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Abstract

In this thesis, we study the representation theory of the symmetric groups &,,, their

Sylow p-subgroups P, and related algebras.

For all primes p and natural numbers n, we determine the maximum number of
distinct irreducible constituents of degree coprime to p of restrictions of irreducible
characters of &,, to &,,_1, and show that every value between 1 and this maximum is
attained. These results can be stated graph-theoretically in terms of the Young lattice,
which describes branching for symmetric groups. We present new graph isomorphisms
between certain subgraphs of the Young lattice and find self-similar structures. This
generalises from p = 2 to all p work of Ayyer, Prasad and Spallone which was central
in the construction of character correspondences for symmetric groups in the context
of the McKay Conjecture, a fundamental open problem in the representation theory of

finite groups.

Linear characters of Sylow subgroups have also played a central role in character
correspondences verifying the McKay Conjecture, becoming the focus of much current
interest. For instance, a consequence of recent work of Giannelli and Navarro shows
the existence of linear constituents in the restriction of every irreducible character of a
symmetric group to its Sylow p-subgroups. We now identify these linear constituents,
using a mixture of algebraic and combinatorial techniques including Mackey theory and

an analysis of Littlewood—Richardson coefficients.

We determine precisely when the trivial character 1p, appears as a constituent of
the restriction of an irreducible character of &,,, for all n and odd p. As a consequence,
we determine the irreducible characters of the Hecke algebra corresponding to the per-
mutation character 1p, TG". Analogous results are obtained for the alternating groups
2A,. We then extend our scope to arbitrary linear characters of P,, proving in particular
that for all p, given linear characters ¢ and ¢’ of P,, the induced characters quG" and
@' TG are equal if and only if ¢ and ¢’ are Ng, (P,)—conjugate.

Finally, we consider the representation theory of Schur algebras in all characteristics.
We classify the classical Schur algebras S(n,r) which are Ringel self-dual, using decom-
position numbers for symmetric groups, tilting module multiplicities and combinatorial

methods.
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Chapter 1

Introduction

Symmetries exist in the world all around us, from vast planetary orbits to microscopic
molecules. They play an active role in the way we process information: the existence of
symmetry allows us to filter data efficiently in order to simplify and solve many com-
plex problems. These natural phenomena can be studied in the abstract mathematical
framework of group theory and representation theory, in particular that of the symmet-
ric groups, whose importance extends beyond algebra and mathematics to all areas of
science. From Cayley’s theorem, stating that any finite group can be embedded into
a symmetric group, to the role of symmetric groups as pioneering examples for which
theories and conjectures concerning groups are first investigated, symmetric groups have
always been central in and continue to lie at the forefront of research in representation

theory.

Local-Global Conjectures. The Local-Global Conjectures form one of the most
significant families of conjectures in representation theory. Throughout, let G denote a
finite group and p a prime number. Though the ordinary representation theory of finite
groups was first developed over a century ago by mathematicians such as Frobenius,
Burnside and Schur, and modular representation theory by Brauer some decades after,
even today there are still many fundamental open problems in this vast and active area
of research.

Lying at the heart of modern representation theory, the Local-Global Conjectures
posit that certain information about the representation theory of a group G — the
‘global’ level — can be described using corresponding information about the p-local
structure of G, such as Sylow p-subgroups and Sylow normalisers, and in particular the
local subgroups of G, namely N¢g(P) for non-trivial p-subgroups P of G. We refer the
reader to [45] and [51] for detailed surveys on the topic.

Obtaining information at a global level by investigating local behaviours is both a
natural and fruitful process, most notably evidenced by the classification of finite simple
groups. Indeed, a promising strategy towards proving these conjectures is to reduce to

(smaller) groups which are well-understood, or to situations where specific machinery



may be developed, such as partitioning problems about a group into problems about
certain subgroups, or problems about group algebras into problems concerning their
blocks; verifying and understanding the conjectured statements in the case of well-known
or large families of groups; and reductions to simple groups.

Following this last approach, significant progress has already been made towards
Brauer’s Height Zero Conjecture by Kessar and Malle, who proved completely one di-
rection of the equivalence in its statement in 2013 [42], and also the McKay Conjecture
by Malle and Spéth in 2016, who resolved it completely for p = 2 [46]. Moreover, these
ideas have led to the development of novel tools, techniques and results with applications
extending beyond the immediate origins of group theory and representation theory.

All of these new developments point to the existence of some rich, underlying theory
which would explain the various local—global phenomena, but this theory is as yet elusive.
These topics have therefore generated much interest and led to a plethora of international
research activities both past and upcoming on representation theory and finite group

theory, and in particular on the Local-Global Conjectures.

The McKay Conjecture. We now focus on one key conjecture in particular. A
central member of the Local-Global Conjectures is the McKay Conjecture. As explained
by Navarro in [51], it is no exaggeration to say that this open problem is the crux of
modern representation theory. Beyond its own importance, the McKay Conjecture has
a fundamental place in this family of conjectures as an origin from which several others
were conceived, including the Alperin-McKay Conjecture, the Dade Conjecture and
Broué’s Abelian Defect Group Conjecture [45]. For a finite group G, let Irr(G) denote
the set of ordinary irreducible characters of G. For p a prime, let Irr, (G) denote the

subset of those irreducible characters of degree coprime to p.

Conjecture (McKay, 1972 [49]). Let G be a finite group and p be a prime. Let P be a
Sylow p-subgroup of G. Then

Iy (G)| = [Tty (N (P))]

where Ng(P) denotes the normaliser of P.

There have been many results over the last few decades on the McKay Conjecture,
including Isaacs [35], who verified the conjecture for all finite groups of odd order at
all primes p, and Olsson [53], for symmetric groups and general linear groups. While
deceptively simple to state, the general McKay Conjecture is still open, though remark-
able progress has been made in recent years. A landmark paper of Isaacs, Malle and
Navarro [37] reduced this to a problem concerning simple groups in 2007 using certain
equivariant maps between sets of characters, leading to a major breakthrough by Malle
and Spéath who verified the conjecture completely for p = 2 in 2016 [46].

The process of restriction of characters has played a key role in the construction of
bijections between Irr, (G) and Irr, (Ng(P)) in the case that a Sylow p-subgroup P is

self-normalizing, see for example [50] and [52] for odd p. We remark that under this



assumption, Irr, (Ng(P)) = Irry (P) coincides exactly with the set of linear characters
of P. It was later shown in [26] that symmetric groups &,, where n is a power of 2 exhibit
the same phenomenon when p = 2: one finds that the restriction of every x € Irry (G)
to P contains a unique irreducible constituent x* of degree coprime to p, and x — x*
is a correspondence of characters witnessing the truth of the McKay Conjecture. A
remarkable feature of these correspondences is that restriction is a choice-free process,
and indeed a natural operation to consider in the context of characters of a group and its
subgroups. The existence of ‘natural’ bijections respecting certain algebraic structures
or properties is a strong indication towards a theory that would explain the deeper
algebraic connections between G and its local subgroups.

Following this, the bijection in [26] became fundamental in the construction of a
canonical bijection between Irre, (S,,) and Irre (P,) for all natural numbers n in [28],
where P, denotes a Sylow 2-subgroup of &,,. Here canonical refers to the property that
the bijection commutes with the action of Galois and group automorphisms, and a purely
algebraic description of this canonical McKay bijection was later given in [38]. Another
key ingredient used in [38] is [I, Theorem 1], showing that every odd-degree irreducible
character of a symmetric group &,, contains a unique odd-degree irreducible constituent
upon restriction to &,_;. The first main result of this thesis can be summarised as

follows:

For all primes p, we describe the number of irreducible constituents of degree

coprime to p of restrictions Xl@ o forx e Irry (6,,).

This extends [I] from p = 2 to all p, and is described in more detail in Chapter

A central theme in the character theory of finite groups is the relationship between
Irr(G@) and Irr(P). Though the aforementioned results illustrate the importance of con-
sidering the restrictions of characters of finite groups to their Sylow subgroups, sur-
prisingly little is known in general when, for instance, we do not impose the condition
P = Ng(P). This is the case even for symmetric groups, that is, when p is odd. A very
recent step towards providing a fuller picture of such restrictions is the following conse-
quence of work by Giannelli and Navarro [3I]: for any prime p and any x € Irr(&,,), the
restriction of y to a Sylow p-subgroup always contains a linear constituent. In fact, they
show that if p divides the degree of x, then the restriction contains at least p different
linear constituents.

Despite this, it is not known a priori which linear constituents appear in such re-
strictions. Investigating such linear constituents is the primary focus of this thesis (see
Chapters and @ The second main result of this thesis shows that it suffices to

consider only a subfamily of those linear characters of the Sylow subgroup.

Let p be any prime. Given linear characters ¢ and v of a Sylow p-subgroup
P, of &,,, we show that the induced characters ngG" and wa" are equal if
and only if ¢ and v are Ng, (P,)—conjugate.



This is an analogue for symmetric groups of a theorem of Navarro for p-solvable
groups [50], and is described in Chapter Following this, we wish to identify those
linear constituents appearing in the restrictions of irreducible characters of symmetric
groups to their Sylow subgroups. The third main result of this thesis can be summarised

as follows:

Given a linear character ¢ of a Sylow p-subgroup P, of &,, we describe the

set of irreducible constituents of QSTG".

The case of the trivial character ¢ is studied in Chapter [5 and arbitrary ¢ in Chap-
ter

Schur algebras. In a related but distinct line of research, we investigate certain prop-
erties of Schur algebras. Around the turn of the twentieth century, Frobenius and Schur
discovered a fundamental link between the complex representation theories of the finite
symmetric groups &, and the general linear groups GL,,(C), for natural numbers n and
r, via what are now known as the Schur algebras S(n,r). These algebras lie at the inter-
section of significant areas in representation theory, capturing algebraic group theoretic
properties from GL,, but also being readily analysed using combinatorial techniques
analogous to those well-known in the study of &,..

To understand the rational representation theory of GL,,, it is enough to understand
their polynomial representations, and these in turn are equivalent to representations of
S(n,r). On the other hand, the application of so-called Schur functors passes structural
information from module categories of the Schur algebras to those of certain symmetric
groups. This is described in Green’s prominent monograph [33], which underpinned
much of the work in this area following its publication in 1980.

While we do not make explicit use of the following in our work, we must mention
the importance of Schur—Weyl duality, which relates the representations of GL,, and &,
through the tensor power E®" of the natural n-dimensional module E. This, amongst
other results, has motivated much work in recent decades to understand the close rela-
tionship between general linear groups and symmetric groups through the use of Schur
algebras.

The natural actions of GL,, and &, on E®" motivate an equivalent definition of
the Schur algebra S(n,r) as Endg, (E®"), showing that it is an endomorphism ring
of certain permutation modules for symmetric groups. This form allows us to make
a generalisation parallel to the one from symmetric group algebras to Hecke algebras
in type A, from (classical) Schur algebras S(n,r) to the quantized g-Schur algebras
Sq(n,r) as introduced by Dipper and James in [I0]. The role of the general linear group
is taken over by a certain Hopf algebra which is a quantized version of GL,. We will
not comment further here on these quantum general linear groups, except to say that
[13] provides a comprehensive introduction, in particular to their standard homological

properties.



In some sense, Schur algebras are also more well-behaved than their motivating coun-
terparts. They are finite-dimensional, unlike the group algebras of GL,, and they are
quasi-hereditary algebras, unlike the group algebras of symmetric groups. The latter
point is of particular importance. Quasi-hereditary algebras were first introduced by
Cline, Parshall and Scott in [4], connecting the rational representation theory of re-
ductive algebraic groups in positive characteristic with the Bernstein—Gelfand—-Gelfand
category O for semisimple complex Lie algebras. Quasi-hereditary algebras come in pairs
called Ringel duals, and a Ringel dual of S can be defined in terms of tilting modules
for S. This duality can be used to phrase the Kazhdan—Lusztig conjectures, another
significant family of conjectures in representation theory, in terms of maps between tilt-
ing modules and also composition factors in good or cogood filtrations [43]. Chapter

contains the final main result of this thesis, which is as follows:

We classify those (classical) Schur algebras which are Ringel self-dual.

Structure. We now describe the content of each chapter in turn.

In Chapter [3] we give best-possible bounds on the maximum number of distinct
irreducible constituents of degree coprime to p of the restriction Xl g, ,» A8 X Tums
over Irr(S,,), for any prime p and natural number n. We further determine all of the
attainable values for the numbers of such constituents. These results can also be stated
combinatorially in terms of the Young graph, a well-studied object at the interface of
representation theory and algebraic combinatorics describing the branching behaviour
of the symmetric groups. This work generalises from p = 2 to all primes p Theorem
1 of [I], which was central in the construction of character correspondences in [28] for
symmetric groups in the context of the McKay Conjecture. We then give analogous
results for character inductions, observing that more complex behaviours are exhibited
in this case, and describe graph isomorphisms between certain subgraphs of the Young
graph. This generalises from p = 2 to all primes p Theorems 2 and 3 of [I].

Fix a prime p. For each natural number n, let P, denote a Sylow p-subgroup of the
symmetric group &,,. In Chapter [4 for all natural numbers n and all primes p we show
that if ¢ and 1) are linear characters of P,, then the inductions QSTG" and wTG" are
equal if and only if ¢ and 1 are conjugate via an element of the normaliser Ng,, (P,).
This is an analogue for symmetric groups of a result of Navarro for p-solvable groups
[50).

In Chapter we determine the set of y € Irr(&,,) such that the trivial character 1p,
of P, appears as a constituent of xl P for all natural numbers n and odd primes p. We
prove analogous results for the alternating groups 2, and consequently determine the
irreducible characters of the Hecke algebras corresponding to the permutation characters
1p, 15" and 1p, 17"

Extending our investigations from the trivial character to arbitrary linear characters
¢ of P,, we describe the set Q(¢), the subset of Irr(&,,) consisting of the irreducible



constituents of d)TG". This is done in Chapter |§| using new results on Littlewood—
Richardson coefficients.

In Chapter |7, we determine when the Schur algebra S(n,r) is Ringel self-dual for
all natural numbers 3 < n < r. In particular, we complete the classification of classical
Schur algebras which are Ringel self-dual, following work of Donkin [I2] and Erdmann
and Henke [21].



Chapter 2

Preliminaries

2.1 Notation

We first record some notational conventions that will be used throughout this thesis.

Sets of numbers

We denote the set {1,2,3,...} of natural numbers by N, and the set of non-negative
integers by Np.
Form € N, welet N>, = {m,m+1,m+2,...} and N5, = {m+1,m+2,m+3,...}.
Furthermore, [m] := {1,2,...,m} and [m] :={0,1,2,...,m — 1}.

Groups and characters

For n € N, let 6,, denote the symmetric group on n points, and 2, the alternating
subgroup of &,,. Also, let C, denote a cyclic group of order n. For a set X, let SymX
be the group of permutations of X.

Let G be a finite group. Then Irr(G) denotes a complete set of ordinary irreducible
characters of G, and Lin(G) denotes the subset of those characters which are linear
(i.e. of degree 1). The trivial character of G is denoted by 1s. We also let Char(G)
denote the set of all (ordinary) characters of G.

Let p be a prime number. Define Irr)y (G) = {x € Irr(G) | p{ x(1)}. Also, Syl,(G)
denotes the set of Sylow p-subgroups of G.

Let H < G. We denote conjugation of group elements by h9 := g~ 'hg, and extend
this to subgroups so HY := {hY | h € H}. For x € Char(H) and g € G, we define
X9 € Char(HY) by setting x?(z) := x(gxg~!) for all z € HI.

The restriction of the character x from G to H is denoted by Xig, or simply Xl "
when the original group is understood. Similarly, if ¢ is a character of H then qug (or
simply quG) denotes the induction of ¢ from H to G. (If the meaning is clear from

context, we may also denote induction and restriction without the arrows.)



Symbols

Let M and N be finite-dimensional, not necessarily irreducible modules for some (finite-
dimensional) algebra A, usually a group algebra. We write M | N to mean that M is a
direct summand of IV, and use the same terminology and notation for their corresponding
characters. That is, if M (resp. N) affords the character xs (resp. xn), then we also
write xar | xnv and say that y s is a direct summand of x . We use 1 to indicate ‘is not
a direct summand of’.

As usual, d;; or 6; ; denotes the Kronecker delta for variables 7 and j, taking value
1if 4 = j and 0 otherwise. When the meaning is clear, we use the Kronecker delta for
more general objects ¢ and j than just numbers, such as (ordered) sequences of numbers,
or characters of a group.

For emphasis, disjoint unions may sometimes be written using LI. This does not
preclude AN B = () when we simply write AU B.

To ease notation, we omit extra sets of parentheses when the meaning is clear from

context. For instance, if s = (s1,...,58,) is a sequence and f is a function taking such a
sequence as its input, we will sometimes write f(s1,...,s,) for f((s1,...,Sn)). Similarly,
when we concatenate sequences, say t = (t1,...,ty,) and u = (u1, ..., u,), we may write
(t,u) for the sequence (t1,...,Em, U1, ..., Uy).

p-adic expansions

Let n € N and p be a prime number. We notate the p-adic expansion or base p expansion

of n in two ways (depending on convenience for the context at hand): either

(1) n= 22:1 a;p™, in which case t €N, a; € [p—1] for all i € [t] and 0 < ny < ng <

-+ < ny are integers (we will always specify the order of the indices n;); or

(2) n= Zfzoaipi for some t € N, so a; € {0,1,...,p— 1} for i € {0,1,...,t} and
a; # 0. (Alternatively we may also write n = ZiZO a;p' to mean there exists some
t € N such that a; = 0 for all i > t.)

We denote by v,(n) the p-adic valuation of n. That is, p"»(") is the highest power
of p dividing n.
2.1.1 Partitions

By a partition, we mean a finite non-increasing sequence A = (A1, Aa, ..., \x) of natural
numbers. We say that A is a partition of a natural number n, written A - n, if A\ +
-+ A = n. We also say that n is the size of the partition A, and write n = |\|. We
denote by P(n) the set of partitions of n and we let

P={JPMn).

neN

Hence we sometimes also write A € P(n) in place of A F n.



The \; are known as the parts of the partition. The length of A, often written I(\),
is the number of parts of A, i.e. I(A\) = k. Repeated parts are often denoted using
index notation for convenience; the meaning should always be clear from context. For
instance, (2,1,1,1) = (2,1%) # (2,1), while (p¥) could denote a single part of size p* or
(p,...,p) where the part p appears k times, and we interpret this based on context by
specifying (p*) F p* or (p*) - kp respectively.

Given a partition )\, its conjugate partition is the partition X' = (p1, po, ..., p)
where t = Ay and p; := [{j € [l(N)] | Aj > i}

Young diagrams
The Young diagram [A] corresponding to the partition A = (A1, Ag, ..., Ag) is the subset
of the Cartesian plane defined by:

A ={(,j) eENxN[1<i<k, 1<j< N}

where we view the diagram in matrix orientation, with the node (1,1) in the upper left
corner. Pictorially, [] is often drawn using left-aligned boxes (nodes) such that there are
A; boxes in row i, with the rows numbered downward (so that the top row is numbered

1). For example,

is the Young diagram of the partition (4,2,1). In particular, the Young diagram of the
conjugate partition A’ can be obtained by reflecting [A] about the main diagonal y = —z.

Call a box in the Young diagram [A] removable if there are no boxes to the right or
below it. In other words, if A = (A1,...,Ax) then a box in [\] is removable if and only
if it is the rightmost box of a row i where A; > A;41 or ¢ = k. Addable positions are
defined similarly: they are (empty) positions to which a box may be added such that the
resulting shape is the Young diagram of a partition. It is easy to see that the number
of addable positions for any [A] is one more than the number of removable boxes of [A].

We use A and [\] interchangeably when the meaning is clear from context; for in-
stance, for partitions p and A we say [p] C [A] if I(p) <I(A) and p; < \; for all ¢ < I(p),
or equally write ¢ C A. In this case we say that u is a subpartition of A (or A contains
i, or {1 is contained in ).

If 4 C X (possibly p = (), then we may define a skew diagram (or skew shape)
A\ p] :==[A]\ [¢], and call X\ p a skew partition. We refer the reader to [41], §1.4] for
more detail.



Combinatorics of partitions

The dominance ordering < on the set P of all partitions is a partial order defined by

m m

p=(ur,opmk) A=A, 00) = > w <> N Yme k],
=1 i=1

where k = max{l(u),l(\)} (and we append trailing zeros to p or A as necessary). We
sometimes also use the lezicographical ordering on P(n) for n € N, which is the total
order given by p < X if p; < A;, where ¢ := min{j | \; # p;}.

A partition X is called a hook or hook partition if Ay < 1. Equivalently, its Young
diagram does not contain the box in position (2, 2).

For e € N, we also use extensively the notions of e-hooks, e-rim hooks, leg lengths
of hooks, e-cores and e-quotients of partitions in Chapter [3] We give a brief summary
below, and refer the reader to [54, Chapter I] or [41] §2.3] for detailed definitions.

If (4,7) is a box in the Young diagram of a partition [A], then the (4, j)-hook of A
(often denoted H)(7,7)) is the set of boxes

{(',7)Ye [N |i=4and j' > j, or j =5 and i’ > i}.

A hook of X is Hx(i,7) for some (i,7) € [A].

The length or size e of a hook is the number of boxes in it, in which case we call it
an e-hook of A. We denote by H(A) the set of hooks of A and by H.()\) the subset of
H(A) consisting of those hooks of A having length divisible by e.

We also sometimes denote the size of Hy(i,7) by |Hx(%,J)| or hx(i,7); in particular,
ha(i, 7) = (Ai—j)+(N;—i)+1. The rim of Nis R(\) = {(¢',j") € [\] | (i'+1,j'+1) ¢ [A]},
and the (¢, 7)-rim hook of X\ is Rx(4,7) = {(¢,7') € R(A\) | i/ > i and j > j}. The leg
length of a hook or rim hook is one less than the number of rows it occupies, so for
instance, the leg length of H)(i,7) is A} —i = |A| =1 —\; + .

Informally, the e-core of a partition A is the partition obtained by successively remov-
ing e-(rim) hooks from A until no more can be removed, and is denoted by C.(\); this
process turns out to be well-defined, see for instance [64, Lemma 3.1]. The e-quotient
Qc(\) of a partition A is more readily described on a construction known as James’

abacus; we describe these objects in more detail in Chapter [3] for ease of reference.

Specific conventions

We conclude this section with some notation which is not necessarily standard in the
literature.

If n € N and « is a partition with c; < n, then we let (n, @) denote the concatenation
of the partitions (n) and . More generally, if 3 is another partition such that oy > f1,
then we simply denote the concatenation of o and S by (a, ). The meaning should

always be clear from context.
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For two partitions A and u, let the sum of A and u be the partition A + p :=
(A4 p1, A2+ po, . .. ) (where we introduce trailing zeros to A or u as necessary). Clearly
this definition extends to sums of multiple partitions.

Finally, we introduce some useful definitions concerning sets of partitions.

Definition 2.1. Suppose A CP. We define A :={X | A€ A} and A°:= AUA’.

Forn € N and m a positive real number, define
B.(m)={AFn| A <mand I(\) <m}.

Thus B,,(m) is the set of those partitions of n whose Young diagrams fit inside an
m x m square grid. We will usually take m to be an integer. In particular, B, (m) is

closed under taking conjugates of partitions, i.e. B, (m)° = B, (m).

2.2 The representation theory of symmetric groups

For each n € N, the complete set Irr(S,,) of irreducible characters of &,, is naturally in
bijection with P(n), the set of all partitions of n (see [41, Theorem 2.1.11] or [40, §11],
for example). For A F n, we denote the corresponding irreducible character by x*. We
sometimes identify the labelling partition with the corresponding irreducible character,
and hence write A € Irr(S,,) to denote at once the partition A of n and the irreducible
character x*; the meaning of this notation will always be clear from context. We refer
the reader to [40], [41] and [54] for detailed accounts of the representation theory of
symmetric groups and related algebraic combinatorics.

Conjugate partitions

Under the natural bijection between Irr(&,,) and P(n), the trivial character of &,
corresponds to (n), and the sign or alternating character to (1) [41l 2.1.7]. We record

another easy and useful fact.

Lemma 2.2. Let p be an odd prime, n € N and P, € Syl,(&,). Let A = n. Then
X)\an = X/\Ilpn’ where P, € Syl,(&,).

Proof. Tt is well-known that x* = x* - x(!") (see [41} 2.1.8], for example). Since p is

odd, P, is contained in the alternating subgroup of &,,, and the assertion follows. [

The Murnaghan—Nakayama Rule

The Murnaghan-Nakayama rule (see [41l 2.4.7] or [40, 21.1], for example) provides a
combinatorial formula for computing the values of the ordinary irreducible characters
of symmetric groups. This is described using skew shapes. A border strip is defined to
be a skew shape which is a rim hook in the Young diagram of some partition. If v is a

border strip, then h(7) is the leg length of such a corresponding rim hook.
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Theorem 2.3 (Murnaghan-Nakayama rule). Let r,n € N with r < n. Suppose that
wp € &, where p is an r-cycle and 7 is a permutation of the remaining n — r numbers.
Then

XMrp) =Y (= 1)MWxk (),

where the sum runs over all p C X such that [\ \ pu] is a border strip of size r. In

particular, if A\ n and o € G, is an n-cycle, then

0 if X\ is not a hook,

XNo) =
(—=1)! if X is a hook of leg length .

Corollary 2.4. Let p be a prime and A+ p. Let o0 € &, be a p-cycle, P = (o) and ¢
be the reqular character of P. Then

)\lep m - if \ is not a hook,
X =
r m' -+ (=1)'-1p if X is a hook of leg length I,

for some integers m and m’.

Proof. It follows from Theorem [2.5| (below; see also Theorem that p  x*(1) if and
only if A is a hook, since A - p.

If X is not a hook, then x*(o?) = 0 for all 5 € [p — 1] by Theorem Hence x* is a
multiple of 1, since (1) = p and 9(c?) = 0 for all i € [p — 1].

If ) is a hook of leg length [, then x*(c?) = (—1) for all i € [p— 1] by Theorem
while x*(1) = (pfl) (see the hook length formula below, for instance). But (pfl)
(—1)! (mod p), so the result follows.

a o

Degrees of irreducible characters of symmetric groups

Let p be a prime. For a partition A - n, we write A k-, n if the corresponding character
x> labelled by X has p/-degree, that is, degree coprime to p. Thus A Fp m is equivalent to
x* € Ity (&,,), and in this case we also say that A is a p/-partition of n (and sometimes
simply write A € Irr, (5,,)).
While the remarkable hook length formula (see e.g. [41l, Theorem 2.3.21))
n!

A
X (1) = — VAkn
Mi.gyem hali 1)

provides a purely combinatorial method for calculating the degrees of irreducible charac-
ters of symmetric groups, it turns out that a recursive description of p’-partitions given
by Macdonald [44] (and later developed by Olsson [54] using the theory of p-core towers)
is more convenient for our purposes. We introduce these towers briefly here, and refer
the reader to [54] for a detailed description.

We can more generally define e-quotient towers and e-core towers for all e € N.
Let A be a partition, and let its e-quotient Q.(\) be denoted by (A(®, ... A=),

12



(The e-quotient of a partition is more easily described using James’ abacus, so we
postpone its definition to Section below; we refer the reader to [54] for further
detail.) This is a sequence of e partitions. We then recursively set Q.(A(1%)) =
(A0 0 \Geie=1)) for all § € N for all (iy, . ... ,ij) € [e).

Now, let T9(\)g = (A) and for all j € N, let

TON); = (AO0 L XEmhem )y = (At ) o e

where the indexing sequences (i1, . . .,4;) are taken in lexicographical order. Each T?(\);
is a sequence of e/ partitions, and the collection of all of the sequences T9(\) j for j € Ny
is known as the e-quotient tower of A, denoted by T@()\) (or T2(\)). The e-core tower
of A\, denoted by T ()) (or T (\)) is obtained from T?(\) by replacing each partition
by its e-core. That is, TC(X) = (T(A)o, T¢(A)1,...) where T9(X)g = (Ce())) and

with indexing sequences taken in lexicographical order, for each j € N.
Given a tower sequence T' = (Tp,Ti,...) where each Tj; = (u™),..., u(¢)) is a

sequence of e/ partitions, we define |Tj| := |u(V)|+- -4 [u(¢")]. The following result was

first proven by MacDonald in [44] and is fundamental to our work in Chapter

Theorem 2.5. Let p be a prime. Let n € N with p-adic expansion n = ijo ajpj. Let

AFEn. Then > | C( YR
TNl = upas
VP(XA(l)) = =20 p_jl E—

In particular, v,(x*(1)) = 0 if and only if |TC(X\);| = a; for all j € No.

We reformulate MacDonald’s result in language that will be convenient for our pur-

poses in Theorems [3.12) and [3.13]

The Branching Theorem and the Young graph

Recall that P denotes the set of partitions of natural numbers. For A F n, we let
(A, p) € € if and only if x* is an irreducible constituent of the restriction X)‘l Sy The
Young graph Y has P as its set of vertices and £ as its set of edges.

We recall the Branching Theorem (or branching rule for symmetric groups) (see [40,
Chapter 9] or [41, Theorem 2.4.3], for instance) which tells us that

X/\len,l = Z X"

HENT

for any x* € Irr(&,,), where A\~ denotes the set of all partitions p - n — 1 such that

[1] is obtained from [A] by removing a single box. (In particular, such a box must be a

13



removable box in [A].) By Frobenius Reciprocity, we have that

AT =3

HEXT

where AT denotes the set of all partitions p - n+ 1 such that [u] is obtained from [A] by
adding a single box. Since the Young graph describes branching for symmetric groups,
it is sometimes also called the branching graph in this context. Notice, in particular,
that branching for symmetric groups is multiplicity-free.

It is useful to let &y be the trivial 1-element group, with P(0) = {0} where x°
denotes the irreducible character of &¢. In this case we may add a root vertex labelled
() to the Young graph Y, and an edge connecting it to the vertex (1).

For p a prime, let Y,/ be the subgraph of Y induced by the subset of vertices (par-

titions) labelling irreducible characters of p’-degree. By analogy, we let

Ay ={pe X [ptx*()} and NS ={pe X" [ptx"(D)}

These sets describe the neighbourhood of A in Y, whenever X is itself a p’-partition.
The branching theorem turns out to be a special case of the Littlewood—-Richardson

rule, as we will see now.

2.2.1 Littlewood—Richardson coefficients

Littlewood—Richardson coefficients arise in many contexts, appearing in the decompo-
sition of tensor products of irreducible representations of symmetric groups (and of
course, the closely related general linear groups), as coefficients when a product of two
Schur polynomials is expressed as a linear combination of Schur polynomials in the ring
of symmetric polynomials, and also in geometry and topology (see [25] and [33], for
example).

Let m,n € N with m < n. For p - m and v - n — m, the Littlewood-Richardson
rule (see [40, Chapter 16]) describes the decomposition into irreducible constituents of

the induced character
&,
u v n
O XX e xmm

with Littlewood—Richardson coefficients arising as the multiplicities.

Before we recall the Littlewood—Richardson rule, we introduce some notation and
technical definitions. By convention, the highest row of [A] for a partition A is numbered
1, but the highest row of a skew shape v = [A\ u] := [A\] \ [¢] need not be 1.

Definition 2.6. Let n € N. Let A = (A1,...,\g) F n and let C = (c1,...,¢cp,) be a
sequence of positive integers. We say that C is of weight X\ if

ie{l,...,n} + ;=4 =\
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forall j € {1,...,k}. We say that an element c; of C is good if ¢; =1 or if
ie{1,2,...,j—1} t co=c;— 1} > [{ie{,2,....i—1} : c;=c;}].

Finally, we say that the sequence C is good if ¢; is good for every j € {1,...,n}.

We can now describe the Littlewood-Richardson coefficients ¢, which we also some-

nuv
times denote by c;\w, for clarity.
Theorem 2.7 (Littlewood—Richardson rule). Let m,n € N with m < n. Let p+ m and
vEn—m. Then
6n
O XX ) Ter e = D X
AEn
where cﬁy equals the number of ways to replace the nodes of [\ p] by natural numbers
such that

(i) the sequence obtained by reading the numbers from right to left, top to bottom is a

good sequence of weight v;
(ii) the numbers are non-decreasing (weakly increasing) left to right along rows; and

(iii) the numbers are strictly increasing down columns.

Let v be a partition. We call a way of replacing the nodes of a skew shape -~
with |v| boxes by numbers satisfying conditions (i)—(iii) of Theorem a Littlewood—
Richardson filling of v of weight v. It is easy to see that every skew shape has at
least one Littlewood—Richardson filling. For convenience, let LR(7) denote the set of
all possible weights of Littlewood—Richardson fillings of a skew shape . For example,
LR((4.1)\ (2)]) = {(3). (2, )}.

Moreover, the Littlewood—Richardson coefficients described in Theorem are sym-
metric: ¢, = ¢}, for all partitions p, v and all partitions A b |u|+[v]. We write 2 [A]
if 4 is an orientation-preserving translation of the Young diagram of the partition A in
the plane. In other words, v = {(i + a,j + b) | (4,5) € [A]} for some fixed a,b € Z. We
denote by «° the 180°-rotation of v (up to translation). For A a set of partitions and/or
skew shapes, we also write v € A if v = « for some « € A.

We record below some useful lemmas.

Lemma 2.8 ([3, Lemma 4.4]). Let p and v be partitions such that [y] G [u]. The

following are equivalent:

(1) [ER([n\ )] =1;

(i) there is a unique Littlewood—Richardson filling of [\ 7];
(i) [\ 7] =[] or [\ ]° & [v], for some partition v - || — 1.

Lemma 2.9. Let v be a skew shape. Suppose the non-empty rows of v are numbered
1<7r; <re <...<ry. Then in any Littlewood—Richardson filling of v, the boxes in
row r; can only be filled with numbers from {1,2,... i}, for eachi € {1,...,t}.
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Proof. This is immediate from conditions (i)—(iii) of Theorem O

Lemma 2.10. Let p and v be partitions. Let X be a partition of |u| + |v| and suppose
that ¢, > 0. Then Ay < py + vy and [(A) < 1(p) +1(v).

Proof. Fix a Littlewood-Richardson filling of [A\ ] of weight v: all of the boxes in the

first row of this skew shape (which has length Ay — p1) must be filled with the number

1. Hence Ay — p1 < 14, since there may be other 1s elsewhere in this filling of [\ \ u].
Similarly, consider the numbers that have been filled into the first column of [A\ ]

in this filling of weight v. These numbers must be distinct, and hence correspond to

different parts of the partition v. Hence I(\) — I(p) < I(v). O

We can similarly define iterated Littlewood—Richardson coefficients C;);l r 88 fol-

lows. Let r € N and p',..., 4" be partitions, and let A - n := |[u*| + - + [¢"|. Then
. C e . . 1 [N

c;\Ll,mW is the multiplicity of x* as a constituent of (y* x --- x x* )TGW‘X”_XGWH.

When r = 2, these are the usual Littlewood—Richardson coefficients as defined above,

and letting m = |p!| + -+ + || when 7 > 2, it is easy to see that

e ;= el N (2.1)

From 1) and Theorem we observe that if 0217___#,,, > 0 then A < ul 4+ u”

in the lexicographical ordering on partitions, and that cZ 1+;” " = 1. The iterated
Littlewood—Richardson coefficients are also symmetric under any permutation of the
partitions u!, ..., u". Aniterated Littlewood—Richardson (LR) filling of [A] by ut, ..., u"
is a way of replacing the nodes of [A] by numbers defined recursively as follows: if r = 1
then [A\] = [!] has a unique LR filling, of weight u!; if » > 2 then we mean an iterated
LR filling of [7] by u!,...,u""! together with an LR filling of [\ \ 7] of weight u" (for

some v C A such that this is possible).

Lemma 2.11. Let a,by,...,by € N. Let v' ..., 0% be partitions such that b; > |v*| for
alli and let c = [Vt + -+ |[v?]. Let utc and let X\ = (by +ba + -+ +ba, ). Then the

iterated Littlewood—Richardson coefficients Cf\bl,ul),...,(bl,ua) and c’jl are equal.

Proof. Clearly ¢! .
filling of [u] by v',...,v* and replace each number i by i + 1, then combine with
the first row of [A] filled with all 1s to produce a Littlewood—Richardson filling of [)]
by (b1,v'),..., (ba,v*). Conversely, any such filling of [\] contains 1s in exactly the

< cf‘bl ), (baa)? since we may take any Littlewood—Richardson

a
iz

geany

first row of [A] since A\; = by + -+ + b,, so this process is bijective. Thus cfjl’” =

a
Nz

A
Cb1,01) e (b1,09)" J

We conclude this section by introducing an operator that will be useful later.

Definition 2.12. Forn,m € N and A C P(n), B C P(m), let

AxB:={AFn+m |3 pe€ A, ve B such that cﬁy>0}.
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Clearly * is commutative, which follows from the symmetry of the Littlewood—

Richardson coefficients, and associative.

2.3 Characters of wreath products

Let G be a finite group and let H be a subgroup of &,, for some n € N. We denote by
G*™ the direct product of n copies of G. The natural action of &,, on the direct factors
of G*™ induces an action of &,, (and therefore of H < &,,) via automorphisms of G*",
giving the wreath product G H := G*™ x H. (In this thesis, we consider only finite
wreath products, in which case the restricted wreath product and unrestricted wreath
product agree and we make no distinction.) We sometimes refer to G*™ as the base
group of the wreath product G H.

As in [41] Chapter 4], we denote the elements of G H by (g1,...,9n;h) for g; € G
and h € H. Let V be a CG—module and suppose it affords the character ¢. We let
VO .=V ®---®V (n copies) be the corresponding CG*"—module. The left action of
G ! H on V®" defined by linearly extending

(g1, gn; h) : V1 ® @ Up > g1Uh-1(1) @+ * @ GnUh—1(n) (2.2)

turns V®" into a C(G ! H)-module, which we denote by yen (see M1l (4.3.7)]). We
denote by ¢ the character afforded by the C(G1H)-module V&, For any ¢ € Char(H),
we let 1 also denote its inflation to G H and let

X(g0) =01

be the character of G H obtained as the product of (,Z; and ¢¥. If K < G and L < H are
finite groups, then we have by the definition of X’ that

GiH G H
X0 | = x(6] v,

Let ¢ € Irr(G) and let ¢*™ := ¢ x --- X ¢ denote the corresponding irreducible
character of G*™. Observe that ¢ € Irr(G? H) is an extension of ¢*". For ¢ € Trr(H)
we have that X(¢;v) € Irr(G H | ¢*™), the set of irreducible characters x of Gt H
whose restriction Xl Gxn contains ¢*™ as an irreducible constituent. Indeed, Gallagher’s

Theorem [306], Corollary 6.17] gives

Lr(GH | 6°7) = {X(¢:4) | & € In(H)}.

More generally, if K < G and ¢ € Irr(K) then we denote by Irr(G | ¢) the set of
characters x € Irr(G) such that 1) is an irreducible constituent of the restriction Xl "
When clear from context, we also abbreviate X (x”; x”) involving characters of symmet-
ric groups (so vy and v are partitions) to X (vy;v).

Wreath product characters of the form X (¢; ) will play an important role in Chap-
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ters @] to[6] The general form of an irreducible character of a wreath product group will
also be important; for a precise description of the full set of pairwise non-isomorphic
irreducible characters of an arbitrary wreath product G H, we refer the reader to [41]
§4.3]. Here we simply record the following: let &1, ..., &k be representatives for the orbits
of the conjugation action of G H on Irr(G*™). By Clifford theory (see [36, Theorem

6.2], for instance), we have that

k
Irr(GUH) = |_|Irr(G2H | &).

i=1
To describe each Irr(G U H | &;), fix ¢ and suppose & € Irr(G*") is given by & =
Gy X -+ X ¢, for some i;, where Irr(G) = {¢1,...,¢:}. We partition [n] into subsets
aq, ...,y according to the relation i, = i,; that is, ,y € [n] belong to the same subset
if and only if 4, = iy. Define I to be the Young subgroup &,, x --- x &,, of &,. By
Gallagher’s Theorem [36], Corollary 6.17], for all x € Irr(GV H | §;) there exists a unique

0 € Irr(H N I) such that
> GUH
X =& HTGZ(HOI)’

where & is an extension of & from Irr(G*™) to Irr(G 2 (H N 1)) with action as defined in
(2.2), and where 6 also denotes its inflation from Irr(H N I) to Irr(G i (H N I)). In fact,
the following map is a bijection (see [36, Theorem 6.11]):

Ie(GU(HNT) | &) — Te(GUH &), s ]

In the special case where n = p is a prime number and H = C),, we see that H N[
can only be the trivial group or all of H itself (according to whether ¢;,, ..., ¢, are all
not equal or are all equal, respectively), and so necessarily the inertia group G (H N 1)
is either simply G*P? = G111 or G! H. Thus every ¢ € Irr(G C,,) is either of the form

(2) ¥ = sy X - X Gy, Torcr, where @iy, ..., ¢, € Irr(G) are not all equal; or
(b) ¢ = X(¢;0) for some ¢ € Irr(G) and 0 € Irr(C,).

When (a) holds, 1/1l ox» 18 the sum of the p irreducible characters of G*P whose p
factors are a cyclic permutation of ¢;,,...,¢;,. When (b) holds, leXp =¢*P.0(1) =
PP
2.3.1 Irreducible constituents of characters of wreath products

We record some results concerning characters of wreath products that will be useful

later in this thesis.

Lemma 2.13 ([41, Lemma 4.3.9]). Let n € N. Let H < &,, and G be finite groups. Let
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¢ € Irr(G) and ¢ € Irr(H). Then for all fi,...,fn € G and m € H,

c(m)
X(S )1y fsm) = [T Ui FrrGo) - Fr2i) = fatori ) - (),

v=1

where c(m) is the number of disjoint cycles in 7, I, is the length of the v" cycle, and

for each v, j, is some fized element in the v*" cycle.

The element fj, - fr-1(,) " fr—2(j,) """ fa—tvt1(5,) € G is called the v cycle product
of (f1,..., fn;7), and is determined up to conjugation (a different choice of j, yields a
G-conjugate of the given element). The character formula in Lemma is well-defined
since ¢ is a character of G. For example, if n = 8 and = = (1,3,7,2)(5,8,6)(4), then

X (D) (frs -5 foym) = d(fafrfafr) - d(fefsfs) - ¢(fa) - ().

Lemma 2.14 (Associativity of wreath products). Let I,m,n € N and let G < &y,
H < 6, and I < &,,. Then the following map 6 : (GVH)VI — GU(HUI) is an

isomorphism of groups:

((9117'~'7glm§h1)a~~~7(gn17~"7gnm;hn) 5 71—)
— (glla"'aglm79217"'792ma"'7gn17"'agnm ; (hla"'ahn;ﬂ-))v

where g;; € G, h; € H and 7 € I. Moreover, for a € Char(G), § € Char(H) and
~ € Char(I), we have that

X(X(a; 8);7)(x) = X(a; X(B57)) (0(x))

forallz e (GUH) I

Proof. The first statement is a routine check, following the notational convention in [41]
§4.1]. The second statement follows from Lemma O

In particular, associativity for three terms as in Lemma [2.14] then gives associativity
for k-term wreath products for all £ > 3, and so from now on we simply write G1
G ! -+ 1 G} without internal parentheses when referring to such groups, and identify
corresponding elements under such isomorphisms.

We remark that the map 6 above is ‘natural’, in the sense that # behaves well with
respect to the canonical permutation representations of wreath products described in
[41] 4.1.18]. Specifically, for G < &; and H < &,,, we have a permutation representation
Y :GULH = &, = Sym{1,2,...,lm} given by the map

(91:-- s gmih)  — (G =Di+i — (h(F) — DI+ gnp () (2.3)
for all j € [m] and ¢ € [I]. In the same vein, we may define permutation representations
Y (GUH) U = Gy and " - GU(H V) = Sy Then ¢/ (z) = 9" (0(x)), for all
re (G H) .
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Next, we record some results describing the irreducible constituents of restrictions

and inductions of characters of wreath products.

Lemma 2.15. Let G be a finite group and H < &,, for some n € N. Let x € Irr(G).
Then

o GUH
XM n = > 0(1) X(x:0).
oclrr(H)

Proof. Observe since 3 ey, () 0(1)2 = |H|, we have that

n GH n n n
deg(X*" T n) = |GUH - G*"|-(deg X)" = |H|(deg )" = deg | > 6(1) X(x;0)
oclrr(H)

Moreover, for any 6 € Irr(H),

M s X0G0)) = (™, X (G 0) | ) = (™, 0(1) - ™) = 0(1),
and the claim follows. O

Lemma 2.16 (|36, Problem 5.2]). Let G be a finite group. Suppose H, K < G with
KH =G. Let ¢ be a character of H. Then quglK = gblngTK.

Proof. By Mackey’s Theorem (see [36] §5], for example),
G HY K
¢TH~LK: Z (bngngT
geH\G/K

where the sum runs over a set of (H, K )-double coset representatives g. However, K H =
G implies (that HK = G also, and hence) we can simply take the single representative

g =1, from which the claim follows immediately. O

Remark 2.17. We often wish to apply Lemma to G of the form &,, ! L for some
finite group L < &; where I,m € N, with H = (&,,)*! and K = P L for some subgroup
P of &,, (usually a Sylow subgroup). Indeed, since

K={(fi,...,fum) | fie P, 7€ L} and H={(g1,---,91;1) | g: € S},

then
KH ={(figr—1),-- > figz—10);7)}

which ranges over all of G as f;, g; and 7w vary accordingly. Hence KH = G. %

Lemma 2.18. Let p be an odd prime and G be a finite group. Let n € Char(G) and
v € Irr(G). If (n, @) > 2, then

(X(m;7), X(p30)) = 2
for all 7,0 € Irr(C,).
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Proof. Let n = ¢+ A, so (A, ) > 1. Fix some 7 € Irr(C),). We first decompose X (¢ +
A; 7) into various summands by considering the corresponding Gt C,-module. Let ¢ be
afforded by G-module V', A by G-module W, and 7 by C,—module A. Then X(p+A;T)
is afforded by (Vga—\V_E)@’P ® A, which has a decomposition into Mo @ M; @ --- @& M, as

G ! Cp—modules where
M,=V® @A  My=Wer®A

and for ¢ € [p — 1], N; is the vector space direct sum of the (external) tensor products
of all ordered sequences of Vs and Ws of length p with exactly i Vs, and M; = N; ® A.

For example,

My=VW- - WHWVW--- W+ +W---WV)® 4, and
My=(VVW - - WHVWVW - - W+ W WVV)® 4,

where XY denotes X®Y for X, Y € {V, W} and + denotes a direct sum of vector spaces.
Clearly M, affords the character X (¢;7) and My the character X(A; 7). Letting v; be

the character of M; for i € [p — 1], we now wish to determine ;.

Since dim A = 1, the restriction wzlgzgf’ is the sum of the (f) characters of G*P

whose summands are permutations of ©** x AX(P=9) . Let s(p, A) denote an ordered
sequence of length p with entries taken from {¢, A} (and suppose that both ¢ and A
appear in the sequence), and let 3(p, A) denote the corresponding character of G*P.
We denote by s(V, W) the sequence obtained from s(p, A) by replacing ¢, A with V, W
respectively, and let 5(V, W) denote the vector subspace of N; given by the tensor prod-
uct corresponding to s(V, W) where s(p, A) has i terms equal to ¢. Given s(V, W), let
3(V,W) denote the vector space direct sum of t(V, W) over all p cyclic permutations
t(V,W) of s(V,W). Then by inspection of the action of G*P on (V 6\1/17)(@1’ and observ-

ing that {(1,...,1;0) | 0 € C,} is a set of coset representatives for G*P in G C,, we
find that §(V,W) is a G ! C,-module affording the character 5(p, A) gff’ Hence ;
QG

is the sum of (¥)/p characters of the form 5(¢p, A) -7, where s(p, A) runs over a

Gxp
set of orbit representatives for the permutation action of C, on the set of such length p
sequences with ¢ terms equal to . For example, we may take the single representative

(o, A, -+ A) for i = 1, while for ¢ = 2, the % sequences

(907807A7"'7A)7 (907A7QO7A7"'5A)7 ) (()D,A,...7A,QO,A,...,A)
—_———

(p—3)/2

ac,
Gx»

elements (g1,...,9p;0) € G1Cp \ G*P, that is, whenever o € Cp, \ {1}. On the other
hand, 7((g1,...,9p;0)) = 7(0) by the definition of inflation. Hence

form a set of representatives. Moreover, the induced character 5(¢p, A) is zero on

_ QW0 _ QW0
3(p,A) prp T =3(p, A) GXPp’
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since 7 is linear. In particular, we conclude that

p—1
X+ A7) = X(oi) + XA )+ )Y 50, A) oy
=1

where the last summation runs over the appropriate representatives, i.e. there are (’Z’ ) /D
. . . ac,
terms in the i*" sum. Since (A,¢) > 1, P77

xXp

is a direct summand of every

§(@,A)nggf, whence <poTgZX(ff is a direct summand of X (¢ + A;7) of multiplicity
m where
<« O
m > Yo> 2.
=1 P
Finally, @XPTg;C;” = ZGEIH(CP) X (¢;0) by Lemma [2.15] so the claim follows. O

Lemma 2.19. Let G, H be finite groups with H < &,, for some m € N, and let
0 € Irr(H). Let a € Irr(G) and A € Char(G) be such that (A,a) = 1. Then for any
B elr(H),

(X(A;0), X (0 B)) = (0, 8) = do,5.

