietal cortex. Neuroimage 62, 1520–1528 (2012).
21. Kaufmann, L. et al. A developmental fMRI study of nonsymbolic numerical and spatial

processing. Cortex 44, 376–385 (2008).
22. Gracia-Bafalluy, M. & Noël, M.-P. Does finger training increase young children’s numerical

performance? Cortex 44, 368–375 (2008).
23. Sato, M., Cattaneo, L., Rizzolatti, G. & Gallese, V. Numbers within our hands: Modulation

of corticospinal excitability of hand muscles during numerical judgment. J. Cogn. Neurosci.
19, 684–693 (2007).

24. Tschentscher, N., Hauk, O., Fischer, M. H. & Pulvermüller, F. You can count on the motor

cortex: finger counting habits modulate motor cortex activation evoked by numbers.
Neuroimage 59, 3139–48 (2012).

25. Alibali, M. W. & Nathan, M. J. Embodiment in mathematics teaching and learning:
Evidence from learners’ and teachers’ gestures. J. Learn. Sci. 21, 247–286 (2012).

26. Alibali, M. W. et al. How Teachers Link Ideas in Mathematics Instruction Using Speech and
Gesture: A Corpus Analysis. Cogn. Instr. 32, 65–100 (2014).

27. Cook, S. W. & Goldin-Meadow, S. The Role of Gesture in Learning: Do Children Use Their
Hands to Change Their Minds? J. Cogn. Dev. 7, 211–232 (2006).

28. Cook, S. W., Duffy, R. G. & Fenn, K. M. Consolidation and Transfer of Learning After
Observing Hand Gesture. Child Dev. 84, 1863–1871 (2013).

29. Jordan, N. C., Kaplan, D., Ramineni, C. & Locuniak, M. N. Development of number
combination skill in the early school years: When do fingers help? Dev. Sci. 11, 662–668
(2008).

30. Moeller, K., Martignon, L., Wessolowski, S., Engel, J. & Nuerk, H.-C. Effects of Finger
Counting on Numerical Development – The Opposing Views of Neurocognition and
Mathematics Education. Front. Psychol. 2, 328 (2011).

31. Cangelosi, A. & Schlesinger, M. Developmental robotics: From babies to robots. (MIT
Press, 2015).

32. Sakagami, Y. et al. The intelligent ASIMO: system overview and integration. in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 3, 2478–2483 (IEEE, 2002).

33. Sandini, G., Metta, G. & Vernon, D. The iCub Cognitive Humanoid Robot: An Open-System
Research Platform for Enactive Cognition. in 50 years of artificial intelligence (eds.
Lungarella, M., Pfeifer, R., Iida, F. & Bongard, J.) 358–369 (Springer-Verlag, 2007).

34. Theodorou, A., Wortham, R. H. & Bryson, J. J. Designing and implementing transparency
for real time inspection of autonomous robots. Conn. Sci. 29, 230–241 (2017).

35. Asada, M. et al. Cognitive developmental robotics: A survey. IEEE Trans. Auton. Ment. Dev.
1, 12–34 (2009).

36. Cangelosi, A. et al. Embodied language and number learning in developmental robots. in
Conceptual and Interactive Embodiment: Foundations of Embodied Cognition (eds Fischer,
M. H. and Coello, Y.) vol. 2, 275–293 (Routledge, 2016).

37. Di Nuovo, A., Marocco, D., Di Nuovo, S. & Cangelosi, A. Autonomous learning in humanoid
robotics through mental imagery. Neural Networks 41, 147–155 (2013).

38. Di Nuovo, A., Marocco, D., Di Nuovo, S. & Cangelosi, A. Embodied Mental Imagery in
Cognitive Robots. in Springer Handbook of Model-Based Science (eds. Magnani, L. &
Bertolotti, T.) 619–637 (Springer International Publishing, 2017).

39. Di Nuovo, A. & Jay, T. The development of numerical cognition in children and artificial
systems: a review of the current knowledge and proposals for multi-disciplinary research.
IET Cogn. Comput. Syst. 1, 2 – 11, (2019).

