
Honware: A Virtual Honeypot Framework for
Capturing CPE and IoT Zero Days

Alexander Vetterl
Computer Laboratory, University of Cambridge

Cambridge, UK
alexander.vetterl@cl.cam.ac.uk

Richard Clayton
Computer Laboratory, University of Cambridge

Cambridge, UK
richard.clayton@cl.cam.ac.uk

Abstract—Existing solutions are ineffective in detecting zero
day exploits targeting Customer Premise Equipment (CPE) and
Internet of Things (IoT) devices. We present honware, a high-
interaction honeypot framework which can emulate a wide range
of devices without any access to the manufacturers’ hardware.
Honware automatically processes a standard firmware image (as
is commonly provided for updates), customises the filesystem
and runs the system with a special pre-built Linux kernel. It
then logs attacker traffic and records which of their actions
led to a compromise. We provide an extensive evaluation and
show that our framework improves upon existing emulation
strategies which are limited in their scalability, and that it
is significantly better both in providing network functionality
and in emulating the devices’ firmware applications – a crucial
aspect as vulnerabilities are frequently exploited by attackers
in ‘front-end’ functionalities such as web interfaces. Honware’s
design precludes most honeypot fingerprinting attacks, and as its
performance is comparable to that of real devices, fingerprinting
with timing attacks can be made far from trivial. We provide four
case studies in which we demonstrate that honware is capable of
rapid deployment to capture the exact details of attacks along
with malware samples. In particular we identified a previously
unknown attack in which the default DNS for an ipTIME N604R
wireless router was changed. We believe that honware is a major
contribution towards re-balancing the economics of attackers and
defenders by reducing the period in which attackers can exploit
zero days at Internet scale.

I. INTRODUCTION

The Internet is transforming from an Internet of computers
to a global network connecting everyday devices (‘things’).
The emphasis on automation and the nature of the devices
themselves together mean that vulnerabilities and exploits not
affecting device functionality are likely to remain unnoticed
by their owners. Recent Distributed Denial of Service (DDoS)
attacks which used inadequately secured Customer Premise
Equipment (CPE) and Internet of Things (IoT) devices [1],
[2], [3] further highlight that existing defenses are slow to
detect zero day exploits and capture attack traffic. This means
that attackers have considerable periods of time to find and
compromise vulnerable devices before the attack vectors are
well understood and subsequent mitigation is in place [4].

Honeypots, resources that appear to be legitimate systems,
have long proven effective in capturing malware, helping
to counter spam and providing early warning signals about
upcoming threats [5], [6], [7], [8]. The Mirai botnet, the first

large botnet to recruit a wide variety of IoT devices, used an
automated pseudo-random scanning process to find and infect
new devices. As the Mirai source code has been leaked and
is well-understood, it is straightforward to build a honeypot
that emulates a vulnerable device by sending appropriate
strings back to scanners. But, without source code, or reverse
engineering the malware binaries, this type of honeypot is
hard to construct. It is a significant challenge to monitor large
numbers of attackers who are going after a wide range of
devices using different attack techniques, some of which may
be previously unknown ‘zero days’.

Meanwhile, it has become feasible to scan the whole IPv4
address space for vulnerable devices with modest investment.
Tools such as Shodan or ZMap [9] give attackers a crucial ad-
vantage. Once an exploit is found for one technology, device,
or specific implementation, attackers can easily find devices
with that vulnerability embedded – and instantly benefit from
that exploit. In 2003 Spitzner argued that honeypots “get little
traffic” and “collect small amounts of high-value data” [10].
However, this observation was from a time when attacks
were generally performed by humans, whereas since the rise
of botnets almost all activities that honeypots observe are
performed by automated scripts.

Previous research includes Firmadyne [11], an analysis sys-
tem that runs embedded firmware and subsequently provides
dynamic analysis capabilities, and IoTPOT [12], one of the
first generic high-interaction honeypot tailored to impersonate
IoT devices. IoTPOT supports eight architectures including
ARM, MIPS and X86 and aims to return appropriate strings to
connections on port 23 (Telnet). If the command is unknown,
it tries to run it within a generic sandboxed environment to
infer the appropriate return string(s). In 2017, Guarnizo et al.
[13] presented a “scalable high-interaction” honeypot platform
called SIPHON which is based on physical devices. They
exposed six security cameras, one networked video recorder
and one networked printer through a distributed architecture
on a range of IPv4 addresses.

All these approaches have critical shortcomings: Firmadyne
is built for dynamic analysis, but not to monitor a large number
of attackers and thus not to be connected to the Internet.
IoTPOT does not use firmware images of real devices and
thus it is a generic representation of a vulnerable platform
which will fail to detect new attack patterns; SIPHON needs978-1-7281-6383-3/19/$31.00 c©2019 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/237712964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

physical devices connected to the Internet to capture attack
traffic – an expensive endeavour limited in its scalability.

We present honware, the first flexible and generic frame-
work to efficiently and effectively deploy honeypots for net-
worked devices on the Internet to log attacker traffic and their
actions. Instead of buying CPE or IoT devices and running
them as honeypots, honware utilises device firmware images
(which are widely available for download) and a special pre-
built Linux kernel to emulate device behaviour within a virtual
environment. In particular, it is easy to deploy all the available
firmware versions for a particular device so as to understand
which are vulnerable to a particular attack.

Overall, we make four main contributions:
• We present new techniques (and improve upon existing

work) to allow honware to run standard firmware images
without needing custom hardware.

• We show that honware is superior to existing emulation
strategies, making significant improvements in scalability,
in the provision of network functionality, and in emulat-
ing firmware applications.

• We perform extensive measurements to show that the
performance of honware is comparable to real devices and
that honware is not susceptible to trivial fingerprinting
based on timing attacks.

• We present four examples to show the success of honware
in identifying real-world attacks which had been hard to
capture with the traditional approach of low-/medium-
/high- interaction honeypots.

II. BACKGROUND

Honeypots are classified by the type of system they emulate,
such as SSH, web or email servers. They are further classified
as low interaction (in the context of SSH merely collecting
credential guesses), medium interaction (emulating a limited
number of shell commands) or high interaction (allowing
attackers full control of a machine). Low- and medium-
interaction honeypots are easy to deploy and maintain but
typically only implement a small subset of system features. In
contrast, high-interaction honeypots expose a complete system
and so any vulnerabilities can be exploited, whether or not
they were previously known. Once defenders fully understand
a new attack, a custom low or medium interaction honeypot
can be built to capture that specific attack traffic and provide
quantitative data about the level of harm along with operational
data such as current malware samples and C&C locations.

Since mid-2016, and the rise of the Mirai botnet, there has
been an increasing interest in ‘customer-premise equipment’
(CPE), a generic term for xDSL modems, routers, switches
and other home networking devices that are connected to
telecommunication providers’ networks. CPE such as ADSL
and cable modems are particularly important within the IoT
ecosystem as they serve as an entry point into a premises’
network and, once compromised, allow attackers to connect to
further devices at that location. The firmware of CPE and IoT
devices is largely based on Linux, typically supplemented with
custom kernel modules and drivers to provide device specific

functionality. Firmware for CPEs is almost invariably available
for download and Netgear [14], Link-TP [15] and Linksys [16]
provide online GUI emulators for various types of modems and
routers. An increasing number of manufacturers also publish
the source code of their firmware as GPL-Code, in particular
to support ongoing projects such as OpenWrt [17].

In the arms race with the criminals, honeypot ‘fingerprint-
ing’ is an ongoing concern. Morishita et al. [18] showed
that many honeypots do not blend into the type of service
they emulate and reveal themselves based on their unique
configuration. Vetterl and Clayton [19] developed an auto-
mated technique to fingerprint honeypots based on packet
level protocol interactions, identifying honeypots with trivial
probes. Sophisticated attackers who use fingerprinting to avoid
interacting with honeypots could avoid detection for long
periods, but honware sidesteps all these issues by running
exactly the same applications and protocol stack as a real
device.

It was shown by Garfinkel et al. [20] that virtualisation
induces anomalies such as timing discrepancies and that these
anomalies can be used to detect virtualised environments.
Kedrowitsch et al. [21] compared the deception capabilities
of Linux containers with different virtualisation environments
such as QEMU, Kernel-based Virtual Machine (KVM) and
VMWare, and found that QEMU can be best fingerprinted by
its slow performance. Similarly, Holz and Raynal [22] showed
that the execution time of commands provides an efficient
way to detect honeypots because emulation will typically
result in longer execution and response time. In the same
vein, Mukkamala et al. [23] found that honeypots running
in virtualised environments typically respond slower than real
services. However, they also demonstrated that for Internet-
connected honeypots this metric may not be useful because it
depends on network load, routing and emulation technology.

