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Abstract

Over the last couple of decades, the scientific community has made large
efforts to process and store experimental and computational chemical data
and information on the world wide web. This review summarizes several
databases and ontologies available on the web for researchers to use. We
also discuss briefly the categories of chemistry data that are stored, its main
usage and how it can be accessed and understood in the framework of the
Semantic Web.
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1. Introduction1

As progress is being made in developing new and green chemical processes2

for a variety of industrial applications, an ever-growing amount of chemical3

information has been published and stored in databases online. This in-4

cludes both experimental and computational chemical data. As a result,5

understanding how to store, access, and manipulate this vast amount of in-6

formation is now key to further scientific progress. Increasingly, information7

science and mathematical methods such as data mining and graph theory8

are being used to guide various fields in chemistry and chemical engineer-9

ing. Examples include analyzing organic reaction networks to understand10

and plan new synthetic routes for green chemistry [1, 2, 3, 4], and the use11

of process informatics to develop predictive chemical kinetics for combustion12
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chemistry [5]. In addition, various approaches to access and generate chem-13

ical knowledge are being developed using, for example, semantic web and14

network analysis. Semantic web technologies like knowledge graphs offer ad-15

ditional functionality to represent chemical knowledge. In conjunction with16

semantic web services the information available in chemical databases can be17

retrieved and changed and allows the automation of model building [6, 7, 8].18

The purpose of this review is to describe some of the main current databases19

available to researchers for data mining and review, as well as to discuss ef-20

forts to use ontologies as a general model for the representation of chemistry21

data, the improvement of the quality of these data, and the generation of22

resources to share consistent chemical data for a variety of purposes.23

2. Chemical Databases24

Several large chemical databases are available in the chemistry literature,25

providing a wealth of useful chemical information for researchers to use. The26

purpose of this section is to summarize some of the key features of such27

databases, for example, what information on chemical species they store and28

how this information can be queried. The world’s largest freely accessible29

database of chemical information is PubChem [9], which stores information30

in three primary categories: compounds, substances, and bioactivities [10, 9].31

Currently, PubChem has information on 97 million compounds, 242 million32

substances, and 280 million bioactivities [10, 9]. Information in PubChem33

can be queried by standard means, such as by text search, molecular formula,34

or chemical structure. For a common molecule, such as benzene, PubChem35

contains a variety of properties. This includes 2D and 3D structures as well as36

any crystal structures which can be downloaded in standard chemical formats37

such as JavaScript Object Notation (JSON), eXtensible Markup Language38

(XML) [11], or Common Interchange Format (CIF). PubChem also computes39

standard identifiers for the species in question, such as the IUPAC name, the40

canonical SMILES identifier [12, 13], or the InChI format [14], as well as41

other vendor/chemical agency identifiers. These identifiers enable identifi-42

cation and comparison of species between databases, so are key to linking43

data for the same species from different sources. Essential computed and44

experimental chemical and physical properties for the structure are also pro-45

vided by PubChem, as is any available spectral data that has been linked to46

the structure. PubChem also provides a large amount of information on the47

biological aspects of such structures, including drug information, solubility,48
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toxicity, and biological activity, which is key data for those designing drugs49

or green synthesis routes.50

Another major database for chemical data is Reaxys, run by Elsevier51

[15, 16]. Reaxys contains much of the same information as PubChem and52

other chemical databases, such as structure, key identifiers, physical and53

chemical properties, spectral data, and biological activity for various com-54

pounds. What differentiates Reaxys is its focus on providing data for develop-55

ing synthetic routes. To this end, Reaxys has three key sets of information for56

a substance, namely preparations, reactions, and documents. Preparations57

displays key synthesis routes that can be used to prepare the substance in58

question. This includes the main reactions, reaction conditions, catalysts and59

any other information used in the synthesis routes. Each synthesis route also60

contains the source of the synthesis, which usually comes from the Journals61

and Patent databases that are linked to Reaxys via Elsevier. This enables62

the user to create a synthetic route for the substance of interest using Reaxys63

synthesis planner. Similarly, the reaction set contains the list of reactions in64

the Reaxys database which includes the substance the user has queried. The65

reactions can be filtered by structure, reagent, reaction class, solvents, cata-66

lysts, and yield among others, allowing the user to find reactions tailored to67

their application. Finally, the documents class lists the journal publications,68

patents, conference papers, and books that Reaxys has access to that are69

linked to the queried substance. This allows users of Reaxys to have access70

to both the data and source to analyze and select reactions.71

Similar to Reaxys, the Chemical Abstracts Service (CAS) [17, 18] is a col-72

lection of databases containing information on organic and inorganic chemical73

substances. This information includes chemical structures, chemical names,74

and chemical reactions. Information stored in these databases is extracted75

from a wide range of literature such as patent records, journal publications,76

conference proceedings, Ph.D. theses, and web sources. The CAS Registry77

databases contain chemical structures, names, and experimental properties78

for more than 150 million molecules [18]. Building on the scope of the CAS79

Registry, the CASREACT database [19] contains several million single- and80

multi-step chemical reactions based on the molecules and the information81

stored in the CAS database. Much like Reaxys, this is provided to help users82

find reactions for their particular chemical application.83

A key database for thermochemical data is the Active Thermochemical84

Tables (ATcT), developed by researchers at the Argonne National Labora-85

tory [20, 21]. The principle behind the ATcT is the thermochemical network86
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approach, which makes use of both experimental and theoretical reaction87

