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Abstract

This thesis investigates electron transport properties in chemical vapor deposition (CVD)
graphene-related nanostructures. There are many potential electronic and optoelectronic
applications envisioned for graphene, due to its two-dimensional character and exceptional
properties. However, the lack of scalability of exfoliated graphene and the high cost of
epitaxial graphene on silicon carbide remain the major obstacles for further commercialization
of graphene devices. Different approaches to solve this problem have been proposed for
different applications and graphene grown by CVD stands out as a useful alternative and
proves to be one of the viable routes towards scalable high quality electronics.

This thesis presents a study of scalable nanostructured devices based on CVD graphene,
with the purpose of understanding the quantum physics of electron transport and demonstrat-
ing the potential for nano-electronic applications. First, this thesis demonstrates a scalable
approach towards encapsulating and passivating high quality CVD graphene field effect
transistors (FETs), and electron scattering processes are explored by studying electrical
characterisation and magnetotransport phenomena in encapsulated CVD AB stack and large
twist angle (30◦) bilayer graphene FETs, as well as monolayer graphene FETs for reference.
The result has significant impact on the widespread implementation of graphene for its
scalable device applications. Second, in order to enhance spin-orbit coupling (SOC) in
graphene for spin transport study and spintronics applications, a graphene - transition metal
dichalcogenide (TMD) heterostructure is investigated. Phase coherence length is reduced
in the heterostructure and a special transition from weak localization (WL) to weak anti-
localization (WAL) is found around a certain carrier concentration due to surface roughness
induced patches. This result provides insight into fabrication and operation of scalable
graphene spintronic devices. Moreover, to further elucidate single-electron behaviours as
well as solve the lack of bandgap issues, graphene is studied by being patterned into various
quantum dot structures, such as nanoribbon multiple quantum dots, quantum Hall antidots,
and double quantum dots (DQDs). The presence of multiple quantum dots in series is exhib-
ited in a bilayer SiC epitaxial graphene nanoribbon, due to the interplay between disorder and
quantum confinement. As an alternative to etched quantum dots in graphene, antidots in the
quantum Hall regime can take advantage of Landau gaps in graphene and are explored via
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magnetotransport measurements at millikelvin temperature. Single-electron behaviors such
as Aharonov-Bohm effect and Coulomb blockade effect are observed, whereas signatures of
the effective antidots proved elusive, probably due to the disorder-broadening of the Landau
levels. Finally, for the purpose of fast readout of charge and spin states, radio-frequency (RF)
reflectometry technique is developed in GaAs antidots and graphene double quantum dots,
corresponding to capacitive and resistive couplings to the devices respectively. This attempt
paves a way for characterizing the time scale of the charge transfer and spin dephasing in
graphene nanodevices. All the quantum dots studies in a scalable style lay the foundation for
further quantum metrology and quantum computation applications.

The research in this thesis enable us to better understand the quantum physics in CVD
graphene, and the fabrication and operature of CVD graphene nanostructures are highly
promising for future electronics.
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Chapter 1

Introduction

1.1 The Development of Graphene

In 1965, Gordon Moore, the CEO of Intel observed and predicted that the number of
transistors in a dense integrated circuit doubles about every two years, which is known as
Moore’s law [133]. This trend evolved as predicted over the past few decades, as shown in
figure 1.1(a). Accordingly, the performance speed of processors, which is strongly linked to
Moore’s law, has increased dramatically over this period. However, the rate of the progress
in conventional transistor made from silicon may reach saturation when the transistor is
manufactured extremely small. Because when the size of transistor is comparable to the
wavelength of electrons, quantum mechanics comes into play and dominates the electron
transport properties. Therefore, there is a growing interest in finding new promising materials
with low resistance and high charge carrier mobility. Graphene, a two-dimensional allotrope
of carbon stands out as one of the most promising candidates for its exotic electronic
properties. Since its first isolation mechanically exfoliated from graphite by Geim and
Novoselov in 2004 [141], the interest in graphene and its possible applications has drastically
increased, which is apparent in the number of annual publications on graphene (see figure
1.1(b)). This extraordinary promise led to Geim and Novoselov winning the 2010 Nobel
Prize in Physics for “groundbreaking experiments regarding the two-dimensional material
graphene”.

The discovery of two-dimensional graphene first and foremost yielded access to a large
amount of interesting physics [67, 101]. Initial studies included observations of ambipolar
field effects in graphene [141], measurements of extremely high charge carrier mobility
[22, 51, 35, 14] and unconventional quantum Hall effect [198, 94]. In addition, graphene
has a relatively large Landau level spacing between the zeroth and the first Landau levels as
a consequence of its linear dispersion near the Dirac point and high Fermi velocity [142],



2 Introduction

(a)

(b)

Fig. 1.1 (a) Number of transistors on integrated circuit chips from 1971 to 2016, demon-
strating Moore’s law. Source: https://en.wikipedia.org/wiki/Moore’law. (b) Publications on
graphene from 2000 to 2016. Adapted from [153].
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which allows for the observation of the quantum Hall effect at a higher temperature or lower
magnetic fields compared to GaAs. Moreover, carbon is a light atom compared to most of the
semiconductor materials, such as InAs and GaAs, so the spin-orbit coupling and hyperfine
interaction are relatively weak in graphene, which enables long spin decoherence times.
These properties attracted significant interest in the possible implementation of graphene in
various devices [5], including future generations of high-speed and radio frequency logic
transistors, quantum qubits, thermally and electrically conductive reinforced composites,
sensors, and transparent electrodes for displays and solar cells. Another application for
graphene is in single electron pumps or charge pumps [71, 149, 45], which can generate
an amount of electric current e f , at a drive frequency f by controlled manipulation of
single electrons. Thus, it allows the redefination of the ampere in terms of the fundamental
elementary charge e and provides a powerful tool in the research of metrology [95]. Graphene
has advantages compared to conventional semiconductors in terms of ease of fabrication and
low capacitance of tunnel barriers, which makes it possible to transfer charge quickly and
pump high currents at gigahertz frequency [45].

Despite intense interest in graphene, widespread implementation of graphene has not
been achieved so far. This is primarily due to the difficulty of reliably producing high quality
samples, especially in any scalable fashion at a reasonable cost. To date, various approaches,
including mechanical exfoliation from graphite [141], chemical vapour deposition (CVD)
[194, 84], as well as epitaxial growth on silicon carbide [16, 17] have been investigated for
obtaining graphene layers. However, the lack of scalability and reproducibility of graphene
devices fabricated from small exfoliated flakes and the high cost of epitaxial graphene
on silicon carbide, remain the major obstacles for further commercialization of graphene
electronics and optoelectronics. By contrast, due to its wafer-scale growth, CVD enables
large scale production with a low cost [156, 84]. More recently, it has been shown to provide
a scalable route towards high electronic quality graphene [47], and significant effort has been
made to tailor the growth parameters to selectively obtain bilayer graphene [60].

This thesis is based on graphene grown by the CVD approach with the purpose towards
scaling up graphene nanodevices for electronic applications. Figure 1.2 illustrates the
scale-up progress of CVD graphene electronic nanodevices made in this thesis. The CVD
graphene material is transferred onto a quarter of a SiO2/Si wafer, which can be divided
into ten 10 mm2 chips, with each chip producing 36 nanodevices. A key limitation for the
electronic applications of graphene is the lack of a natural band gap. Current methods to
induce a gap include etching graphene to make use of the one-dimensional confinement
gap [80], or applying perpendicular electric fields to bilayer graphene [145]. Therefore,
the graphene used in this thesis is patterned into various nanostructures, not only just Hall
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Fig. 1.2 Scale-up of graphene grown by CVD for the purpose of fabricating electronic
nanodevices, such as Hall bar, double quantum dots and quantum Hall antidots.

bar field effect transistors (FETs), but also nanoribbons, double quantum dots and antidots
measured in the quantum Hall regime, shown in figure 1.2. This thesis lays the foundation
towards understanding the quantum physics in CVD graphene and scaling up CVD graphene
nanodevices for potential electronic applications.

1.2 Thesis Outline

This thesis consists of 8 chapters. This first chapter gives a brief introduction of the develop-
ment of graphene and the outline of the thesis. The next chapter will provide a theoretical
background on the electronic properties of graphene and graphene nanostructured devices,
particularly focusing on the aspects related to the experiments discussed in later chapters.

Chapter 3 describes the details of the processes and techniques that are used to fabricate
and measure graphene nanodevices. In particular, the first section outlines the design and
fabrication process for making CVD graphene nanodevices. The second section introduces
different kinds of cryogenic systems in which low temperature measurements are performed.
Two types of measurement circuits setup are presented in the third section. And the last
section describes the radio-frequency (RF) reflectometry techniques used to detect the charge
and spin of the graphene nanodevices with high sensitivity and accuracy.

Chapter 4 is the first experimental data chapter, probing electron scattering in scalable
CVD graphene. First, to improve reproducibility of CVD graphene devices, atomic layer
deposition of aluminium oxide is used with in situ gaseous water pretreatments to achieve
negligible gate hysteresis, low doping levels, and lower disorder compared to as-fabricated
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devices. Second, by electrical characterisation and magnetotransport measurements on
encapsulated CVD grown Bernal stacked and large twist angle (30◦) bilayer graphene FETs,
as well as monolayer graphene FETs for reference, we show that the electron scattering
processes and the hot electron effects can be tuned.

In the next data chapter - chapter 5, a study of graphene/WS2 heterostructure is presented
to explore induced spin-orbit coupling in a graphene - TMD heterostructure. A long Hall
bar is fabricated with half the Hall bar (one half along its length) being only graphene and
the other half a graphene/WS2 heterostructure, for comparisons in order to better investigate
how WS2 influence graphene performance. Magnetotransport measurements are performed
on such a device against temperature and electric field. Information about electron scattering
is subtracted from weak localization analysis, which enables us to better characterize the
material and understand the physics in CVD produced graphene.

Chapter 6, the third data chapter discusses investigation of two different kinds of quantum
dots in graphene. First, multiple quantum dots formation is observed in a nanoribbon device
patterned in bilayer SiC graphene. Electron transport in this device is studied as a function
of doping, magnetic field, and temperature. Close to charge neutrality, electron transport
resembles that in exfoliated graphene nanoribbons and is well described by tunnelling of
single electrons through a network of Coulomb-blockaded islands. Second, a CVD graphene
antidot defined between a pair of split gates in the quantum Hall regime is investigated by
electron transport measurements. This type of antidots can avoid edge disorder induced
from etched quantum dots, take advantage of Landau gaps, and thus enhance graphene
performance.

Chapter 7 develops a low temperature radio-frequency reflectometry setup to study
GaAs quantum antidots and CVD graphene double quantum dots. Using radio-frequency
reflectometry we non-invasively probe quantum capacitance change and single-electron tun-
nelling behaviours in GaAs ADs and graphene DQDs with high sensitivity and at millikelvin
temperatures.

Chapter 8 summarizes all the works done in this thesis and proposes the future plan for
research in this area based on my results.





Chapter 2

Theoretical Background

This chapter provides a theoretical background on the electronic properties of graphene
and graphene nanostructured devices, particularly focusing on the aspects related to the
experiments discussed in later chapters. Given that graphene is the prime material used in
this thesis, corresponding theories regarding electronic properties of graphene are reviewed.
The weak localization and quantum Hall effect are discussed because they both are landmark
magnetotransport experiments exhibiting two-dimensional character of graphene, and are
also related to the topic in chapter 4 and chapter 5. A background on the physics of graphene
nanoribbons and quantum dots is discussed as supporting theory for the first half of chapter 6
and the second half of chapter 7. Lastly, a section is dedicated to quantum Hall antidots to
aid in understanding of graphene antidots in the second half of chapter 6 and GaAs antidots
in the first half of chapter 7.

2.1 Graphene Theory

In this review of graphene theory, I will first review the electronic properties of graphene.
Then I will move on to the weak localization (WL) and quantam Hall effect (QHE) in
graphene. Given that some interesting experiments have been performed on bilayer graphene
(BLG), I will also describe the basic properties of BLG in the final section.

2.1.1 Electronic Properties of Graphene

Graphene is a two-dimensional allotrope of carbon with a unique conical band structure.
The extraordinary promising applications of graphene led to the 2010 Nobel Prize award in
Physics for its discovery [141]. Mechanically exfoliated graphene on a Si/SiO2 substrate
can have a mobility as high as 70,000 cm2V−1s−1 at room temperature [35], while that for
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Fig. 2.1 Honeycomb lattice and its Brillouin zone. (a) Lattice structure of graphene, made
out of two interpenetrating triangular lattices (a1 and a2 are the lattice unit vectors, and δi,
i = 1,2,3 are the nearest neighbour vectors). (b) Corresponding Brillouin zone. The Dirac
cones are located at the K and K’ points. Adapted from [34].

suspended graphene has been found to approach 200,000 cm2V−1s−1 at low temperatures
[22, 51]. Graphene’s high mobility, coupled with its unique band structure and zero effective
carrier mass makes it a prime candidate in the search for materials to replace or supplement
silicon in the race for ever faster and more power-efficient electronics. In addition, the
fact that graphene can be patterned using standard silicon-compatible processes, especially
with the development of high quality, wafer-sized graphene by chemical vapour deposition
(CVD) and epitaxial methods gives it an advantage over carbon nanotubes [16]. This section
discusses the electronic properties of graphene which are fundamentally different from other
two-dimensional electron gas systems (2DEGs), and make it a promising material to realize
the fast speed electronic devices.

The Electronic Band Structure

Graphene is a single layer of carbon atoms arranged in hexagonal lattice, see figure 2.1(a).
Each carbon atom has three nearest neighbours and the structure can be regarded as a
triangular lattice with two atoms in each unit cell. The lattice vector are given by

a1 =
a
2
(3,

√
3), a2 =

a
2
(3,−

√
3), (2.1)
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Fig. 2.2 The band structure of graphene, with a close up of the band structure near the Dirac
point, adapted from [34].

where a ≈ 0.142 nm is the shortest carbon-carbon distance. In the reciprocal lattice space,
the corresponding vectors are

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3). (2.2)

The band structure of graphene can be calculated by the tight-binding method and the
details of the calculation can be found in Wallace’s 1947 paper [187]. When only the nearest
three neighbour hopping is considered, the energy bands derived from this paper is as follows:

E±(k) =±γ0

√
1+4cos(

kxa
2

)cos(

√
3kya
2

)+4cos2(
kya
2

), (2.3)

where + corresponds to the conduction band and – corresponds to the valence band re-
spectively, γ0 (≈ 0.28 eV) [34] is the nearest neighbour hopping energy between different
sublattices. The conduction band and valence band meet at the corners of the Brillouin zone
(K and K’, see figure 2.1(b)), called Dirac points. Their positions in momentum space are
given by

K = (
2π

3a
,

2π

3
√

3a
), K′ = (

2π

3a
,− 2π

3
√

3a
). (2.4)

Near the Dirac points, the well-know linear dispersion relationship E(k) (see figure 2.2)
can be calculated by expanding the band structure close to K or K’, which satisfies the
following equation:

E(k)≈±h̄υF

√
kx

2 + ky
2 (2.5)
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Fig. 2.3 (a) Structure and geometry of basic graphene Hall bar device. (b) A typical graphene
resistivity ρxx dependence as a function of gate voltage Vg. Adapted from[190].

where υF = 106 m/s is the Fermi velocity in graphene [34]. The conical band structure
of graphene can be clearly seen in figure 2.2. Graphene has a linear energy-momentum
relationship and the conduction band touches the valence band at Dirac points. Thus it is
a zero band gap semiconductor, and the dispersion relationship is independent with mass
near the Dirac point. All of those are quite different from normal semiconductors, where
the energy-momentum ralationship is parabolic given by E = h̄2k2/2m∗, where m∗ is the
effective mass of the charge carrier in the semiconductors and k is the the momentum vector
associated with the energy E. Actually, the special dispersion relationship of graphene is
similar to those of Dirac particles, and electron dynamics can be treated as ‘relativistic’, in
which the Fermi velocity of graphene υF replaces the speed of light [34].

Graphene Electric Field Effect

Figure 2.3(a) shows schematically the basic graphene Hall bar device. By applying an
external voltage, one can modify the carrier density in graphene and it resembles a field
effect transistor (FET). The thick black arrows mark the current path, while the connections
between the contacts Vxx and Vxy indicate the measuring scheme for longitudinal resistivity
ρxx and transversal resistivity ρxy (also called Hall resistivity) respectively. In this device, the
graphene is patterned on a silicon dioxide (SiO2) layer, with a doped silicon substrate, which
is connected to a back-gate Vg. By applying a voltage on the gate, the SiO2 insulating layer
is like a capacitor and the back-gate induces the opposite charge density in graphene:



2.1 Graphene Theory 11

n =
ε0εrVg

te
= αVg, (2.6)

where the coefficient α = ε0εr/te,ε0 is the permittivity of free space, εr is the relative
permittivity of SiO2, t is the thickness of SiO2 layer and e is the electron charge. In
addition, Figure 2.3(a) demonstrates two types of resistivity measurements, voltage drop
between parallel contacts (Vxx) to determine the longitudinal resistivity ρxx, and that between
opposite contacts (Vxy) to determine the transversal resistivity ρxy (also called Hall resistivity)
respectively. When changing the back-gate voltage, we can tune the carrier density in
graphene and thus modify its Fermi level. In neutral graphene, the Fermi level lies at the
Dirac point and there should be no carriers contributing to the electronic transport. Therefore,
the graphene shows the maximum resistivity for the Fermi level at the Dirac point. Also,
the Dirac point separates the region into two parts, where conduction is governed by holes
(p-type) and electrons (n-type) respectively (see figure 2.3(b)).

Normally, the graphene is doped to some extent and the Dirac voltage VDirac ̸= 0. Then
in doped graphene the charge carrier density as a function of back-gate voltage changes to:

n = α(Vg −VDirac). (2.7)

So one can shift the graphene from p-type or n-type to Dirac point or from Dirac point to
p-type or n-type, which is fundamentally important in graphene transport measurements.

The mobility is also significant to characterize graphene, reflecting the scattering situation
in graphene, which is directly related to the material purity and can be improved by some
technological methods, such as annealing. Owing to the symmetrical shape of the energy
dispersion relationship (see figure 2.2), the electron mobility µe is equal to the hole mobility
µh. In addition, the mobility can be derived from the following formula:

µi =
1

eniρ
, (2.8)

where i = electrons,holes, ρ is the resistivity. The values of graphene mobility have been
introduced at the beginning of this section, which is much higher than normal conducting ma-
terials and the value for suspended graphene is even higher than the fastest present inorganic
semiconductors (InSb, 78,000 cm2V−1s−1 at room temperature [159]) and semiconducting
carbon nanotubes (100,000 cm2V−1s−1 at room temperature [54]).
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Fig. 2.4 Illustration of the trajectories of an electron scattered by impurities giving rise to a
quantum correction to the resistance.

2.1.2 Weak Localization in Graphene

The unique band structure of graphene was illustrated in the previous subsection. Due to the
two equivalent but independent triangular sublattices of its honeycomb structure, the charge
carriers near the Dirac points in graphene behave like chiral fermions. This introduces an
additional quantum number called pseudospin or chirality [102]. The psedospin is parallel to
the momentum in one valley but anti-parallel to the momentum in the other. Therefore, the
two valleys in graphene host quasiparticles with opposite chirality.

The chiral nature of graphene makes it very different from traditional two-dimensional
(2D) systems in many aspects. In particular, the carriers in graphene possess a Berry phase
of π [192], which is the additional phase acquired by the electron wave function when an
electron transports a closed loop. This, in theory, should result in weak anti-localization
(WAL) of charge carriers in graphene compared with the conventional weak localization
(WL). The effects of WL and WAL is a useful tool to study electron dephasing process due
to inelastic electron scattering or scattering by magnetic impurities.

Figure 2.4 demonstrates how an electron scattered by impurities can interfere on a closed
trajectory when treated as a wave. Two electron waves propagate in opposite directions around
the trajectory and interfere at the point of intercept. Because the two paths are identical, the
phase of the two electron waves is the same. Therefore, the interference is constructive, which
increases the probability of back scattering of electrons, as well as the electrical resistance.
In experiment, the quantum correction to the resistance can be detected by applying a
perpendicular magnetic field to the samples. The magnetic field adds a phase difference to
the two waves and destroys the interference, resulting in a decrease of the resistance, which
is also called negative magnetoresistance (MR), ∆ρ(B) = ρ(B)−ρ(B = 0)< 0. In graphene,
however, there is Berry phase π adding to the two interfering paths, so that they meet with
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antiphase and destructive interference happens. This, on the contrary, should result in a
reduction of the resistance due to quantum interference and a positive magnetoresistance,
∆ρ(B) = ρ(B)−ρ(B = 0) > 0 [127]. The principle of this weak anti-localization (WAL)
effect is totally different from what has been observed in other 2D systems with strong
spin-orbit scattering [18, 130]. Here, the two waves meet with antiphase because of spin flips
in the process of scattering by impurities, while spin-orbit coupling in graphene is known to
be weak due to the light carbon atoms [86].

In fact, due to the chiral nature of the charge carriers in graphene, its weak localization
effect should be sensitive not only to inelastic, phase coherence breaking process represented
by the characteristic scattering rate τ−1

ϕ , but also to different elastic scattering mechanisms
[127, 175]. Elastic scattering that breaks the chirality will destroy the interference within each
of the two graphene valleys in k space. Weak anti-localization is expected to be observed
only in clean samples and suppressed by defects leading to chiral symmetry breaking,
characterized by elastic intravalley scattering rate τ−1

z . And these defects include surface
ripples, dislocations and atomically sharp defects [134, 135]. Intravalley weak localization
can also be destroyed by anisotropy of the Fermi surface in k space, so called trigonal warping
[127], characterized by the rate τ−1

w . The combined effect of the intravalley scattering is
characterized by the rate τ−1

∗ = τ−1
z + τ−1

w . There is one elastic process, however, which acts
to restore the suppressed interference. This is intervalley scattering, which occurs at a rate
τ
−1
i on defects with size of the order of the lattice spacing. As the two valleys have opposite

chirality and warping, intervalley scattering is expected to negate the chirality breaking and
warping effects by allowing interference of carriers from different valleys.

The theory of quantum interference has been demonstrated to be applicable to the
description of the magnetoresistance in terms of weak localization in graphene. The resistance
correction ∆ρ(B) = ρ(B)−ρ(B = 0) is given by [127]:

∆ρ(B) =−e2ρ2

πh
[F(

B
Bϕ

)−F(
B

Bϕ +2Bi
)−2F(

B
Bϕ +B∗

)],

F(z) = ln(z)+ψ(
1
2
+

1
z
),

Bϕ,i,∗ =
h̄c

4De
τ
−1
ϕ,i,∗.

(2.9)

Here, ψ is the digamma function and D is the diffusion coefficient. The curvature of ∆ρ(B)
is determined by the dephasing rate τ−1

ϕ when B ≤ Bϕ . The quantum correction can also be
expressed in terms of magnetoconductance ∆σ(B) = σ(B)−σ(B = 0) [179]:
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Fig. 2.5 Magnetoresistance expected in a phase-coherence graphene τϕ ≫ τi: with τ∗ ≫ τi
(dashed line) and τ∗ ≪ τi (solid line). In the case of τϕ < τi, ∆ρ(B) = 0. Adapted from
[127].

∆σ(B) =
e2

πh
[F(

τ
−1
B

τ
−1
ϕ

)−F(
τ
−1
B

τ
−1
ϕ +2τ

−1
i

)−2F(
τ
−1
B

τ
−1
ϕ + τ

−1
i + τ

−1
∗

)]. (2.10)

Here, τ
−1
B = 4eDB/h̄. The first term in this equation is responsible for WL, while the

WAL is determined by the second and third terms with negative sign. In the absence of
intravalley and intervalley scattering in a ideal defect-free graphene layer, τ

−1
∗,i → 0, ∆σ(B)

is completely controlled by the third term. In the opposite case of strong intravalley and
intervalley scattering (smallτ∗,i), both negative terms are suppressed and the first (positive)
term dominates, corresponding to electron localization. The above equations show that the
quantum correction to the resistance or conductance has the weak localization sign in real
graphene with the intervalley time shorter than the dephasing time τϕ > τi owing to tight
coupling between graphene and the substrate, which generates atomically sharp scatterers.

Figure 2.5 illustrates the corresponding MR in two regimes: τ∗ ≫ τi and τ∗ ≪ τi. Both
cases display negative MR when B < Bi (for τ∗ ≫ τi, the MR changes sign at B ∼ Bi). A
dashed line shows what one would get when neglecting the effect of warping, while the solid
curve shows the MR behavior in graphene with a high carrier density, where the effect of
warping is strong and leads to a fast intravalley scattering. In the case when the graphene
sheet is loosely attached to a substrate (or suspended), the intervalley scattering time may be
longer than the decoherence time, τi > τϕ , ∆ρ(B) = 0, so that MR displays neither WL nor
WAL behavior.