III. VIRTUAL HONEYPOT FRAMEWORK

Honware uses the firmware images provided by CPE and
IoT manufacturers, employing Quick Emulator (QEMU) to
run code for different CPU architectures (x86-64 PCs, ARM,
MIPS and PowerPC) on a single host machine. Although parts
of the firmware will be closely linked to the hardware of
a particular device, the Linux kernel and the device driver
APIs are substantially the same across many different devices.
Honware decouples the execution of the firmware from the
underlying hardware by the use of a custom kernel.

Figure 1 shows the four main parts of honware: a host
operating system and kernel, QEMU, a custom kernel, and
the firmware filesystem (extracted from the firmware image)
which contains applications such as telnet and web servers.

QEMU is the de facto standard for full machine emulation
and it provides the necessary functionality to connect the
honeypot to the Internet. However, QEMU cannot be used for
off-the-shelf emulation of CPE and IoT firmware images. The
firmware, with its own kernel, will try to communicate with the
hardware, but its absence means that this communication will
fail. For example, any access to non-volatile memory (nvram)

Host OS Kernel

QEMU

Custom Kernel

Firmware Filesystem

Appli-
cation

Appli-
cation

Telnet, SSH,
Web, SSDP etc.

Logging

Networking

NVRAM

SIGNAL
HANDLING

Appli-
cation

Fig. 1. Honware architecture overview: Honware consists of four main parts, a
host operating system and kernel, Quick Emulator (QEMU), a custom kernel,
and the firmware filesystem itself which contains specific applications such
as telnet and web servers.

to read configuration files or an attempt to retrieve the MAC
address from hardware will fail. Thus we run QEMU with our
own customised kernel and the extracted filesystem on top of
a host operating system such as FreeBSD or Linux Ubuntu.

Honware currently uses three custom kernels since these
are sufficient for handling very large numbers of firmware
images. These are the Linux kernels 2.6.32.70 for MIPS little
endian (mipsel) and MIPS big endian (mipseb), and 4.1.52
for ARM. We purposely used older kernels as these are most
prevalent across CPE and IoT firmware images and support
for newer kernels is rarely required. The MIPS kernels are
compiled with MIPS Malta and with the MIPS32 CPU release
version 2. MIPS Malta is particularly useful as it supports the
emulation of PCI and LAN functionalities that are inherently
required for the emulation of networked equipment. The ARM
kernel is compiled with the architecture Versatile Express and
VIRT/MULTI_V6_V7 as a dummy CPU architecture. As the
Versatile Express platform is meant for development and rapid
prototyping, it provides a wide range of hardware support.
We further configure the kernel to support various networking
features such as VLAN and WLAN.

The emulation of firmware images is performed in three
stages and is fully automated: A) extracting the filesystem
from the firmware image, B) modifying the filesystem to allow
for virtualisation and C) running it in QEMU with one of
our pre-compiled kernels. Honware will typically process a
firmware image (typically a .zip or .rar file) and have the
honeypot ready to run within one minute.

A. Automated firmware extraction

Firmware images for routers, ADSL modems and IoT
devices are widely available online and many manufacturers
provide regular updates on their websites. Honware uses these
images as input, usually in a compressed format, and extracts
the firmware filesystem. Any supplied kernel is ignored as
running it within QEMU would not allow us to interfere with
the execution of the filesystems applications and services – a

necessity to run the firmware image as a honeypot and in fact,
to decouple the firmware image from the underlying hardware.

To extract the filesystem, we use binwalk [24] and recur-
sively look for the Linux filesystem structure. We identify
Linux filesystems by determining whether a folder contains the
necessary root structure including bin, usr and proc. This
has proven to be challenging as not all firmware images are
packed in the same way. Occasionally they include multiple
suitable filesystems such as one firmware image for the
upgrade, one for the previous version and one for a factory
reset. We also found instances in which a secondary filesystem
is mounted during the boot process, for example to provide
scratch space. In such a case, we only consider the filesystem
where the init process resides as without this process, the
firmware will not boot at all. Although extraction is intended to
be completely automatic, honware does allow manual selection
of which filesystem to use should this be needed.

We then use qemu-img to create a 2GB raw file, sub-
sequently create an ext2 filesystem and copy the root folder
structure including all files and binaries. We infer the CPU
architecture by reading the ELF header of the biggest binary
of the filesystem, typically Busybox. We further extract all
certificate (.pem) files from the firmware images so that we
can use tools such as Wireshark to decrypt, for example,
HTTPS traffic to the web server.

It is more challenging to decrypt SSH traffic as the Diffie-
Hellman key exchange uses not only a static key, but also a
session key. Retrieving the relevant session key is not straight-
forward and requires locating a particular memory structure in
guest memory. We decided not to tackle this particular issue as
we can log executed commands in our custom kernel. However
honeypot operators could consider SSLSNOOP [25] or related
techniques to collect the raw traffic.

B. Customised pre-built kernel

We now consider the various components of our customised
Linux kernel and explain how we have managed to improve on
earlier systems such as Firmadyne. In particular, previous work
has ignored the kernel’s signal handler as way of ensuring that
applications continue running and do not terminate silently,
and no previous attempts have been made to support out-
of-tree kernel modules. Furthermore, our kernel does not
solely rely on the default configuration of the guest system to
ensure network connectivity, but can force a particular network
configuration to be used. In addition, honware supports up
to four ethernet devices for the ARM little-endian platform
whereas Firmadyne only supports a single ethernet device.

1) Honeypot logging and module loading: In order for
honeypots to provide insights into how systems are attacked
and to monitor subsequent actions, it is essential to have
extensive logging capabilities. To get details of all executed
programs and commands with the appropriate time stamps,
process ids and contexts, we modified the kernel function
do_execve. For each connection, we create a new session
id under which we log the invoked programs and their details.
Commands which are not associated with network connections

are logged with the default session id 0. This means that the
boot process, cron jobs and other processes that are executed
by the firmware image itself can be clearly distinguished from
actions triggered from the outside.

2) Signal interception: One central problem we encoun-
tered is that the init process and various applications frequently
terminate silently or with generic error messages. Applications
may terminate because of wrong or missing nvram values,
incorrect hardware emulation or missing kernel features. To
mitigate the effects of this problem, we modified the signal
handling in the kernel to 1) not allow the kernel to terminate
the process, for example by means of the default signal handler
and 2) not allow the program to terminate itself with, for
example, a SIGABRT signal. This means that applications
and kernel modules continue their execution irrespective of
what signals are sent. To achieve this we modified the kernel
function get_signal() which is called by do_signal()
and is responsible for signal handling in the kernel.

It has proven particularly useful to intercept SIGNAL 6
(SIGABRT). We find that SIGABRT is used to detect broken
constraints, for example, to indicate missing license keys or
the absence of hardware modules. In particular, devices with
Broadcom chips look for a variety of settings in nvram to
differentiate between hardware versions. If these settings can-
not be found, the init process or the calling application wants
to terminate itself to prevent further execution. In addition to
SIGNAL 6, we also intercept SIGNAL 11 (SIGSEGV) and
SIGNAL 7 (SIGFPE). The latter two mitigate the problems
caused by missing nvram values that are not absolutely nec-
essary for running applications. SIGPFE is typically sent for
floating point errors such as when the application attempts to
divide by 0. We believe that the absence of nvram leads to the
use of zero values and various mathematical operations fail.

For a small number of firmware images’ ignoring signals
leads to indefinite loops and very high CPU usage, however
in many cases the programs appear to continue running
successfully. Thus intercepting signals is a trade-off between
ignoring (some) values, while at the same time making the
emulation useful and viable.

3) Module loading: A number of firmware images are
shipped with custom modules to implement device specific
functionality such as cryptographic operations or support for
custom hardware. To avoid undesired behaviour and kernel
crashes, our customised kernel will not load incompatible
modules, even if instructed (modprobe -f). However, the
kernel will accept modules with different vermagic strings
and does not require exact matches. Vermagic strings are
typically used to ensure that the modules were built and
configured for the same kernel version, but as the vermagic
strings greatly differ between manufacturers and firmware
versions, we ignore them. For example, if a module has the
vermagic string 2.6.22-routeros our newer kernel with
the version 2.6.32.71 will attempt to load it. This problem
could be avoided by re-compiling the kernel for every indi-
vidual firmware image with the correct vermagic string, but
this would be a significant barrier to deploying honeypots in

a timely manner and we find that, in practice, our approach
works very well.

4) NVRAM: To store and later retrieve device-specific
configuration parameters, device manufacturers often use non-
volatile memory (nvram). Chen et al. [11] looked at 23 035
firmware images and found that more than half of them
accessed nvram, for example to handle configuration infor-
mation during the boot process. Typically firmware images
set a variety of nvram values during the boot process and
subsequently read these nvram values with nvram_get. To
emulate nvram, we use the approach first mentioned in [26]
and later developed by Firmadyne: we set the environmental
variable LD_PRELOAD to the path of our own nvram imple-
mentation, so that our file will be loaded before any other
(firmware) library. This means that we reliably intercept calls
to nvram_get and nvram_set.