and formation enthalpies to yield estimates for the enthalpy of formation88

of the species in the network. The ATcT describes thermochemistry using89

a graph theoretic approach, with primary vertices being the enthalpies of90

formation of species, secondary vertices being the reaction enthalpies, and91

the directed edges indicating a reaction occurring between species in the net-92

work, with the weight determined by stoichiometry. A statistical approach93

is then used to analyze and solve for the optimal thermochemical values that94

yield a self-consistent solution. Typically, this is possible because there are95

multiple measurements or calculations for a given formation or reaction en-96

thalpy, providing the extra degrees of freedom necessary. This also means97

that the solution given by the ATcT can help to identify measurements that98

are potentially inconsistent with others in the network. Data computed by99

the ATcT can be found and queried online. Crucially, the reactions which100

contribute to the ATcT enthalpy of formation are displayed, as are uncer-101

tainties in the estimate of enthalpy of formation provided, making it clear102

which data is used and its degree of reliability.103

On the computational chemical database side, the largest database is104

the Computational Chemistry Comparison and Benchmark DataBase (CC-105

CBDB) for thermochemical properties of species from the National Institute106

of Standards and Technology (NIST) [22]. Information is queried by chemi-107

cal name or molecular formula. The CCCBDB stores computed information108

in the following main categories: energy, geometry, vibrations, electrostatics,109

entropy and heat capacity, and reaction. All of the computed properties are110

displayed for the different levels of theory at which they have been calcu-111

lated, with the data split into categories based on the type of computational112

chemical method used. The CCCBDB also crucially has a comparison fea-113

ture, where the user can compare the results of theoretical calculations to114

any available experimental data in NIST’s databases, as well as look at the115

effect of different theoretical methods on calculated properties.116

Other more specialized databases also exist. For example, the Alexandria117

library developed by van der Spoel et al. consists of molecular properties for118

force field development [23]. Alexandria contains molecular structures and119

properties for 2,704 compounds, many of which contain functional groups120

common to biomolecules and drugs. Alexandria contains similar informa-121

tion to the CCCBDB, but crucially provides more extensive multipole and122

polarizability calculations to guide researchers who want to develop poten-123

tials and force fields. Importantly, all properties in Alexandria are provided124
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at the same level of theory and the Gaussian input and output files from125

the calculations are also given, making reproduction of the stored informa-126

tion significantly easier. Even more specialized databases for computational127

chemists exist, such as Head-Gordon and Hait’s benchmark database specif-128

ically for DFT calculations on dipole moments, spanning a variety of func-129

tionals in the process [24]. The database from Simmie et al. is specifically130

for high-level enthalpies of formation for nitrogen based compounds [25].131

The GDB-17 database specifically enumerates small organic molecules, using132

graph-theoretic methods to span 166 billion such molecules with the aim of133

guiding new drug design [26]. Ramakrishnan et al. provide the QM9 dataset,134

containing DFT calculations on around 134,000 molecules for training new135

machine learning potentials [27]. The ANI-1 data set uniquely contains non-136

equilibrium DFT calculations, that is for molecules in conformers that are137

not their minimum energy ground state configuration [28]. ANI-1 contains138

around 20 million molecular conformations for 57,462 molecules taken from139

the GDB database. There is clearly a wide variety of chemical data, both ex-140

perimental and computational, that is available to researchers in a variety of141

fields in chemistry. This data is ever growing, and methods to store, access,142

and act on this data automatically are becoming more valuable for progress143

to be made.144

3. Ontologies for Computational Chemistry145

Given the variety of chemical data available, developing a consistent146

framework to store and access it is crucial, even more so as the amount147

of data available is expanding rapidly. Further data processing will increas-148

ingly rely on automation allowing machines to interpret, integrate, share,149

and perform reasoning with data of various formats.150

One of the early efforts in storing chemical data in a standard format was151

the introduction of Chemical Markup Language (CML) pioneered by Murray-152

Rust and coworkers [29, 30, 31, 32]. The CML format is based on XML, which153

is suitable for storing data of any level of complexity while providing semantic154

information to the data stored. CML allows the representation of complex155

chemical objects by employing the hierarchical tree structure of XML using156

chemical name tags which cover different aspects of chemistry. Over the past157

20 years, CML has been developed to represent most aspects of chemistry,158

including CMLReact for chemical reactions [33], CMLSpec for spectral data159
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[34], CML for crystallography [35], and CML for polymers (PML) [36] along160