Equation (2.9) explains why the low field MR observed in the quantum transport exper-
iments in graphene [134], displayed a suppressed WL behavior rather than WAL. For all
electron densities in the samples studied in [134] the estimated warping-induced relaxation
time is rather short, τw < τϕ , which excluded any WAL. In addition, the observation [134]
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of a suppressed WL MR in devices with a tighter coupling to the substrate agrees with the
behavior expected in the case of sufficient intervalley scattering, τi < τϕ , whereas the absence
of any WL MR, ∆ρ(B) = 0, for a loosely coupled graphene sheet is what the theory predicts
for samples with a long intervalley scattering time, τi > τϕ .

2.1.3 Quantum Hall Effect in Graphene

The weak localization effect discussed in the previous subsection happens at low magnetic
field (B < 1 T). When a larger magnetic field is applied perpendicular to a 2DEG, the
quantum Hall effect will happen. The quantum Hall effect, which extends from the classical
Hall effect, occurs for high mobility, two-dimensional (2D) electron systems, because the
strong magnetic field prompts the density of states into discrete Landau levels, given by the
following equation for a 2D system with a parabolic band:

En = h̄ωc(n+
1
2
). (2.11)

Here, ωc = eB/m∗ is the cyclotron frequency, m∗ is the effective cyclotron mass. Quantization
is observed whenever the Fermi energy is located in a gap between these Landau levels and
the temperature is low enough that thermal excitation across the gap is impossible (see figure
2.6). The Hall resistance then undergoes quantum Hall transitions to take on quantized values
given by:

ρxy =
1
ν

h
e2 (2.12)

where ν is the filling factor, e is the elementary charge and h is Planck’s constant for
magnetic field values Bi = (nh/e)/i, where n is the carrier density and i is an integer value.
The corresponding longitudinal resistance ρxx drops to zero, which is illustrated in figure 2.7.
This can be understood by considering that when quantization occurs, the Landau levels are
fully occupied and there are no empty states to host a free electron in the bulk, but there are
states at the edge which are topologically protected with forward going states on one side
and reverse going ones on the other. They are held by the Lorentz force and can not back
scatter through the bulk as there are no states for transport there. Therefore, without electron
scattering, the longitudinal resistance naturally drops to a negligible value [186, 107, 15].

As a 2D material with high mobility, graphene also exhibits the quantum Hall effect.
Figure 2.8(a) demonstrates experimental observation of quantum Hall effect for both electrons
and holes (inset) in graphene [198]. Owing to its unique band structure near the Dirac points,
graphene displays some key differeces from other 2D materials in terms of the quantum Hall
effect. First, the linear dispersion relation leads to a cyclotron mass dependent on the square
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Fig. 2.6 Evolution of the density of states in a 2DEG against a increasing magnetic field. The
Fermi level is dotted in red. Adapted from [122].

Fig. 2.7 Typical quantum Hall measurement for a 2DEG (GaAs/AlGaAs), showing Hall
quantization and longitudinal Shubniknov-de Hass oscillations. Red trace is Hall resisitivity
ρxy and green longitudinal resistivity ρxx. Figure created by D.R.Leadley, Warwick University
(1997) [46].
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(a) (b)

Fig. 2.8 (a) Hall resistance (black) and magnetoresistance (red) measurements for electrons
in graphene, labelled with corresponding filling factors. Inset: quantum Hall effect for holes
in graphene [198]. (b) Room-temperature quantum Hall effect in graphene. Inset: illustration
of graphene Landau levels quantization with emphasis on large spacing between n = 0 and
n = 1[142].

root of the carrier density given by m∗ =
√

π

υF

√
n [34], while the cyclotron mass is constant in

semiconductors with a parabolic dispersion relation.
Similarly, under a strong magnetic field, the density of states in graphene is quantized

into several Landau levels, though they are not equally spaced. Instead, the Landau levels
energy in graphene is described as below [198]:

En = sgn(n)υF
√

2eh̄B|n|, (2.13)

where the integer n represents an electron-like n > 0 or a hole-like n < 0 Landau level index.
This equation shows that for small n, the Landau level spacing is relatively large in graphene
(see the inst of figure 2.8b), which means that the quantum Hall effect might happen with
lower magnetic fields or at higher temperatures. In fact, this has been demonstrated by the
observation of the quantum Hall effect in graphene at room temperature [142] (see figure
2.8b). In addition, when only low-lying Landau levels are occupied, the separation of En is
much larger than the Zeeman spin splitting, so each LL has a degeneracy gs = 4, accounting
for spin degeneracy and valley degeneracy.

Equation (2.13) demonstrates another interesting point, which is the existence of the
n = 0 Landau level. This special Landau level straddles the Dirac point and is filled half
by the electrons and half by the holes (see figure 2.9(b)). Besides, the Hall conductivity
quantization shows a half integer shift, which is given by:
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(a) (b) (c)

Fig. 2.9 Schematic illustration of Landau levels and Hall conductivity quantization for (a)
2D semiconductor systems, (b) monolayer graphene, and (c) bilayer graphene [143]. The
bilayer graphene will be discussed in the next subsection 2.1.4.

σxy =±gs(n+
1
2
)
e2

h
, (2.14)

where n is a non-negative integer and ± represents electrons and holes, respectively. This
quantization condition can also be translated to the quantized filling factor ν = gs(n +

1/2). The Hall conductivity quantization is also illustrated in figure 2.9(b). Experimental
observation of this anomolous half-interger quantum Hall effect is evidence of the massless
Dirac fermions in graphene [140, 198].

2.1.4 Bilayer Graphene

The graphene described above is monolayer graphene (MLG). In addition to monolayer
graphene, few-layer graphene can also be isolated or grown. Bilayer graphene (BLG) has
attracted significant interest due to the ability to tune the electronic properties by changing the
relative orientation or twist angle between the two layers. BLG can exist in the usual AB, or
Bernal-stacked form, where half of the atoms lie directly over the center of a hexagon in the
lower graphene sheet (see figure 2.10(a) and 2.10(b)), and half of the atoms lie over an atom,
or, less commonly, in the AA form, in which the layers are exactly aligned. Bernal stacked
bilayer graphene offers an electric field tunable band gap [199] and valley transport [97, 167].
Moveover, BLG in twisted style, where one layer is rotated relative to the other, have also
been observed. Small twist angle bilayer graphene (∼ 1◦) has been shown to exhibit exotic
electronic phenomena such as superconductivity [28, 27] and topological transport channels
[157]. At larger twist angles (5◦ – 30◦) the low energy Dirac points of each are well separated
in k-space, and higher energy interlayer interactions dominate [196, 3, 197, 148, 83, 157].
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(a)

(b)

(c)

Fig. 2.10 (a) Top and (b) side view of the lattice structure of Bernal-stack bilayer graphene,
labelled with t as the intra-layer hopping energy, and t⊥ as the inter-layer hopping energy.
(c) Left: Band structure of Bernal-stacked bilayer graphene near K (or K′). Right: Bernal-
stacked bilayer graphene band structure with a gap ∆g opened due to a potential V applied
perpendicular to the graphene surface. Figures (a) adapted from [129, 33].
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The most common type of BLG among all these types is AB (Bernal) stacking, which
will be discussed in details in this subsection. The low-energy properties of this BLG are
described by massive Dirac fermions with a quadratic dispersion close to the neutrality point.
In the absence of applied perpendicular electric field, its band structure consisting of four
bands is given by [33]:

E±±
k =±

√
ε2

k + t2
⊥/4± t⊥/2, (2.15)

where ε2
k = t[3+ 2cos(akx)+ 4cos(akx/2)cos(aky

√
3/2)] is the dispersion of MLG and t,

t⊥ are the intra-layer and inter-layer hopping energies respectively. The band structure
defined by equation (2.15) is shown in the left of figure 2.10(c). Near the Dirac points
K and K’, the dispersion relation is given by E(p) ≈ ±υ2

F p2/t⊥, with p = h̄q, where q
is the wave vector in momentum space relative to the Dirac points, and υF is the Fermi
velocity for MLG. Therefore, the low-energy charge carriers in BLG are massive and given
by m∗ = t⊥/(2υ2

F) ≈ 0.03me, where me is the bare electron mass [129]. Thus, the Dirac
fermion mass in BLG originates from the inter-layer hopping energy t⊥.

Although the band structure is very different from the massless Dirac fermions found in
MLG, which has a linear dispersion relation, it has been demonstrated that the charge carriers
are still showing the property of chirality or pseudospin but with a Berry phase of 2π instead
of π in MLG, which means that the pseudospin turns twice as quickly in the plane than the
momentum, while in MLG it is aligned with the momentum. As a consequence, there will be
no suppression of backscattering, and the quantum correction in BLG will have the sign of
conventional weak localisation [76]. However, its magnitude is still very sensitive to different
elastic processes. Weal localization in each of the two graphene valleys can be completely
suppressed by defects and trigonal warping of the energy spectrum which is expected to
be stronger in BLG than MLG [103]. In the meanwhile, intervalley scattering can partially
restore weak localization. The theoretical model for calculating the BLG magnetoresistance
can refer to that in MLG (equation (2.9)).

One of the most remarkable properties of BLG is the ability to open up a gap in the
spectrum by a perpendicular electric field in contrast with MLG, as the equivalence between
the two layers is broken [127]. This has been experimentally realized as a semiconductor
whose band gap can be externally tuned [144]. The gap between conduction band and valence
band is given by [33]:

∆g =
√

t2
⊥V 2/(t2

⊥+V 2), (2.16)
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Fig. 2.11 Magnetoresistance measurements exhibiting quantum Hall effect in bilayer
graphene. Inset: scanning gate micrography of one graphene Hall bar device. (T = 4
K) Adapted from [143].
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where V is the potential of a perpendicular electric field, and therefore the gap can be exter-
nally controlled. The resulting gap opening is illustrated in the right of figure 2.10(c). The
presence of the gap has been confirmed optically [199], and electrically on both suspended
graphene [6] and graphene on hexagonal boron nitride (hBN) [75]. Moreover, gate-defined
single quantum dot and double quantum dots have been realized by tuning graphite back-gate
and top gates leading to a band gap opening [56, 13, 57]. The fact that a simple perpendicular
electric field can create a tunable band gap, clearly exhibits the potential of the BLG system
for electronics applications.

The quantum Hall effect in BLG is also distinctive from MLG and other conventional
2DEGs, which can be clearly seen from figure 2.9. Figure 2.11 exhibits both Hall and
longitudinal resistance as a function of magnetic field at a fixed carrier density for a BLG
Hall bar device describe in reference [143]. At low energy (i.e. small n), the Landau levels are
given by E±

n =±h̄ωc
√

n(n−1), for n ≥ 2. The quantization of Hall conductance is shown
in figure 2.9(c), which is given by σxy =±n(4e2/h), for n ≥ 1. Therefore, there is no n = 0
plateau leading to an 8e2/h jump across zero carrier density with a corresponding maximum
in the longitudinal resistance. It is also noted that this Hall quantization has a degeneracy of
four due to spin and valley degeneracies, which is similar to conventional semiconductors,
while the eightfold degeneracy across zero carrier density takes into consideration the spin
and A and B lattice degeneracies [128, 143].

2.2 Quantum Dots Theory

A quantum dot is an artificially structured zero-dimensional system, also called an ’artificial
atom’, where the charge carriers are generally confined in a submicron area [82]. The
confinement potential in all directions is very strong, giving rise to quantized energy levels,
lika an atom. Quantum dots in GaAs/AlGaAs heterostructure have been widely studied over
the last few decades due to their potential applications for quantum computation. Quantum
dots made from graphene are attractive as the electron spin-decoherence time in carbon-based
material is expected to be long, which is advantageous to spin qubit applications. This
section serves as an introduction to the general theory concerning single quantum dot, double
quantum dots, as well as quantum dots in a nanoribbon, whereas the relevant experiments
will be presented in chapter 6 and 7.
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2.2.1 Single Quantum Dot

When a quantum dot is isolated from its environment, the number of charges in the dot
becomes well defined. The electrostatic energy associated with these electrons makes it
necessary for an electron to overcome this energy in order to tunnel on to the dot [78]. This
phenomenon preventing current flow through an quantum dot is called Coulomb blockade.
There are two necessary conditions for the observation of Coulomb blockade [82]. First, the
charging energy of the dot EC must be significantly larger than the energy caused by thermal
fluctuations:

EC =
e2

C
≫ kBT, (2.17)

where C is the total capacitance of the dot and kB is the Boltzmann constant. This happens
when confinement in all three directions is strong enough to lead to quantum effects that
influence the electron dynamics. Due to the resulting discrete energy spectrum, quantum
dots behave in many ways as artificial atoms. The second condition has something to do
with the quantum mechanical nature of electrons. In order to form a well-defined number of
electrons in the dot, the tunnel barrier describing the coupling between the dot and the source
and drain reservoirs has to be high enough so that the electron wavefunction can be localised
in the dot. The minimal tunnel barrier resistance RT to resolve the charging energy e2/C can
be estimated with the uncertainty principle ∆E∆t > h. With ∆E = e2/C and ∆t = RTC, the
condition for RT can be found:

RT ≫ RK, (2.18)

where RK = h/e2 ≈ 25.8kΩ is the resistance quantum [78].
As long as the above two conditions are satisfied, the number of charges on the quantum

dot is quantized. When a electric field is applied to the gate electrode VG (see figure 2.12(a)),
the energy in the dot and hence the number of electrons in the dot can be varied.

To understand the dynamics of a single quantum dot in such a system, a constant
interaction model has been proposed [82] and is illustrated in figure 2.12(a). This model
is based on two assumptions. First, the Coulomb interactions among electrons in the dot,
and between electrons in the dot and those in the environment, can be described by a single
parameter C. This capacitance is the sum of the capacitance between the dot and the source
CS, the drain CD and the gate CG: C = CS +CD +CG. The second assumption is that the
single-particle energy-level spectrum En is independent of these Coulomb interactions and
therefore of the number of electrons. Using this model, the total energy U(N) of a single dot
with N electrons in the ground state is given by [82]:
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(a)

(b)

Fig. 2.12 (a) Illustration of a quantum dot in a lateral geometry. The quantum dot represented
by a disk is connected to source and drain reservoirs via tunnel barriers, allowing the current
through the device I to be measured in response to a bias voltage VSD and a gate voltage VG.
(b) Schematic diagrams of energy levels of a single quantum dot during Coulomb blockade
(top left) and when current is not blocked (top right). Bottom: corresponding current in each
situation. Figures adapted from [82].
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U(N) =
[−|e|(N −N0)+CSVS +CDVD +CGVG]

2

2C
+

N

∑
n=1

En(B), (2.19)

where −|e| is the electron charge, N0|e| is the charge in the dot compensating for the positive
background charge and The terms CSVS, CDVD and CGVG can be varied continuously and
represent an effective induced charge in the dot due to its surroundings. The last term is a sum
over the occupied single-particle energy levels En(B) which depend on the characteristics of
the confinement potential, and B is the applied magnetic field, if any. The electrochemical
potential µ(N) of a dot is defined as the energy needed to add the Nth electron to a dot with
N −1 electrons:

µ(N)≡U(N)−U(N −1)

= (N −N0 −
1
2
)EC − EC

|E|
(CSVS +CDVD +CGVG)+EN ,

(2.20)

where EC = e2/C is the charging energy. The addition energy Eadd of single quantum dot is
defined as the electrochemical potential of the transitions between two successive ground
states:

Eadd(N) = µ(N +1)−µ(N) = EC +∆E, (2.21)

The addition energy consists of a purely electrostatic part, the charging energy EC, plus
the energy spacing between two discrete quantum levels ∆E = E(N +1)−E(N), which is
independent of the electron number in the dot.

The transport through the quantum dot depends on whether µ(N) align with the bias
window, which is defined as the spacing between the electrochemical potentials of the source
µS and drain µD. Electron tunnelling through the dot happnens only when µ(N) lies in
the bias window set by the two leads, i.e. µS ≥ µ(N) ≥ µD, which is illustated in the top
right of figure 2.12(b). When the electrochemical potential is outside the bias window, the
transport is blocked and no current flows through the dot, which is the Coulomb blockade
regime and is shown in the top left of figure 2.12(b). When a gate VG constantly tunes the
electrochemical potential of the quantum dot, an on-off current can be observed as peaks
with constant spacing Eadd (see the bottom of figure 2.12(b)). Each current blocked state
corresponds to a certain electron number in the dot; thus in this way, the number of electrons
in the dot can be varied.
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Fig. 2.13 Schematic diagram of a double quantum dot network. Note that tunnel barriers are
characterized by a tunnel resistor and a capacitor, as indicated in the inset. Adapted from
[184].

2.2.2 Double Quantum Dots

When two single quantum dots are placed in series and connected to source and drain
reservoirs, a double quantum dot with a network of source-dot-dot-drain is formed, which
is illustrated in figure 2.13. Electron transport through a double quantum dot can first be
studied by a purely classical description in which the influence of discrete quantum energy
levels is not taken into consideration. According to the reference [184], the double dot can
be modeled as a network of tunnel resistors and capacitors (see figure 2.13). The energy of
the double dot system is determined by considering the interaction of each dot with each of
the gates, source, drain and each other:

U(N1,N2) =
1
2

N2
1 EC1 +

1
2

N2
2 EC2 +N1N2ECm

− 1
|e|

[Cg1Vg1(N1EC1 +N2ECm)+Cg2Vg2(N1ECm +N2EC2)]

+
1
e2 (

1
2

C2
g1V 2

g1EC1 +
1
2

C2
g2V 2

g2EC2 +Cg1Vg1Cg2Vg2ECm),

(2.22)

where EC1, EC2 and ECm are the charging energies of dot 1, dot 2 and the electrostatic
coupling energy, respectively. These energies can be expressed in terms of the capacitances
as follows:

EC1 =
e2

C1
(

1

1− C2
m

C1C2

), (2.23)
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EC2 =
e2

C2
(

1

1− C2
m

C1C2

), (2.24)

ECm =
e2

Cm
(

1
C1C2
C2

m
−1

). (2.25)

The electrochemical potential of dot 1 is then defined as the energy needed to add the N1th
electron to dot 1 with N1 −1 electrons, while dot 2 has N2 electrons in it [184]:

µ1(N1,N2)≡U(N1,N2)−U(N1 −1,N2)

=(N1 −
1
2
)EC1 +N2ECm

− 1
e2 (C

2
g1V 2

g1EC1 +Cg2Vg2ECm).

(2.26)

Similarly, the electrochemical potential of dot 2 is defined and given by:

µ2(N1,N2)≡U(N1,N2)−U(N1,N2 −1)

=(N2 −
1
2
)EC2 +N1ECm

− 1
e2 (C

2
g1V 2

g1ECm +Cg2Vg2EC2).

(2.27)

Therefore one can find that the addition energy or the change in chemical potential in dot 1
equals the charging energy of dot 1 in this classical regime, µ1(N1 +1,N2)−µ1(N1,N2) =

EC1, and is caused by simply increasing one electron in dot 1. Similarly, the addition energy
of dot 2 equals EC2 = µ2(N1,N2+1)−µ2(N1,N2). The electrostatic coupling energy is given
by the change in chemical potential of dot 1 when one electron is added to dot 2 and vice
versa, ECm = µ1(N1,N2 +1)−µ1(N1,N2) = µ2(N1 +1,N2)−µ2(N1,N2).

From the electrochemical potentials in equations 2.26 and 2.27, a stability diagram
consisting of information of the Vg1 and Vg2 dependent of N1 and N2 can be constructed.
Figure 2.14 illustrates several cases of the stability diagram of double quantum dots. When
the inter-dot coupling is so weak, Cm is close to zero, then the stability diagram resembles
that of two uncoupled dots (see 2.14(a)). The gate voltage changes the charge on one dot,
without affecting the charge on the other. For the case of strong inter-dot coupling, Cm

becomes the dominant capacitance giving rise to a stability diagram of a single combined
dot with charge N1 +N2, as shown in 2.14(c). In terms of the case of intermediate coupling,
hexagonal honeycomb domains form (see 2.14(b)). The dimensions of the hexagonal cell
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Fig. 2.14 Schematic stability diagram of the double dot system for (a) small, (b) intermediate,
and (c) large inter-dot coupling. (d) Triple points of the stability diagram where energy levels
in both dots are aligned and transport is not blockaded. Paths around the triple points stand
for sequential transfer of electrons (filled circles) or holes (empty circles) through a double
quantum dot. Adapted from [184].
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Fig. 2.15 Schematic stability diagram showing the Coulomb peak spacings, which is a
zoom-in of the region enclosed by dashed line from figure 2.14(b). Adapted from [184].

(see figure 2.15) in the stability diagram are related to the capacitances of the double dots
and are given by:

∆Vg1 =
|e|
Cg1

, (2.28)

∆Vg2 =
|e|
Cg2

, (2.29)

∆V m
g1 =

|e|Cm

Cg1C2
= ∆Vg1

Cm

C2
, (2.30)

∆V m
g2 =

|e|Cm

Cg2C1
= ∆Vg2

Cm

C1
. (2.31)

The above equations derived are under the assumption that Vg1 and Vg2 only couple directly
to the respective dots. In practice, however, there is a finite cross capacitance from one
gate to the other, resulting in a change of the slope of the charge domain boundaries in the
honeycomb diagram.

The discussion of double quantum dots so far has been completely classical. However,
the strong confinement of electrons in the dots can cause a discrete energy spectrum. To
account for the quantized energy states in the dot, the single-particle energy needs to be
incorporated in the electrochemical potential. µi,n denotes the electrochemical potential for
adding an electron into energy level n of dot i. For the constant interaction model, µi,n is
the sum of the classical electrochemical potential µclass

i and the single-particle energy En:
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µi,n = µclass
i +En. Therefore, in the quantum regime, the addition energy is no longer equal

to the charging energy alone, but instead given by [184]:

µ1,m(N1 +1,N2)−µ1,n(N1,N2) = EC1 +(Em −En)

= EC1 +∆E,
(2.32)

and similarly the addition energy of dot 2 is EC2 +∆E. The dimensions of the honeycomb
cell depicted in figure 2.15 for the classical regime, are modified accordingly as follows:

∆Vg1(2) =
|e|

Cg1(2)
(1+

∆E
EC1(2)

), (2.33)

∆V m
g1(2) =

|e|Cm

Cg1(2)C2(1)
(1+

∆E
ECm

). (2.34)

For double quantum dots coupled in series, a conductance resonance can be found when
electrons tunnel through both dots. This condition is satistied whenever three boundaries in
the honeycomb diagram meet in one point. Figure 2.14d illustrates two kinds of such triple
points, corresponding to different charge transfer processes. At the triple point denoted with
filled circles, the dots cycle through the sequence

(N1,N2)→ (N1 +1,N2)→ (N1,N2 +1)→ (N1,N2)

which shuttles one electron through the system. At the other triple point denoted with empty
circles, the sequence is

(N1 +1,N2 +1)→ (N1 +1,N2)→ (N1,N2 +1)→ (N1 +1,N2 +1)

corresponding to the sequential tunneling of a hole in the direction opposite to the electron.
Thus in this way, charge pumping can be realized with a double quantum dot device [45].

2.2.3 Nanoribbon Quantum Dots

This section will review the quantum dots related literature in graphene nanoribbons. Graphene
nanoribbons have attracted considerable attention due to their scalable band-gap engineering.
Graphene nanoribbons are divided into two types, zigzag and armchair, depending on the
edge shapes. Tight-binding calculations of graphene nanoribbons demonstrates that zigzag-
edged graphene nanoribbons should behave like metal, while armchair-edged nanoribbons
are expected to be semiconductors, with the gap increasing when decreasing the width of
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Fig. 2.16 (a) Scanning force micrograph of an etched graphene nanoribbon device. (b) Back
gate sweep of the nanoribbon in a large density range showing a transport gap. (c) Coulomb
blockade diamond measured inside the transport gap. Figures adapted from [50].

the nanoribbons [24, 59, 174]. Experimental studies on graphene nanoribbon defined by
lithography do prove that the width of a ribbon depends on the gap size near the Dirac
point. However, the gap size is much larger than the predicted value in theory [38, 80].
In addition, experimental results show that the gap is larger for longer nanoribbons, and
Coulomb diamond shaped feature which is a signature of quantum dot formation can also be
observed inside the transport gap, which is shown in figure 2.16(c) adapted from reference
[50]. However, due to the disordered nature of etched graphene edges [108], there is a
mixed edge of both zigzag and armchair in real devices. Moreover, the width of a real
graphene nanoribbon is not strictly uniform along the whole length of the ribbon. Therefore,
one can expect that there must be some other contributions to the gap size other than the
theoretically calculated band gap value. The most acceptable idea is that a combination of the
edge-roughness-induced Anderson localisation [136, 58, 172], and the disorder potential due
to charge inhomogeneous distribution i.e. electron-hole puddles [1], results in the formation
of multiple quantum dots along the nanoribbon. The presence of a gap is necessary for the
quantum dots formation in a graphene nanoribbon, otherwise Klein tunnelling will allow
charge tunnelling between these localized regions and thus prevent the formation of quantum
dots. The detection of charge transfer between these localized states in a nanaribbon using a
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Fig. 2.17 Cartoon of a graphene nanoribbon along with possible sources of disorder. Adapted
from [21].

single electron transistor (SET) further confirms the formation of multiple quantum dos in
etched graphene nanoribbons [174].