To extend Firmadyne’s approach, we implement a script
that automatically reads the kernel logs, detects missing nvram
values, re-compiles the necessary shared library and updates
the filesystem for the next time the firmware is run. This can
be an iterative process as setting certain nvram values may
cause other nvram values to be accessed and those could also
be missing. In our evaluation (in Section IV) which compares
honware with Firmadyne, we used static values and did not
iteratively look for missing values. However, as shown in Table
I and II, we achieve far better results than Firmadyne in terms
of correctly emulating the firmware, its applications and in
inferring the network configuration.

5) Network configuration: Providing network functionality
is a fundamental prerequisite for honware since without it the
emulation cannot be connected to the Internet and thus probed
by attackers. To infer the network configuration, honware
parses the kernel logs for the initial configuration of the
bridge device, typically named br0 or ra0. It then looks for
ifconfig commands which configure the bridge, and for
any addif command which adds one or multiple network
interfaces to that bridge. Subsequently, it extracts the IP
address and creates a tap interface in QEMU, and sets the
associated route and iptables rules on the host to forward all
traffic to the inferred network interface.

If the network does not work with the inferred configuration,
we re-run the emulation and overwrite the firmware’s default
network configuration with a custom configuration. This is
achieved by placing the configuration into /sbin/boot.sh
which will be executed by the kernel during the boot process.
The custom configuration starts by shutting down the network
interfaces (eth_x) and any wrongly configured bridges.
Then it assigns appropriate local static IP addresses and adds
the network interfaces back onto the bridge, setting up a route
so that the guest network interface and the host’s network
interface can exchange packets. Finally, the script removes
all firewall rules so that we can be certain that traffic is not
interfered with. If the network still does not respond to ICMP
echo request packets, we consider the firmware image not
network reachable (and our attempt to create a useful honeypot
has been unsuccessful).

To fully test network reachability we use ping and nmap.
In particular we use nmap1 to do a port scan of the most com-
mon ports including port 22 (SSH), 23 (Telnet), 80 (HTTP),
443 (HTTPS) and 1900 (UPnP). The results of this evaluation
with 8 387 firmware images can be found in Section IV-A.

C. Filesystem modifications

After extracting the filesystem, we have to modify it for
emulation. First, we add the module for nvram emulation
(Section III-B4). Second, we modify do_execve to execute,
if present, /sbin/boot.sh through the kernel function
call_usermodehelper. This allows us to execute custom
scripts and commands for a particular firmware image without
having to change the pre-built kernel or perform complex
modifications to the firmware filesystem. This gives honeypot
operators flexibility to, for example, specify additional network
interfaces, execute applications with particular configuration
options or customise the firewall to their needs.

Unsurprisingly, many emulated firmware images do not
configure static IP addresses, but use DHCP. As we choose
not to emulate access to a DHCP server, attempts to obtain
an IP address would fail and the emulated firmware would
not be reachable over the network. To address this, we use
busybox-static, a statically linked version of Busybox which
is available for mipseb, mipsel and ARM as well as for
many other architectures. We copy this Busybox binary into
the guest filesystem and use it to set up a bridge, attach
one network interface to it, configure both appropriately, and
set up a default route (see Section III-B5). This approach
yields considerably better results than relying on the default
configuration of the guest system itself, as was done, for
example, by Firmadyne.

D. Emulation

After the extraction and preparation of the filesystem, hon-
ware invokes QEMU to start the emulation. The honeypot is
tested to see if it responds to ICMP echo request packets over
the local network. If this is successful the necessary interfaces,
routes and host firewall rules for connecting the honeypot to
the Internet are created. We pre-route incoming packets on
the host ethernet interface to the QEMU tap interface and
post-route packets back to the host. By specifying which ports
are handled this way, operators need only expose ports to the
Internet that are of interest to them.

Honware can be configured so that the firmware emulation
only runs for a certain period of time or forever, i.e. until
stopped by the user. While honware is running it outputs kernel
log information, details of incoming network connections, and
all invoked commands with the relevant time information and
writes this all to log files.

IV. EVALUATION

The evaluation of our framework is threefold. First, we
compare honware with Firmadyne [11] in terms of extracted

1nmap -F -St -Su ipaddress

firmware images, network reachability and number of em-
ulated services. We do this by obtaining and running the
exact same firmware images that they used. Second, we
provide four case studies where we demonstrate that honware
is capable of rapidly emulating devices to capture not only
malware samples, but to emulate advanced device behaviour
which is not feasible with traditional honeypots. Third, we
perform extensive measurements to show that the performance
of honware is comparable to real devices and that it is not
susceptible to trivial fingerprinting based on timing attacks.

A. Extraction, network reachability and services

To measure how well honware extracts firmware images,
configures the network and emulates services, we obtained
the list of firmware images used in the evaluation of Fir-
madyne and downloaded all images that are still accessible
on the URLs provided. As of March 2019, 8 387 of 23 035
images (36.4%) can still be downloaded. The list includes a
variety of firmware images for CPE and IoT devices such
as ADSL modems, routers, NAS systems, web cameras and
smart power plugs. Unfortunately the authors of Firmadyne
lost their database that would have allowed us to map the
individual images to the outcomes network reachable and
listening services emulated so we ran Firmadyne ourselves
over the 8 387 remaining firmware images to be able to
compare results.

1) Extraction: As shown in Table I, honware appears better
in extracting firmware images than Firmadyne. In total, we
successfully extracted 4 650 of 8 387 available images (55.4%)
compared to 2 920 for Firmadyne (34.8%). We both use
binwalk (the de-facto standard tool for firmware extraction)
and for most manufacturers our results are very similar. Our
significantly better results for Synology are probably because
these firmware images are quite large, compressed to an
average size of 133MB, and we allow filesystems up to 2GB in
size (1GB for Firmadyne). That is, we suspect that Firmadyne
failed to populate the filesystem correctly because of space
constraints. The firmware images for which both Firmadyne
and honware were unable to extract a filesystem are encrypted,
have a proprietary way of packaging images or are simply
updates – and so important folders and binaries are missing.

2) Network reachability: To measure network reachability,
we prepared and ran all the successfully extracted firmware
images as outlined in Section III-D and sent them ICMP echo
request packets. As shown in Table I, we achieve significantly
better results than Firmadyne. From the 4 650 successfully
extracted firmware images, 1 903 images (40.9%) respond to
the ICMP packets, compared to 460 images for Firmadyne
(15.8% of the extracted images). For OpenWrt we were able
to ping 674 devices whereas for Firmadyne no firmware image
was reachable and this clearly increases our score. However,
we find similar results for Zyxel (69 to 20), TP-Link (147 to
95) and Netgear (384 to 187).

We believe honware performs better for two reasons. First,
Firmadyne supports only one ethernet device for their ARM
little-endian platform whereas honware supports up to four.

TABLE I
COMPARISON BETWEEN HONWARE AND FIRMADYNE: WE OBTAINED THE

LIST OF FIRMWARE IMAGES (23 035) USED IN THE EVALUATION OF
FIRMADYNE (2016-02) AND DOWNLOADED ALL THAT REMAINED

ACCESSIBLE (8 387) IN 2019-03. WE USED FIRMADYNE AND HONWARE
TO EXTRACT THESE AND TEST THEIR NETWORK REACHABILITY BY

SENDING THEM ICMP ECHO REQUEST PACKETS.

Brand Available Extracted Network reach.
(2019-03/2016-02/∆) (honw./firm./∆) (honw./firm./∆)

1 Actiontec 0/14 14↓ - - - -
2 Airlink101 0/15 15↓ - - - -
3 Apple 0/9 9↓ - - - -
4 Asus 1/3 2↓ 1/1 ← 1/0 1↑
5 AT&T 3/25 22↓ 0/2 2↓ - -
6 AVM 0/132 132↓ - - - -
7 Belkin 123/140 17↓ 49/49 ← 9/0 9↑
8 Buffalo 97/143 46↓ 6/7 1↓ 2/1 1↑
9 CenturyLink 13/31 18↓ 7/4 3↑ 7/0 7↑