with the standard labels and definitions for physical properties.161

Building on this established format for representing chemical data, Phan-162

dungsukanan and coworkers developed a sub-domain for storing quantum163

chemistry calculations data based on CML, termed CompChem [37]. The164

main goal of CompChem was to introduce a stricter structure into CML-165

based documents so that software tools know exactly how to validate and166

process information related to computational chemistry. To this end, the se-167

mantics of data stored in the CompChem based documents is modelled based168

on the typical nature of computational simulations or calculations, contain-169

ing information on the job type, input parameters, and output parameters170

that one would expect in these calculations. This enables the storage of a171

variety of output data from ab initio quantum chemistry calculations such172

as the results of geometry optimization, single point energy calculations, and173

frequency calculations, among others. The storage and access of this data174

was realized through a MolHub web service [37]. However, the original Mol-175

Hub did not allow for semantic inter-operability between different chemistry176

software tools, provide an efficient query engine, or guarantee the consistency177

of data.178

To alleviate these shortcomings, a novel OntoCompChem ontology has179

been developed by extending the Gainesville Core (GNVC) ontology [38]180

while supporting the CompChem convention of CML [39]. The OntoCom-181

pChem ontology is currently populated by Gaussian quantum chemistry182

calculations through an updated version of the MolHub semantic web ser-183

vice (https://como.ceb.cam.ac.uk/resources/molhub/). The OntoCom-184

pChem knowledge graph forms part of a more general knowledge graph called185

the J-Park Simulator (JPS) [40]. This architecture supports semantic inter-186

operability between different domains and allows the use of propositional187

logic, formal query language, and Semantic Web tools such as the HermiT188

[41] reasoner to check the consistency of data within the JPS knowledge189

graph. More recently, the OntoKin ontology [42, 43] has been developed as190

a component of the JPS to represent gas phase elementary reactions, which191

are the building block of large reaction mechanisms found in combustion192

and atmospheric chemistry models. The ontology allows inference engines193

to detect inconsistencies in chemical mechanisms and to perform semantic194

queries across mechanisms stored in the JPS knowledge graph. At present,195

both the OntoKin and MolHub frameworks are missing an intelligent system196

that automatically establishes semantic inter-operability between quantum197
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chemistry calculations and kinetic mechanisms. To achieve this goal, we are198

currently developing a formal framework that is based on reinforcement learn-199

ing formal tools [44], modal logic [45], and a propositional logic framework200

with binary metric operators [46] to provide formal language support.201

In addition to the JPS efforts, other semantic frameworks are currently202

in use. The Chemical Semantics Framework (CSF) [47] stores results of203

quantum chemistry calculations. The core of the CSF is the GNVC ontology204

which forms the knowledge component of the framework. However, the ontol-205

ogy does not support all of CompChem’s conventions for CML features. For206

example, some keywords in the CML format such as geometry type are not207

supported. In addition, the CSF does not support semantic inter-operability208

between different computational chemistry tools. However, the framework209

allows web agents to access and, in principle, act on data stored in the CSF,210

representing a step towards automation of the knowledge graph. The ChEBI211

database stores molecular entities focused on ’small’ chemical compounds,212

that is part of the Open Biomedical Ontologies effort. It uses the ChEBI213

ontology as a common model for classification of chemical compounds in the214

biomedical field. The ontology provides models for molecular structures such215

as hydrocarbons, common chemical roles for the molecules in the ontology,216

as well as for information pertaining to subatomic particles [48]. The ChEBI217

database can be explored using an advanced search interface, but semantic218

inter-operability and web agent access is currently not supported.219

The review of ontologies for chemistry makes it clear that plenty of effort220

is being put towards developing methods for storing, accessing, and interpret-221

ing the available chemical data in an intelligent way. Key to the success of222

these efforts will be the development of standards for the publication and re-223

porting of chemical data. By having a standard format for reporting chemical224

data, linking this information to a semantic framework or ontology becomes225

substantially easier and less error prone. Efforts to this end include the work226

of the InChI consortium [14], the Allotrope Foundation’s work on developing227

a standard data format, and the work of Cronin and coworkers on developing228

a chemical programming language that can be used to represent experimen-229

tal organic chemistry [49]. These standards will help inspire the definition of230

classes in chemical ontologies. In conjunction with this, the development of231

tools for establishing semantic frameworks, as well as agents that can act on232

this data automatically, is still in process. This will eventually enable a self-233

consistent and ever-growing chemical knowledge graph based on ontologies234

and automated by web agents.235
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4. Summary and Outlook236

In this review, we have discussed how the rapidly increasing amount of237

chemical information available to researchers has necessitated the develop-238

ment of automated methods to query, store, and share this information for a239

variety of applications. We have discussed some of the main databases and240

the usage of ontologies in the chemistry domain. Moving forward, it is hoped241

that more tools will be developed to provide more intelligent ways to create,242

update, retrieve, and maintain distributed chemical information via the Web.243

It is also necessary to develop tools to support more advanced community in-244

volvement, bridging data silos, and identifying ”best” data for the solution of245

a particular problem. Eventually, the chemical knowledge graph will be fully246

automated and self-improving to provide, for example, new synthesis routes247

and more reliable chemical models built on the experimental and chemical248

data provided in the variety of databases online.249
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