Figure 2.16(c) exhibits the overlapping Coulomb diamonds, which are reminiscent of
stochastic Coulomb blockade. It happens when electron transports through multiple quantum
dots. Figure 2.17 illustrates different sources of disorder, leading to potential inhomogeneities,
which create a serial arrangement of quantum dots. There are two distinct gaps. First, from
back gate sweep shown in 2.16(b), the quantum dot behavior is only apparent when the
Fermi level is close to the charge neutrality point where the carrier density varies spatially
from electron-like to hole-like region (see figure 2.18(a)). Otherwise there will be no tunnel
barriers between these electron-hole puddles to form quantum dots. Therefore, the transport
gap, the region of suppressed conductance at zero source-drain bias shown in figure 2.16(b),
is an indication of the strength of the disorder potential plus the confinement gap, which
is influenced by the width of the nanoribbon. The second gap is the source-drain bias gap,
which is roughly the largest value of source-drain voltage when conductance is suppressed at
certain Fermi level. In the simplest case of a single quantum dot introduced previously, the
source-drain gap is the charging energy of the dot, which does not show a clear dependence
on the disorder potential. However, for multiple quantum dots, determining the source-drain
gap is more complicated, experimental observation has demonstrated that deceasing the
width of the ribbon can increase both the transport gap and the source-drain bias gap, whereas
increasing the length can only increase the source-drain bias gap. This suggests that the
source-drain bias is influenced by how many quantum dots are in series. It is also expected
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(a) (b)

Fig. 2.18 (a) Top: cartoon of quantum dots forming along the ribbon due to potential
inhomogeneities and a confinement gap. Bottom: Top view illustration of a nanoribbon with
the potential disorder shown above. (b) Cartoon of a potential profile at different Fermi levels
(top and bottom), illustrating the location and the size of the quantum dots depend on the
Fermi level. Figures adapted from [64].

to depend on the particular shape of the disorder potential, and the shape of the disorder
potential is not strongly constrained by its amplitude [64].

The presence of multiple quantum dots in graphene nanoribbons has been confirmed by
scanning gate measurements, which also demonstrate that the location and the size of these
quantum dots depend on the Fermi level. This effect can be understood with the help of figure
2.18(b). Moreover, experimental study suggests that the quantum dots are located along
the edges other than the bulk, especially for the cases where the edge disorder is stronger
than that in the bulk [20]. The finding that reactive ion-etched graphene nanoribbons have
different electrical characteristics compared with those etched by plasma, further supports
the importance of edge disorder [19].

Although it is difficult to achieve atomic control of the nanoribbon edges using litho-
graphic etching, the fabrication method of standard cleanroom processes, which will be
described in chapter 3, is still attractive due to its simplicity and compatibility. The next
section will introduce an antidot in the quantum Hall regime, which can avoid the edge
disorder in etched graphene quantum dots while keeping the electron transport properties of
graphene.



34 Theoretical Background

2.3 Quantum Hall Antidots

An antidot is a potential hill in a two-dimensional electron gas (2DEG), which was first
studied in a GaAs/AlGaAs heterostructure [169]. It can be fabricated by applying a negative
voltage on a top gate [63] or by an etched pit [74] in the chip surface. The former method
is more suitable for graphene, due to its adjustable potential level and at the same time
avoiding the disorders of the etched edges. An antidot is considered to be the counter part of
a quantum dot, as it can be regarded as an artificial repulsive impurity. The idea of an antidot
in the quantum Hall system was first presented in 1988 [88] in order to explain resistance
peaks observed in a narrow Hall bar device [180]. The first experimental observation of
Aharonov–Bohm oscillations in a gate-defined antidot was performed in 1989 [171].

When a strong magnetic field of the order of one Tesla is applied perpendicular to the
2DEG, an antidot provides a local depletion region inside a quantum Hall system. In this
case, localized states are formed around the antidot, coupled with the quantum Hall edge
states (see figure 2.19). The localized states have been investigated in the quantum Hall
regime by observation of Aharonov–Bohm oscillations of conductance, which occur when
the charge carriers tunnel between localized orbits and extended edge channels along the
boundary of the 2DEG.

This section will introduce a single-particle model of an integer quantum Hall antidot.
In Section 2.3.1, it describes single-particle localized states around an isolated antidot. The
properties of the single-particle states are governed by the Aharonov–Bohm flux enclosed by
them. In Section 2.3.2, Aharonov–Bohm oscillations of conductance will be discussed when
electrons can tunnel between the extended edges of the 2DEG and the antidot via resonant
scattering.

2.3.1 Single-particle energy levels

In a simple description of an isolated antidot, the antidot states are decoupled from the
extended edge channels of the 2DEG. When the magnetic field is applied perpendicular
to the 2DEG, electrons can form single-particle discrete energies around the antidot. The
localized orbits are quantized so that their enclosing area Sm can satisfy the Aharonov–Bohm
condition:

BSm ∼ mφ0, (2.35)

where m is the orbital quantized number φ0 = h/e is the magnetic flux quantum, h is Planck
constant, and e is the electron charge. Due to the sloping shape of the antidot potential,
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Fig. 2.19 Illustration of single-particle states formed around an antidot in the quantum Hall
regime. (a) Top view of the antidot potential and the extended quantum Hall edge channels.
The dotted lines represent the tunneling between the antidot state and the extended edge
channels along the left and right edges. (b) Side view of the potential profile created by the
voltages on the antidot and side gates, describing the continuous states along the extended
edges, and the discrete states around the antidot. Adapted from [169].
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the quantized states form a ladder in energy around the antidot (see figure 2.19b). If the
antidot potential VAD(r) varies slowly enough, the single-particle energy of the mth orbital
single-particle state of the isolated antidot is given by [169]:

εm ≈ 1
2

h̄ωc +V AD(m)+ ε
Z
m, (2.36)

where ωc = eB/m∗ is the cyclotron frequency, m∗ is the electron effective mass, V AD(m) is
the mean antidot potential energy, εZ

m is the Zeeman energy of a spin electron. For simplicity,
only the antidot states from the lowest Landau level are considered. The spatial separation
∆rm ≡ rm+1 − rm between two adjacent states depends on magnetic field and is given by:

∆rm ≃ φ0

2πrmB
, (2.37)

for large m ≫ 1. In this case, the single-particle energy gap (see figure 2.20) between two
neighboring states is given by [169]:

δεm ≡ εm−1 − εm ≃−∆rm
dVAD(r)

dr
|r=rm =

φ0

2πrmB
dVAD(r)

dr
|r=rm . (2.38)

The single-particle localized states around an antidot can be experimentally controlled
by tuning either the antidot-gate voltage or the magnetic field B. The properties of the
single-particle states are determined by the quantization of enclosed magnetic flux. To be
specific, when B increases, the antidot states move towards the center of the antidot to keep
the magnetic flux enclosed constant. Therefore, the states rise up in energy, and the highest
occupied states pass through the Fermi level and become empty one by one. The period of
this periodic depopulation process in magnetic field is:

∆B ≃ φ0

S
, (2.39)

where S = πr2 is the effective antidot area enclosed by the state at the Fermi level. The same
processes happen when tuning the antidot-gate voltage, which changes the potential at each
radius relative to the Fermi level.

2.3.2 Aharonov–Bohm oscillations

Due to the depopulation of single-particle states near the Fermi level, the localized antidot
states can be observed in Aharonov–Bohm resonance oscillations in conductance measure-
ments when electron tunnels between the antidot states and the extended edge channels of the
2DEG, which is illustrated in figure 2.19 [169]. The size or the energy levels of the antidot
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Fig. 2.20 Illustration of single-particle antidot energy states. For simplicity, only the spin-split
branches of the lowest Landau level are drawn. The single-particle energy spacing between
the mth and (m+1)th localized states and Zeeman energy splitting of spin-up and spin-down
states are shown. The dashed line indicates the antidot potential. Adapted from [169].

and the electrical widths of the constrictions can be tuned by applying negative voltages to the
gates. The antidot conductance can be measured with a four-terminal setup, which can get rid
of quantization of the background conductance as well as contact resistance compared with
a two-terminal method (see details in the next chapter). Following the Landauer–Buttiker
formula [26], four-terminal longitudinal conductance is derived as follows:

GAD−4T =
I

VL
= (

1
νc

− 1
νbulk

)−1 e2

h
, (2.40)

where VL is the longitudinal voltage drop, νc and νbulk are the filling factors of the antidot
and the bulk, respectively. Figure 2.21(a) demonstrates a typical experimental setup for
measuring Aharonov–Bohm oscillations in antidot conductance. The diagonal voltage drop
Vdg is introduced to remove the effect of the bulk filling factor:

GAD−dg =
I

Vdg
= νc

e2

h
. (2.41)

A typical Aharonov–Bohm oscillation of conductance in an antidot as a function of magnetic
field is shown in Figure 2.21(b). The effective antidot radius can be estimated from the
oscillation period using equation (2.38).

The discussion about quantum Hall antidots above is based on single-particle models
[26], where electron–electron interactions are often neglected. However, there have been
many interesting experimental observations including h/2e Aharonov–Bohm conductance
oscillations [162, 99, 63], the signature of electron interactions shown in the line shape of
conductance peaks [124], the detection of antidot charging effect [98], Kondo effect [100],
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Fig. 2.21 (a) A typical experimental setup for antidot conductance measurements. Adapted
from [169]. (b) Typical Aharonov–Bohm oscillations of conductance in an antidot as a
function of magnetic field (T = 100 mK). Adapted from [169]. (c) Illustration of the
accumulation of excess charge ∆q around an antidot as the magnetic field increases. The
electron density shift results from the enclosed magnetic flux movement of the discrete
single-particle states to keep the enclosed magnetic flux constant. Adapted from [170].
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and spectator modes in an antidot molecule [77], and none of them can be understood within
single-particle models. The concept of excess charge [63] was introduced to explain these
observations when electron-electron interactions get involved. The excess charge can be
formed around an antidot due to the magnetic flux quantization. As magnetic field increases,
all the states encircling the antidot move inwards to keep the enclosed magnetic flux constant,
while the density of the positive background charges is fixed (see figure 2.21(c)). If the
occupation of the antidot states does not vary during their movement, excess (negative) charge
∆q accumulates around the antidot. Excess charges can provide a source of electron–electron
interactions in the antidot. Therefore, the antidot is reminiscent of a quantum dot discussed
in the previous sections, with a capacitive energy of ∆q2/(2C), where C is the effective
capacitance of the antidot. The excess charge accumulated at the perimeter of the antidot is
approximated as:

δq = (2πrδ r)ene, (2.42)

where ne is the electron density and given by

ne =
eB
h

νAD, (2.43)

here, νAD is antidot filling factor. From the equation (2.35) we can derive the following
equation for the single-particle orbits:

δ r =− r
2B

δB. (2.44)

Therefore, combined with the charging condition ∆q = ±e we can obtain the resonance
period of the Aharonov–Bohm oscillations:

∆B =
1

νAD

h
eπr2 . (2.45)

The period in B only depends on the radius and filling factor of the antidot.





Chapter 3

Experimental Techniques

This chapter describes the details of the processes and techniques that are used to fabricate
and measure graphene nanostructures, such as Hall bar, quantum Hall antidots and double
quantum dots discussed in the following experimental chapters. In particular, section 3.1
outlines the design and fabrication process for making Chemical Vapor Deposition (CVD)
graphene nanodevices. Section 3.2 will introduce different kinds of cryogenic systems in
which low temperature measurements are performed. Two types of measurement circuits
setup will be presented in section 3.3. The last section 3.4 describes the radio-frequency (RF)
reflectometry techniques used to detect the charge and spin of the graphene nanodevices with
high sensitivity and accuracy.

3.1 Device Fabrication

This section shows the detail of the techniques to fabricate graphene nanodevices. The
graphene material used in this thesis was grown by our collaborator, Centre for Advanced
Photonics and Electronics (CAPE) of the University of Cambridge by using CVD method
due to its high productivity, and all the fabrication described in this section was done in the
Semiconductor Physics (SP) group cleanroom in the Cavendish Laboratory unless otherwise
specified. The substrate used for these devices is doped or undoped silicon wafer which has
a native silicon dioxide layer of 300 nm thickness.

The basic procedure to transfer and pattern CVD graphene devices is as follows. The
first step is to transfer graphene on a precleaned silicon substrate. In order to align well in
the following processes, alignment markers are metallized onto the chip. Then a layer of
photoresist, which is for later optical lithography, or Poly(methyl methacrylate), also known
as PMMA, which is for later electron beam lithography (EBL) is spin-coated on the chip.
The spin-coating step is the basis for the next both etching and metal contacts deposition
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processes. Depending on the features of the desired device, a specific area of graphene is
exposed under the UV light (if the feature is about several microns) or under an electron beam
(if the feature is under 1 micron). After patterning and developing the resist, the exposed
graphene area is etched away by oxygen plasma and the desired device pattern is left on
the chip. For the contacts deposition step, the exposed contact area has metal deposited
(usually Ti/Au in SP group) by thermal evaporation followed by lift-off processing. Finally,
the leadless device is mounted onto a leaded chip carrier (LCC) or some specific sample
carrier and bonded with gold wires in order to enable measurements in low-temperature
systems. The processes described above are for the fabrication of basic graphene field effect
transistors (FETs), i.e Hall bar, and for the antidots device, the top-gate will be coated with
a layer of dielectric between the top-gate and graphene Hall bar, which can be completed
using self-alignment methods i.e. cross-linked PMMA coating [177] or global methods i.e.
atomic layer deposition (ALD) [68]. The details of each step are as follows:

Wafer preparation

The silicon substrate is first cleaned by rinsing in acetone and subsequently in isopropanol
(IPA) followed by being dried with nitrogen gas. The graphene is grown on copper using
CVD method by CAPE and then transferred onto the cleaned silicon substrate by using
PMMA (the details about graphene growth and tranfer will be introduced in the chapter
4). Before further processing, the wafer is cleaved by using a scriber into several 10 cm
× 10 cm chips, which makes the following fabrication processes much easier. In addition,
in order to align well in the following fabrication steps, alignment markers are metallized
onto the cleaved chip by optical lithography, which will be discussed in detail in the next
part. Those metal markers, with size ranging from 5 µm (for EBL alignment) to 50 µm (for
optical lithography alignment), are located at the four corners of each device. Depending
on the feature requirements, both optical lithography and EBL may have been used in the
fabrication processes.

Optical lithography

Spin-coating is used to deposit a photosensitive or electron beam-sensitive fluid resist on
a wafer surface at high spin speed. It is a standard microelectronic procedure to form a
relatively uniform and desired thickness of a coating layer by controlling the spin speed and
the resist viscosity. For optical lithography, the standard photoresist is s1813 in the cleanroom
of SP group. The spin-coating process is completed in a spinner for 30 seconds at spin speed
5500 rpm. Then the chip is placed on a hot plate for 1 minute at a temperature of 115°C. After
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Fig. 3.1 Schematic profiles of the sample without Chlorobenzene (left) and with Chloroben-
zene (right).

baking, the chip is moved onto a mask aligner and exposed for 6.5 seconds under ultra-violet
light, along with an optical mask with the desired patterns. Finally, a corresponding developer
is used to develop the patterns on the chip and for s1813, the developer is MF319. If the
next process is metal deposition, chlorobenzene is needed before development, because
chlorobenzene can make photoresist less sensitive to developer solution at the surface. This
allows for a more well-defined undercut (see figure 3.1), which makes the following lift-off
easier. The whole procedure of standard optical lithography is described above. In addition,
sometimes negative photoresist i.e. AZ 5214E will be needed according the designed optical
mask, in which case the unexposed areas will be developed, opposite to standard optical
lithography. The corresponding developer for AZ 5214E photoresist is AZ 726MIF.

Electron beam lithography

In order to get finer features, EBL provides a good tool for fabrication. The EBL PMMA
spin-coating recipe used for metal deposition is shown in table 3.1. The wafer is baked on a
hotplate at 125°C for 5−10 minutes after each layer is spin coated to get rid of any solvents.
This double layer structure is used because the low molecular weight short chain PMMA
in the bottom layer is more sensitive to the developer after exposure. The function of the
double layer structure is similar to chlorobenzene processing in optical lithography, to make
the following lift-off process easier. The recipe in table 3.1 can lead to two PMMA layers
with total thickness over 160 nm (the thickness can be calculated by Ellipsometre), which is
enough to lift off around 100 nm of deposited metal during thermal evaporation described in
the next part, and thin enough so that the PMMA layer hanging over the undercut does not
collapse readily.

Apart from defining metal contacts and gates, EBL is also used for defining the etch
mask for small the graphene features. In this case, only single layer PMMA needs to be
spin-coated, and the recipe is shown in table 3.2. The spun layer also needs to be baked on a
hotplate at 125°C for 5−10 minutes to remove any solvents left.
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Table 3.1 EBL PMMA recipe used for metal deposition

Molecular weight Dilution/Solvent Spin speed (rpm) Spin time (s)

Bottom layer 100K A6 1:1 Anisole 3500 60
Top layer 950K A11 1:5 MIBK 3500 60

Table 3.2 EBL PMMA recipe used for definition of etch mask

Molecular weight Dilution/Solvent Spin speed (rpm) Spin time (s)

Etch layer 950K A4 1:1 Anisole 6000 60

Because PMMA is a positive resist, regions exposed to the electron beam become soluble
and can be removed when submerged in the developer (MEK:MIBK:IPA = 1:5:15) for seven
seconds. This works for both double layer and single layer PMMA.

In the fabrication process of quantum antidot devices, PMMA is crosslinked by electron
beam [177] to work as a dielectric layer for further top gates. In this case, the cross-linked
PMMA is a negative resist and the areas exposed to the electron beam will be left on the
chip after being submerged into acetone. This process requires a much higher dose than for
exposing PMMA as a positive resist.

Thermal evaporation

Metal is deposited on the whole chip by using a thermal evaporator, which can heat the
source metal to high temperature in a vacuum condition so that the desired metal vapour
travels to the sample directly above the source metal, and then a uniform layer of metal is
formed on the surface of the chip.

Before the evaporation, the sample is loaded into a sample holder in the evaporator
chamber and then the chamber is pumped until the pressure is under 2× 10−6 mbar (this
pumping process may take around one hour). The rate of metal evaporation can be controlled
by tuning the current through the boat, which holds the source metal, so that a known amount
of metal is deposited onto the chip. For the devices discussed in this thesis, a thin layer
of titanium (∼ 10 nm) is deposited before a thicker gold layer (∼ 90 nm) to improve the
adhesion of the gold to the chip. After the evaporation process, the sample is cooled down
and then put into a beaker with enough acetone in it for the lift-off processing. The previously
patterned photoresist or PMMA layer works as a mask for the deposition step. During the
lift-off step, the metal deposited on the resist is removed together with the resist while the
metal in other areas will be left on the sample.



3.1 Device Fabrication 45

The success of the lift-off step depends on whether there is a path for acetone to touch
and dissolve all the resist covered by the metal layer. This condition requires a minimum
thickness of resist for a given thickness of deposited metal layer. The thickness of resist
should be much larger than that of metal layer and it turns out that 100 nm deposited metal
can be successfully lifted off with the double layer PMMA thickness ∼ 160 nm.

Oxygen plasma etch

The function of etching is to etch sample into the desired patterns during the device fabrication
process. After the development processing for the lithography, the desired patterns are
covered by resist as an etch mask, whereas the rest of the area is unprotected and can be
etched away under some conditions. For graphene, the devices are usually dry-etched by
oxygen plasma. The plasma is generated by applying a high frequency voltage on a low
pressure of oxygen gas (∼ 150 mTorr). In this process, a cascade of ionization happens until
a certain density of ions is reached and a plasma is formed. The created plasma consists of
ions and atoms in the excited state. The excited ions and atoms release energy in the vacuum
UV range, which can break the molecular bonds. In addition, the oxygen species created in
the plasma are also highly reactive to carbon-based molecules, like graphene, and readily
form low molecular weight hydrocarbons that can be removed away from the surface of the
chip through evacuation of the chamber. The pressure can be controlled by balancing the
oxygen gas flow rate and evacuation through a adjustable valve.

It is important to adjust the etch parameters to make sure the unprotected graphene can
be fully etched away, but the etch mask (PMMA is usually used for graphene) should still
cover the protected areas to avoid damage to the graphene patterns. There are many factors
that may affect the etching process, such as the size and shape of the graphene features, as
well as the gas flow rate, pressure and the species of neutral gas inside the chamber [49].
Among these factors, we can freely change the RF power, etching time and gas pressure
during the experiments. RF power determines the amplitude of the voltage applied to the
plasma and the higher the RF power is, the more aggressively it will etch. A longer etching
time leads to more material being etched, but the etching rate is not linear against time. It
was found that less graphene is etched during the first few seconds due to the plasma not
striking immediately or some resist residual left on the surface of exposed areas. The gas
pressure determines the energy of the ions hitting the graphene during the etch. The physical
etch is more likely to happen at low gas pressures, where the ions energy is high.

The etching process is determined by the factors mentioned above, as well as the thickness
of the etch mask, which in turn is determined by the minimum feature size of the graphene
devices. For instance, in terms of the Hall bar devices, the minimum feature size is 2 µm, so
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that a 1.4 µm photoresist mask is enough to make sure all the features are precisely defined.
But for double quantum dot devices, whose minimum feature size is about 50 nm, a 50
nm PMMA etch mask needs to be used to ensure that all the features can be accurately
transferred to the graphene. The recipe used for etching fine graphene features in this thesis
is an RF power of 30 W with an oxygen gas pressure of ∼ 40 mTorr in a chamber pressure
of ∼ 150 mTorr for 8s to remove graphene and around 40 nm of PMMA.

During the fabrication processes in this thesis, 3 s light plasma etch with an RF power of
3 0W is usually applied just before the metal deposition to get rid of the residual photo resist
or PMMA to reduce the contact resistance, as well as improve the contact adhesion to the
substrate for better wire bonding afterwards.

Packaging and bonding

Before the fabricated devices are ready for measurements, they are mounted with some kind
of glue and then bonded via gold wire onto LCC package or other specific sample carriers.
There are two different kinds of glue in the SP group that can be used to stick the sample
chip onto the LCC package: GE varnish and silver dag. Silver dag is conducting while the
GE varnish is insulating, so in some cases silver dag can be used to add a back-gate to the
sample when mounting.

In terms of bonding, there are two types of bonding machines in the SP cleanroom:
a ball bonder and a wedge bonder. For any bonder, there is a needle-like tool called a
capillary where a gold wire can be passed through. There are two steps for each bonding
process, bonding the pads on the sample and on the chip carrier respectively. When the tip
of the capillary is pressed down against the surface of a previously patterned bond pad, a
combination of heat, pressure and ultrasonic energy causes the tip of the wire to weld with
the bond pad. That is how the bonding works.

The big difference between the two kinds of bonder lies in the first step bonding. For the
ball bonder the tip of the gold wire is a ball, which makes it easier to bond than wedge bonder.
The second step for both is wedge bonding. In addition, due to the special structure of the
wedge bonder capillary, the bonding direction for the two steps can only be from package
to sample while there is no such requirements for ball bonder in the bonding direction.
Moreover, the wedge bonder is suitable for sensitive devices with small bond pads, as no ball
forms during bonding, which reduce the risk of damage from electrostatic discharge (ESD)
used to form the ball.

Force, power and time settings are important in bonding devices. For different materials,
the bonder needs different setting parameters. Additional precautions include grounding
all the conducting surfaces surrounding the bonding pads, as well as providing a constant
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spray of charges to the bonding pads through an antistatic fan in order to minimize charge
accumulation in the devices. It is also important to make sure that one needs to be grounded
before touching the devices and store the packaged samples in a conducting sample holder.

3.2 Cryogenic Systems

Cryogenic systems, also called cryostats or refrigerators, are apparatus used to maintain
low cryogenic temperature of samples mounted within the system. All the low temperature
measurement experiments are carried out in cryogenic systems. Most of the data presented in
this thesis were taken at low temperatures varying from 40 mK to 4.2 K. Various cryogenic
systems have been used depending on the temperature required. There are different levels
of cryogenic systems due to the temperature limitation it can reach. Here different types of
cryogenic systems are introduced.

3.2.1 4.2 K dipping station

The simplest cryogenic system is 4.2 K dipping station. From the name one can tell that
the temperature it can reach is 4.2 Kelvin, which is the boiling temperature of He-4 at 1
atm. It works by just dipping the probe, which holds the device, into a liquid He-4 storage
dewar which keeps the temperature of the device constantly at 4.2 Kelvin. Simple transport
measurements can be carried out in a 4.2 K dipping station even though in most cases the
temperature is too high to study quantum transport, and magnetic field cannot be applied in
such a system. But it allows us to change the sample quickly and easily, thus making it useful
for testing the conductivity and gate-effect of graphene nanodevices at low temperature to
prepare for further lower temperature measurements with more complicated cryostats.

3.2.2 1.2 K pumped He-4 cryostat

In order to achieve temperatures lower than that of 4.2K, a more complicated cryostat is used
which separates the sample space from the liquid helium bath using a vacuum can, which is
in thermal contact with the liquid helium bath. Temperatures around 1.2K can be reached by
using a 1-K pot, which is a helium container connected to a rotary pump. When the surface
of the 1-K pot is pumped, the liquid helium evaporates and carries heat energy away to cool
down the temperature of the device to around 1.2-1.6 Kelvin. The exact temperature it can
reach depends on the vapor pressure. In this kind of cryostat, a magnetic field could be
applied to the sample space, so it allows magneto-transport measurements to be performed.
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3.2.3 He-3 refrigerator

The helium mentioned above is He-4, the main isotope of helium. Temperatures below 1
K down to 300 mK can be achieved by pumping on liquid He-3 (a rare isotope of helium)
instead of He-4.