10 Cerowrt 0/14 14↓ - - - -
11 Cisco 0/61 61↓ - - - -
12 D-Link 1443/4688 3245↓ 537/498 39↑ 272/115 157↑
13 Forceware 0/2 2↓ - - - -
14 Foscam 44/56 12↓ 5/5 ← - -
15 Haxorware 0/7 7↓ - - - -
16 Huawei 13/29 16↓ 0/3 3↓ - -
17 Inmarsat 0/47 47↓ - - - -
18 Iridium 0/17 17↓ - - - -
19 Linksys 32/126 94↓ 26/26 ← 15/1 14↑
20 MikroTik 4/13 9↓ - - - -
21 Netgear 1396/5280 3884↓ 639/629 10↑ 384/187 197↑
22 On Networks 0/28 28↓ - - - -
23 Open Wir. 0/1 1↓ - - - -
24 OpenWrt 756/1498 742↓ 714/705 9↑ 674/0 674↑
25 pfSense 214/256 42↓ - - - -
26 Polycom 612/644 32↓ 0/24 24↓ - -
27 QNAP 8/464 456↓ - - - -
28 RouterTech 0/12 12↓ - - - -
29 Seiki 0/16 16↓ - - - -
30 Supermicro 0/150 150↓ - - - -
31 Synology 1977/2094 117↓ 1866/239 1627↑ - -
32 Tenda 6/244 238↓ 4/3 1↑ 2/0 2↑
33 Tenvis 9/49 40↓ 6/6 ← 6/4 2↑
34 Thuraya 0/18 18↓ - - - -
35 Tomato 362/2942 2580↓ 362/362 ← 217/0 217↑
36 TP-Link 463/1072 609↓ 171/171 ← 147/95 52↑
37 TRENDnet 336/822 486↓ 134/100 34↑ 87/37 50↑
38 Ubiquiti 26/51 25↓ 20/19 1↑ 11/0 11↑
39 u-blox 0/16 16↓ - - - -
40 Verizon 0/37 37↓ - - - -
41 Western Dig. 0/1 1↓ - - - -
42 ZyXEL 449/1768 1319↓ 103/67 36↑ 69/20 49↑

Total 8387/23035 14648↓ 4650/2920 1730↑ 1903/460 1443↑

This is particularly important as a network bridge has to
have at least one device attached (e.g. eth0) so that services
are network reachable. Second, Firmadyne has no (fallback)
mechanisms to correct missing network configuration settings,
for example, because nvram could not be loaded in the absence
of physical hardware. In contrast, as outlined in Section III-B5,
honware will automatically detect an initial failure and will set
up a bridge and an associated ethernet device.

3) Services: The execution of firmware applications is criti-
cal for honeypots since most exploits target these applications.
If they do not function, then connecting firmware images to the
Internet is of limited value. As shown in Table II, significantly

TABLE II
COMPARING HONWARE AND FIRMADYNE: TOP 15 LISTENING SERVICES.

Prot. Port/Service Honware Firmadyne ∆

TCP 23/telnet 879 149 730↑
TCP 80/http 676 293 383↑
UDP 67/dhcp 316 160 156↑
UDP 1900/UPnP 239 128 111↑
UDP 53/various 239 174 65↑
TCP 3333/dec-notes 222 102 120↑
TCP 5555/freeciv 203 57 146↑
TCP 5431/UPnP 177 48 129↑
UDP 137/netbios 154 82 72↑
TCP 53/domain 139 73 66↑
TCP 443/https 107 105 2↑
UDP 5353/mdns 102 34 68↑
UDP 69/tftp 104 26 78↑
TCP 1900/UPnP 56 60 4↓
TCP 49152/UPnP 53 62 9↓

more applications running under honware respond on their
listening ports than it is the case for Firmadyne. We find
that for telnet, 879 firmware images respond to our nmap
scan compared to 149 for Firmadyne. HTTP on port 80 is
the second most observed service with 676 firmware images
responding to our nmap scan, followed by port 67 (316) and
port 1900 (239).

We attribute our significantly better results to our instru-
mented kernel which has placed great emphasis on improved
signal handling and on constructing a working network con-
figuration, by executing our custom /sbin/boot.sh script.
This technique allows us to very simply change default config-
urations, which is particularly important for firmware images
that try to obtain IP addresses with DHCP.

B. Honeypot deployments in the wild

To evaluate the effectiveness of honware, we deployed
multiple honeypots on the Internet including four brands of
ADSL modems, TP-Link, D-Link, Eminent and ipTIME. We
now discuss four case studies which show that devices can
be rapidly emulated, very much faster than with previous
approaches, and that honware can detect both known and
previously unknown attacks. In particular, whilst emulating a
router from ipTIME, we observed an unknown attack in which
the default DNS setting in the router is changed to a rogue
IP address – which we subsequently found to affect not only
ipTIME, but also other brands.

1) Broadcom UPnPHunter: UPnPHunter is the name of
a format string vulnerability in the Broadcom software for
Universal Plug and Play (UPnP) and affects various brands,
including TP-Link, D-Link and Netgear [3]. The vulnerability
allows a remote adversary to cause the UPnP service to crash
or execute arbitrary code. The attack seen in the wild was
unusual in that an initial connection pre-qualified the devices
as likely to be vulnerable before a second phase of the attack
was attempted. 360Netlab reported that it took them over a
month to code a custom honeypot to appropriately respond to
each of the connections in turn [27]. With honware, because
all services were operational, we were able to observe the

described attack within 24 hours of connecting the honeypot
to the Internet.

To capture the attack, we emulated an ADSL router modem
(D-Link DSL-2741B with firmware version 517b50, released
on 2010-03-08). This router uses the MIPS architecture (big
endian) and by default has listening applications on ports
21/tcp, 22/tcp, 23/tcp, 80/tcp, 1028/tcp, 67/udp, 69/udp, and
5431/tcp. Before we connected the emulation to the Internet,
we used the proof of concept code [3] to test the exploit.
The exploit uses the functions SetConnectionType and
GetConnectionTypeInfo on port 5431, the UPnP SOAP
service. The first function is used to set the format string and
the latter one to read the output. As expected, we managed
to cause the UPnP daemon to crash, read arbitrary memory
and execute arbitrary code with root privileges, giving us full
control of the device.

On 2019-23-01 a machine from India connected to our
honeypot on port 5431 and sent <NewConnection-
Type>.%08X.%08X.</NewConnectionType> so as to
exploit the vulnerability. We sent <NewConnectionType>
.7F8805AC.004332F0.</NewConnectionType> to
reveal the memory mapping. Subsequently a malware loader
connected to our honeypot from the same IP address as
observed by 360Netlab [27].

Unfortunately, the loader failed to download malware and
instead sent a single character X. We are not sure why this
happened: it may be that the attacker forgot to update a
placeholder and include some malware or shell code, or that
the attacker does not have shell code for the particular type of
router that we used in our experiment.

Although we did not capture any malware, we have shown
that we can, within a single day, create a honeypot for a
particular device and observe an attack upon it. There is
clear value in rapidly understanding complex attack vectors
and shortening the time window in which attackers can abuse
vulnerabilities without anyone being able to precisely identify
their methods.

2) DNS hijack: We observed a previously unknown attack
in which the default DNS server was changed within one of
our honeypots that emulates an ipTIME N604R wireless router
with firmware version 7.50 (released on 2011-01-31). This
particular device is manufactured by EFM networks and is
primarily used in Korea where it is distributed by ipTIME.

By default, the router has listening applications on port
80/tcp, 113/tcp, and 68/udp. In 2015, Kim [28] discovered
a remote code exploitation vulnerability triggered by sending
a crafted DHCP request. We were running two instances of
this firmware on two different IP addresses located in Finland
and Germany and were hoping to see this attack – instead of
which we recorded a previously unknown attack.

The attacker used the timepro.cgi script and the WAN
setup menu to overwrite the default DNS to a rogue IP
address located in the Netherlands. This caused the device
to change the iptables rule as follows: /sbin/iptables
-t nat -A PREROUTING -i br0 -d 192.168.0.1
-p udp --dport 53 -j DNAT --to-destination

<s :Enve lope x m l n s : s =” h t t p : / / schemas . xmlsoap . o rg / soap /
e n v e l o p e / ” s : e n c o d i n g S t y l e =” h t t p : / / schemas . xmlsoap .
o rg / soap / e n c o d i n g / ”>

<s:Body>
<u:AddPortMapping xmlns :u =” u rn : schemas−upnp−

o r g : s e r v i c e : W A N I P C o n n e c t i o n : 1 ”>
<NewRemoteHost></ NewRemoteHost>
<N e w E x t e r n a l P o r t>47359</ N e w E x t e r n a l P o r t>
<NewProtocol>TCP</ NewProtocol>
<N e w I n t e r n a l P o r t>135</ N e w I n t e r n a l P o r t>
<N e w I n t e r n a l C l i e n t>1 9 2 . 1 6 8 . 8 . 1</ N e w I n t e r n a l C l i e n t>
<NewEnabled>1</ NewEnabled>
<NewPor tMapp ingDesc r ip t i on>g a l l e t a s i l e n c i o s a</

NewPor tMapp ingDesc r ip t i on>
<NewLeaseDurat ion>0</ NewLeaseDura t ion>
</ u:AddPortMapping>
</ s:Body>
</ s :Enve lope>

Fig. 2. EternalSilence: Malicious port forwarding rule captured by honware

X.X.X.X with x.x.x.x being a DNS server controlled by the
attacker. They also configured a second DNS server to ensure
that all DNS traffic went to their machines.

We experimentally resolved www.yahoo.com on the at-
tacker’s DNS server and found that it resolved to a ma-
chine in China on AS41718 (China Great Fire Wall Network
Limited Company). The resolved IP address has an unusual
(self-signed) certificate which makes it authoritative for a
range of websites, many with a Korean connection, but also
www.paypal.com, www.yahoo.com, www.google.com.tw and
many more. According to Shodan, there are 39 other IP
addresses with the same certificate spread across the world,
including Hong Kong, Taiwan and United States/California.