Proof. Let ( = X(A;0) and ¢ = (¢, X(a;0)). Clearly ¢ > 1, since « is a constituent of
A. (More generally, if A =1 + -+ + 1, is a decomposition into irreducible characters
1h; which are not necessarily distinct, then ), X (¢;;0) is a direct summand of X (A;6).)
Now (tim =6(1)- A*™ so

0(1) = 0(1) - (A, )™ = (L gums @™ = D (G- (V] grmr@™™)

yelrr(GUH)
> 3 (GX(@B) (X (@ B) [ g @) = D B (X (s B))
Belrr(H) Belrr(H)
>60(1)-¢>06(1).

Thus the above inequalities in fact hold with equality and the claim follows, since 8(1) €
N and (¢, X(«; 8)) € N>g. O

We conclude by mentioning two useful results concerning wreath products of sym-

metric groups.

Theorem 2.20 ([32, Theorem 3.5]). Let p be an odd prime and let k € N. Let K :=
S i-116, <G and let x € Irryy (G px ). The restriction XJ«K has a unique irreducible
constituent x* lying in Irr, (K), appearing with multiplicity 1. Moreover, the map x —
X* is a bijection between Irry (&,x) and Irry (K).

More precisely, such a character x is equal to X for a hook partition X - p*. If
A = (pF—(mp+x), 1P+ for some x € {0,1,...,p—1}, then x* € {X(u;v1), X (u;v2)},
where
k—1

p=@"t=m,1™), vy =(p—x,1%°) and vy = (x +1,177177).
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Theorem 2.21 ([55, Corollary 9.1]). Let m,n € N. Let u = (u1,...,ux) F m and
v=(vi,...,1) Fn. The lexicographically greatest partition \ of mn such that x* is an

mn .

irreducible constituent of X (u; I/)Tg s, s

A= (npsse it n(a — 1)+ vi, v, 01).

Moreover, x* occurs as a constituent with multiplicity 1.

2.3.2 Sylow subgroups of symmetric groups

We recall some facts about Sylow subgroups of symmetric groups, and refer the reader
to [41l Chapter 4] for a more detailed discussion. Fix a prime p and let n € N. Let P,
denote a Sylow p-subgroup of &,,. Clearly P; is the trivial group while P, is cyclic of
order p. More generally, Py = (Pyr-1)*P x P, = Pyr-1 0P, = Py1-- -1 P, (k-fold wreath
product) for all k € N. Let n € N and let n = 22:1 a;p™ be its p-adic expansion, where
0<mny <---<ng Then P, = (Ppn1 ) X -+ X (Ppne ) .

Conjugating by an appropriate element of &,,, we may assume the following:
o For each k € N, P is generated by 01,...,01 € G,x = Sym{1,2,... ,p*} where

pifl

o= [1G, " +i, 2 45, -, (b= 1P +7)
j=1

for each i. For example, when p = 3 we have
o1 =(1,2,3), o2=(1,4,7)(2,5,8)(3,6,9), o3 =(1,10,19)---(9,18,27),

and so on. This choice of P, for all & € N is compatible with the identification of
k-fold wreath products in Lemma[2.14 and realises the permutation representation

23).

o For n = 22:1 a;p"i, P, is a direct product of factors Pyni < &pn; permuting
disjoint subsets of {1,2,...,n}. For instance, if i € [¢{] and j € [a4], then the
j™ factor Pyni < &,n; permutes the numbers {r + 1,7+ 2,...,7 + p"i}, where
r=ap"t 4 aiop™ict 4 (5 - 1)pt

We record a characterisation of pF-cycles in Py

Lemma 2.22. Let k € N and p be a prime. Let € Py = P11 P, < Gpk, s0
x = (f1,..., fpi0) for some f; € Py—1 and o € P,. If x has a fived point, then o = 1.
Moreover, x is a p*-cycle if and only if o # 1 and Jor—11) fory - f1is5 @ pF1-cycle.

Proof. We embed P,» < &« via the permutation representation . For ¢ € [p], let
Jo={(G—-1p*t+t|te[p*1]}. If o = 1, then = permutes J; for each i, while if
o # 1, then z sends elements of J; to J,(;) # J;. Thus if 2 has a fixed point then o =1,
while if  is a pF-cycle then o # 1.
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So now suppose o # 1. We may represent z = (f1,..., fp;0) as a permutation of

..,p*} pictorially as follows (see Flgure 2

Jo2(1) Jor-1(1)
Figure 2.1: The permutation z = (f1,..., fy;0) on {1,2,...,pF}.

That is, for each i € [p] and t € [p*~1], o sends ip*~! +1 to o(i)p*~! +t, while the f;
component of z sends (i — 1)p*~1 + ¢ to (i — 1)p*~1 + fi(t). Given t € Jy, 279 (t) € Jy if
and only if j | p. Moreover, 2P(t) = f1 - for-1(1)** fo(1)(t), 50 T is a pF-cycle if and only
if min{j € N | 7(t) = ¢t} = p*~!, in other words, if and only if g := f1 - for—1(1) - fo1)
is a p*~1-cycle. Finally, observe that Jor—11y  foqy - f1 = fflgfl has the same cycle
type as g. O

Let Irr(Py) = {¢0, #1,...,¢p—1} = Lin(P,), where ¢ = 1p, is the trivial character
of the cyclic group P,. (This labelling follows from the fact that we may write P, = (g)
and ¢;(g) = w’ for each j € {0,1,...,p — 1} = [p], where w = €2™/P.) Note that
the regular character of P, equals Zf;ol ¢;- When m > 2, an easy application of [36]
Corollary 6.17] shows that

Lin(Pan) - |_| Irr( p™m

¢ELin(Ppm,_1 )

¢"F).

In particular, Irr(Pym | ¢*P) = {X(¢;¢) | ¢ € Lin(P,)}.

Using the above observations, we may naturally define a bijection s +— ¢(s) between
the set [p]™ of sequences of length m with elements from [p] and the set Lin(P,m ). More
precisely, if m = 0 we let the empty sequence of length 0 correspond to the trivial
character of Py, and if m = 1 we let s = (z) correspond to ¢, for each z € [p]. If m > 2

then for any s = (s1,...,8m) € [D]™, we recursively define
¢(s) = X (d(s7); (sm)),
where s~ = (s1,...,8m_1) € [p|™!. By Lemma
d(s) = X(d(s1,---,8:); O(Sit1y- -+ Sm))
for any i € [m—1]. We remark that the abelianisation P, /P, is isomorphic to (Cp)k, by

[53, Lemma 1.4]. Once we fix a natural isomorphism Py /P, — (Cp)k (see Lemma
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below), then our indexing of Lin(P,x) can in fact be obtained equivalently from the
canonical bijection Lin(P,x) <— Irr(P,x /P;k).

Now let n € N and let n = Zﬁzl a;p™ be its p-adic expansion, where 0 < nq < --- <
ng. Since Py, 2 (Pyny )X X +++ X (Ppne )%,

Lin(P,) ={¢(s) | s = (s(l, 1),...,8(1,a1),s(2,1),...,8(2,a2),...,s(t, at))}, (2.4)

where for all ¢ € [t] and j € [a;] we have that s(i, j) € [p]™, and

¢(8) 1= p(s(1,1)) x -+ x P(s(1,a1)) X P(8(2,1)) X -+ X #(8(2,a2)) X - - X P(s(t, ar)).

When we suppose that ¢(s) is a linear character of P,, we mean that s is a sequence of
sequences, of the form described in (2.4) above.

Sylow normalisers
Next, we describe the structure of the normaliser Ng, (P,). Following the notation
n=>3'_, a;p™, by [53, Lemma 4.1] we have that

Ng (Pn)%N126a1 X---XNtZG,lt,

n

where N; = ng”i (Ppn: ). Moreover, for k € N,

Ne . (Ppr) 2= Py x4 (Cp1) <", (2.5)
from which it follows that Ng, (P,) = P, for all n when p = 2. The structure of
Sylow normalisers for symmetric groups is well-known; for our purposes, we record the
following presentation:

k k k
Ne () = (B, o™ 087, )

where P,. = (01,...,0%) as above, and pgj ) are defined recursively as follows. Let ¢
be a primitive root modulo p, and set pgl) = (c1,¢2,...,0p—1) € Sym{1,...,p} where
¢; € [p] is such that ¢; = ¢* (mod p). For an integer m, let 7,,, € &« be the permutation

i+ i +m with numbers modulo p* (taken in the range {1,...,p}). For 1 < j < k, set

(k) HTW’“ ) gk 1) T

and
PPl

k _ _
() H T—i Clp 1702pk 1,-~-an—1pk 1)'7—1'

with numbers modulo p* (taken in the range {1,...,p*}). Notice that for each k, the

(k)

permutation oy is a product of p-cycles; p,” is simply the product over all p-cycles
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(a1,az,...,ap) in oy of (ac,,ac,,...,a.,_,). By construction, each pg- ) is a product

of (p — 1)-cycles, and the p;k) commute for all j for each fixed k. We deduce that
k)| -~
Ne , (Pyr) = Py x (o) | 5 € [k]) = Py x (Cp1)*-.

For example, when p = 5 we may choose ¢ = 2 so that pgl) =(2,4,3,1),
PP = (2,4,3,1)(7,9,8,6)(12, 14,13, 11)(17, 19, 18, 16)(22, 24, 23, 21)

and
P2 = (6,16,11,1)(7,17,12,2)(8, 18, 13,3)(9, 19, 14, 4)(10, 20, 15, 5).

Relation to the alternating group 2,

Finally, we relate the normalisers of P, to the alternating subgroup 2, of &,,. Note
when p is odd then P, < 2, for all n, and so Sylp(an) = Sylp(Gn). It is clear to see
that x* |, = Xk/lm . The ordinary irreducible characters of 21, can be indexed as

follows:

Lr(@,) = (XM o [ A#EN eP@m)} U {v3,02 [ A=)\ ePn)l.
We refer the reader to [41l, Chapter 2.5] for a detailed discussion of the representation

theory of 2.

Lemma 2.23. Let p be a prime and let n € N>,,. Then there exists g € Ng, (P,) \ Ay
In particular, if A F n is self-conjugate, then (1/)_’})9 =y,

Proof. If p = 2, then P, contains a transposition for all k& € N, since P, = ((12)). If
p is odd, then Ng , (F,:) contains an element of cycle type (p —1)---(p — 1) (pF—1!
times). The case of n not a power of p then follows. The final assertion follows from the
definition of 13 (see [41], for example). O

Corollary 2.24. Let p be a prime and let n € N. Suppose A - n is self-conjugate. Then
<,l/)-/l\-an’ ]]-Pn> = Wilpn, ]]-Pn>

Proof. If n < p then the assertion is clear since P, is trivial and deg wi = degy?.
Otherwise, let g € Ng, (P,) \ 2. Then since (1p,)? = 1p,, we have that

WA Ly Lp) = (WD) L (5% = (@} | ), (1R)%) = (W |, Lp,).
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Chapter 3

On the p’-subgraph of the
Young graph

The first part of this chapter which is centred around character restrictions is based on
the paper [30], joint with Dr Eugenio Giannelli and Dr Stuart Martin. The results in
Section [3.I] were obtained in collaboration, with Dr Giannelli and I contributing equally
to the proofs and Dr Martin providing guidance throughout. In the latter parts of this
chapter, we extend our investigations to character inductions and further properties of
the Young graph.

As described in the introduction, a key ingredient in the character bijection in [2§]
between Irry (&,,) and Irres (P,) where P, € Syly(&,,) is Theorem 1 of [I], which states
the following: for any natural number n and irreducible character x of &,, of odd degree,
the restriction Xl _ contains a unique irreducible constituent of odd degree. In their
same paper [28], Giannelli, Kleshchev, Navarro and Tiep give a generalisation of this
result by changing the ambient group from the symmetric groups to general linear groups
and special linear groups. Isaacs, Navarro, Olsson and Tiep extend [I, Theorem 1] for
symmetric groups in a different direction, changing the depth of restriction: they show
for any natural numbers 2 < n and any y € Irro/(&,,) that the restriction Xl6ﬂ_2k
contains a unique irreducible constituent of odd degree appearing with odd multiplicity

[38]. We now generalise the third main ingredient of [I, Theorem 1]: the prime p itself.

3.1 Restriction

Let p be a prime number. We study the restriction to &,,_; of irreducible characters of
&, of degree coprime to p. In particular, we study the combinatorial properties of the
subgraph Y,, of the Young graph Y. This is an extension to odd primes of the work
done in [I] for p = 2.

The Young graph, as described in Section is a well-understood and extensively

studied combinatorial object, deeply connected to the representation theory of sym-
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metric groups. It is thus somewhat surprising that only recently in [I], the following

remarkable fact was shown to hold.

Theorem 3.1 ([I, Theorem 1]). Let n € N and let x € Irra/(S,,). Then the restriction

len_l has a unique irreducible constituent of odd degree.

Theorem [3.1] shows that the odd subgraph Yo of the Young graph Y is a rooted tree.
Starting from this observation, the rest of [I] is devoted to describing the combinatorial
structure of Yo,. We remark that the relevance of [I] transcends the study of the Young
graph: in fact, Theorem was recently used in the construction of several types of
character correspondences (see [26], [28] and [38]).

In this chapter, we study the combinatorial structure of Y,, for any odd prime p. As
remarked in [I Section 7], Ys. is not a tree. Indeed, for every odd prime p, there exists
an irreducible character x of p’-degree of some &,, whose restriction Xl St has more
than one irreducible constituent of p’-degree (namely X(Q’l)l62 =@ + 19 to give
the smallest example). Yet notably, given any prime p and any irreducible character x
of p’-degree of &,,, Theorems and below give sharp bounds on the number of
irreducible constituents of p’-degree of Xl Sy In particular, this is a generalisation of
Theorem to all primes.

Let p be any prime. Given a partition A F n, recall from Sectionthat A, denotes
the set consisting of all partitions u -,y n — 1 such that x* is an irreducible constituent
of X)\lanl' Next, we define £,(n) to be the set

&,(n) = {\/\;,| DAy n}

and we let bry,(n) be the maximal value in €,(n). Note that br,(n) is well-defined: clearly
Ep(n) is non-empty since the trivial character of &,, has degree 1. When p is fixed and
understood, we will also write £(n) and br(n), without the subscript p. Our first result

describes £,(n) and gives a recursive formula for the exact value of bry(n).

Theorem 3.2. Let n € N and let p be a prime. Let n = Z;Zl a;p"i be its p-adic
expansion, where 0 < ny < ng < --- < ng. Then Ey(n) = {1,2,...,brp(n) — 1,brp(n)}

and
t

bry(n) = bry(a1p™) + Y _ ®(aj, bry(m;))

=2

where m; = Ef;ll a;p™t, and where ® is the function described explicitly in Deﬁm'tz'on

below.

Theorem is proven in Section In Section we determine br,(ap”) for
any prime p, any k € Ny and any a € {1,...,p — 1}. The following result serves as the
base case for computing br,,(n) for any natural number n, using the recursive expression
given in Theorem
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Theorem 3.3. Let p be an odd prime, k € Ng and a € {1,...,p—1}. Then

f(2a) if k=0,
brp(ap™) = p—1 +2L2“7(6p71)j if k=1and £ <a <p,

2a otherwise.

Here f(z) =max{y € Ng | y(y +1) < x}.
Theorems and provide us with a recursive formula for br,(n), the maximal

number of downward edges from a vertex on level n of Y, to level n — 1. Later in this
chapter we show that the slightly involved expression for the value of br,(n) described
in Theorem [3.2] can be bounded from above by a simpler function of the p-adic digits of

n.

Corollary 3.4. Let n € N and let p be a prime. Let n = 22:1 a;p"i be its p-adic
expansion, where 0 <ny <mng < --- <ng. Then 1 <bry(n) <B,(n), where

t t
B,(n) := bry(a1p™) + Z {%JJ < 2a; + Z {%]J .
j=2 j=2

Theorem [3.3] and Corollary [3.4] are proven in Section [3.1.4] Corollary [3.4] has some
interesting consequences (see Section . For instance, in Remark below, we
observe that when p € {2,3} then B,(n) = bry(n). In particular, our result is a gener-
alisation of Theorem Moreover, for any prime p we observe that the upper bound
B,(n) is attained for every n having all of its p-adic digits lying in {0, 1, 2, 3}.

We further show that the upper bound B,(n) given in Corollary is indeed a
good approximation of br,(n). In fact, the following result shows that the difference
ep(n) := By(n) — brp(n) can be bounded by a function depending only on the prime p,
and not on n € N.

Proposition 3.5. For any n € N, we have £,(n) < Slog,(p).

Proposition [3.5]is proven in Section[3.1.3] A consequence is that for any odd prime p
we have sup{br,(n) | n € N} = co. This is false when p = 2, since by Theorem we
have that bra(n) =1 for all n € N.

3.1.1 James’ abacus

We fix some notation that will be used throughout this chapter. We begin by introducing
a technical definition necessary for stating and proving Theorem

Definition 3.6. For a € Ny and L € N, define

L
®(a, L) := max {Zf(az)

=1

a1+ ---+ar <a and a; € Ny ViE[L]}’

where f(z) = max{y € Ny | y(y +1) < z}.
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We now record some properties of this function ® which will be useful for later proofs.

Lemma 3.7. Let a € Ng and L € N. Then ®(a,L) < |§]. Moreover, if L > | 5] then
®(a,L) = [5].

Proof. Suppose ®(a, L) = f(a1) +---+ f(ar) such that a; € Ny and a1 +--- +ar < a.
Observe that for all integers = > 2, we have f(x) < f(2) + f(z — 2). Hence

ai

fla) < |5 1@+ 1)

for all i € [L], where 6; = a; — 2| %] € {0,1}. Thus

L
a; a; a
< i ) = < |2
v ) <3 (|5] @+ se0) =[5 <[5).
where the middle equality follows from the fact that f(2) =1 and f(1) = f(0) = 0.
Finally, if L > [§] then we see that ®(a, L) = [§] by considering

alzazz...:aL%J :2andaL%J+1:...:aL:0,

which satisfy S5 a; =2 (2] <aand Y1 | fa;) = [2]. O
Lemma 3.8. Let k € N. Then 2871 < (2k 4 2,2F71) <2h-1 4 1.

Proof. When k = 1, we note that ®(4,1) = 1. Now assume k > 2. The upper bound
follows from Lemma The lower bound follows from the fact that 2 +2 = 6 + 2 -
(2871 =2)+0, and f(6) + f(2) - (2"7" —2) + f(0) = 2. O

Let A be a partition. For any natural number e, we denote by C.(\) and Q.(\) =
(A2 AL ... xe7h) the e-core and e-quotient of X respectively (see [54, Chapter 1] for
precise definitions). The e-weight of A is the natural number w, () defined by w.(\) =
INO] + [ A+ - - +|Ae"1|. We remark that given a partition A of n, the e-quotient Q.(\)
is uniquely determined up to a cyclic permutation of its components. Moreover, it is
well-known that, up to such cyclic permutations, any partition is uniquely determined
by its e-core and e-quotient; we refer the reader to [54] for a detailed discussion.

Recall that H(A) denotes the set of hooks of A and H.(\) the subset of H(\) con-
sisting of those hooks of A having length divisible by e. We let H(Q.(\)) = UZgH(\).
As explained in [54, Theorem 3.3], there is a bijection between H.(\) and H(Q.(X))
mapping hooks in A of length ex to hooks of length = in the quotient of A. Moreover,
the bijection respects the process of hook removal. Namely, any partition p obtained
by removing an ez-hook from A is such that C.(u) = C.(\) and the e-quotient of yu is
obtained by removing a xz-hook from one of the e partitions involved in the e-quotient

of A. A fundamental result is the following.
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Proposition 3.9 ([54, Proposition 3.6]). Let A € P(n). The number of e-hooks that
must be removed from A to obtain Ce(N) is we(N). Moreover, we(A) = |He(A)| = (JA| —

[Ce(N)])/e-

All of the operations on partitions concerning addition and removal of e-hooks de-
scribed above are best illustrated on James’ abacus. We give here a brief description
of this important object (in particular, fixing our convention for the orientation and
labelling of the abaci that we will use), and refer the reader to [4I, Chapter 2] for a
complete account of the combinatorial properties of James’ abacus.

An e-abacus configuration A consists of e vertical runners, labelled Ag, A1,...,Ac_1
from left to right, and the rows are labelled by integers such that row numbers increase
downwards. Each position (i, ), i.e. the position in row 7 on runner A;, in the abacus
configuration either contains a bead or not; we also call an empty position a gap. As is
customary, all abaci contain finitely many rows and hence finitely many beads, but in
all instances enough to perform all of the necessary operations. We say that position
(i,7) is the first gap in A if there are beads in positions (z,y) for all z < ¢ and all y,
and in positions (¢,y) for all y < j.

The partition A corresponding to an abacus configuration A is given as follows: if a
bead b on the abacus lies in position (4, ), let Ay be the number of gaps (z,y) such that
either z < i, or . =i and y < j. Then {); | bis a bead on A} gives the multiset of parts
of the partition A, from which we remove zeros and sort its elements into non-increasing
order to produce A. We also sometimes simply say that A is an e-abacus for A, or that
A represents the partition .

For j € {0,...,e—1}, denote by |A4;| the number of beads on runner j. Moreover, we
denote by AT the e-abacus obtained from A by sliding all of the beads on each runner
upwards as much as possible. Extending the notation just introduced, we denote by
Ag, e ,Al_l the runners of AT. As explained in [41, Chapter 2], AT is an e-abacus for
the e-core C.(A) of A, and (up to a cyclic permutation of the runners) the individual
runners Ay, ... A._; are l-abacus configurations for the partitions A°,...,A°"! in the
e-quotient Q.(\) of \.

Let the operation of sliding any single bead down (resp. up) one row on its runner be
called a down-move (resp. up-move). Of course, such a move is only possible for a bead
in position (4, 7) if the respective position (i £ 1, j) was empty initially. On the level of
partitions, performing a down- or up-move corresponds to adding or removing an e-hook,
respectively. In analogy with the notation used for partitions, we denote by w(A) the
total number of up-moves needed to obtain AT from A. Similarly, for i € {0,...,e — 1}
we let w(A4;) be the number of those up-moves that were performed on runner ¢ in the
transition from A to AT. It is easy to see that w.()\) = w(A) = w(Ag) + - +w(Ae_1).

Suppose that ¢ is a bead in position (i, 7) of A. We say that c is a removable bead if
j # 0 and there is no bead in (i, — 1), or if 7 = 0 and there is no bead in (i — 1,e — 1).
Denote by A€ the abacus obtained by sliding ¢ into position (¢,j — 1) (respectively

(i —1,e — 1)). Clearly removable beads in an abacus A for A correspond to removable
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nodes in [A], so the set of such A is in natural bijection with A\~. Addable beads are
defined analogously and correspond to elements of A\*.

Finally, for j € {0,...,e—1} we denote by Rem(A4;) the number of removable beads
in A lying on runner A;. In particular, we have that |A\~| = Rem(Ag)+- - -+Rem(A._1).
Similarly, we let Add(A;) denote the number of addable beads in A lying on A;.

When we depict partitions on James’ abacus, we adopt the convention of denoting
beads on the abacus by X, and empty positions by O (or no symbol at all when the

meaning is clear).

Lemma 3.10. Let e € N. Let A be a partition and let A be an e-abacus for \. Suppose
¢ is a removable bead on runner A; and let p = n — 1 be the partition represented by
A¢. Then

[Ajl = A2 =1 if j#0

we(p) — we(A) = o
o] — [Ac | —2 i j=0.

Proof. First suppose j # 0. Without loss of generality we can relabel the rows of the e-
abacus A such that there is no empty position in any row labelled by a negative integer.
Let B := A*°. Clearly w(4;) = w(B;) for alli € {0,...,e—1}\ {j — 1,5}. Hence

we (1) — we(A) = w(Bj-1) + w(Bj) —w(Aj—1) — w(A;).

Let s and ¢ be the numbers of beads lying in rows labelled by non-negative integers
in runners A;_; and A, respectively. Suppose that the s beads on A;_; lie in rows
0 <z <--- <z, and that the ¢ beads on A; lie in rows 0 < y; < --- < y,. Then

s t s i

, , s(s—1 -1
wAj1)+w(d) = (== +Y (= (i—1) =D i+ y;— L0 - LD,
i=1 i=1 i=1 i=1
Suppose that the bead ¢ lies in row y; for some [ € [t]. Since ¢ is removable, y; #
x; for all i € [s]. Thus the beads on B;_; lie in rows 0 < 27 < --- < 2f,, with
{@h,..., 2} = {z1,...,2zs,y} and the beads on Bj lie in rows 0 < 3 < --- < y;_,;
with {yf,...,vi_1} ={v1,-- ,¥i-1,Yi+1,---,y:}. Hence

s+1 t—1 S t
w(Bjo1)+w(By) = Y (@i~ (= 1)+ Y —(i=1) = 3wy yi— R - (=)
i=1 i=1 i=1 i=1

and we conclude that we () —we(A) =t —s—1=[A4;| —|A;_1| — 1.

The case when j = 0 is similar. O

Remark 3.11. Given a partition A and a fixed e-abacus A for A\ we let A’ be the partition
corresponding to the runner A;, considered as a l-abacus. The resulting e-quotient
(A%, AL, ... a7 1) depends on the choice of the abacus A (a different choice of e-abacus,
e.g. having first gap in a different position, may induce a cyclic permutation of the

components of the e-quotient). Nevertheless, all of the results presented in this chapter
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hold independently of this observation. For instance, the e-weight w, () does not depend
on the choice of e-abacus; the same discussion holds for Theorem below. O

Let p be a prime. As outlined in Section the irreducible characters of &,, of
p'-degree were characterised in [44]. We restate this result in language convenient for

our purposes.

Theorem 3.12. Letn € N and let A € Irr(S,,). Leta € {1,...,p— 1} and k € Ny be
such that ap® < n < (a+1)p*. Then X € Irry (6,,) if and only if Cpr(N) € Irry (S, _gpr)-

Theorem says that A is a p/-partition if and only if w,x (\) = a and the partition
Cpr(A) obtained from A by successively removing all possible pF-hooks is a p/-partition
of n — ap®. Tt will sometimes be useful to use the following equivalent version of Theo-
rem [3.12

Theorem 3.13. Let n € N and let n = Z?:o a;p’ be its p-adic expansion. Let \ €
Irr(S,,) and let Qu(N) = (A, AL, ... AP71). Then \ € Ity (6,,) if and only if

(1) Cp(X) Fag, and

(i) for allt € {0,1,...,p — 1} there exists byt,bat, ..., bt € Ng such that

p—1 k
> bip=a; forallj€{l,...k},and A by Y bip'
t=0 j=1

Proof. This characterisation of p’-partitions of n € N follows from considering the p-core
tower associated to any partition of n (see Section and [54, Chapters I and II]). O

3.1.2 The core map

Fix an arbitrary prime p. In this section we state some combinatorial results crucial to
the proofs of the main theorems of this chapter. As a consequence of these observations,
we are able to give a proof of Theorem [3.2] As appropriately remarked later in this
section, the proofs of Theorem and Corollary are postponed to Section to

improve readability.

Notation 3.14. Unless otherwise stated, in this section we fit n € N such that n =
ap® + m for some k € N, a € [p—1] and 0 < m < p*. To be precise, this will be the
standing assumption from Theorem[3.15] to Proposition[3.23

The following result, which we believe is of independent interest, is one of the key

steps in proving Theorem [3.2

Theorem 3.15. Let A by noand let a € A, Then Cpr(a) € p,, where pi:= Cpr(N).

In particular, we deduce that the map
Cpk : )\;, — LL];,,
is well-defined. Moreover, it is surjective.
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Proof. Let A be the pF-abacus for y having first gap in position (0,0). It is easy to see
that rows ¢ > 1 must be empty, since |u| = m < p¥. (We will not need rows i with
|i] > a, so we may assume row —a is the top row of the abacus and +a the bottom row.)
So |Ag| = a and |4;| € {a,a+ 1}, for all j € {0,1,...,p* — 1}. Let B be the p*-abacus
for \ such that BT = A. By Proposition we have that w,«(\) = a and B is obtained
from A after performing exactly a down-moves.

Let ¢ be the bead in B such that B¢ represents «, and suppose c lies on runner B;.
Since a is a p’-partition of n — 1 = ap® + (m — 1) > ap* we deduce from Theorem
that wyr () = a. By Lemmawe have that |B;j| = 14+ |B;_1]| (j cannot be 0 because
|Bi| = |A)] € {a,a+1} foralll € {0,...,p* —1}). It follows that there exists a bead d in
position (0,7) of A and that position (0, — 1) of A is empty. Hence A< is a p*-abacus
for Cp (), which by Theorem must be a p’-partition. Thus Cpr(a) € 1, and the
map Cpr 0 A, — i, is well-defined.

To show that the map is surjective we proceed as follows. Let A be the pF-abacus
for yu as described above. For any § € p,, there exists a bead d in A such that Acd
is a pF-abacus for 8. Let j € {1,...,p* — 1} be such that d is in position (0,j) in
A and such that position (0,5 — 1) is empty. Let B be the pF-abacus for A described
above. Clearly we have that |Bj| = |A;| = 1+ |A;_1] = 1+ |B;_1|. Hence there
exists a row y € {—a,...,a} such that position (y,j — 1) of B is empty and such that
there is a bead (say e) in position (y,j). Let a be the partition corresponding to the
pF-abacus B¢, By Lemma we deduce that wys () = a. Moreover it is clear that
Cpr(a) = B € Ity (6,,_gpr ). By Theorem we deduce that a € A, and therefore

Cpr is surjective. O
Corollary 3.16. Let Aty n. Then [Cpr(X), [ < A, ]

Keeping n = ap® 4+ m as in Notation we now introduce the following definition.
Given v -, m, define

brp(n, ) :=max{[|A,| | Aty n and Cp(A) =}

(As usual, we omit the subscript p when it is understood.) Clearly br(n), the main object
of our study, is equal to the maximal br(n, ) over all p’-partitions 7 of m. Corollary

allows us to give the following definition.

Definition 3.17. Let n = ap® +m be as in Notation and let v, m. We define
N(a,p*,v) € Ng to be such that [V | + N(a,p*,~v) = br(n,v).

Proposition 3.18. Let vt m and let L = |v,,|. Then N(a,p*,v) = ®(a, L), where
® is as described in Definition[3.6

In order to prove Proposition|3.18] we introduce the following combinatorial concepts.

Definition 3.19. Let n = ap® +m be as in Notation and let v =, m. Denote by
A., the p*-abacus for v having first gap in position (0,0). Define Ra., to be the subset of
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{0,1,...,p* — 1} such that j € R, if and only if there is a removable bead c on runner

j of A, and the partition corresponding to the p*-abacus AT s a p’-partition of m — 1.

Since A, has first gap in position (0,0) and since |y| = m < p* we deduce that all
removable beads in A, lie in row 0. Hence [R4,| = |v,,|. By the definition of removable
beads, we have in particular that 0 ¢ R4, and for j € [p* — 2] we have that if j € R4,
then j+1 ¢ Ra,.

Lemma 3.20. Let v Fp m. Let A k-, n be such that Cpr(X) = v and let B be the
pF-abacus for X such that Bt = A,. Let ¢ be a removable bead on runner j of B and let
1 be the partition of n — 1 corresponding to B<¢. Then u is a p'-partition if and only
if j €ERa,-

Proof. Let A := A,. First suppose j € Ra. In particular, j # 0. Then
|Bj| = |4;] = |41 + 1 =|Bj1[ +1,

50 wyk (1) = a by Lemma We also have that (B*¢)T is an abacus configuration for

Cyr (1). Moreover if d is the bead in position (0, j) of A then (B*¢)" = A, Therefore
we deduce that Cpr (i) € ,, and hence p1 b n — 1 by Theorem

Now suppose that j ¢ Ra. If j = 0 then |By| = |Ag| # [Apr_1]| +2 = |Byr_q| + 2.
Hence wy,x (1) # a by Lemma so p is not a p’-partition by Theorem Otherwise,
suppose that j # 0. Then C,(p) is represented by the p*-abacus (B<¢)" = A4, where
d is a bead lying in position (0,j) of A. Since j ¢ R4 we deduce that Cpx(u) is not a

p’-partition, and so y is not a p’-partition by Theorem [3.12 O

Corollary 3.21. Let v Fp m and let A =, n be such that Cpr(X) = . Let B be the
pF-abacus for \ such that Bt = A,. Then

A= > Rem(B;).

JERA,

Recall from Definition that f(z) = max{y € Ny | y(y + 1) < x}. The following
lemma describes the key relationship between this function f and certain removable
beads, which will be necessary for the proof of Proposition (below).

Lemma 3.22. Let A € {0, (1)} and let T denote the 2-abacus for A having first gap in
position (0,0). Let x € Ng and let Ty(x) be the set of all 2-abaci U such that w(U) = x
and UT =Ty. Then

f@)+1 if A= (1),

max{Rem(U,) | U € Ta(z)} =
{Rem(U1) | U € Ti(z)} V3l -

Proof. This is clear if x = 0 or = 1, so we may assume now that z > 2 (and
hence f(z) > 0). We first fix A = (1); this is the case that we use in the proof of
Proposition below. Since ) is now fixed, we ease the notation by letting T' = T(y)
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and T (z) = T(1)(z) for all € Ng. Moreover, let F(z) := max{Rem(U;) | U € T (z)}.
We first show that there exists A € T (x) satistying w(Ap) = 0 (equivalently w(A;) = x)
and Rem(A;) = F(x).

Let U € T (z) be such that w(Uy) = ¢ and Rem(U;) = r for some | € {1,2,...,z}
and some 7 € {0,1,...,F(xz)}. Then there exists a 2-abacus V € T (y) for some y < x
such that w(Vp) < £ and Rem(V;) > r. This follows from the following observation.
Since ¢ > 1 there exists i € Z such that there is a bead in position (7,0) of U but not
in (i — 1,0). Recalling that beads are denoted by X and gaps by O, consider the four
possibilities for rows ¢ — 1 and ¢ of U (with the left- and right-hand runners labelled by
0,1 respectively):

i—1 00 00 OoX OoX
% XX X0 XX X0

In the first three instances, we can move the bead in (4,0) to (¢ — 1,0) to obtain the
desired V. In the fourth (i.e. rightmost) case, we need to additionally move the bead in
(1 —1,1) to (i,1). Hence, if B € T (z) satisfies Rem(By) = F(z) then there exists y < x
and A’ € T (y) such that Rem(4}) = F(z), w(Aj) =0 and w(A}) =y. Let (i,1) be the
lowest position occupied by a bead (say d) in A’. Moving d to position (i + (x — y), 1)
we obtain a 2-abacus configuration A € T (z) such that Rem(A;) = Rem(A}) = F(x),
w(Ap) =0 and w(A;) = x, as desired.

It remains to show that F'(z) = f(xz) + 1. First suppose for a contradiction that
F(z) > f(x) + 2, and let A € T(x) be such that Rem(A4;) = F(x) and w(A4g) = 0.
By construction there exist integers 0 < j; < j2 < -+ < jf(z)42 such that there is a
bead in position (ji, 1) of A for all £ € [f(x) + 2]. This implies that w(A4) = w(A,) >
(f(z)+ 1)(f(z) +2) > z, a contradiction. Hence F(z) < f(z) + 1.

Now let y := f(x) - (f(z) + 1) < z. Let B be the 2-abacus obtained from T by first
sliding down the bead in position (0,1) to position (f(x) + x — y,1) and then sliding

down the bead in position (4, 1) to position (i+ f(z),1) for each i € {-1,-2,...,—f(x)}.
Clearly B € T (z) and Rem(B;) = f(z) + 1. Thus F(z) = f(z) + 1, as desired.
The case A = () is similar. O

Proof of Proposition[3.18 Let A -, n be such that Cpr(X) = v and A = br(n, 7).
Let B be the pF-abacus for A such that BT = A,. In particular, B is obtained from A
by performing a down-moves. Let R4, = {j1,...,jr}. Then by Corollary|3.21} we have

L
L+ N(a,pkﬁ) = br(n,v) = ‘)‘;’l = ZRGHI(B]Z)
=1

Let a;, = w(Bj,—1) + w(B;y,) for i € [L], so a1 + --- + ar < a. Since no two numbers
in R4, are consecutive (as remarked after Definition , we can regard the pairs
of runners of (Bj,—1,Bj,), (Bj,-1,Bj,)s---,(Bj,—1,B;,) as L disjoint 2-abaci, whose
2-cores are all equal to the 2-abacus 7(;) considered in Lemma It is easy to see
that the 2-abacus identified with the pair (Bj,_1, Bj,) lies in T(1y(a;) for all i € [L].
Lemma together with the maximality of |)\Ij,| among all the p’-partitions of n with
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pk-core equal to 7, allows us to deduce that Rem(Bj,) = f(a;)+1, for all i € [L]. Hence

i

we obtain
L

L
N(aapkaf)/) - ZRem(BJ7) -L= Zf(al)

We conclude the proof by showing that

L
N(a,pk,v)zmax{z:f(a;) | a4+ +d <a, a ENOVZ} = &(a, L).

i=1

Suppose for a contradiction that there exists a natural number y < @ and (af,...,a})
a composition of y such that ZiL:1 f(al) > N(a,p*,v). Since f is a non-decreasing func-
tion, without loss of generality we can assume that y = a. Then by using constructions
analogous to those in the proof of Lemma we can construct a partition A Fp n with
Cpr A) =1, Wk (A) = a and pF-abacus B satisfying BT = A, such that w(B;,) = d}
and Rem(Bj,) = f(a}) + 1 for all ¢ € [L]. This implies that

i

L
br(n,y) > M| =L+ Y f(ai) > L+ N(a,p*,7) = [\, | = br(n,7),
=1

which is a contradiction. Hence N(a,p*,~) = ®(a, L). O

Proposition 3.23. Let v b m. Then br(n) = br(n,v) if and only if |v,,| = br(m). In
particular, br(n) = br(m) + ®(a, br(m)).

Proof. Suppose that br(n) = br(n,v). Let A kp n be such that Cp(A) = v and
|A,/| = br(n), so that br(n) = |v,,|+ ®(a, |,/|) by Proposition Let -, m be such
that |d,,[ = br(m). Then, since ® is non-decreasing in each argument (when the other

argument is fixed), we have
br(n) = br(n,d0) = |6, + ®(a,|5,|) = br(m) + ®(a,br(m)) = |7, | + ®(a, |, [) = br(n),

whence we in fact have equalities everywhere. This proves all three statements: br(m) =
|7,/| gives the only if direction; br(n) = br(n, d) gives the if direction (with ¢ in place of

v); and the final assertion is clear. O

Corollary 3.24. Let n € N. ‘Let n = 22:1 a;p™ be its p-adic expansion, where
0<ni <---<mng. Let mj = Zz;ll a;p™i. Then

t

br(n) = br(ap™) + Z ®(aj,br(m;)).

=2

Thus we have shown that the second statement of Theorem [3.2 holds. In the last
part of this section we complete the proof of Theorem by studying the set £(n) =

{IAy] = AFn and pix (1)}
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Theorem 3.25. Let p be a prime, k € Ny and a € {1,2,...,p — 1}. Then &E(ap®) =
{1,2,...,br(ap®)}.

The proof of Theorem |3.25| is rather more technical and so has been postponed

to Section More precisely, Theorem follows from Propositions [3.30] [3-33]
and which are proved in Section below.
The next statement extends the observations already made in Lemma and is

crucial to completing the description of the set £(n).

Lemma 3.26. Let B = T(1) denote the 2-abacus for the partition (1) having first gap
in position (0,0). Let x € Ny and let T(x) be the set consisting of all 2-abaci U such
that w(U) =z and UT = B. Then {Rem(Uy) | U € T(z)} = {1,2,..., f(z) + 1}.

Proof. From Lemma [3.22] we know that the maximal value of {Rem(U;) | U € T (z)} is
f(z)+1. For any r € {0,1,..., f(z)}, let U(r) be the 2-abacus obtained from B by first
sliding down the bead in position (0,1) to position (z — r(r +1),1) and then (if » > 0)
sliding down the bead in position (i, 1) to position (i+r,1) for each i € {—1,-2,...,—r}.
Clearly U(r) € T(z) and Rem(U(r);) =r + 1. O

Theorem 3.27. Let p be a prime and let n € N. Let n = 23:1 a;p™ be its p-adic
expansion, where 0 < ny <ng < --- <ng. Then E(n) ={1,2,...,br(n)}.

Proof. We proceed by induction on ¢, the p-adic length of n. If t = 1 then the statement
follows from Theorem [3.25

Now assume that t > 2. Let m = 23;11 a;p" and let v be a p’-partition of m such
that |v,,| = br(m). For convenience, let L = br(m) and k = n;. As in Definition
let A := A, be the pF-abacus for v having first gap in position (0,0). Moreover, let
Ra=1{j1,---,jc}

Applying Lemmato the L pairs of runners (Aj,_1, A;,) of A, we see that for each
re€{0,1,...,®(as, L)}, there exists a sequence of a; down-moves that can be performed

on A to produce a p*-abacus B” such that

Z Rem(Bj) = L+ 1.
JERA

Let A(r) be the partition of n corresponding to B". Clearly Cpx(A(r)) = v and by
Theorem we deduce that A(r) b n. Moreover, |A(r),,| = L + r by Corollary |3.21
Hence L +r € £(n), and thus {L,L+1,...,br(n)} C £(n), noting that L + ®(as, L) =
br(n,v) = br(n) by Proposition

If L = 1 then the proof is complete; otherwise, using the inductive hypothesis we
have that for any i € {1,2,...,L — 1}, there exists (i) I,y m such that |y(i),| = i.
Taking r = 0 and replacing y by ~(7) in the above construction, we construct (i) F, n
such that Cpx (B(i)) = v(é) and |B(2),,| = i + 0. Hence {1,2,...,L — 1} C &(n), and we

conclude that £(n) = {1,2,...,br(n)}. O

Proof of Theorem[3.4 This follows directly from Corollary and Theorem O

38



3.1.3 The upper bound B(n)

In this section we prove Proposition [3.5] Fix a prime p and let n € N. Let n =

Z;zl a;p™ be its p-adic expansion, where 0 < n; < --- < n. Recall that B,(n) is

t

{a]’J
, 24"
Jj=2

From Lemma and Corollary we see that br,(n) < B,(n), and the difference

ep(n) = Bp(n) — brp(n) can be written as

defined as follows:

By (n) = bry(ap™) +

where m; = Zf;ll a;p"™. The following statement will be useful in the proof of Propo-

sition below.

Lemma 3.28. Let s,t € Ng with s < t. Let bg,b1,...,b: € {0,1,...,p — 1} with
bo,bi,...,bs not all zero. Then br (Z;:o bjpj) <br (Z;:o bjpj).

Proof. This follows directly from Proposition [3.23 O

Proof of Proposition[3.5 Fix n € N and its p-adic expansion as above. Let £(j) =
%] — ®(aj,br(m;)). If a; < 3 then £(j) = 0 by Lemma since br(m;) > 1. Hence
if a; < 3 for all j > 2, then in fact €,(n) = 0. Thus if p < 3 then ¢,(n) = 0, so from
now on we may assume p > 5 and that there exists i € {2,...,t} such that a; > 4. In
particular, there exists a unique k£ € N and integers 1 =19 < i1 <19 < --- < i < t such

that for all j € [k],
ij=min{z € {ij_1 +1,...,t —1,t} | az > 2/ + 2},

and {z € {ix +1,...,t — 1,t} | ay > 281 4+ 2} = (. Note that k must satisfy 2% < p,
because if 2% > p then ai, > 2¥ +2 > p — 1, contradicting the fact that a;, is a p-adic
digit.

We first show that br(m;,) > 277! for all j € [k] by induction. This is clear for j = 1.
For j € {2,...,k}, we have

br(mij) > br(mijfﬁ-l) = br(mij—l) + Q(aij—l’br(mij—l))
>2072 4 (277 +2,2772) > 277

The inequalities above hold by Lemma [3.28] the fact that ® is non-decreasing in
each argument, the inductive hypothesis, and Lemma while the equality follows
from Proposition Thus for all x > 7; + 1 we have

br(mg) > br(mi; 1) = br(m;;) + ®(a;,, br(m;;)) > 2071 L (27 42,2971 > 29,
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Now let « € {2,...,t} be such that i; < x < i;41 for some j € [k—1]. Since x < ;44
and x > i;, we have a, < 2/+1 41, and since z > ij, we have by the above discussion that
br(mg) > 27. Therefore br(m,) > |% ] and hence e(z) = 0 by Lemma Similarly if
& < iy then a, < 3 and so e(z) = 0, while if > i), then br(m,) > 2" > |% | and thus
e(z) = 0 also. Hence

ep(n) = ZE(Z])
j=1
Finally, for each j € [k], we have by Lemma that

p—1

i ‘ N 1
e(ij) = {%J — ®(aj;,br(m;;)) < - (27 42,271 < PT 7

Hence

Remark 3.29. Proposition shows that the difference between the upper bound B(n)
and the actual value of br(n) is small, and is bounded independently of n. If p €
{2,3} then &, = 0, as observed in the first part of the proof of Proposition above.
In particular, fixing p = 2 we recover [I, Theorem 1]. As already mentioned in the
introduction, the proof of Proposition [3.5] also shows that for any prime p, we have

B(n) = br(n) whenever all of the p-adic digits of n are at most 3. O

3.1.4 p'-constituents when n = ap®

The main goals in this section are to prove Theorem (3.3 (determining the value of
brp(ap®)), Corollary and Theorem (showing that &,(ap”) is the set of consec-
utive integers {1,2,...,br,(ap")}). These two results play the role of base cases for
Theorem [3.21

For the rest of this section, let p be an odd prime. The case when k = 0 is straight-

forward and is described in the following proposition.

Proposition 3.30. Leta € {1,2,...,p—1}. Then &E(a) ={1,2,...,br(a)} and br(a) =
f(2a).

Proof. Every partition of a —1 is a p’-partition, and we can always construct a partition

A of a such that |A\7| = m for any m € {1,2,..., f(2a)}, since f(2a) is the maximum

number of parts of distinct size achieved by a partition of a. O

In the following proposition we provide a naive upper bound for br(ap*), for all k € N
and a € {1,...,p—1}. As we will show in the rest of this section, this bound turns out

to be tight for almost all values of a and k.

40



Proposition 3.31. Leta € {1,2,...,p— 1} and let k € N. Then br(ap*) < 2a.

Proof. Let C' and D be pF-abacus configurations such that D is obtained from C by
performing a single down-move. It is easy to see that the number of removable beads
in D is at most the number of removable beads in C' plus two. Hence if A is a partition
such that Cpr(A) = 0 then [A7| < 2w,k (\). Now let n = ap® and let A b, n satisfy
|A,/| = br(n). From Theorem we know that Cpx(A) = 0 and wyk (A) = a. The result
follows. O

Proof of Corollary[3} This is a straightforward consequence of Lemma Corollary

[3:24 and Proposition [3-31} O

To complete the proof of Theorem |3.3] it will be convenient to split the remainder of
this section into two parts. In each part we will appropriately fix the natural numbers

a and k according to the statement of Theorem [3.3

Part 1
In this first part, we consider the case k = 1 and a < &, and the case k > 2.