Different from a He-4 cryostat, the He-3 is adsorbed in a sorption pump (sorb), which is
placed at the top of the sample space. To achieve the base temperature, firstly liquid He-4
is introduced into the 1K pot from the main bath, which is then pumped to cool it down to
1.2 K, which is cold enough to condense the He-3. This step is the same as a He-4 cryostat
system. Secondly, the sorption pump is heated to around 50 K by an electric heater, releasing
He-3 atoms into the sample space. Then the He-3 gas is cooled down by the 1K pot and starts
to condense. After a sufficient amount of the liquid He-3 has been collected at the bottom
of the sample space, the sorption pump is cooled down by pumping cold He-4 gas through
the pipe that is in thermal contact with the sorb. Then the sorb starts to adsorb the residual
He-3 gas, reducing the pressure, and hence cooling the sample space. Therefore the base
temperature of 300 mK can be reached. It can keep at base temperature for as long as ten
hours or more depending on the cryostat or the sorb pumping rate. After that, the sample
space starts to warm up, therefore the same process of condensation and cooling-down will
be repeated.

3.2.4 Dilution refrigerator

When the mixture of He-3 and He-4 is cooled down below a critical temperature (approx-
imately 870 millikelvins), it undergoes spontaneous phase separation to form a He-3 rich
phase (the concentrated phase) and a He-3 poor phase (the dilute phase). At very low tem-
perature the concentrated phase is essentially pure He-3, while the dilute phase contains
about 6.6% He-3 and 93.4% He-4. In the mixing chamber, the two phases are in equilibrium
and separated by a phase boundary. He-3 is the working fluid and it is diluted as it flows
from the concentrated phase through the phase boundary into the dilute phase to supply a
useful cooling power for the refrigerator, as the process of moving the He-3 through the
phase boundary is endothermic and removes heat from the mixing chamber environment.
One dilution refrigerator called the MX400 in the SP group of the Cavendish Laboratory
was used in the work presented in this thesis. The MX400 is also equipped with an RF
reflectometry setup, allowing for realizing high sensitive and accurate measurements, which
will be described in section 3.4.
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Fig. 3.2 Two terminal measurement circuit.

3.3 Measurement Circuits

The cryogenic system, along with a sample probe, has a computer work station which controls
the instrumentation that includes a lock-in (LI), a digital to analogue converter (DAC), a
source measure unit (SMU), a digital multimeter (DMM), a pre-amplifier, a thermometer,
a magnetic field controller and so on. Two-terminal measurement and four-terminal mea-
surement are two typical methods for performing electronic transport measurements. In the
process of performing measurements, all the instruments are communicated with a computer.
The signal control and data collection are realised by software such as Cryomeas, Labview
or Matlab.

Figure 3.2 and figure 3.3 exhibit the circuits of two-terminal and four-terminal measure-
ments respectively for the CVD graphene nanodevices discussed in this thesis. A DAC is
used to supply a DC signal while a LI is used to supply an detect an AC signal. Dividers
are employed to reduce the voltage before mixing the signals using an ‘A+B box’, to make
sure the current through the device is not too high. An SMU is used to add a gate voltage
to the device. Then the current is amplified before being separated by an ‘A-B box’ to a
DC signal (received by a DMM) and AC signal (received by the LI). The big difference for
four-terminal measurement is that a resistor, whose resistance is much higher than the device,
is added before the current goes through the device, to keep the current constant, while it is
constant voltage for two-terminal measurement. As it uses separate pairs of voltage-sensing
electrodes, the four-terminal measurement circuit can measure the device conductance more
accurately. Compared to the simpler two-terminal method, the four-terminal technique can
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Fig. 3.3 Four terminal measurement circuit.

eliminate the contact and lead resistance contribution onto the measurement result. Therefore,
it is preferably applied to low resistive measurements.

3.4 Radio-frequency Reflectometry Technique

The measurement circuits described above are the conventional low frequency cryogenic
measurement methods. There are two main issues with these methods. One is the need for
long wiring resistance connecting the sample at low temperature to the room temperature
amplifiers. The high capacitance of the wiring (∼ 1 nF), together with the large resistance
of typical samples (∼ 50 kΩ) leads to a large RC time constant and limits the measurement
bandwidth to ∼ 1 kHz. Furthermore, the charge sensitivity at these low frequencies, typically
tens or hundreds of Hertz, is limited by 1/f noise [202] due to the motion of background
charges.

A well known solution to overcome these problems is to embed the sample into an
impedance matching LC circuit. Impedance matching is an important microwave engineering
technique which ensures that maximum power is delivered to the sample and that power loss
in the transmission line is minimized. The impedance matching of the LC circuit terminates
a transmission line connected to the room temperature measurement setup and use radio-
frequency (RF) reflectometry techniques to measure instantaneous changes in the impedance
of the devices. By matching the device to the characteristic impedance of the transmission
line Z0 (50 Ω) its capacitance is no longer relevant. Therefore, this method can achieve a
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Fig. 3.4 (a) Schematic of the high frequency wiring for the fridge. (b) Photograph of the
lower section of the dilution fridge with the high frequency wiring installed. Adapted from
Karl Petersson’s PhD thesis.
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much higher bandwidth and it can operate even at frequencies in excess of 100 MHz, where
the 1/f noise due to background charge motion is completely negligible.

Previously the RF reflectometry technique has been used to increase the measurement
bandwidth of a single electron transistor (SET) [166] and quantum point contact (QPC) [32]
electrometers, as well as large area gated 2D systems [176]. It was initially expected that it
would not be possible to be used by the RF reflectometry technique on these large samples
due to the large capacitance, which results in low resonance frequency and a negligible
sensitivity at high resistances.

As mentioned previously in the dilution fridge subsection, the MX400 dilution fridge
in the SP group was used to perform the RF reflectometry measurements described in this
thesis. The probe wiring was done by a previous PhD student Karl Petersson in the SP group.
The wiring of the RF reflectometry circuit of the MX400 dilution fridge is shown in figure
3.4 adapted from Karl Petersson’s PhD thesis. I modified the radio-frequency reflectometry
setup by replacing the RF sample holder with a smaller one, which can fit into the probe and
work in a perpendicular magnetic field (see figure 3.5(b) and 3.5(c)). The RF tank circuit and
two RF ground lines (each with a capacitor) are soldered on a printed circuit board (PCB).
This RF sample holder also consists of ten normal contacts for transport measurement, which
are connected to the probe via a 21-way Conan connector, and two fast gates connected to
the probe via an SMA connector (the bottom two shown in figure 3.5(c) and the top one is
for the RF reflectometry circuit) and coaxial line. During my PhD, I also designed and wired
another RF probe (see figure 3.5(a)) used as a dip probe for quick testing at 1.2 K before
further experiments are performed. This RF probe is equipped with a breakout box with
ground switches, as well as four fast gate lines. The bottom sample space of the probe is for
placing the sample holder as well as the components (i.e. direct coupler and amplifier) of the
RF reflectometry circuit.

The core part of RF reflectometry technique is the impedance matching LC tank circuit,
by which the impedance of the device is matched to the characteristic impedance of the
transmission line Z0 (50Ω). The matching circuit consists of an inductor L, typically a surface
mounted component placed close to the sample, and the capacitance Cs which includes the
stray capacitance from the inductor and the sample holders to ground. The inductance L
and capacitance Cs form an LC resonator with resonance frequency f0 = 1/2π

√
LCs. At the

resonance frequency the impedance of the matching circuit is real and is given by Zt = L/RCs,
where R is the device resistance. Perfect matching occurs when Zt = L/ZmCs = Z0, where Zm

denotes the matching impedance. Variations in the device impedance change the transformed
impedance Zt and hence the reflection coefficient Γ = (Zt −Z0)/(Zt +Z0). Then, instead
of measuring the device resistance directly, one launches a RF carrier wave down the
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Fig. 3.5 (a) Photograph of a RF probe designed and wired by me during my PhD used as a
dip probe for quick test at 1.2 K. (b)(c) Photographs of the front and back of a perpendicular
RF sample holder with tank circuit soldered on the PCB manufactured by me used in this
thesis.
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Fig. 3.6 Measured amplitude and phase response of a resonant circuit adapted from [150]

transmission line at a frequency close to f0, where the sensitivity to the changes in impedance
is largest, and monitors the amplitude of the reflected carrier wave. Figure 3.6 adapted
from [150] shows the measured amplitude and phase response of a resonant circuit. When
resonance happens, there will be a dip in the reflected signal, suggesting most of the signal
energy is absorbed in the matching circuit and in the meantime, the phase is shifted from π

to −π . The precise resonant frequency depends on the quantum impedance of the measured
system, which can, therefore, be read out using this RF reflectometry technique.

The total quality factor Q that sets the bandwidth is given by 1/Q = 1/Q1+1/Q2, where
Q1 = R/

√
L/Cs is define as the unloaded quality factor, and Q2 =

√
L/Cs/Z0 is the external

quality factor. For details of the RF reflectometry technique see [166, 160]. The key point
to the readout scheme is that the phase of a reflected RF signal depends on the quantum
impedance of the device, and phase measurements thus provide a sensitive and noninvasive
probe of the system.



Chapter 4

Probing Electron Scattering in Scalable
CVD Graphene

4.1 Introduction

As many graphene-based electronic and optoelectronic device concepts start to make the
transition from the laboratory research into industrial applications [139], it is imperative
that factors such as long term stability, large area reproducibility and low-cost need to be
addressed. As described in the introduction chapter, the lack of scalability and reproducibility
of graphene devices fabricated from small exfoliated flakes and the high cost of epitaxial
graphene on silicon carbide, remain the major obstacles for further commercialization
of graphene electronics and optoelectronics. Thus, graphene grown by chemical vapor
deposition (CVD) [84] stands out as a useful alternative to mechanically exfoliated graphene
and epitaxial graphene, because its wafer-scale growth enables large scale production with a
low cost [156]. However, environmental factors such as ambient air [164, 161], lithography
resists and polymers used in the transfer process [154], cause unintentional, generally p-
type, doping and hysteretic [188, 31, 96] behaviour in graphene field effect transistor (FET)
devices, especially for CVD graphene.

First, this chapter will discuss the fabrication progress towards scalable CVD graphene
FET devices, by introducing an encapsulation and passivation approach to overcome those
issues existing in the conventional fabrication process. This section is partly adapted from a
published article in the journal 2D Materials, entitled "Encapsulation of graphene transistors
and vertical device integration by interface engineering with atomic layer deposited oxide"
[4]. Second, by studying electrical characterisation and magnetotransport phenomena in
encapsulated CVD grown Bernal stacked and large twist angle (30◦) bilayer graphene FETs,
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as well as monolayer graphene FETs for reference, we show that electron scattering processes
and hot electron effects can be tuned. The results of the second part of this chapter is expected
to be published in another article "Twist angle dependent electron scattering in as-grown
CVD bilayer graphene", which is in preparation for journal Physical Review B.

The works in this chapter are completed in collaboration with Dr. Jack Alexander-Webber
(who supplied the graphene material and the Atomic Layer Deposition (ALD) techniques)
and Dr. Ye Fan (who helped with fitting the data) from the Centre for Advanced Photonics
and Electronics (CAPE) of the University of Cambridge.

4.2 ALD Encapsulated Scalable Graphene FETs

Encapsulating graphene field effect transistors (FETs) with Al2O3 barrier layers deposited
by ALD can significantly reduce gate hysteresis and provide reproducible performance
over several months [163]. For graphene electronics, the potential advantages of such
an encapsulation are twofold. First, Al2O3 is increasingly used as a moisture barrier in
applications due to its exceptionally low water vapour transmission rate [30]. This leads to
long term stability and protection of devices from humidity and other atmospheric effects.
Second, the ALD process has been shown to effectively passivate charge trap sites such
as silanol (SiOH−) groups at the SiO2 — graphene interface which are responsible for
much of the observed unintentional doping and hysteretic device behaviour [163, 118].
Growth of ALD dielectric films on graphene is commonly achieved through an additional
ex situ process step to promote nucleation, typically including deposition of an additional
seed layer such as a thin polymer [39, 61], metal/oxide films [158, 105], or other surface
functionalisation pretreatments [189, 29, 106, 65]. Such ex situ treatments may include
time-consuming additional process steps, can degrade the quality of the graphene [158] and
crucially may compromise the quality of the interface by introducing additional surface states.
Recently, in situ pretreatments, such as exposing graphene to pulses of H2O [9, 200], O3

[126, 89, 116, 117] or trimethylaluminum (TMA) [93], have shown promise in promoting
uniform ALD of thin dielectric films. Most of these nucleation engineering studies have
focused on process optimisation towards factors such as film coverage and density, however
the impact and suitability of these in situ pretreatments for real device encapsulation has
not yet been studied in detail. By using H2O or O3 exposure in situ to act as a gaseous
pretreatment to promote nucleation of Al2O3 directly on graphene during early ALD growth,
followed by dense film growth after nucleation, we show near complete surface passivation
of graphene FETs with enhanced mobility, reproducibility and long term stability.
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(a) (b)

Fig. 4.1 (a) AutoCAD design of the optical lithography mask with 36 (6 by 6) devices on
one 10 mm by 10 mm chip. Red colour layer represents graphene mesa pattern, yellow layer
represents metal contacts and purple layer stands for the probing/bonding pads. (b) Zoom-in
of one of the 36 devices.

4.2.1 Graphene Growth and Device Fabrication

The graphene material used in this chapter is synthesized by the chemical vapor deposition
(CVD) method [156], where the substrate is exposed to one or more volatile precursors,
which react or decompose on the substrate surface to produce the desired deposit. Methane
gas is used as the carbon source, copper is used as the substrate, and mixed hydrogen/argon
is used as the gas environment in this thesis to grow graphene.

The details of CVD growing graphene is given as below: Cu foil was initially slowly
heated to 1065 °C in a mixed H2/Ar environment (50/200 sccm) at 100 °C min−1. Once the
growth temperature was reached, the Cu foil was kept in H2/Ar (50/200 sccm) for 30 minutes.
Graphene was subsequently grown in an H2/Ar gas environment (26/250 sccm) using 9 sccm
of CH4 (0.1% diluted in Ar), for 45 min. Samples were cooled in 250 sccm Ar to room
temperature. The total pressure at all process stages was 50 mbar. The graphene films were
then transferred to Si/SiO2 wafer (dielectric thickness tox = 300 nm) support using a wet
transfer method with PMMA as sacrificial transfer layer and ammonium persulfate as Cu
etchant. Then graphene was grown and ready for the next fabrication processing.

As the smallest feature of the designed graphene FET devices in this chapter is larger than
1 µm, in order to increase the efficiency of the fabrication procedure, all the FET devices
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are made by optical lithography, using S1813 or AZ5214E as positive and negative resist,
respectively. Therefore an optical mask (see figure 4.1(a)) had been designed with 36 (6
by 6) devices on one 10 mm by 10 mm chip, with each device 1.5 mm by 1.5 mm size and
0.5 mm width edge bean. The graphene is patterned into Hall bar as shown in figure 4.1(b).
The graphene patterns are etched by oxygen plasma and contacts are deposited by thermal
evaporation. All of these relevant fabrication techniques have been described in section 3.1.
Then a 90 nm aluminium oxide layer is encapsulated onto the Hall bar devices by atomic
layer deposition (ALD), which will be discussed in detail in the following section. After
encapsulation a further lithography step is required to expose probing/bonding pads located
away from the graphene channels which will be subsequently etched using phosphoric acid
(64%) at 80 °C for ∼ 3 minutes.

4.2.2 Process of ALD encapsulation

Figure 4.2(a) schematically shows the process of our ALD device encapsulation. Initially
a wafer containing an array of globally back-gated CVD graphene FET devices on doped
Si/SiO2 was prepared as described in the previous section. 90 nm Al2O3 was deposited
by ALD (Cambridge Nanotech Savannah S100 G1) afterwards using TMA (purity > 98%,
Strem Chemicals 93-1360) and deionized water (H2O) or ozone (O3, DELOzone LG-7,
∼ 90% power) that were delivered alternatingly into the reaction chamber by 20 sccm of
N2 flow. The dose for TMA and H2O is ∼ 0.5 Torr·s, while the dose for O3 is ∼ 5 Torr·s,
which is approximated by the product of the peak delivery pressure with the residence time
(full width at half maximum) determined by the pressure profile. The purging time between
pulses was 20 s. Schematic of ALD pulse sequences for the pretreatment and subsequent
growth processes showing the chamber pressure P as a function of time t is presented in
figure 4.2(c).

For a number of device applications ambipolar transport in graphene devices is desirable.
As such, the unipolar (p-type) behaviour observed in as-fabricated/unencapsulated devices
needs to be converted to ambipolarity and, importantly, this must be stable during device
operation and storage in ambient conditions. Hence, we tune the ALD encapsulation layers
using three different growth conditions to determine the interface quality required for stable
ambipolar device performance. The three growth conditions were as follows: (1) direct
deposition of 90 nm Al2O3 at 120 °C using H2O/TMA precursors; (2) a pretreatment
of ten pulses of O3 followed by 10 nm growth of Al2O3 interface layer using O3/TMA
at 80 °C followed by an additional layer of 80 nm using H2O/TMA growth at 120 °C;
(3) a pretreatment of ten pulses of H2O at 120 °C followed by 90 nm of growth using
H2O/TMA precursors at 120 °C, as shown schematically in figure 4.2(c). For long term
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Fig. 4.2 (a) Schematic of process flow for ALD encapsulation of graphene devices. (b)
Comparison of unencapsulated (green) graphene FET characteristics with those encapsulated
with 90 nm of Al2O3 using direct growth (purple), O3 (blue) and H2O (orange) pretreatments,
respectively. Blue, purple and green curves are offset vertically by 0.3, 0.6 and 0.9 mS,
respectively. (c) Schematic of ALD pulse sequences for the pretreatment and subsequent
growth processes showing the chamber pressure P as a function of time t. (d) Distribution of
Dirac point (ECNP) for 30 devices after encapsulating with an H2O pretreatment. Inset: an
optical micrograph of the 10 mm2 encapsulated chip. Adapted from [4]

stability the barrier properties of the encapsulating ALD layer is crucial to obtain low gas
transmission rates which would begin to affect the graphene over time [30]. Hence, devices
were encapsulated with 90 nm of Al2O3 which has been demonstrated to be sufficient to
enable long term stability [163].

4.2.3 Electric Field Effect Characterization

The field effect characteristics of a test device are shown in figure 4.2(b), which summarises
the comparison of electronic performance of unencapsulated (green) graphene FET char-
acteristics with those encapsulated with 90 nm of Al2O3 using direct growth (purple), O3

(blue) and H2O (orange) pretreatments, respectively. Three encapsulation techniques which
are found to have a significant effect on the graphene - oxide (2D - 3D) interface. Electrical
transport measurements are acquired on Keithley 4200-SCS connected to a probe station.
The device conductivity σ is related to the current Id by σ = (L/W )(Id/Vsd) (L and W are the
length and width of channel), with applied source-drain voltage Vsd = 10 mV, which is plotted
as a function of gate electric field EBG =VBG/tox. The gate voltage is swept from negative
to positive values (up sweep) and then back to negative values (down sweep) with a rate of
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dEBG/dt = 0.37MV cm−1s−1 (dVBG/dt = 11V s−1). In line with previous literature at room
temperature and under ambient conditions significant unintentional p-type doping is observed
in the as-fabricated/unencapsulted device where the conductivity minimum associated with
the charge neutrality point ECNP is observed at high positive gate voltages [195].

For the unencapsulated device shown in figure 4.2(b) we measure a peak field ef-
fect hole mobility µh, for the up sweep, to be 620 cm2V−1s−1, calculated using µ =

(|dσ/dVG|max)/CG, where the gate capacitance is taken to be CG = 11.6 nFcm−2 for 300
nm SiO2. Such a value is typical for polycrystalline CVD films [92], and it is important
to note that this two-terminal mobility value is reduced by including contact resistances
[105]. For direct ALD encapsulation without pretreatment we observe some reduction
in residual doping levels and an increase in mobility to µh = 830 cm2V−1s−1. However,
significant hysteresis of ∆ECNP = 0.3 ± 0.085 MV cm−2 is still observed, where we define
∆ECNP = ECNP(down)−ECNP(up). Using a simple capacitor model, with the gate capac-
itance per unit area CG, we can estimate the corresponding change in carrier density due
to trapped charges to be ∆n =CGtox∆ECNP/e = 6.5×1011cm−2. This suggests that a large
density of trap states remain at the interface after the encapsulation. In contrast, the device
characteristics for the two encapsulated samples using gaseous pretreatments are dramatically
different with minimal hysteresis. Indeed, levels of hysteresis are significantly reduced
to 0.033 ± 0.085 MV cm−1 and 0.017 ± 0.085 MV cm−1 for O3 and H2O pretreatments,
respectively. For the H2O pretreated encapsulation this corresponds to a remarkably low
hysteresis induced by carrier trap density of ∆n ∼ 3.6×1010cm−2. This value is comparable
to the best performance devices reported in [163], but achieved while halving the number
of encapsulation process steps. In addition, the values of µh for the test device shown in
figure 4.2(b) increase to 920 cm2V−1s−1 and 950 cm2V−1s−1 for O3 and H2O pretreatments,
respectively. This mobility improvement can be linked to the reduction in charge traps in
the vicinity of the graphene as such charged interface states are known to act as scattering
centres [109]. By characterization of the electric field effect on the test device, We can
therefore conclude that the growth of 90 nm of Al2O3 directly on graphene using an H2O
pretreatment can provide thorough passivation of graphene FETs and almost doping-free
ambipolar behaviour whilst maintaining, or indeed enhancing, carrier mobility under ambient
conditions.

4.2.4 Scalable graphene FETs

Then we focus on our encapsulated scalable graphene FET devices, where a 90 nm Al2O3

encapsulation layer was deposied by ALD directly on an array of graphene FETs using
an H2O pretreatment, which has been proved by field effect characterization previously to
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Fig. 4.3 Electric field effect of all the 30 working graphene Hall bar devices encapsulated
using an H2O pretreatment. The measurements are performed with a probe station at room
temperature under ambient conditions.

be able to enhance graphene performance significantly. Electrical transport measurements
were taken under ambient conditions following a further lithography step to expose and etch
through the Al2O3 above the probing pads as detailed in the last section for the test device.

We fabricate 36 graphene FET devices on a a 10 mm2 chip for each batch. Probe station
measurement result suggests 30 among the total 36 devices are conducting for one of the
batches we fabricated. And the electric field effect measurements of all the 30 working
encapsulated graphene Hall bar devices are shown in figure 4.3. The measurements are
performed with a probe station at room temperature under ambient conditions. We observe a
highly reproducible average residual doping level of 3×1011cm−2 (p-type), with a standard
deviation of 4×1011cm−2, as shown for the 30 devices in figure 4.2(d). Some devices show
low levels of n-type doping due to negative charges in the Al2O3 matrix [109]. Statistic
analysis is plotted in figure 4.4(d), showing the distribution of hole mobility µh and electron
mobility µe, as well as Dirac point VDirac of the 30 devices. The average hole mobility µh of
the 30 devices is 1910 cm2V−1s−1, while the average electron mobility µe is a bit higher with
value 2050 cm2V−1s−1. Compared with the test device, whose mobility has been improved to
950cm2V−1s−1 after ALD encapsulation using an H2O pretreatment, the mobility exhibits a
significant increase in our graphene Hall bar devices. The possible reason is that we optimize
the fabrication process by doing a 3 s light etch using oxygen plasma just before depositing
metal contacts, which can effectively remove resist residual and reduce the contact resistance.
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Fig. 4.4 Electric field effect comparisons of 4 devices among the 30 working graphene Hall
bar devices before (a) and after (b) ALD encapsulation process. (c) Plot of the hole mobility
µh of the 4 devices after the ALD encapsulation against that before encapsulation, showing
an enhanced mobility with a ratio 1.4. (d) Distribution of hole mobility µh and electron
mobility µe, as well as Dirac point VDirac of the 30 working encapsulated graphene Hall bar
devices.



4.2 ALD Encapsulated Scalable Graphene FETs 63

To get a better understanding of how ALD encapsulation process enhance our graphene
performance, we compare 4 among the 30 devices before and after the encapsulation pro-
cessing. The electric field effect comparisons of the four devices before and after the ALD
encapsulation process are shown in figure 4.4(a) and figure 4.4(b), respectively. We can
clearly observe a doping drop from a highly p-type doping with VDirac > 80V to VDirac ∼ 0V .
In terms of the mobility, figure 4.4(c) exhibits the plot of the hole mobility µh of the 4 devices
after the ALD encapsulation against that before encapsulation, showing an enhanced mobility
with a ratio 1.4. This mobility improvement is also related to the reduction in charge traps in
the vicinity of the graphene.