A search of online support forums showed that the same
DNS servers were associated with other attacks. Three users
with TP-Link2 and Anderson3 devices had noticed that their
DNS settings had been changed. We reported our findings
to a vetted community of security professionals and law
enforcement so they can take appropriate action.

3) UPnPProxy: EternalSilence is a newly discovered fam-
ily of UPnPProxy forwarding malware [29]. EternalSilence
adds port forwarding rules to compromised devices to expose
TCP ports 139 and 445 behind routers. Every rule is added
with an identical description of “galleta silenciosa” and can
therefore be easily fingerprinted. The rules are persistently
stored in the router’s configuration so reboots will not clear
them; victims have to explicitly delete the rogue entries.

Using our framework, we set up an ADSL modem router
(Eminent EM4544 with firmware version 8.38, released 2013-
05-30). This type of router uses the MIPS architecture (big
endian) and by default has listening applications on port
280/tcp, 113/tcp, 68/udp and 5431/tcp. We set up the honeypot
on 2019-01-04 and four days later on 2019-01-08 a machine
from Bolivia issued a M-SEARCH request (M-SEARCH *
HTTP/1.1) followed by a GET request (GET /etc/lin-
uxigd/gatedesc.xml HTTP/1.0) to retrieve the device

2https://community.tp-link.com/en/home/forum/topic/158073?page=1&t=2019
and https://trzepak.pl/viewtopic.php?f=20&t=61263

3https://eforum.idg.se/topic/358185-firefox-660-64-bit-quantum-
säkerhetsvarnar-för-youtube-och-sökmotorn-duckduckgo/

details. The response includes various device details such
as deviceType, manufacturer and modelnumber. Subsequently
the attacker issues an AddPortMapping request as shown in
Figure 2. This rule triggers the miniupnp daemon to redirect
port 47359 to 192.168.8.1:135, an action which is appropri-
ately logged as follows: miniupnpd[202]: redirect-
ing port 47359 to 192.168.8.1:135 protocol
TCP for: galleta silenciosa.

We successfully captured the alteration of the port for-
warding rules, but along with Akamai [29] who originally
identified this attack, we saw no further attempt to exploit
the compromised device. Nonetheless, honware is providing
a mechanism to easily capture any such attack traffic by
pretending to be a vulnerable device. If the malicious firewall
rules are exploited in future, we will be able to observe this
behaviour instantly and report it appropriately.

4) Mirai variants: The Mirai source code is constantly
evolving and recently a new variant called Yowai/Hakai was
found. This variant exploits a vulnerability in the invokeFunc-
tion of ThinkPhP [2] and allows the execution of arbitrary
code on the underlying server. ThinkPhP is a PHP framework
widely used by a variety of networked devices, particularly
those manufactured in China [30]. Once devices are infected,
they do further scanning to find other vulnerable devices. One
advantage of exploiting ThinkPhP is that it does not compete
with the original Mirai malware as it targets the web server on
port 80, not telnet on port 23. Off-the-shelf Mirai honeypots
would not record such attacks as they look for Mirai traffic
on the telnet ports 23 and 2323 [31].

To capture attack traffic, we processed the firmware for the
ADSL modem router TP-Link TD-W8960N, released on 2011-
11-08, with honware and set up a honeypot. By default, this
devices has listening ports on 21/tcp, 22/tcp, 23/tcp, 80/tcp,
67/udp, 69/udp, 1900/udp and 5431/tcp. Our honeypot ran
from 2019-02-17 to 2019-03-01 (14 days) and captured 566
attacks that tried to exploit the vulnerability in the ThinkPhP
framework. In total, 49 different URLs, i.e. malware instances,
were captured with a median of 4 attacks for each unique
URL. One malware sample was associated with 70 of the
attacks. We checked with Virustotal and 16 (32.7%) of the
49 samples were entirely new. Of the rest, over two thirds
were captured by honware before they were first recorded by
Virustotal; and only 13 (26.5%) samples had been detected
by someone else and uploaded to Virustotal before honware.
Across all 49 samples honware detected the malware a median
of 9.7 days before Virustotal had a copy. It appears that we
are able to make malware available to the defender community
considerably faster than traditional honeypots.

C. Timing attacks to fingerprint honware

Fingerprinting is an ongoing concern for honeypot develop-
ers and operators. Once a honeypot is identified by attackers,
its value in detecting new attack vectors and monitoring attack
traffic will drastically decrease. It may also be that hosts
running honeypots will be blacklisted by those attackers so
that they become valueless, even for running undetectable

TABLE III
THINKPHP VULNERABILITY: TOP 15 MALWARE FILES OBSERVED WITHIN

A 14 DAY PERIOD EMULATING A TP-LINK TD-W8960N

#Seen Filename Country First seen Detection ratio
Honware Virustotal Virustotal

52 Tsunami.x86 DE 2019-23-02 unknown 5/67
35 cayo4 DE 2019-28-02 2019-21-03 10/68
34 Tsunami.x86 RO 2019-19-02 unknown 5/67
8 X86 64 CA 2019-28-02 unknown 0/66
6 shiina US 2019-28-02 unknown 7/67
5 Tsunami.x86 US 2019-27-02 unknown 0/66
5 Tsunami.x86 US 2019-24-02 unknown 2/67
5 lessie.x86 NL 2019-26-03 2019-23-02 2/66
4 Tsunami.x86 ZA 2019-26-03 2019-01-03 13/71
4 Tsunami.x86 US 2019-18-02 unknown 4/67
3 Tsunami.x86 DE 2019-23-02 unknown 0/66
3 Tsunami.x86 US 2019-21-02 unknown 2/66
2 cayo4 NL 2019-22-02 unknown 0/66
2 x86 US 2019-19-02 unknown 0/66
2 Tsunami.x86 US 2019-27-02 unknown 1/66

Client Server

trtt

t1

t2

SYN

SYN/ACK

ACK

DATA: Welcome

ACK
DATA: \r

ACK

DATA: Login

ACK

Fig. 3. FTP Server: We initiate a connection and measure t1 and t2,
the time the FTP daemon takes to responds to the ACK tack and the
carriage return tcr . Upon receiving the ACK, the remote server will send the
welcome message 220 Welcome to ASUS RT-AC52U FTP service
twelcome and the carriage return will cause the FTP server to present
the login prompt tlogin. In both cases, the RTT (trtt) is used to adjust
the timing information on the received and transmitted messages so that
t1 = twelcome− trtt and t2 = tcrack − trtt/2 or t2 = tlogin− tcr− trtt

honeypots. Thus honeypots should be always be built in such
a way that they cannot be easily detected.

Honware is, by design, difficult to fingerprint at the network
stack or application layer, but timing attacks are a potential
concern – the emulation may significantly affect the speed of
operation, so we evaluated this issue extremely carefully.

Emulation inevitably introduces overhead in terms of CPU
usage, network latency and I/O operations. However, many
CPE and IoT devices have limited resources; for example,
the D-Link home router DIR 825 has a CPU clocked at 680
MHz and just 64MB of RAM. Furthermore, it is typically
used in residential networks with limited (upload) bandwidth.
In contrast, even the lowest tier virtual machines offered by
popular cloud providers where honeypots might be deployed
have a virtual CPU core clocked at several GHz, 1GB of RAM

0 5 10 15 20
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ilit

y
(e

cd
f)

Real devices
Emulated devices

(a) ASUS RT-AC52U FTP server: Time to wel-
come message

−2 0 2 4 6 8 10
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at
iv
e
pr
ob

ab
ilit
y
(e
cd

f)

Real devices
Emulated devices

(b) ASUS RT-AC52U FTP server: Time between
resource request (carriage return) and login mes-
sage

0 25 50 75 100 125 150 175 200
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ilit

y
(e

cd
f)

Real devices
Emulated devices

(c) Zyxel VMG1312-B10A Telnet server: Time
to telnet negotiation characters

0 25 50 75 100 125 150 175 200
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ilit

y
(e

cd
f)

Real devices
Emulated devices

(d) Zyxel VMG1312-B10A Telnet server: Time
to Login message

0 10 20 30 40 50 60
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ilit

y
(e

cd
f)

Real devices
Emulated devices

(e) D-Link DIR-825 HTTPS server: Time to
complete the TLS handshake

0 20 40 60 80 100
Time in milliseconds (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ilit

y
(e

cd
f)

Real devices
Emulated devices

(f) D-Link DIR-825 HTTPS server: Time be-
tween ClientHello and resource received (web
page)

Fig. 4. Timing attacks against honware: We used three devices and protocols to measure the overhead of emulating honeypots with honware. Each line
represents the empirical cumulative distribution function (ecdf) for one device. For each device, 300 measurements were made over a one day period to
measure the time the application servers need to respond to our requests. To do so, the timing information is adjusted to factor in Round Trip Time(s) (RTT).

and a 1Gbit connection. Hence, any timing issue is as likely
to result from running too fast as from running too slow.