Proposition 3.32. Leta € {1,2,...,p—1} and let k € N. Ifk =1 and a < §, or if
k > 2, then br(ap®) = 2a.

Proof. It is enough to construct A k-, ap® such that \)\;,| = 2a, by Proposition m

(i) First suppose k = landa < §. Let A\ = (p—1,p—2,...,p—a,a,a—1,...,2,1) - ap.
Figure depicts the p-abacus configuration for A having first gap in position (0, 0),
where we have indicated the row numbers on the left and the runner numbers above

each column.

o 1 2 3 2a —2 2a—-1 2a p—1
-1 X X X X X X X X
0 o X o X o X o o
1 X o X o X o o o

Figure 3.1: The partition A\=(p—1,p—2,...,p—a,a,a—1,...,2,1) F ap.

Since C,(A) = 0 we have that A F,, ap by Theorem Moreover, we observe that
wp(p) = wp(A) —1 =a—1 for each p € A7, by Lemma and so Cp(p) Fp—1 by
Proposition But every partition of p—1 is of p’-degree, so by Theoremwe have
that by ap — 1 for every p € A, whence A, = A~ and so [\ | = 2a.

(ii) Suppose now that k > 2. Let r = p*~! —a > 0 and let
N=atp-2+m+@-jp-1)=p"-G-Dp-1)-1
for each j € {1,2,...,a}. Let
A= (AL A% (a— )P (a—2)P7 L 207 1P gt

41



The best way to verify that A has the required properties is to look at it on James’ abacus.
We describe below and depict in Figure [3.2] a p-abacus configuration A corresponding
to A such that:

- the first gap is in position (1,0);

-rows 1 <4 < a— 1 have a gap only in position (i, 0);

- row a has a bead only in position (a, 1);

-rows a + 1 to a + r are all empty;

-rows a + 1 4+ r < i < 2a+ r have a bead only in position (i,0);

- there is a gap in position (z,y) for all > 2a + r.

0o 1 2 p—1
1 o X X
a—1 o X X .- X
a o X o o
a+1 o o o
a+r o o o o
a+1+r X o o e o
2a+ 71 X 0o 0o .- o

Figure 3.2: The partition A = ()\1, XA a, (a— 1P (@ —2)P7h L 2P 1"71) F ap®.

We observe that Q,(A) = (A°,0,...,0), where A = (p*~1, ... pF=1) F ap*~1. From [54
Theorem 3.3], we deduce that w,x (A) = wyre-1(A°) = a and Cpe(X) = 0. Thus A k-, ap”,
by Theorem (3.12

Notice that A has exactly 2a removable nodes, corresponding to the 2a removable
beads in A lying in positions (¢,1) and (a + r 4 4,0) for i € [a]. Let ¢ be a removable
bead in position (i,1) of A, for some ¢ € [a]. Then A ¢ corresponds to the partition
p = ap® — 1 such that Cp(p) = (p— 1) Fp—1and Q,(p) = (u°, ut,0,...,0), where

W=t =1, p =i D kap* ™ —1)+i—1 and p' =1 Fa—i.

We observe that p° F, (a — 1)p*~1 +m, where m := pF=! — a + (i — 1). This follows
from Theorem since wyr-1(p’) = a — 1 and Cpr-1(p®) = (m) b, m. Moreover,
p! tp a —i. We can now use Theorem to deduce that p ap® — 1 and therefore
BEA,.

A similar argument shows that for every j € [a] the p-abacus A% obtained from A
by sliding the bead d in position (a+7+7,0) to position (a+r+j—1,p—1), corresponds
to a p/-partition p of ap® — 1, that is, u € A, - Thus \)\;,| = 2a. O

Proposition 3.33. Leta € {1,2,...,p—1} and let k € N. Ifk =1 and a < %, or if
k> 2, then E(ap®) = {1,2,...br(ap*)}.
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Proof. Tt is enough to construct A -, ap® such that |A,/| = m for each m € [2a — 1], by
Proposition [3.:32]
(i) First suppose that & = 1 and a <
IA(j),| = 2j for each j € [a — 1]:
~let A(1) = (ap —1,1);
- for each fixed j € {2,...,a — 1}, let A(j) = (A1, A2,..., Ag;) where
-hi=(a—j+)p—2j+1,
- Az =p+2—zforze{2...,j}, and
N =2+1—yforye{j+1,...,25}.
The p-abacus for A(j) having first gap in position (0, 0) is depicted in Figure

[MiS]

We first exhibit A(j) F,/ ap such that

o 1 2 3 27 —2 25—1 2§ p—1
-1 X X X X X X X X
0 o X o X o X o o
1 o o X o X o o o
2 o o o o o o o o
a—j+1 X o o o .- o o o e o

Figure 3.3: The partition A(j).

That A(j) Fp ap follows from Theorem [3.12] Moreover, wy (1) = wp(A(j))—1 = a—1
for each € A(§)~ by Lemma and so [Cp(u)] =p—1Dby Proposition But then
Cp(p) Fpr p — 1 and so by Theoremwe have that p b, ap — 1 for each p € A(j)~,
whence A(j),, = A(j)~ and so [A(j),,| = 2j. Hence {2,4,...,2a — 2} C E(ap).

Next we exhibit 3(j) -, ap such that [5(j),,| = 2j — 1 for each j € [a]:

let B(1) = ((a—1p+1,1P71);

“let B(a) = (2a—1,2a —2,...,a+1,aP720%2 a —1,...,2,1);

- for each fixed j € {2,...,a — 1}, let 8(j) = (b1,. .., Bp) where

-Pr=(a—Jjp+1,

-Br=2j+2—xforxe{2,...,5}

-By=jforye{j+1,....p—j+1}, and
-B.=p+l—zforze{p—j+2,...,p}

The p-abacus for 3(j) having first gap in position (0,0) is depicted in Figure

0o 1 2 3 2j—2 2j—1 2j p—1
-1 X X X X X X X X
0 o X o X o X X X
1 o o X o X o o o
2 o o o o o o o o
a—j+1 X o 0o o .- o o o .- o

Figure 3.4: The partition £(5).
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That 8(j) b, ap follows from Theorem|3.12| By Lemma|3.10} if j # a then |3(j) | =
2j and |B(j)~\B(j),/| = 1, while if j = a then |3(j), | = [B(j) | = 2a—1. In both cases
we have |ﬁ(j);,| =2j—1, giving {1,3,...,2a—1} C E(ap). Thus E(ap) ={1,2,...,2a}

as claimed.

(ii) Suppose now that k > 2. We first construct a partition A(j) F, ap® such that
IA(J) | =2a—j, for all j € [a—1]. Let r =pF!1 —a>0and let

A(]) = (na—17"'anjvoja"'aalyav (ai1)p717"'7(j+1)p717jp723(jfl)pilw"alpil)a

where 6, = a+pr+t(p—1) and n, = 6, + (p—2) for ¢t € [a —1]. We describe below and
depict a p-abacus A7 for A(j) in Figure

- the first gap is in position (1, 1);

-rows 1 <z < j have a gap only in position (z,1);

-tows j + 1 <2 < a— 1 have a gap only in position (z,0);

- row @ has a bead only in position (a, 1);

- rows a + 1 to a + r are all empty;

crows a+ 71+ 1<z <a+r+j have a bead only in position (z,1);

ctows a+ 71+ j+ 1 <2 <2a+r have a bead only in position (z,0);

- there is a gap in position (z,y) for all © > 2a + 7.

o 1 2 p—1
1 X o X X
7 X o X e X
j+1 o X X e X
a—1 o X
a o] X ] [0)
a+1 o o o .- o
a+r 6o o o .- o
a+r+1 o X o
a+r—+7 o X 0o .- o
at+r+j5+1 X o o .- o
2a + 7 X 0o 0 .- o

Figure 3.5: A p-abacus A? for the partition A(j).

Since j is fixed, we denote A(j) by A and A7 by A from now on. Arguing as in the
proof of Proposition we deduce that A ap®. Moreover, it is clear that |\~| = 2a.
Let z € [j] and let ¢ be the bead lying in position (z,2) of A. Let u(*) be the partition
of ap® — 1 corresponding to the p-abacus A“¢. Then Cp(u(x)) = (p,1P~1). Therefore
p*) is not a p/-partition, by Theorem It follows that [\ | < 2a — j.
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We now show that all of the other 2a — j removable beads in A correspond to p’-
partitions of ap® — 1. Let # € {j+1,j+2,...,a} and let ¢ be the bead in position (z, 1)
of A. Let u(® be the partition of ap® — 1 corresponding to the p-abacus A<¢. Then
Cp(p®) = (p—1)Fp p—1and Q,(u®) = (u°, ut,0,...,0), where

10 = ((pk_l —1)*Jx—j—1) and p' = ((r+j+1)7,G+D* ", 57,

By Theorem both ° and p' are p’-partitions, since

k—2
W) =(@—j-Dp" ' +(p-1) Zpi +(p—1)—(a—x)]

and

W' ="+ (a— ).

This implies p(*) Fpr ap® — 1, by Theorem

Now let ¢ be the bead in position (a 4 r + z,1) for some z € [j], and let u(*) be
the partition corresponding to the p-abacus A< ¢. Arguing as before, we deduce from
Theorem that p(®) Fp ap® — 1.

Finally, let ¢ be the bead in position (a + r + z,0) for some = € {j +1,...,a}
and let 1(*) be the partition corresponding to A“°. First, we observe that C),(u(®)) =
(p —2,1) Fp p — 1. Moreover, Q, (™) = (u°, i, 0,...,0, uP~"), where

pO= () T PRI, wt = (4 5),5077), and Pl =(rta - 1)

Again, p(®) , ap® — 1 by Theorem and so |/\;,| = 2a — j. Thus {a + 1,a +
2,...,2a =1} C & p.

Finally, we construct a partition 8(j) F, ap® such that \,B(j);/| = a — j, for all
j€{0,1,...,a—1}. Let B be the p-abacus obtained from the p-abacus A’ described
above by replacing the bead in position (a,1) with a gap so that row a is now empty.
Let () be the partition of ap”® corresponding to the p-abacus B’. Since j is fixed we
denote B’ by B and 3(j) by f.

It is clear that 3 F, ap® and |~| = 2a — j — 1. Moreover, if c is one of the a — 1
removable beads lying on runner 1 of B and p is the partition of ap® — 1 corresponding
to the p-abacus B¢, then Cp(u) = (p,17~') and therefore y is not a p’-partition by
Theorem Hence | ﬂ;| < a — j. Arguing as before, the partition corresponding to
the p-abacus B¢ for any removable bead ¢ lying on runner 0 of B is a p’-partition of
ap® — 1. Hence |8,y =a—j,and so {1,2,...,a} C E(ap®).

Thus &(ap®) = {1,2,...,2a} as claimed. O

Part II

In this second part of Section we fix k = 1 and a € N such that £ < a < p. The

main aim in Part II is to prove the following fact.
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Proposition 3.34. Let a € N and suppose that § < a < p. Then br(ap) = p— 1+

2L2a7((3p71)J ]

The proof of Proposition [3.34] is split into a series of technical lemmas. We start by
fixing some notation which will be kept throughout Part II.

Notation 3.35. Let a € N satisfy £ < a <p. Let x:=a— %, and write x = 3¢+ 0

for some q € Ng and 6 € {0,1,2}. In particular, ¢ = [ 5] = LW]

Definition 3.36. Denote by Ay the p-abacus for the empty partition O such that Ay
has first gap in position (0,0). We then define Z(a) to be the set of p-abaci B such that
w(B) = a and BT = Ay.

It is clear by Theorem that Z(a) is naturally in bijection with Irr, (S,yp).

Lemma 3.37. Let A, ap and let B € Z(a) be the p-abacus corresponding to X. Then

p—1 p—1
\)\;,| = ; Rem(B;) and  br(ap) = Brggé) 2 Rem(B;).
Proof. The statement follows directly from Lemma [3.10] and Theorem [3.12} O

Lemma 3.38. For a € N such that £ < a < p, we have br(ap) > p —1+ 2q.

Proof. We exhibit a partition 8 -,/ ap such that |B};| =p—1+42q. If § =0 then let
B=(@+2¢,p+2¢—1,....p+q+1,p+q—1,....,q+1,¢" 2 ¢g—1,...,2,1),

while if § # 0 then let

B=(p(6+1)+2,p+2¢+1,p+2q,...,p+q+3,p+q—1,...,q+1,¢"">%" ¢—1,...,1).

We describe below and depict a p-abacus Bg € Z(a) for § in Figure

0 1 2 3 4 2¢g—2 2¢g—1 2q 2¢q+1 2942 -+ p—3 p—2 p-—1
-3 X X X X X X X X X X X X X
-2 X o X o X X o X X X X X X
-1 X o X o X X o X o X X o X
0 o X o X o o X o X o o X o
1 o o o X o o X o o o o o o
2 (o] o (o} o o] (o] o] o o} o ] o] (o)
1496 o X o o o o o o o o ) o o

Figure 3.6: A p-abacus Bg for the partition 3.

-for j € {0,2,...,p—3,p— 1}, runner j has beads in positions (z, j) for all x < —1;

- runner 1 has beads in positions (0,1), (1+6,1) and (y,1) for all y < —3;

-for j € {3,5,...,2¢ — 1}, runner j has beads in positions (0, j), (1, ) and (y, j) for
all y < —3;
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-for j € {2¢+1,2¢+3,...,p — 2}, runner j has beads in positions (0, ) and (y, j)
for all < —2.

Observe that Cy,(8) = 0 and w,(8) = a, whence § b, ap by Theorem Moreover,
by Lemmawe have 8~ = ;. Hence br(ap) > \,6’;| =p—1+2q. O

Thus it remains to show that |)\;,\ <p—1+42qforall A, ap. In order to do this

we introduce a new combinatorial object.

Definition 3.39. Let Ty be the 2-abacus for the empty partition O having first gap
in position (0,0). Let U, UM .. TPV pe 2-abaci such that (UD)T = Ty for all
i€{0,1,....,p—1}. If w(UO) +w@D) + - +wUP V) =w e Ny then we call
the sequence U = (U(O), SN U(p_l)) a doubled p-abacus of weight w and write
w(U) = w in this case. Moreover, we denote by D(w) the set of doubled p-abaci of
weight w.

Finally, given any w € Ny we let M(w) = max{p(U) | U € D(w)}, where for any
U € D(w) we define p(U) as

o) = 3" Rem(UL”).
=1

We denote by Uéi) (resp. Uli)) the left- (resp. right-) hand runner of the 2-abacus U™,

Remark 3.40. Let A Fp ap and let B € Z(a) correspond to A\. For i € [p — 1], let
U = (Bi_1,B;) and let U®) = (B,_1,By). Then U := (U UM . uk-D) ¢
D(2a) and p(U) = |\, by Lemma [3.37, With this in mind, we define D(Z(a)) to be
the subset of D(2a) of sequences U := (U UM ... UP=D) such that Uéi) = Ul(ifl)
for all i € {0,1,...,p — 1} (here two runners are equal if they coincide as 1-abaci; that
is, they have beads in exactly the same rows). Clearly the set D(Z(a)) is naturally in

bijection with Z(a) via the construction described above. O
Lemma 3.41. Let a and x be as in Notation. Then br(ap) < M(2a) = p—1+[2£].

Proof. 1t follows from Remark [3.40]that br(ap) < M (2a), so it remains to prove M (2a) =
p—1+[%].

Let U = (U®, UMW ..., UPD) € D(2a) be such that p(U) = M(2a). Let w; =
w(U®). Clearly wy 4+ wy + <+-wp—1 < 2a. Moreover, arguing as in the proof of
Lemma m we can assume that w(Ul(i)) = w; and w(Uéi)) =0 for all i € [p—1].
From the maximality of p(U) we deduce using Lemma (in the case A = () that
Rem(Ul(i)) = |y/w;| and hence

p—1

M (2a) = max {ZL\/EJ

i=1

by 4+ +by,_1 <2aand b; € Ny ViE[P_l]}’

Let b = (by,...,bp—1) be such that b; € Ny for all 4, >_.b; < 2a and >_,|vb;| =

M (2a); we will call any (p—1)-tuple satisfying these conditions mazimal. If there exists i
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such that b; > 9, then there exists j such that b; < 1. This follows since ZZ b; < 2a < 2p.
Replacing b; by b, = b; —4 and b; by b} = b; +4 in b we obtain a new maximal sequence
b'. Hence we may assume without loss of generality that our maximal sequence b has
b <8foralliep—1].

Now if there exists ¢ such that b; = 0 then there exists j such that b; > 2, because
2a > p. In this case, replacing b; by b; = 1 and b; by b; = b; — 1 in b we obtain a new
maximal sequence b’. Hence we may further assume that b has b; > 1 for all ¢ € [p —1].

The observations above show that without loss of generality we may assume

Voil =+ = Vo) =2, Vo) =+ = [V/ba) = 1,

for some t € {0,...,p — 1}.

In particular, b, € {4,...,8} for ¢ € [t] and b; € {1,2,3} for j € {t +1,...,p—1}.
Thus 4t + (p — 1 —t) < 3, b; < 2a, which gives ¢ < [2%] since ¢ is an integer. This in
turn implies that M (2a) =2t + (p—1—1t) <p— 1+ [2].

Finally, equality holds because we can construct U € D(2a) such that w(UM) =

c=w(UW) =4, wU) = ... = wUPV) =1and wU®) =2a -3t — (p— 1),
where ¢ = |22, with Rem(Ul(J)) = 2for j € [t] and Rem(Ul(])) =1forje {t+1,...,p—
1}. O

Lemmas and show that p—1+2[2] < br(ap) < p—1+[%]. In particular,
if § # 2 then we have that [2] = 2¢ + %] = 2¢ = 2|%]. In this case we have
br(ap) = M(2a) = p — 1+ 2q. To deal with the remaining case of § = 2 where

p—1+42q <br(ap) < M(2a) =p—142¢q+ 1, we have the following lemma.

Lemma 3.42. Let a € N be as in Notation and suppose that 6 = 2. Then br(ap) <
M(2a) — 1.

Proof. From Remark it is enough to show that if U € D(2a) and p(U) = M(2a),
then U ¢ D(Z(a)). To do this we will show that if p(U) = M (2a) then there exists
i€{0,1,...,p— 1} such that U(gi) #* Ul(i_l).

For i € {0,1,...,p — 1}, let b; = w(U®). Arguing as in the proof of Lemma
we see that p(U) = Zf:_ll |v/bi|. Moreover, given any composition w = (w1,...,wp_1)
such that wy + -+ + wp—1 < 2a there exists V. € D(2a) such that w(V?) = w; for all
i€lp—1], w(V°) =2a— (w + - +wp1) and p(V) = Y07 | /wi .

Let b= (b1,...,bp—1) and suppose that b; > 9 for some i € [p — 1].

- If there exists j such that b; = 0, then replacing (b;,b;) by (b,b) := (b; — 4,4)
in b we obtain a new composition b’ such that Zf;ll [Vw;] > p(U), contradicting the
maximality of p(U).

- If b; > 10, then there exists j # [ such that b; = b; = 1 since a < p. But then we
may replace (b;,b;,b;) by (b; —6,4,4) in b to obtain a contradiction as before.

- If there exists i’ # 7 such that by > 9, then since we cannot have b, > 10 we deduce

that by = 9. In particular, 2a > 18 so p > 3. Since a < p, there exist distinct 7, 5, 7"
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such that b; = bjs = b;» = 1. But then we may replace (9,9,1,1,1) by (5,4,4,4,4) in b
to obtain a contradiction.

The above observations show that if b; > 9 for some i € [p — 1] then in fact b; = 9
and 1 < b; < 8 for all j # 4. In particular, there exists ¢ € {0,1,...,p — 2} such that
b has t parts satisfying L\/EJ = 2 and p — 2 — t parts satisfying L\/EJ = 1. Hence
MQ2a)=3+2t+(p—2—-t)=p—1+ %] =p—1+2¢+1,s0t=2¢— 1. But this
implies that

p—1
20> by =9+ 4t+(p—2—1)=p—1+6q+5.
m=1

Therefore 6g + 5 < 2a — (p — 1) = 22 = 6¢g + 4, a contradiction. Thus b; < 8 for all
iep-1].
So suppose there are t values of i for which |v/b;| = 2, s values for which it is 1, and

p — 1 — s —t values for which it is 0. Then
p+2g=M2a)=2t+s<p—1+t,

so t > 2q + 1. In particular ¢ > 1, so there exists i with [/b;] = 2. If there exists j # [
such that b, = b; = 0, then we may replace (b;,b;,b;) by (b; —2,1,1) in b to obtain
a contradiction to the maximality of p(U). So there is at most one b; = 0 and thus
s+te{p—2,p—1}
If s+t =p—2, then p+ 2¢ = M(2a) = 2t + s implies t = 2q + 2, and so
p—1

6g+4—by=2x—by= mef(pfl)Z4t+sf(p71):6q+5,

m=1

which is a contradiction. Thus s +¢t=p—1 and t = 2¢g + 1. Since
p—1
6g+4—bo= bm—(p—1)>4t+s—(p—1)=6q+3,
m=1

one of the following must hold:

(i) {i:b; =4} =t, |{i: b =1} =sand bg = 1; or

(i) {i:b; =4} =t—1,[{i:b; =5} =1, [{i: b; =1} = s and by = 0; or
(i) {e:b; =4} =¢t, [{i:0; =2} =1, {i: b, =1} =s—1 and by = 0.

Now, suppose for a contradiction that U € D(Z(a)). Then we have that the bead
configurations on Ul(i_l) and Uéi) are equal for all i: call this property (x). The key in
the following is to notice that ¢ = |{i : b; > 4}| = 2¢ + 1 is odd.

In case (i), let i € [p — 1] be such that b; = 4. Then (w(UOi)),w(Uli))) = (4,4—7)
for some j € {0,1,...,4}. If j = 2 then (%) would imply ;11 > 2, and hence b;11 = 4,
since b; € {1,4} for all . This then gives w(UéiH)) = w(Ul(H_l)) = 2. We can iterate
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this argument to deduce that w(Uéy)) = w(Ul(y)) =2forall y € {0,1,...,p— 1}, which
is a contradiction. Thus j € {0,1,3,4}.

If j = 0, then w(Ul(i)) = 4, so (x) implies that w(UéiH)) = 4 and hence b;y; = 4
also. Similarly if j = 1, then w(UéiH)) = 3 and hence b;;1 = 4. On the other hand, if
7 =3 or j = 4 then similarly we deduce that b;_; = 4. These observations imply that ¢
is an even natural number (because if 7 € {0,1} then we may pair off ¢ and i + 1 where
b; = bi+1 =4, and if j € {3,4} then we may pair off i and ¢ — 1 where b; = b;—; = 4).
This gives a contradiction, and so U ¢ D(Z(a)), as desired. The analyses of cases (ii)

and (iii) are similar. O

Thus when ¢ = 2 we also have that br(ap) = p — 1+ 2[5 ], by Lemmas
and This proves Proposition

Proof of Theorem[3.3 This follows directly from Propositions [3.30} [3.:32] and 3.:34 O

We devote the final part of this section to the description of £(ap) for any £ < a < p.
Proposition 3.43. Let a € N be such that § < a <p. Then E(ap) = {1,2,...,br(ap)}.

Proof. Let -, ap with p-abacus B := Bg as defined in Lemma@ In particular, we
proved that |8,,| = br(ap) = p — 1 + 2¢, with ¢ defined as in Notation W

Denote by b the bead in position (1 + 6,1) of B. For i € {1,2,..., 2%} let ¢; be
the bead in position (0,p — 2¢) of B and let B(i) be the p-abacus obtained from B by
sliding b down to position (1 + 6 +4,1) and by sliding ¢; up to position (—1,p — 2j) for
all j € {1,...,i}. Let u(i) - ap be the partition corresponding to the p-abacus B(i).
From Theoremwe have that p(i) bp ap and |u(i), | = |B,| — 2i. It follows that

{2¢,29 +2,-- -, br(ap) — 2,br(ap)} € E(ap).

Now let A := B(p—;l). Fori € {1,2,...,q—1} let A(%) be the p-abacus obtained from
A by sliding down bead b from position (1+ 6 + %, 1) to position (1+ 6+ ”2;1 +3i,1)
and by replacing runner As;y; with Agj+1 for all j € {1,...,i}. This step is depicted
in Figure 3.7

2/ 2j+1 2j+2 2/ 2+1 2j+2
—2 X o X —2 X X X
—1 X X X — —1 X X X
0 o o o 0 o o o
1 o X o 1 o o o

Figure 3.7: Obtaining A(¢) from A.

Let v(i) F ap be the partition corresponding to the p-abacus A(). Since w(Agiy1) =
3 for all i« € {1,2,...,q — 1}, it follows from Theorem that v(i) Fp ap and
(i), | = |,u(%);,\ — 2i. Thus {2,4,6,---,2¢q — 2} C &(ap), and so it remains to
show {1,3,...,br(ap) — 1} C E(ap).
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First suppose ¢ > 1. Consider the p-abacus C obtained from B by sliding down the
bead in position (—1,0) to position (0,0) and by sliding up the bead in position (0, 1)
to position (—1,1).

Let v be the partition corresponding to C. It is easy to see that v -, ap and
that \’y;| = br(ap) — 1. We can now repeat the strategy used above to see that
{3,5,...,br(ap) — 1} C E(ap). Of course, 1 € E(ap) by considering the trivial par-
tition (ap) Fp ap.

If ¢ = 0 we begin with the p-abacus C’ obtained from B by swapping runners 0 and

1, instead of C. The same argument then shows {1,3,...,br(ap) — 1} C E(ap). O
Proof of Theorem[3.25 This follows from Propositions [3.30} [3.33] and [3.43] O

3.2 Induction

Let p be a prime number. In the first part of this chapter, we studied the restrictions
of irreducible characters of the symmetric group &,, of degree coprime to p to &,_1,
giving a generalisation from p = 2 to all primes p of [I Theorem 1]. In this section,
we now investigate the more complex behaviours exhibited by character inductions to

Gnt1, generalising [T, Theorem 2] from p = 2 to all p as a consequence.

3.2.1 Main results

Let p be any prime. For n € N and A F n, define
Gn
M= {pbyn+1 0 X" [ XA,

Ef(n) = {|)\;,| : Ay n}, and brt(n) =max& (n).

(As usual, we omit the subscript p when it is understood.) Our main results in this

section are the following:

Theorem 3.44. Let n € Ny and let p be any prime. Let n+ 1 = 22:1 a;p"i be the
p-adic expansion of n+ 1, where 0 <mqy < ng < ... < ng. Then

t
brt(n) = brt(ap™ — 1) + Z ®(a;,brt(m; — 1)) + A(n, p),
j=2
where mj = Zf;ll a;p™t and ® and A are defined in Deﬁnition below. In particular,
brt(n)=1if and only if n =0 orn = Z;lekf for someu e Nand1 <ky < -+ < ky.
Theorem 3.45. Let n € Ny and let p be any prime. Then 1 € £T(n) if and only if
p|n, and
pln+l if p>5,
0€5+(n) if and only if 9|n+1 if p=3,
8|n+1 ifp=2.

51



Moreover, when br*(n) > 1, then
{2,3,...,br7(n)} CET(n) €{0,1,2,...,br" (n)}.
Theorem 3.46. Let p be a prime, a € [p— 1] and k € Ng. Then

lVal +1 if k>0,

brt(aph —1) =
fRa—2)+1 if k=0

where [ is as defined in Definition [3.49 below.

Theorems and [3.46] give an exact recursive formula for the exact value of br*(n),
while Theorem determines the set of achievable values for the quantity |)\;',| as A
runs over the p’-partitions of n. In other words, we determine all possible numbers of
upward edges that a vertex in the Young subgraph Y,  can have.

When p = 2, the expressions in Theorems [3.:44] and afford a simpler form: we
obtain Corollarybelow7 which records the values of brj (n) and & (n) for all n € Ny,
thus recovering [I, Theorem 2]. When p is odd, we can further give a bound to easily

estimate the size of br*(n) in terms of the p-adic digits of n.

Corollary 3.47. Let the notation be as in Theorem and suppose further that p is
odd. Then ,
brt(n) S B (n) =2+ vV2ar + Y | 2]
j=2

Moreover, BT (n) — br™(n) < plogy(p) for all n. Thus
sup{br*(n) | n € N} = cc.

Notice that this is in contrast to sup{bry (n) | n € N} = 2 when p = 2, which
follows from [I, Theorem 2] (or Corollary [3.66)). The proofs of our main results appear
in Section below.

3.2.2 Differences between restriction and induction

Our main results extend from p = 2 to all primes p Theorem 2 of [I], which we restate

in our present notation below.

Theorem 3.48 ([I, Theorem 2]). Let n € N. Then bry (n) < 2, so Yo is an incomplete
binary tree. Moreover, £ (n) = {1} if n is even, and £ (n) C {0,2} if n is odd. In
particular, for X o n when n is odd, |\S;| = 0 if and only if Cauymns1y(A) is not a hook.

Before we prove our main results in Section below, we discuss in the present sec-
tion some behaviours exhibited by character inductions and their p’-constituents which
differ from those exhibited by the character restrictions investigated in the previous

chapter.
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Indeed, we can already see from Theorem that 1 is not always an element of
&5 (n). Moreover, by Theorem for every prime p there exists n € N such that
0 € &F(n), in contrast to the situation of restriction where &,(n) = {1,2,...,br(n)} # 0
for all n € N.

Notice that starting at any vertex A b, n, there exists a sequence A\ = ),
XD A A in Yy, such that A by i and AO € AL foralli € {0,1,...,n—
1}; that is, we may always trace a downward path to the root vertex §). However, not ev-
ery A € Y, lies on an infinite ray {\(V}22 such that A() |-, i and \(¥) € )\S,H)* for all ¢.
By Theorem it is easy to see that Irr, (&, ) consists exactly of the hook partitions
of p¥, and thus the only infinite rays in Y,, are {(i)}32, and {(19)}2°,, corresponding

respectively to the trivial and sign representations of the symmetric groups.

We determine the values of n for which 0 € Ez‘f (n). Before we do this, we set up some
preliminaries. (The definitions of ® and f were given in Definition for convenience

we restate them here.)

Definition 3.49. For a € Ny and L € N, define

®(a, L) := max {Zf(ai)

i=1

a1+---+ar <a and a; €Ny ViE[L]}7

where f(z) = max{y € Ng | y(y + 1) < z}. Let {(x) = max{y € No | y(y + 2) < z}, and
define
2f(a) =1 if f(a) > ((a),

g(a) = .
2f(a) otherwise.

Also define M (a) = max{f(a —b) + g(b) | b€ {0,1,...,a}}.
Now let n € Ny and p be a prime. Let n = ZiZO d;p’ be the p-adic expansion of n,
and let d(n) := (d1,dy). Define

1 if p=5andd(n)=(3,3), or p=7and d(n) € {(3,5),(5,5)},
A(n,p) =
0 otherwise.

It is easy to see that ((a) < f(a) < g(a) < 2f(a) for all a € Ng. We remark that
f(a) > {(a) occurs precisely when y(y + 1) < a < y(y + 2) for some y € Ny, in which
case y = f(a) by the definition of f.

Next, we record the addable bead analogue of Lemma [3.10

Lemma 3.50. Let e € N. Let A be a partition and let A be an e-abacus for \. Suppose
c is an addable bead on runner A; and let p = n+1 be the partition represented by A7 .
Then

[Aj] = [Ajpa =1 if j#e—1,

we(p) — we(A) = o
A=) j=e—1.

Proof. This follows from Lemma [
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Let p be a prime. Let & € N and let v -,y m where 0 < m < pF. By Propositionm
[Ap| = || for all At p* 4+ m such that Cpx(X\) = =, since ®(1,L) = 0 for all L.
Thus when a = 1 the core map in Theorem is in fact bijective. We record its

useful induction analogue; the ideas used its proof are completely analogous to those in
Theorem [B.15]

Corollary 3.51. Let p be a prime and k € N. Let n = ap* +m where a € [p — 1] and
0<m<pr—2. Let Fp . Then the map

+
p/

Cpk : )\;r, — (Cpk ()\))

is well-defined and surjective.

Proof. Well-definition follows directly from Theorem let 6 € )\;r,, so A € 0,,. Then
Cpr(A) € Cpr(6),,, 50 Cpr(0) € Cpk()\);',.

For surjectivity, let A be the p*-abacus for p := Cpr(A) with first gap in position
(0,0), so |4, € {]Ao|, |Ao| + 1} for each j € {0,1,...,p* — 1}. In particular, |u| =m <
p¥—2 so position (0, p*—1) is also empty. Let B be the pF-abacus for A such that BT = A.
Let B € ,u;', and let d be the addable bead in A such that A%~ (defined in the obvious
way) is a p*-abacus for 8. Suppose d lies in position (0, j) for some j € [p* — 2] (and so
position (0, j+1) is empty). Surjectivity then follows from Lemmaand an analogous
argument (using A%~ instead of A“?) to that in the proof of Theorem O

We remark that the above corollary does not hold if m = p* — 1: in this case

Cpr ()\);r, C P(p*), while Cpr () = 0 for p € )\;',. (This is analogous to the case of m =0

in Theorem [3.15] since ()~ is undefined.)
Before we deduce that the core map in Corollary is in fact also bijective when

a = 1, we remark that we can now characterise when 0 € E};" (n).

Proposition 3.52. Let n € Ng and let p be a prime. Then

pln+l ifp>5,
065;(71) if and only if 9|n+1 if p=3,
8|n+1 ifp=2.

Proof. We prove this proposition in steps.

(1) If ptn+1, then |)\;,| > 0 for every A b, m: this is immediate since )@T?Z“(l) =
(2) Ifp>5andp | n+1, then A = (n — 255, E51) satisfies A b n and \A;‘,\ =0:
this clearly holds for n = p — 1, and holds by inspection for n > p — 1 by observing
that A\ = {(n — p—;l —i—l,%),(n— ”%1,”%1 +1),(n— %,pg—l,l)} but )\;r, =0, by
Theorem (or the hook length formula).

(8) If 9t n+1, then |Ad| > 0 for every A 3 m: by (1), it remains to consider n € N such
that 3 | n+1but 94 n+1. Let the 3-adic expansion of n be a;3™ +--- 4+ a13™ 435 + 2
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where § € {0,1},t € Ny, 2<ny <--- <nganda; € {1,2} for all ;. From Corollary|3.5]]

we have that
A3 | = |Csne (N3] = -+ = |Cgma (- (Cane () -+ )3 | = |Cama (V)3

and Csn1 (A) kg 30 +2 € {2,5} by Theorem By inspection, |ud,| > 0 for all yu b3 2
and all yu 3 5. Thus |\, > 0.

(4) If 9 | n+ 1, then A = (n — 4,4) satisfies A b3 n and |A5| = 0: this clearly holds
for n = 8, and holds by inspection for n > 8 by observing that AT = {(n — 3,4), (n —
4,5), (n —4,4,1)} but A}, = 0.

(5) If 8 t n+ 1, then |\J,| > 0 for every XA k2 n: let the binary expansion of n be
2™ ... 4 2™ + ¢ where t € Nog, 3 <ny < - - <mng and ¢ € {1,3,5} (by (1), we may
now assume n is odd). Then by Corollary

A3 2 [Cone (N3] = -+ 2 [Com (- (Cone (V) -+ )3 | = [Cami (M) 3|

and Coni (A) o ¢ by Theorem By inspection, all odd partitions p of ¢ € {1,3,5}
satisfy |ug,| = 2. Hence [AS| > 0.

(6) If 8 | n+ 1, then A = (n — 3,2,1) satisfies A ko n and |\f;| = 0: this holds by
inspection by observing that AT = {(n—2,2,1),(n—3,3,1),(n—3,2,2),(n—3,2,1,1)}
but A§, = 0. O

In fact, we can further characterise when |)\;r,\ = 0 in terms of cores.
Lemma 3.53. Let p be a prime. Suppose a € [p—1], k € N and A p ap® — 1. Then
(i) I 2 1Cpe (N, and
(ii) |N5| =0 if and only if |Cpr (V)| = 0.

Proof. By Theorem Cpr by p* — 1, so the assertions are trivially true if a = 1.
From now on we may assume a > 2.

(i) That \)\;ﬂ > |Cpk()\):j,| is clear if |C’pk()\);r,\ = 0, so suppose & € C’pk()\);r,. Then
§ by p¥, so & is a hook. In particular, Cpr(A) C & must then also be a hook, so
Cpr(N) = (pF—1—1t,1") of degree (pkt_2) for some ¢ € {0,1,...,p"—2}. Then Cpr(\)" =
{(pF—t,1%), (pF —1—t, 111, (pF —1—+¢,2,1¢71)}, where the first two elements are hooks

of degree (pkt_l) and (pt:_ll) respectively. Since

T I R G [ M CARD IR Y

and p ¢ (pkt_2) as Cpr(A) is a p’-partition, and also (p¥ —1—1,2,1*1) is not a hook, we
have that Cpe(A)) = {(p* — ¢,1%), (p* — 1 —¢,1"F1)}.

Letting A be the p*-abacus for Cx(\) with first gap in (0,0), A has beads precisely
in positions (7, j) for all i < —1 and all j, (0,1),(0,2),...,(0,t) (if t # 0) and (0, p* —1).
(That |Opk()\);_/| = 2 may also be verified on the abacus by using Lemma and
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Theorem ) Let B be the p*-abacus for A obtained from A by performing wpr(A) =
a — 1 down-moves, so BT = A. If d is an addable bead on runner Bpr_; and ¢ is
represented by B4, then wyr(¢) — wyr(A) = [Bpe_q| — |Bo| = [Apr 1| — |[Ao] = 1 by
Lemma whence w,x(¢) = a. Moreover, Cp(() is represented by the pF-abacus
A’ obtained from A by deleting the bead in position (0,p* — 1) and creating a bead
in position (0,0), showing that Cpx(¢) = (). Thus ¢ F ap® by Theorem and in
particular ¢ € )\;)r,. Finally, since |Byx_1| = [Bo| 4 1, there must be at least 2 addable
beads on Byr_;. Thus \)\;ﬂ >2= |Cpk()\);r,|.

(ii) To show that |/\;’/| = 0 if and only if |Cpe ()\);C| = 0, we have already seen from
(i) that if |Cpr ()\);,| > 0, then |)\;,| > 0. Conversely, if |)\;r,\ > 0 then let 8 € )\;r,.
Thus B3 b, ap*, Cpe = 0 and wyk(B) = a. Let B be the pF-abacus for 8 such that BT
(representing the empty partition) has beads on all runners in rows ¢ < 0, and is empty
in rows ¢ > 0. Then A is represented by B¢ for some bead ¢ on Bj, and moreover j # 0
by Lemma since wyr (A) = a — 1. Hence Cpr () is represented by (B )", which is
obtained from B' by deleting the bead in (—1,j) and creating a bead in (0,5 — 1), and
we read off from the abacus that C.(X\) = (j, 17" =1-3). Setting ¢t = p* — 1 — j, we see
from (i) that Cpx (A)), = {(p* —¢,1"), (p" —1—1¢,1"1)}, which completes the proof. [

Proposition 3.54. Let p be a prime. Suppose n+1 € N has p-adic expansion Zle a;p™
where t € N and 0 < ny < --- < ng. Let A by n. Then |)\;',| = 0 if and only if
(Com V)5 = 0.

Proof. If ny = 0 then p { n+ 1 and also p { |Cpni ()| + 1. Thus by Proposition
|/\;7| > 0 and |Cpny (/\);7| > 0. From now on, we may assume n; > 1.

When ¢t = 1, the assertion follows from Lemma [3.53

Now suppose t > 2. Since C, = C. o Cey for all e, f € N, by Theorem m

o= Cp"2 ()\) = Cpnz (Can ( .. Cpnt ()\) .. )) }_p’ ap™ — 1.

Let A be the p™2-abacus for o with first gap in position (0,0). Since |o| < p™2 —2, there
are no beads in rows i > 1 or in position (0,p™2 — 1) of A.

First suppose u € a;r,. Then p is represented by A°~ for some bead ¢ in position (0, )
of A where j € {0,1,...,p" —2}. Let 8 = Cpns (X), a p’-partition of asp™ + a1p™ —1
by Theorem Then a = Cpr2 (B) and wyn2 (B) = a2, and there is a p™2-abacus B
representing 3 obtained from A by performing as down-moves. Since |B;| = |4,] =
|Aj41| +1 = |Bjq1]| + 1, there exists an addable bead d on runner B;. The partition
v represented by B9~ satisfies wyns (V) = az by Lemma and Cpnz (v) = p since
BT = A. Thus v is a p/-partition by Theorem SO v € ﬂ;. Next we consider 3
on a p"s-abacus A’ with first gap in position (0,0), so v is represented by (A’ )c/_> for
some bead ¢ in position (0,5’) of A" where j' € {0,1,...,p" — 2} since |5] < p"* — 2.
Letting v = Cpra (A), we deduce as above that there exists some w € 'y;)L,. Iterating this
procedure, we produce a partition in Cpna (/\);“,, ey Cpny (/\);C, and finally )\;C.
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Conversely, suppose £ € )\;,. By Corollary ,

+ +

Cpr2 (€) = Cpra (Cpra (- Cpne (€) +++)) € (Cpra (Cpra (- Cpne (A) ) 1, = (Cpra (V) -
Thus we have shown that |)\;/| = 0 if and only if |a;r,\ = 0. Finally, by Lemma @
we have that \a;ﬂ = 0 if and only if |Cpn, ()\);_/| =0, since Cpn1 () = Cpni (N). O

Remark 3.55. Proposition allows us to we recover the characterisation of when
IAJ | =0in Theorem by observing that |Cpni ()\);',\ = 0 if and only if Cpny (X) is not
a hook. This is because Cpr1 (A) Fpy p™ — 1, and the p’-partitions of p™* are precisely
the hook partitions. O

Finally, we characterise when 1 € £¥(n), noting for contrast that 1 € £(n) for all

n € N in the case of restriction.
Lemma 3.56. Let n € Ny and let p be a prime. Then 1 € ET(n) if and only if p | n.

Proof. If p | n, then A = (n) F, n and )\;r, ={(n+1)}. Thus 1 € ET(n).
Conversely, suppose A -, n with |)\;C\ =1 Writen+1 = 22:1 a;p™ where t € N
and 0 <my < --- <ng. Ift> 2, let o := Cpra (A) and observe by Corollary that

N2 Gt (V5] 2 [Cpra (- (Cpre (W) - | = [Coma (V5] =

while if ¢ = 1 then set o := A. In all cases, a -, a;p™ — 1 by Theorem Let
B = Cpn1(A). Then |ﬂ;r,\ > 0 by Proposition since \)\:ﬂ > 0.

If ny > 1, then |a;',| > |B;,\ by Lemma @ But from part (i) of the proof of
Lemma we find that [} > 0 implies [8}| = 2, contradicting 1 = [\f| > [af|.
Hence ny = 0.

Thus o b= a; — 1. But then 1 = [Af | > |oof | = [at| = |a~|+1, from which we deduce
|a~| = 0. Thus implies & = ), the unique partition of zero; in particular, a; = 1. Hence
n+1:2§:2aip"i+1(where ng > 1if t > 2), and so p | n. O

Returning to the discussion of the crucial core map of Corollary [3.51] we now set up
some constructions analogous to those regarding character restrictions in Section [3.1]

and analyse the differences that arise.

Notation 3.57. Unless otherwise stated, we fix a prime p and n € N such that n =
ap® +m for some k €N, a € [p—1] and 0 < m < p* —2. To be precise, this will be the
standing assumption from here until the end of Section[3.2.3

Given v -,y m, we may now define
brif(n,y) = br*(n,v) : max{|)\;',| | A noand Cpe () = v},
and

N+(a'apk7'y) = br+(n77) - |'7;;‘ € NO-
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In order to determine Nt (a,p*,~), we need to analyse certain properties of the functions
f, g, ®and M.

Definition 3.58. Let v b, m. Let A, be the p*-abacus for v with first gap (0,p* —1).
Define Ra., to be the subset of {0,1,...,p" — 1} such that j € Ra, if and only if there
is an addable bead c on runner j of A, and the partition corresponding to A has

p’-degree.

Since m < pk —2, we deduce that there are no beads in A, in rows ¢ > 2 or in positions
(1,p* —2) and (1,p* — 1). Notice that there is an addable bead in position (0, p¥ — 2),
and all other addable beads lie in (1, 5) for some 0 < j < p* — 3. Moreover, observe that
Ra,| = |'y;r,\, p"—1¢ Ra ,and {j,j+ 1} C R4, implies j = p* — 3. In particular, if
there is a bead in A, in position (1, p¥ — 3), then ~ is necessarily a hook partition and
m = p* — 2. This is because if the number of beads occupying positions (1,5) where
0<j<pf-3in A, is t, then each of those beads corresponds to a part of v, and the bead
in (1, p* — 3) corresponds to y; = p¥ —2—t. Hence m = |y| > (p* —2—t)+t-1 = pF -2,
whence equality holds. Thus if {p* —3,p* —2} C R4, then in fact |[R4_| € {2, 3} since
v is a hook.

Lemma 3.59. Let v by m. Let Aty n satisfy Cpe(N) = and let B be the p*-abacus
for v such that Bt = A.,. Let ¢ be an addable bead on B; and suppose B~ represents
ptn+1. Then p{x*(1) if and only if j € Ra, . In particular,

A= D Add(B).

JER A,
Proof. The proof is entirely analogous to that of Lemma [3.20] O

Proposition 3.60. Let v, m. Then

g(a) if Ra, ={p"—3,p" -2},
N*(a,p*,7) = { M(a) if {p—-3,p" -2} S Ra,,

d(a, |fy;7|) otherwise.

The fact that R4, may now contain consecutive integers, in contrast to Defini-
tion gives rise to the more complex behaviour of the quantity N*(a,p*,v). We
begin by dealing with the familiar case.

Lemma 3.61. Let vty m. If {p* —3,pF =2} Z Ra_, then Nt (a,p*,~) = ®(a, |7;,|)

Proof. Let Ra, = {j1,...,jr}, where L = |’y;7 . Under the given assumption, R4,
contains no consecutive integers. Thus we may regard (Bj,, Bj,+1),- .-, (Bj., Bj.+1) as
L disjoint 2-abaci whose 2-cores are equal to the 2-abacus representing () with first gap
(0,1) (vesp. (1,1)) if j; = p¥ — 2 (vesp. j; # p® — 2). Let V be the 2-abacus for () with

first gap (0, 1).
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Observe that for z € Ny and W a 2-abacus such that W' = V and w(W) = =,
Add(Wy) is equal to Rem(Uy) for a 2-abacus U € T(q)(x) as defined in Lemma
(Consider flipping or mirroring the 2-abaci about a vertical axis.) Hence

max{Add(Wp) | WT =V, w(W) =z} = f(z) + 1.

That N*(a,p*,v) = ®(a, L) then follows by the same argument as in the proof of
Proposition [3.18 O

In order to analyse the case when {p* — 3,p* — 2} C R4, we have the following

lemma.

Lemma 3.62. Let X be the 3-abacus for (1) with first gap (0,2). For b € Ny, let Y(b)
be the set of all 3-abaci Y such that YT = X and w(Y) =b. Then

max{Add(Yp) + Add(Y1) | Y € Y(b)} =2+ g(b).

Proof. The claim is clear if b € {0, 1}, so from now on we may assume b > 2 (in particular
f(b) > 1). First, we exhibit Y such that Add(Yy) + Add(Y1) =2+ ¢(b).

Notice that Add(Xy) = Add(X;) = 1. For u € N, let Z(u) be the 3-abacus with
beads in precisely {(4,0) | i < =1} U{(},1) |i<—u—-1,i=0, 2<i<u+1}U{(:,2) |
i < —1}. Observe that

Zw)'"' =X, w(Z(u)=u(u+2) and Add(Z(u)o)+ Add(Z(u);) = 2u + 2.

Let Z'(u) be the 3-abacus with beads in precisely {(¢,0) | i <1} U{(i,1) | i < —u, 2 <
1 <u+1}U{(i,2) |7 < —1}. Then

Z'(w)' =X, w(Z'(u)=u(u+1) and Add(Z'(u)o)+ Add(Z'(u);) = 2u + 1.