40. Rucinski, M., Cangelosi, A., and Belpaeme, T. Robotic model of the contribution of gesture
to learning to count. in Proceedings of IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-Epirob), 1-6 (IEEE, 2012).

41. De La Cruz, V. M., Di Nuovo, A., Di Nuovo, S. & Cangelosi, A. Making fingers and words
count in a cognitive robot. Front. Behav. Neurosci. 8, 13 (2014).

42. Di Nuovo, A., De La Cruz, V. M. & Cangelosi, A. Grounding fingers, words and numbers in a
cognitive developmental robot. in IEEE Symposium on Cognitive Algorithms, Mind, and
Brain (CCMB) 9–15 (IEEE, 2014).

43. Di Nuovo, A., De La Cruz, V. M., Cangelosi, A. & Di Nuovo, S. The iCub learns numbers: An

embodied cognition study. in International Joint Conference on Neural Networks (IJCNN
2014) 692–699 (IEEE, 2014).

44. Di Nuovo, A., De La Cruz, V. M. & Cangelosi, A. A Deep Learning Neural Network for
Number Cognition: A bi-cultural study with the iCub. in IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL-EpiRob) 320–325 (2015).

45. Di Nuovo, A. An Embodied Model for Handwritten Digits Recognition in a Cognitive Robot.
in IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain
(CCMB) 1–6 (IEEE, 2017).

46. Zorzi, M., Stoianov, I., Umiltà, C. & Umilta’, C. Computational modeling of numerical
cognition. In The handbook of mathematical cognition (ed. Campbell, J.) 67–84
(Psychology Press, 2005).

47. Di Nuovo, A. Long-short term memory networks for modelling embodied mathematical
cognition in robots. in Proceedings of the 2018 International Joint Conference on Neural
Networks (IJCNN) 1–7 (IEEE, 2018).

48. Domahs, F., Krinzinger, H. & Willmes, K. Mind the gap between both hands: Evidence for
internal finger-based number representations in children’s mental calculation. Cortex 44,
359–367 (2008).

49. Davis, S., Tsagarakis, N. G. & Caldwell, D. G. The initial design and manufacturing process
of a low cost hand for the robot icub. in 8th IEEE-RAS International Conference on
Humanoid Robots 40–45 (IEEE, 2008).

50. Warden, P. Speech commands: A dataset for limited-vocabulary speech recognition.
Preprint at https://arxiv.org/abs/1804.03209 (2018).

51. Sharif Razavian, A., Azizpour, H., Sullivan, J. & Carlsson, S. CNN features off-the-shelf: an
astounding baseline for recognition. in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW) 806–813 (IEEE, 2014).

52. Gallistel, C. R. & Gelman, R. Preverbal and verbal counting and computation. Cognition 44,
43–74 (1992).

53. Gelman, R. & Gallistel, C. R. The child’s understanding of number. (Harvard University
Press, 1986).

54. Piantadosi, S. T. Zipf’s word frequency law in natural language: a critical review and future
directions. Psychon. Bull. Rev. 21, 1112–1130 (2014).

55. Laski, E. V & Siegler, R. S. Is 27 a Big Number? Correlational and Causal Connections
Among Numerical Categorization, Number Line Estimation, and Numerical Magnitude
Comparison. Child Dev. 78, 1723–1743 (2007).

56. Gunderson, E. A., Spaepen, E. & Levine, S. C. Approximate number word knowledge
before the cardinal principle. J. Exp. Child Psychol. 130, 35–55 (2015).

57. Tensorflow speech recognition challenge. Retrieved from
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge (2018)

58. Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of number words.
Cognition 43, 1–29 (1992).

59. Stoianov, I., Zorzi, M., Becker, S. & Umilta, C. Associative arithmetic with Boltzmann
Machines: The role of number representations. In International Conference on Artificial
Neural Networks (ICANN) 277-283 (Springer, 2002).