To compare our honeypots to real devices, we sought out
self-identifying devices with listening services on port 21, 23
and 443. We specifically chose 443 as encrypting traffic needs
more resources and thus may serve as a good distinguisher
between our honeypot and the real servers.

Unfortunately, most devices do not reveal their model
and firmware version through their listening services without
further interaction, but using Shodan we were able to find three
suitable devices: the ASUS RT-AC52U Dual-Band AC750
wireless router (FTP server on port 21), the Zyxel VMG1312-
B Wireless N VDSL2 Gateway (telnet server on port 23)
and the D-Link Wireless N Dual-Band Router DIR-825 (web
server on port 443). We assume that every device that returns
the string VMG1312-B10A Login: when connected to on
port 23 is the particular model in question, and Shodan reports
receiving that string from 120 devices. Likewise, we ex-
pect the string 220 Welcome to ASUS RT-AC52U FTP
service to be emitted only by ASUS RT-AC52U devices
(74 devices) and the string HTTP/1.1 200 Ok Server:
DIR-825 web server/v1.00 only to be sent by D-Link
DIR-825 models (127 devices).

Having identified three suitable devices, we set up 30

honeypots to emulate them, ten for each, on two popular
cloud providers with instances around the world including
Singapore, Canada, USA, Germany, India, Netherlands and
the United Kingdom. Then for each protocol (FTP, Telnet,
HTTPS), we measure the time the application servers take to
respond to our requests both for the honeypots and for the real
devices identified via Shodan.

For each measurement, the initial round trip time (RTT), the
time between the SYN and SYN-ACK packet, is calculated
and is subsequently used to adjust the timing information on
received and transmitted messages. As an example, figure 3
shows the interaction with the devices’ FTP servers and the
adjustments we made. Hence our measurements do not aim to
identify network delays or Internet-induced latency, but solely
to measure the time the application servers need to generate
the appropriate response to an incoming probe.

When we connect to the FTP server on port 21, the
remote server will send, upon completing the TCP hand-
shake, the welcome message 220 Welcome to ASUS
RT-AC52U FTP service at time twelcome. Similar, af-
ter sending a further carriage return (tcr), the FTP server
will respond with 530 Please login with USER and
PASS (tlogin). The time it takes the application server to re-
spond is therefore t1 = twelcome−trtt and t2 = tcrack

−trtt/2

or t2 = tlogin − tcr − trtt. The telnet and HTTP protocol are
essentially similar, but instead of sending a carriage return, we
start and complete the TLS handshake and subsequently ask
the web server to send the main web page with a standard
GET request. For telnet servers, we do not negotiate with the
remote server or send any data other than the SYN and ACK
packets as by default, telnet servers will start the negotiation
process and present a login prompt without further interaction.

As shown in Figure 4, the application servers’ response
times do vary between the real and emulated devices. Each line
in Figure 4 represents the empirical cumulative distribution
function of one device in various locations as described
above. For each of these devices, we made 300 measurements
over a one-day period to measure the response time to our
connections and resource requests. We find real systems that
are faster than our emulated devices and systems that are
slower – but with significant differences between protocols.

For FTP, the welcome message is consistently sent faster
on real devices than on emulated ones. The latter need about
5ms to populate the welcome messages while the real systems
took about 1.8ms. Interestingly, the message in response to
our carriage return is not significantly slower on the emulated
devices. We cannot be sure why this is the case, but we
speculate that the ASUS FTP server performs additional
operations for each initial FTP connection such as filesystem
checks or initialising memory. These operations are likely to
be particularly fast on real devices as they are using flash
memory whereas the VMs use SSDs or even slower HDDs.

For telnet, the emulated devices respond very much faster
than real ones. We further find that the response time for the
real devices is fairly variable with most telnet servers respond-
ing in about 60-75ms (adjusted for RTTs) whereas emulated
devices consistently took a few milliseconds. Similarly, the
real devices need longer than the emulated devices to present
the login prompt.

For HTTPS we find the real devices and emulated devices
respond in about the same time with most servers completing
the TLS handshake in about 30ms. The time between the start
of the TLS handshake and the end of the application data
transfer (web page) is also comparable.

Overall, we find that emulation does not generally slow
down application servers – which we attribute to even the low-
cost cloud instances we used having a far better specification
than most CPE and IoT devices. Where emulation is faster, it
would be possible to artificially slow honware responses.

It is of course true (and entirely expected) that in some
instances it would be possible to fingerprint honware. How-
ever, the differences can be made small enough that it would
take repeated measurements and a reference group (i.e. access
to real devices) before an attacker could reliably distinguish
an emulation from a real device. Furthermore, the Internet
inherently introduces jitter, network delays and artefacts which
all serve to further increase the time and effort to mount such
attacks – and in the case of HTTPS, where honware is running
at almost the same speed as the real devices – fingerprinting
is going to be extremely problematic.

V. ETHICAL CONSIDERATIONS

We followed our institution’s ethics policy at all times
with appropriate authorisation at every stage. We reported the
DNS hijack attack (Section IV-B2) to a vetted community of
security professionals and law enforcement so they can take
appropriate action.

Extracting firmware images to analyse their security prop-
erties locally, is long established practice [32], [33], [34],
[35]. It may be argued that honware is different because we
connect the firmware together with our custom kernel to the
Internet where it is not then analysed by us, but by unknown
malicious entities. Our view is that our research is in the
public interest since being able to create honeypots rapidly
for a variety of Internet-connected devices enables not only
security researchers, but also manufacturers, to detect novel
attack vectors and provide updates to patch vulnerabilities.
Furthermore, we only use firmware images that are publicly
accessible on the companies’ websites and do not require
registration or license keys.

We avoided doing our own Internet-wide scans to identify
suitable devices for our timing measurements, but used Shodan
instead. Our timing probe’s contribution to the remote servers’
overall traffic is negligible as we only initiated 300 connections
for each device for a one day period. Devices that have
open ports on 21, 23 and 443 will typically receive orders
of magnitudes more traffic, in particular from malware (e.g.,
Mirai on port 23) or from search engines that index the web
continuously.

When running high-interaction honeypots there is always
the potential for damage to third parties, i.e. someone might
use our emulated devices to conduct further attacks or perform
malicious activities. This is a matter of significant concern, so
we closely monitored our honeypots and stopped abuse once
it became substantial in volume or of no further interest. For
example, using our devices as a proxy to send spam emails is
expected, but after the modus operandi, i.e. the attack vector,
the attack itself and the consequences are well understood, we
blocked all outgoing traffic and reset the device. For one device
we had to block outgoing traffic as it was roped into a DDoS
attack using the SSDP protocol. Our approach is completely
in line with traditional good practices when running high-
interaction honeypots.

It should be noted that taking actions to block outgoing
traffic is a trade-off between understanding the attack sce-
nario better and hiding from attackers who want to identify
honeypots. An extended discussion about these trade-offs can
be found in Nawrocki et al. [36].

VI. DISCUSSION

Honware is intended to identify attacks that cannot easily
be captured with the traditional approach of low-/medium-
/high- interaction honeypots. It is not designed as a tool for
understanding large-scale, repetitive attacks, i.e. if a device is
capable of being compromised by Mirai we are only interested
in the attack once, not in seeing that the same attack occurs
again and again every few minutes. After the attack vector is

known, we need to prevent further compromises, for example
by blocking certain IPs or by recognising attack traffic (for
example, Mirai’s initial scanning sets the Initial Sequence
Number to match the destination IPv4 address). Once an attack
is well-understood, medium-interaction honeypots should be
set up to collect more quantitative data about large-scale
attacks, reducing maintenance and minimising potential harm.

Honware’s real value is in its potential to rebalance the
economics of attackers and defenders. It has become feasible
to scan all of IPv4 address space for vulnerable devices with
modest investment. Once an exploit is found for one technol-
ogy, device, or specific implementation, attackers can easily
find devices with that vulnerability – and instantly benefit from
that exploit. Using honware to identify the exact attack vector
and obtain copies of malware means that countermeasures can
be deployed faster and with far more precision.

We accept that honware can be fingerprinted by attackers
who are prepared to perform a significant amount of measure-
ment work to identify small timing discrepancies. However,
the focus of the work described in this paper is not to advance
state-of-the-art sandbox anti-evasion techniques, but to develop
a tool that enables the rapid construction of honeypots for a
very wide range of devices – and for those honeypots not
to be susceptible to fingerprinting attacks based on protocol
deviations [19] or self-revealing properties [18]. Our approach
of exposing the real services to the Internet and our use of
the standard configuration files that are shipped by the man-
ufacturers means that our honeypots will be indistinguishable
from real devices. Traditionally honeypots were engaged in
‘Red Queen’s Race’ in which new fingerprinting attacks were
countered by updating the emulation code. Honware avoids
this entirely, which is particularly important as it has been
recently shown that honeypot operators rarely update their
honeypots or pay attention to how they are configured [37].