The abaci X, Z(u) and Z’(u) are depicted in Figure

If g(b) = 2f(b), then the abacus Y € Y(b) obtained from Z(f(b)) by performing
b— f(b)-(f(b)+2) down-moves on the bead in position (f(b) +1,1) satisfies Add(Yp) +
Add(Y1) = 2f(b) +2 = g(b) + 2. On the other hand, if g(b) = 2f(b) — 1 then the abacus
Y’ € Y(b) obtained from Z’'(f(b)) by performing b — f(b) - (f(b) + 1) down-moves on the
bead in position (f(b) + 1,1) satisfies Add(Yy) + Add(Y{) = 2f(b) + 1 = g(b) + 2.

Next, suppose A € Y(b) is such that a := Add(Ag) + Add(4;) is maximal. From
above, we already know that a > 2 + ¢g(b). By a similar argument to the proof of
Lemma [3.22] we can construct from A a 3-abacus B € Y(V') such that w(B) = w(B;) =
b (i.e. w(Byg) = w(Bz) = 0) and Add(By) + Add(By) = a, for some b’ < b. Notice
that there must be a bead in position (i,1) of B for all i < —b, since w(B) < b.
Thus there are exactly b beads in (i,1) of B where i > —b, since BT = X. Moreover,
Add(By)={je{-b+1,...,-1,0,1} | By has a gap in row j}| and Add(B;) = [{j >
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Figure 3.8: The 3-abaci X, Z(u) and Z’(u).

0 | By has a bead in row j}|. Hence
a = Add(Bo) + Add(Bl) =1+4+6y— 961 +2u

where u := |{j > 0| By has a bead in row j}|, and §; = 1 if B; has a bead in row ¢ and
0 = 0 otherwise. In particular, u > 1 since b > 2. We split into four cases depending on
the values of dg,d7 € {0,1}.

If 61 =1 and §p = 0, then a = 2u. Moreover, the u — 1 beads in rows i > 1 of B;
must occupy rows ip < ... < i, where i; > j for all j € {2,...,u}. Since Bl = X3

(noting that the lowest u beads on X; lie in rows 0,—1,...,—u + 1), we must have
b>V =w(B) >ulu—1)+u=1u%

Thus v —1 < f(b) and so a = 2u < 2f(b) + 2. We know that g(b) € {2f(b) — 1,2f(b) };
suppose g(b) = 2f(b) — 1. By definition of g, we must have f(b) > ((b) and hence
FO)-(fb)+1) <b< f(b)-(f(b) +2). But a > 2+ g(b) = 2f(b) + 1 implies u =
f(b) + 1, giving b > u? > f(b) - (f(b) + 2), a contradiction. Thus g(b) = 2f(b) and so
a < 2f(b)+ 2= g(b) + 2. The other three cases are similar. O

Lemma 3.63. Let y b, m. If {pF —3,pF — 2} C Ra,, then Ra, € {2,3} and

gla) if [Ra,|=2,
M(a) if [Ra,|=3.

N (a,p*,~) =

Proof. We have already shown following Definition that if {p* —3,p* —2} C R A
then ~ is a hook and hence R4 € {2,3}. Let A b, n satisfy Cpr(\) = v and |)\;,| =
br*(n,v), and let B be the p*-abacus for A such that BT = A,.

If Ra, = {p" —3,p" — 2}, then |/\;7| = Add(B,r_3) + Add(B,x_5) by Lemma@
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Therefore |)\;,| =2+ g(a) by Lemma and the maximality of |)\;, |

Otherwise, suppose R . | = 3. If v is the hook (p* —2 —¢,1%), then |[y| > |’y;7\ =3
implies 0 < ¢ < p® — 3. In fact, the beads in row 1 of A, lie precisely in runners
0,1,...,t — 1, and we deduce that R4, = {t — 1,p" — 3,p¥ — 2}. Since the sets of
runners (B;_1, B;) and (Byk_3, Byr_o, Byr_1) are disjoint, the claim N*(a,p*,v) =
M (a) follows from the maximality of \)\;r, |, the definition of M (a) (see Definition ,

and Lemmas and [3.62] O
Proof of Proposition[3.60. This follows from Lemmas and O

Corollary 3.64. The core map in Corollary[3.51) is bijective when a = 1.

Proof. This follows from Proposition and the fact that g(1) = M (1) = ®(1,L) =0
for all L € N. O
3.2.3 Proofs of main results

Proposition 3.65. Let p be a prime, a € [p— 1] and k € Ng. Then

|Va] +1 if k>0,
fa—2)+1 ifk=0

brt(ap® —1) =

and {2,3,...,br(ap* — 1)} C EF(ap® — 1) whenever apt —1 > 0.

Proof. We begin with the case when k& = 0, which is in analogy with Proposition [3.30)
When a = 1 then clearly br*(ap* — 1) = br*(0) = 1, and f(0) = 0. Next, observe that
[AT| = |A7| + 1 for any partition A, and AT = )\;L, if [\| <p—2. Thus for a > 1 we
have that br™(a — 1) = f(2a —2) + 1, since f(2a — 2) is the maximal number of parts
of distinct size in any partition of a — 1, and hence the maximal number of removable
boxes in any partition of @ — 1. Moreover, it is easy to see that there exists A+ a — 1
such that |A\7| = m for any m € {1,2,...,f(2a — 2)}, and hence |[\T| = m+1 €
{2,...,f(2a —2), f(2a — 2) + 1}.

From now on, we may assume that & > 0. We proceed in steps, showing that:
(i) 2 € &+ (ap* —1);
(ii) {3,4,...,|va) +1} C EF(ap* — 1) (if a > 4); and
(iii) brt(ap® — 1) < |Va] + 1.

(i) Writing n = ap* — 1, we have A = (n) by n and At = {(n + 1), (n, 1)} = )\;,. Hence
2 € EF(ap® —1).

(ii) We show that whenever a > (b + 2)? for some b € Ny, then b+ 3 € £+ (ap® — 1),
from which the claim that {3,4,...,[va] + 1} C E*(ap* — 1) follows by setting b+2 =
2,3,...,[va]. We exhibit a partition A -, ap® — 1 such that |/\:,| = b+ 3, describing
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below and depicting a p*-abacus for A with first gap in (0,¢ — 1) in Figure (where
q = p”* for convenience):

-rows 0 <z < b+ 1 have a gap only in position (z,q — 1);

-rows b+ 2 < x < 2b+ 1 have a bead only in position (z,q — 1);

- row 2b + 2 has a bead only in position (2b+ 2,q — 2);

-rows 2b+ 3 <z < 2b+t + 2 are empty;

- row 2b +t + 3 has a bead only in position (2b+ ¢+ 3,q — 1).

Explicitly, A is the following partition:

A= ((b+t+2)q, (b+1)g,bg+2,...,2¢+b,g+b+1,(b+1)7". . 2071 1971

0O -+ ¢g—3 q—2 q-1
0 X e X X o
b+1 X .- X X o
b+ 2 o .- o o
2b+1 o .- o o X
2b+ 2 o .- o o
2b+3 o e o o o
2b+t+2 o o o o
2b+t+3 o o o

Figure 3.9: The p*-abacus for X Fpr ap® — 1 with first gap (0,¢ — 1).

From the abacus it is clear that wy(\) = a—1 and Cy(A\) = (¢—1) k- ¢— 1, whence
Ay ap® —1 by Theorem By Lemma the b+ 3 addable beads on runner ¢ —2
(in rows 0,1,...,b 4 1,2b + 2) correspond to elements of )\;',, while the b+ 1 addable
beads on runner ¢ — 1 (in rows b+ 2,...,2b 4+ 1,2b 4+ ¢ + 3) correspond to elements of
AT\ )\;‘,, and there are no other addable beads. Hence |/\;',| = b+ 3 as claimed.

(iii) Let A Fp ap® — 1 and suppose [Af,| > 0. If a = 1, then A, is the set of hook
partitions in A*. Thus [A\%| > 0 implies that X itself is a hook. Therefore [Af| = 2.
Since A k-, p* — 1 was arbitrary, brt(p* — 1) < 2.

Now suppose a € {2,...,p — 1} and fix some u € /\;',. In particular, p Fp ap® so
Cpr = 0 and wye(p) = a. Let A be the p*-abacus for Cp(p) with first gap in (0,0)
(so all rows < 0 are filled, and all rows & > 0 are empty). Let B be the pF-abacus
for p such that BT = A, so B is obtained from A by performing a down-moves. Since
A€ s A is represented by the abacus X := B¢ for some removable bead ¢ in B. But
wyr(A) =a—1since Ay apf —1=(a—1)p* + (p—1) Zf:_ol p?, by Theorem SO ¢
lies on runner B; for some j # 0 by Lemma Thus the abacus X which represents
C,x () has form as depicted in Figure (where if j = 1 then we omit the column

P
labelled j — 2, and if j = p* — 1 then we omit column j + 1):
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Figure 3.10: The p*-abacus X" for C,x (X).

For any v € )\;',, v is represented by X9~ for some addable bead d in X. Since
wyr (V) = a and wyr(N) = a—1, by Lemmathe bead d must lie on runner X;_1, as
|Xi| — | X;41] —1=1ifand only if i = j — 1 (when i # p* — 1) and | X, x| — [ Xo| # 1.
Therefore )\;, is in bijection with the set of addable beads on X;_;. It remains to show
that the maximal number m of addable beads on runner j — 1 attained after performing
x(A) = a — 1 down-moves on the pF-abacus X' is (at most) [/a] + 1.

Observe that m is also the maximal number of addable beads on runner 0 attained

Wp
after performing at most a — 1 down-moves on T', the 2-abacus for the partition (1)
with first gap (0,—1). (As runners, Ty coincides with X]T_l and T7 with XJT) By a
similar argument to that in the proof of Lemma this optimum m is achieved by
a 2-abacus U such that UT = T, w(U;) = 0 and w(Up) < a — 1. Thus there exist
integers —1 < j; < jo < -++ < ji, such that there is a bead in position (jx,0) of U for
all k € [m]. Hence w(U) = w(Up) > m(m — 2), since the beads on Ty occupied precisely
those rows x < 0. But then if m > [y/a| +2, then m(m —2) > (|a] +1)2 -1 >a—1,
a contradiction since w(Up) < a — 1. Thus m < [a] + 1. O

Proof of Theorem[3.46 This follows directly from Proposition [3.65 O

We can now fully recover Theorem (Theorem 2 of [I]) by setting p = 2 in our

results thus far.

Corollary 3.66. Let n € Ng. Then bry (n) = 1 if n is even, while brj (n) = 2 if n is
odd. Moreover,
{1} if2]|n,
EX(n)=14{0,2} if8|n+1,
{2} otherwise.

Proof. Suppose n+1 has binary expansion Z;=1 2™ wheret € Nand 0 < n; < --- < mny.
For all Ao n = 22:2 2% + (2™ — 1), we have [\};,| = |Canz(N\)3,| by Corollary
where we note that Cana (M) For 2™ — 1 by Theorem Also by Theorem
given any p Fo 2™ — 1 there exists some A ko n such that Cana(A) = p. Hence
bri(n) = brf (2™ —1). If n is even (i.e. ny = 0), then bry(n) = bry (0) = 1. If n
is odd, then bry (n) = 2 by Proposition m The final assertion then follows from
Proposition and Lemma |3.56 O

We remark that Corollary is exactly the statement of Theorem and Theo-
rem when p = 2, since the only non-zero binary digit is 1 and ®(1,L) = 0 for all
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L € N. Therefore, for the remainder of this section we may assume p is an odd prime.

In order to prove a recursive formula for the value of br(n) (namely Theorem [3.44)),
we first investigate a single step of the recursion. That is, we relate the quantities br™ (n)
and br*(m), where n = ap® +m with a € [p — 1] and m < p* — 1.

Proposition 3.67. Let p be an odd prime and k € N. Let n = ap®+m where a € [p—1]
and 0 < m < p* —2. Then

brt(n) = brt(m) + ®(a,br™(m)) + 4

where 6 =1 if k=1, m=p—2 and (p,a) € {(5,3),(7,3),(7,5)}, and § = 0 otherwise.

Proof. 1f m # p* — 2, then {p* — 3,p* — 2} ¢ Ra, for all v =, m (recall the set R4,
from Definition and thus brt(n) = brt(m) + ®(a,br™(m)) by exactly the same
argument as in Proposition Notice that § = 0 in this case.

From now on, we may suppose m = p* —2. Let v I,» m be such that |’y;,| = brt(m).
Let A Fpr n be such that Cpe (A) =y and [} | = br (n, ). Since g(a), M(a), ®(a, L) > 1
whenever a > 2 (for all L € N), then br*(n) > [XY| > br(m) + 1 by Propositionw

Hence we have the following inequality:

brt(n) >brt(m)+1 if a>2. (3.1)

First, suppose br*(m) < 3. Since m = pF —2 = (p — 1) Zf:_ll p' + (p — 2), then
brt(m) > brt(p—2)+k—1by . By Proposition this implies k+ f(2p—4) < 3
since p — 1 > 2. Hence (p,k) € {(3,1),(3,2),(5,1),(7,1)}. We find by direct compu-
tation that br*(n) = brt(m) + ®(a,br*(m)) in all of these cases except if (p,k,a) €
{(5,1,3),(7,1,3),(7,1,5)}, in which case br™(n) = br*(m) + ®(a,br*(m)) + 1.

We may now assume that br*(m) > 4; in particular, § = 0. Since \’y;r,| = br*(m), the
partition v cannot be a hook. In particular, {p*—3,p* -2} ¢ Ra, andso N* (a,p*,v) =
b(a, |7;,|), by Propositionm Thus brt(n) > brt(n,v) = brt(m) + ®(a, brt(m)).

Let ok n be such that |a;r,| = brt(n). Let 8 = Cpr(a), so By m and |B;r,| <
brt(m). If {p* —3,pF — 2} £ Ra,, then NT(a,p*, 8) = ®(a,|3,}|) and hence

br(n) = lay | = 1By ] + ®(a,18y]) < br(m) + ®(a,br* (m)) < br'(n).
Thus br™(n) = brt(m) + ®(a, brt(m)).
On the other hand, if {p* — 3,p* — 2} C Ra,, then N+ (a,p*,8) = g(a) or M(a),
in which case |8 = 2 or 3 respectively. We claim that brt(m) + ®(a,br"(m)) >

34+ M(a) > 2+ g(a) for any a € [p — 1]: for clarity, this is proven separately in
Lemma [3.68 below. But this lemma then gives us

brt(n) = br (m) + ®(a, br (m)) 2 18] + N*(a, ", 8) = br (n, B) = br™ (n),

whence brt(n) = brt(m) + ®(a,br™(m)) as desired. O
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Lemma 3.68. Let the notation be as in Proposition [3.67, and further suppose that
m = pk —2 and br™(m) > 4. Then br™(m) + ®(a,br*(m)) > 3+ M(a) > 2+ g(a).

Proof. Tt is clear from Definition that 3 + M(a) > 2 + g(a). To show the first
inequality, first suppose br*(m) < 5. Since m = p*¥ — 2, then brt(m) > k + f(2p — 4)
by and Proposition [3.65] Hence p > 13, and we verify directly that ®(a,5) + 5 >
3+ M (a) for all a € [12]. If in fact br™(m) = 4, then necessarily p < 11, and we verify
directly that ®(a,4) +4 > 3+ M(a) for all a € [10].

Now suppose that br*(m) > 6, so br*(m) + ®(a,br*(m)) > 6 + ®(a,6). Since
f() e {|Vz] — 1,|/z]} for all z € Ny, we have that

(a,6)>6- £ (12]) =6 (1(/ 1)) —1) =6 (1/] - 1)

26(\@—2):\/671—12.

On the other hand, since f(b) < 2¢g(b) we have that

M (a) < max{f(a—0b)+2f(b)|be{0,1,...,a}} < bgl[aax](\/a — b+ 2Vb) = V5a.

Thus 6 + ®(a,6) > vBa — 6 > 3 +v5a > 3 + M(a) for all a > 1778, and for a < 1777
we verify that 6 + ®(a,6) > 3 + M (a) computationally. O

Proof of Theorem[3.4]] for odd p. This follows from Proposition by induction on
the p-adic length ¢ of n + 1. O

Proof of Theorem[3.43| for odd p. Proposition [3.52] and Lemma [3.56] characterise when
0 and 1 belong to £7(n) respectively. Now suppose brt(n) > 2. We wish to show that
{2,3,...,brT(n)} C £7(n). We proceed by induction on ¢, the p-adic length of n + 1,
and observe that the case ¢ = 1 has been shown in Proposition [3.65

Now suppose t > 2. Let m = 22;11 ajp™ —1=n—ap™, and write L = br*(m),
k =n; and a = a; for convenience. Since br*(n) > 2, then n is not of the form >, p"
with p | n, by Theorem In particular, m is also not of this form, so br*(m) > 2.

We first show that {2,3,...,L} C £%(n): by the inductive hypothesis, for each
i € {2,...,L} there exists 6 F, m such that |5;| = i. Recall the pF-abacus A; from
Deﬁnition and fix some j € Ra,. Let A -y n be the partition represented by the pk-
abacus B obtained from Ay by performing a down-moves on the unique addable bead on
runner j of As. By Lemma |)\;r,| = |Ra,| = |5;r,|7 and hence {2,3,...,L} C ET(n).

To show that {L +1,...,br"(n)} € ET(n): let v b, m be such that |y} | = L. If
{p* —3,p" =2} € R4, then N*(a,p*,v) = ®(a,L), and {L,L+1,...,L+ ®(a, L)} C
ET(n) follows from exactly the same argument as in Theorem Otherwise, (i)
Ra, = {p" —3,p" — 2} or (ii) Ra, = {p* — 3,p" — 2,¢} for some 0 < ¢ < p* — 4. Let
A=A,
(i) In this case, L = 2 and br*(n) = 2 + g(a), by Proposition Observe that the

runners (Apx_z, Apk_o, Apr_1) when viewed as a 3-abacus represents the partition (1)
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with first gap (0,2); that is, it coincides with the 3-abacus X defined in Lemma m
Recall also the 3-abaci Z(u) and Z’(u) from Lemma [3.62}

If g(a) = 2f(a) — 1, then for each u € {1,..., f(a)}, the abacus Y’ obtained from
Z'(u) by performing a — u(u+ 1) down-moves on the bead in position (1,u+ 1) satisfies
w(Y') = a and Add(Yy) + Add(Y{) = 2u + 1. The partition A represented by Y
therefore satisfies A F,» n and |/\;',| = 2u + 1. Hence {3,5,...,2+ g(a)} C ET(n).
Moreover, for each u € {1,..., f(a)—1}, the abacus Y obtained from Z(u) by performing
a — u(u + 2) down-moves on the bead in position (1,u + 1) satisfies w(Y) = a and
Add(Yp) + Add(Y7) = 2u+ 2, from which we deduce {2,4,...,1+g(a)} € ET(n). Thus
{L+1,...,br"(n)} C E"(n) as required.

The case g(a) = 2f(a) is similar.

(ii) In this case, L = 3 and br*™(n) = 3 + M(a). Suppose b € {0,1,...,a} satisfies
M(a) = f(a —b) + g(b). Then for each i € {2,3,...,g(b) + 2}, there exists some 3-
abacus Y such that YT = X, w(Y) = b and Add(Yy) + Add(Y;) = i, by case (i) above.
Also, for each j € {1,2,..., f(a — b) + 1}, there exists some 2-abacus U such that
UT =V, the 2-abacus for () with first gap (0,1), w(U) = a — b and Add(Uy) = j, by the
same ideas as in the proof of Lemma Let B be the p*-abacus obtained from A by
replacing the runners (A;, Ayy1) with the 2-abacus U, and (Apr_3, Apk_o, Ape_1) by YV
Then w(B) = a and ), x , Add(B;) = i + j. Thus the partition A represented by B
satisfies A -,y n and |)\;,| = i+ j, by Lemma m Therefore {3,4,...,3 + M(a)} =
{2,...,24gb)}+{1,..., f(a—b) — 1} C ET(n), as required. O

Proof of Corollary[3-47 By Theorem we have that
brt(n) = brt(ap™ —|—Z<I> aj,brt(m; — 1)) + A(n, p).

By Proposition 3.65 br*(a1p™ — 1) < max{|\/a1], f(2a1 —2)} + 1 < \/2a; + 1. Com-
bining this with Lemma [3.7] we get

t
v (n) < (vV2ay + 1 +Z[ 2| +1=B"(n)
j=2
as desired. To bound the difference B*(n) — br™(n), observe that
t .
Bt (n) — brt(n) <2p+1+Y e(j) where e(j) = bﬂJ — ®(ay, br (my — 1)).
j=2
We show that € := Z; 2 (7)) < §logy(p) — 1.
If a; < 3 then £(j) = 0, by Lemma [3.7 and the fact that br™(m) > 1 for all m € No.
Hence if a; < 3 for all j € {2,...,t}, then € = 0. In particular, e = 0 if p = 3, and so

Bt (n) —brt(n) < 3logy(3).
Otherwise, there exists j € {2,...,t} such that a; > 4 (and so p > 5). Then there
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exists a unique k¥ € N and integers 1 = ig < i1 < --- < 43 < ¢ such that i; = min{z €
{ijo1+1,...,t} | ay > 27+2} forall j € [k] and {z € {ip+1,...,t} | ay > 28F1 42} = ().
In particular, 2¥ < p. By a similar argument to that in the proof of Proposition
(replacing every instance of br(m;) by br*(m; — 1)), we find that

k
p—1 ; kp
< GO L [Py

=0

Hence Bt (n) — brt(n) <2,/p+1+¢e < 2\/p+ §logy(p) < plogy(p) as desired. O

3.3 Self-similarities in the Young graph

3.3.1 Graph isomorphisms

In [T, Theorem 3] it was shown that the tree Yo exhibited ‘self-similarities at all scales’.

(0,1 denote

To state this more precisely: given a partition A € Yo and k € Ny, let AT
the induced subtree rooted at A consisting of those vertices p of Yo/ such that > A in

the dominance partial ordering on partitions, and || < |u| < |A] + k.

Theorem 3.69 ([I, Theorem 3]). Let n,v € N and suppose va(n) > v. Let X Fo n.
Then
Con L0227 =1] ®+[0,2”—1]

is an isomorphism of trees.

In other words, for each k € N, the subtree of Yo consisting of partitions A such
that || < 2% — 1 is ‘repeated infinitely often’ inside the full tree Ya.

On the other hand, it is clear that the subgraph Y, is never a tree when p is odd.
Nevertheless, there are still certain isomorphic structures in the induced subgraphs of

Y, for all p. Our main result is the following:

Theorem 3.70. Letp be any prime. Suppose n = Zle p™i for some k € N and integers
0<ni <na<...<ng. Let A\bpn and v < ny. Then

Cpo ATop"=1] __, (t[0.p" —1]

is a graph isomorphism.

The induced subgraphs ATP"—1 and @T0-r"—1] of Y, are defined explicitly in Defini-
tion[3.72] Examples of these graph isomorphisms are presented in Figures[3.11]and [3:12]
where we say a partition A lies on level n if A = n. Theorem [3.70]is proved in Section|3.3.2

below, and we comment on the general case of n = Zle a;p™ at the end of the section

in Remark [3.78

In particular, observe that we recover all of the isomorphisms of subtrees in [ for

the tree Yoo when we set p = 2 in Theorem [3.70[, These isomorphisms can be also
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Figure 3.11: Y5 from levels 0 to 5.

thought of as refinements of the following observation, which can be seen by considering

partitions on James’ abacus.

Observation 3.71. Let n € N and p be a prime. Let n = ap® + m where k € N,
ac{l,2,....,p—1} and 0 < m < p*. Then

C

pk II‘I‘p/(Gn) — Irrp/(Gn_apk)

is surjective and exactly |Irry (&4, )|-to-1.

(Here we have identified partitions A with their corresponding characters x*.)

3.3.2 On hooks and their leg lengths

Definition 3.72. Let p be any prime. Let s <t € Ny and let X5 denote the induced
subgraph of Y, on the set of vertices p € Y, such that |u| = |A| + m for some s <
m < t, and such that there exist partitions (9 = X, p, p@ ... 1™ = 1 satisfying
p € Y, and pti=b € u;f;)_ for alli € [m]. When s = t, we simply denote A5 by
ATsT

The partitions ™, ..., 9 form a path of minimal length from p to X\ inside Yo
Let such a path be called a p-downpath from p to A, or simply a downpath from p
to \ whenever the value of p is clear from context. Thus NTO contains exactly those
partitions p with a downpath to A such that |\ < |p| < |A| +t.

When we write 4 € G for some subgraph G of Y, we will always mean that u is a
vertex of G, and hence p is a partition. Clearly Y and hence Y, is a graded poset with
rank function 7 given by 7(\) = |A|. Thus informally, AT1%* is the ‘cone-like’ subgraph
of Y, with apex A, between ranks || and |A| +¢t.

A beautiful result of Bessenrodt [2] on leg lengths of addable and removable hooks

which we will refer to later is the following.
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10

Figure 3.12: Y5 from levels 5 to 10. The five coloured subgraphs between levels 5
to 9 are each isomorphic to levels 0 to 4. The red (leftmost) and violet (rightmost)
subgraphs between levels 9 and 10 are isomorphic to levels 4 to 5, while the remaining
three subgraphs are not (indicated by dashed lines).
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Theorem 3.73 ([2| Theorem 1.1]). Let A be a partition of n € N. Fork e N, k <mn
and 0 <[ <k —1, let Ay 1(N) be the number of k-hooks of leg length I that can be added
to [A] to give the Young diagram of a partition of n+ k, and let Ry (\) be the number
of k-hooks of leg length 1 that can be removed from [A] to give the Young diagram of a
partition of n — k. Then Ak (A) =14 Ri(N).

The key step in proving Theorem [3.70] is the following.

Proposition 3.74. Let p be a prime. Suppose n = Zle p™ for some k € N and
integers 0 <ny <ng <...<ng. Let Aty n. Then

Chie : AP =11 s (G (1)) TP

is a graph isomorphism.

Before we prove this proposition, we present some useful lemmas. Let p be any prime.
Let A by n where p* < n < 2p* for some k € N. Then |[H,.(\)| =1 by Theorem
(and in fact, the hook in H,x (A) has length precisely p¥ since n < 2p¥). Similarly, u has
a unique pF-hook for all y € A, - Thus it makes sense to refer to the pF-hook of A (and
similarly for p); this notation will be kept in Lemma below.

Lemma 3.75. Let p € A,,. Then the pF-hooks of X and j have the same leg length.

Proof. Let A be the pF-abacus for A with first gap (0,0). Positions (i,j) in A are
empty whenever i > 2, since |A\| < 2p*. Since A has a unique p*-hook, there is a unique
t € {0,1,...,p*—1} such that (0,t) is empty but (1,t) contains a bead. Moreover, its leg
length is given by |{(i,j) contains a bead in A:i=0, j >tori=1, j <t} =:ba(t).

Let ¢ be the bead in A such that B := A< is a pF-abacus for p. Similarly, there is
a unique s € {0,1,...,p" — 1} such that (0, s) is empty but (1,s) contains a bead, and
the leg length of this hook is bp(s). It remains to observe that ba(t) = bp(s).

If ¢ is not in position (0,24 1) or (1,¢) in A, then s = ¢ and so ba(t) = bp(s) by
inspection. (If ¢t = p¥ — 1 then set (0,¢+ 1) := (1,0).) If ¢ is in position (0,¢ + 1), then
s #t. Clearly ba(t) = bp(s) if s #t+ 1 also, while if s =t + 1 then ba(t) = bp(s) since
(0,t+ 1) contains a bead in A but not in B and (1,¢) contains a bead in both A and B.

The case if ¢ lies in (1,t) in A is similar. O

In Corollary and Lemma below, let n = Zle p™ for some k € N and
integers 0 < m3 < mg < --- < my, and let m € {0,1,...,p" —1}. Fix A k-, n. By
Theorem every partition « of p’-degree such that n < |a| < n + m has a unique
p™-hook, since p™* <n and n 4+ p" — 1 < 2p"*.

Corollary 3.76. Let A -, n and suppose i1 € MU Then the p™ -hook of 1 and he
p™*-hook of A have the same leg length.

Proof. We proceed by induction on m; the assertion is clear for m = 0 so now assume
m > 1. Since p € M there exists § € P O Am=1] " By the inductive hypothesis,
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the leg length of the p™*-hook of § equals that of A\. The assertion then follows from
Lemma [3.75)] O

In fact, the converse is also true.

Lemma 3.77. Let jit-y n+m. Suppose that Cpn (1) € Cpri (\)TI). Further suppose
that the leg lengths of the p™ -hooks of i and X are equal. Then p € XTI,

Proof. Let | be the leg length of the p™*-hook of A. We proceed by induction on m.
When m = 0, Cpnr () = Cpre (A). By Theorem A is the unique partition of
n obtained from Cpni () by adding a p™-hook of leg length I, since Cpn (A) has no
removable p™*-hooks. Hence p = .

Now assume m > 1. Since Cyny (1) € Cpni (\)TI™]] there exists § € Cyny, (1), N
Cprie (V)™= By Theorem there exists D € p,, such that Cyri (D) = 4. By
Lemma[3.75] the p™*-hooks of D and u have equal leg length, and hence by the inductive

hypothesis, D € ATm =1, Thus p € D}, € AT O

Proof of Proposition[3.7] The assertion is trivially true if ny = 0 (since both graphs
consist of a single point), so we may assume ny > 0 from now on. We show that (i) the
stated map is well-defined; (ii) it is a bijection on the sets of vertices; and (iii) (y, ) is
an edge in ATOP™ =1 if and only if (Cyri (1), Cprx (0)) is an edge in (Cyrs (A))T[O’pnlfl].
(i) Well-definition: we first show that AT maps into Cpni (\)TI™ for each m €
{0,1,...,p™ — 1}, which implies that Cpn, : ATOP" =1 —s (Cpns ()\))T[O’pnlfl] is
well-defined. We proceed by induction on m. When m = 0, we have A0 = {\},
Cpre WO = {Cpni (\)} and X+ Cprrc (V).

Now let m > 1 and let p € AT™. Since p™ < n < g < n+p™ —1 < 2p™, we
have Cpni (1) Fpr || — p™ = |Cpnr (X)| + m by Theorem Thus it suffices to find a
downpath from Cpni (1) to Cpnr ().

Since € AT there exists some downpath from g to . In particular, there
exists some § € p,y on this downpath, so § € Atm=1_ By the inductive hypothesis,
Cypri (8) € Cyrie (V)T =1 50 there exists some downpath

”Y(mil) = Cprs (5),7(m72)7 e a’Y(l)’ 7(0) = Cpre (V)

in Y,/. By Theorem Cpri (6) € Cpric (1),, S0 we may set M) = Cpny (1) and see

that v(—1) ¢ ’y(f)

. forall i € [m] as required.

(ii) Bijection on vertices: By (i), the map
Cpm S A\Mm Cprr (/\)T[m}

is well-defined for each m € {0,1,...,p™ — 1}. We now show that this is a bijection on
the vertices for each m.

Surjectivity: we proceed by induction on m. This is clear for m = 0, so assume
m > 1. Let § € Cpoy (A)TI™]. Then there exists some ¢ € 0., N Cpri (A)TI~1. By the
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inductive hypothesis, there exists a partition E € XT"~1] such that Cpri (E) = . Also,
p* <n<|El=n+m-—1<n+p" —2<2p™ — 1, so by Corollary there exists
a partition D € E} such that Cpni (D) = 6. Since E € AT, we have D € AT,

Injectivity: suppose
Cpri (A) = Cprie (B) = a € Cpri ()‘)T[m]

for some m and some A, B € AT™. Since a has no removable p™*-hooks, o has a
unique addable p™*-hook of each leg length I € {0,1,...,p™ — 1}. By Corollary
the p™*-hooks of A and B have the same leg length, so A = B.
(iii) Edges: suppose (u,0) is an edge in ATOP"' =1 S0 § Pprs M E M7 and 6 €
M =1 for some m € {1,2,...,p" —1}. By (i), we know that Cyri (11) € Cprr (N) T and
Cpri (8) € Cyrie (M)~ But by Theorem 6 € p,, implies Cpni (8) € Cpni (1),
and so (Cyri (1), Cpnx (6)) is an edge in (Cpn ()\))T[O’pnl_l}.

Conversely, suppose that a € Cyny (A\)TI™ is joined to 8 € Cpni (N1 for some
m € {1,2,...,p™ — 1}. By (ii), there exists a unique partition A € A" such that
Cprie (A) = a, and a unique B € A"~ such that Cpn. (B) = 8. Consider the map
Cpri - B; — 6;,. This map is surjective by Corollary @ and a € 6;, SO suppose
A’ lies in the preimage of o. Then A’ € B; and B € MMl 5o A" € X" and
Cpni (A") = a. By uniqueness of A, we have A = A’ and thus A € B;/. Therefore (A, B)
is an edge in ATOP" =1, 0O

Let us now highlight a link between the graph isomorphisms of Proposition
and Bessenrodt’s theorem [2] on hooks. Let n = Zle p™ be as above and let p
n — p™. Since |u| < p™, u has a unique addable p™*-hook H; of each leg length
l1e€{0,1,...,p™ —1}. Let AD - n be the result of u with H; added. Then A®) Fpr 1
for all I by Theorem If A Fp n is such that Cpni (A) = g, then A = A for some 1.

Moreover, the map
Cpni ot =i ptiop™ =1l

yto.p™1—1] yT0:p™* 1]

is a graph isomorphism, and A and A are edge and vertex disjoint
whenever [ # I’. (This is because if vy € 2D )\(l/mm], then the unique p™*-hook of
~ has leg length | =1'.)

Therefore the disjoint copies of 102" =1 obtained by adding p™*-hooks are indexed
precisely by the leg length of the added hook. It is easy to see that the cones AT[0-2"" —1]

and AMOP" =11 are also disjoint if Cyux (A) # Cprx (A), for A, A by 1.

Proof of Theorem[3.70. We proceed by induction on k. When k¥ = 1 and n = p™, by
Theorem we have that Cpni(X) = (. The assertion then follows from Proposi-
tion @ since Cpv = Cpv 0 Cyny whenever v < nj.
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For the inductive step, suppose k > 2. Composing the successive graph isomorphisms

C
phk—2

AHopmt 1) Cemi Cyrre (A) 102" 1] % Cprin (A)M0p" 1]

Cpnl Cpn2

225 Cpna (A Hop™r—1] 222, Cpmi (A ToP" =] — grio.p™ =1

given by Proposition [3.74] we find that Cpni = Cyni 0 Cpny 0 0 Cynye gives an isomor-
phism of graphs ATP" 1 — ¢T0r" =11 The result for v < ny then follows. O

Remark 3.78. (1) Since n; is the p-adic valuation of n, setting p = 2 exactly recovers

(2)

[T, Theorem 3].

Let \Fp n = Zle p™, and let p by |A|+m where m € {0,1,...,p™ —1}. Then

a corollary of these graph isomorphisms is that
i c AT[QPnlfl] — I 2 A

(where the latter condition denotes the dominance partial ordering), since this
assertion clearly holds when A = (). Note p™ — 1 cannot be exceeded in general:
for example, 4 = (4,1) F3 5 dominates A = (2,1) F3 3 but there is no downpath
from p to A since pg, = {(4)}.

Theorem is stated for m such that all of the p-adic digits of n belong to
{0,1}. The result does not hold in general when n has p-adic digits greater than
1. For example, let p = 3, n = 6, A = (4,1%) and v = ny = 1. Then \f =
{(4,2,1), (4,13}, but C5(\) = 0 and |05, | = 1.

Also, the graph isomorphism does not in general extend beyond v < ny. Consider
the following example where v > ny: let p =2, n =7, v =1 > 0 = n; and
A= (4,2,1). Then [AL| =0, but Co(A\) = (1) and |(1)F,| = 2.

Finally, recall from Definition m that the induced subgraph AT (for some
0 < s <'t) is said to contain the vertex p if there exists a downpath from p to A in
Y,. With the notation as in Theorem letting pn € ANTP™ =1 "in fact every
element of y1, lies in AT0:P" =11 Tndeed, Theorem implies

gy ONTOPE ) = Gy (1) 0 OO ] = [ Copr ()

But the maps Cpni : Cpnisa (), — Cpri(pt),, arve bijections for all 1 < < k

(where we let Cpniia (1) := p), 0 g, | = |Cpra (1), |- Hence p ), C ATOP™ 1] g
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Chapter 4

Linear characters of Sylow

subgroups of symmetric groups

This chapter is based on joint work with Dr Eugenio Giannelli and Jason Long. The
results in Section [4.3| were obtained in collaboration with J. Long, and the results in
Sections and [4.4] with Dr Giannelli.

We investigate the linear constituents of restrictions of irreducible characters of sym-
metric groups to their Sylow subgroups. Specifically, let p be any prime and fix a Sylow
p-subgroup P, of the symmetric group G,,. Let ¢ and ¢ be linear characters of P, and
let N = Ng,, (P,). We show that if the inductions of ¢ and ¢ to &,, are equal, then ¢
and ¢ are N-conjugate. This is an analogue for symmetric groups of a result of Navarro
for p-solvable groups [b0]. We further show that the set of irreducible constituents of

the induced character determines the N—orbit of ¢ when n is a power of p.

4.1 Outline

In recent years, the restriction of characters from a finite group G to a Sylow subgroup P
of G has played a major role in character correspondences in the context of the McKay
Conjecture (see [28], [38] and [52], for example). Little is known about such restrictions
in general, however, even in the case of symmetric groups.

A consequence of a recent result [3I] of Giannelli and Navarro is the existence of a
linear constituent in any restriction of an irreducible character of &,, to P, for all n and
p. A natural question is to identify which linear characters appear in such restrictions,
or equivalently, to describe the irreducible constituents of the induction QSTG" for every
linear character ¢ of P,, for all n and p.

For any finite group G and P a Sylow subgroup of GG, the normaliser N = Ng(P)
acts on the set of linear characters of P by conjugation. It is easy to see that if two
linear characters are N—conjugate then their inductions to N, and hence G, are equal.

Thus when considering induced characters (bT , it is sufficient to consider a set of orbit
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representatives ¢ under this action of N. However, is the converse true? That is, if ¢ and
1) are two linear characters of P such that d)TG = wTG, must ¢ and ¢ be N—conjugate?

This was answered in the affirmative for all p-solvable groups by Navarro in [50],
though there exist finite groups (such as PSL(3,3) with p = 3) for which the answer
is negative. In the course of investigating character restrictions and inductions for the
symmetric groups and their Sylow subgroups, we prove that the answer is also affirmative

for all G,, and all primes p.

Theorem 4.1. Let p be any prime and let n € N. Let P, € Syl,(&,) and let N =
Ng, (P,). Let ¢ and 1) be linear characters of P,. Then ngi" = 7/1Tin if and only if ¢

and 1 are N—conjugate.

As part of the proof of Theorem we provide an entirely combinatorial condition
equivalent to the algebraic statement that two linear characters are N—conjugate, and
an explicit description of certain character values, both of which we believe to be of
independent interest. The details are given in Sections and respectively.

Finally, the action of N just described is also related to the action given by Galois
conjugation on the set of linear characters. In Section[4.4] we show that the partition by
N-orbits is a strict coarsening of the partition by Galois orbits whenever n > 2p, and
also compare these to the equivalence classes given by the relation on linear characters
o, of P, defined via Q(¢) = Q(¢)), where Q(¢) is the set of irreducible constituents of
the induced character qi)TG".

We record a proof of the easy direction of Theorem

Lemma 4.2. Let G be a finite group and p be a prime. Let P € Syl,(G) and N =
Ng(P). Suppose ¢, € Char(P) and ip = ¢™ for some n € N. Then (ng = z/;Tg, and

hence ¢T1G, = ¢Tg.
Proof. Let a € Irr(N). Note that a™ = a. Then by Frobenius reciprocity,
(01" 0) = (dal ) = (" (@l p)") = (. (@) ] ) = @], a).

Thus qZ)TN = Q/JTN, as « is arbitrary. 0O

4.2 On a conjugacy action of Sylow normalisers

Throughout this chapter, let p denote an arbitrary, fixed prime, and let n € N. The main
aim of this section is to prove Theorem for all primes p. Recall the notation from
(2.4) in Section for linear characters ¢(s) of P,. We begin by proving an equivalent
condition on the indexing sequences s and t for the corresponding linear characters ¢(s)
and ¢(t) of P, to be Ng, (P,,)—conjugate, in Lemma (the case n = p¥) and Lemma
(for arbitrary n € N) below.
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Given k € N and s € [p]* we let
Y(s):={t € [p]" | t; =0 if and only if s; = 0, V j € [k]}.

If ¢t € 3(s), then we say also that ¢(t) € £(s), where ¢(t) is the linear character of

P, corresponding to ¢ € [p]*. (We refer the reader to Section for a description of

Lin(P,x).) When we say ¢ € X(s), we mean that ¢ = ¢(t) for some ¢ € [p]* such that
t € X(s). It will be clear from context whether we refer to ¥(s) as a subset of Lin(P,x)

or of [p]*.

Lemma 4.3. Let k € N and let ¢,7) € Lin(Py). Then ¢ and 1 are Ne , (Ppr)-
conjugate if and only if there exists s € [p|* such that ¢, € X(s).

Proof. Let G = Gy, P = Py and N = Ne , (P,r). Since P’ is characteristic in P we
have that P’ < N. Moreover, the standard map

Lin(P) — Irr(P/P') = Lin(P/P'),  ¢+— &, ¢(gP):=¢(g9)Vge P
is well-defined and a bijection. Let g € N, € P and ¢ € Lin(P). Then

()77 (xP') = ¢(gzg ' P") = pgzg™t) = ¢ (x) = ¢9(xP").

Hence ()97 = ¢9. From [53, Lemma 1.4] we have that P/P" = (Py—1/Py—1") x Cp, =
(Cp)**. Specifically, define

Op : P — (Pyi—1/Pp—1’) x Cp, (z1,...,ap;0) — (1 TP, 0),
where x; € Pyr-1 and o € P,. This is a surjective homomorphism with kernel
{(x1,....2p;0) | @1 2p € P/, 0 =1},

which by [53, Lemma 1.4] is exactly P’. Thus P/P’" = (P,-1/Pu-1") x Cp, so by
iterating we find that P/P’ = (C,)**. We also have from a direct application of [53),
Proposition 1.5] that

N/P' 2= (Ne ,_; (Ppe-1)/Pp—i’) x Ne, (Cp) = (Ne, (Cp))** 2= (Cp x Cpr)**.

In particular, if (x1,...,2) € [P]*, X = ¢z, X +++ X ¢, € Lin(P/P") = Irr((C,)*F)
and h = (hy,...,hg) € N/P' = (Ng,(Cp))*" then we have that

Xh = (¢r1)h1 Ko X (¢$k)hk‘

Since Ng, (Cp) acts on Lin(C),) by fixing the trivial character ¢ and transitively permut-
ing ¢1, ¢a, ..., Pp—_1, it follows that ¢y, x- - - X ¢, and ¢y, X- - - Xy, are N/P'—conjugates
if and only if there exists s € [p]* such that (z1,...,2k), (Y1, ..,yx) € X(s). This shows
that in order to conclude the proof, it remains to show that if ¢ = ¢(z) € Lin(P) for
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some & = (21, ...,2x) € [D]F, then ¢ = ¢y, X -+ X ¢y, . This can be seen inductively as
follows. The case k = 1 is clear. Let k¥ > 2 and let v be the p-cycle (1,2...,p) € P,.
We now let 74 = v € P, and for j € {2,3,...,k — 1} we denote by ~; the element of
P,j = P,i-11 P, defined by v; = (1,1,...,1;). Using the description of P’ given in [53,
Lemma 1.4] we deduce that

P/P' = <w§k)P’> X <w§k)P'> X ... X <w,(€k)P’>,

where the elements w!™ € P = P, are defined as follows, recalling that P« is the k-fold

wreath product P, J L Py let w](ck) = ;. Then let w,(i)l = (Yk-1,1,...,1;1). Then
let wlgk_)Q = ((wk,g, 1,...,L1),1,...,1; 1), and similarly define wﬁk) to be the ‘nested’
element (( . (('yj, 1,...,1;1),1,...,1; 1) .. )) for all j € [k — 1]. (See Example
below.)

Finally, given any j € [k] we have by Lemma [2.13] that

a(w](k)P/) — ¢(w§k)) _ (b(xla o 7xk)(w§k))
= X(¢($1, - 7$j—1)§¢:vj)(7j) = (bwj (’Y) = (¢a:1 X oo X ¢Ik)(W§'k)P/),

This shows that q~5 = @y, X -+ X Py, , as desired. O

Ezample 4.4. Let k = 2 and let @ = Pj2. Then Q/Q" = (P,/P;) x Cp,. The element
(1,...,1;9) € P, P, = @ maps into the second direct factor C),, under 5. The fac-
tor P,/P) is isomorphic to C}, = (), which is mapped onto by (v,1,...,1;1) € Q.
Thus Q/Q" = <w£2)Q’> X (wéQ)Q'> where w?) =(v,1,...,1;1) € Q and wf) =y =
(1,...,1;7) € Q.

Now let £ = 3. The above two generators wf), wgz) can be ‘lifted’ via Pps /Py’ =

(Q/Q") x Cp to give
WP = (1, L)1, 1) € B, W = (1., 159), 1,0, 151) € Py,

The final C,, factor is generated by w:(,)s)Ppsl where w§3) = (1,...,1;v) € P,s, by the
definition of f3.

More generally, v, € P, viewed as an element of &,» = Sym{1,... ,pF} via the
permutation representation (2.3) coincides with o) as defined in Section for all
ke N, and w§k) =; € Sym{l,...,p'} < Sym{1,...,p"} for all j < k. %

Lemma 4.5. Letn € N and letn = Zle a;p™ be its p-adic expansion. Let ¢(t), p(u) €
Lin(P,). Then ¢(t) and ¢(u) are Ng, (P,)-conjugate if and only if there exists o €
Sym[a1] X - -+ x Sym[ay]| such that for each i € [k], there exists s(i) € [P]™ satisfying

t(i,0(j)), u(i,j) € 2(s(q))

for all j € [a;].
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Proof. For each i € [k], let N; = Ng ., (Ppri). Since N, (Pn) = N116q, X+ - X N8,

the statement follows from Lemma [4.3l O
Next, we have two technical lemmas.

Lemma 4.6. Let n,m € N. Let A and B be characters of &, and let Z be a non-zero
character of S,,. Then
Sntm Snim . . o
(Ax 2) S G =(BxZ2) o xe, W andonlyif A=DB.
Proof. The ‘if’ direction is clear, so now suppose that (A x Z)TG"“” = (B x Z)TG"er
and assume for a contradiction that A # B. For X € {4, B, Z}, let ¢ = <X, X)‘>,
where A is a partition of n (resp. m) if X € {4, B} (resp. X = Z). We define the

following sets:
M={AFn|ct#cB)} and N ={urFm| i #0},

which by assumption are non-empty. Let A and 7 be the lexicographically greatest
partitions in M and N respectively, and let o be the partition of n + m defined by
a=\+ = (A + p1, Ag + g, .. .). By the Littlewood—Richardson rule, we have that

Sntm o A 7 « A 7 « B 7 «
<(A><Z)T X >—c/\c#cfu+g E cxef] c)\#—c/\cucxﬁ—kg E exenes,

AN HEN ASXNUEN
P+ 30 3 fekeq = (B 2]
ASXHEN
since ¢Z ¢S, # 0. This contradicts (A x Z2) | =(Bx2)]. O

Lemma 4.7. Let a,n,m € N and supposen >m. Let Px Q < Gy, X &,y < Spuppn e
such that P contains an element o which is a product of a disjoint n-cycles. Let g € Q.
Let x be a character of P and n be a character of Q. Then

an+m (

(xxmTpua ™ (09) =xT 3" (@) 0 Tg" (9)

Proof. This follows from the definition of induced characters, after observing that ¢* €
P x Q if and only if ¢ € P, for all x € &4y ppp- O]

It turns out that the difficult part of Theoremis the case when n = ap®, which we
have stated as Theorem below and whose proof has been postponed to Section

Theorem 4.8. Let a € [p—1] and k € N. Let ¢,v € Lin(P,,«) be such that ¢T6apk
wTGQM' Then ¢ and 1) are N@apk (Pypr ) —conjugate.