In order to obtain insights into the potential of our scalable graphene FET devices for fur-
ther nanostructure experiments, we cooled one Hall bar device down to 1.4 K with a cryostat
called the Assessment Lab in the SP group to carry out magnetotransport measurements. We
observed the quantum Hall effect (QHE) in this device. The Hall resistivity measurements
of this Hall bar device as a function of back-gate VBG is shown in 4.5 with a magnetic field
of 0 T (purple), 3 T (green), 5 T (blue), 8 T (black), respectively, exhibiting QHE with a
Hall resistivity plateau at ∼ 0.5h/e2. This result is in agreement with the theoretical equation
σxy = 4(n+1/2)e2/h, showing the half-integer QHE in graphene [94].

In conclusion, we have demonstrated a scalable and simple approach towards encapsulat-
ing and passivating high quality CVD graphene electronic devices by using a gaseous H2O
pretreatment to allow direct ALD of dense Al2O3 films on graphene. Using this technique,
contained within a single piece of equipment, we eliminate the additonal time consuming
processing steps and tools required to deposit the metal or metal oxide seed layers most
commonly used to promote ALD growth. We obtained thorough passivation of graphene
FETs and almost doping-free ambipolar behaviour whilst maintaining, or indeed enhancing,
carrier mobility under ambient conditions. The quantum Hall measurement suggests that the
Hall bar device processed by this technique is promising for further electronic applications.
This approach is also used in the devices which will be discussed in the next section of this
chapter and later chapters. We hope that this work will motivate further device performance
enhancements for new generations of low dimensional materials by using in situ gaseous
pretreatments within the large parameter space offered by ALD.
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Fig. 4.5 Hall resistivity measurements of one of the 30 working encapsulted graphene Hall
bar devices as a function of back-gate VBG with temperature down to 1.4 K and magnetic
fields of 0 T (purple), 3 T (green), 5 T (blue), 8 T (black), respectively, exhibiting the quantum
Hall effect with a Hall plateau at ∼ 0.5h/e2.
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4.3 Twist angle dependent electron scattering in as-grown
CVD bilayer graphene

Bilayer graphene has attracted significant interest due to the ability to tune the electronic
properties by changing the relative orientation or twist angle between the two layers. Bernal
or AB stacked bilayer graphene offers an electric field tunable band gap [199] and valley
transport [97, 167]. Small twist angle bilayer graphene (θtw ∼ 1◦) has been shown to
exhibit exotic electronic phenomena such as superconductivity [28, 27] and topological
transport channels [157]. At larger twist angles (θtw ∼ 5◦ - 30◦) the low energy Dirac
points of each are well separated in k-space, and higher energy interlayer interactions
dominate[196, 3, 197, 148, 83, 157]. Chemical vapour deposition (CVD) [84] has been shown
to provide a scalable route towards high electronic quality graphene [47], and significant effort
has been made to tailor the growth parameters to selectively obtain bilayer graphene [60]. The
angle between two monolayers of artificially stacked graphene can be accurately controlled
over small areas [37, 28], but any contamination between layers during processing can reduce
the interlayer coupling, destroying any angular dependent phenomena [83]. By comparison,
atomically clean interlayer interfaces can be found in as-grown CVD bilayer graphene [123].
Under appropriate growth conditions CVD bilayer graphene can preferentially align in one
of two energetically stable stacking orientations [123], either AB stacked or 30° rotated
(turbostratic), with only a small proportion of misaligned bilayers. These two stacking
orientations therefore represent two technologically relevant material systems with distinctly
different electronic properties. By studying magnetotransport phenomena in CVD grown AB
and 30° bilayer graphene, as well as monolayer graphene for reference, we show that the
electron scattering processes and hot electron effects can be tuned.

4.3.1 Device Preparation and Characterization

The graphene was grown in an Aixtron BM Pro 4” reactor using 25 µm thick Cu foil (Alfar
Aesar, 99.8%), methane, hydrogen and argon at a temperature of approximately 1070 °C.
Graphene grown on copper typically includes a small number of multilayers that form during
growth. We found that the introduction of oxygen into the system [23] and growing at a
higher methane to hydrogen ratio allowed for larger (> 50 µm diameter), more frequent
multilayers in the graphene film. Figure 4.6(a) shows an example with a particularly high
density of as-grown bilayer graphene regions after transfer onto a Si/SiO2 substrate. The
imaged area is fully covered with graphene and areas of higher contrast represent bilayer and
multilayer regions as shown schematically in figure 4.6(b). The results of a scanning Raman
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Fig. 4.6 (a) Optical micrograph of CVD graphene transferred onto a Si substrate with 300 nm
SiO2. The scale bars are 200 µm. The area is completely covered in graphene, darker regions
represent bilayers and trilayers as shown schematically in (b). Scanning Raman map of the
same region showing (c) the intensity of the G peak and (e) FWHM of the 2D peak. (d) A
histogram of the intensity of the G peak of the mapped region showing peaks corresponding
to layer thickness. (f) A histogram of the FWHM of the 2D peak for spectra selected only
from bilayer regions of the map, as determined by the G peak intensity.
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map of the region are shown in figure 4.6(c) - (f). The intensity of the graphene G peak
(where Pos(G)∼ 1587cm−1) is found to be a useful measure of layer number and is strongly
correlated with the areas of increased optical contrast found in figure 4.6(b). A histogram
of G peak intensity across the mapped region shows three clear peaks which we attribute to
monolayer, bilayer and trilayer graphene, respectively (see figure 4.6(d)). We note that when
the θtw dependent energy separation between the Van Hove singularities in bilayer graphene
is resonant with the laser excitation energy, typically for θtw ∼ 5◦ - 15◦, the intensity of
the G peak is enhanced [104]. However, the majority of our as-grown bilayer graphene is
non resonant as observed previously [123] and described further below. Indeed, we find
that areas which do display optical resonances are often associated with strain or wrinkles
indicating that the misalignment between layers occurred after growth. Figure 4.6(e) shows
the full width at half maximum (FWHM) of the 2D peak (Pos(2D)∼ 2680cm−1). Depending
on the stacking angle, the 2D peak in bilayer and multilayer graphene can be composed of
four or more components [23], but here for simplicity we perform a global fit with a single
Lorentzian peak. After fitting, we use the intensity of the G peak to extract just the regions
which we associate with bilayer graphene. A histogram of FWHM (2D) shows two distinct
peaks around 35 cm−1 and 70 cm−1 which we attribute to large angle (θtw ∼ 30◦) rotated and
AB stacked bilayer graphene respectively [104]. From this we estimate that the as-grown
bilayer graphene is composed of approximately 1/3 large angle rotated bilayer and 2/3 AB
stacked bilayer. A similar distribution of stacking was shown previously for as-grown CVD
bilayer graphene [123] where the large angle rotated bilayer was confirmed by transmission
electron microscopy to be predominantly θtw = 30◦.

After transfer onto Si coated with 90 nm of thermally grown SiO2 individual isolated
bilayer regions were selected and identified based on optical microscopy. Electron beam
lithography followed by oxygen reactive ion etching was used to define 4 µm wide Hall
bars. Contacts were made by thermally evaporated Ti/Au (10/100 nm). Monolayer graphene
devices were also fabricated, and all the devices studied are from the same growth. After
fabrication, 90 nm of Al2O3 was deposited on the devices by atomic layer deposition which
provides long term stability, passivation of charge traps and a reduction in hole doping [4],
which has been discussed in the first half of this chapter. Figure 4.7(a) shows the Raman
spectra of three graphene devices using 532 nm laser excitation wavelength. Based on
the discussion above we conclude that the three devices represent monolayer graphene,
AB stacked and 30◦ rotated bilayer graphene respectively. The same devices are studied
throughout the rest of the chapter. Spatial mapping confirms the uniformity of the layer
number and stacking throughout each of the devices (see figure 4.7(a) - (e)). Figure 4.7(e)
shows room temperature field effect transistor measurements were under a fixed source drain
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Fig. 4.7 (a) Raman spectra, (b)-(d) G peak intensity maps and (e) room temperature transfer
characteristics (VSD = 10 mV) of the monolayer (red, b), AB stacked bilayer (blue, c) and
turbostratic bilayer (green, d) devices. (a) Inset: Histograms of the FWHM of the 2D peak
for the three Raman maps. Scale bars are 4 µm.
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voltage of 10 mV. The monolayer graphene device shows the characteristic symmetric transfer
curve with a Dirac point of -4 V and a field effect mobility of µMLG = 2926 cm2V−1s−1,
measured on the n-type side of the curve. The transfer characteristics of the 30◦ rotated bilayer
graphene are very similar to monolayer with a Dirac point at −4V but with a noticeably
higher conductivity and a field effect mobility of µ30 = 4995 cm2V−1s−1. This is consistent
with the presence of two layers of graphene maintaining their linear band structure at low
energies. For the AB stacked bilayer graphene we observe a lower mobility of µAB = 1526
cm2V−1s−1, consistent with the expected quadratic band structure [199].

4.3.2 Magnetotransport Measurement

The magnetotransport measurements are carried out with a four-terminal low frequency
circuit setup in the cryostat called the Assessment Lab in the SP group, which can supply a
perpendicular magnetic field up to 8 T and a controllable temperature from a base temperature
of 1.4 K up to room temperature if needed. 1 V excitation is supplied by a lock-in amplifier
at a frequency of 77 Hz. This AC voltage is mixed with a DC bias supplied by a SMU
before going through a 10 MΩ resistor to form a constant AC current I = 100 nA through the
device. Another two lock-ins are used to record longitudinal voltage Vxx and Hall voltage Vxy

respectively.
Figure 4.8(a) shows the measured longitudinal resistivity ρxx as a function of magnetic

field (between -6 T and 6 T) of the monolayer (red), AB stacked bilayer (blue) and turbostratic
bilayer (green) devices, exhibiting Shubnikov-de Haas (SdH) oscillations. All the three
devices show a WL peak at low magnetic field, but AB stacked BLG shows very small
magnetoresistance at higher magnetic fields, while both MLG and turbostratic BLG exhibit
pronounced SdH oscillations with resistance plateaus. This can be understood by the higher
mobility in monolayer and turbostratic bilayer graphene than that in AB stacked bilayer.
Then we move on to the low field (between -0.3 T and 0.3 T) measurements to explore
the WL effect in these devices. Figure 4.8(b) - (d) show the WL measurement results of
these three devices as a function of temperature from base temperature of 1.4 K to around
80 K, where the WL effect seems not observable. Our experiments are performed at much
higher temperatures than the previous studies of WL in exfoliated graphene [179] where T
< 20 K. Moreover, the quantum correction in conventional 2D systems usually disappears
at much lower temperatures, due to intensive electron-phonon scattering [70]. The weak
electron-phonon scattering in graphene [87] makes it possible to analyse WL in a large
temperature range. We can see that MLG, AB BLG show similar WL results, while WL
in large twist angle (30◦) BLG is quite different. In order to examine the difference, we
plot the conductance correction ∆σ(B) = σ(B)−σ(B = 0) of these three devices at T =
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Fig. 4.8 (a) Longitudinal resistivity ρxx as a function of magnetic field (between -6 T and 6
T) of the monolayer (red), AB stacked bilayer (blue) and turbostratic bilayer (green) devices,
exhibiting Shubnikov-de Haas (SdH) oscillations (T = 1.4 K). Low magnetic field (between
-0.3 T and 0.3 T) transport measurement results of (b) monolayer, (c) AB stacked bilayer and
(d) turbostratic bilayer graphene devices, showing WL effect against temperature.
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1.4 K in figure 4.9(a). Both MLG and AB BLG show positive magnetoconductance, while
negative magnetoconductance occurs at higher B field in turbostratic BLG. The quantum
correction depends not only on the dephasing time τϕ , but on elastic scattering times τi

and τ∗, indicating intervalley scattering time and intravalley scattering time. The shape of
the magnetoconductance curves is controlled by the interplay between all scattering times
involved. According to the figure 2.5 described in chapter 2, this difference in the shape
of WL curves suggests enhanced intervalley scattering in twisted BLG with τ∗ ≪ τi. The
quantum correction in conductance ∆σ(B) can be fitted with the following equation [179] by
using the theory in [127]:
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Here, F(z) = ln(z)+ψ(0.5+ z−1), ψ(x) is the digamma function, τ
−1
B = 4eDB/h̄ and D is

the diffusion coefficient. The first term in this equation is responsible for WL, while the WAL
is determined by the second and third terms with negative sign. All the three devices show
WL with turbostratic BLG exhibiting the sharpest conductance correction dip and the dip in
AB stacked BLG is a bit sharper than MLG at base temperature, as shown in figure 4.9(a).
The sharpness of the dip is determined by the phase coherence length Lϕ . The temperature
dependence of Lϕ contains information about the inelastic mechanism responsible for the
dephasing of charge carriers [178]. By fitting the WL with equation (4.1) combined with
the equation Lϕ =

√
Dτϕ , we can subtract Lϕ as a function of temperature of the three

devices (see figure 4.9(b)). We can see that turbostratic BLG has the longest Lϕ over the
measured temperature range (from 1.4 K to ∼ 70 K) with Lϕ ≈ 220 nm at base temperature
and decays to 100 nm at 65 K, while Lϕ in AB stacked BLG is longer than that in MLG at
base temperature but decays faster with temperature. At T ≈ 15 K, Lϕ in AB BLG starts to
be shorter than that in MLG.

We then move on to the temperature dependent measurements at a series of fixed carrier
concentrations. We performed the WL measurements of the three devices at 5 or 6 different
back-gate voltages leading to different carrier concentrations, and extracted the corresponding
phase coherence length Lϕ from the conductance correction results using equation (4.1), as
shown in figure 4.10 with (a) - (c) corresponding to MLG, AB stacked BLG and turbostratic
BLG respectively. The data have been converted into log10 format for further discussion.
One obvious conclusion we can draw is that both MLG and turbostratic BLG have strong
carrier density dependence while AB stacked BLG not so much. In order to quantitatively
analyze how Lϕ decays against temperture, we processed the data by linear fitting log10Lϕ

versus log10T at Vg = 0 V of these three devices. The fitting information is shown in
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Fig. 4.9 (a) Quantum correction in longitudinal conductivity σxx as a function of low magnetic
field (between -0.3 T and 0.3 T) of the monolayer (red), AB stacked bilayer (blue) and
turbostratic bilayer (green) devices, showing different WL curves (T = 1.4 K). (b) Phase
coherence length Lϕ of the three devices as a function of temperature.

the inset of figure 4.10. For both MLG and turbostratic BLG, the fitting slope is around
-1/3, and there is not much difference at different carrier concentrations. Thus we can
obtain log10(Lϕ) ∝ −1/3log10(T ), then Lϕ ∝ T−1/3. And for AB stacked BLG, we can get
Lϕ ∝ T−1/2. The exponent n in the relation Lϕ ∝ T n determines the electron scattering types
and can be a useful tool to examine the dephasing source at high temperature. Noted that
Lϕ =

√
Dτϕ , then we can find the dephasing rate τ−1

ϕ ∝ L−2
ϕ . Therefore, we can conclude

that, for MLG and turbostratic BLG, the electron dephasing rate τ−1
ϕ ∝ T 2/3, while for AB

stacked BLG, τ−1
ϕ ∝ T . Our results show that the electron dephasing rate for AB stacked

BLG obeys the linear temperature dependence caused by electron-electron scattering in the
diffusive regime [7]:

τ
−1
ϕ = α

kBT
2EFτp

ln(
2EFτp

h̄
) (4.2)

where α is a coefficient of the order of unity, τp is the momentum relaxation rate and is the
highest in the system and comes from charged impurities, and does not affect the electron
interference according to the assumption of the theory used in equation (4.1) [179]. This
diffusive regime happens when the condition kBT τp/h̄ < 1 is satisfied, which means that
during the interaction time h̄/kBT two interacting electrons experience many collisions with
impurities. And for MLG and turbostratic BLG, electron dephasing rate τ−1

ϕ is proportional
to T 2/3. In these two cases the exponent 2/3 is smaller than 1, which cannot be explained
by the electron-electron scattering in the diffusive regime. Unfortunately, we did not find
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Fig. 4.10 Subtracted phase coherence length Lϕ from WL measurements of (a) MLG, (b)
AB stacked BLG and (c) turbostratic BLG devices as a function of temperature at different
carrier concentrations. The presented data is processed by log10. Inset: Information about
the linear fitting of the data at Vg = 0 V.
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a theory in 2D systems which the electron scattering in MLG and turbostratic BLG is in
agreement with, but according to Nyquist scattering, the dephasing rate τ−1

ϕ in 1D systems is
predicted to follow a law on temperature τ−1

ϕ ∝ T 2/3 [131, 8, 2]. Nyquist scattering describes
the scattering of an electron by the field fluctuations of the other surrounding electrons. The
statistical nature of these fluctuations makes this scattering different for each electron, thus
the electronic ensemble loses its coherence. We argue that due to the electron-hole puddle
formation in MLG and turbostratic BLG close to the Dirac point, quasi 1D channels might
form in the Hall bar devices. Therefore, Nyquist scattering can account for the scattering
mechanism but only close to the Dirac point.

4.3.3 Energy Loss Rates

When a electric current is applied passing through the device at a fixed ambient temperature,
the carriers are unable to lose energy at a sufficient rate to reach thermal equilibrium with
the lattice and thus the electron temperature goes up [69, 119, 115, 11]. The energy loss
rates were determined by comparison of the current and temperature dependence of the WL
peak. Both temperature and current through the devices can suppress the WL peak. Here,
we take AB stacked BLG device as an example to see how the current through the device
works on the WL effect. Figure 4.11(a) shows the comparison between the temperature (full
blue circles) and current (open red circles) dependences of the WL peak height ∆Rxx. The
peak height ∆Rxx are calculated as the difference of the longitudinal resistance Rxx between 0
T and fixed small magnetic field of 0.3 T, sufficient to entirely suppress the WL behavior.
All the current dependence data were taken at a very low lattice temperature of 1.4 K, while
all the temperature dependence data were obtained from measurements using a low fixed
current of 100 nA. ∆Rxx is significantly reduced by increasing current or lattice temperature,
and the comparison of the suppressed values between these two dependences generates a
measurement method of the carrier temperature Te as a function of applied current I. Figure
4.11(b) shows the the relationship between the carrier temperature Te and the corresponding
current I by measuring the suppression of the weak localization peak heights ∆Rxx. We
can see that log10Te is in linear relationship with log10I with the following fitting equation:
log10Te = 0.5789log10I + 4.11935, and the fitting details are show in the inset of figure
4.11(b). This result suggests that an increase of the lattice temperature and the electron
temperature will have an equal effect on the weak localization. This study can be used to
explore the hot carrier energy loss rate in CVD graphene [11].

When the system is in a steady state, energy balance requires that the energy loss rate
should equal the power input to the system. The energy loss rate per carrier for a given



4.3 Twist angle dependent electron scattering in as-grown CVD bilayer graphene 75

Fig. 4.11 (a) Comparison between the temperature (full blue circles) and current (open red
circles) dependences of the weak localization peak height ∆Rxx. (b) The relationship between
electron temperature Te and current I obtained using this WL method. Inset: Linear fitting
information about the Te − I relationship.
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electron temperature can be therefore evaluated using the following equation from the Te − I
relationships:

P(Te) =
I2Rxx

nA
, (4.3)

where I is the applied current, Rxx is the longitudinal resistance, n is the carrier density,
and A is the area within the device over which Rxx is measured. The carrier density n for
the AB stacked BLG device is 6.59×1012cm−2 given by the equation n = ε0εrV(Dirac)/te
introduced in chapter 2 and device area as A = 6.4×10−11m2. The temperature dependence
of the energy loss rates P(Te) by measuring the WL peak height over a carrier temperature
range of 1.4 K to 70 K is shown in figure 4.12. We first fitted the temperature-dependent
energy loss rates P(Te) to the Bloch-Grüneisen power-law [182, 112] (see the red dash curve
in figure 4.12):

P(Te) = α(n)(T 4
e −T 4

l ), (4.4)

where α(n) is a carrier density dependent scaling factor and the lattice temperature Tl is 1.4
K. The scaling factor α in our fitting equals 8×10−18WK−4/carrier. Previous studies on
monolayer graphene produced by epitaxial growth on SiC, exfoliation, and CVD [11], as well
as bilayer epitaxial graphene [85] suggest that the energy loss rates of hot carrier in graphene
follow the predicted Bloch-Grüneisen power-law behaviour of T 4

e at carrier temperatures
from 1.4 K up to 100 K, due to electron-acoustic phonon interactions. Our result shows that
the energy loss rates in AB stacked CVD graphene are closer to a T 3

e power-law (see the blue
solid curve in figure 4.12), especially for high temperatures, where we can see a decrease in
the energy loss rate. This finding is in agreement with that reported for exfoliated graphene
[12] at high carrier temperatures. It is likely that at higher temperatures, some additional
contribution may happen due to optical phonons in both graphene and the silicon substrate
[182, 36]. Moveover, theoretical work from [173] proposed that disorder-assisted scattering
(supercollisions) dominates electron-lattice cooling and plays a disproportionately large role
in the energy loss processes for higher-energy carriers. This theory predicts that for strongly
disordered samples, energy loss rates should exhibit a T 3

e dependence at high temperatures.
Our CVD BLG contains significant amounts of disorder and hence the disorder-assisted
scattering process could potentially account for the energy loss rates of our device relative to
the theoretical predictions [112]. This can be suggested from the comparison of T 3

e and T 4
e

fittings in figure 4.12.
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Fig. 4.12 Energy loss rate per carrier as a function of carrier temperature for AB stacked
bilayer CVD graphene. The energy loss rates are fitted by the T 4 and T 3 power laws shown
as the red dash curve and blue solid curve respectively.
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4.4 Conclusions

We investigated electron scattering in scalable CVD graphene FETs in this chapter. First, We
have demonstrated a scalable and simple approach towards encapsulating and passivating
high quality CVD graphene electronic devices by using a gaseous H2O pretreatment to
allow direct ALD of dense Al2O3 films on graphene. We obtained thorough passivation
of graphene FETs and almost doping-free ambipolar behaviour whilst enhancing carrier
mobility under ambient conditions. The result of quantum Hall measurement suggests that the
Hall bar device processed by this technique is promising for further electronic applications.
This fabrication progress lays a foundation for scalable graphene research and operation of
graphene-related electronic devices.

Second, by studying electrical characterisation and magnetotransport phenomena in
encapsulated CVD grown AB stacked and large twist angle (30◦) bilayer graphene FETs, as
well as monolayer graphene FETs for reference, we show that electron scattering processes
and hot electron effects can be tuned. It was found that phase coherence length in AB
stacked graphene is longer than that in monolayer but decays faster with temperature, while
large twist angle bilayer graphene has the longest phase coherence length among them with
enhanced inter-valley scattering. The result for the temperature dependent dephasing rate
in AB stacked bilayer graphene is in agreement with electron-electron scattering in the
diffusive regime, while Nyquist scattering might account for the scattering mechanism in
monolayer graphene and twist angle graphene due to quasi 1D channels formation caused by
electron-hole puddles. The result suggests that an increase of the lattice temperature and the
electron temperature will have an equal effect on the weak localization. This study can be
used to explore the hot carrier energy loss rate in CVD graphene. We have also explored the
hot carrier effects by comparing the WL suppressions using lattice temperature and current
through the device. It was found that the carrier temperature dependent energy loss rates
of hot carriers in AB stacked CVD bilayer graphene follow closer to a T 3

e power-law than
a T 4

e power-law, predicted in most previous graphene studies. This result enables us better
understand the hot carrier behaviours in CVD graphene.

The study of twist angle dependent of electron scattering in CVD graphene can be further
performed on a doped silicon substrate, so that the carrier density can be tuned continuously
and effectively at low tempertures. Overall, the findings in this chapter have a significant
impact on the study of CVD graphene and its further scalable device applications.



Chapter 5

Induced Spin-orbit Coupling in
Graphene/TMD Heterostructures

5.1 Introduction

The significant success of graphene has been followed by the development of other impressive
2D materials that can form atomic sheets with exotic properties [91, 52, 41, 25]. Transition
metal dichalcogenide (TMD) monolayers represent a large family of 2D materials, which are
atomically thin semiconductors of the type MX2, with M a transition metal atom and X a
chalcogen atom. Similar to graphene, 2D TMDs demonstrate unique electrical and optical
properties that evolve from the quantum confinement and surface effects that arise during
the transition of an indirect bandgap to a direct bandgap when bulk materials are scaled
down to monolayers [41]. The tunable bandgap, combined with atomic-scale thickness and
strong spin-orbit coupling (SOC) makes them interesting for fundamental studies and for
applications in next-generation spintronics, electronics and optoelectronics devices [125].

Since its discovery, graphene has been a promising material for spintronics due to
its low spin–orbit coupling [86, 110, 72], negligible hyperfine interaction [191, 81], and
high electron mobility [22, 51, 35, 14], which are obvious advantages for transporting
spin information over long distances [66]. However, such outstanding transport properties
prevent novel quantum states from emerging, such as the quantum anomalous Hall state
[125] and also limit the capability to engineer active spintronics, where strong spin–orbit
coupling is crucial for creating and manipulating spin currents. Many efforts have been
made towards increasing SOC in graphene. Due to their strong SOC and good interface
matching with graphene, TMDs provide an ideal platform to enhance spin-dependent features
of graphene while maintaining its superior charge transport properties, by proximity effect
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if graphene and TMDs are stacked vertically to form a heterostructure. Tungsten disulfide
(WS2) is one member of the TMDs family and bulk WS2 is an indirect-bandgap (1.4 eV)
semiconductor, but is expected to turn into a direct-bandgap (2.1 eV) material when exfoliated
into monolayer films [113]. This chapter presents a study of graphene/tungsten disulfide
(Gr/WS2) heterostructure, aiming for achieving enhanced SOC in CVD graphene for further
CVD graphene spintronics applications.