60. Schmitz, A. et al. Design, realization and sensorization of the dexterous iCub hand. in 10th
IEEE-RAS International Conference on Humanoid Robots 186–191 (IEEE, 2010).

61. Lang, C. E. & Schieber, M. H. Human Finger Independence: Limitations due to Passive
Mechanical Coupling Versus Active Neuromuscular Control. J. Neurophysiol. 92, 2802–

https://arxiv.org/abs/1804.03209
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge

2810 (2004).
62. Szegedy, C. et al. Going deeper with convolutions. in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) 1–9 (IEEE, 2015).
63. Chollet François. Keras: The Python Deep Learning library. (2018). Available at:

http://keras.io.
64. GoogleResearch. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. (2018). Available at: https://www.tensorflow.org.
65. Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks 61, 85–

117 (2015).
66. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
67. Fukushima, K. Artificial vision by multi-layered neural networks: Neocognitron and its

advances. Neural Networks 37, 103–119 (2013).
68. Scherer, D., Müller, A. & Behnke, S. Evaluation of Pooling Operations in Convolutional

Architectures for Object Recognition. in International Conference on Artificial Neural
Networks (ICANN) 92–101 (Springer, 2010).

69. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–
1958 (2014).

70. Santurkar, S., Tsipras, D., Ilyas, A. & Madry, A. How does batch normalization help
optimization? in Advances in Neural Information Processing Systems (NIPS) 2483–2493
(2018).

71. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. in Proceedings of the IEEE international
conference on computer vision 1026–1034 (IEEE, 2015).

72. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural
networks. in International Conference on Artificial Intelligence and Statistics 249–256
(2010).

73. Ruder, S., An overview of gradient descent optimization algorithms. Preprint available at
https://arxiv.org/abs/1609.04747.

74. Riedmiller, M. & Braun, H. A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In IEEE International Conference on Neural Networks 586–591
(IEEE, 1993).

75. Kingma, D. P. & Ba, J. L. Adam: a Method for Stochastic Optimization. Preprint available at
https://arxiv.org/abs/1412.6980.

http://keras.io/
https://www.tensorflow.org/
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1412.6980

Acknowledgements

Funding: Alessandro Di Nuovo acknowledges the support of EPSRC through project grant
EP/P030033/1 (NUMBERS). Di Nuovo also gratefully acknowledges the support of NVIDIA
Corporation with the donation of the GeForce Titan X and the Tesla K40 GPUs used for this
research.

Author contributions: ADN conceptualized the experiment, developed the methodology and
designed the baseline artificial neural network architecture. ADN and JLM collaborated on the
design of the embodied model. ADN implemented the source code, ran the simulations,
validated the results, and wrote the first draft of the article. JLM provided relevant ideas from
cognitive psychology and neuroscience and contributed to the discussion.

Competing interests: The authors declare that they have no competing interests.

Data and code availability: The data and source code for the models presented in this paper can
be found in the GitHub repository: https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech.
A Supplementary Video of the iCub counting from 1 to 10 is also provided. The Google
Tensorflow Speech Command database can be downloaded from
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz.

https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz

	Title
	Introduction
	Recognising spoken digits in a cognitive developmental robot
	Scenario 1: Learning to process spoken digits while acquiring counting principles
	It is interesting to note that we didn't found relevant differences between the Cardinal Numerosity representation and the iCub finger configurations, except for the final performance with medium training size, in which there is a medium effect (d=0.6...
	Scenario 2: A Longitudinal study of spoken digits recognition in embodied artificial agents

	Conclusions
	Methods
	The Google Tensorflow Speech commands dataset
	Simulated internal representations
	Deep Learning architecture for simulating embodied learning
	Neural Network Implementation details
	The ReLU layer
	The Sigmoid layer
	The Convolutional layer
	The Max Pooling layer
	The Classification layer
	The Other Layers
	Algorithms for training the networks
	Loss function
	Training and testing procedures

	References