Assuming Theorem [£.8] we are able to prove Theorem

Proof of Theorem[{.1 Let n = aip™ + --- + axp™* be the p-adic expansion of n, with
keN,a;€[p—1]foralliand 0 <ny <--- < mng. We proceed by induction on k. If
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k = 1 then the statement holds by Theorem Suppose that k£ > 2 and assume for
a contradiction that ¢ and ¢ are not Ng, (P,)—conjugate. Let m = arp™ and write

¢ = ¢1 X ¢2 and ¥ = 1hy X g where ¢1,11 € Lin(P,,) and ¢g, 19 € Lin(P,—,,). Since ¢
and v are not Ng,, (P,)—conjugate and Ng, (P,) = Ng,,(Pmn) X Ng,,_,, (Pn—m), at least

one of the following two statements must hold:

(i) ¢1 and v, are not Ng, (Py,)—conjugate;

m

(ii) ¢2 and 9y are not Ng, _ (Pn—m)-conjugate.

Since P, = P,, X P,_,,, we have that
R B e R O e N S O

and so using Lemmas and the inductive hypothesis, we deduce that both con-
ditions (i) and (ii) must hold. Let g € &,_,, be such that (;SQTG’“"'L (9) # z/JgTG"ﬂ” (9);
such an element exists by the inductive hypothesis. Let o € P,, < &,, be a product of
ay, disjoint p™*-cycles. We now denote by h the element of &,, x &,,_,, < &,, defined

as follows:
. Sm Sm
P L if 177" (o) # 1] " (0),
og otherwise.
67l Gn . .
Then ¢ "(h) # ] " (h) by Lemma a contradiction. O

4.3 Induced character values

Throughout this section, let n = ap” where k € N and a € [p—1]. Recall from that
the linear characters of P, are parametrised as ¢(u) where u = (u(1),u(2),...,u(a))
with u(i) € [p]* for each i. By Lemmas 4.2 and we need only distinguish when the
elements of the sequences u(i) are equal to 0 (corresponding to 1p,) or not (correspond-
ing to some non-trivial linear character of P,). Thus we may identify all of the values
which are not equal to 0. Our proofs involve computing certain character values, for

which the following notational convention will be useful, in particular for Lemma
Notation 4.9. In this section (Section only, we sometimes rewrite u(i) € [p|* as

ut = (ut,...,ul) € {0,1}* where

1 if u(i); =0
0 if u(i); € {1,2,...,p—1},

and let u = (u',... u%).

So for instance, in this section we do not distinguish between characters ¢(s), ¢(t) €
Lin(P,) for s,t € [p]* if ¢(t) € B(s). If u € {0, 1} then by ¢(u) we mean a (any) linear
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character ¢(s) € Lin(P,+) where s € [p]* such that u corresponds to u € [p]* in the sense
of Notation 4.9] and s and u have Os in the same positions. We shall adhere to using
italics or bold (e.g. s, s) to denote elements of [p]*, and sans serif (e.g. u) for elements
in {0,1}*. We then extend these notational conventions from Lin(P,) to Lin(P,,) for

all m € N.

The aim of this section is to prove the following statement, which, in light of
Lemma [.5] is equivalent to Theorem [£.8

Theorem 4.10. Let k € N and let a € [p —1]. Let ¢(s), ¢(t) € Lin(P,,x). Suppose
¢(§)T6’”’k = d)(;)Tb‘”’k, Then there exists a permutation o € Sym{1,...,a} such that
st =t7@) for all 4.

The key idea is to consider the values QSTG" (g9) where ¢ € Lin(P,,) and g is a product
of disjoint cycles whose lengths are distinct powers of p. By the definition of induced
characters,

015 = C s

|Pn| x€ccls,, (9)NPrn
for any g € &,,, where cclg,, (g) denotes the conjugacy class of g in &,,.

Remark 4.11. Our proof involves computing the values of induced characters at elements
of &,, of several distinct cycle types. In general, a single cycle type may or may not be
enough to distinguish the inductions QSTG" as ¢ runs over a set of orbit representatives
in Lin(P,) under the action of Ng, (P,). That is, we do not know whether there exists
g € 6,, with the property that d)TG" (9) = wTG" (g) for ¢,¢ € Lin(P,) if and only if ¢
and ¢ are Ng, (P,)—conjugate.

Nevertheless, since there is no loss in considering elements of several different cycle
types compared with limiting ourselves to just one type, in our arguments below we

consider all g which are products of distinct p-power length cycles. %

Definition 4.12. Let b € [p — 1] and suppose that ly,ls, ..., I, are distinct elements of
(k]. Let g € &, have disjoint cycles of length pliptz o pl 1. 1 (we also say g
has cycle type plip!2 - pl* ) and let u € {0,1}*. Define

Loty ik (u) = Z ¢(u)().

xEcclng (9)NP

If b > 2 and l; = k for some i, then we set 'y, 1,.x(u) to be 0. More generally, we
define T, 1,6 (u) for any distinct natural numbers Iy, ..., 1, by setting the value to be
0ifl; >k for any i.

In particular,

n Cs . (9)
ST (9) = = pr Th(w)
P pk:

Thus for such a fixed element g, when we compare the values of ¢(u) i": (9) and
P
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o(u) gp: (g) for some u and u’, it is enough to compare the values of T';, _;,.x(u) and
P

Ty gy (W).
Lemma 4.13. Letl € [k] and let u = (uy,...,ux) € {0,1}*. Then
1
Tpr(u) = p - Cy(u), where Cy(u) -2 (pu,, — 1).

m=1

Remark 4.14. Tt is useful to observe that C;(u) does not depend on uj41,...,ug; that
is, Cl(u):C’l((ul,...,ul)). O

Proof of Lemma[f.13 Observe that if [ = k = 1, then

3> u)(@) = p—1 if ¢(u)=1p, (ie.if u=(1)),

zeP\{1} -1 otherwise.

[ya(u) =

(In other words, I'1;1(u) = pu; —1.) Now let k& > 2 and first suppose | = k. Let
x = (f1,...,fp;0) € Py = Pyr—1 1 P, where f; € Pyr—1 and 0 € P,. If xis a pF-cycle,
then o # 1 and fyp-1(1)- - fo(1) - f1 must be a pF~lcycle in P,k-1 by Lemma
Letting u™ = (u1,...,ux—1) and Y be the set of elements in P,x—1 of cycle type pFL,

we find by Lemma [2.13] that

I‘k;k(u) = Z X(Qb(u_)v(b(uk)) ((flv"'ﬂfp;a—))
m:(fl,...,fp;a)EPka
of cycle type p"
= Z S ) (for-11)* foqr) - f1) - @(ur)(0)
x=(f1,---,fp:0),

o€P\{1}, f1,. - fp€EP k-1,
fgp—l(l)"'fo(l)'fley

= Z gb Uk |P k— 1|p L Z qb
oceP,\{1} yey
k—1

=(pue —1)-p" T Teopp—1(u7),
where the third equality holds since for any fixed y € Y, we may choose the elements

Ji,-- o, for—2(1) In Ppr1 freely, after which fop-1(1) - fo(1) - f1 = y uniquely determines

Jor-1(1)- Inductively, we have

k k 1 k
T (u) = p@ TP T )=k H (pup — 1) = H (pupm, —

m=1 m=1

Next, let 1 <[ <k. If z = (f1,..., fp;0) € Py has cycle type p! then it must have
a fixed point as [ < k. Thus o = 1 and f; has cycle type p' for a unique 1 < i < p and
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fj = 1for all j # i. Letting Z be the set of elements in P,x-1 of cycle type P,

Ly (u) = > Pu™)(f1) -~ (™) (fp) - ¢(ur)(1)

x:(flvnvfp?l)v
I, fi€Z, =1V j#i

=p Z pu™)(2) =p-Tpp1(u™) =pFt. Li((urs. .. ).

z€Z
Hence for all 1 <[ <k,

p'—1

!
_ 1
Lpp(u) =pF~t pr1T7". H(Pum—l)-

m=1

O

Remark 4.15. Lemma[4.13]is already enough to prove Theorem[£.10]when a = 1. Indeed,
let ¢(s), ¢(t) € Lin(P,x) for some s, t € {0,1}* and suppose gb(s)Tka = c;S(t)TG"k. Then
(b(s)TGPk (9) = ¢(t)T6”k (g9) for each g € &, in particular g of cycle type p' for every
I € [k]. By Lemma this implies

l 1
H (psm — 1) = H (Pt — 1)
m=1 m=1
for all [ € [k]. Therefore s, = ty,, for all m € [k], and thus s = t.
However, Lemma is not enough when a > 1. For example, let a = 2, k = 3
and consider s = ((1, 0,0), (0,1, 1)) and t = ((1,0, 1), (0, 1,0)). The induced characters
¢(§)T62p3 and ¢(§)T62?3 agree on p, p> and p?-cycles, though are not equal. This

motivates considering more complicated cycle types, see Proposition [£.17] below. O

From now on, we may assume 2 < a < p, and hence also that p is odd.

Definition 4.16. For a set A, let Part A = {X || |y oy Y = A} be the set of partitions
of A. (Our convention is that Y # 0, i.e. 0 ¢ X.) Suppose X = {Y1,...,Y} is a
partition of the set A, with y; = |Y;| for each i and y3 > -+ > y,, > 1. We say that
(Y1,Y25- -+ Ym), a partition of the number . y; = |A|, is the type of X.

Proposition 4.17. Letb € {2,3,...,p—1}. Let 1 <1l <ly < --- <l < k be integers
and let u € {0,1}*. Then

Ciytyetyie(u) = p* - Cpy (u) -+ O, (u) - (pF = p™) (" = p'r = plo=r) - (0F =P — - = pP).

Proof. Both sides of the equation equal 0 if I, = k, so from now on assume [, < k. We
proceed by induction on b, beginning with the base case b =2. Let u™ = (uy,...,uUx—1).
Let © = (f1,..., [p;0) € Ppx = Pyr-11 P, be of cycle type pl1p2. Then it must have a
fixed point as Iy < Iz, and so 0 = 1. Let g, € Pj-1 be of cycle type pl= for z € {1,2},
let g3 € Pye—1 be of cycle type p''p'2 and let G, = ccl ,_, (9:) N Py-s for z € {1,2,3}.
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Then by Lemma |2.13

L1556 (u) = > ¢(u) ()
o=(f1,fpi)EP,
of cycle type p'lp'2

=55 ST e () b)) - ()W) lur) (1)
i=1j=1 f;€G1, f;€G2,
J#i fn=1VY h#i,j

£ s () o)
I

=p(p—1) - Tik-1(u") Tie—1(u™) +p- Toypp—1(u).

Recalling that 'y, (u) = 0 if lo > &/, we therefore have by Lemma that

k—1
Tom(u) = (p—1) > pF Ty ((un, o u0) - T ((ur,- - uy))

i=lg

k—1
= (p - ]-) Zpk_i 'piCll(u) 'piclz(u)

i=la

k—1
=p" - Ci(u) - Ci(u) - (p—1)Y_p' =p" - Cp,(u)- iy () - (P* = p").

i=lo

This concludes the base case b = 2.

For the inductive step: if x = (f1,..., fp;0) € Py has cycle type p't - plv then it
must have a fixed point as the [; are distinct. Hence o = 1, and thus the cycle type of
z=(f1,..., fp;1) is the product of the cycle types of fi,..., f,. By Lemma[2.13]

Loy i (u) = Z ¢(u)(x)
z:(fla“':fp;l)eppk
of cycle type pl1-~plb

=D ) (1) - D) (f2) - d(uT) () - Blur)(1).

(Notice that ¢(ug)(1) = 1 since ¢(uy) is linear.)

By considering the cycle type of each f;, we can rewrite this sum as follows. Let
I ={i| fi =1} and suppose |I| = p— L for some L € {0,1,...,p—1}. Say [p]\ I =
{i1,...,ir}, and suppose for each j € [L] that the cycle type of f;, is Hm@j ptm. Then
{vj}f_, is a partition of the set [b], since z has cycle type p' ---p'. (Note that for each
J, vj # 0 since i; ¢ I, and v} is a genuine set rather than a multiset since ly,...,[, are
distinct.)

We sum over such partitions {v;}f_, of [b], grouping by type (see Deﬁnition. In
particular, if {v;}}_ | has type XA - b, then L = I()) and so p—I()) many of the elements
fi,--., fp are equal to 1. Conversely, given A - b and some v = {v1,..., 15} € Part[b]
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of type A, there are % many injective mappings F from v to [p]. Each such F

=
represents a different (f:ssignment of cycle types to the elements f1,..., fp: for i € [p], if
i ¢ Im(F) then f; = 1, and if i = F(v;) then the cycle type of f; is [[,,,c,, p'™
If w= {wy,...,w} C [b], let Ty.x—1(u~) denote Flwl...lw,;k—l(u_)~ Since and
Lyjk—1(u™) =32, #(u™)(y) as y runs over the elements of Ppr-1 of cycle type Hmeyj plm

and ¢(u™) is linear, then

Ty yk(u) = > S(u)(f1) - d(u™)(f) - S(uT) ()
z=(f1,-,fp;1)EPk
of cycle type pll plb

PSS

wak H(u7) - ¢(u_)(1))p4(x)

AFb vePart[b] (p_ ! wev
of type A
p
=p Z Z ((_ Hka 1(u7) +p- Ty gye—1(u™).
AFb - vePart[b] p ! wev

A#(b) of type A

Inductively, we therefore have

T2, (u ZP’”Z Z (P_( I T w) @D

i=lp AFb - vePart[b) (p wev
A of type A

since Iy < --- <l and I';; _4,,;(u) =0if [; > j for any 1.
Since A # (b), every w appearing in (4.1]) satisfies |w| < b. Therefore, if w = {w; >
wg > -+ - > wy} then by the inductive hypothesis and Remark

Pui((ut, - u1) = p' Gy, (w) - Co, (u) - (=) 71 P
where
PY = (—pt 4 plon)(—p' + plor 4 ploz) o (—pi + plor 4 ploz 4o 4 pheeor)
if t >1,or P¥:=1if t = 1. Substituting this into ,

i=ly, ARb - vePart[b) wev wEW
A#£(D) of type A

k—1 ) .
P ILED VD My oo e AORCAOR 1 05

i=ly A=b - vePart[b] wEevr
A#(D) of type A

b k—1
= (—1)1771]9]:1;[1011-(11) Z Z Z (p=1)!'p Z‘*’l(l)\) 1)i-1 pr

i=ly AFb_ vePart[b] wEV
of type A

Thus, to conclude the proof of the proposition, it suffices to show that the following
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equality holds:
(=0 ") (=p" + " pl) e (Rt )

:ki:l Sy b l((lw Dyt 117 (4.2)
1(0)!

i=ly AFb_ vePart[b] wEV
A#(b) of type A

Observe by the inductive hypothesis that holds (replacing b by b') for all ¥ < b,
and indeed for all sets X of size ' (by replacing [b] by X). We rewrite the right-hand
side of as a sum over u b —1 and v € Part{2,3,...,b} where v is either v with
one of its elements X replaced by X U {1}, or v = vU {{1}}. Thus the right-hand side

of (4.2) equals

k—1
Z l Z Z <(P—1) 1((l<u)l(:) 1)t -1 H Pw Z pi _i_z\;;):\lplwh)
}

=l pEb—1  yePart{2,...,b wey wey
p#(b=1)  of type p

v = v with 1 added to an existing member of ~

N (p— 1) pitln. H Pw) 4 = 1)r )( 1) | pl23..0) | pli}

( 7Z( wey
pu=(b—1) term: y={{2,3,...,b}},
v=+vU{{1}} A#(b) so v={{1},{2,...,b}} only

(p=1)!-p 7D () 1 w (e ol il
Z[ Z Z (pfl(#))! HP" P2+t pr =p™)

i=ly pHb—1  ~yePart{2,...,b} wey
pA(b—1)  of type u

—(p—1)p"- PJQ""”’}] :

Let

Z Z (p—1D)!'p »((l(u) 1)( 1)l(u) 1 HPW

l
pkEb—1  ~yePart{2,...,b} P wey

p#(b=1)  of type p

Since (4.2)) holds for ¥’ = b — 1 and the set X = {la,...,l;}, we have that

(=pF ") (=p" " +p ) (= P ) =) Qe

i=lp

Since the only condition on k for this immediately preceding equation to hold is that

k > Iy, we also know for all ¢ > [, (by replacing k by ¢) that

(=p" + ") (=p + P ) (P ) = ) Qe
J=l
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Thus the right-hand side of (4.2) is equal to

DoQi- AP =) = (0= D (' ) ()]
= (*p’“ +plb) (P ) 4 )

Z [P Qi+ (p— V) (—p' + ) - (=p' + D + -+ p9)] .

Zlb

To show that (4.2)) holds for b and the set [b] as we originally required, and hence to
conclude the inductive step and the proof of this proposition, it therefore remains to
show that p*(—p® + pl*)--- (—p* +p' + - 4+ p') equals

k—1

D Qi+ (p =P (—p + ") (P P

=l

This is clear if I, = k — 1, so now assuming that [, < k — 1, we have

k—1
Yo+ (0= P (=P’ ) (=P P 0]
i=lp

k—1 k—1 i—1
=> Qi+ -1 > P> Q;
i=lp i=lp+1 7=y
k—2 k—1
= Q- (phﬂ +p-1) Y pz> +9" Qe
h=l,, z=h+1
=" ZQh— —p*+p) (=t P 4 )
h=l,,
as required. O

Proposition 4.18. Let a € {2,3,...,p — 1}. Let ¢(s), ¢(t) € Lin(P,,x). Suppose that
¢(§)Tb‘“’k = qu(;)TG‘”"k. Let b € [a] and let ly,. ..l be distinct mtegers in [k]. Then

D L) () - Oy Zczl (t')- Ol () -~ Oy, (V).

j=1

For clarity, we postpone the proof of Proposition to the end of this section. We
continue with a series of lemmas, culminating in the proof of Theorem [£.10]
For notational convenience, we denote multisets by asterisks. For example, the multi-

set equality of (i) in Lemma below may be rewritten as {s1,..., s, }* = {t1,...,ta "

Lemma 4.19. Let ¢ € N>o. Let a € [q] and s;,t; € Ng for j =1,2,...,a. If



then either
(i) {s1,-..,8a} = {t1,...,ta} s an equality of multisets; or

(i) a = q and the multisets {s1,...,84} and {t1,...,t,} are {fw,w—1,...,w—1} and

{w—2,...,w—2} for some w € N>s.

Proof. We proceed by induction on a. The assertion is clear if ¢ = 1, so now assume
2 < a < g, and suppose {s1,...,8.}" # {t1,...,t.}*. If s; = t; for some 4,5 € [al,
then by the inductive hypothesis for a — 1 # ¢, we have {s1,...,8i-1,Si+1,---,8a}" =
{t1,.. ., tj—1,tj+1,- -, ta}*. But then {s1,...,s.}* = {t1,...,ta}", a contradiction.
Thus s; # t; for all 4, j € [a]. Without loss of generality suppose s; = max{s;, t;}; je[a,
so in particular ¢; < s; for all j. By multiplying both sides of the equality of sums in
the statement of the lemma by —g if necessary, we may further assume that s; is even.
Then

a

a
¢ < = (=g <Y g (=1 = gl (=) <agt T < g
j=1 j=1

Hence all inequalities in the above must hold with equalities, implying that a = g,
sj=s1 —1forall j# 1, and t; = s1 — 2 for all j € [a]. This is exactly case (ii). O
Recall n = ap® where k € N and now a € {2,3,...,p — 1}, following Remark

Lemma 4.20. Leta € {2,3,...,p—1}. Let ¢(s), ¢(t) € Lin(P,) and suppose ¢(§)T6" =
¢(©)1". Let 1 € [k]. Then

*

! l * l l
{ngn,...,zsgn} _ {Zt:m...,ztgﬂ} |
m=1 m=1 m=1 m=1
Proof. First suppose [ < k. Let u € {0,1}* and let u~ = (uy,...,ug_1). Define

Apg(u) = Z d(u)(z), for L€ [k —1] and Agx(u) =0.
wEPpk of
cycle type plpl

Then

Ay (u) = > o(u)(x)
I:(f17~-7fp;1)eppk
of cycle type plpl

IR SR O AR TS TTSEE T DR IO
f1,f2€P k1 J1EP k1 of
both of cycle type pt cycle type plp!

- (I;) i1 (u7) - Toip—1(u7) +p - A1 (u™)

_ (g) kipk—l—i T (U, up)) = @ i;lp’“—l” -Ci(u)®

i=l
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by Lemma Now let ¢(u) € Lin(P,) where u = (ul,...,u®). Recalling that P, =
P,r x --- X Py (a times), we have that

> b)) = > p(u)(@1) - d(u)(2a)
zeP, of T=T1Tq, wiEPpk
cycle type p'p' z of cycle type p'p
a
= > Do o)@) o)) +d Y b))
{7,7}Cla] m,:,ijPpk each 1=1 fI,',jGPpk of
of cycle type pl cycle type pl’pl
—Z ZFM ) - Ty (u?) +ZAzk
=1 j=1 =1
i
— Z Zpkcl(u p Cl U‘, _|_ Z < ) Zpk—l-‘rh . Cl(ui)Q
=1 j=1 h=l
J#i
a a a D k—1
k % i )2 2k k—1—h
Ci(u Ci(v!) | + Ci(u —p=F +
<§;m O S | +3a >[p @);? ]

k(Z@WO Zaw>+}%p+p}za . (43)

Note s = (s!,...,s%) and t = (t!,...,t?). Since gb(g)TG"(g) = qS(;)TG"(g) for g € G,, of
cycle type p!, we have that

Y Tun(s) =D Tu(t’)
i=1 i=1

and thus

Y Gs)=) Gt

by Lemma Using expression 1D and the fact that d)(g)TG" (9) = (i)(;)TG" (g) for

g € 6, of cycle type p'p! then gives
a a
i=1 i=1

and therefore

i=1 m=1 i=1 m=1
by Lemma [£.13] Thus,
a a l l
Z(—q)"j = Z(—q)” where ¢g=p—1, 0; =2 Z s/, and 7; = 2 Z t,
i=1 =1 m=1 m=1
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so by Lemma we must have {o1,...,0,}* = {71,...,7.}* (case (ii) is not possible
as all o; and 7; are even). The assertion of the present lemma for [ < k then follows
directly.

Finally, for [ = k: by a similar argument we obtain an expression similar to
where instead of the term —%k(pk + p') we have —p?*. The rest then follows as in the
case | < k. O

Proposition 4.21. Let a € {2,3,...,p — 1}. Let ¢(s), #(t) € Lin(P,) and suppose
¢(§)TG" = qs(;)TG". Let b € [a] and let 1y,...,l, be distinct integers in [k]. Then

{o1,... 04} ={m1,...,7a}", where

bl b 1l;
oj:ZZsfn and Tj:ZZt%
1=1 m=1 =1 m=1
for each j € [a].
Proof. By Proposition 4.18
a b U ‘ a b U .
S I wsh -1 =TI I @t~ 1),
j=1i=1m=1 j=1i=1m=1

and hence Y27, (—p +1)% = >27_ (—p+1)7. The assertion follows by Lemmam

case (i) cannot occur because Y 5_; 05 = > 7_, 7; by Lemmam O
Definition 4.22. Let b,k € N. Given natural numbers ly,...,l, < k and a sequence

s=(s1,...,s) € {0,1}*, define

bl
Fli o lis) =D sm.
i=1 m=1

Let a € N. Given an a-tuple s = (s,...,s%) where s* € {0,1}* for all i, define
fllaslyss) ={f(laye o lssh), ooy flay o Doy s™)
Thus the result of Proposition [4.21| may be restated as
Sy lbis) = fl, - it

for all distinct integers 1, ...,1, in [k], where b < a < p.

Lemma 4.23. Let {l1,...,lp}* = {ma,...,mp}*. Suppose that in addition we have
{ll +17...,lc+17lc+1,...,lb}* = {m1—|—1,...,mc+1,mc+1,...,mb}*

for some ¢ € [b—1]. Then {l1,...,l.}* = {m,...,m}"
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Proof. Suppose for the sake of contradiction that {l1,...,l.}* # {m1,...,m.}*. Let us
suppose without loss of generality that I; < --- <l.and m; < --- < m.. Let j < c be
maximal such that [; # m;, and without loss of generality we assume that [; < m;.
Given a multiset S and v € N we let S>, = {z: 2 € S, > v}*. Observe that since
{hs e b} = {ma,...,mp}* we have that {l1,..., [}, = {m1,...,mp}%, for any v.

Similarly
h+1 e+ Llepr, - b}s, = {ma+ 1, ome + Limeyr, o mpfS,
for any v. We now consider v = m; 4+ 1. Note that
{h+ 1 le+ Lleprs oo b}l — s 30 41

= |{lj+1 +1,... 0+ 1}§mj+1‘ - |{lj+17' : "lc}gmﬁrl'

by cancelling off equal elements in the two multisets and noting that I; < m; for all

i < j. Moreover,

{mi+1,...,mc+ 1, megq,. . -7mb}§mj+1| - {ma,... ,mb}’gmj+1|
> |{mJ + 1’ ey Me + 1}*277”-&-1‘ - |{mj7' e 7mC}§mj+1‘
=1+ ‘{mj+1 +1,...,mc+ 1}*2mj+1| - |{mj+1’ s 7mc}§m]‘+1|

=1+ ‘{lj+1 +1,... 0+ 1}*2mj+1| - |{lj+17 e "lc}gmﬂLll

by maximality of j. In particular, we have
Hma+ 1, ome + Limegrs oo ome s, ol = H{ma, o yme}s,, o

>1+ {41, e+ 1y, .. .,lb}gmﬁﬂ —{l,.. ~7lb}§mj+1\
which is a contradiction. O

Theorem 4.24. Let a,k € N. Lets = (s%,...,s?) and t = (t',...,t%) where s',t’ €
{0,1}* for alli. Suppose that for any distinct integers l1,la, ..., 1, € [k] such that b € [a]

we have
J(y, oo lyss) = f(l, ..o s t). (4.4)

Then there exists a permutation o € Symla] such that s =t for all i.

Proof. We prove the assertion for (a,k) by induction on a + k. When £ = 1 and a
is arbitrary, the assertion is clear since the single term of each sequence s’ is simply
f(1;s"). When a = 1 and k is arbitrary, note that s} = f(1;s!) = f(1;t!) = t}, and
st=f(r;st) = f(r—1;sY) = f(r;ith) — f(r—1;tY) =tl forallr € {2,3,...,k},sost =t!
as required.

Now suppose a,k > 2. Write § for the sequence (s})¥_, € {0,1}*! and let § =
(s!,...,8%). Define t* and t similarly.
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First suppose that si =t} = z for all i € [a], for some z € {0,1}. Observe that for
any distinct integers Iy, ...,l, € [k — 1] such that b € [a] we have

flli+1,.. 0y 4+ 1;8") = f(Iy, ..., 1y;8") + bz,
and similarly
Fy+1,. 0y + 1t = f(ly, ... 1y T + bz

Thus by (4.4), we have that

f(ll7"'7lb;$) = f(l177lb7£)

By the inductive hypothesis for (a,k — 1), there exists a permutation o € Sym[a] such
that §° = t°(® for all i € [a]. Therefore s = t°(") as required.

Otherwise, we may now suppose that not all st and t} are equal. Let I, = {i €
[a] : s{ = 1} and define I; similarly. Since f(1;s) = f(1;t), then |Is| = ||, so we may
without loss of generality reorder t to assume that si =t} for alli € [a]. Let I = I, = I,
and note that I € [a — 1].

For any distinct integers l1,...,I, € [k — 1] such that b € [a — 1] we have

flli+1,.. 0+ 1;8) = bst + f(lh,...,1;8)

and
S+ 1,0+ 1t =bst + f(ly, ... Iy t)

since si = t}. Thus

fllh+1,.. 0+ 1;8) = {bst + f(ly,...,11;8") : i€ [a]}

=fli+ 1, 0+ 15t) = {bst + f(l1,...,0;t") : i€} (45)
In addition,
FLL 41,0+ 158) = {0+ Vst + f(l1,. .., ;8 : i€ [a]}”
=f(L,Lh+1,.. 0+ 1) ={(b+1)si + f(lh,...,. lp;t) : i€ a]}”
Therefore, by Lemma |4.23] we have that
b+ fly, ... 038 i€l ={b+ f(ly,..., ;1) i €I},
which implies
{fly,.. ;8" de I} ={f(lh,...,.l;t") : i eI} (4.6)

92



and therefore by (4.5)) also

{f(l, e 08 i€ fa]\ IV = {f(ln,...,lp;t") : i€la] \ T}". (4.7)

Let 8V and S(O) be the sequences (8");er and (8 ),QI respectively, and define i( ) and t(o)

similarly. Since (4.6)) and (4.7) hold for any valid choice of {l;}, this tells us that for any
distinct integers ll, ool € [k — 1] such that b € [a — 1] we have

Fllny 18Dy = f1, . 0stY) and f(l,. ., 1:89) = 0. 1 E ).

Since |I| and a — |I| are both at most a — 1, we may apply the inductive hypotheses for
(|I|,k — 1) and (a — |I|,k — 1) to obtain permutations o; € Sym I such that § = t71(*)
for all i € I (and hence s' = t“1() and ¢y € Sym([a] \ I) such that § = t70() for all
i ¢ I (and hence s' = t7°()). Finally, let o = 0¢ - 01 € Sym]a], so s =t for all i as
desired. O

Proof of Theorem[{.10. This follows from Proposition and Theorem O

4.3.1 Proof of Proposition 4.18

Let k € Nand n = ap”® wherea € {2,3,...,p—1}. Let b € [a] and let [, ..., 1, be distinct

integers in [k]. Let ¢(s), ¢(t) € Lin(P,,~), and suppose that (b(g)TGW"c = ¢(§)T6‘”’k
The statement we wish to prove is

D CL() - Cy(sh) - O, ( Zczl (t)-Cr,(t)--- C, (V).

j=1

We proceed by induction on by b. The case b = 1 follows from evaluating ¢(§)T6" =
(b(;)TG" on an element of &,, of cycle type p't. We present our argument for b = 2
explicitly as an illustrative template for the general inductive argument.

Let 1 <1y <lp <k and let ¢(u) € Lin(P,). We have that

> lu erll, ) - Tiie(u’) +ZF1112, u’)
i=1

zeP, of i=1 j=1
cycle type VE)
p'ip'2

<ZF11, > ZFZQ, (W) | =Y Tue(w?)  Topr () + Y Tryp(u?)
j=1 j=1

(4.8)
Observe by Lemma and Proposition that
@ . .
- Z Tye(u?) - Thyp(u?) + Z Ty (ul) = —pF - pl2 Z Cr,(v)-C,(v?).  (4.9)
Jj=1 j=1
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By the inductive hypothesis (that is, the case b = 1), Y0 Ti.p(s’) = S5 Tix(t?)
for any [ € [k]. Since the coefficient —p*-p!2 of Z?zl Ci, (u9)-Cy,y(u?) in 1) is non-zero,
by evaluating ¢(§)T6" = ¢(;)T6" on an element of &,, of cycle type p'tp'2, we find using

(4.8) that
Z N (Sj) -C, (Sj) = Z Chy (tj) - C, (tj)
j=1 j=1
as claimed.
In the general inductive argument, the main steps are as follows:

(1) write D" cp. of eycle type pi-pls P(U)(Z) as a sum of terms Ty,...1,.x(u?) for subsets
{h,...,i} of [b]: in the b = 2 example, this is the first line of (4.8));

(ii) replace sums with ‘restricted’ indices by sums with ‘unrestricted’ indices: when

b = 2, we replaced the sum over the restricted index j # ¢ by sums involving only

unrestricted indices ¢ and j which were free to run over 1,2, ...,a, in the second
line of (4.8);
(iii) consider those sums of products of I' terms involving all of I3, ..., [, rearrange to

obtain a product of some coefficient with Y27, Cy, (u?) -+~ Cj, (u?) and show that

this coefficient is non-zero: when b = 2 this coefficient (up to sign) is p* - p2 # 0.

When evaluating ¢(§)TG" = (b(;)TG" on an element of &,, of cycle type p't ---pl*, by
the inductive hypothesis those sums of products of I" terms involving only a strict subset
of ly,...,l in Step (ii) will be equal for u = s and u = t. Combined with the fact that
the coefficient in Step (iii) is non-zero, we find that >>7_, Ci, (u)---Cy, (u?) is equal for
u=s and u =t, as required.

Before proceeding with the inductive argument for general b, we describe the process
of replacing ‘restricted’ sums in Step (ii) more formally. Let N € N and let Fy,..., Fy

be functions from domain [a] to some codomain, usually Z. Consider the expression

a

F(Fr,...,FNyN) = Z Z Z Fi(i1) - Faiz2) - Fn(in).

=1 iz=1 in=1
T N NS TN R Sy

We express F(F1,...,Fn;N) in terms of F(G;1) for various functions G to obtain

an ‘unrestricted’ sum expression U(F1,...,Fn;N) (whose value equals that of F) as

follows. Note that when N =1, F(F;1) = 7| F(i) is already an ‘unrestricted’ sum

(meaning that the summation index i is free to range over [a]), so define U(F;1) =

F(F;1). When N =2,

a a

F(F1Fy2) =Y Y FIF() = F(F31) - F(Fy 1) -F(F1Fas 1),
i=1 3;5117 =: U(F1,F2;2)

so define U (Fy, F»;2) to be the expression following the last equals sign in the above.
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Note that F} F5 denotes pointwise multiplication, Fy F5(i) = F;(i)F3(¢). When N = 3:

F(Fy, Fy, F3;3) = F(F1;1) - F(Fa;1) - F(F3;1)
—]:<F3,F1F2;2)

— F(F1, FaF3;2)
- ]:(FlFQFg; 1)

- ]:(Fz,F1F3; 2)

F(F3;1) = F(Fy;1) - F(FoF3;1) — F(Fp;1) - F(F1F3;1)

—.

1
- f(Fg, 1) . f(FlFQ, 1)+2f(F1F2F3, 1)

7

so define U(Fy, Fy, F3;3) to be the expression following the last equals sign in the above.
Observe that

N
H sz 1 § E E V11 V12 o V1>\1 2 : Vy1 ”y2 e F’/y%y (Zy)
i=1 AEN vePart[N] i1=1 iy =1
of type A Ty Fi1,..
sty —1
= Z Z F(Foy - Fopyyoee s Foyo By 1Y)
AN vePart[N]
of type A

where y = I()), and for each v we fix some ordering v

{I/l, ceey Vl()\)} such that
lvj| = \j and let v; = {vj1, V52, ..., v, }. Thus we give the following recursive definition

for U for general N € N:

N
U(Fy,...,FyiN) = [[F(F;1)-
i=1

d. D UlR -

AEN  vePart[N]
AZ(1N) of type X

Vul Vy1 "'FVyxy;y)

and note this is well-defined because A # (1V) implies that y = I(\) < N for all such .

Lemma 4.25. Let a, N € N and let Fi,...
denote the coefficient of F(Fy ---

,Fn be functions defined on [a]. Let Dy

Fy; 1) in the expression U(F1,...,Fn;N). Then

Dy = (—DN "N -

L.

Proof. We proceed by induction on N. By the examples calculated above, we can see
that the assertion holds for N =1,2,3 (Dy = +1, —1,+2 respectively, from +F(F';1),
—F(F1Fy;1) and +2F(Fy F3F3;1) which we highlighted in bold above).

cursive definition of U, we have that

From the re-

Dy=- )

> Dy

AEN  vePart[N]
AA(1N) of type X
> >, Um Dy + Digyrr )| = (V= 1)Dy—y
—_—— —— | ——'
pEN—-1  ~ePart[N—1] . . _ . _ _
pA(N1) of type . VTY With N tfndgded ff}vag:i:i p=(1N-1) term

member of
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= (N -1)Dy_1

since D; = (—=1)""'(1 —1)! = —(I = 1)Dy_; for all I = I(u) < N — 1 by the inductive
hypothesis. Thus Dy = (—=1)¥=1(N — 1)! as claimed. O

Proof of Proposition[{.18 As stated already, we proceed by induction on b and it re-
mains to show the inductive argument. Now suppose b > 3 and that the assertion of
the proposition holds for all ¥ < b. Let ¢(u) € Lin(P,) and let g € &,, be an element
of cycle type p't ---p'. Then

Z P(u)(z) = Z Z Z Z e Z Ful;k(uil) . Fl/lo\);k,(uil()\))

z€ccls,, (9)NPy ARb vePart[b] 11=1 i2=1 iy =1
of type A 12741 () Fi1see-
cnti () —1
(4.10)
where for each v we fix an ordering v = {v1,...,1} such that |v;| = A;, and if
v; = {wi,wz,...,wy,} then I'y;;x(u) denotes Iy, 4,1, (u). Next we fix some v and
J
consider the expression
U(Tuk W), s D@ ); 1Y) (4.11)

where (—) denotes the argument of the function ', (u(™)), for each j. This is a sum
of products of terms of the form Y ¢ | T\, . (u’)---T,, x(u’) for subsets {ji,...,jm}
of {1,...,I(A\)}. Let V=wv; U---Uvy;, . By Proposition and its proof (including
the definition of P{), we have

Zrym Ty, alu’) = Z RN | Ee D RCS Vi [ B S ¢ R ©)
i=1 wevV h=1
If |V| < b then by the inductive hypothesis, since ¢(§)T6" = qS(;)TG", the right-hand
side of is equal for u = s and u = t. Subtracting this from , we find that the
expression given by the sum of only the |V| = b terms from the U expression in
is equal for u = s and u = t; by Lemma this is the following;:

Z Z <_1)l(/\)_1 ZFVh o VL(,\) k( Z)

AFb vePart[b]

of type A
a b
=YYy -0 O T ) (e T e
AEb vePart[b] i=1 h=1 wev
of type A\
SR SV H (DR EATIED DD I UCVES IR ey | R
i=1 AEb vePart[b] wev

of type A

Thus it remains to show that the coefficient of > 7 | Cj, (u%) - Cj, (u®) is non-zero in
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order to see that > 7 | Cj,(s%) - Cp,(s*) -+~ Cp, (s") = Doi, O, (£9) - O, (£) - - - €y, (t7) and
conclude the proof. We do this by proving the following for all integers 1 < l; < ly <
o<l <kand2<b<a<p:

YooY PV TT B =0 (o el (0 )

AEb vePart[b] wev
of type A

(4.13)
and noting that the right-hand side of is non-zero, while the left-hand side is
(—1)°~! times the coefficient we are interested in. To prove that holds, we proceed
by induction on b; the cases b = 2 and b = 3 are straightforward to verify, so we now
show the inductive step. Notice by the inductive hypothesis that holds with b
replaced by V', for any b’ < b, and with {ly,...,l;} replaced by any subset of [k] of size
b’. Observe that

)DNED DINFTLINY(CVRRVISTLRY § 53

ARb vePart[b] wevr
of type A
S RED S AN UMESE | B 2D SC IR Sy
pEb—1 yePart{2,...,b} wey wey wEwW
of type p

v=~ with 1 added to an existing member of ~y

+ D T p]:u]
wey

v=~ with {1} added

> > P - ) B @ )

pEb—1 ~ePart{2,...,b} wey
of type p

=p"opl(plt +pr) (P P e ph) (e pR)

and thus the proof is complete. O

4.4 Equivalence relations on Lin(P,)

In this section, we compare the orbits of Lin(P,) under the conjugation action of
N, (Py) to those under the action of the Galois group Gal(Q(¢)/Q) for ¢ € Lin(P,),
and to the equivalence classes given by the relation Q(¢) = Q(¢) for ¢,v¢ € Lin(P,) (we
recall the definition of (—) below).

Let p be a prime and let w denote a primitive p*™ root of unity in C. It is clear that

{¢(9) | ¢ € Lin(P,), g € Py} = {1,w,w2, .. ,w”fl} = flp.
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By Lemma we also have

{¢(g) | (NS Lln(Pn)’ g e Pn} = [Up

for any n € N such that n > p. (When n < p, P, is the trivial group and so the only
character value is 1.) Indeed, the field of character values Q(¢), obtained by adjoining
all values of ¢ to Q, is equal to Q(w) for every ¢ € Lin(P,) \ {1p,}. Thus we may
consider the action of the Galois group G := Gal(Q(w)/Q) on the characters of P,.
Note that this is trivial when p = 2, so from now on we fix p to be an odd prime.

Let n € N and let its p-adic expansion be n = Zle a;p™ where 0 < n; < --- < ng.
Let ¢(8), #(t) € Lin(P,). We say ¢(s) and ¢(t) are Galois conjugates, which we denote
by ¢(s) ~ &(t), if there exists o € G such that ¢(s)” = ¢(t). That is, ¢7(g) := (¢(g))° =
o(¢(g)) for g € P, and ¢ a character of P,.

For ¢ € Lin(PR,), let 2(¢) denote the set of irreducible characters of &,, containing

¢ in its restriction. Equivalently,

O(¢) == {x €rx(&,) : x|}

If ¢ = ¢(s), then we also denote Q(¢) by Q(s). Note that since p is odd, the set Q(¢) is

closed under conjugation of partitions, by Lemma [2.2]

We thus have three equivalence relations on the set Lin(P,), given by the following
conditions for ¢, € Lin(P,):

(i) Q(¢) = Q(¢), i.e. the inductions have the same set of irreducible constituents;

(ii) Ng, (Py)—conjugacy, i.e. ngTG" = wTG” by TheoremH and
(iii) Galois conjugacy, ¢ ~ 1.

Clearly if qSTG" = wTG" then Q(¢) = Q). It is also easy to see that if ¢ ~ 1 then
(bTG" = wTG", since all characters of symmetric groups are integer-valued. Indeed,
since Q(1p,) = I(&,) \ {x®~ 10, x@1")} and Q) = Ie(&,) \ {x®,x1"} for
all ¢ € Lin(P,) \ {1p,}, it follows that all three conditions (i) — (iii) are equivalent
whenever p < n < 2p, as P, = P, x P,_, & P, in this case (and vacuous when n < p as
|Lin(P,)| = 1).

However, the reverse implications do not hold in general, and we give explicit coun-

terexamples below.

Lemma 4.26. Let n € N be such that n > 2p. Then there exist ¢(s), ¢(t) € Lin(FP,)
such that §(s)]%" = 6(6)™" but 6(s) % 6(8).

Proof. First let n = p* with k > 2. By Theorem K.1| and Lemma it suffices to
exhibit two sequences s,t € [p]¥ such that t € X(s) but ¢(s) # #(t). Recall P, = (g)
with ¢;(g) = w for i € [p]; we may without loss of generality take g = (p,p—1,...,2,1).
We show that ¢(s) # ¢(t) where s = (1,...,1) € [p]* and t = (1,...,1,2) € [p]*. Let
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u = (1,...,1) € [p]*"1. Suppose for the sake of contradiction that ¢(s)? = ¢(t) for
some o € G. Then for any gi,...,9, € Py-1, setting v = (g1,...,9p;9) € Ppr and

Y =(91,---.9p: 1) € Py gives
6(s)7() = o)1) and §(s)7(7') = SO,

which by Lemma |2.13|implies

(¢(u)(g1---gp) - $1(9))" = d(w)(g1- - gp) - 2(g)

and

(6(u)(g1) - d(u)(gp))” = S(u)(91) -+~ H(u)(gp)

respectively. Setting g1 = ... = g, = 1, we have (1(g9))° = ¢2(g) and thus o is

determined as the unique element of G satisfying o(w) = w?. But setting go = ... =

gp = 1, we find that (¢(u)(g1))” = ¢(u)(g1) for all g1 € P,r-1. Since ¢(u) # 1p 1
there exists g1 € P,-1 such that ¢(u)(g1) = w’ for some j € [p —1]. But then
w? = o(w’) = w’, a contradiction.

Next let n > p?. Letting n = 22:1 a;p™ be its p-adic expansion where 0 < n; <
.-+ < my, then k := n; > 2. Let m = n — pk. Then ¢(s) := 1p, x ¢(s) and ¢(t) =
1p, X ¢(t) are not Galois conjugates, but ¢(§)T6" = ¢(§)T6” by Lemmas and

For n = 2p, we may take ¢(s) = ¢1 x ¢1 and ¢(t) = ¢ X ¢o, while for 2p < n < p?
we may take ¢(s) = 1p,_,, X ¢1 X ¢1 and ¢(t) = 1p,_, X ¢1 X ¢a. O

Similarly, Q(¢) = Q(¢) clearly does not imply (bTG" = wTG” in general. Indeed,
an equality of induced characters implies that every x € Irr(&,,) appears with the same
multiplicity in ngG" as in wTG", while Q(¢) = Q(¢) simply says that one multiplicity

is non-zero if and only if the other is non-zero.

Example 4.27. Let p > 5 be a prime. We present infinitely many natural numbers n and
pairs of linear characters ¢, € Lin(P,) such that Q(¢) = Q(¢) but quG" + wTG".
Let k # | € N>p and set n = p* + p'. Let ¢(s), ¢(t) € Lin(P,) where s =
((0%1,1),(0")) and t = ((0%),(0""1,1)) € [p]* x [p]', with 0™ denoting the all Os
sequence of length m. By Theorem [5.1]
k_ k_g
QO0F) = Trr(& ) \ {x @11, 17 7y,
and by direct verification (or by Lemma in Chapter |§| later),
k k
Q(0*1, 1) = In(&) \ (X ™"}

for all £ > 2. By the Littlewood—Richardson rule, we find that

Qs) = Q(t) = Ire(S,) \ {x™, X"},
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but since k # [ we also have ¢(§)T6” # d)(L)TG" by Lemma 4.5{and Theorem O

Surprisingly, when n is a power of p then knowing just the set Q(¢) of irreducible
constituents without the multiplicities with which these constituents appear is enough
to determine the Ng (P, )—orbit of the linear character ¢.

Lemma 4.28. Let k € N and ¢,¢ € Lin(P,). If Qo) = Q(¢), then ] = 1.

Lemmal4.28]is immediate from the following lemma. Since there is a natural bijection
between Irr(&,,) and P(n), for ¢ € Lin(P,) we may equally view 2(¢) as a subset of
P(n). Below, < denotes the lexicographical ordering on partitions.

Lemma 4.29. Let k € N.

(a) Let s € [p|* and let X be the lexicographically greatest partition in Q(s). If s, # 0,

then \ contains a part of size 1.

(b) Let s,t € [p]* be such that t ¢ X(s). Let x € [k] be minimal such that {s,,t,}
contains exactly one 0, and suppose that s, = 0 and t, # 0. Let o be the lexico-
graphically greatest partition in Q(s). Then (Xalppk,¢(s)> =1, and also a > v
for all v € Q(t).

Before we prove Lemma [£:29] we show how to deduce Lemma [£.2§] from it.

Proof of Lemmal[{.28, Suppose ¢T6Pk £ wTGPk. Then ¢ and ¢ are not Ng , (Ppr)-
conjugate, by Lemma Thus ¢ = ¢(s) and 1) = ¢(t) for some s,t € [p]* such that
t ¢ ¥(s) by Lemma [4.3] Then Lemma [4.29] (b) shows that Q(¢) # Q(¢). O

The proof of Lemma [£:29] uses two results from Chapter [] later, where we further
investigate the sets Q(¢) for ¢ € Lin(P,).

Proof of Lemma[{.29. (a) If s; = 0 for all i < k, then A = (p*¥ — 1,1) by Lemma
(notice that Lemma and its proof hold as stated also when p = 3 with the single
exception 2(0,1) = By(8) \ {(3%)}). If s5; # 0 for some i < k, then the assertion follows
by induction on the number of non-zero entries of s, using Lemma (which holds in
its entirety also when p = 3) combined with Lemma

(b) We proceed by induction on k. The base case k = 1 is clear since s = (0), Q(s) =
Pe)\{(p—1,1),(2,177)}, A = (p), t = (1) and Q(t) = P(p) \ {(p), (1")}-

Now assume k£ > 2, and consider the following subgroups of G,k: let P = P, =
P11 P, and let B be its base group, namely P = B x P, and B = (Py-1)*?. Let
Y = (&,%-1)*? be the Young subgroup of &+ naturally containing B. We define two
further subgroups of &, as follows: H :=Y x &), 2 G,x-116G, and W :=Y x P, =
S,p-1 1 Py. Clearly P < W < H. Let s~ = (s1,...,8,—1) and t~ = (t1,...,t,_1). Let
= (u1,..., ) be the lexicographically greatest partition in Q(s™). We split into two

cases according to z = k or x < k.