The works in this chapter are completed in collaboration with Dr. Ye Fan (who supplied
the heterostructure material and helped with analysing the data) from Centre for Advanced
Photonics and Electronics (CAPE) of the University of Cambridge. The results in this chapter
is expected to be published in another article "Induced spin-orbit coupling in CVD graphene
- transition metal dichalcogenide heterostructures", which is in preparation.

5.2 Device Description and Measurement Setup

The WS2 was exfoliated using Scotch tape onto a Si/SiO2 substrate with dielectric thickness
300 nm. The graphene was grown by CVD approach in an Aixtron BM Pro 4” reactor
using 25 µm thick Cu foil (Alfar Aesar, 99.8%), methane, hydrogen and argon at a tem-
perature of approximately 1070 °C. The grown CVD graphene was then tranferred onto
the silicon substrate with WS2 already prepared using a wet transfer method with PMMA.
The cartoon in figure 5.1(a) illustrates graphene stacked on the top of TMD monolayer to
form a heterostructure. A long Hall bar was patterned using electron beam lithography fol-
lowed by thermal evaporation of Ti/Au (20 nm/120 nm) contacts. This device was designed
with half the Hall bar (one half along its length) being only graphene and the other half a
Gr/WS2 heterostructure, for comparisons in order to better investigate how WS2 influence
graphene performance. The AutoCAD design and optical microscope photograph of the long
graphene/WS2 Hall bar device measured in this chapter are shown in figure 5.1(b) and 5.1(c)
with the left half of the Hall bar being a graphene/WS2 heterostructure, while the right half
only graphene.

The experiments were carried out in a 1.2 K pumped He-4 cryostat in Thin Film Mag-
netism (TFM) group of Cavendish Laboratory with a four-terminal measurement setup. 1
V excitation is supplied by a Lock-in amplifier at a frequency of 77 Hz. This AC voltage
is mixed with a DC bias supplied by an SMU before going through a 10 MΩ resistor to
form a constant AC current I = 100 nA through the device. Another two Lock-ins are used
to monitor the AC voltage drops (longitudinal voltage Vxx and Hall voltage VXY ) of the two
parts of the long Hall bar simultaneously. Another SMU is used to apply a back-gate voltage
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Fig. 5.1 (a) Cartoon illustrating graphene are stacked on top of transition metal dichalcogenide
monolayer to form a heterostructure. (b) AutoCAD design and (c) Optical microscope
photograph of the long graphene/WS2 Hall bar device measured in this chapter, with the left
half of the Hall bar being a graphene/WS2 heterostructure, while the right half only graphene.
Scale bars are 10 µm.
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Fig. 5.2 (a) Longitudinal resistivity ρxx as a function of back-gate voltage Vg, with blue and
red lines showing Gr/WS2 heterostructure half and graphene half of the Hall bar respectively.
The aspect ratio of both parts of the Hall bar is 3.5. (b) Longitudinal resistivity ρxx as a
function of magnetic field B at Vg = 0 V, showing Shubnikov–de Haas effect (SdH) in both
parts of the device. (T = 1.5 K)

Vg to the Si substrate via a 300 nm SiO2 dielectric. The magnetic field can be applied up to
10 T and the temperature can vary from a base temperature of 1.5 K up to over 100 K.

5.3 Results and Discussion

We first study the device at base temperature of 1.5 K. Figure 5.2(a) shows longitudinal
resistivity ρxx as a function of back-gate Vg, with blue and red lines showing the Gr/WS2

heterostructure half and graphene half of the Hall bar respectively. The aspect ratio of both
parts of the Hall bar is 3.5, which was taken into account when calculating the longitudinal
resistivity. Both parts are n-type doped, whereas it is more doped when WS2 and graphene
form a heterostructure, as the location of the Dirac point of the only graphene part is at
VDirac(Gr) = -3.5 V, while it is VDirac(Gr/WS2) = -7 V for the heterostructure part. Another point
that can be deduced from figure 5.2(a) is that the electrical quality of graphene is reduced
when WS2 is introduced, because the peak of the Gr/WS2 field effect is broader than that
in graphene. This can also be deduced from a quantitative comparison in mobility. Using
µ = (|dσ/dVg|max)/CG, where the gate capacitance is taken to be CG = 11.6 nFcm−2 for
300 nm SiO2, we calculated the electron mobility of both parts µGr = 2471 cm2V−1s−1 and
µGr/WS2 = 1162 cm2V−1s−1. This suggests WS2 might induce some disorders into graphene
when we stack the two kinds of material. In terms of how the longitudinal resistivity ρxx

varies against magnetic field B, figure 5.2(b) exhibits Shubnikov–de Haas effect (SdH) in
both parts of the device, when B changes between -9 T and 9 T and Vg = 0 V. The first Landau
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Fig. 5.3 Longitudinal resistivity ρxx as a function of back-gate voltage Vg and magnetic field
B, showing Landau fan diagrams in (a) graphene and (b) Gr/WS2 heterostructure respectively.
Hall resistivity ρXY as a function of back-gate voltage Vg and magnetic field B for (c) graphene
and (d) Gr/WS2 heterostructure respectively. (T = 1.5 K)

gap in graphene starts to appear at around |B| ≈ 5 T, while it will be at some point when |B|
> 9 T for the heterostructure. This means that WS2 broadens the Landau levels in graphene.

In order to obtain a big map of the device resistivity as a function of back-gate voltage
Vg and magnetic field B, we drew the 2D plots in figure 5.3. Figure 5.3(a) and figure
5.3(b) show the longitudinal resistivity ρxx, exhibiting the Landau fan diagrams in graphene
and Gr/WS2 heterostructure respectively, while figure 5.3(c) and figure 5.3(d) show the
corresponding Hall resistivity. One obvious feature of the figures is that the Landau levels
start to separate when |B| > 2 T. The Landau energy levels are given by the equation
En = sgn(n)υF

√
2eh̄B|n|, where n is the Landau level index. For a certain n, the Landau

energy levels En are proportional to
√

B. When |B| < 2 T, no obvious Landau gap formation
suggests the disorder in the sample broadens the Landau levels so that adjacent Landau levels
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Fig. 5.4 Longitudinal conductivity as a function of back-gate voltage Vg and magnetic field B
between -0.4 T and 0.4 T, exhibiting weak localization measurement results against back-gate
voltage in (a) graphene and (b) Gr/WS2 heterostructure respectively. The average processed
data over back-gate voltage is shown above the 2D maps. (T = 1.5 K)

merge together and no gaps can be observed until B is strong enough to separate those energy
levels. We can also observe some differences between graphene and Gr/WS2. Landau gaps
corresponding to filling factor ν = ±2,±6,±10,±14 can be observed in graphene, while
only ν =±2,±6,±10 Landau gaps are observable in Gr/WS2 in the same Vg and B ranges.
This phenomenon reveals the fact that WS2 introduces disorder into graphene leading to
Landau energy levels broadening. In addition, from the Hall resistivity maps, we observed
that the first plateau corresponding to filling factor ν =±2 with a resistance value ∼ 0.5h/e2.
This result is in agreement with the theoretical equation σxy = 4(n+ 1/2)e2/h, showing
half-integer quantum Hall effect in graphene [94].

Then we move on to the low magnetic field measurement to study the weak localization
effect in both graphene and Gr/WS2 heterostructure. The 2D maps of weak localization
measurement results plotted against back-gate voltage Vg with a magnetic range between
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Fig. 5.5 Weak localization measurement results against back-gate voltage Vg in (a) graphene
and (b) Gr/WS2 heterostructure respectively. Line plots of the quantum correction in con-
ductance at Vg = −3V are shown in (c) and (d) of graphene and Gr/WS2 heterostructure
respectively. (e) shows the line plot of the quantum correction in conductance at Vg =−5V
of Gr/WS2 heterostructure. (T = 1.5 K)
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-0.4 T and 0.4 T, are shown in figure 5.4(a) and figure 5.4(b) corresponding to graphene
and Gr/WS2 heterostructure respectively. The conductance fluctuations (which can be seen
more clearly in figure 5.5(c), 5.5(d) and 5.5(e)) are much stronger than that observed in the
Hall bar devices of chapter 4. One possible reason is that the width of the Hall bar device
discussed in this chapter is 1 µm, narrower than that in chapter 4, whose width is 4 µm. In
this case, edge scattering will play a role [193, 53]. Moreover, the number of channels will
be less in the narrow channel so that a fluctuation in one channel will result in large total
fluctuation in the narrower channel. Another possibility is that since the device measured
in this chapter has not been processed by an ALD encapsulation technique, it was exposed
to the environment and might be contaminated to some extent. In order to get rid of the
influence of conductance fluctuations and better analyze the weak localization, we averaged
the data over the back-gate voltage Vg and obtained the weak localization curves shown above
the map figures. The details about the weak localization analysis will be discussed later.
Then we subtracted the conductivity value at zero magnetic field and plotted the 2D maps
of the conductance correction ∆σxx(B) = σxx(B)−σxx(0), as shown in figure 5.5(a) and
figure 5.5(b) for the graphene and Gr/WS2 heterostructure respectively. The region with red
colour means the conductivity is positive, while blue means negative. We can see a negative
change in conductivity in the Gr/WS2 heterostructure around Vg = -5 V. The conductance
correction ∆σxx is negative at higher magnetic field and when we look close at the region
around zero magnetic field at Vg = -5 V (see figure 5.5(e)), we can see a flat plateau with
conductance fluctuations. By comparison, we also exhibit the line plots for graphene and the
Gr/WS2 heterostructure at Vg = -3 V in figure 5.5(c) and figure 5.5(d) respectively, with their
fitting curves. The fitting is done using the following equation [179] in terms of the quantum
correction in conductivity ∆σ(B) = σ(B)−σ(B = 0) by using the theory in [127] described
in chapter 2 for monolayer graphene:

∆σ(B) =
e2

πh
[F(

τ
−1
B

τ
−1
ϕ

)−F(
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−1
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−1
ϕ +2τ

−1
i

)−2F(
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−1
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−1
ϕ + τ

−1
i + τ

−1
∗

)]. (5.1)

Here, F(z) = ln(z)+ψ(0.5+ z−1), ψ(x) is the digamma function, τ
−1
B = 4eDB/h̄ and D is

the diffusion coefficient. The first term in this equation is responsible for weak localization,
while the anti-localization is determined by the second and third terms with negative sign.
The quantum correction depends not only on the dephasing time τϕ , but on the elastic
scattering times τi and τ∗, indicating intervalley scattering time and intravalley scattering
time. As shown in figure 2.5 of chapter 2, the shape of the magnetoconductance curves can
be very different as it is controlled by the interplay between all scattering times involved.
When the intervalley scattering time is much longer than the intravalley time, τi ≪ τ∗, the
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conductance correction curve will always be positive (see solid line in figure 2.5), like most
regions in figure 5.5(a) and figure 5.5(b). However, for the Gr/WS2 heterostructure, when Vg

is around -5 V, negative magnetoconductance appears at higher magnetic field (blue colour
region). This means in this small region, the intervalley scattering is stronger than intravalley
(see dashed line in figure 2.5). We explain this as resulting from charged puddles formation
in WS2. The WS2 might turn on at certain electric fields and the rough surface of WS2 leads
to some charged puddles, which can screen the top layer of graphene. This can also explain
why the longitudinal resistivity ρxx jumps at a gate voltage of around Vg = -5 V from figure
5.2(a). Another interesting point in figure 5.5(e) is that a small flat plateau forms instead
of a sharp dip near zero B field when Vg ≈ -5 V, denoted by the red colour circle. This is a
combined effect of both WL and WAL. Figure 5.6 shows the AFM image of the material
used in this chapter. The bottom right corner is the surface of the Gr/WS2 heterostructure
showing some disorder. Therefore, under certain electric fields (Vg ≈ -5 V), some regions of
the graphene are induced spin-orbit coupling from WS2 while some are not. This results in
some regions exhibiting WL while some WAL. Therefore, the overall result is a flat plateau
in figure 5.5(e).

We then move on to the temperature dependent WL measurements. Figure 5.7 presents
the WL measurement results of this Hall bar device, showing conductance correction ∆σ(B)
as a function of temperature at three different carrier concentrations, with (a) and (b) corre-
sponding to Vg = 0 V, (c) and (d) to Vg = -3.5 V (the Dirac point of graphene), and (e) and (f)
to Vg = -7 V (the Dirac point of Gr/WS2). The left figures (a), (c) and (e) are for graphene,
while the right figures (b), (d) and (f) are for Gr/WS2 heterostructure. Obvious conductance
fluctuations can be observed in both parts, but the fluctuations can be removed by averaging
the carrier concentration over a certain range as discussed previously shown in figure 5.4.
The WL measurements are performed from the base temperature 1.5 K to around 100 K and
from figure 5.7 one can see that the temperature dependent magnetoconductance still exists
at temperatures T ∼ 100 K, while in conventional 2D systems the quantum correction usually
disappears at much lower temperatures, due to intensive electron-phonon scattering [70].
The weak electron-phonon scattering in graphene [87] makes it possible to analyse WL in a
large temperature range. By fitting the conductance correction ∆σ(B) of WL measurement
using equation (5.1), we calculated the phase coherence length Lϕ of graphene and Gr/WS2

in this device at these three different carrier concentrations. The calculated results are shown
in figure 5.8. Both phase coherence length and temperature are converted into log10 format
for further analysis. From the temperature dependent phase coherence length results, we
can draw the following conclusions. First, Lϕ in graphene is generally longer than that in
Gr/WS2, especially at low temperature T < 15 K, except for Vg = -3.5 V (the Dirac point
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Fig. 5.6 Atomic force microscope image of the material used to fabricate the Gr/WS2 Hall
bar device in this chapter, showing the boundary of graphene (top left corner) and Gr/WS2
heterostructure (bottom right corner).
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Fig. 5.7 Conductance correction ∆σ(B) of weak localization measurement as a function of
temperature at three different carrier concentrations, with (a) and (b) corresponding to Vg = 0
V, (c) and (d) to Vg = -3.5 V (the Dirac point of graphene), and (e) and (f) to Vg = -7 V (the
Dirac point of Gr/WS2). The left figures (a), (c) and (e) are the results of graphene, while the
right figures (b), (d) and (f) are for the Gr/WS2 heterostructure.
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of graphene), where Lϕ in graphene is reduced from ∼ 200 nm down to ∼ 120 nm at base
temperature, and it decays faster than that in Gr/WS2 and is shorter than that in Gr/WS2

when T > 15 K. Second, Lϕ in Gr/WS2 seems weakly dependent on the carrier concentration
with values around 100 nm at base temperature. Moreover, it is also weakly dependent on
the temperature when T < 20 K probably due to enhanced spin-orbit coupling in graphene
induced by WS2. Finally, we performed linear fitting on log10(Lϕ) against log10(T ) to
quantitatively describe how Lϕ decays against temperature T and the fitting information are
shown by the right of each graph of figure 5.8.

From the linear fitting results in figure 5.8, we can obtain the exponents nL for phase
coherence length Lϕ against temperature T in the relation Lϕ ∝ T nL , which are listed in table
5.1. At zero back-gate voltage Vg = 0 V, Lϕ ∝ T−1/2 for graphene while Lϕ ∝ T−1/3 for
Gr/WS2. And for both Vg = -3.5 V and Vg = -7 V, Lϕ ∝ T−1/3 for graphene while Lϕ ∝ T−1/4

for Gr/WS2. Given that Lϕ =
√

Dτϕ , we can find the dephasing rate τ−1
ϕ ∝ L−2

ϕ , thus the
exponent for dephasing rate τ−1

ϕ is nτ−1 = −2nL. The value of nτ−1 of both graphene and
Gr/WS2 at the three different back-gate voltages are also listed in table 5.1. The exponent
nL or nτ−1 determines the electron scattering types and can be a useful tool to examine the
dephasing sources at high temperature. Our results show that the nτ−1 values in graphene are
higher that that in Gr/WS2 for all the three cases, which suggests that the dephasing process
against temperature is faster in graphene than that in Gr/WS2. We can argue the graphene
part is cleaner than the heterostructure part. To be specific, for the case at zero back-gate
voltage, we observed the dephasing rates τ−1

ϕ are found to have T 1 and T 2/3 dependence
for graphene and Gr/WS2 respectively, and saturate at extremely low temperatures, where
we argue that the exponents 1 and 2/3 represent quasi-2D and quasi-1D transport with
electron-electron interaction in the diffusive regime respectively [7, 44]. This explanation
has been discussed in chapter 4 for bilayer graphene. For a very clean sample, there is an
alternative inelastic electron scattering mechanism, which gives a parabolic temperature
dependence, τ−1

ϕ ∝ T 2 [138, 179]. In this case, electron-electron interaction is mediated
by only a few impurities and the electron-electron scattering is in the ballistic regime. The
quasi-1D channel formation in Gr/WS2 heterostructure can be easily understood from the
surface roughness visible in the AFM photograph in figure 5.6. In terms of cases at Vg = -3.5
V and Vg = -7 V, the dephasing rate in graphene obeys the T 2/3 dependence law probably
due to quasi-1D transport happening at these carrier concentrations, but Gr/WS2 shows a
T 1/2 dependent dephasing rate. So far we did not find a physics model from literature to
explain the T 1/2 dependence behaviour in graphene. The reason might lie in the fact that the
electronic properties of graphene are changed by the WS2, i.e. induced spin-orbit coupling in
Gr/WS2 by the proximity effect. The physics underlying our results is still under discussion.
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Fig. 5.8 Subtracted phase coherence length as a function of temperature based on the
previous weak localization measurement results at three different carrier concentrations, with
corresponding to (a) Vg = 0 V, (b) Vg = -3.5 V (the Dirac point of graphene), and (c) Vg = -7
V (the Dirac point of Gr/WS2). The corresponding linear fitting lines are also shown with
fitting information exhibited by the right of each graph. The blue colour stands for graphene
and red for Gr/WS2.
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Table 5.1 Phase coherence length Lϕ and dephasing rate τ−1
ϕ exponents against temperature

T.

nL (Graphene) nτ−1 (Graphene) nL (Gr/WS2) nτ−1 (Gr/WS2)

Vg = 0V -1/2 1 -1/3 2/3
Vg =−3.5V -1/3 2/3 -1/4 1/2

Vg = 7V -1/3 2/3 -1/4 1/2

5.4 Conclusions

This chapter presents a study of a Gr/WS2 heterostructure, with exfoliated WS2 stacked on
top of CVD graphene, aiming for achieving enhanced SOC in CVD graphene for further
CVD graphene spintronics applications. The material was patterned into a long Hall bar with
half its length being a Gr/WS2 heterostructure and the other half being only graphene for
reference. Electron transport measurements were performed as a function of magnetic field,
electric field and temperature. The phase coherence length was found to be reduced in the
heterostructure compared with only graphene at low temperature, and a special transition
from weak localization (WL) to weak anti-localization (WAL) occurred around a certain
carrier concentration possibly due to surface roughness induced patches. Moreover, the
dominant scattering mechanism in the heterostructure only weakly depends on temperature
up to 20 K, with phase coherence length value around 100 nm at low temperatures. This
weak temperature dependence is probably due to induced spin-orbit coupling in Gr/WS2 by a
proximity effect. Finally, we discussed the dephasing rate against temperature quantitatively
to explore the electron scattering types and examine the dephasing sources at high temperature.
Some physics in terms of electron scattering in Gr/WS2 still requires further explanation.

The study of graphene/TMD heterostructures can be further optimized by stacking CVD
grown TMD material on top of CVD graphene, in which case we can not only realize a more
scalable route, but also expect to observe a strong induced spin-orbit coupling in graphene
due to less surface ripples. The results of this chapter provide insight into fabrication and
operation of scalable graphene spintronic devices, opening a path for the future applications
of graphene-based spintronics.



Chapter 6

Quantum Transport in Graphene
Nanoribbons and Quantum Hall
Antidots

The previous two experimental chapters discussed the Hall bar devices, the minimum features
of which are over one micron. The study of micro-size Hall bar devices is useful for
characterizing the properties of the graphene material, whereas if the graphene is patterned
into sub-micron nanostructures i.e. quantum dots, quantum transport phenomenon such as
coulomb blockade, and Aharonov-Bohm effect, can be probed. This chapter discusses two
types of graphene nanostructures: nanoribbons patterned in epitaxial bilayer graphene on
silicon carbide and quantum Hall antidots on CVD graphene.

Despite the high growth cost of SiC epitaxial graphene, its wafer-scale growth enables
large scale production compared with exfoliated graphene, and its natural insulating substrate
makes it suffer less potential contamination caused by graphene transfer from other substrates
(i.e. CVD graphene transfer from a Cu substrate) [16, 17]. The first half of this chapter studies
electron transport in nanostructures patterned in bilayer graphene patches grown epitaxially
on SiC as a function of doping, magnetic field, and temperature, and multiple quantum dots
formation is observed in graphene nanoribbons (GNRs). The results have been published in
the journal Carbon, entitled ’Observation of Coulomb blockade in nanostructured epitaxial
bilayer graphene on SiC’ [43]. This work is in collaboration with my colleague Cassandra
Chua, who designed and fabricated the devices and we worked together to carry out the low
temperature measurements and analyse the data. The material is sourced from Chalmers
University of Technology in Sweden.

The second half of this chapter will discuss a quantum antidot between a pair of split gates
based on a CVD graphene Hall bar, which was discussed in chapter 4. The quantum Hall
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antidots can effectively avoid the disorder caused by etched edges and enable graphene dots
to perform better compared to conventional etched quantum dots. The tunnelling between
localized antidot states and extended quantum Hall edge states is studied and Aharonov-Bohm
oscillations are observed and analysed.

6.1 Silicon Carbide Graphene Nanoribbons

Although SiC provides a naturally insulating substrate and direct growth avoids contamination
and sample degradation incurred during transfer or exfoliation, the strong n-type doping
of as-grown material [90, 183, 111] must be neutralised in order to tune to the Dirac point
[146, 120] where tunnelling and single-electron charging effects can be observed. In this
section, a combination of side- and corona-discharge gating [114] is used to tune the doping
and single-electron charging effects are observed in nanostructured bilayer graphene patches
on the Si-face (0001) of SiC substrates [185]. The development of single-electron tunnelling
spectroscopy in SiC graphene would not only provide additional insights about the graphene-
SiC interaction but also enable the fabrication of large arrays of single-electron quantum
devices such as pumps [45] and spin qubits [165].

6.1.1 Sample Preparation and Measurement

The devices studied in this section are defined by electron-beam lithography and dry-etched
using an O2 plasma. To modify the global carrier density we use corona-discharge gating
[114], which involves spraying charges on a dielectric layer spin-coated over the device, and
a local graphene side gate for fine tuning the doping over a narrower range. We focus on the
behaviour of a bilayer GNR device with width (W) ≈ 100 nm and length (L) of ≈ 700 nm
with a side gate ≈ 180 nm from the nanoribbon channel. A Kelvin probe micrograph [147]
confirming that the nanoribbon is predominantly composed of bilayer graphene is shown in
figure 6.1(a). Figure 6.1(b) presents a plot of the two-terminal conductance as a function of
the number of negative discharges from the ion gun. As expected, the conductance drops due
to the reduction in electron carrier density. Hall effect measurements from samples fabricated
from similar wafers would suggest the doping of as-prepared devices is 1013 carriers per
cm2. To examine the low-temperature behaviour at different carrier densities we measured at
three stages of discharge doping and cooldowns. In the absence of precise knowledge of the
doping we refer to these as high (HD), medium (MD), and low (LD) doping, indicated in
figure 6.1(b). Electron transport is investigated by two-terminal measurement with fields up
to B = 8 T and temperatures down to T = 1.4 K.
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Fig. 6.1 (a) Kelvin probe micrograph of the graphene nanoribbon, where light and dark
correspond to bilayer and single layer graphene, respectively. (b) Conductance at room
temperature as a function of the number of corona discharge shots, with arrows indicating
the three different carrier concentrations studied. (c) Conductance as a function of side-gate
voltage at HD (blue), MD (green), and LD (red). Conductance as a function of source drain
bias (VSD) and side gate voltage (VSG) for (d) HD, (e) MD, and (f) LD. (g)–(i) Conductance
as a function of source-drain bias showing the maximum gap (T = 1.4 K).
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6.1.2 Results and Discussion

Figure 6.1(c) demonstrates a comparison of the linear conductance measured at VSD = 1 mV
as a function of side-gate voltage (VSG) at 1.4 K for each doping level. At HD and MD the
conductance exhibits reproducible fluctuations, but for LD it is mostly within the noise floor.
To uncover the origin of this behaviour we performed bias spectroscopy by sweeping VSD and
VSG and plot the charge-stability diagrams in figure 6.1(d) - (f). At HD the conductance is
suppressed but remains non-zero (soft gap) for ≈ 1 mV around VSD = 0 V, while at MD and
LD conductance G exhibits a hard gap (where G remains zero for a finite range of VSD) of ≈ 2
mV and ≈ 5 mV, respectively (see figure 6.1(g) - (i)). Furthermore, the latter exhibit diamond
or shard-like features reminiscent of the charge stability in a network of Coulomb-blockaded
quantum dots. At LD the shards are less well defined with a periodicity in VSG of about 60
mV, but as they rarely close the total conductance at low bias is strongly suppressed for all
VSG.