We envision honware being used at Internet scale, for
example, by manufacturers setting up honeypots for every
one of their products and firmware versions. They will learn
whether known vulnerabilities are being actually exploited and
they will learn of previously unknown issues in an extremely
timely manner. Currently the number of potentially vulnerable
devices listed on search engines such as Shodan is often used
to classify vulnerabilities as low-, medium- or high- impact.
The framework will allow a much better assessment of the
risk of having (unpatched) devices connected to the Internet
and allows for a more thorough approach in determining the
impact of vulnerabilities.

At present the honware framework focuses on CPE and IoT
devices but aims to support a wide variety of these devices.
Thus we made certain design decisions which may not be
optimal for a specific brand or device type. However, adjust-
ments can be made at any point, in particular a cooperating
device manufacturer could assist in specifying missing nvram
values or by suggesting other configuration tweaks. Currently
honware is limited to Linux-based devices for ARM and MIPS
architectures. As other architectures become more prevalent, it
is straightforward to recompile the Linux kernel. However, the

emulation is still limited by the capabilities of QEMU and its
support for architectures and considerably more work would
be needed to support devices which are not based on Linux,
but use proprietary operating systems.

VII. RELATED WORK

IoTPOT was one of the first generic high-interaction hon-
eypots tailored to impersonate IoT devices [12]. It supports
eight architectures including ARM, MIPS and x86 and aims
to return appropriate strings to connections on port 23. When
the command is unknown, it tries to run the command in
a sandboxed environment based on OpenWRT and infers
the appropriate return string(s). Similarly, Conpot emulates
industrial control systems based on the protocols Modbox and
SNMP. It supports the emulation of large infrastructures so that
adversaries may believe they are interacting with a complex
industrial system network.

As IoTPOT and Conpot [38] do not use actual firmware
to emulate devices and therefore return static information,
Litchfield et al. developed HoneyPhy [39]. This framework
tries to provide an appropriate simulation by taking a data
feed from attached physical devices. For example, if an
attacker turns on the heating via a compromised web-interface,
the honeypot has to genuinely reflect these changes so that
adversaries do not become aware that they are interacting with
a honeypot. However, IoTPOT, Conpot and HoneyPhy only
emulate specific application/ network layers and are not based
on actual firmware. Thus their behaviour is bound to differ
from actual IoT devices.

The approach of IoTCandyJar [40] is more sophisticated.
IoTCandyJar utilises publicly available IoT devices on the
Internet to collect responses for HTTP and then uses a Markov
decision process (MDP) to respond to attackers’ probes. They
show that, after a learning period scanning the Internet, they
are able to send meaningful responses and capture attack
traffic. However, their technique only works for non-encrypted
traffic and can only capture responses before any login, i.e.
router admin interfaces and similar cannot be represented.
They also rely on finding a significant number of publicly
available devices, which must also identify themselves, to
provide meaningful responses.

In 2017 Guarnizo et al. [13] presented a “scalable high-
interaction” honeypot platform based on physical devices.
They exposed six security cameras, one networked video
recorder and one networked printer through a distributed
architecture on a range of IPv4 addresses. In the two months of
their study they measured between 50 000 and 600 000 attacks
on their devices, depending on location.

In 2016, vendors and ISPs were caught off-guard by the
TR-069 NewNTPServer exploit which can be used to execute
arbitrary commands on vulnerable routers [41]. TR-069 is an
application layer protocol for remote management of end-
user devices and custom honeypots that monitor TR-069
protocol are now available [42]. Similarly, new designs for
programmable logic controller honeypots focusing on indus-
trial control systems have been presented [43].

Recent advances have also been made by scanning the
Internet IPv4 address space for vulnerable industrial control
systems and identifying honeypots. Feng et al. [44] use
a heuristic algorithm to determine the probability that the
detected ICS device is a honeypot. More recently, it has
been shown that industrial control systems are increasingly
deployed around the world and that 60,000 thousand of these
systems are publicly accessible [45].

Demonstrating the risk of IoT devices, Ronen et al. [46]
showed that Philips Hue smart lamps can be used to spread
malware. In their example, the malware spreads from one lamp
to its neighbours and infects lamps located in the near vicinity.
They estimate that for a city the size of Paris, only 15 000
randomly located light bulbs are sufficient to get every light
bulb infected.

Closest to the present work Chen et al. [11] presented
Firmadyne which dynamically analyses Linux-based firmware
images to find vulnerabilities. They rely on a precompiled
Linux kernel and use QEMU [47] as a full system emula-
tor. However, their approach is not scalable as it requires
constant manual effort and experts to classify failures during
the firmware extraction and emulation phases. It is intended
to allow developers to find vulnerabilities rather than to be
deployed on the Internet to be probed by attackers. Our
honeypot framework is significantly better in configuring the
networking aspects of firmware images, in making the devices
network reachable, and most importantly, in running the lis-
tening applications such as web servers (see Section IV-A).

Another project to focus on firmware images, Firmalice is
a binary analysis framework that aims to find authentication
bypass vulnerabilities [33]. It supports inspecting the codebase
to find hardcoded credentials, hidden authentication interfaces
and unintended bugs which allow adversaries to skip the
authentication process and perform privileged operations.

VIII. CONCLUSION

Honware is the first system that allows system designers,
developers and security researchers to efficiently and effec-
tively deploy high verisimilitude, high interaction, honeypots
for networked devices. Instead of having to buy and set up
physical devices as honeypots, the framework facilitates the
virtualisation of CPE and IoT devices merely by downloading
standard firmware images from manufacturers’ websites.

We demonstrate that honware can emulate a large variety
of devices of many different brands within a virtual environ-
ment, independent of the underlying hardware. Our framework
outperforms existing emulation strategies which are limited
in their scalability, and honware is significantly better than
previous projects in providing network functionality and in
emulating the firmware applications – a crucial aspect as
vulnerabilities are frequently exploited by attackers in ‘front-
end’ functionality such as web interfaces or UPnP daemons.

An increasing number of exploits use multiple protocols in
different phases of the attack and are targeted at very specific
software implementations and devices. Generic honeypots are
ineffective in capturing these attacks as they do not return

the appropriate traffic to allow later parts of the attack to
commence and so be recorded. Honware uses the original
firmware applications and their configurations which means
that every phase of an attack can be monitored and fully
understood.

Furthermore, using the original applications makes honware
instances more fingerprint resistant and prevents fingerprinting
attacks based on protocol deviations or those that identify
configurations specific to honeypots. We further showed that
the performance of honware is comparable to that of real
devices and that it is not susceptible to trivial fingerprinting
based on timing attacks.

Our honeypot framework has huge potential in detecting
vulnerabilities in CPE and IoT devices that might otherwise
be exploited for considerable periods of time without anyone
noticing. We presented four real world case studies showing
the practical value of our approach and in particular that within
one day we were able to characterise a sophisticated attack
which had taken experts a month to identify using traditional
techniques. Additionally, while hoping to see an attack that
had been reported to be occurring, we identified a previously
unknown DNS changing attacker associated with a complex
infrastructure.

Attackers are constantly scanning the Internet to find vul-
nerable devices. We believe honware is a major step forward
in rebalancing the economics of attackers and defenders by
cutting the attackers’ ability to exploit vulnerabilities, particu-
larly ‘zero day’ vulnerabilities, for considerable periods while
defenders are unable to capture the details of the attack and
thereby start the process of mitigation.

ACKNOWLEDGMENTS

This work was supported by the EPSRC [grant number
EP/M020320/1]. We are grateful to Ross Anderson, Alastair
R. Beresford, Alice Hutchings, Robert N. M. Watson, Daniel
R. Thomas and Michael Dodson for helpful comments and
discussions on the paper. We would like to thank Digital Ocean
Inc for generous support in hosting our honeypot instances.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in Proceedings of the 26th
USENIX Security Symposium (USENIX ‘17). Vancouver, BC: USENIX
Association, 2017, pp. 1093–1110.

[2] TrendMicro, “ThinkPHP Vulnerability Abused by
Botnets Hakai and Yowai,” 2019. [Online].
Available: https://blog.trendmicro.com/trendlabs-security-intelligence/
thinkphp-vulnerability-abused-by-botnets-hakai-and-yowai/

[3] L. Juranic, “From Zero to ZeroDay Journey: Router
Hacking (WRT54GL Linksys Case),” 2013. [Online]. Avail-
able: https://defensecode.com/whitepapers/From Zero To ZeroDay
Network Devices Exploitation.txt

[4] E. Bertino and N. Islam, “Botnets and Internet of Things Security,”
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[5] N. Provos, “A virtual honeypot framework,” in Proceedings of the 13th
USENIX Security Symposium (USENIX ‘04), San Diego, CA, 2004, pp.
1–14.

[6] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to
intrusion detection. Pearson Education, 2007.