Case 1: x = k. In this case, t~ € 3(s7) so Q(s™) = Qt7). Let A = (pu1, ..., pur)-
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1. X € Q(s): observe that (X(,u (), x*] ) =1 by Theoremu Since ¢(s) =
X(6(s7); o), then ¢(s) | X(u; () | p | x* | p-

2. X is lexicographically greatest in €(s): suppose v € Q(s). Then ¢(s™)*? =
lB | x lB (x ly iB So there exists an irreducible constituent of x lyv

say X x - x 7 € Irr(Y), such that n; € Q(s™) for all &. But ¢y . >0
implies v <1y +---4+1,, and n; < p by definition of p. Hence v <y +---4+n, <
Pt =

3. <X>\ip k,¢(s)) = 1: applying the argument in Step 2 to v = A, we see that the

only irreducible constituent x" x --- x x" of X)\ly such that n; € Q(s ’) for all
iis (x*)*P, and it occurs with multiplicity 1. Since (x*)*P | X (u; (p lY
X(p; (p) | x* | - it follows that

0t 05)) = (X5 (0)) L 0(5)) = (X3 00) | »6(5))
= (Xulp, 160, X(S(s7):0s)) = 1

where the final equality follows from Lemma since (x| , kil,c/)(s_)) =
00,5, = 1 by the inductive hypothesis. '

4. A > vforallv € Q(t): suppose v € Q(t). By the same argument as in Step 2, there
exists 1,...,mp € Q(t7) such that x™ x --- x x™ | Xuly' But Q(t7) =Q(s7), so
n; < p for all ¢ and we similarly obtain v < ny +---4+n, < pu+---+p = A Thus it
remains to show A ¢ Q(t). As in Step 3, (x*| , L o(t) = (X (s (p))lg, #(t)) since
the only irreducible constituent x™ x --- X%P | X/\ly with m € Q( ~) for all 4
is (x*)*P with multiplicity 1. Finally, observe that X (u; (p l P @) =04, =0
by Lemma |2.19

Case 2: x < k. In this case, u >« for all v € Q(¢t7), by the inductive hypothesis. Let

(P, - -5 ppr) if s, =0,
(pps - s ppr—1,p — 1,1) if s # 0.

)\ =

Notice that if s, # 0 then A = (pu1,...,pr—1,ptr — 1,1) by (a), and X\ immediately
precedes (pu1, ..., pu,) in lexicographical order.

1. A€ Q(s): by Theorem@ (X(:0),x* | ;) = 1,80 ¢(s) | x>

2. X is lexicographically greatest in (s): suppose v € Q(s). By the same argument
as in Step 2 of Case 1, we find that v < (pui,...,pur). Thus v < X if s =0. On
the other hand, if si # 0 then it remains to prove that if v = (pu1,...,pu,) then

Suppose v € (s). Since the only irreducible constituent x™ x --- x x| Xyly
with n; € Q(s7) for all ¢ is (x*)*P with multiplicity 1, there is a unique ¥ € Irr(W)
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such that ¢ | x”lw and ¢(s) | ] ,. Moreover, ¢ = X(u; ¢;) for some j € [p]
since necessarily ¢ € Irr(W | (x*)*P). From Step 1, we know that X (u;0) =

X(pi(p—1,0)) | X" ] - But x®70V |, = S0 6i, 50 X (s i) | XV ], for all
i € [p — 1], a contradiction.

3. <X)\lp k,¢(5)> = 1: consider all irreducible constituents x™ X - -+ x x| X)\ly
such that 7; € Q(s™) for all 4.

If s = 0, then ¢, > 0 implies A <y + -+ 7y < p4 - +p = A
so the only such constituent is (x*)*P, and it occurs with multiplicity 1. Then

<x/\lp o #(s)) =1 follows by the same argument as in Step 3 of Case 1.
P
If s # 0, then A = (pu1, ..., ptbr—1,pur — 1,1) = (ppa, ..., ptr—1,p— 1,1). Hence

the only such constituent is (x*)*?, and it occurs with multiplicity p — 1. Thus

O L+ #(5)) = (X (s (p = 1.1)) | . 6(5)

1

i

(X(lp, 10:),0() =D dis =1
i=1

i=1

©
Il

by Lemma |2.19

4. X > v for all v € Q(t): suppose v € Q(t). Then there exists n1,...,1m, € Q(t7)
such that x™ x .-+ x x| X”ly. Since n; S p for all 4 and p > 3, then v <
Mmooy S (P, -1, ppe — 1,1) <A

Thus in all cases, we have shown that the lexicographically greatest partition in (s)

has the claimed properties. O

Therefore, in terms of the three equivalence relations (i), (ii) and (iii), we have that
(iii) = (ii) = (i) and (iii) #= (ii) &= (i) in general, but (i) <= (ii) when n = p*.

The results of Chapter [4] are first steps towards the goal of describing the sets Q(¢)
explicitly. We say more on this in Chapters [5] and [6]
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Chapter 5

On permutation characters

and Sylow p-subgroups of G,

This chapter is based on the paper [29], joint with Dr Eugenio Giannelli. Here, we are
able to present a shorter proof of Theorem ([29, Theorem 3.2]) using new results on
Littlewood—Richardson coefficients (Section , proved in collaboration with J. Long.

In this chapter, we identify all of the irreducible characters of the symmetric group &,,
containing the trivial character as a constituent upon restriction to a Sylow p-subgroup,
for all n and odd primes p.

We would like to mention that following the publication of our article [29], our main
result Theorem was applied to the representation theory of simple groups by Malle
and Zalesski in [47] as part of a study of so-called Syl,-regular characters and Steinberg-
like characters, culminating in their classification of projective indecomposable modules

of certain dimensions for simple groups G.

5.1 Outline

We investigate the decomposition into irreducible constituents of the permutation char-
acter 1 pnTG", where n is any natural number, p is an odd prime and P, is a Sylow
p-subgroup of &,,. More precisely, our main result determines all of the irreducible
constituents of the permutation module induced by the action of &,, on the cosets of a

G’!‘L

Sylow p-subgroup P,, whose character is 1 pnT

Theorem 5.1. Let p be an odd prime, let n be a natural number and let A € P(n).
Then x* is not an irreducible constituent of ]lpnTG" if and only if n = p* for some
keNand X e {(p"—1,1),(2,17"72)}, or p = 3 and X is one of the following partitions:

(2,2); (3,2,1); (5,4),(2%,1),(4,3,2),(32,2,1); (5,5),(2°).

Excluding the few exceptions arising for small symmetric groups at the prime 3,
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Theorem shows that given any natural number n which is not a power of p, the
restriction to P, of any irreducible character of &,, has the trivial character 1p, as a
constituent. We remark that this clearly does not hold for p = 2. For instance, the
sign representation of &,, restricts irreducibly and non-trivially to a Sylow 2-subgroup
of &,,. More generally, when n is a power of 2, [26, Theorem 1.1] shows that no non-
trivial irreducible character of odd degree of G,, appears as an irreducible constituent of
1p, TG", where P,, € Syl,(&,,). The above observations underline that for the prime 2
the situation is notably less regular than for odd primes, and at the time of writing we
do not have a conjecture for a characterisation of the subset of P(n) labelling irreducible

characters appearing as constituents of 1p, TG" when p = 2.

Let H := H(S,, P, 1p,) be the Hecke algebra naturally corresponding to the per-
mutation character 1p, TG". We refer the reader to [8, Chapter 11D] for the complete
definition and properties of this correspondence. It is well-known that the number of
irreducible representations of H equals the number of distinct irreducible constituents
of the corresponding permutation character (see for example [8, Theorem (11.25)(ii)]).

Therefore our Theorem [5.1] has the following consequence.

Corollary 5.2. Let p be an odd prime and let n > 10 be a natural number. If n # p*
(respectively n = p* ) then the Hecke algebra H has exactly |P(n)| (respectively |P(n)|—2)

irreducible representations.

As explained in [8, Theorem 11.25(iii)], understanding the dimensions of the irre-
ducible representations of H is equivalent to determining the multiplicities of the irre-
ducible constituents of 1p, TG”. For this reason we believe that it would be interesting

to find a solution to the following problem.

Question 5.3. Is there a combinatorial description of the map f : P(n) — Ny, where
F(\) equals the multiplicity of x* as an irreducible constituent of ]lpnTG" ?

A second consequence of Theorem is a precise description of the constituents of
the permutation character 1g, ij where 2(,, is the alternating group of degree n and
@, is a Sylow p-subgroup of 2,. Recall that X)‘ig‘ = Xle’ , and that the ordinary

irreducible characters of 2(,, can be labelled as

() = (X g, [A# N €Pm)} U {93, 02 [ X=X € P(n)}.

Theorem 5.4. Let p > 5 be a prime, let n be a natural number and let ¢ € Trr(2A,).
Then 1 is not an irreducible constituent of 1¢,, Tﬂ" if and only if n = p* for some k € N
and ¢ = X/\lm" with A € {(pF —1,1),(2,17°~2)}.

If p =3, then ¢ € Irr(2A,,) is not an irreducible constituent of ]lQnTgl" if and only if
one of the following holds:

o n=23" for somek>2 and ¢ = X)\lm with A € {(3% = 1,1),(2,1"72)}; or
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on<10 and ) € {wf’l),wf’z),wf’z’l),X’\lm } where

e {(5,4),(2,1),(4,3,2),(3%,2,1),(5%), (2%)}.

Theorem follows from Theorem and Corollary by observing that when
p is odd, @, is a Sylow p-subgroup of &,,.

We conclude by mentioning that Theorem gives information on the eigenvalues of
the irreducible representations of &,,, at elements of odd prime power order. This may

already be known to experts, but we were not able to find a reference in the literature.

Corollary 5.5. Let p > 5 be a prime and let n be a natural number. Let A € P(n) and
let p be a representation of &, affording x*. If n is not a power of p, or if n = p* but
A {(pF—1,1),(2, 1pk_2)}, then p*(g) has an eigenvalue equal to 1 for any g € &,, of
order a power of p. In particular, if P is a fixed Sylow p-subgroup of &,, then for all

g € P the matrices p*(g) have a common eigenvector for the eigenvalue 1.

An analogous study was done extensively in [58] in the case of Chevalley groups.

The case of elements of prime order was discussed in [59] for quasi-simple groups.

5.2 Littlewood—Richardson combinatorics

In this section we prove some results concerning Littlewood—Richardson coefficients,
which we believe are of independent interest, that will be useful in proving Theorem [5.]]
as well as several key results later in Chapter @ Recall the notation B,,(m) from Defi-
nition and the operator % from Definition [2.12

Lemma 5.6. Let t,t' € N. Then Boy_1(t) *x Boy—1(t') = Bayaopy_o(t +t').

Proof. That Bo_1(t) x Boy—1(t") C Bayyop—o(t + ') follows directly from Lemma
To prove the converse, we proceed by induction on ¢ 4+ ¢'. The base case follows from
the observation that for any natural numbers N and M such that N < 2M, we have
By (M) * B1(1) 2 Byy1(M + 1): given any partition A € Byy1(M + 1), either A €
Bn+1(M) in which case considering any removable box of A shows that A € By (M) %
Bi(1); or Ay = M + 1, in which case Ay < M + 1 since N < 2M, and so considering
= (A —1,X2,...) € A~ shows that A € By(M) *xB1(1) (and the case if [(\) = M + 1
is dealt with similarly).

We may now assume that ¢,¢’ > 2. For the inductive step, we take as inductive
hypothesis Ba;—3(t — 1) x Boy—1(t') = Barqor—a(t + ¢ — 1). By applying — » Bi(1) to
both sides, we find

Bot—3(t — 1) * Bop (t' + 1) = Borgor—3(t + '),
and then applying B (1) x — to both sides, we find
th_g(t) * Boys (t/ + 1) = th+2t/_2(t +t' + 1)
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Hence
Batyor—a(t +1') C Boprop—o(t +t' + 1) = Bay_o(t) * Bay (t' +1).

Thus, letting A\ € Boyyop—o(t+1t'), there exist partitions u € Boy_o(t) and v € Boy (' +1)
such that cf;l, > 0. In particular, fix a Littlewood—Richardson filling F of weight v of the
skew shape [A\ pl.

To complete the inductive step, we construct i € Boy—1(t) and € Bap_1(t") such
that cgﬁ > 0, from which we conclude therefore that Botyop—o(t +t') C Bar1(t) *
Bz —1(t'). The main idea is to remove an appropriate box b from the skew shape [A\ ],
set [1] = [p] Ub and exhibit an appropriate filling F' of [A\ fi] of weight ©, whence
cf‘m > 0.

Since all sets considered are closed under conjugation of partitions, we may without
loss of generality assume v; > I(v) (by taking X, p’ and »/ instead of A, u and v if
necessary). Let k > 1 be such that v; = vy = ... = v > Vg1, and let x denote the
box containing the last 1 in the Littlewood—Richardson reading order of the filling F
(namely right to left, top to bottom). Clearly this must lie at the top of its column and
leftmost in its row in [A\ g, and so must be an addable box for . We split into three

cases according to the position of x.

Case (i): if the position of x is neither (1,t+1) nor (t+1,1). Since x is an addable box
for p € Boy_o(t), setting fi to be the partition whose Young diagram is [u] U x we find
that ji € Boy_1(t).

If k = 1 then the filling F’ defined as F restricted to the boxes of [A\i] is a Littlewood—
Richardson filling of weight o := (v1 — 1,10,...,v,)) € Bay_1(t' + 1). Moreover,
n=1r—-1<t'+1-1=¢t,and I(?) = I(v) <t since [(v) < vy and |v| = 2¢. Thus
U € Boy_1(t).

If £ > 1, then (v1—1,v2,...,v,)) is not a partition: in this case we define F' and ¥ as
follows. Let i € {2,...,k} and consider the position of the last ¢ in the reading order of
the filling F. By the definition of Littlewood—Richardson fillings, the last ¢« must appear
later in the reading order than the last 4 — 1 since v;_1; = v;. Since this holds for all
i €{2,...,k}, the box containing the last ¢ must be the leftmost ¢ in its row in [A\\p] (and
hence leftmost in its row), and either at the top of its column or immediately below the
box containing the last ¢ —1 in the reading order of F. Thus we may define a Littlewood—
Richardson filling F’ of [A\ ji] to be obtained from F by removing the 1 corresponding
to the box x, then relabelling the last ¢ in F by the number i — 1, for each 2 < ¢ < k.
In particular, the weight of F’ is the partition 2 := (v1,...,vk—1,v6 — 1, Vky1, -, Viw))-
Moreover, k > 1 and I(v) < vy imply that v € Bow (t'), and hence & € By —1(t'). An
example is shown in Figure [5.1

Thus for all values of k, setting b = x and taking fi, 7 as described above we find
that A € Boi_1(t) x Bay—1(t') as claimed.

Case (ii): if x lies in position (1,t+1). Then py =t and A\ = p1 + 14 since x contains
the last 1 of F. Let y denote the box containing the last 2 in the reading order of F;

this exists as v # (2t). The box y must be leftmost in its row, as all of the 1s in F
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Figure 5.1: Example of case (i): t = 8, ¢ = 9, A = (9,8,7,5,3) + 32, u = (6,3,3,2),
v = (5%2,1), k = 3 and F as shown. On the left, the box x is shaded, and the last i of F is
circled for 2 < i < k. On the right, F’ is shown with i = (6,4, 3,2) and & = (5%,4,2,1). The
boxes containing the circled numbers have been relabelled to produce F'.

lie precisely in the first row of [\ \ u|. If it does not lie at the top of its column, it
must lie immediately under a 1 in F, from which we deduce that y occupies position
(2,7) for some j > ¢t + 1. But then ps > ¢, contradicting || = 2¢ — 2. Thus y lies at
the top of its column and is an addable box for u. Moreover, y cannot lie in position
(t+1,1) or else |u] > p1 + () —1 =t +t— 1. Thus, if y occupies position (r, . + 1)
then i := (pa, .. phr—1, tr + 1, fhrg1, -+ -5 fy()) € Bar—1(t) (note fi is well-defined since
P < flr—1)-

Let j > 2 be such that v» = v3 = ... = v; > vj;1. Similarly to case (i), we
define a Littlewood-Richardson filling F' of [A\ fi] to be obtained from F by removing
the 2 corresponding to the box y, then relabelling the last ¢ in F by the number 7 — 1
for each 3 < ¢ < j (or no relabelling required if j = 2). The resulting weight is
U= (vi,ve, ..., vj_1,v; — Lvj, ..., 1) € Bop—1(t' +1). Since Ay = py +v1 <+,
we must have [(v) < v; <t and so in fact ¥ € Bay_1(¢).

Thus setting b = y and taking /i, ¥ as described we find that A € Bap_1 () x Bap—1(t)

as claimed.

Case (i11): if x lies in position (t+1,1). Let z denote the box containing the second-to-
last 1 in the reading order of F; this exists as v # (12/'). It cannot be in position (t+1,2),
or else |u| > pj + ph = 2t. Thus z must be leftmost in its row (in some row r < ¢) and
lie at the top of its column, so it must be an addable box for . Moreover, z cannot be
in position (1,£+4 1) as |p| =2t —2 and 80 fi := (f1, . 1, fr + 1, flr g1, fy()) €
Bai—1(1).

Recall vy = ... = v > vgy1. If k =1, then the filling F’ defined as F restricted to the
boxes of [\ fi] is a Littlewood-Richardson filling of weight 7 := (v1 — 1,va,...,10)) €
Baop—1(t"). If k > 1, then since the last 1 lies in the box x at position (¢ + 1,1), the
last ¢ lies in position (¢ + ,1) for each 2 < i < k, and notice that p) < ¢t — 2 since
[(p) = t. Similarly to case (i), we define a Littlewood-Richardson filling F’ of [A\ fi] to
be obtained from F by removing the 1 corresponding to the box z, then relabelling the

second-to-last ¢ in F by the number ¢ — 1, for each 2 < i < k. The resulting weight is

U= (Vlv ceey V1,V — 17 Vkt+1s--+5 Vl(l/)) € BQt’fl(t/)
Thus setting b = z and taking fi, ¥ as described we find that A € Bay_1 (t) * Bay —1(t')
as claimed. O
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Proposition 5.7. Let n,n/,t,t" € N be such that § <t <n and 7’7’ <t' <n/. Then
B (t) x By (t') = By (t+ ).

Proof. That By, (t) x By (') € By (t+t') follows from Definition [2.12} For the reverse
inclusion, and hence equality of sets, we proceed by induction on the quantity 2t —n +
2t —n/ > 2, with the base case given by Lemma Now suppose 2t —n+2t' —n/ > 2,
so without loss of generality assume ¢’ —1 > % Then B, —1(t' — 1) x B1(1) = B,/ (t)
and By, (t) x By —1(t' — 1) = By4n—1(t +t' — 1) by the inductive hypothesis. Thus

By (t) * B (') = B (t) * (Bpr—1(t' — 1) % B1(1))
= (Ba(t) x Bpr_1(t' — 1)) % By (1)
=Boin—1(t+t —1)xB(1)
=By (t+1)

as claimed. O

Lemma 5.8. Let n,m,t € N and suppose that 5 <t <m. Ifn >5, then
B (t) % (Bn(n —2) U{(n)}°) = Bintn(t +n).

In particular, P(m+n) =P(m)x (P(n)\ {(n —1,1)}°).

Proof. If t = 1 then m = 1 and the result follows from the branching rule (see Sec-
tion , so from now on we may assume t > 2.

Let X := By, (t) x (Bn(n —2)U{(n)}°). Since n > 5, we have that n —2 > %, and so
Biin(t+n—2) C X by Proposition Moreover, X C B,,(t) * P(n) = Bptn(t +n),
by Proposition [5.7] Since X° = X, it remains to show that if A - m + n with \; €
{t+n—1,t+n}, then X € X.

First suppose A =t +mn, so A = (t + n, u) for some p = m —t < t. Observe that
B x x| X/\lemx(sn and pu € B, (t), so A € X.

Otherwise we have Ay =t+n—1,s0 A = (t +n — 1, u) for some p - m —t+ 1. If
g1 > t, then m = 2t — 1 and thus A\ = (t +n — 1,t). Since x*+=1) x () | XAl@smxsn
and (t,t — 1) € By, (¢t), then A € X. If I(u) > t then similarly m = 2t — 1 and A =
(t+n —1,1%), and we similarly observe that A € X since (¢,1'71) € B,,(t). Otherwise,
€ By_iy1(t —1), 50 (t —1,pu) € By(t). But clearly =14 x y() | X)\lemxen’ S0
reX. O

Recall that LR() denotes the set of weights of Littlewood—Richardson fillings of a
skew shape v, and v* denotes the set of partitions indexing the irreducible constituents

in the induced character X"TG‘”‘“, for any partition v.

Lemma 5.9. Let X = [A\ u| be a skew shape, and suppose v € LR(X). LetY be a
skew shape obtained from X by adding a single box. Then LR(Y)Nvt # (.

108



Proof. Let |A\] = n and |u| = m. First suppose Y is obtained from X by adding a
box externally, that is, ¥ = [A\ ] for some A € AT. Since v € LR(X), the iterated

Shimt1

Littlewood—Richardson coefficient ¢ (1) = O, XM x x” x )Tenxemxel

A ) is positive.

But by the branching rule,

5\ _ 5\ " v (1) GHXGerl 671+nz+1
0<chm= <X XX XX T s e x| S x @i

X I 7S ntmi1
<x Sy XXX TGHX@WI>

vevt

3 (TS )

vevt

. ~ + by o1 Sntmt1 -
so there exists © € v™ such that <x XM X XVTanGm+1> > 0. Hence 7 € LR(Y).
Otherwise, if Y is obtained from X by adding a box internally, that is, Y = [A\ i] for
some i € u~, a similar argument considering the subgroup &,,_1 X 61 X G,, < Sp4m
m+1 m+1

and observing that y() x X”Tglxe =\’ x X(I)Tg D PP x” shows that
LR(Y)NvT # () in this case also. O

The following definition will be useful for the next section.

Definition 5.10. Let ¢,y € N be such that ¢ > 2 and let B C P(y). Let H = (6,)*? <
Gyy. Welet D(q,y, B) be the subset of P(qy) consisting of all those partitions A € P(qy)
for which there exists pi, o, . .., ftg € B, not all equal, such that

X)\lH‘

We remark that if B° = B, then D(q,y,B)° = D(q,y,B): this follows from the
fact that y» = x* - x(I"") for all A F gy, and X(1qy)l(6' yxa = X - x () (see
Section .

Proposition 5.11. Let m,t € N and suppose 5 +1 <t < m. Let A\ € By (2t — 1).

Then either \ € D(2, m, Bm(t)), or X/\le <. has two irreducible constituents x* x x“
and x? x x? where a £ B € By (t).

XUI XXMZX"‘XXH(Z

Proof. First suppose A = (m,m). Notice that x® x x® is a constituent of X)\leXGm
where o € B, () if and only if a = (a1, m —aq) with § < oy <t (the conditions of the
proposition imply that ¢ > 2). But ¢t > % + 1, so there are at least two possible integer
values that a; € [, ] can take. Thus we find two irreducible constituents x* x x* and
xX? x x? where a # 8 € B,,(t) as required.

Moreover, XX = x* x xI") where x(!") is the sign character, so Xo‘l X Xa/ and
% x x?" are two different irreducible constituents of x* 1 6. xa,, and o #£ B € By(t)
since By, (t) is closed under conjugation.

Now let A € By, (2t — 1) \ {(m,m)}°. By Proposition there exist partitions
p € By (t) and v € By, (t — 1) such that ¢}, > 0. If 4 # v then A € D(2,2m, By, (t)) and
we are done, so assume that 4 = v € B, (t — 1). By ‘passing a box’ between [u] and

[A\ p], we construct partitions
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(i) fi € Bimy1(t) and © € B,,,_1(t — 1) such that ¢}

1%

> 0; then
(ii) 2 € B (t) and 7 € By, (t) such that ¢, > 0, and i # p,

whence the assertion of the proposition follows. We now explain in detail the construc-
tions (i) and (ii).

Step (i): Fix a Littlewood—Richardson filling F of [\ p] of weight v. Let b denote the
box of [A\ u] containing the last 1 in the reading order of F; clearly this is an addable
box for . We split into three cases depending on the shape of [u] + b.

Case (a): If [u] + b is not a rectangle, then define i via [i] := [u] + b. Let k € N be
such that vy = v9 = -+ = v > vga1. Define F’ to be obtained from F by removing the
1 corresponding to the box b, and then if £ > 1 additionally relabelling the last ¢ in F
by the number ¢ — 1, for each 2 < i < k. Thus F’ is a Littlewood—Richardson filling of
A\ f1] of weight & := (v1,..., 061,V — 1,Vk41,--.,V@)), Dy the same argument as in
the proof of Lemma [5.6

Now we may assume [u] + b is a rectangle. Notice m > 3, so either (2,1) C p
or p € {(m),(1™)}. If u = (m), then F being a filling of weight v = p and the
definition of b together imply that A = (2m), a contradiction. Similarly if p = (1™)
then A\ = (1%™) ¢ By,,,(2t — 1). Thus when [u] + b is a rectangle then (2,1) C pu.

Case (b): If [u] + b is a rectangle and I(A\) > I(u), let ¢ be the box in row I(u) + 1,
column 1, and define [fi] := [u] + c. Suppose in F the box c is filled with the number
j. Since the rows of [A\ p] are filled weakly increasingly, and the columns strictly
increasingly, the j in ¢ must be the last j that appears in the reading order of F.
Suppose v; = V11 = ... =1} > V1. Define F’ to be obtained from F by removing the
j corresponding to the box ¢, and then if [ > j additionally relabelling the last ¢ in F
by the number i — 1, for each 7 + 1 < < [. Thus F’ is a Littlewood—Richardson filling
of [A\ fi] of weight 0 := (vq,..., i1, —1,141,...,1@)), by the same argument as in
the proof of Lemma

Case (c): Otherwise [u] + b is a rectangle but I(A\) = I(p). If I(u) > 2, then the
number 2 appears in F precisely as the entries in the second row of [\ \ p], and thus
vy = Ay — po. But the number v; of 1s in F is equal to A1 — 1 + 1 (they appear in the
first row of [A\ p] and b). Thus p = v and 3 = pg give Ay = A1 + 1, a contradiction.
Thus (1) = 2, in which case p is of the form (a,a — 1) F m, but since () = I(u) = 2
then in fact A = (m,m), a contradiction. Thus case (c) in fact cannot occur.

Observe that in cases (a) and (b), [#] is obtained from [u] by adding a single addable
box, so p € B, (t — 1) implies i € Bp,41(t). Also since v € By, (t — 1), clearly v €
Br—1(t—1).

Step (ii): Let x = [f1] \ [1]. By construction, x is not the only removable box of [fi].
Choose a removable box of i different from x, say y. Let i be defined via [f] := [a] —y,
so fi # p. Also i € By41(t), so i € B,,(t). By Lemma there exists a Littlewood—
Richardson filling of [A\ 2] Uy of weight 7, for some & € 2. But © € B,_1(t — 1), so
v € Bp,(t). O
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Proposition 5.12. Let m,t € N be such that 5 +1 <t <m. Let ¢ € N>3. Then

Proof. We proceed by induction on ¢, beginning with the base case ¢ = 3. Let A €
B3, (3t — 1). Then Ba,, (2t — 1) % B, (t) = B3, (3t — 1) by Proposition and so there
exists j1 € By (2t — 1) and v € By, (t) such that ¢, > 0. By Proposition one of
the following holds:

(i) p € D(2,m,By,(t)), in which case ¢ > 0 for some o # 7 € B, (t). Then ¢

oTV > O
and hence \ € D(3,m,Bm(t)); or

(ii) x®x x®, x? x x? are both constituents of X”ls v, Where a # 8 € By, (t). Then
Caows Chg, > 0, but either v # o or v # § and so we have A € D(3,m, B (1)) in

this case also.

Now suppose ¢ > 4 and assume the statement of the proposition holds for ¢ — 1. Let
A € By (qt —1). Then there exists p1 € By_1)m ((¢ — 1)t — 1) and v € By, (t) such that
cf;l, > 0, by Proposition By the inductive hypothesis, u € D(q — 1,m,Bm(t)), SO

there exists p1,. .., tg—1 € Bm(t) which are not all equal such that Cliyoipig_, > 0. Hence
cﬁl_““q_ly > 0, which gives A € D(q, m, Bm(t)). O

5.3 The prime power case

Fix an odd prime p. The aim of this section is to prove Theorem for n = pF. As we
will see, this is the crucial part of Theorem In fact, the complete statement for all

natural numbers follows relatively easily from the prime power case.

Definition 5.13. For n € N>3, let A(n) =P(n)\ {(n —1,1),(2,1""2)}. For q € N>o,
let D(q,n) := D(q,n, A(n)).

The main objective of this section is to establish the following:
Theorem 5.14. Let k € N and A - p* # 9. Then (x)‘lp k7]lp L) = 0 if and only if
D P
A& A(pF). If p* =9 then <X/\lp97 1p,) =0 if and only if

A e {(8,1),(5,4),(4,3,2),(3%2,1),(24,1),(2,1M)}.

Our proof is by induction on k& € N. We start with the base case k = 1.

Lemma 5.15. Letn € N and suppose n < p. Let A\ n. Then <X>\ip ,1p. ) =0 if and
only ifn=p and X € {(p —1,1),(2,1P72)}.

Proof. This follows from Corollary O

The following proposition is one of the key steps in our proof of Theorem
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Proposition 5.16. Let kK € N. Let p,..., 1, be partitions of P, not all the same,
such that for all i € [p], we have (x| , olp,) #0. Let A € P(p*t1) be such that

: ; ; ; A A
XM X - x xMP ds an irreducible constituent of x lG:kp. Then (x ‘I’Ppk+1 , ]lppk+1> # 0.

Proof. Let G = G p+1, H = (6,x)*? < G and set ¢ = x' x --- x x#» € Irr(H). Let
P = P,r+1 be such that P = B x D where (Pyx)*? =2 B < H and P, = D < G, naturally
acting on H by permuting (as blocks for its action) the p direct factors of H. Hence
W = Hx D satisfies H < W < G and W = &1 P, and D is chosen such that P < W.

Since x* € Irr(G|y)), there exists x € Irr(W ) such that y is a constituent of X’\lw.
Since p1, ..., pp are not all equal, then x = wTII/{V by the description of Irr(&,x ¢ P,) in
Section It is clear that PH = W, so le = 1/JlBTP by Lemma

Moreover, ’L/Jlg = XMlek X e X Xuplek’ so since (X“ilppk7]lppk> # 0 for all 4,
we have that 1p is a constituent of 1/JlB. Thus ]lBTP is a direct summand of z/JlBTP.
But 1p = X(1p, 1 P,) is a constituent of ]lBTP by Lemma so (x*| p,1p) >0 as

claimed. 0

In light of Proposition [5.16] we now focus on the study of the restriction of irreducible
characters of &,k+1 to the Young subgroup 6;,3” .

Our next goal is to show that D(p,p*) is a very large subset of A(p**+1), where we
recall the notation D(p, p*) from Definitions and This is done in Corollary|5.18
below. Recall the definition of the set B, (m) for m,n € N from Definition

Proposition 5.17. Let k € N be such that p* ¢ {3,5,9}. Then for all ¢ € {3,...,p},
D(q,p") = B» (qp® - 2).

Proof. Clearly D(q,p") C By,x(gp* — 2). Since p* > 6, Proposition shows that
Bk (qp* —2¢ — 1) € D(q,p"). Since both D(q, p*) and B px (gp* — 2) are closed under
conjugation, it remains to prove that if A = (gp* — r, ) where r € {2,3,...,2¢} and
w7, then A € D(q, p*).

If k > 2, then r < (¢—1)p* and p* —r > r = |u|, so (p* —r, u) € LR(A\ ((g—1)p")]).
Thus X(pk) X +oe xx(pk) xx(pk*““) | X)\l(e Lyxar SO A € D(q, p*) since (p* —r, n) € A(p).

Otherwise, k = 1. Since r € {2,3,.. p, 2¢}, we can write r = mq + ... + m, where
m; € {0,2,3} and m; are not all equal (for r = 2¢, we take m; = ... = my_3 = 2,
Mg—2 = Mmg—1 = 3 and my = 0). We may reorder the m; such that m; # 0 for all i € [j]
and m; = 0 for all ¢ > j, for some j € [¢]. Then there exist v; - m; for each i € [j] such
that ¢}, > 0. Since p > 7 (as k = 1), we have by Lemmathat

(jp—r,p) o >0

c(pfml,l/l),.‘.,(pfmj,l/j) - CV17~~'1Vj

noting 25:1 m; = r. Hence ¢ ) > 0, from which we deduce

A
(p—ma,v1),..,(P—my,05),(P),- -, (P
that A € D(q,p) since (p) and (p — m;,v;) € A(p) for all i. O
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Corollary 5.18. Let k € N, and if p = 3 then further assume k > 3. Then
D(p,p") = Bpers ("' — 2).

Proof. When p* # 5, the statement follows from Proposition by setting ¢ = p. If
p¥ =5, then direct verification shows that D(5,5) = Bas(23). O

We are now ready to prove Theorem

Proof of Theorem[5.1] We proceed by induction on k& € N for p > 5 and on k € N>3
for p = 3. The base case for p > 5 follows from Lemma [5.15] while the assertion may be
verified computationally for k£ < 3 if p = 3. Now assume the statement holds for some
k € N (where k > 3 if p = 3). To ease the notation, let n = p**1 P = P, and let A be
the set defined by

A={AEn| (] p Lp) # 0}

From Propositiontogether with the inductive hypothesis, we deduce that D(p, p*) C
A. Moreover, (n),(1™) € A since X(”)lp =1p = X(ln)lP. Hence we have that
A(n) C A, by Corollary By Lemma [2.2]it remains to show that (n —1,1) ¢ A.
LetB—(‘Eka7 B < 6,016, < G andletC<BwhereCQPXp. From [32]
Lemma 3.2] and the LittlewoodRichardson rule we see that y ("~ l)l (p—1)1p+0,

where
O=(x"xITx- - xI)+(Txx*x- x4+ (1Ix---x1Txx") and p = (p* —1,1).

(Here 1 denotes 1g ,.) From [27, Theorem 4.2, Proposition 4.3] there exists v € {(p —
1,1),(2,17=2)} such that

X g e, = X)) + A,

where A is a sum of irreducible characters of &,k 16, each of which has degree divisible
by p. Since X(( lB = (p — 1)1p, we have that AlB = 0. Using the inductive
hypothesis, we see that ]lppk is not a constituent of X“lp L Hence ( @l@ 1c) = 0.
Together these show that <Alc, 1) = (@lc, 1¢) = 0 and hence <(X("’1’1))lp, 1p) =
X(P);0) | o L),

Finally, by Lemma we know that (X”lpp, 1p,) = 0. Since 1p = X(]lppk; 1p,)
we deduce that (X((p");v) |, 1p) = 0, whence ((X("_l’l))lp, 1p) = 0 as required.
Thus the statement of the theorem holds for k 4+ 1. This concludes the proof. O

5.4 Proof of Theorem [5.1]

In the final section of this chapter, we prove Theorem [5.1] for all odd primes p and all

natural numbers n. We begin with a short technical lemma.
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Lemma 5.19. Let v be a skew shape and let m = |y| > 4. Suppose (m—1,1) € LR(%).
Then one of the following holds:

(Z) V= [(m -1, 1)] ory = [(m -1, 1)]0;
(1) LR(y)N{(m),(m —2,2),(m—2,1,1)} # 0.

Proof. Since (m—1,1) € LR(7), no three boxes of « lie in the same column, and 7 has at
most one column containing two boxes. Suppose (i) does not hold. Then (m) € LR(7)
if (a) no two boxes of v lie in the same column; or (m — 2,1,1) € LR(7) if (b) v has
precisely two connected components, one of which is a row of m — 2 boxes and the other
of which is a column of two boxes.

Now assume  satisfies neither (a) nor (b). Then ~ has a unique connected component
0 whose boxes lie in exactly two rows, say rows j and j + 1, and each of the other
components lies entirely within one row. Moreover, if § = 7 is the unique connected
component then § has at least two boxes in each of rows j and j + 1, while if 6 contains
only two boxes then by assumption v has at least three connected components. In all
instances, (m — 2,2) € LR(7). O

Now, we prove Theorem [5.1] beginning with the case when p > 5.

Proposition 5.20. Letp > 5 be a prime andn € N. Let A+ n. Then (x*| , ,1p,) =0
if and only if n = p* for some k € N and A € {(p* —1,1), (2, lpk_Q)}.

Proof. Let ¥(n) denote the sum of the p-adic digits of n, that is, the sum of the digits
when n is expressed in base p. We prove the assertion by induction on 3(n). Theo-
rem and Lemma show that the statement holds when X(n) = 1, and when
n < p.

Now assume that n > p and ¥(n) > 2. Let k be such that p* < n < p**! and set
m =n—pF. Clearly k > 0 and X(m) = X(n) — 1. Call (u,v) € P(m) x P(p*) a suitable
pair for X € P(n) if ¢}, # 0 and (X“lpm, 1p,.) (X", k,]lppk> > 0. We denote by
S()) the set of suitable pairs for A. It is clear that if S()\)p # () then (X’\lpn, 1p,) >0,
since P, = Py, X P,.. We now show that S(\) # 0 for all A € P(n).

First suppose that X(m) > 1 and let A € P(n). Theorem together with the
inductive hypothesis shows that S(A) = {(u,v) € P(m) x A(p*) | ¢}, # 0}. If Xy > 2
then there exists v € A(p*) such that [v] C [A]. Hence LR([A\ v]) x {v} C S(A) # 0.
Otherwise A is a hook partition. Since |\| > p¥, there exists some hook partition
v {(p" —1,1),(2,17"=2)} such that [v] C [\]. Therefore again we have LR([A\ v]) x
{v} TS\ #0.

Now we may assume that Y(m) = 1, that is, m = p' < pF for some integer 1.
First suppose | = k. Since S(\) # () for all A - 10, we may assume p* > 7. By
Proposition if A € Byye(2p* — 5) then S(A) # 0 since B,.(p* — 2) C A(pY).
Since S(\) # 0 if and only if S(\') # 0, it remains to consider A  2p* such that
A1 > 2pF — 4. If A\; = 2pF — 4 then (o, a) € S()) for some a € {(p* —2,2), (p*F —2,1%)};
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if Ay € {2p% — 3,2pF — 2} then (A1 — p¥, p), (p*)) € S(A) where X = (A1, u); and if
M 2 208 — 1 then (%), (9%)) € S(V).

Suppose finally that k& > I. As above, |A| > p' implies that there exists some
p € A(p!) such that [u] C [A]. Let v € LR([\\ p]). If v € A(pF) then (u,v) € S(A) # 0.
Otherwise, LR([A\ ]) € {(p* — 1,1),(2,17"=2)}. By Lemmas and we must

have
D\ i € {[(0* — L] [(0" — LD, (2,17 2], [(2, 17 2)]°).

Since k > I, we observe that [\ \ u] 2 [(p¥ — 1,1)]° and [X\ u] 2 [(2, 1pk_2)]°. Hence if

w=(p1,...,us), we must have either

(a) A= (lu‘l +pk - 17M2+1,M37"'7us) and M1 = p2, O
(b) A= (p1, .., ps,2,17"72) and p, > 2.

However, any partition satisfying (b) is conjugate to a partition satisfying (a), so by
Lemma [2.2| it remains to consider only one of the two cases. Suppose we are in the
situation of case (a). Letting it = (1 + 1, pa, ..., ps—1, fts — 1), we have that (p¥) €
LR([A\ fi]). Moreover, ju; = po implies that g # (p' — 1,1). Hence (i, (p*)) € S(N)
unless i = (2, 1Pl_2). But in this case we would have pu = (1”l)7 A= (pk,2, 1pl_2) and
therefore ((22, 11’l_4)7 (p* —2,1%)) € S(\) # 0. Thus in all instances we have found a
suitable pair for A - n, and hence (XAan ,1p ) > 0. O

Finally, we conclude by verifying Theorem [5.1] for p = 3.
Proposition 5.21. Let p = 3. Then <x’\lp ,1p,) =0 if and only if n = 3% for some
ke Nand ) e {(3k-1,1),(2, 13k_2)}, orn < 10 and X is one of the following partitions:

(2,2); (3,2,1); (5,4),(2%1),(4,3,2),(3%,2,1); (5,5),(2°).

Proof. The same argument as in the proof of Proposition shows that the assertion
holds for all n € N divisible by 27. Since the assertion may be verified computationally
for n < 27, it remains to consider n of the form 27t + u where t,u € N and u < 27.

Given \ I n, it is clear that there exists u - 27t (and if 27t is a power of 3, say 3,
we can further choose u such that u € A(3%)) such that [1] C [\]. Let v € LR([A\ p]).-
If u ¢ {3,4,6,9,10}, then

<X/\lpna ]]-Pn> > <X’J X XVletxPu’ ]]‘P27t><Pu> = <XMlP27t’ ]]-P27t> : <Xylpua ]]‘Pu> > 0.

From now on we may assume u € {3,4,6,9,10}. Let A = (A1,..., \;) and let

B)={21}, TH ={22)}, T06)={G21}

2
(9) ={(8,1),(5,4),(4,3,2),(3%2,1),(2*,1),(2,17)}, T(10) = {(5,5), (2°)}. o)

T
T

By Lemma (below), there exists u € P(u) \ T'(u) satisfying [u] C [A]. Thus, if
27t is not a power of 3 then we may take any v € LR([\\ p]) to see that <X>\lp ,1p ) >
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L p s 1p) (X | p, s 1per,) > 0.

So now we may assume 27t is a power of 3. Let 27t = 3% for some k > 3. Tak-
ing p € P(u) \ T(u) such that [u] C [A], we may take any v € LR([A\ p]) to
see that (X/\lpn,]lp"> > (X“lpu,]lpu> . (X”lpm,]lpm) > 0, unless LR([A\ u]) C
{(3F = 1,1), (2,1 %)}

Thus it remains to deal with the case LR([A\ u]) € {(3F — 1,1),(2, 13k_2)}. By
Lemmas [5.19) and 2.8 [\ \ 1] € {[(3* — 1,1)],[(3* — 1,1)]°,[(2. 1 )] [(2, 13 2)]°}.
Recall that we have reduced to u € {3,4,6,9,10}, so in particular v < 10. Letting
w=({1,...,ps), we must have either

(a) A= (iul +3k - 17M2+17M37"'HU’8) and H1 = p2, O
(b) A= (1o 16, 2,17°72) and prg > 2.

However, any partition satisfying (b) is conjugate to a partition satisfying (a), so by

Lemma [2.2] it remains to consider only one of the two cases. Suppose we are in the

. . — k_

situation of case (a). If u = (1*), then A\ = (3%,2,1472) and XAlpstpu has x©3 =22) x

Y317 as a constituent. Otherwise, XM p xp, has X7 x X as a constituent where
sk X Py

= (uy + 3% —u, g, ..., 1) € A(3F). O

Lemma 5.22. Let A = (A1,...,\) be a partition such that |\ > 28. Let u €
{3,4,6,9,10} and let T(u) be as defined in (5.1). Then there exists p € P(u) \ T(u)
satisfying [p] C [A].

Proof. If u € {3,4,6} then the assertion is clear since either A\; > u or ¢ > u, whence
[(w)] € [A] or [(1%)] C [A]. For u € {9,10}, we proceed with proof by contradiction:
suppose that [p] C [A] implies p € T'(u) whenever y is a partition of u.

If w =9, then [(9)],[(19)],[(3%)] € [A\] so A\; <8, A3 <2 and t < 8 Thus |\ <
8-2+2-6 = 28 with equality if and only if A = (82,2%), but (7,2) C (82,25).

Finally if u = 10, then [(10)],[(1*°)] € [A] so A1 < 9 and ¢t < 9. Since |A| > 28, we
must have Ay > 1. Since [(7,13)] Z [\], we have A; < 6. Also A3 < 2 since [(3%,1)] Z [A].
But then |\ <6-2+4+2-7 < 28, a contradiction. O

To conclude, we remark that we can in fact say more about the multiplicity with
which 1p, appears in the restriction of irreducible characters of &,,, and hence about
the degrees of the irreducible representations of H(&,, P, 1p,). If k € Nand \ - p*+L,
and g1, ..., pup - pF are not all equal and satisfy x#* x --- x x"» | X)‘l%’::)lxp, then

D
)\lPk+1 Pokt1 Z];_[ XMJ'PPW]IPP’“)'

i=1

This follows immediately from the proof of Proposition [5.16, Using this, one can for
instance compute when f(A) = 1, where f is the function described in Question
indeed, Theorem determines precisely when f(\) = 0.
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Chapter 6

Identifying linear constituents

in character restrictions

This chapter is based on joint work with Dr Eugenio Giannelli, and uses our new results
on Littlewood—Richardson coefficients in Section [£.21

We describe the sets ©(¢) introduced in Section consisting of the irreducible
constituents of the induced character quG", for all natural numbers n, primes p > 5,
and linear characters ¢ of a Sylow p-subgroup P, of the symmetric group &,,. We give
sharp bounds for (¢) which afford an explicit, combinatorial description in terms of the
indexing set for ¢ € Lin(P,). This extends the work in Chapter |5, where we considered

only the trivial character ¢ = 1p,.

6.1 Outline

Let p > 5 be a prime and let P, be a Sylow p-subgroup of &,,, for n € N. For

¢ € Lin(P,), recall from Section that Q(¢) = {x € Irr(&,) : x | ngTG"} By
identifying irreducible characters of symmetric groups with their indexing partitions,

throughout this chapter we view Q(¢) as a subset of P(n). In other words, we set

Q¢)={AFn : x| 6T}

We remark that €(¢) is closed under conjugation of partitions, by Lemma

To describe Q(¢), we first recall the notion B,,(m): this is the set of partitions A - n
whose Young diagrams fit inside an m x m square grid. As we will see below, it turns
out that 2(¢) is always of the form B, (m) L B where B is small (or empty), and m is
a natural number depending on ¢. In fact, every partition A\ € B satisfies m < \y < M
or m < I(A) < M, where M € N and M —m is small.

In order to formalise this description, we introduce some technical definitions. For a
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linear character ¢ of P,, define
m(¢) = max{z € N | B,(z) CQ(¢)} and M(¢)=min{z € N|Q(¢) C B,(z)}.

When n = p* for some k € N, recall that ¢ € Lin(P,) may be indexed as ¢ = ¢(s)
where s runs over [p]¥, with 1p, corresponding to s = (0, ...,0). (Recall that if ¢ = 1p,,
then M(¢) and m(¢) are already known, by Theorem [5.1]) For s # (0,...,0), define

f(s) =min{i € [k] | s; # 0}.

Furthermore, if |{i € [k] : s; # 0} > 2, then define

g(s) = min{i > f(s) | s; # 0}.

For arbitrary n € N, Lin(P,) = {¢(s) | s} as in (2.4)). Throughout, if ¢ = ¢(s) (for some
indexing label s), then we also refer to m(¢), M(¢) and Q(¢p) as m(s), M(s) and Q(s)

respectively. The main result of this chapter is the following;:

Theorem 6.1. Let p > 5 be a prime. Let k € N, and suppose ¢ = ¢(s) € Lin(Ppr) \
{Lp,}. Then M(¢) = p* —p*~70), and

pF =PI — 14 65 i [{i € [K] s #£0} =1,
MOZN e fe e i 1
p* —p —phY if |{i€[k]:s;#0} > 2.
Let n € N and suppose it has p-adic expansion n = Zle a;p™, with 0 <mp < -+ < ny.
For ¢ = ¢(s) = ¢(s(1,1)) x --- x ¢(s(t,at)) € Lin(P,), we have

M(¢)=) M(s(i,j) and  m(¢) =) N(s(i,j),
(4,) ()
where the sums run over all i € [t] and j € [a;], and N(s(i,j)) is as in Definition[6.1§

below.