We first focus on the device at the MD regime. Figure 6.2(a) shows a region of the charge
stability diagram in more detail. We observe multiple diamonds with roughly uniform height
and width. A typical diamond is shown in figure 6.2(b) and a line-cut across zero bias shows
the periodic conductance resonances as a function of VSG (see figure 6.2(c)). The maximum
source-drain gap is around 2 mV and consecutive resonances are spaced by ∆VSG ≈ 15 mV.
The periodicity over this range strongly suggests that transport occurs either via a single or a
few similar quantum dots with typical charging energy Ec ≈ 2 meV. To test this we fit the
following equation describing single-electron tunnelling through many nearly degenerate
states in the classical Coulomb blockade regime [73]:

GT = GP
(µ −E0)/kBT

sinh[(µ −E0)/kBT ]
, (6.1)

where G is the temperature-dependent conductance, µ is the chemical potential, E0 is
the energy of the resonant bound state where tunnelling occurs, Γ = ΓL + ΓR (ΓL and
ΓR are the tunnelling rates through the left and right barriers, respectively), and GP =

(e2/h)(ρΓLΓR/2Γ) (ρ is the density of bound states at the chemical potential µ). Using
T = 1.4K, and the relationship E0 = αVSG, we obtain values for GP and α that can be
compared with the lever arm deduced from the slope of their respective Coulomb diamonds.
One of the fits is shown in figure 6.2(d) and we find reasonable general agreement between
the measured and fitted lever arms, yielding an average α ≈ 0.175 meV/V.

To explore the quantum dot structure in more detail, figure 6.3(a) shows the effect of a
perpendicular magnetic field on the single-particle addition spectrum at MD. As a function
of B, the Coulomb blockade resonances fluctuate around an average energy. This behaviour
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Fig. 6.2 (a) Conductance as a function of VSD and VSG at MD. (b) Representative Coulomb
diamond outlined by the dashed box in (a). (c) Conductance as a function of VSG at zero
bias along the line in (a), showing conductance resonances (black points) and fits (red lines)
based on Coulomb blockade theory. (d) Detailed plot of the fitted peak indicated by a red dot
in (c). (T = 1.4 K)
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is now well understood and arises from anticrossings between the single-particle levels
[121, 79]. At a large particle number there are a large number of such anticrossings, so the
resonances exhibit kinks and slopes around 10 meV/T (see figure 6.3(a)) without shifting
uniformly in energy [40]. The number of peaks also roughly doubles and the average period
in VSG halves to around 5 mV. At 8 T the gap in source-drain bias shrinks leading to smaller
Coulomb diamonds [figure 6.3(b)] and increase in the average conductance. Figure 6.3(c)
plots the bias sweeps averaged across side-gate voltage at increasing magnetic fields and
shows a softening of the gap for fields above 4 T and a shrinking of the gap to around 1 meV
by 8 T. Such strong positive magnetoconductance is characteristic of GNRs and is associated
with closing of both the transport and source-drain gaps [40]. This can be explained by an
increase in the characteristic size Lc of the quantum dots and the consequent decrease in the
energy required to hop between them. In GNRs there is strong evidence that quantum dots
form due to potential fluctuations, which in SiC have been described using Gaussian statistics
parameterised with the strength s ≈ 10 meV, a factor of 5 less than on SiO2. Quantum dots
form at MD when Fermi level EF is within s, and tunnel barriers form between adjacent
electron-hole puddles due to the quantum confinement gap ∆1D. For a 100 nm wide GNR, the
quantum confinement gap ∆1D is comparable with the disorder potential s, which is depicted
in figure 6.3(d). Transport is dominated by a few QDs and the conductance exhibits periodic
transmission resonances (see figure 6.2(c)). When a magnetic field is applied, the density of
states decreases in the bulk of the puddles while it increases at their edges. Electron transport
through the GNR is therefore not confined to a particular puddle but can be delocalized in
the GNR owing to chiral edge channels [10]. The consequent increase in the size Lc of the
islands and reduction in charging energy provides a natural explanation for the shorter period
and smaller source-drain bias gap in figure 6.3.

While the behaviour at MD fits within the original framework developed for potential/edge
disorder-induced QDs in exfoliated monolayer GNRs [21], at LD the interpretation is more
complicated due to presence of a vertical-field induced bandgap. It has been shown previously
that the combined influence of charge transfer from a polymer and the buffer layer can open
a gap of ∆BL ≈ 30meV in bilayer patches on SiC [42]. As implied already by the absence
of peaks in the conductance at LD, resonant transmission through states at the band edges
would be avoided as s < ∆BL. The magnetotransport at LD is shown in figure 6.4 proving that
the source-drain gap does not shrink between 0 T and 8 T (see figure 6.4(a)), and changes
non-monotonically as a function of increasing magnetic field (see figure 6.4(b)). When VSD >
2 mV, the shard-like features do appear as a function of VSD, indicating that transport still
proceeds via localized states above this energy, but the presence of such states complicates
unambiguous extraction of ∆BL from bias spectroscopy.
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Fig. 6.3 (a) Conductance as a function of VSG and B at MD (main panel). Raw data differen-
tiated and segmented such that positive and negative slopes are white and black, respectively.
Trajectories of peaks are highlighted by red lines (upper left). The number of peaks as a
function of magnetic field is shown in upper right panel. (b) Conductance as a function of
VSD and VSG at 8T . (c) Plot of G as a function averaged across side gate voltage at 0, 2, 4
and 8 T. (d) Schematic diagrams showing a possible realization of the disorder potential and
quantum confinement gap along the GNR at B = 0 T (lower) and B = 8 T (upper). (T = 1.4 K)
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Fig. 6.4 (a) G as a function of VSD and VSG at 0 T and 8 T at LD. (b) Left: gap in G(VSD)
measured at fixed VSG as a function of B. Right: side-gate sweeps as a function of magnetic
field, differentiated and segmented in the same way as figure 6.3(a). (c) Dependence of the
conductance as a function of inverse temperature for each doping level. Inset: Conductance
as a function of temperature. (d) Schematic energy as a function of position along the GNR
for the case s < ∆BL (upper), where transport occurs via variable-range hopping, and for
thermal activation above T ∗ if s > ∆BL (lower).
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The temperature dependence of the conductance is also investigated to probe gap for-
mation in GNRs. Figure 6.4(c) presents the dependence of the conductance as a function
of inverse temperature for the three different doping levels. In theory, at high temperature,
thermal activation of electrons is described by

G ∝ exp(Ea/2kBT ), (6.2)

either between adjacent localized states (Ea = Ec) or via extended states above a uniformly
gapped region (Ea = ∆BL or ∆1D). However at low temperature, variable-range hopping
(VRH) leads to

G ∝ exp(−(T0/T )γ), (6.3)

where T0 is the characteristic temperature for hopping, and γ = 1/2 for both 1D Mott and
Efros-Shlovski VRH [168]. By fitting the data, we do observe a very clear change in
behaviour at T ∗ ≈ 3.2 K for LD and 3.6 K for MD and HD, with Ea ≈ 6 meV for T > T ∗

(see figure 6.4(c)). Figure 6.4(d) illustrates the energy as a function of position along the
GNR for the case s < ∆BL (upper), where transport occurs via variable-range hopping, and
for thermal activation above T ∗ if s > ∆BL (lower).

VRH is expected to dominate when the thermal energy drops to roughly 1/10 of the
activation energy of an individual island and our measured Ea/kT ∗ ≈ 5 is in reasonable agree-
ment. The similarity in the values of Ea suggests that it is set by the quantum confinement
gap ∆1D, rather than by ∆BL, which is larger close to the Dirac Point.

6.1.3 Conclusion

In summary, we have studied electron transport in a SiC epitaxial bilayer graphene nanoribbon
as a function of doping, magnetic field, and temperature. Away from charge neutrality,
transport is only weakly modulated by changes in carrier concentration induced by a local
side-gate. At medium doping close to charge neutrality, electron transport resembles that
in exfoliated graphene nanoribbons and is well described by tunnelling of single electrons
through a network of Coulomb-blockaded islands, with multiple quantum dots forming in
series due to the interplay between disorder and quantum confinement. Under the influence
of an external magnetic field, Coulomb blockade resonances fluctuate around an average
energy and the gap shrinks as a function of magnetic field. At charge neutrality, however,
conduction is less insensitive to external magnetic fields. Conduction resonances are absent
and transport is suppressed even at high magnetic field, consistent with a bandgap induced
by broken layer symmetry.
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Fig. 6.5 Schematic diagram of side view layer structure of the CVD graphene antidot device.

6.2 Graphene Quantum Hall Antidots

Due to its exceptional electronic properties, graphene is an ideal material to develop single-
electron devices such as spin qubits and quantized charge pumps. The key advantage with
graphene is that tunnel barriers have a low capacitance, which makes it possible to transfer
charge quickly and pump high currents at gigahertz frequency [45]. However, one drawback
with etched dots is that spin-active edges and potential disorder lead to confined states (this
has been discussed in the SiC GNRs) and short spin coherence times. Moreover, it is not
possible to define quantum dots in monolayer graphene with electric fields because of the
Dirac spectrum. In a strong perpendicular magnetic field, however, a Landau gap opens
in the spectrum and it should be possible to confine charge in “antidots” with edges using
electrostatic fields. Antidots form at potential hills and are well studied in III-V 2DEGs [63].
Using split gates it is possible to bring quantum Hall edge states into tunnel contact and to
detect Coulomb blockade of localized states encircling the antidot. This section will discuss
this type of graphene antidots (GADs) in quantum Hall regime.

6.2.1 Device Fabrication and Measurement

To scale up single-electron devices in graphene, we fabricate GADs devices based on CVD
graphene Hall bars, which are patterned by optical lithography and have been discussed in
chapter 4. With our fabrication method, each 10 mm2 chip can produce 36 devices. The layer
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(a)

(b)

Fig. 6.6 (a) Left: SEM picture of a CVD graphene antidot device before top antidot gate VAD
deposition, with six contacts connected and a pair of split gates deposited in the centre. The
dark rectangular area is crosslinked PMMA as the further antidot gate dielectric. Right: AFM
picture of zoom-in of the central antidot hole region between a pair of split gates. (b) Left:
SEM picture of a completed CVD graphene antidot device, with four-terminal measurement
setup. Right: SEM picture of zoom-in of the central antidot region between a pair of split
gates.
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structure of the device is illustrated in 6.5. The CVD graphene is transferred onto the Si/SiO2

substrate directly, after which we fabricate a Hall bar and encapsulate with 90 nm alumina
dielectric layer by ALD [4]. In the middle of the Hall bar we define a pair of split gates with
1 µm width and around 600 nm separation by EBL. In order to deposit the antidot gate metal
inside the QPC, another layer of crosslinked PMMA with thickness around 150 nm is used as
the antidot gate dielectric with a small hole (diameter around 300 nm) patterned in the centre,
which is shown in the scanning electron microscopy (SEM) picture of figure 6.2. Finally we
put on the antidot gate metal through the hole.

The SEM picture of completed device is presented in figure 6.2, with a simple four-
terminal measurement circuit. Electron transport measurements on GADs devices are
performed using a four-terminal method with magnetic fields up to B = 8 T and temperatures
down to T = 50 mK in the MX400 dilution refrigerator of the SP group. A 100 nA constant
current is supplied by a Lock-in amplifier, which outputs 1 V voltage through a 10 MΩ

resistor. Vxx and Vxy are recorded by another two Lock-ins. Back-gate VBG, top antidot gate
VAD, and a pair of split gates VSG1 and VSG2 are applied by four SIM DC voltage sources.

6.2.2 Results and Discussion

We first characterize the device by measuring the resistance as a function of back-gate VBG

and a perpendicular magnetic field B, leading to a Landau fan diagram shown in figure 6.7(a),
together with line-cuts of the back-gate sweeps at B = 0 T (figure 6.7(b)) and B = 8 T (figure
6.7(c)). Back-gate VBG sweep at B = 0 T suggests that the sample is slightly n-type doped
and the position of the Dirac point is VDirac ≈ -4 V. The mobility can be calculated µ ≈ 2700
cm2V−1s−1 by the equation µ = |dσ/dVBG|max/CG, where CG is the gate capacitance. When
the perpendicular magnetic field is applied, Landau quantization forms with E ∝ ±

√
NB

(N = 0,1,2, ...), where N is Landau level index [201]. This, in turn, gives rise to half-integer
quantization of Hall conductance with filling factor ν = 4(N + 1/2). When the magnetic
field is increasing from 0 T to 8 T, the Landau gaps become broader and broader. And when
B reaches 8 T, the two Landau gaps closest to the charge neutrality point appear at VBG =
-0.6 V and VBG = -11.5 V, corresponding to filling factor ν = 2 and ν = −2, respectively
(see figure 6.7, the two dips closest to the Dirac point). Inside these Landau gaps, ballistic
transport happens along the edge of the Hall bar and there is no electron states in the bulk.
The quantum Hall antidots work in these edge states of quantum Hall regime.

As monolayer graphene is gapless, top-gates, such as quantum point contact (QPC)
split gates applied on the Hall bar device can lead to the formation of a gate-controllable
p-n junction [137]. Figure 6.8 exhibits a graphene Hall bar device with two types of top
gates on it used for testing how top gates pinch off the Hall bar channel. This device is
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Fig. 6.7 (a) Landau fan diagram of a measured graphene Hall bar device, with black dashed
lines indicating the regions at different filling factors. (b)(c) Linecuts of the back-gate sweeps
at B = 0 T and B = 8 T, respectively. (T = 50 mK)
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Fig. 6.8 Left: AutoCAD design of a graphene Hall bar device with two types of top gates
(green layer). Right: Longitudinal resistance as a function of these two types top gates when
the device is at quantum Hall edge states, with black curve showing the bar gate sweep and
red curve the QPC split gates sweep (B = 6 T, T = 1.4 K).

fabricated in the same batch of the antidots device shown in figure 6.6 and investigated under
a perpendicular magnetic field to form ballistic edge channels. Two types of top gates are
studied separately, which are the top bar gate going cross the whole channel and a pair of
QPC split gates. Both gates are shown in the green layer of the AutoCAD design of the left
of figure 6.8. The right of figure 6.8 presents the longitudinal resistance Rxx as a function of
these two types top gates when the device has quantum Hall edge states, with the black curve
showing the bar gate sweep and the red curve the QPC split gates sweep. We can see that
when the bar gate is over 15 V and QPC split gates over 25 V, a n-p-n junction forms along
the Hall bar and the channel is depleted with a longitudinal resistance Rxx ≈ 0.7h/e2, which
is different from that observed in exfoliated graphene QPC induced n-p-n junction reported
in the reference [137], where they observed a 0.5h/e2 plateau with an explanation of chaotic
mixing of edge channels. According to the Landauer–Buttiker formula [26], the coefficient
0.7 is the combination result of numbers of transmitted and reflected edge states.

We then focus back on our GADs device at a dilution fridge temperature 45 mK with B =
8 T. The back-gate is set at VBG = -0.6 V, where the device is in the quantum Hall edge states
regime and p-type doped with filling factor ν = 2, and both QPC split gates VQPC and antidot
gate VAD are applied negatively to the device to tune the channel conductivity. Figure 6.9
exhibits a mapping of longitudinal resistance as a function of both VQPC and VAD. This 2D
plot consists of three regions, denoted with 1, 2, 3 in figure 6.9. In region 1, VQPC and VAD are
not strong enough to interact with each other, therefore the channel is totally open without
junctions being formed and the charge carrier can transport in a ballistic manner through it.
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Fig. 6.9 2D mapping of longitudinal resistance as a function of both VQPC and VAD (B = 8T,
T = 45 mK).

When VQPC and VAD increase to some value, interaction occurs between the antidot localised
states and the extended quantum Hall edge states, which is the region 2 in 6.9. And in region
3, both VQPC and VAD are negative enough to reflect the edge state completely by forming a
p-n-p junction along the Hall bar. Among these three regions, region 2 is of the most interest,
as VAD plays a role and the interaction between antidot localised states and the extended
quantum Hall edge states allows us to better understand single-electron tunnelling effect in
graphene.

Magnetotransport measurements are performed in region 2 to probe single-electron
behaviours in the GADs device. Figure 6.10(a) shows a magnetotransport spectroscope
against VAD. Here, we also take the derivative of longitudinal resistance ∆Rxx with respect to
VAD in order to see more clearly how Rxx changes in a periodic manner. Aharonov-Bohm like
oscillations can be observed and we get the the gradient of the slope ∆VAD/∆B∼ 8. In order to
get insight into the period of VAD, we plotted the line sweeps in 6.10(b), suggesting the period
of antidot gate voltage in the Aharonov-Bohm oscillations is ∆VAD ∼ 0.7V . Combining the
gradient of the slope ∆VAD/∆B ∼ 8, we can thus obtain the period of magnetic field in the
Aharonov-Bohm oscillations ∆B ∼ 0.0875T . According to the following equation,
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Fig. 6.10 (a) Magnetotransport spectroscope of both longitudinal resistance Rxx and its
derivative ∆Rxx with respect to VAD showing Aharonov-Bohm like oscillations. (b) Processed
line plots suggesting the period of antidot gate voltage ∆VAD ∼ 0.7 V.

∆B =
1

νAD

h
eπr2

AD
, (6.4)

where the the filling factor νAD = 2, we can therefore calculate the radius of the real defined
antidot rAD ≈ 90 nm, which is much smaller than the designed size r = 150 nm. This
calculated result suggests that the antidot is not actually defined as designed. One possible
reason is that the antidot top-gate metal may not be evaporated and deposited fully through
the antidot hole. Another possibility might be that the antidot is induced by potential disorder
instead due to impurities of the graphene material. This argument can be supported by
the result in figure 6.7(c), where there is not a zero in the Rxx implying the mobility is not
high enough or there is too much variation in doping over the sample. This will change the
chances of observing Aharonov-Bohm oscillations in antidot devices by providing other
back scattering mechanisms. In order to solve this problem, high quality graphene material
such as hBN-graphene-hBN heterostructure, is needed and fabrication process needs to be
improved to make the antidot gate contact better. However, due to the limited time of my
PhD course, no further works are done to improve the performance of GADs devices.

We also investigated lever arm of different gates i.e. back-gate VBG, QPC split gates VQPC

and antidot top-gate VAD in the GADs device discussed above. Figure 6.11 demonstrates the
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Fig. 6.11 Derivative of longitudinal resistance showing lever arms between different gates,
i.e. back-gate VBG, QPC split gates VQPC and antidot top-gate VAD in the GADs device.
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Table 6.1 Gate parameters of the GADs device

Gate type A(µm2) d(nm) εr

VBG 96 280 3.9
VQPC 4.4 90 9.3 ∼ 11.5
VAD 0.07 90 9.3 ∼ 11.5

comparison of the lever arms between VBG and VQPC, and VBG and VAD. We can thus obtain
the following relationship:

VBG : VQPC : VAD ≈ 1 : 5 : 10. (6.5)

Therefore, the capacitance relationship of these three gates can also be obtained:

CBG : CQPC : CAD ≈ 10 : 2 : 1. (6.6)

However, from the geometry of the designed device, we can calculate the gate capacitance
relationship using the equation C = εrε0A/d and the parameters from table 6.1:

CBG : CQPC : CAD ≈ 160 : 60 : 1. (6.7)

The antidot gate capacitance is much bigger than that calculated from the designed geometry,
which also suggests that the antidot is not well-defined. These gate oscillations due to
Coulomb blockade are also the signatures of quantum dot formation in this system, suggesting
that single-electron tunnelling occurs between the quantum Hall edge states and localized
states encircling the antidot inside the pair of QPC split gates.

6.2.3 Conclusions and Future Work

Despite its unique properties, it is not possible to define quantum dots in monolayer graphene
with electric fields because of the Dirac spectrum, and etched quantum dots in graphene shows
confined states and short spin coherence times due to spin-active edges and potential disorder.
Quantum Hall antidots stand out as an alternative way to create quantum dots by opening
Landau gaps in graphene. We fabricated and measured the GADs devices in a perpendicular
magnetic field. Although we routinely see the quantum Hall effect, Aharonov-Bohm effect
and Coulomb blockade effect, signatures of the effective antidots have so far proved elusive,
probably due to the disorder-broadening of the Landau levels. Calculations of both the
quantum antidots size from the Aharonov-Bohm oscillations and quantum capacitance of the
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Fig. 6.12 (a) Circuit used to pump single electrons. Radio-frequency signals are applied to
QPC split gates. (b) Illustration of the two main stages of pumping where individual charges
are transferred. The QPC split gates modulate the separation between the edge states and the
antidot tunnel rate.

antidot gate prove that the antidot in our GADs device is not well-defined and is probably
defined by disorder in the system under the antidot.

For the future work in terms of GADs, high quality graphene material such as hBN-
encapsulated graphene, is needed due to its clean surface and low potential disorder. More-
over, tunnel barriers in graphene have a low capacitance, which makes it possible to transfer
charge quickly and pump high currents at radio-frequency. Therefore, quantum antidots
provide a new idea for the realization of a fast and accurate quantized charge pumping
technology in graphene. Figure 6.12 demonstrates a proposal for realizing charge pumping
with GADs by applying radio-frequency signals to the QPC split gates. When driven by
radio frequency electrodes, the coupling between edge states and the antidote localized states
is adjusted and electrons can tunnel through the barriers between them one by one, creating a
single electron pump. The QPC split gates modulate the separation between the edge states
and the antidot tunnel rate. Compared with the charge pumping in etched double quantum
dots [45], GADs is more suitable for the realization of fast and accurate quantized charge
pumping due to the lack of the influence of edge disorder, and thus enables more accurate
redefinition of Ampere in the single electron aspect, which could provide a powerful tool in
the research of quantum metrology.





Chapter 7

Developing Radio-frequency
Reflectometry in Quantum Dots

7.1 Introduction

The experiments discussed in the last three chapters were performed with conventional low
frequency cryogenic transport measurements. However, the limited bandwidth caused by
the high wiring capacitance and large sample resistance, as well as the large 1/f noise due to
the motion of background charges, constrict the measurement sensitivity and accuracy. In
order to overcome this obstacle, this chapter presents a radio-frequency (RF) reflectometry
technique and applies this technique to two types of quantum dot systems, GaAs quantum
antidots and graphene double quantum dots (DQDs). Using radio-frequency reflectometry
we probe single-electron tunnelling behaviour in GaAs ADs and graphene DQDs with high
sensitivity and at millikelvin temperatures.

The experiments in this chapter were carried out in a dilution refrigerator named MX400
in the Semiconductor Physics group at the Cavendish Laboratory. The high frequency wiring
is shown in figure 3.4 adapted from Karl Petersson’s PhD thesis. The RF reflectometry
technique has been introduced in chapter 3. This chapter will discuss the development of
the potential applications of RF reflectometry techniques in GaAs ADs and graphene DQDs,
corresponding to capacitive and resistive couplings to the devices, respectively.
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Fig. 7.1 Schematic of the radio-frequency reflectometry circuit.
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Fig. 7.2 (a) Optical microscope photograph of the GaAs antidots device measured in this
chapter.(b) Radio-frequency voltage coupled to a tank circuit comprising an inductor and
capacitor in series with the antidot. The reflected voltage is sensitive to charge transitions in
the antidot and will allow state readout. Modified from Lee Bassett’s PhD thesis.

7.2 GaAs Quantum Antidots

7.2.1 Device Description and Measurement Setup

The GaAs ADs samples measured in this chapter were fabricated by Lee Bassett, another
previous PhD student in the SP group, who has investigated electron-electron interaction in
GaAs ADs at low frequency. Figure 7.2(a) shows an optical microscope photograph of a
measured antidot sample in this chapter. The sample was fabricated from a GaAs/AlGaAs
quantum well structure containing a 2DEG situated 300 nm below the surface with a signifi-
cantly reduced carrier density of ne = 1.1×1011cm−2. On top of the substrate, metal gates
were patterned by EBL. A second metal layer was patterned on top of 350 nm of cross-linked
PMMA in order to contact the central antidot gate so that voltages (VAD, VQPC1, and VQPC2)
could be applied independently. A negative voltage on the antidot gate creates an antidot by
depleting the 2DEG underneath. The two split gates, which are used to bring the extended
edge states close to the antidot, form parallel one-dimensional constrictions. The scanning
electron micrograph photograph of the split gates and the antidot are shown in figure 7.2(b).