[7] R. McGrew and R. B. Vaughn, “Experiences With Honeypot Systems:
Development, Deployment, and Analysis,” in Proceedings of the 39th
Hawaii International Conference on System Sciences (HICSS ‘06),
Kauai, HI, 2006, pp. 1–9.

[8] S. Antonatos, I. Polakis, T. Petsas, and E. P. Markatos, “A systematic
characterization of IM threats using honeypots,” in Proceedings of the
17th Network and Distributed System Security Symposium (NDSS ‘10).
San Diego, CA: Internet Society, 2010.

[9] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide Scanning and Its Security Applications,” in Proceedings of the
22nd USENIX Security Symposium (USENIX ‘13). Berkeley, CA:
USENIX Association, 2013, pp. 605–619.

[10] L. Spitzner, “The Honeynet Project: Trapping the Hackers,” IEEE
Security & Privacy Magazine, vol. 1, no. 2, pp. 15–23, 3 2003.

[11] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Fully
Automated Dynamic Analysis for Embedded Firmware,” in Proceedings
of the 23rd Network and Distributed System Security Symposium (NDSS
‘16). San Diego, CA: Internet Society, 2016, pp. 21–37.

[12] Y. Minn, P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
and C. Rossow, “IoTPOT: Analysing the Rise of IoT Compromises,”
in 9th USENIX Workshop on Offensive Technologies (WOOT ‘15).
Washington, D.C: USENIX Association, 2015, pp. 1–9.

[13] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tip-
penhauer, A. Shabtai, and Y. Elovici, “SIPHON: Towards Scalable
High-Interaction Physical Honeypots,” in Proceedings of the 3rd ACM
Workshop on Cyber-Physical System Security (CPSS ‘17). Abu Dhabi,
UAE: ACM, 2017, pp. 57–68.

[14] Netgear, “Netgear Firmwares,” 2017. [Online]. Available: http:
//firmware.netgear-forum.com/index.php?act=interface

[15] TP-Link, “TP-Link Emulators,” 2017. [Online]. Available: http:
//www.tp-link.com/en/emulators.html

[16] Linksys, “User Interfaces,” 2017. [Online]. Available: http://ui.linksys.
com/

[17] OpenWrt, “Linux Distribution for Embedded Devices,” 2017. [Online].
Available: https://openwrt.org/

[18] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Hernandez Ganan,
M. van Eeten, K. Yoshioka, and T. Matsumoto, “Detect me if you... oh
wait. An internet-wide view of self-revealing honeypots,” in Proceedings
of the 17th IFIP/IEEE International Symposium on Integrated Network
Management. Washington DC, USA: IEEE, 2019, pp. 1–12.

[19] A. Vetterl and R. Clayton, “Bitter Harvest: Systematically Fingerprinting
Low- and Medium-interaction Honeypots at Internet Scale,” in 12th
USENIX Workshop on Offensive Technologies (WOOT ‘18). Baltimore,
MD: USENIX Association, 2018, pp. 1–13.

[20] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility Is
Not Transparency: VMM Detection Myths and Realities,” in Proceed-
ings of the 11th Workshop on HotTopics in Operating Systems (HotOS
‘07). San Diego, CA: ACM, 2007.

[21] A. Kedrowitsch, D. D. Yao, G. Wang, and K. Cameron, “A first look:
Using linux containers for deceptive honeypots,” in Proceedings of
the 2017 Workshop on Automated Decision Making for Active Cyber
Defense, ser. SafeConfig ’17. Dallas, TX: ACM, 2017, pp. 15–22.

[22] T. Holz and F. Raynal, “Detecting Honeypots and Other Suspicious
Environments,” in Proceedings of the 6th Annual IEEE System, Man
and Cybernetics Information Assurance Workshop (SMC ‘05), 2005, pp.
29–36.

[23] S. Mukkamala, K. Yendrapalli, R. Basnet, M. K. Shankarapani, and
A. H. Sung, “Network Based Detection of Virtual Environments and
Low Interaction Honeypots,” in Information Assurance and Security
Workshop (IAW ‘07), 2007, pp. 92–98.

[24] Binwalk.org, “Binwalk,” 2019. [Online]. Available: https://github.com/
ReFirmLabs/binwalk/

[25] L. Jaquemet, “SSLSNOOP,” 2015. [Online]. Available: https://github.
com/trolldbois/sslsnoop

[26] /dev/ttyS0, “Emulating NVRAM in Qemu,” 2012. [Online]. Available:
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/

[27] H. Wang and R. Kiter, “BCMPUPnP Hunter: A 100k
Botnet Turns Home Routers to Email Spammers,” 2018.
[Online]. Available: https://blog.netlab.360.com/bcmpupnp hunter-a-
100k-botnet-turns-home-routers-to-email-spammers-en/

[28] P. Kim, “127 ipTIME router models vulnerable to an
unauthenticated RCE by sending a crafted DHCP request,” 2015.
[Online]. Available: https://pierrekim.github.io/blog/2015-07-06-127-
iptime-router-models-unauthenticated-RCE-with-DHCP.html

[29] C. Seaman, “UPNPROXY: ETERNALSILENCE,” 2018. [On-
line]. Available: https://blogs.akamai.com/sitr/2018/11/upnproxy-
eternalsilence.html

[30] ThinkPHP, “ThinkPHP5 Framework,” 2019. [Online]. Available:
https://github.com/top-think/framework/

[31] M. Oosterhof, “Cowrie,” 2019. [Online]. Available: https://github.com/
micheloosterhof/cowrie

[32] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares,” in Proceedings of the 21st Network and Distributed System
Security Symposium (NDSS ‘14). San Diego, CA: Internet Society,
2014, pp. 1–16.

[33] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Fir-
malice – Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware,” in Proceedings of 22nd Network and Distributed
System Security Symposium (NDSS ‘15). San Diego, CA: Internet
Society, 2015, pp. 1–15.

[34] A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic Firmware
Analysis at Scale: A Case Study on Embedded Web Interfaces,” in
Proceedings of the 11th ACM Asia Conference on Computer and
Communications Security (ASIACCS ‘16). Xi’an, China: ACM, 2016,
pp. 437–448.

[35] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “IoTFuzzer: Discovering memory corruptions
in IoT through app-based fuzzing,” in Proceedings of the 25th Network
and Distributed System Security Symposium (NDSS ‘18). San Diego,
CA: Internet Society, 2018, pp. 1–15.

[36] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder,
“A survey on honeypot software and data analysis,” 2016. [Online].
Available: https://arxiv.org/abs/1608.06249

[37] A. Vetterl, R. Clayton, and I. Walden, “Counting outdated honeypots:
Legal and useful,” in Proceedings of the 4th International Workshop on
Traffic Measurements for Cybersecurity (WTMC ‘19). San Francisco,
CA: IEEE, 2019, pp. 224–229.

[38] L. Rist, “Conpot,” 2019. [Online]. Available: https://github.com/
mushorg/conpot/

[39] S. Litchfield, D. Formby, J. Rogers, S. Meliopoulos, and R. Beyah,
“Rethinking the Honeypot for Cyber-Physical Systems,” IEEE Internet
Computing, vol. 20, no. 5, pp. 9–17, 2016.

[40] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “IoTCandyJar: Towards an
intelligent-interaction honeypot for iot devices,” in Blackhat USA. Las
Vegas, NV: Blackhat, 2017, pp. 1–11.

[41] J. B. Ullrich, “TR-069 NewNTPServer Exploits: What We Know
so Far,” 2016. [Online]. Available: https://isc.sans.edu/forums/diary/
TR069+NewNTPServer+Exploits+What+we+know+so+far/21763/

[42] Ö. Erdem, “HoneyThing – A honeypot for Internet of TR-069 things,”
2016. [Online]. Available: https://github.com/omererdem/honeything

[43] S. Lau, J. Klick, S. Arndt, and V. Roth, “POSTER: Towards Highly
Interactive Honeypots for Industrial Control Systems,” in Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS ‘16). Vienna, Austria: ACM, 2016, pp. 1823–1825.

[44] X. Feng, Q. Li, and H. Wang, “Characterizing Industrial Control System
Devices on the Internet,” in Proceedings of the 24th IEEE International
Conference on Network Protocols (ICNP ‘16). Singapore: IEEE, 2016,
pp. 1–10.

[45] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yardley,
R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey,
“An Internet-Wide View of ICS Devices,” in Proceedings of the 14th
IEEE Conference on Privacy, Security, and Trust (PST ‘16). Belfast,
UK: IEEE, 2016, pp. 1–8.

[46] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “IoT goes
nuclear: Creating a ZigBee chain reaction,” in Proceedings of the 38th
IEEE Symposium on Security and Privacy (S&P ‘17). San Jose, CA:
IEEE, 2017, pp. 195–212.

[47] F. Bellard, “QEMU – A Fast and Portable Dynamic Translator,” in
Proceedings of the 11th USENIX Annual Technical Conference (USENIX
ATC ‘05). Anaheim, CA: USENIX Association, 2005, pp. 41–46.