Theorem (combined with Theoremfor ¢ = 1p,) shows that a large proportion
of P(n) is contained inside (¢) for each ¢ € Lin(P,). Let €, be the intersection of
all the sets Q(¢) where ¢ is free to run among the elements of Lin(P,). A corollary of
Theorems [6.1] and [5.1] is the following:

Corollary 6.2.
lim 2]

=1.
ne [P(n)]

The structure of this chapter is as follows: in Section [6.2] we consider the case where
n is a power of the prime p, and in Section we extend our scope to arbitrary natural
numbers n. The precise statements and proofs of the various parts of Theorem can

be found as follows:
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- for n = p¥, M(¢) is determined in Theorem

- for n = p¥, m(¢) is determined in Lemma Theorem and Lemma

- for arbitrary n, M(¢) is determined in Theorem and
- for arbitrary n, m(¢) is determined in Theorems and

A proof of Corollary [6.2] appears in Section [6.3

6.2 Types of sequences

Throughout this section, fix a prime p > 5. Let £ € N and let ¢ = ¢(s) € Lin(P,x) for
some s € [p|*. The aim of this section is to determine the following numbers:

m(s) = max{x € N| By(z) CQ(s)} and M(s) =min{z € N|Q(s) C B, (z)}.

We have already determined these values when ¢ = 1 P (corresponding to s =
(0,...,0) € [p]¥) in Theorem so we now treat the non-trivial linear characters of P,x.
It will be useful to recall that whenever n € N is not a power of p then Q(1p,) = P(n),
while if n = p* then Q(1p,) = P(p*) \ {(p" — 1,1)}°. In this section (Section ,
when k € N and s € [p]*, we will assume that s = (s1, s2,...,5s;) and denote by s~ the
sequence (s, Sg,...,56-1) € [p)F7L.

After beginning with some useful lemmas, we determine M (s) and m(s) for sequences
s € [p]* corresponding to non-trivial ¢(s). From the results in this section, we will see
that the form of Q(s) falls into four types (see Definition [6.14), and we summarise our

findings in Remark

Lemma 6.3. Let x € [p|. Then

P(p)\{(p— 171)7(2’11)_2)} if =0,
P)\{(p), (A7)} =By(p—1) if z€[p—1].

Qz) =

Proof. By Corollary if X\ is not a hook then X)\lp is a multiple of the regular
P

character Zf:_ol ¢; of P,; otherwise if A is a hook of leg length I then x*(1) = (*}') =

(=1)! (mod p). In particular, x*(1) = 1 if and only if A € {(p), (17)}, and x*(1) = p—1

if and only if A € {(p — 1,1),(2,1772)}, so the assertion follows. O

Lemma 6.4. Let k € Ny and let s = (0,...,0,z) € [p|**! where z # 0. Then Q(s) =
Byesr (pF T — 1). Moreover, <X(1’k+1’1’1)lp k+17¢(s)> =1.

Proof. The assertion follows directly from Lemma [6.3] when k& = 0. Now assume k > 1,

so D(p,p*) = ZS'karl(p’H‘1 — 2) by Corollary [5.18f Let A € D(p,p*). Arguing exactly

as in the proof of Proposition we see that ILBTP is a direct summand of X)\lp
~ P

where P = Ppk+1 and B = (Ppk)Xp S P. But ]].BT = ZOEIrr(Pp)X(]]‘Ppk;H) by
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Lemma so setting 6 = ¢, shows that ¢(s) is an irreducible constituent of X/\lp‘
Hence D(p,p*) C Q(s).

Since Q(s) is closed under conjugation, in order to conclude that Q(s) = Bpr+1(p
1) it remains to show (pF*1) ¢ Q(s) and (pFt! —1,1) € Q(s). Clearly if A = (p**1) then
XM p = 1p # ¢(s), so (p"1) ¢ Q(s). On the other hand, if X = (p¥*! —1,1), then by
Theorem [2.20 XAlg:i:“ép contains X ((p*); v) as a constituent for some v € {(p—1,1)}°.
But then

k+1_

p—1
S 16, EY1Gpk . v |Gp) _ .
X((p"); )| SO = & <X<p S l;p> =Y X(1p 00,
P z=1

This shows that ¢(s) is an irreducible constituent of X)\lp' Hence (p**1 —1,1) € Q(s).

Keeping A = (pF*! —1,1), we now wish to show that (x*| ,,¢(s)) = 1. Let H =
(&,r)*P with B < H. From [32, Lemma 3.2] and the Littlewood-Richardson rule we
see that X)‘iH =(p—1)1yg + O, where

9:(X“xlxmx]l)+(]l><X“><~~~><]l)+~~~+(]l><~~><IL><X“)andu:(pk—l,l).

(Here 1 denotes ]lgpk.) Since we already know that X ((p*);v) is a constituent of
X)\le 16, then by the description of Irr(&S,x ! Pp) from Section

p—1

S kPp

X)\lgpkzpp: E X(lek;¢i)+(X#XJlX"'X]]') Hpk :
=1

=l

Finally, <X(]16pk ; ¢i)7 ¢(3)> = <X(¢(3_)’ ¢i)7 X((b(s_)’ ¢w)> = 0iz, and

kalpp

@1 Lprd(s)) = (al 517 6()) = (@l . 6(5) | ) = ("L o p,) =0,

by Lemma and Theorem Since x € [p—1], we deduce that <X/\lp’ o(s))=1. O

Next, recall the notation D(q,y, B) from Definition This allows us to relate the
sets (s™) and Q(s), for ¢(s) € Lin(Py) and k € N>o.

Lemma 6.5. Let k € N>o, s = (s1,...,5;) € [p|* and let s~ = (s1,...,sk-1). Then
D(p,p" ™", Q(s7)) € Qs).

Proof. We consider the following subgroups of & »: let P = Py = Ppr-1 1 P,. Let B =
(Pyr—1)*P be the base group of the wreath product P, and let H = (&,x-1)*P < &
naturally contain B. Let W = BH = H x P, < Gk, 50 W = G -1 1 Pp.

Let X € D(p,p*~*,Q(s7)), so x*| ,, has a constituent ¢ := x#* x .- x x*» € Irr(H)

k=1 are not all equal, and u; € Q(s~) for all i € [p]. Since

such that the partitions u; F p
x* € Irr(S,k | ), there exists x € Irr(W | ¢) such that x is a constituent of X/\J,W'

Since p1, ..., up are not all equal, then xy = wTE{V by the description of Irr(&,x ¢ P,) in
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Section It is clear that PH = W, so le = ¢lBTP by Lemma Moreover,
V] =x"1p X xxtr |, .80 ¢(s7)*P is a constituent of ¢ g since p; € Q(s™)
for all ¢ € [p]. Thus ¢(S_)XPTP is a direct summand of x* | ..

But by Lemma qS(s‘)XpTP = > petmn(p,) 0(1) - X((s7);0), so taking 6 = o,
shows that ¢(s) = X(¢(s7); ¢ps,) is a constituent of X/\lp' Thus A € Q(s), which
concludes the proof. O

It turns out that the leading non-zeros in the sequence s govern the form of Q(s),
the set of irreducible constituents of ¢(5)T6”k. In order to describe m(s) and M (s), we

give the following definition, recalling f(s) and g(s) from Section
Definition 6.6. Let k € N and s € [p]*.

e For z € {0,1,...,k}, let Up(z) = {s € [p|* : |{i € [k] : s; # 0} = 2}. Note Up(z)
is empty for z € N, and Uy(0) = {0}.

o If s € Ug(2) where z > 1, then define f(s) = min{i € [k] | s; # 0}.

o If s € Ug(z) where z > 2, then define g(s) = min{i > f(s) | s; # 0} and set
n(s) = pk — pk=I6) — ph=o(s),

First, we determine the value of M (s).

Proposition 6.7. Let k € N, and let s € [p|* \ Uy(0). Then Q(s) C B, (p* — p*=1),
that is, M(s) < pF — pk=I(s),

Proof. We proceed by induction on k& — f(s). The base case f(s) = k follows from
Lemma Now suppose f(s) < k and consider s~. In particular, f(s) = f(s7). Let
A ¢ By (p* — p*= 1)), so we may without loss of generality assume

A > pk 7pk7f(s) :p(pkfl 7pk717f(s_)).

Then for each irreducible constituent ! x --- x y"» of X/\l(eapk_l)xv (so each p; is a
partition of p*~1), by the Littlewood-Richardson rule there exists some 1 < i < p such
that (u;); > p*~' — p*~1=7(7). Thus by the inductive hypothesis pu; ¢ Q(s™), since
pi & By (pF=1 — phm oA,

Suppose that A € (s), so then ¢(s)l(Pk yxe = ¢(s7)*P is a constituent of

X’\l( P o_1yxpe Since ¢(s7)*P is irreducible, it must therefore be a constituent of
e

Xﬂl lek71 X oo X XHPJ/PP;C,I

for some x*! x --- x x*» as described above. In particular, this implies that ui,..., 1, €
Q(s7), a contradiction. Hence A ¢ Q(s), and so P(p*) \ B, (p* — pF=f)) C P(p*) \
Q(s). O

Theorem 6.8. Let k € N, and let s € [p]* \ Ux(0). Then M(s) = pF — pF=/(),
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Proof. Tt remains to exhibit a partition A € Q(s) such that A\, = p* — pF=1() | since
we already know by Proposition that Q(s) C B,k (p* — p*=7()). We proceed by
induction on k — f(s). For the base case f(s) = k, we have Q(s) = B, (p* — 1) from
Lemma which implies that A = (p* — 1,1) € Q(s).
Now suppose f(s) < k and consider s~. In particular, f(s) = f(s7). There exists
1

some partition g = (p1,..., ftm) € Q(s7) such that p; = p*~1 — pF=1=/7) by the
inductive hypothesis. First suppose s # 0. Let

A= (pp1,pp2, - -, Plm—1,p(pm — 1) +p — 1, 1).
Then by Theorem [2.21 X(,u; (p—1, 1)) is a constituent of X)\igzzflz(%p’ whence

X -10)p | g

Observe that
IS & = &
X(M; (p—1, 1)) lek = X(Xulp:::ll : X(p_Ll)lP:) - Z X(Xulp::: : (bi)’
i=1

and X (¢(s7); ¢;) is a summand of X(X“ilfp:fll ;@) since p € (s™). Since s, # 0, we

see therefore that
0(s) = X(6(s7)i0) | X0 =11 | XLy,

Thus A € Q(s), and \; = puy = pF — pF=/0),
Otherwise, suppose s; = 0. Let

A = (pu1spzs -« s Ptim—1, p(tim — 1) +p)

Then by Theorem [2.21 X(,u; (p)) is a constituent of X/\lgp;:,lze , whence

X)L, X5
But X (; (p))lp L= X(ulip::;]lpp) contains X (¢(s™);¢o) as a summand, since
e Qs). Hence ’

0ls) = X(0(s)i0w) | X @) Ly, | XL,

Thus A € Q(s), and Ay = puy = p* — pF=7(), O

Next, we determine the value of m(s). We prove more, in fact, about the structure

of Q(s).

Definition 6.9. We say that a partition X is thin if X is a hook, I(\) <2, or Ay < 2.
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Theorem 6.10. Let m,k € N with 2 <m < k. Let s € Uy(m). Then

(i) m(s) = n(s);

(ii) (s)\ B, (1(s)) contains no thin partitions;
(i) Qs) N {A € PF) [ M = M(s)}° = {(M(3). 1) | 1€ Usppsase,50)}; and
(i) 6|, 9(5)) > 2 for all X € {(n(s).p* = n(s)), (n(s), 17102,

We remark that the value of m(s) for s € Uy (1) is determined in Lemmas[6.4)and
We first show that statement (iii) of Theorem holds.

Lemma 6.11. Let k,m € N, and let s € Up(m) be such that f(s) < k. Then

Qs) A P [ A= M ()} = {(M(s), 1) | 1 € Qs5(s)41,- -5 58)}°

In particular, if m > 2 then Q(s) N {\F p¥|\; = M (s)}° contains no thin partitions.

Proof. Let f = f(s), t = (s1,...,s7) and u = (sf41,...,5¢). Let W = &,r 1 & f <
&, and let Y be the base group of the wreath product W, namely Y = (&,s)* p*
W. Let P = Ppk7 and note that since P = pr ZPpk—f we have that P < W. Finally we
denote by B the base group of P, that is, B = (pr)ka_f <Y.

Let A = (M(s), ) € P(p*), for some p € P(p*~7). It suffices to prove the following

two statements:

) O p () = (X((pF — 1,1); 1) | . 6(s)) s and

(ii) <X(pf—11 lP, >>01fandonly1fu€Q( ).

I/\I

The first assertion of the lemma then follows, since €(s) is closed under conjugation.
The second statement follows simply from the observation that if m > 2 then u #
(0,...,0) € [p]*=, and hence {(p*~f), (17 )}DQ( ) =0.

We now prove (i) and (ii). For convenience, let a = (p/ — 1,1) and ¢ = p*~/.

(i) By Theorem [6.§ . M(s) = pk — pF=F = q(pf — 1). Hence for p1,...,u, = pf, if

cf;l,“wq > 0 then either py = --- = p, = « or there exists j € [g] such that u; = (p7).

Since (pf) ¢ Q(t) by Lemma it follows that

O e = (A Ly (X)) - (X)) 9] 5 (1))

Moreover, by Lemma we have that

<X)\iy7 (Xa)xq> = Cg\z,...,a = CIELl) (1) — X“(l)a

.....

and thus <X>‘LB,¢)(t)Xq> = x*(1) - (<Xalp f,qﬁ(t)))q. By Theorem [2.21) we know that

X (a; ) is an irreducible constituent of X)\lw' Moreover,

(X(asp) [y, (X)) = x*(1).
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Writing X’\lW = X(a;pu) + A for some character A of W, and X(o;p) ], = x*(1) -
(x*)*? + 0 for some character 8 of Y, we have that

O e d(6)%9) = (X(az ) | 1y d(8) D) + (A, d(1) <)
=x"(1) (XL, 00" + (8L 5 007 + (AL (),

and therefore
Y w
(0] 5 o)) = (A, 0(t)7) = 0.
Letting ¢ = Alp , d(s)), then since ¢(s lB = ¢(t)*9, we have that

= (A0, > c(d(s) ] 1 b)) = ¢,

from which we conclude ¢ = 0. Thus <X/\J»P’ o(s)) = <X(a;u)lp, o(s)).
(ii) Now let y = Xalipff_ By Lemma (v, #(t)) = 1. Moreover, we observe that

KLy = X S~ X 15— T LX)

T€lrr(Py)

Since ¢(s) = X(o(t); p(u)), we have that

<X(a7u)lpv¢(s)> = Z <Xulpq77—> : <X(’77T)a¢(3)>

Telrr(Py)
= Z X lP y T 5q5(u) <Xulpq ) ¢(U)>,
Telrr(Py)
by Lemma [2.19] By definition of Q(w), {(x*| , ,® > 0 if and only if u € Q(u O
P

Recall that 7(s) was defined in Definition (6.6} . for sequences s € [p|¥ containing at

least two non-zero entries.
Lemma 6.12. Let k € N, s € Ui(1) and = € [p]. Let f = f(s). Then
(a) Qs,z) = Byresr (pPF T —pF =S — ) U{(pF T —pM 1T ) i€ Qspya, .o, 50, 3) 105

(b) moreover, if x # 0 and A € {(n(s,z),pF* 1= + 1), (n(s,z), 17" T30 then
0 p ., o) 22

Proof. (a) Let f = f(s), t = (s1,...,s7) and v = (Sy41,...,55). We proceed by

induction on k£ and distinguish between two cases depending on the value of sy.

Case 1. First suppose that s, # 0. In particular, f = k. Then Q(s) = B,«(p* — 1), by
Lemma By Proposition [5.12] we deduce that

B (0 —p—1) € D(p,p", Br (p* — 1)),

so by Lemmawe find that Bperi (p"™ —p—1) C Q(s, z) for all z € [p]. On the other
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hand, by Theorem we know that Q(s,z) C Bpkﬂ(pkﬂ —p). Hence p"t! —p—1<
m(s,z) < pFTt — p. The statement (a) now follows directly from Lemma
In particular, we observe that we did not need to use an inductive hypothesis in Case

1. Moreover, we showed that the base case k = 1 of our induction holds.

Case 2. Now suppose that sp = 0 (so necessarily k > 2). Then f(s7) = f € [k—1], and
by the inductive hypothesis applied to s = (s~, si) we have that

Qs) = Bpr (0° =" =) U{(" =" ) | 1€ Qu)}°. (6.1)
By Proposition and Lemma we deduce that
Bpsr (pF T = p" 7 —p—1) S D(p, ", By (0" —p" 7 = 1)) € D(p,p*, Q(s)) € Q(s, ).

We now want to show that for all » € {0,1,...,p — 1} and all u - p**'=F +p —r,
ftl _ pkti=f
us to conclude that By (pFT! — pFH1=F — 1) C Q(s,z), since (s, z) is closed under
conjugation.

If r = 0 then p - p*+1=F +p. Since Q(u) = P(*~")\{(p*~/-1,1)}° by Theorem
there certainly exists a partition 14 € Q(u) such that 11 C u. Hence there exist partitions
vy Fp*=F + 2 and v3,...,v, - pF=/ + 1 such that c,...v, > 0. By Lemma we
deduce that

the partition A := (p p + 7, 1) belongs to Q(s,x). This would allow

A )
Clpk—pk =1 1), (p* —pF—F —2,u8),(pF —p* 7 —1,3),.cs (PR~ —1,0) = Cvr,eip > 0.

Since p > 5 and f € [k—1], we have that p*—f +2 < p* —p*=F —2, whence (p* —p*~/, 1),
(p*—p*=T —2,15) and (p* —p*=F —1,1;) for alli € {3,...,p} are all partitions. Moreover,
they belong to Q(s) by , so by Lemma we conclude that A € D(p,p*,Q(s)) C
Q(s,z), for all = € [p].

If 7 € [p— 1] then p - p¥*1=/ 4+ p — r and there exists a partition v  rp*~/ such
that v C p. (If r = 1 then we choose v € Q(u); this is possible by Theorem [5.1])
By Theorem we know that the trivial character of P, s is an irreducible con-

stituent of X”lp s Thus there exist vy,...,v,. € Q(u) such that ¢, >0, since
P

o(u) = ]].ppk_f. Moreover, there exist partitions v,y1,...,v, F pk_f + 1 such that

vty > 0. Using Lemma we deduce that

A T}
Clpk—p*=F 1) ooy (D% —DF—F 00 ) (PF =P~ F =10y 1) ey (PE =P —1) = Cun,ivy = 0.

Note that (p* — p*=f,1;) for i € [r] and (pF — p*=/ — 1,1;) for j € {r +1,...,p} are
indeed partitions as p*=f 4+ 1 < p¥ — p*~/ — 1. Moreover, they belong to Q(s) by (6.1)),
so A € D(p,p*,Q(s)) C Q(s,z) for all z € [p], by Lemma

Thus we have shown that Bye+1 (p"™! —p"™1 =/ —1) C Q(s, z) for all z. The statement
(a) now follows from Lemma since M (s,z) = p**1 — pF¥*+1=f by Theorem
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(b) We turn to the proof of statement (b). Let t = (s,z) and observe that f(t) = f(s) =
f. Let P = Pyy1 = Pyl Py and let B be its base group, namely P = B x P, and
B = (Py)*P. Let Y = (&,+)*P be the Young subgroup of & x+1 naturally containing
B. We define two further subgroups of &, k+1 as follows: H :=Y x &, = &,x 1 G, and
W:=Y x P, =6, Pp. Clearly P<W < H.

First, we let A = (n(t), p**1 — n(t)) and define p,v - p* as follows:

W= (pk —pkif,pkff) and v = (pk —pkif - l,pkff +1).

Note u,v € Q(s) (by part (a) of the present lemma if f < k, and by Lemma if

f = k). Moreover, it is easy to see that letting y1 = -+ = pp—1 = g, we have that
cf;l vvvvv up_1,w = 1. Since 0 := (x*)*®=1) x x” is an irreducible constituent of X’\ly,

there exists p € Irr(W16) such that p | XAlW' But p # v, so by the description of
Irr(&,x ¢ Py) in Section H we have that p = QT;}/V From Lemma m we see that
plp = GlBTP7 which has ¢(S)XPTP as a direct summand, and hence (p| ,, ¢(t)) > 1
by Lemma since ¢(t) = X(P(); ¢x). On the other hand, X (u; (p —1,1)) | X’\lH
by [9, Theorem 1.5]. Thus 3 := X(u; ¢,) is an irreducible constituent of x* | ., since
X(p_l’l)lg: = Zf:_ll i, and clearly <ﬁlp,¢(t)> > 1. Since p # B are both irreducible,
we find that

O pr @) = (p] pr 8(8)) + (B pr 0(1)) > 2.

For A\ = (n(t),lpkﬂ_”(t)), a similar argument using u = (p* — pk_f,lpkff) and
v=(p" — p*=f = 1,17" 7+1) and using Theorem to show that X (u;7) [ x* |, for
some 7 € {(p —1,1)}° shows that <X>\lp?¢(t)> > 2.

Finally, since x* | , = x| ., statement (b) follows. O

Remark 6.13. If s € Ug(2) and si # 0, then Lemma shows that Q(s) \ B, (p* —

ph—rfls) — 1) contains no thin partitions. This follows from the observation that

pk‘—f(S)

(pkif(S))v (1 ) ¢ Q(Sf(s)+1a ceey Sk) = Bp’”‘*f(pkif - 1)7

by Lemma [6.4} ¢
We are now ready to prove Theorem [6.10}

Proof of Theorem[6.10, We proceed by induction on k, where the base case is k = 2.

If either k =2, or k> 3, m =2 and s; # 0 (so s~ € U,_1(1)), then statements (i)
and (iii) follow from Lemma (a), statement (ii) from Remark and statement
(iv) from Lemma (b).

Suppose now that m > 3, or that m = 2 and s; = 0 (so necessarily k£ > 3). Then
s € Ug—1(m’) where m’ > 2. Also f(s7) = f(s) =: f € [k — 1]. By the inductive
hypothesis, we have that

Qs7) = Byer (n(sT)) U AGT) {0 = p* 1 ) s € sy, oos6-1)}°,
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where A(s7) := Q(s7)N{AF pF~1:n(s7) < A\ < M(s7)}° contains no thin partitions.
By Proposition [5.12] and Lemma we deduce that

Bu(pn(s™) = 1) S D(p, 0" 1, Bpr-1(n(s™))) € D(p,p" 1, Q(s7)) C Qs).

k=1 _n(s7), we also

Note that 7(s) = pn(s™), so letting p(s) = p* —n(s) and p(s~) =p
have p(s) = pp(s™).

Let A = (n(s),pn) for some p = p(s). If u ¢ {(p(s))}°, then by Proposition
v, > 0. Indeed, p €

Bos)(p(s) —1) € D(p, p(s~),P(p(s7))). Hence by Lemma we have that

there exist vi,...,1, F p(s7), not all equal, such that cf

A _
sy oo (s rp) = Ct ooy > 0-

Notice that (n(s™), ;) is indeed a partition for all 4, and in fact belongs to (s™), since
n(s~) > 1+ p(s™) follows from f > 1, g > 2 and k > 3. Hence A € D(p,p*~1,Q(s7)) C
Q(s), by Lemma [6.5]

Otherwise if p € {(p(s)), (17¢)}, then A\ € {A\°,\'} where \° = (n(s), p(s)) and
A= (n(s),17)). Let v F p*~! be the partition defined as follows:

(n(s™),p(s7)) it i=0,

V= 7/()\1) = (7’](8_), 1,0(87)) if 4 =1.

With v thus defined, let H = &,x-116,, and let X' € Irr(H) be defined as follows:

) X (v(\Y); if i =0,
X = 2(N) = (v( ) ()
X(v(\);a) ifi=1,
: 1 At :
where a € {(p), (17)} is chosen such that X(A') | x* |, according to Theorem m
Moreover, X' (\°) | X)‘O l 1 by Theorem By the inductive hypothesis, we know that
<Xu(>\1)lp o ¢(s7)) > 2 for i € {0,1}. Hence from Lemma [2.18 we deduce that

<X/\ilppk7¢(3)> > <X(Ai)lppk’¢(s)> > 9.

This shows at once that 7)(s) < m(s), since Q(s)° = Q(s) so By (1(s)) € Q(s), and also
. . by N
that statement (iv) holds, since x l Py X i Py

Next, we turn to the proof of statement (ii). In particular, statement (i) that m(s) =
n(s) then follows immediately, since (ii) implies (n(s) + 1,p* — n(s) — 1) ¢ Q(s), for
instance. In order to prove (ii), it suffices to consider partitions A - p* such that
A1 > n(s), since (s)° = Q(s).

Let z € {1,2,...,p" 9()} and first let A = (n(s) +x, p(s) —z). (We remark that x is
chosen so that A; varies between 7(s)+1 and M (s).) Since A1 > n(s) = pn(s~), we have
that for any sequence of partitions (u',...,u?) € P(p*~1)*P such that cﬁly__#p > 0,

127



there exists j € [p] such that (u/); > n(s~). Moreover, pu/ C X so I(p?) < 2, and
thus 4/ ¢ Q(s™) by the inductive hypothesis. Letting B = (P,-1)*?, we deduce that
(X*| 5> #(s7)*P) = 0, and therefore that X ¢ ©(s).

To conclude the proof of (ii), it remains to consider A = (n(s) + z, 17(*)=®). In this
case A ¢ Q(s) follows from a similar argument, noticing instead that since A is a hook
then pu!,..., 4P C X must also be hooks. Thus we have proven statement (ii), and as
described previously also statement (i).

Finally, statement (iii) follows from Lemma [6.11] since f(s) < k. O

We conclude this section by introducing the following definition, which allows us to
summarise the values of m(s) obtained thus far, and will be useful for our discussion in
the next section. Recall the notation Uy (2), f(s) and 7(s) from Definition

Definition 6.14. Let k € N and s € [p|*. The type of the sequence s is the number
7(s) € {1,2,3,4} defined as follows:

1 if s € Ug(0),
2 if seUg(1l) and s, =0,
3 if s € Ug(1) and sy # 0,
4 (2)

if s € Ug(z) for some z > 2.

Remark 6.15. We collect here a description of m(s) for s € [p]*, k € N, depending on
the type of s:
pk—2 if 7(s
pF—pF=f) — 1 if 7(s
m(s) =
pF—1 if 7(
7(s) if 7(s

By (m(s)) U{(p*)}° if 7(s) =1,
Q(S) = Bp’c (m(s)) U {(m(s) =+ 17.“’) pe Q(]]'Ppk—f(g) )}o if T(S) =2,
B,x(m(s)) if 7(s) = 3,

If 7(s) = 4, then Q(s) \ Byx(m(s)) contains no thin partitions by Theorem .

For convenience, when k& = 0 and s is the empty sequence we set 7(s) = 1, though
notice m(s) = p* =1 as Q(s) = P(1).

Finally, we remark that for all k¥ € Ny, we have that m(s) > % for s € [p]* of all
types. %
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6.3 Bounding Q(¢)

Let p > 5 be a prime. Following on from the previous section, the aim of the present
section is to determine the numbers m(¢) and M (¢) for all ¢ € Lin(P,,) where n is now

an arbitrary natural number.

Let n € N and let n = 22:1

Recall that we may write ¢ = ¢(s) = ¢(s(1,1)) x --- X ¢(s(t,as)) as in (2.4), and recall
the operator x from Section [2.2:1]

a;p™ be its p-adic expansion, where 0 <njy < --- < ny.

Lemma 6.16. For alln € N and ¢(s) € Lin(P,),
Qs) = Qs(1,1)) * -+ - % Q(s(i, 7)) * - - % Qs(t, ar)).

Proof. Since ¢(s) = ¢(s(1,1))x---x@(s(t,ar)), the statement follows from the definitions
of 2 and % by considering the chain of subgroups

G > (Gpra )M X v X (G )% > (P )%™ X+« % (Pyne)*™ = P,

Theorem 6.17. For all n € N and ¢(s) € Lin(Py,), M(s) = >_; ;) M(s(i, j)).

Proof. Let M := %,  M(s(i,j)). For k € Ny and s € [p]*, we have that M(s) =
pF —pF=f() by Theoremifs #(0,...,0), and M(0,...,0) = p” since X(pk) =1ls, €
0(0,...,0) = Q(]lppk). Hence M(s(z,7)) > p™i/2 for all (4,7), so by Lemma and
Proposition we have that

Qs) = Q>s(1,1)) % - - - % Q(s(¢, ar))
C Byra (M(s(1,1))) %% Byne (M(s(t,ar))) = Bn(M).

Thus M(s) < M.
On the other hand, let A(»7) € Q(s(4, 7)) be such that )\gi’j) = M(s(i,j)) for each
(i,7) (this is possible since Q(s(7, 7)) is closed under conjugation). Set A = A1) ... 4

Xtat) 5o the iterated Littlewood-Richardson coefficient ci(M)

.....

Qs(1,1)) % -+ Q(s(t, ar)) = Qs), but also Ay =37, /\Y"j) =M,soM(s)>M. O

\(tap) = 1. Hence A €

The rest of this section is devoted to the determination of m(¢) for all ¢ € Lin(P,)\
{1p, }, since the result for ¢ = 1p_ follows from Theorem |5.1] To simplify notation, we
let R = Z§:1 a; and let {s1,...,sr} = {s(i,j) | i € [t], j € [a;]} as multisets. We let
k; be the length of s;, so {ki,...,kr} = {n1,...,n¢} and |{j € [R] | k; = n;}| = a;.
Where ¢ = ¢(s) and s is identified with {s1,...,sgr} as above, we also denote m(¢) or
m(s) by m(s1,...,sr). Note that the order of s1, ..., sr does not matter in determining
m(¢) by Lemma since if two linear characters of P, are Ng, (P,)—conjugate then
their inductions to &,, are equal (Lemma . Thus we may without loss of generality

permute the s; freely in our arguments.
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Since P, is trivial whenever n < p, from now on we may assume that n > p.
Moreover, we may assume that R > 2 since the case of R =1 is treated in Section [6.2

Fix some ¢ € Lin(P,,) with corresponding sequences {s1, ..., sr} as described above.
Furthermore, we assume for the rest of this section that there exists some i € [R] such
that 7(s;) # 1, since ¢ # 1p,. We wish to express m(¢) in terms of the quantities
m(s1),m(sz),...,m(sr) that we determined in Section In order to do this, we give
the following definition.

Definition 6.18. Let k € Ny and s € [p]*. The integer N(s) is defined as follows:

pk if 7(s) =1,
N(s)=<{m(s)+1 if 7(s) =2,
m(s) if 7(s) € {3,4}.

(Note that if k =0, then s is the empty sequence and N(s) =p* =1.)
For ¢ € Lin(P,) as described above, let N(¢) be defined as follows:

R

N(¢) =Y N(s;).

j=1
We are now ready to describe m(¢). This is done in the following two theorems,
whose proofs appear in the next and final section of this chapter.

Theorem 6.19. Let n € N and ¢ € Lin(P,) be as described above. Suppose that
7(s;) =4 for some i € [R]. Then

(i) m(¢) = N(¢), and
(i) Q(P) \ Bn(m(¢p)) contains no thin partitions.
If no sequence s; is of type 4, then we can in fact completely describe Q(¢).

Theorem 6.20. Let n € N and ¢ € Lin(P,) be as described above. Suppose that
7(s;) # 4 for alli € [R]. Then

unless
R—-1 if j=1,
Hie[R] [ 7(s:)) =4} =141 if j =2,
0 if j € {3,4},

in which case

Q@) = Bn(N(¢) =) U{(N(®), 1) | € Qp ;0.

where i is the unique element of [R] such that 7(s;) = 2.
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We remark that Theorem in fact holds for ¢ = 1p, as well, since Q(1p,) = P(n)
by Theorem and N(1p,) = n. We illustrate the results of Theorems and
in Example below. A corollary of our description of m(¢) is the following:

Corollary 6.21. Let n € N and let ¢ € Lin(P,). Then Bn(%) C Q(¢).

Proof. Recall from Remark that for all £ € N and s € [p]* of all types, we have
m(s) > %. Thus the claim follows when n is a power of p. Otherwise, letting ¢
correspond to si1,...,sr for some R > 2, we see from Theorems and that
m(¢) > 3L, m(s) > 5. O

Proof of Corollary[6.2. This follows immediately from Corollary O

Remark 6.22. We remark that the growth of the partition function |P(n)| is well-known,

given by the celebrated asymptotic formula of Hardy and Ramanujan [34]:

1

PO~ s

exp(ev/m),

where ¢ = W\/g . Of course, we did not require its full power in order to deduce Corol-
lary though we have included it as well as the following classical result of Erdos and
Lehner [24, (1.4)] to highlight that |B,,(5)| is in fact extremely close to [P (n)| when n is
large: if f(n) is any function such that f(n) — oo as n — oo, then for all but o(|P(n)]|)
partitions X of n, the quantities A\; and I(\) lie between /n - (227 £ f(n)). O

(&

Before we conclude this chapter by proving Theorems|6.19|and below, we remark
that the situation when p € {2,3} is more complex.

It is not hard to verify that our determination of M (¢) holds also for the prime
3. However, crucially for m(¢), Lemma is not true as stated when p = 3, and
a number of our Littlewood—Richardson results also cannot be applied directly when
p = 3. (For instance, if we wish to apply Lemmawith n = 3, then the result changes
to B (t) *{(3)}° = Bm43(t+3)\ {(t+1,t+1)}° in the special case where m = 2¢t —1.)

The sets 2(¢) in the case of p = 2 exhibit less regular patterns still. As already
remarked in Chapter |5, the sign character x(1") of &,, restricts irreducibly and non-
trivially to a Sylow 2-subgroup of &,,. Since x* = x* - (1), the sets Q(¢) themselves
are no longer closed under conjugation in general. On the other hand, sets of partitions
of the form B,(m) are always closed under conjugation, so approximating Q(¢) using
sets of the form B, (m) is less informative when p = 2. Nevertheless, it turns out for
k € N and Pyr € Syl,(Sqr) that

k
XYL, C=6(1,0,...,0) = X(¢1;1p,,_,) € Irr(Py 2 Pyrs),
2

and so for instance, for s € [2]¥ we have that Q(t) = Q(s)’ where t = (¢, s2,...,5;) and
t1 = s1+ 1 (mod 2).
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6.3.1 Proofs of Theorems [6.19] and [6.20]

Let n € N and ¢ € Lin(P,,) be as described immediately following Theorem

Lemma 6.23. Suppose that

R—1 ifj=1,
Hie[R] | 7(si) =4} =41 if j =2,
0 if j € {3,4},

and let i € [R] be such that 7(s;) = 2. Then

¢) = Ba(N(¢) =) ULN(9), ) | € QULp sy}

Proof. Let m = n — pFi so ¢ = ¢(s1) x --- X ¢(sg) = 1p, x ¢(s;). Since R > 2 and
7(s;) = 2, we have that m € N and k; > 2. To ease the notation, let k = k;, s = s; and
f=f(s).

By Lemma we have that Q(¢) = Q(1p,,) x Q(s). By Theorem and Re-
mark we have that Q(1p,,) = P(p') \ {(p' — 1,1)}° if m = p’ for some [ € N, and
Q(1p, ) = P(m) otherwise. Moreover,

Qs) = By (0" —p" T =) U{G" =" ) [ e Qp, )}

so in particular

B, (m(s)) € Q(s) C By (m(s) + 1). (6.2)

P

Case 1: if Q(1p,,) = P(m). Since m(s) > %k, applying P(m)x to gives
B (N(¢) —1) € ¢) C Ba(N(9))

by Proposition as N(¢) = m +p* — p*f = n — pF=F. Since Q(¢)° = Q(¢), it
suffices to find which partitions A - n with A\; = N(¢) satisfy A € Q(¢), noting that
A € Q@) = P(m) *Q(s) if and only if cgﬂ > 0 for some o Fm and g8 € Q(s).

So fix a partition A - n such that Ay = N(¢). If cgﬁ > 0 for some a F m and 8 € Q(s),
then A\; < oy + 31 < m+ (p* — p*~F) = N(¢), so in fact this holds with equality. Thus
a = (m) and 8 = (B1, 1) where p € Q(]lppkﬂc)7 since B € Q(s) and B, = pkF — pF=7.
Moreover, A1 = a1 + 31 and o = (m) together imply that 8 = (A; —m, A, Az, ... ), that
is, A= (N(¢), p).

Conversely, if A = (N(¢), u) for some p € Q(]lppkff ), then clearly A € P(m)*Q(s) =
Q(¢) since x(™ x X(pk—pk*fﬂ) | X/\lexgpk, and thus the set Q(¢) is as claimed.

Case 2: if m = p' for some l € N and Q(1p, ) =P(p') \ {(p' — 1,1)}°. We have that

Q(¢) € P(p') * By (m(s) + 1) = By (N(¢))
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by Proposition On the other hand,

Q(¢) = (P \ {0’ — 1,1)}°) x Qs)
2 (PEY\AG' =1, 1))°) % By (0 = p*~7 = 1) = B, (N(¢) — 1)

by Lemma[5.8] We find by the same argument as in Case 1 that Q(¢) = B, (N(¢) —1)U
{(N(¢), 1) | p€QLp,_,)}°, as required. 0

Proof of Theorem[6.20. We may now assume that si, ..., sg do not satisfy the hypoth-
esis of Lemma That is, s1,...,8g are such that either there exists ¢ € [R] with
7(s;) = 3, or there exists i # j € [R] with 7(s;) = 7(s;) = 2 and 7(s;) € {1,2} for all
[ € |R]. We proceed by induction on R.

We begin with the base case R = 2. Recall from the exact description of €(s;) from
Remark and that Q(¢) = Q(s1) x Q(s2) from Lemma Since we may reorder

the s; without loss of generality, we may assume that

(T(Sl)a 7_(52)) € {(13 3)7 (27 3)a (37 3)3 (2? 2)}

The arguments in each case are similar, but for clarity we will treat each one separately.
To ease the notation we let k = ki, f = f(s1) (if 7(s1) # 1), l = k2 and e = f(s2).

If (7(s1),7(s2)) = (1,3): we have that

P(1) % By (p! — 1) if k=0,
(P@*)\{(P* = 1,1)}°) x B (p' — 1) otherwise,

which equals B, (N ((b)) in each instance by Proposition and Lemma respectively,
as N(¢) = pF +pl — 1.
If (7(s1),7(s2)) = (2,3): we have By (m(s1)) € Q(s1) € Byr(m(s1) + 1), and hence

B, (N(¢) —1) € Q(¢) C B, (N(¢))

since N(¢) = m(s1) +1+m(se) = p¥ —p*~ +pl — 1. Let A = (N(6), ) where y is any
partition of p*~f 4 1. Since p*~f +1 is not a power of p, Q(]].ppk_erl) =P +1) by
Theorem But1p, ,, =1p, , x1lp,sou€Qlp, , )=Qp, ) *xQ1p).
That is, there exists v € Q(1p ,_, ) such that 05(1) > 0. Then by Lemmam7

(N(#):1)

c 7
(pk—pk=1,v),(p

l-11) T CZ,(l) >0,

and thus A € Q(s1)xQ(s2) = Q(¢). Since Q(¢)° = Q(¢), we have that Q(¢) = B, (N(9)).
If (7(s1),7(s2)) = (3,3): then Q(¢) = Bu(p® — 1) x Bu(p' — 1) = B,(N(¢)), by
Proposition [5.7]

If (7(s1),7(s2)) = (2,2): then clearly B, (N ((;5) —2) = By (m(s1)) * By (m(sz)) € Q)
and Q(¢) C Byr(m(sy) + 1) « By (m(s2) + 1) = B, (N(¢)), by Proposition In order
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to show that B, (N(¢)) = Q(¢), since Q(¢)° = Q(¢) it remains to show that
A=(N(@)=2+j,m) € Qo)  Vjie{l,2Vurpl4pcr2—j

Fix some p F p*~/ +p!=¢ + 2 — j and consider A\ = (N(¢) — 2+ j, ). Clearly |u| is not
a power of p, so

[IAS P(W’D = Q(]lPM) = Q(]lppk—f)* Q(]lezfeJrQ,j)'
That is, there exist v € Q(]lppkif) and w € Q(]lpplﬂi“_]_) such that ¢/ , > 0. Then

(N(¢)—2+34,1) _op
(P*—p*=T v), (Pl —pl = —2+4j,w) — v = 0

by Lemma [2.11] and thus A € Q(¢). Hence B, (N(¢)) = Q(¢) in all cases when R = 2.

Now for the inductive step: let R > 3 and suppose that the statement of the theorem
holds for R—1. Since s1,. .., sg do not satisfy the hypothesis of Lemma[6.23] then there
exists ¢ € [R] such that s1,...,8,-1,8i+1,-..,Sk also do not satisfy the hypothesis of
Lemma Without loss of generality, let ¢« = 1. Let k = k1, s = s1, f = f(s1) (if
7(s1) # 1) and let ¥ € Lin(P,_,») be such that ¢ = ¢(s) x ). Then Q(¢) = Q(s) xQ(¢)
and Q(¢) = B,,_,» (N(z[;))7 by the inductive hypothesis. In order to show that Q(¢) =
B, (N((b)), we split into cases depending on 7(s) € {1,2,3}.

If 7(s) = 1: then

P(1) * B, (N(¥)) if k=0,
(P(P*)\{(P* = 1,1)}°) x B (N(¥)))  otherwise,

which equals B,, (N(¢)) in each instance by Proposition [5.7/and Lemma respectively,
as N(¢) = p* + N(p).
If 7(s) = 2: then

B, (N(¢) —1) CQ(¢) C B.(N(0)),

where N(¢) = m(s) + 1+ N () = p* — p*=F + N(¢). Since Q(¢)° = Q(¢), it suffices to
show that

A=(N(¢),pn) € Qo) VYpkn—N(@)=n—p"+p"7 - N().
Fix such a partition A. Notice that
peP(n—p"+p"7 = N@)) = (PE*)\{G" T =1, 1)}°) xPn —p* = N(v))

by Lemma since p*=/ > p > 5. (Note {r(s;) | j > 2} # {1}, so N(v) S n —p".)
Thus there exist v € P(p*~7)\ {(p*~f —1,1)}° and w € P(n — p* — N(¢)) such that
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cly , > 0. This shows by Lemma that

(N(¢),1)

—
C(Pk*pkff,V),(N(w),w) =Cw > 0,

and so A € Q(s) x B, (N(v)) = Q(¢) as required.

If 7(s) = 3: then Q(¢) = Byr(p* — 1) x B, (N(¥)) = B, (N(¢)) by Proposition
Hence Q(¢) = B,(N(¢)) in all cases. O

Lemma 6.24. Fori c {1,2}, let n;,m; € N be such that %5 < m; < n;. Furthermore,
let A; C P(n;) be such that By, (m;) € A; and A;\ By, (m;) contains no thin partitions.
Then

Brytng (M1 +m2) C Ay x Ay

and (A1 * Az) \ By 4n, (M1 + m2) contains no thin partitions.

Proof. By Proposition we know that By, 1n,(m1 +msa) C Ay * As.

First, suppose A € (A1%xA3)\ By, 4n, (Mm1+ms2) satisfies I(A\) < 2. Then Ay > mj+mo.
But A € Ay x Ay implies that C,/),u > 0 for some u € Ay and v € Ay. Thus pu +vq7 > Aq,
giving either p; > my or v1 > mq. However, u,v C X so I(u),(v) < I(A\) < 2. That is,
both p and v are thin but either g € Ay \ By, (m1) or v € As\ By, (m2), a contradiction.

Next, suppose A € (A1xA3)\ By, +n, (M1+ms2) satisfies \; < 2. Then I(A) > mq+ma.
But then similarly we find that c;\w > 0 for some p € A; and v € Ay, meaning
I(A) <l(p) +U(v), but p,v C X are also thin. Thus we obtain a contradiction.

Finally if A € (Ay x Ag) \ By, 40, (m1 + ma) is a hook, then either Ay > my + ms or
I(A) > m1 + mg. But any p,v C X must again be hooks, so we obtain a contradiction

by a similar argument to the above. O
We are now ready to prove Theorem [6.19]

Proof of Theorem[6.19. We show that B, (N(¢)) C Q(¢) and that Q(¢) \ B, (N(9))
contains no thin partitions, from which we also deduce that m(¢) = N(¢).

We proceed by induction on R, beginning with the base case R = 2. Without loss
of generality we may assume that 7(s2) = 4. Let k = k1, f = f(s1) (if 7(s1) # 1)
and let | = k3. By Lemma we know that Q(¢) = Q(s1) x Q(s2), and recall from
Remarkthat m(sz) = n(s2) and Q(s2) \ By (n(s2)) contains no thin partitions. We
split into cases according to 7(s1) € {1,2,3,4}.
(i) If 7(s1) = 1: we have that N(¢) = p* + m(s2). If k = 0, then

Q(¢) = P(1) * Qs2) 2 P(1) * By (m(s2)) = Bu(N(0))

by Proposition and Q(¢) contains no thin partitions, by Lemma Otherwise if
k > 1, then

Q(¢) 2 (P(") \{(" = 1,1)}°) * By (m(s2)) = B (N(9))
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by Lemma Suppose A € Q(¢) \ B, (N(¢)) satisfies [(A) < 2, s0 Ay > N(¢) = p* +
m(s2). Then cﬁ,y > 0 for some p € Q(s1) and v € Q(s2), and A\; < py +vy. But gy < p¥,
so v1 > m(sz). However, v C X so [(v) < 2, contradicting v € Q(s2) \ B,i(m(s2)). Also
there cannot be any A € Q(¢) \ B, (N(¢)) such that A; < 2, since Q(¢) and B, (N(¢))
are both closed under conjugation. A similar argument shows that there are no hooks
in Q(¢) \ B (N(¢)).

(ii) If 7(s1) = 2: then by Definition and Remark we have that

Q) 2 Bye (0 — p*7 = 1) % By (m(s2)) = Bu(N(9) — 1).

Let A = (N(¢), ) where pu = n — N(¢). Then € P(n—N(¢)) = Q1p, ,)*P(p' -
m(s2)) by Lemma [5.8] so

A — .
Clpk—ph=1 ), (m(s2)w) = Cuw > 0

for some v € Q(1p, ;) and w - p! —m(sz), by Lemma Thus A € Q(s1) *Q(s2) =
Q(¢), and hence B, (N(¢)) € Q(¢) since Q(¢)° = Q). If X € Q(¢) \ B, (N(¢)) satisfies
I(A) <2, then ¢),, > 0 for some p € Q(s1) and v € Q(s;) but py < p* — pF=f implies
that v1 > m(s2), as A1 > N(¢) = p* — p"~/ + m(s2). But then v € Q(s2) \ Byt (m(s2))
and [(v) < 2, a contradiction. A similar argument shows that Q(¢) \ B, (N (¢)) contains

no other thin partitions.
(iii) If 7(s1) € {3,4}: then the assertions follow from Proposition [5.7] and Lemma [6.24]

Finally, we turn to the inductive step. Assume R > 3 and that the statement
of the theorem holds for R — 1. Let k = ki, and let ) € Lin(P,_,») be such that
¢ = ¢(s1) X 1, so ¥ corresponds to sg,...,sp and Q(¢) = Q(s1) x»Q(v). We distinguish
two cases, depending on the validity of the following equation:

R—2 ifj=1,
{ie[R] | 7(si)) =4} =41 if j € {2,4}, (6.3)
0 if j = 3.

First suppose that holds. Since R > 3, we may without loss of generality assume
that 7(s1) = 1. By the inductive hypothesis, m(¢) = N(¢) and Q(¢) \ B,,_,» (N (¥))
contains no thin partitions. Then B, (N(¢)) C Q(¢) and that Q(¢)\ B, (N (¢)) contains
no thin partitions follows from a similar argument to case (i) above.

Otherwise, suppose that does not hold. In this case we may without loss
of generality assume that 7(s;) = 4. If |{i € {2,3,...,R} | 7(s;) = 4}| = 0 then
the first part of Theorem gives us that Q(¢) = B,_,x(N(1)). The required
results then follow from Proposition and Lemma On the other hand, if
{i € {2,3,...,R} | 7(s;) = 4}| > 0, then by the inductive hypothesis we have that
m(y) = N(¢) and Q@) \ B,,_,+ (N(¢)) contains no thin partitions. The required re-
sults then also follow from Proposition [5.7 and Lemma [6.24] O
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We conclude with an example illustrating the main theorems of this chapter.
Ezample 6.25. Let p = 5. We consider (i) n = 25, (ii) n = 125 and (iii) n = 175.

(i) n = 25. We describe Q(¢) completely for all ¢ € Lin(Pss). This is summarised in
Table 6.1] below.