The measurements were performed using an RF reflectometry technique in the dilution
refrigerator MX400 mentioned above with temperatures down to 40 mK, and magnetic
fields up to 8 T. The RF tank circuit is applied capacitively to the antidot gate is shown in
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Fig. 7.3 The pinch-off effect of each single gate of the QPC split gates with the other gate
voltage at a set value.

figure 7.2(b) as well. As introduced in chapter 3, the RF response is sensitive to the device
impedance change, exhibiting resonant frequency change and corresponding phase shift. The
idea of how the RF reflectometry works on the GaAs andidot can be understood from the
schematic circuit in figure 7.1. The RF signal, which is created by a ultra high frequency
lock-in (UHFLI) is attenuated at room temperature and transmitted to the sample via a
directional coupler at 4.2 K. The RF signal then meets the DC signal via a Bias Tee at the
mixing chamber, whose temperature is below 50 mK, before entering into the LC tank circuit
and reaching the device. The reflected signal is then sent back to the cryogenic amplifier
which is thermally anchored at 4.2 K. The signal is amplified again at room temperature
before being demodulated and recorded by the UHFLI. Therefore, the reflected voltage (i.e.
amplitude and phase) is sensitive to charge transitions in the antidot and will allow state
readout.

7.2.2 Results and Discussion

We start with two-terminal low frequency transport measurements to test the pinch-off status
of the one-dimensional channel created by the QPC split gates. The pinch-off effect of each
single gate of the QPC split gates with the other gate voltage at a set value is demonstrated in
figure 7.3. The channel can only be pinched off with both split gates working and the more
negative the gate voltage that is applied, the further the pinch-off goes. Figure 7.4(a) shows
the two-terminal conductance G of the one-dimensional channel as a function of both QPC
split gates voltage VQPC. The 2DEG underneath the gates starts to be depleted from ∼ -0.5 V
and when VQPC < 2 V, quantized conductance plateaus appear. When VQPC reaches ∼ -3.25
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Fig. 7.4 (a) Two terminal conductance G of the one dimensional channel as a function of both
QPC split gates voltage VQPC. Measured reflected RF amplitude (b) and the corresponding
phase change (c) as a function of VQPC.

Fig. 7.5 Measured reflected RF amplitude (a) and the corresponding phase change (b) as a
function of VAD.
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V, G = 0, the channel is completely pinched off. In the meanwhile, we also measured the
reflected RF amplitude and the corresponding phase change as shown in 7.4(b) and 7.4(c).
An obvious resonant frequency change from ∼ 280 MHz to ∼ 300 MHz occurs when VQPC ∼
-0.5 V starts to deplete the 2DEG. The change in the carrier concentration of the depleted
2DEG leads to the change of the capacitance between the antidot gate and the 2DEG. And
according to the equation f0 = 1/2π

√
LCs, the changed capacitance results in the resonant

frequency shift.
Then we investigate the RF response when the antidot gate voltage VAD is applied. A

negative voltage starts to be applied to the antidot gate to deplete the 2DEG underneath the
antidot area. The reflected RF amplitude and the corresponding phase shift are shown in
7.5(a) and 7.5(b). The antidot gate starts to deplete the 2DEG underneath when VAD ∼ -0.45
V, where there is an obvious resonant frequency f0 shifts from ∼ 280 MHz to ∼ 315 MHz,
and then f0 keeps stable until VAD ∼ -3.5 V, where f0 shifts again from ∼ 315 MHz to ∼ 320
MHz probably due to the depletion under the crosslinked regions caused by the large antidot
gate voltage.

When a perpendicular magnetic field is applied to the GaAs antidot device, we can
observe oscillations in the reflected RF voltage when magnetic field B is increasing, which is
similar to the Aharonov–Bohm oscillations but the period is not fixed. Figure 7.6(a) presents
the complex magnetoimpedance spectroscopy of the antidot. Modulation in the resistance of
the 2DEG regions gives rise to periodic horizontal oscillations (vertical lines) highlighted by
red arrows, while diagonal line (dashed) corresponds to the quantum capacitance of Landau
levels under the antidot gate. We also measured the reflected RF voltage as a function of RF
frequency and magnetic field B to see how the B effects resonant frequency. Figure 7.6(b)
and (c) demonstrate the magentoimpedance spectroscopy of the meausred antidot device
showing how resonant frequency changes against magnetic field with VAD = 0 V and VAD

= -0.6 V, corresponding to non-depletion and depletion of the region under the antidot gate
respectively.

7.2.3 Conclusion

This section presents the application of the RF reflectometry technique to the GaAs quantum
antidot device. We study the RF response as a function of QPC split gates VQPC, antidot
gate VAD and magnetic field B, suggesting the RF reflectometry technique is an useful
and sensitive tool to probe quantum capacitance changes caused by the variation in the
carrier concentration of the 2DEG. We observed some interesting oscillations in the complex
magnetoimpedance spectroscopy of the antidot. However, these phenomena still need further
investigation.
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Fig. 7.6 (a) Complex magnetoimpedance spectroscopy of the antidot. Modulation in the
resistance of the 2DEG regions gives rise to horizontal oscillations (vertical lines) highlighted
by red arrows, while diagonal line (dashed) corresponds to the quantum capacitance of
Landau levels under the antidot gate. (b)(c) Magentoimpedance spectroscopy of the antidot
showing how resonant frequency changes against magnetic field with (b) VAD = 0 V, and (c)
VAD = -0.6 V, corresponding to non-depletion and depletion of the region under the antidot
gate respectively. (T = 50 mK)
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7.3 Graphene Double Quantum Dots

The control of individual electrons and spins is of great interest in realizing quantum qubits
for quantum computation application. A graphene double quantum dots (GDQDs) system
[132] has been studied as a potential qubit with the additional possible benefit of increased
spin coherence times [181]. In addition, GDQDs have also proved to be an ideal system to
realize gigahertz charge pumping [45] for quantum metrology application, due to the low
coupling capacitance of graphene. Transport through DQDs has been widely investigated in
conventional semiconductor and exfoliated graphene [132]. This section will discuss scalable
DQDs based on CVD graphene and RF reflectometry technique will be applied to probe
single electron tunnelling in GDQDs.

7.3.1 Device Description

The CVD graphene used in fabricating DQDs is the same as that discussed in chapter 4 and
each 10 mm × 10 mm chip can produce 36 GDQDs devices, which makes it possible to
realize scalable single-electron devices in CVD graphene compared with exfoliated graphene.
I designed and fabricated two kinds of GDQDs devices, straight and wrap-around. Figure
7.7(a) shows the AutoCAD designs of one of the two kinds of GDQDs devices respectively.
The DQDs is connected with source and drain contacts via tunnel barriers, and one side gate
VSG and two plunger gates VPG1 and VPG2 are around 50 nm away from the DQDs. The side
gate is used to tune the carrier concentration of the device while the two plunger gates are
designed to change the Fermi energy on the two dots separately. The width of the tunnel
barriers of the devices vary from 50 nm to 120 nm. This variation is designed for testing
graphene etching by oxygen plasma, as if it is too narrow, the channel might be etched away
from the side and it is too wide, we cannot observe quantum confinement effect. The actual
width of the tunnel barriers of GDQDs is slightly less than the designed value due to the
shrink during the etching process. Figure 7.7(b) exhibits the atomic force microscope (AFM)
image of one of the measured straight GDQDs device in this thesis, as well as the connection
to the RF reflectometry measurement circuit. The principle of how the RF reflectometry
works on GDQDs is the same as that on the GaAs ADs, but the only difference lies in that it
is coupled directly to the source of the device rather than through the gate.

The measurements are performed with a combination of a two-terminal circuit and RF
reflectometry circuit via a bias-tee in the dilution refrigerator MX400. The RF reflectometry
circuit has been described in the previous section. In terms of the DC two-terminal setup,
a DC voltage (which can be adjusted according to the requirements) goes through a 10−3
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(a)

(b)

Fig. 7.7 (a) AutoCAD design of straight (left) and wrap-around (right) CVD graphene double
quantum dots. (b) Atomic force microscope image of one of the measured straight GDQDs
device in this thesis, with the connection to the RF reflectometry measurement circuit.

potential divider before getting into the device, and the current is pre-amplified by 108 before
being received by Keithley 2000 DMM.

7.3.2 Results and Discussion

We first measured a straight GDQDs device as shown in the AFM image in figure 7.7(b).
Before cooling the device down to fridge base temperature, we test the device at 4 K. Here,
we supply a -15 dB RF signal using ultra high frequency lock-in (UHFLI), which goes
through a 20 dB room temperature attenuator and a 35 dB low temperature attenuator and
the RF signal is reduced down to -70 dB when it reaches the device. The two-terminal
resistance of the device as a function of side-gate voltage VSG and the corresponding reflected
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RF voltage are shown in figure 7.8(a) and figure 7.8(b), respectively. We can see that the
response of the reflected RF signal is consistent with the fluctuations of the resistance,
which means the RF reflectometry technique is an useful alternative to probe the impedance
changing non-invasively. The relationship between the reflected RF voltage and the two-
terminal resistance of the device is plotted in figure 7.8(c). As described in chapter 3, the
perfect matching occurs when the transformed impedance Zt (changed by the variation in the
device impedance) equals the characteristic impedance of the transmission line Z0, where
the reflection coefficient Γ = (Zt −Z0)/(Zt +Z0) = 0 and thus the reflected RF voltage is
zero. Figure 7.8(c) suggests the best impedance match of this measurement happens at some
point R < 150 kΩ. As the two-terminal resistance of the device is higher than 150 kΩ for the
measured VSG range, we cannot reach the perfect match point. However, we can still observe
strong RF response in measuring this device. Figure 7.8(d) exhibits the frequency spectrum
of the measured reflected RF voltage and corresponding phase at three different VSG, with
blue, yellow and pink denote VSG = 0 V, 3 V and 6 V, respectively. Obvious changes in the
depth of the dip at the resonant frequency f0 ≈ 305 MHz can be observed, while there is no
observable frequency shift when VSG tunes the carrier concentration of the device, suggesting
only dissapative without dispersive processes happening. This is probably because the RF
circuit is resistively and strongly coupled to the device, and the impedance change of the
device comes mainly from the resistance change with almost no capacitance contribution.

Then the device is cooled down to the base temperature of 40 mK. Figure 7.9(a) presents
the current I through the device as a function of source-drain bias VSD. A source-drain gap
can be observed of around 0.5 mV. Then we set VSD = 1 mV and sweep the side-gate voltage
VSG. We obtain the current I through the device against VSG, which is shown in figure 7.9(b),
as well as the corresponding reflected RF voltage as a function of VSG (see figure 7.9(c)). The
combination of VSD and VSG sweeps suggests that Coulomb blockade effect can be observed
resulting from quantum dots formation in the measured device.

To get a clear signature of the DQDs, we set VSG = 2.1 V, where the current through the
device is blocked, and tune the two plunger gates separately in order to see single-electron
tunnelling effects. The results are shown in figure 7.9(d) and 7.9(e). The Coulomb gap in
VPG2 is roughly double of that in VPG1, which means that the two plunger gates might not
be of the same distance away from dots as expected, or the dots might not be defined in
the right place. In order to find the triple points as an evidence of the existence of double
dots, we reduce the source-drain bias VSD from 1 mV to 200 µV and plot a VPG1 - VPG2 2D
mapping, which is shown in figure 7.9(f). However, we are not able to see the triple points
and honeycomb diagram as expected, so the double dots are not defined in this measured
range. One possible reason for this is because of the designed geometry of the device. The
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Fig. 7.8 (a) Two-terminal resistance of the measured GDQDs device as a function of side-gate
voltage VSG. (b) Corresponding reflected RF voltage as a function of VSG. (c) Reflected RF
voltage as a function of the two-terminal resistance of the device. (d) Frequency spectrum of
the measured reflected RF voltage and corresponding phase at three different VSG, with blue,
yellow and pink denote VSG = 0 V, 3 V and 6 V, respectively. (T = 4K)
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Fig. 7.9 (a) The measured current I through the GDQDs device as a function of source-drain
bias VSD. (b) The current as a function of side-gate voltage VSG. (c) Corresponding reflected
RF voltage as a function of VSG. (d)(e) Two-terminal current through the GDQDs device as
a function of two plunger gates VPG1 and VPG2, when VSD = 1 mV and VSG = 2.1 V. (f) 2D
mapping plot of the two plunger gates at VSD = 200 µV and VSG = 2.1 V. (T = 40 mK)
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side-gate is far away from the other side of the dots, and thus it cannot tune the carrier
concentration of both dots at the same level. Another reason might be that the tunnel barrier
between the two dots is too weak to confine electrons in each single dot, so the device behaves
like a single quantum dot rather than double dots. Noted that the mobility of the graphene
material used for making the DQDs is around 1000 cm2V−1s−1, which corresponds to mean
free path around 50 nm, comparable to the smallest feature of the DQDs device, the high
disorder level in the material will influence the DQDs formation as well.

Considering the geometry of the device, we attempt to push VSG and VPG1, VPG2 to high
values and expect to see the transition from the single quantum dot regime to the double
quantum dots regime. Figure 7.10(a) presents the measured two-terminal current through the
GDQDs device as a function of side-gate voltage VSG in a long range from 0 V to 20 V at
VSD = 1 mV. The trend of the variation of the current is going down when VSG is increasing,
and particularly the current is significantly reduced to around zero when VSG is over 15 V.
This tells us that during the previous measurements, we did not tune the graphene double
dots device close to the Dirac point by using the side-gate. The Dirac point of this device
might be located somewhere where VSG > 15 V. Then we set VSG = 18 V and reduce the
source-drain bias down to VSD = 100 µV and plot the VPG1 - VPG2 2D mapping with high
plunger gate values. The mapping is exhibited in figure 7.10(b), showing that some isolated
triple points do exist, one of which is pointed out by a white dashed circle. Although we still
cannot see the honeycomb diagram as a strong evidence of double dots regime in this plot
due to the designed geometry of the device and possibly high disorder level in the material,
some observable isolated triple points could be a signature of the double dots if all the gate
parameters (VSG, VPG1 and VPG2) are tuned properly.

7.3.3 Conclusion

We fabricated and studied DQDs based on CVD graphene, and performed RF reflectometry
experiments on them at 40 mK low temperatures. Using RF reflectometry technique we probe
single-electron tunnelling in GDQDs, even though the signature of double dots is not strong
due to the designed geometry of the measured device and possibly the poor quality of the
CVD graphene. We show that the RF response is significantly dependant on the impedance
variation of the device, which allows us to detect single-electron behaviours in a non-invasive
manner.

To enhance the device performance, we plan to optimize the device designs by adjusting
the device geometry, changing the etching method and adding a separate gate in the middle
to tune the coupling between the two dots, as well as replacing the graphene gates with metal
to increase the stability. Moveover, using CVD graphene, there is the potential to scale up
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Fig. 7.10 (a) The two-terminal current through the GDQDs device as a function of side-gate
voltage VSG in a long range at VSD = 1mV . (b) 2D mapping plot of the two plunger gates at
VSD = 100µV and VSG = 18V . One of the possible triple points is pointed out by a white
dashed circle (T = 40 mK, B = 0 T).
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graphene single-electron devices, such as charge pumps based on double dots [45], and even
the parallel charge pumps leading to larger pumping currents, but this work shows that more
work is needed improving the quality of CVD graphene before it can be reliably used for
quantum devices.

7.4 Conclusion

This chapter discuss the development of the potential applications of the RF reflectometry
technique in GaAs antidots and graphene double quantum dots, corresponding to capacitive
and resistive couplings to the devices, respectively. Using radio-frequency reflectometry we
non-invasively probe quantum capacitance changes and single-electron tunnelling behaviours
in GaAs ADs and graphene DQDs with high sensitivity and at millikelvin temperatures. The
physics of the complex magnetoimpedance spectroscopy of the GaAs antidot is still under
discussion, and the design and the fabrication process of graphene double dots need to be
optimized in the future work. Moreover, it is possible the mobility in CVD graphene is not
high enough to us for nano scale quantum devices at present.





Chapter 8

Conclusions and Future Work

In this chapter I will briefly summarise the key results presented in this thesis and discuss the
future plan for research in this area based on my results.

8.1 Conclusions

This thesis investigates electron transport properties in CVD graphene nanostructured devices.
The two-dimensional character of graphene and its exceptional electronic properties make it
a promising candidate to be used in the post-silicon electronics era. However, the lack of
scalability and reproducibility of graphene devices fabricated from small exfoliated flakes
and the high cost of epitaxial graphene on silicon carbide, remain the major obstacles for
further commercialization of graphene electronics. In order to obtain large-scale high-quality
graphene material at a reasonable cost, a CVD approach stands out as a possible technique
of material production to provide a scalable route towards high electronic quality graphene,
because its wafer-scale growth enables large scale production with a low cost.

Chapter 4 laid the foundation for the fabrication and operation of scalable graphene FETs.
We have demonstrated a scalable and simple approach towards encapsulating and passivating
high quality CVD graphene electronic devices by using a gaseous H2O pretreatment to
allow direct ALD of dense Al2O3 films on graphene. Based on this approach, by studying
electrical characterisation and magnetotransport phenomena in encapsulated CVD grown
Bernal stacked and large twist angle (30◦) bilayer graphene FETs, as well as monolayer
graphene FETs for reference, we show that electron scattering processes and hot electron
effects can be tuned. It was found that the phase coherence length in AB stacked graphene
is longer than that in monolayer but decays faster with temperature, while large twist angle
bilayer graphene has the longest phase coherence length among them with enhanced inter-
valley scattering. We have also found that the carrier temperature-dependent energy loss rates
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of hot carriers in AB stacked CVD bilayer graphene follow closer to a T 3
e power-law than

a T 4
e power-law, predicted in most previous graphene studies. This result has a significant

impact on the study of CVD graphene and its further scalable device applications.
In order to enhance spin-orbit interaction in graphene for spintronics applications, chapter

5 investigated a graphene - TMD heterostructure with exfoliated WS2 stacked on the top
of CVD graphene. The material was patterned into a long Hall bar with half of its length
having a graphene/WS2 heterostructure and the other half being only graphene for reference.
A reduced phase coherence length in the graphene/WS2 heterostructure was found and a
special transition from WL to WAL occurred around a certain carrier concentration possibly
due to surface roughness-induced patches. It was also found that the dominant scattering
mechanism in the heterostructure was only weakly temperature dependent up to 20 K, with
phase coherence length value around 100 nm at low temperatures. This weak temperature
dependence is probably due to induced spin-orbit coupling in Gr/WS2 by a proximity effect.
Although some physics in terms of electron scattering in Gr/WS2 still requires further
explanation, this attempt paves a way for further studies of scalable graphene spintronic
devices.

To gain further insights into single electron phenomena as well as solve the lack of
bandgap issues in graphene, graphene was studied by being patterned into various quantum
dot structures, such as nanoribbon multiple quantum dots and quantum Hall antidots discussed
in chapter 6, as well as double quantum dots in chapter 7. Electron tranport was studied in a
SiC epitaxial bilayer graphene nanoribbon at three different carrier concentrations. Away
from charge neutrality transport is only weakly modulated by a local side-gate, while at
medium doping close to charge neutrality, electron transport resembles that in exfoliated
graphene nanoribbons and is well described by tunnelling of single electrons through a
network of Coulomb-blockaded islands, with multiple quantum dots formed in series due to
the interplay between disorder and quantum confinement. Because the linear Dirac spectrum
makes it impossible to define quantum dots in monolayer graphene by electric field, and the
quality of etched quantum dots is influenced by edge disorders, antidots in the quantum Hall
regime stand out as an alternative way to create quantum confinement by taking advantage of
Landau gaps in graphene. Although we routinely see the quantum Hall effect, Aharonov-
Bohm effect and Coulomb blockade effect, signatures of the effective antidots proved elusive,
probably due to the disorder-broadening of the Landau levels. Due to its high sensitivity
and accuracy, RF reflectometry provides a useful tool to detect single electron tunnelling in
quantum dots, so that the time scale of the charge transfer [55] and spin dephasing [152] can
be characterized. Chapter 7 was an attempt towards applying RF reflectometry technique in
GaAs antidots and graphene double quantum dots, corresponding to capacitive and resistive
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couplings to the devices, respectively. Using radio-frequency reflectometry we non-invasively
probe the impedance change and single-electron tunnelling behaviours in GaAs antidots and
graphene double dots with high sensitivity and at millikelvin temperatures. The physics of
the complex magneto-impedance spectroscopy of the GaAs antidot is still under investigation,
and the design and the fabrication process of graphene double dots need to be optimized.
This work also shows that more efforts are needed to improve the quality of CVD graphene
before it can be reliably used for quantum devices.

8.2 Future Work

In this thesis I have investigated the electron transport properties of various nanodevices
fabricated from CVD grown graphene. Although many efforts have been made to optimize
the growth and fabrication processes of CVD graphene during my PhD project, the mobility
in CVD graphene is not yet high enough to us for nano-scale quantum devices at present.
To further extend my work in the field of low-dimensional graphene research based on my
results, I propose a few ideas which might be helpful to the goal of realizing scalale graphene
FETs or quantum nanodevices.

In terms of scalable spintronics application, we plan to stack CVD grown TMD material
on top of CVD graphene, in which case we can not only realize a more scalable route, but
also expect to observe a strong induced spin-orbit coupling in graphene due to less surface
ripples. Furthermore, since the impurities and interface quality constrain the performance of
CVD graphene, we intend to combine hBN [48, 47] with CVD graphene to fabricate large-
scale high-quality graphene quantum dots and antidots devices for the purpose of quantum
metrology and quantum computation applications. In addition, gate-defined quantum dots
have been realized by a simple perpendicular electric field leading to a tunable band gap
in exfoliated graphene encapsulated with hBN [56, 13, 57]. It is also promising to produce
scalable gate-defined quantum dots devices by using bilayer CVD graphene and hBN. Finally,
once the quantum dot devices are optimized, we intend to perform RF experiments on them.
Both double dots and quantum antidots are ideal systems to realize charge pumping when
driven by fast gates. RF reflectometry technique can be combined with charge pumping
via a QPC or SET [166, 32, 151, 155, 62] to read out charge and spin states, which is also
imperative for further use in quantum computing.

Overall, this thesis presents a study of scalable nanostructured devices based on CVD
produced graphene. The research in this thesis enables us to better understand the quantum
physics in CVD graphene, and the fabrication and operation of CVD graphene nanostructures
are highly promising for future electronics.
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Appendix A

Fabrication Processing Steps of the CVD
Graphene Nano-devices

This appendix summarizes the fabrication processing steps of CVD graphene nanostructured
devices, including graphene Hall bar, graphene antidots and graphene double quantum dots
studied in this thesis. The details about the experimental techniques of each step can be
referred to chapter 3. The aim of this appendix is to provide reference for other researchers
working on this field.

Graphene Hall bar

1. Transfer CVD graphene onto a pre-cleaned silicon substrate using PMMA;

2. Pattern alignment markers and bond pads using optical lithography followed by oxygen
plasma etch and Ti/Au (5 nm/50 nm) deposition by thermal evaporation;

3. Define graphene Hall bar mesa using optical lithography followed by oxygen plasma
etch;

4. Pattern contacts using optical lithography followed by depositing Ti/Au (10 nm/120
nm) by thermal evaporation;

5. Encapsulate 90 nm Al2O3 dielectric films using a gaseous H2O pretreatment and
atomic layer deposition growing method;

6. The devices are then ready for packaging, bonding and measurements.
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Graphene Antidots

1. Transfer CVD graphene onto a pre-cleaned silicon substrate using PMMA;

2. Pattern alignment markers and bond pads using optical lithography followed by oxygen
plasma etch and Ti/Au (5 nm/50 nm) deposition by thermal evaporation;

3. Define graphene Hall bar mesa using optical lithography followed by oxygen plasma
etch;

4. Pattern contacts using optical lithography followed by depositing Ti/Au (10 nm/120
nm) by thermal evaporation;

5. Encapsulate 90 nm Al2O3 dielectric films using a gaseous H2O pretreatment and
atomic layer deposition growing method;

6. Define quantum point contact split gates using electron beam lithography followed by
evaporating Ti/Au (10 nm/80 nm) and lift-off processing;

7. Deposit a thick layer of PMMA (∼ 200 nm) followed by opening up an antidot hole
through the middle of the split gates using electron beam lithography;

8. Crosslink PMMA on a big square covering the Hall bar mesa using electron beam
lithography to form a dielectric layer;

9. Define antidot top gates and deposit Ti/Au (10 nm/80 nm) through the hole by thermal
evaporation using a rotary sample holder plate with an inclined angle (45◦) to ensure
the deposited metal can climb over the edge of the thick crosslinked PMMA dielectric
layer;

10. The devices are then ready for packaging, bonding and measurements.

Graphene Double Quantum Dots

1. Transfer CVD graphene onto a pre-cleaned silicon substrate using PMMA;

2. Pattern alignment markers and bond pads using optical lithography followed by oxygen
plasma etch and Ti/Au (5 nm/50 nm) deposition by thermal evaporation;
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3. Pattern big graphene square mesa using optical lithography followed by oxygen plasma
etch;

4. Pattern contact tracks using optical lithography followed by depositing Ti/Au (10
nm/120 nm) by thermal evaporation;

5. Define the mesa of graphene double dots and side gates using electron beam lithography
followed by oxygen plasma etch;

6. Encapsulate 90 nm Al2O3 dielectric films using a gaseous H2O pretreatment and
atomic layer deposition growing method;

7. The devices are then ready for packaging, bonding and measurements.
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