By Theorem [£.1] and Lemma it suffices to consider ¢ running over a set of orbit
representatives for the conjugacy action of Ng,,(Pa5) on Lin(Ps5). That is, we need
only consider ¢ = ¢(s) for s € {(0,0), (0, %), (*,0), (%, %)}, where each x represents any
element of {1,2,...,p— 1}. Let P'(m) := P(m) \ {(m —1,1)}° = B,,(m — 2) U {(m)}°
for m € N>s.

s type 7(s) f(s) m(s) M(s) Q(s)
0,0) 1 n/a | 23 25 P'(25)
(0, %) 3 24 24 Bas(24)
(x,0) 2 19 20 Bos(19) U {(20,p) | p € P'(5)}°
(x, %) 4 19 20 Bas(19) L {(20,p) | p € Bs(4)}°

Table 6.1: Data on Q(¢) for ¢ = ¢(s) € Lin(Pes).

The case of 7(s) = 1 follows from Theorem [5.1] For 7(s) # 1, a precise description
of Q(s) is given in Lemma [6.4] (for 7(s) = 3) and Lemma (for 7(s) € {2,4}). We
can similarly describe €2(¢) explicitly for all ¢ € Lin(P,2), for all primes p > 5.

(ii) n = 125. There are 8 orbits under the action of Ng,,. (Pi25) on Lin(Pi25). Repre-
sentatives ¢ = ¢(s) and their corresponding (s) are summarised in Table below.

s 7(s) [f(s) g(s) mn(s) | m(s) M(s) Q(s)

(0,0,0) 1 n/a mn/a n/a 123 125 P’ (125)

(0,0, %) 3 3 n/a n/a 124 124 Bi25(124)

(0, %,0) 2 2 n/a n/a 119 120 Bias(119) U {(120, ) | € P'(5)}°
O+ || 4 2 3 119 119 120 Bias(119) U {(120, u) | po € B5(4)}°
(x,0,0) 2 1 n/a n/a 99 100 Bi25(99) U {(100, p) | n € P'(25)}°
(0% || 4 1 3 99 99 100 Bi25(99) L {(100, 1) | p1 € Bas(24)}°
(x,*,0) 4 1 2 95 95 100 (see below)

(, %, %) 4 1 2 95 95 100 (see below)

Table 6.2: Data on Q(¢) for ¢ = ¢(s) € Lin(Pya5).

Recall from Remark[6.15] that we know (s) exactly whenever 7(s) # 4. We are able
to determine Q(s) completely for s = (0,%,%) and s = (*,0,%) even though 7(s) = 4
because M (s) = m(s) + 1 in these cases, so the result follows from Theorem iii).

In the remaining instances when 7(s) = 4, i.e. for s = (%,%,0) and s = (x,%,x),
then Bi25(95) C Q(s) C Bia5(100) and Q(s) \ Bi25(95) contains no thin partitions, by
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Theorem (In other words, Q(s) does not contain (95 + 7,30 — i), (95 +,13°7%) or

their conjugates for any ¢ € [5].) Moreover,
s, ) N {100, 0) | 1 - 251° = {(100, ) | o € O, 2)}°

for all x € {0,1,...,4} where (%, ) has already been determined in (i) above.

(iii) m = 175. There are 80 orbits under the action of Ng,,.(Pi75) on Lin(Pi75): a set
of orbit representatives ¢(s) is given by s = (s1, s2, s3) where s; € [5]% (i.e. 51 € {0, *}3,
giving 8 choices) and sa,s3 € [5]2 (i.e. 52,83 € {0,%}?) with 7(s2) < 7(s3) (giving 10
choices for the pair s, s3).

By Theorem the set Q(s) is determined completely whenever 7(s;) # 4 for all
i € [3]. This comprises 24 of the 80 representatives s. Of the 56 remaining s, we can
actually determine Q(s) fully without further computation in 36 of the cases by using
Lemma because we know Q(x,x), Q(0,*,*) and Q(*,0,*) exactly from (i) and
(ii) above. In the remaining 20 cases corresponding to s1 = (x,%,0) or s1 = (x,*, %),
Theorems and give sharp bounds Bi75(N(¢)) € Q(¢) € Birs(M(¢)), and
Q(¢) \ Bi75(N(¢)) contains no thin partitions.

To give some examples, we list the exact descriptions of (s) when s; = (0,0,0) in

Table [6.3] below. o
S2, 83 T(si)i=1,2,3 | N(5:)i=1,2,3; N(¢) Q(s)

(0,0), (0,0) 1,1,1 125,25, 25; 175 P(175)
(0,0), (x,0) 1,1,2 125,25,20; 170 | Bi75(169) U {(170, ) | u € P'(5)}°
(0,0), (0, %) 1,1,3 125,25,24;174 Bi7s(174)
(x,0), (x,0) 1,2,2 125,20, 20; 165 Bi75(165)
(%,0), (0, %) 1,2,3 125, 20, 24; 169 Bi75(169)
(0, %), (0, %) 1,3,3 125,24, 24;173 Bi75(173)
(0,0), (*,*) 1,1,4 125,25,19;169 B175(169) U {(170, u) | p € Bs(4)}°
(%,0), (%, %) 1,2,4 125,20,19;164 | Bi75(164) U {(165, 1) | 1 € B1o(9)}°
(0, %), (*, %) 1,3,4 125,24,19; 168 B175(168) U {(169, 1) | p € Bs(5)}°
(, %), (x, *) 1,4,4 125,19,19;163 B’ (defined below)

B’ := Bi75(163) U {(164, 1) | 1 € B11(10)}° LU {(165,v) | v € B1o(8)}°.

Table 6.3: Data on (¢) for ¢ = ¢(s1,52,s3) € Lin(Pi7s5) with s3 = (0,0,0). This
follows from Theorem when 7(s;) # 4 for all i, and Lemma otherwise.
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Chapter 7

Ringel duality for Schur

algebras

In [2I], Erdmann and Henke determined the values of r for which the classical Schur
algebra S(2,r) is Ringel self-dual by constructing explicit Morita equivalences, for exam-
ple from maps between tilting and projective modules, and considering Cartan numbers.
In [13], Donkin showed that S(n,r) is always Ringel self-dual for n > r via direct calcu-
lations of certain exterior algebras which are S(n,r)-S(n,r)-bimodules. This holds in
the general quantized case Sq(n,r) in fact; the classical Schur algebras are exactly those
where ¢ = 1.

In this chapter, we determine which classical Schur algebras S(n,r) are Ringel self-
dual in the remaining open cases 3 < n < r. Section follows from work done in
collaboration with Dr Karin Erdmann.

Throughout this chapter, all modules are finite-dimensional left modules and all
algebras finite-dimensional unless otherwise stated. Fix K to be an algebraically closed
field of characteristic p > 0 (and all fields to which we refer will be algebraically closed).
We begin with the classical Schur algebras S(n,r) for natural numbers n and r. After
setting up the necessary notation, we present some straightforward combinatorial results
on order-reversing isomorphisms of certain partition posets in Section [7.1.2} These are
used to reduce the classification problem to a small number of cases, which are then
considered in Sections[7.2.2|and [7.2.3] using block theory, A-filtrations of tilting modules
and decomposition numbers for symmetric groups. The classification of Ringel self-dual
Schur algebras when 3 < n < r is completed in Theorem On a related note, it
was remarked by Erdmann that if B is a block of a Schur algebra and B has finite
representation type, then B is Ringel self-dual. For convenience, we record a proof of
this fact in Section [.2.4
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7.1 Combinatorial setup

7.1.1 Notation

We say A is a mazimal element of a partially ordered set (A, <) if there is no p € A
such that g > A. Throughout this chapter we will consider only finite A, and in this
case (A, <) has a unique maximal element A if and only if A > p for all 4 € A. Minimal
elements are similarly defined and there is a corresponding characterisation of unique
minimal elements. We denote the opposite (partial) ordering of < by <°P| so that
A < g if and only if p < A.

For A\, € A, we say A\ covers p, written A — p, if A > p and there does not exist
v € A such that A > v > p. The Hasse diagram of (A, <) is a graph with vertex set A
and a directed edge from A to u if and only if A — pu.

For n,r € N, let A™(n,r) be the set of partitions of r into at most n parts, partially
ordered by the dominance order <. Let S(n,r) = Sk(n,r) denote the Schur algebra
over K. Its module category mod Sk (n,r) is equivalent to the category Mg (n,r) of
homogeneous polynomial representations of degree r of the general linear group GL,, (K);
we refer the reader to [33] for a detailed construction. S(n,r) is a quasi-hereditary
algebra with respect to (AT (n,r), <) (see Section [7.2)). Let H(n,r) denote the Hasse
diagram of (A" (n,r), <).

Let A be a partition and consider its Young diagram [A]. Define a one-box move from
A to be the removal of one removable box of [A] and its addition to an addable position
in a strictly lower row in [A] such that the result is again a partition. In particular,
the addable position in question cannot be directly below (in the same column as) the
removable box, although it would be in a strictly lower row. For instance, the only
one-box move from A = (2,1) results in the partition (1*). We say there is a one-box
move from A to p and write A ~ p if p is the result of performing a one-box move from
A. Clearly if A ~ p then A . In the examples below, the ‘moved’ box is indicated

with a *:

=] +]

(a) A= N TS W

— *

We say a one-box move from A to u is minimal if, letting A = X\ p denote the

removable box of A and B = u \ A denote the addable position to which A is moved:

(i) A is the lowest removable box of A in a row above B that could have been moved

down into B; and

(ii) B is the highest addable position in A in a row below A down to which the box A

may be moved.

Here, the height of a box or position refers to its row in the Young diagram. Note

that (i) and (ii) are not equivalent: in the pictured example A = (3,2,2), B is indeed
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the highest addable position below A satisfying (ii), but C is the lowest removable box
above B satisfying (i) and A # C.

To abbreviate, we also call such minimal one-box moves minimal moves, and write
A2 0 In the two examples (a) and (b) above, (a) does not depict a minimal move,
while (b) does. Let G(n,r) be the minimal move graph of AT (n,r): it is the directed
graph with vertex set AT(n,r), and there is a directed edge from X to p if and only if
A, b

For a directed graph G, let E(G) denote the set of edges of G, and let the degree of
a vertex v be its total degree, i.e. the number of edges into v plus the number of edges

out of v. This denoted degs(v), or deg(v) when the graph is understood.

7.1.2 Reversibility

For the notion of a Ringel dual of a quasi-hereditary algebra (described in the next
section), and in particular those of the Schur algebras, it will be useful to consider
order-reversing isomorphisms on A (n,r).

By an order-reversing isomorphism on a poset (A, <) we mean an order isomorphism,
or bijection of sets preserving the order relation, between (A, <) and (A, <°P). Since
AT(2,7) is totally ordered by dominance, there is a unique order-reversing isomorphism
on (AT(2,7),<). When n > r, the poset AT(n,r) is simply the set of all partitions
of r and (A*(n,r),<) has a natural order-reversing isomorphism given by mapping a

partition to its conjugate.

Proposition 7.1. Let 3 < n < r be natural numbers and let A = AT (n,r). Then

there exists an order isomorphism between (A, <) and (A, <°P) if and only if (n,r) €
{(3,4),(3,5),(3,7),(3,8),(4,5)}.

This section is devoted to the proof of Proposition[7.1} First, we record the structure
of the Hasse diagram H(n,r) around the unique maximal element (r). We show that
A*(n,r) has a unique minimal element « in Lemma and conclude the desired result
by describing the vertices at small distance from « in H(n,r) in Propositionsand
In fact, we are able to give a combinatorial characterisation of the edges in H(n,r): this

is done in Propositions and [74] giving a quick method to verify the structures

described in Propositions [7.5] and
Let 3 <n < r. We begin with the structure of H(n,r) around (r). Clearly

e (r) is the unique maximal element of (A, <),
e (r—1,1) is the unique maximal element of (A \ {(r)}, <), and

e (r—2,2) is the unique maximal element of (A\ {(r), (r — 1,1)}, Q).
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r>6 r>10
(r)
deg1
(r—1,1)
deg 2
r—22) |  (r—21,1)
deg 3 deg 2
— (r—3,2,1) o
(r=33) __, egs tf rs (r=3,11,1)
e deg4 if n>4 deg
(r—4,4) (r—4,3,1) (r—4,2,2) (r—4,2,1,1)
dog 3 deg 4 Geg5 if nod deg 3
! ! H :
(r—>5,5)----- > (r—5,4,1) ---- (r—5,3,2) ---» (r —5,3,1,1)

Figure 7.1: Vertices in H(n,r) at small distance from (r) and their degrees, for 3 < n < r.

Hence degyy,, ) ((r)) = 1 and degg,, - ((r —1,1)) = 2. Also, (r —2,1,1) € AT (n, )
and when r > 6, (r — 3,3) € A*(n,r), and these two are the only maximal elements of
(A\A{(r), (r=1,1),(r—2,2)},<). Continuing this analysis, we obtain Figure which
illustrates the vertices of H(n,r) at small distance from (r), with their degrees as stated

for the values of r indicated (noting that the rightmost column only exists for n > 4).

Lemma 7.2. Let 3 <n <r. Writer =nk+1, wherel € {0,1,...,n—1} and k € N.
Define o = (k+1,....k+ 1L k..., k) = ((kJrl)l,k”*l) F r. Then « is the unique

minimal element of (AT (n,r), <).

Proof. First, suppose A = (A1,...,\,) € At (n,r) is such that & > X. Thus \; < k for
some i <. If i <, then >3, A\; < (I —=1)(k+ 1)+ (n— 1+ 1)k <r, a contradiction.
Next suppose there exists A € AT (n,r) such that X ? «, so A is incomparable to a.
Clearly A; > a1, and there exists 1 < m < n such that Y .~ A, < >, a; as A and
« are incomparable. Let m be minimal such that this holds, so A, < a;,. Otherwise,
er:ll A > Z:’;l a; and Ay, >, would give Y70 A, > Sy, contradicting the
choice of m. But then \,, < a,, < k+ 1, so A\, < k. Then since \,a - r,

(n—m)k > (n —m)A\p > i A > i a; > (n—m)k,

i=m+1 i=m+1
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a contradiction. Thus A > « for all A € AT (n, 7). O

Let G = G(r), the minimal move graph of (A, <) where A = A™(r) is the set of
all partitions of r. Also let H = H(r), the Hasse diagram of (A,<). For 3 <n < r,
the directed graphs G(n,r) and H(n,r) are obtained from G and H respectively by

removing any vertices A with more than n parts and their incident edges.

Proposition 7.3. Let r € N and let A\, u = r. If there is a minimal move A RUUH L, then
A covers . That is, E(G) C E(H).

Proof. Since A ~» u, we have that

A= (s pzy ooy fimty i+ L fhier, o o1, g — 1 pgas )

and

n= (Mla"'7“7,'717/1'1‘7/1/75#*17"'7/’Lj717,uju:uj+la"')

for some 1 < ¢ < j with ;-1 > p; +1 and pj —1 > pjpq. Let A= X\ p, so A is the
removable box of A in row ¢, column p; + 1, and let B = p\ A, so B is the addable
position of A in row j, column p,;.

Suppose v F r satisfies A > v > p. Clearly vy = py for 1 <t < i and j < ¢, and
vi =p; or v; = u; + 1. If j =441, then v = p or v = X respectively. Otherwise,
j>1i+4+2,s0 A and B are not in consecutive rows. We show that y; = ... = u;, whence
v; = p; or v; = p; + 1 implies v = 4 or v = X respectively.

If ;> pit1, then the highest addable position in A in a row below A down to which
A may be moved is (i + 1, u41 + 1) # B, contradicting A RUUN L.

Suppose [t = fit1 = - = f—1 > py > -+ > p; for some i +2 <1 < 5. Then
the highest addable position in A in a row below A down to which A may be moved is
(L +1),s0 A i, e implies B lies in row . Thus ! =j, and p1 = ... = pj—1 > p;. On
the other hand, the lowest removable box of A\ in a row above B that could have been
moved down into B is in row j — 1, since pj—1 > (u; — 1) + 2. Thus A iz, 4 implies
i = j — 1, a contradiction. Hence there does not exist such [, and so y; = ... = p; as

claimed. O
Proposition 7.4. Letr € N and A\, u - r.

(i) X\ > p if and only if there exists a (possibly empty) sequence of one-box moves from
A down to p; and

(ii) if X\~ u then there exists a sequence of minimal moves from \ down to p.
Hence E(H) C E(GQ), and thus G = H. In particular, G(n,r) = H(n,r) ¥ n € N.

Proof. (i) Since A ~ p = A p, the if direction is clear. For the only if direction,
suppose A > u. We proceed by induction on 7, and then on A\; — 1 for each fixed
r. The result is clear for r < 3, and if Ay — ;3 = 0 then removing the first row of

both A and p reduces to a smaller value of r. Now assume A\; > pi: we exhibit
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a partition v F r such that v ~ u, A > v and A\; — v1 < Ay — 1, whence we are
done by the inductive hypothesis.

Let e = min{m | >."; A\; = >/~ ;}. By assumption, e > 2. Let the highest
removable box of u not in the first row be in row j > 2,50 11 > po = -+ = y; >

fit1- If j > e, then ps = -+ = pte = pley1 =: ¢, and

e+1 e+1

ZMZZM, Z)\iZZMi = Aet1 2 fet1-
i—1 i=1 i—1 i—1

Hence Ao > -+ > Ae > Aey1 > c,and so Y s A > A +cle—1) > Y5 i, a

contradiction. Thus 7 <e.

Let v = (141, p2, ..oy phj—1, 45 — 1, ftj41, ... ), so v~ p. It suffices to show A > v.
Since A1 > p1, we have \; > vy = puy + 1. Also

i)\iZiui:i%‘ Vom2>j
i=1 i=1 i=1

since A > p. Finally, since j < e,

gt
i=1

m

iui—Fl:Zm V2a<m<j—1.
=1

i=1

Y

For a box or position C' in a Young diagram, write r(C') for the number of the row
in which C lies. Let A = A\ pand B = p\ A, so r(A) < r(B). We proceed by
induction on r(B) — r(A): clearly if r(B) — r(A) = 1 then the one-box move of A

min

down to B is minimal, and A ~~ p.

Now suppose r(B) —r(A) > 1. If the move of A to B is minimal then we are done.

Otherwise, either:

— the lowest removable box of A in a row above B that could have been moved
down into position B is some box Y # A, so r(Y) > r(A); or

— the highest addable position of A in a row below A down to which A could
have been moved is some position X # B, so r(X) < r(B).

In the latter case, let v be the partition such that [v] = ([A\]\A)UX, s0 XA~ v~ p.
Since r(A) — r(X) < r(A) — r(B) and r(X) — r(B) < r(A4) — r(B) then by the
inductive hypothesis there exists chains of minimal moves from A to v and from v

to p. In the former case, a similar argument holds for [v] := ([u] \ Y) U B.

To deduce that E(H) C E(G), suppose A — p. Then A u, whence there is a

min min min

sequence of minimal moves \ =: vy “*> vy “s .. W g S = by (i) and

(ii). But E(G) C E(H) by Proposition so k=1 and A % 11 as required. O

Proposition 7.5. Let r > 3. There exists an order-reversing isomorphism on A™(3,7)
if and only if r € {4,5,7,8}.
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6,1

5
4 J /6 2\
41 , .
31 : / \ 6,1,1 5,3
51,1 4,3 \ / \
3,2 5,2,1 44
T \\ / \ /
3,1,1 42,1 4,3,1
21,1 J J
3,3,1
2,21 J 4’]'2
3,2,2 3,3,2

Figure 7.2: H(3,r) for r =4,5,7,8.

|
|
1,k—1) +1,k—2)

(k,

)

Figure 7.3: Vertices at small distance from (k, k, k) in H(3,3k), k > 2.

Proof. Let A = AT(3,7) and H = H(3,r). From the Hasse diagrams in Figure we
see there is exactly one order isomorphism (A, <) — (A, <°P) when r = 4,5,8 and two
when r = 7. Now let r ¢ {4,5,7,8}.

If r = 3k, k > 2: the vertices at distance < 2 from a = (k,k,k) in H are as in
Figure (this can be verified using Proposition . Any order isomorphism (A, <) —
(A, <°P) gives an isomorphism of (undirected) graphs H — H with (r) — «. This must
extend to (r—1,1) — (k+1,k,k—1), but deg((r—1,1)) =2 < 3 = deg((k+1,k,k—1)).
Hence there is no order-reversing isomorphism on A.

If r =3k+1, r > 3: the vertices at small distance from o = (k + 1,k, k) are
as in Figure Any graph isomorphism H — H with (r) — « must extend to
(r—3,2,1) — (k+3,k,k—2), but degy ((r —3,2,1)) =3 < 4 =degy((k+3,k, k —2)).

If r =3k +2, r > 3: the vertices at small distance from oo = (k+1,k+1, k) are as in
Figure Any graph isomorphism H — H with (r) — a must extend to (r—3,2,1) —
(k+3,k+1,k—2), but degy((r —3,2,1)) =3 <4 =degy(k+3,k+1,k—2)). O
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(k+ 4,k k — 3)

(k+4,k—1,k—2)

(k+3,k+1,k—3) (k+3,kk—2) (k+3,k—1,k—1)
(k+2,k+2,k—3) (k+2,k+1,k—2) (k+2,kk—1)
(k+1Lk+1,k—-1) (k+ 1,k k)

Figure 7.4: Vertices at small distance from (k+ 1,%,k) in H(3,3k + 1), k > 3.

(k+4,k+1,k—3)

(k+3,k+2,k—3)

(k+4,kk—2) (h+4,k—1,k—1)
(k+3,k+1k—2) (k+3,k,k—1)
(k+2,k+2,k—2) (k+2,k+1,k—1) (k+2,k, k)

(k+ 1,k +1,k)

Figure 7.5: Vertices at small distance from (k+ 1,k + 1,k) in H(3,3k +2), k > 3.
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n>4, rZ0,£1 | n>4, r=£1 (modn) n>6, r>12 ne{4,5}, r>10 (n,r)=(4,8)
(mod n) (n,r)#(4,5) r=0 (modn) r=0 (modn) T
\{ Y \f/ N
a
a a
«

Table 7.1: Vertices at small distance from « in H(n,r), for 4 <n <r.

Remark 7.6. H(3,r) is always a graded poset, with rank function rank(A) = A; — As.
Note {A1, A3} uniquely determines A, since Ay + Aa + A5 = 7.

Similarly, H(r) is graded for r < 6 so H(n,r) is graded for any n in this case. But
for n > 4 and r > 7, H(n,r) is never a graded poset because we have disjoint paths
from (n —3,2,1) to (n —4,2,1,1) of length 2 and 3, namely

(n—3,2,1) = (n—3,1%) = (n —4,2,1%)

and
(n—3,2,1) = (n—4,3,1) — (n —4,2%) = (n —4,2,1?).

O

Proposition 7.7. Let 4 < n < r. There exists an order-reversing isomorphism on
At (n,r) if and only if (n,r) = (4,5).

Proof. Since At (4,5) is totally ordered under <, there is a unique order-reversing iso-
morphism on AT(4,5). If (n,7) # (4,5) then it is straightforward to verify that the
vertices at small distance in H(n,r) from the minimal element e of A*(n,r) are as de-
picted in Table and so there cannot be an order-reversing isomorphism on At (n,r).
These have been presented in more detail in Appendix [A] O

Proof of Proposition[7.1 This follows immediately from Propositions [7.5and [7.7] O

7.2 Quasi-hereditary algebras

Quasi-hereditary algebras are an important class of algebras which were first introduced
in the context of highest weight categories in the representation theory of semisimple
complex Lie algebras and algebraic groups [5]. These include many naturally occurring
algebras, such as the Schur algebras and Auslander algebras, and exhibit useful prop-
erties including finite global dimension and cellularity. We recall some standard facts
about quasi-hereditary algebras and Schur algebras, following the account in [14]. For

further detail, see also [I3] Appendix], [20] and [48], for instance. The notion that a
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finite-dimensional algebra over a field is quasi-hereditary if and only if its module cat-
egory is a highest weight category provides a certain combinatorial structure of which

we make extensive use.

7.2.1 Background

Let S be a finite-dimensional K algebra, and denote by mod .S the category of finite-
dimensional left S—modules. Let {L(\) : A € A} be a complete set of pairwise non-
isomorphic simple S—modules. For each A € A, let P()\) denote a minimal projective
cover and I(\) a minimal injective envelope of L(A). Now let < be a partial order on
the set A.

Letting M (\) denote the (unique) maximal submodule of P()\), the module A(X) is
defined to be the quotient of P(\) by U, where U is minimal amongst submodules U’ of
M (X) such that all of the composition factors of M (X\)/U’ are of the form L(u) for some
< A. The module V()) is defined to be the submodule of I(\) containing L(\) such
that V(A)/L(X) is maximal amongst submodules of I(\)/L(A) all of whose composition
factors are of the form L(u) for some p < A. A standard (resp. costandard) (also Weyl,
resp. dual Weyl) S—module is one which is isomorphic to A(\) (resp. V(A)) for some
Ae A

By construction, the composition multiplicities [A(A) : L(A)] and [V(A) : L(A\)]
are both equal to one, and it is straightforward to observe that {[L(A)] : A € A},
{[AN)] : A € A} and {[V(A\)] : A € A} are all Z-bases for the Grothendieck group of
mod S. For an S—module V, we define (V : A(\)) and (V : V(X)) as follows:

V1= S AWAN] L V)= S s VONIT)
A€A AeA
Let F(A) (resp. F(V)) denote the full subcategory of mod S of those modules which
have a standard or A-filtration (resp. costandard or V-filtration). If V' € F(A), then
(V' : A()N)) equals the A-filtration multiplicity of A(\) in every standard filtration
of V, and similarly for V' € F(V). (We reserve parentheses for A- and V-filtration
multiplicities, and square brackets for composition multiplicities.)

The category mod S is a highest weight category with respect to weight poset (A, <)
if for all A\, u € A,

P()\) e F(A), (PN):AMN)=1, and (P\):A)>0 = p>X  (7.1)

Equivalently, S is a quasi-hereditary algebra (with respect to weight poset (A, <)); see
[13, Appendix| or [48], for instance, though the definition just presented will be more
useful for our purposes than the equivalent definition of quasi-hereditary algebras us-
ing heredity ideals. We simply say that S is quasi-hereditary when the weight poset is
fixed or understood. Note that a given finite-dimensional K—algebra S may admit dif-

ferent quasi-hereditary structures (i.e. have different standard modules), corresponding
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to different partial orderings on an indexing set for simple S—modules which satisfy the
conditions in .

Suppose S is quasi-hereditary with respect to (A, <). We have Brauer-Humphreys
reciprocity [I4, Theorem 1.4]: for all A\, pu € A,

A (partial) tilting module T is one that satisfies both T' € F(A) and T' € F(V). A
full set of pairwise non-isomorphic indecomposable tilting modules is given by {T(}) :
A € A}, with the properties

(TN : X(\) =1, (T(\) : X(1) >0 = p <A, for X € {A,V}. (7.2)

A full tilting module is a tilting module T such that T'(\) occurs as a direct summand
of T for each A € A. Let T be a full tilting module. Then S’ = (Endg(T))°P is a Ringel
dual of S (where we have taken the opposite algebra in order to consider left, not
right, S’~modules). The algebra S’ is determined up to Morita equivalence, and S” is
Morita equivalent to S; we denote Morita equivalence by ~,;. Indeed, there exists a
suitable choice of full tilting modules such that S” is isomorphic to S as quasi-hereditary
algebras [14, Theorem 1.7]. We fix T = @ eaT(\) and set S' = (Endg(PreaT'(V))),
for convenience.

The Ringel dual S’ is again quasi-hereditary, but with respect to (A, <°P). The left
exact functor Homg (7T, —) : mod .S — mod S’ gives an equivalence between F (V) and
F(A') [13 §A4], sending

V) — AN, T — P'(\), I\ —s T'(\)

for all A € A and where A’(—), P’(—) and 7’"(—) denote the standard, indecomposable
projective and indecomposable tilting modules for S’ respectively. Furthermore, the

filtration multiplicities satisfy

for all A\, u € A.

If S and T are quasi-hereditary algebras with respect to some given weight posets,
i.e. partial orderings on the indexing sets, then a Morita equivalence between S and T is
a Morita equivalence of quasi-hereditary algebras if the resulting bijection between the
set of simple S—modules and the set of simple T—modules respects the partial orders.
A quasi-hereditary algebra S (w.r.t. (A, <)) is Ringel self-dual if S is Morita equivalent
to S’ as quasi-hereditary algebras. Letting {L’(\) : A € A} denote a complete set of
simple S’-modules, the Morita equivalence maps L()\) to L’(j\) with A —> X being an
order-reversing isomorphism on (A, <).

For all natural numbers n and r, the Schur algebra S(n,r) is quasi-hereditary with
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respect to (AT (n,r), ). We remark that Donkin’s result of Ringel self-duality of S(n, r)
when n > r gives the conjugation map on partitions A — X', which is indeed order-
reversing on AT (n,r), in fact the set of all partitions of r in this case [I3]. Moreover, for
Schur algebras there is a contravariant duality © (see [33] §2.7]) such that for all A € A,

Hence we have identities such as [A(X) : L(p)] = [V(A) : L(p)] and (T'(A) : A(p)) =
(T'(N\) : V(p)) by taking °.

Corollary 7.8. Let 3 <n <r. For (n,r) ¢ {(3,4),(3,5),(3,7),(3,8),(4,5)}, the Schur
algebra S(n,r) is not Ringel self-dual.

Proof. Ringel self-duality would imply a Morita equivalence of quasi-hereditary algebras
S(n,r) — S(n,r) such that the permutation on the indexing set A = A*(n,r) of
irreducible modules is an order-reversing map on (A, <). The assertion then follows
from Proposition [7.1] O

Remark 7.9. Our current definition of Ringel self-duality (see [2I} (1.1)]) depends cru-
cially on the poset structure (A, <). This dependence has the advantage of allowing
us to exploit combinatorial features of (A, <) as in Corollary for instance, but one
may also ask similar questions for a definition of Ringel duality ‘intrinsic’ to the quasi-
hereditary algebra. In [6, Theorem 2.1.1], Coulembier shows that if a finite-dimensional
algebra A has a simple-preserving duality, then up to equivalence there is only one pos-
sible quasi-hereditary structure (A, <¢) on A, where this ‘essential’ partial order <€ is
derived from the unique choice of standard modules for A. Nevertheless, for now we
investigate only the specific dominance ordering < on partitions, ubiquitous in the study

of the representation theory of symmetric groups. O

7.2.2 Blocks of Schur algebras

The Ext! quiver of an algebra S is a directed graph with vertices labelled by the simple
S-modules, say {S;}icr, and the number of arrows S; — S, is equal to the dimension of
Extg(S;,S;). A (finite-dimensional) algebra S is indecomposable if and only if its Ext'
quiver is connected, and Ext! quivers are preserved under Morita equivalence. Hence
if S ~ys T are algebras and S is indecomposable, then T is also indecomposable. We

begin with two easy results, whose proofs have been included for convenience.

Lemma 7.10. Let S be a quasi-hereditary algebra. If S = @®;B; is the block decompo-
sition of S, then each (B;)' is indecomposable and ®;(B;) = 5.

Proof. Let the weight poset for S be (A, <). For each A € A, clearly the simple module
L(\) lies in some block, and the modules A(\), V(A), P(A), I(A\) and T'(\) all lie in
that same block since they are indecomposable and have a non-zero map to L(A). We
say A lies in the block B if L(\) lies in B. In particular, the blocks of S inherit a
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quasi-hereditary structure from S and their weight posets form a partition of (A, <),
since a block B; acts as zero on any modules lying in a block B; whenever ¢ # j. Since
Homg(T' (), T(p)) = 0 whenever A, u € A do not lie in the same block, we have that

(8')° = D Ends(@ren T(N) = P Endp, (Gren T(N) = D((B))°P.
It remains to observe that (B;)" is again indecomposable, for B; a block of S: if (B;)’
decomposes into blocks by @ - -+ @ by, then by a similar argument we find that (B;)” =
(b1)'@---®(b;) is a decomposition into (non-zero) algebras. But B; is Morita equivalent

to (B;)", so (B;)" is indecomposable and | = 1 as required. O

Proposition 7.11. Let S be a quasi-hereditary algebra with weight poset (A, <). Sup-
pose that S is semisimple and that there exists an order-reversing isomorphism t on
(A, <). Then S is Ringel self-dual.

Proof. Since S is semisimple, in fact L(A) = A(A) = P(A) for all A € A and each L(\)
lies in its own block. Each block of S is isomorphic to a matrix algebra Mat,, (K),
which in turn is Morita equivalent to K for any m € N, and the algebra K has a unique
quasi-hereditary structure. For A € A, let By denote the block of S containing L(\).
Using Lemma we may construct a Morita equivalence between S and S’ which
sends By to (By(y))’, and hence L(X) to L'(t(A)), for every A € A. O

Doty and Nakano have determined exactly when S(n,r) is semisimple in [17].

Theorem 7.12 ([I7, Theorem 2]). Let K be an infinite field of characteristic p > 0,
and let n,r € N. Then Sk (n,r) is semisimple if and only if (i) p =0, (i) p > r, or
(i) p=n=2 and r = 3.

By Corollary and Proposition it remains to investigate whether S(n,r) is
Ringel self-dual in the following cases, where p = char(K):

S(3,4), pe{2,3}, S(3,5), p€{2,3,5}, S(3,7), pe{2,3,5,7},

(7.3)
S(3,8), pe{2,3,5,7}, S(4,5), pe {2,3,5)

In the rest of this and the following section we show that none of the Schur algebras
in are Ringel self-dual, so the only S(n,r) with 3 < n < r which are self-dual are
those which are semisimple with (n,r) € {(3,4),(3,5),(3,7),(3,8), (4,5)}.

We record how the simple modules are partitioned into blocks for the Schur algebras
in , expressed as a partition of AT (n,r), from which it will be immediately clear
why most of these S(n,r) cannot be self-dual.

Proposition 7.13. Let (n,r) € {(3,4),(3,5),(3,7),(3,8),(4,5)} and consider a Schur
algebra S(n,r) defined over a field K of characteristic 0 < p <.

1. For (n,r) = (3,4):
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(i) All four simple modules lie in the same block when p = 2.

(ii) There are three blocks when p = 3: {(4),(2,2)}, {(3,1)} and {(2,1,1)}.
. For (n,r) = (3,5):

(i) There are two blocks when p = 2: {(4,1)} and AT (3,5)\ {(4,1)}.
(ii) There are three blocks when p = 3: {(5), (22,1)}, {(4,1),(3,2)} and {(3,1?)}.
(iii) There are three blocks when p = 5: {(5), (4,1),(3,1%)}, {(3,2)} and {(22,1)}.

. For (n,r) = (3,7):

(i) There are two blocks when p = 2: {(6,1),(4,3)} and AT(3,7)\{(6,1),(4,3)}.
(ii) There are three blocks when p = 3: {(7),(5,2), (4,3),(4,2,1)}, {(6,1),(3,2?)}
and {(5,1?), (3%, 1)}.
(iii) There are four blocks when p =5: {(5,1%)}, {(4,2,1)}, {(6,1),(5,2),(3,2?)}
and {(7),(4,3), (3%, 1)}.
(iv) There are siz blocks when p =7: {(7),(6,1),(5,1,1)} and each of the remain-
ing X lies in its own block.

. For (n,r) = (3,8):

(i) There are two blocks when p =2: {(5,2,1)} and A*(3,8)\ {(5,2,1)}.
(ii) There are three blocks when p = 3: {(6,1%),(3%,2)},
{(7,1),(6,2), (4%), (4,22)} and {(8), (5,3),(5,2,1),(4,3,1)}.
(iii) There are five blocks when p = 5: {(6,1?),(5,2,1), (4,2%)}, {(4,3,1)},
{(8).(41)}, {(6,2)} and {(7,1),(5,3), (3*,2)}.
(iv) There are eight blocks when p = 7: {(8),(6,2),(5,2,1)} and each of the re-

maining X lies in its own block.
. For (n,r) = (4,5):

(i) There are two blocks when p = 2: {(5),(3,2),(3,1%),(22,1)} and
{(4,1),(2,1%)}.
(ii) There are three blocks when p = 3: {(4,1),(3,2)}, {(5),(2%,1),(2,1%)} and
{(3.1%)}.
(iii) There are three blocks when p = 5: {(5),(4,1),(3,1,1),(2,13)}, {(3,2)} and
{(2,2,1)}.

Proof. This can be calculated directly from Donkin’s description of blocks in [I1]. O

Since a Morita equivalence between algebras preserves the Ext! quiver, blocks must

be mapped to blocks, being determined by (the existence of) non-split extensions be-

tween simple modules. Thus if a Schur algebra S = S(n,r) is Ringel self-dual, then the

Morita equivalence S ~jp; S’ gives an order-reversing isomorphism ¢ on A™(n,r) such
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Table 7.2: Example A and t(\) showing that S(n,r) over a field of characteristic p is
not Ringel self-dual for all (n,r,p) # (3,4,2) in (7.3).

that A and p lie in the same block of S if and only if £(A) and ¢(p) lie in the same block
of §', for all A\, u € AT (n,r). Let |B| denote the number of simple modules lying in the
block B. Let S = ®;¢;B; be a block decomposition of S. Given some block B; of S,
suppose it is mapped under ¢ to some block of S’: it is isomorphic to (B;)’ for some
j € I, by Lemma [7.10} so
|Bil = |(B;)'| = |Bjl.

Then we obtain a contradiction to the assumption of Ringel self-duality of S if in fact
there is some ¢ € I such that there exists A € B; and ¢(\) € B; with |B;| # |Bj|.

Ezample 7.14. Consider a Schur algebra S(3,4) over a field of characteristic 3. The
blocks of S(3,4) are {(4), (2,2)}, {(3,1)} and {(2,1,1)}. The map ¢ being order-reversing
implies B; 5 (4) — (2,1,1) € (B;)’, but |B;| = 2 and |B;| = 1. Hence S(3,4) over a
field of characteristic 3 is not Ringel self-dual. O

Proposition 7.15. All of the Schur algebras S(n,r) in (7.3), except S(3,4) over fields

K of characteristic 2, are not Ringel self-dual.
Proof. See Table [7.2] O

Remark 7.16. This argument is inconclusive for S(3,4) over a field of characteristic 2 as
the Schur algebra itself is indecomposable (i.e. a single block) in this case. A different

argument which covers this case is given in the next section. %

7.2.3 Tilting matrices and decomposition numbers

We compare A-filtration multiplicities of tilting modules with decomposition numbers

for symmetric groups to see that S(3,4) over a field of characteristic 2 is not Ringel
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self-dual.

Let n,r € N and let K be an algebraically closed field of characteristic p > 0. Suppose
that S = Sk (n,r) is Ringel self-dual, so we have a Morita equivalence S’ ~j; S of quasi-
hereditary algebras, giving an order-reversing function ¢t : A — A. For convenience we
write tA for t(A). Since A(N)° = V(A) and T'(\) = T'(A\)°, we have

(P(EA) = Altp)) = (P'(A) : A'(p) = (T(A) : V(i) = (T(A) = Ap)).
By Brauer-Humphreys reciprocity,
(P(tA) : A(tp)) = [V(tp) : LN,

which is equal to the decomposition number [A(ty) : L(tA)] for S(n,r) as °© fixes simple
modules. Therefore
(T M) = [Altg) : L)

Further, if \ is p-regular then (T'(\) : A(u)) = [S* : D*], a decomposition number
for the symmetric group &,, i.e. the multiplicity of the modular irreducible module D*
as a composition factor of the Specht module S*, by |20, Lemma 4.5]. Note for p-regular
A, S has simple top isomorphic to D*, and all other composition factors are isomorphic
to DY with v A.

Ezample 7.17. Let (n,r,p) = (3,4,2). Since AT (3,4) is totally ordered under <, the
map t is uniquely determined. Consider the tilting matriz (T'(X) : A(u)) for S(3,4) over

characteristic 2:

T(4) T(3,1) T(2,2) T(2,1?)
A(4) 1
A(3,1) | 1 1
A(2,2 0 1 1
A(2,12) | 1 1 a 1

(For convenience, we write T'A for T'(\), and so on, when the meaning is clear from
context.) The matrix as indexed is lower unitriangular. The columns corresponding
to the 2-regular partitions (4) and (3,1) contain certain decomposition numbers for G,
when p = 2 as described above, and these values are known: see for example [4T].
The only unknown value thus far is a := (7(2,2) : A(2,12)); to show S(3,4) is not
self-dual we will not need to know its exact value (but nevertheless it is calculated
in Remark below). In certain cases there are ad hoc methods to calculate such
multiplicities. In general it remains a central open problem in representation theory to
compute decomposition numbers.

The reverse decomposition matriz [A(tp) : L(t\)] for S(3,4) over characteristic 2,

indexed by A, v in the same order as the tilting matrix above, is also lower unitriangular:
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L(2,1?) L(2,2) L(3,1) L(4)
A(2,12) 1
A(2,2) * 1
A(3,1) * * 1
A(4) * * * 1

We can use results of Erdmann and Kovécs [22] on the structure of the symmetric
power S"E = V(r) 2 A(r)° of the natural n-dimensional GL,—module E to find the last
row of decomposition numbers [A(r) : L(t\)]. Note here S"E is viewed as a Sk (n,r)—
module via the equivalence of Mg (n,r) and mod Sk (n,r) (see, for example, [33], (2.4d)]).

By [22, Lemma 4.6], S"E has a filtration whose quotients are isomorphic to

S, Sr (STE)Y, S (SPE)E, ..., Srkrg (SFE)F

where k = |r/p| and F is the Frobenius functor (the first few quotients may vanish
when n(p — 1) < r). Here S = L(\) where A = (p—1,p—1,...,p — 1,b) [ with
0 <b<p-—1. So we can calculate the composition factors of S™F inductively.

Returning to (n,r,p) = (3,4,2): S*(E) has filtration quotients S%, S2 @ E¥ and
SO® (S?E)F.

e The factor S% = L(1*) vanishes when n = 3;

i

=L(1%) and E = L(1);

e S0 = [(0), the trivial module, and S?E has filtration quotients S2 = L(1?) and
SO® EF = L(1)F.

Simplifying these using the Steinberg tensor product formula, S*(E) has the following

three composition factors:
o L(1?)® L()F = L(12) ® L(2) = L(3,1),
o (S2)F = L(1%)F = L(2?), and

o EF = L(1)F* = L(4),

giving
L(2,12) L(2,2) L(3,1) L(4)
A(2,12) 1
A(2,2) * 1
A(3,1) * * 1
A(4) 0 1 1 1

So the bottom left entries (7'(4) : A(2,1?)) and [A(4) : L(2,1?)] of the tilting matrix
and decomposition matrix respectively are not equal, implying that S(3,4) over a field

of characteristic 2 cannot be Ringel self-dual. O

We have at last shown the following:
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Theorem 7.18. Let 3 < n < r and char(K) = p. Then the Schur algebra Sk (n,r) is
Ringel self-dual if and only if

(i) (n,r) €{(3,4),(3,5),(3,7),(3,8),(4,5)}, and
(ii) p>r orp=0.

Remark 7.19. By considering tilting matrices and decomposition numbers, one can show
that the Schur algebras in are not Ringel self-dual, giving a second proof of The-
orem [7.18l We need only consider the last row of the reverse decomposition matrix,
as in Example above, when (n,r,p) # (3,5,3). These calculations are given in
Appendix

When (n,r,p) = (3,5,3), the tilting matrix is

T() T(4,1) T(3,2) T(3,12) T(22,1)
A(5) 1
A(4,1) 0 1
A(3,2) 0 1
A3 | 0 0
A2 | 1 0 0 1

The composition factors of A(5) are L(2%,1) and L(5), so thus far the reverse de-

composition matrix is

L(2%2,1) L(3,1%) L(3,2) L(4,1) L(5)
A(22,1)
A(3,12) b 1
A(3,2) * c 1
A(4,1) *
A(5) 1 0 0 0 1

and we need to compare further entries. In [39] James proved first row and first column
removal theorems for the decomposition numbers of GL,, of the form [A(u) : L(A)], and
hence of Schur algebras; he further obtained these removal theorems for the symmetric

groups via the use of Schur functors. By first column removal,
b:=[A(3,1%) : L(2%,1)] = [A(2) : L(1?)]
and by first row removal,
ci= [A(3,2) : L(3,12)] = [A(2) : L(1?)]

also. But the entries corresponding to b and c in the tilting matrix above are not equal,

whence S(3,5) in characteristic 3 cannot be Ringel self-dual. O
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Remark 7.20. When (n,r,p) = (3,4,2), we can in fact show that
a=(T5(2,2,0): A3(2,1,1)) =1

where we have added the subscript ,, to T(\) and A(u) to indicate that they are
S(m,r)-modules (for fixed r).
In general, (noting that it will sometimes be convenient to allow partitions to have

trailing zeros; the meaning should always be clear from context)
(Tn(A) : An(p)) = (Tn-1(X7) : Ana(p"))

if both A and g in A" (n,r) have at least one trailing zero and * means to remove a trailing
zero. We can similarly remove trailing zeros for multiplicities involving L, A, V,T. This
follows directly from S(n,r) = eS(N,r)e where N > n and e is an appropriate idempo-
tent: see [33, §6.5] or [20} (3.9), (1.6), (1.7)]. Furthermore, if N > r and A\, u, N,/ Fr
all have at most N parts, then

(T\) = V() =[V'(1) - L'V)] = [V () : LA

The first equality follows from [12, Lemma 3.1], while the second follows from the Ringel
self-duality of S(N, ), sending A — A’ from mod S(N, ) to mod S(N,r)’. Hence we may

pass from n = 3 to N =4 = r to see that
a = (T4(272a050) : A4(27 17 170)) = [A4(37 17070) : L4(2727070)} = [A2(37 1) : L2(272)]

which equals [Ag(2,0) : Lo(1,1)] by first column removal. But S?(E) = V(2) has
composition factors 5 = L(1,1) and @ EF = L(2), so

[A2(2,0) : Lo(1,1)] = [V2(2,0) : La(1,1)] =1

as claimed.
This also completes the tilting matrix when (n,r,p) = (3,5,2) for instance, where
the value (73(3,1,1,0) : A3(2,2,1,0)) can be seen to equal

[A5(3,2,0) : L3(3,1,1)] = [A2(2,0) : La(1,1)] = 1.

7.2.4 Ringel self-duality of blocks of finite type

Of independent interest are the Ringel duals of blocks of Schur algebras. An algebra
A has finite representation type if it has only finitely many isomorphism classes of
indecomposable modules in mod A. It is straightforward to observe that if B is a block

of a Schur algebra and B has finite representation type, then B is Ringel self-dual. For
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convenience, we include a proof. We then have, for example when char(X) = 3, that
all of the blocks of S(3,4) are self-dual (since S(3,4) itself has finite type [16]) but the
whole algebra S(3,4) is not self-dual via some global function ¢ in the sense of [21], by
Theorem [Z.18

In fact, the blocks of finite type were classified completely by Donkin and Reiten in
[15], in terms of n, r, the characteristic p of the field and p-weights of blocks. For our
purposes, we need only observe that such blocks are Morita equivalent to certain basic
algebras.

A (finite-dimensional) algebra A over an algebraically closed field is basic if all ir-
reducible A-modules are 1-dimensional. Given an algebra A, there is a unique basic
algebra which is Morita equivalent to A (see [I8, Corollary 1.2.7], for example). Indeed,
to construct the basic algebra of A, we essentially perform an idempotent truncation
on A, taking a subset of idempotents in an orthogonal primitive idempotent decom-
position of 1 € A corresponding to pairwise non-isomorphic indecomposable projective
A-modules. Moreover, if A is quasi-hereditary then its basic algebra is Morita equivalent
to A as quasi-hereditary algebras.

For each m € N, define 7, to be the algebra KQ/I where @ is the following quiver

with m vertices:

Oé7n_
1L>2°‘_2> —1>m
ci—— e L e e

81 B2 Bm—1

and the ideal I is generated by relations (reading arrows in the order of function com-

position)
aja;i—1 =0, Bi18i=0, ap_18m-1=0, Bioy=0;—18i—1 V2<i<m-—1

Then ¢, is quasi-hereditary with respect to ({1,2,...,m}, <), where < denotes the

usual ordering on integers.

Proposition 7.21 ([15, Theorem 2.1], [19]). Let B be a block of a Schur algebra S(n,r).
If B has finite type, then the block algebra Sg(n,r) is Morita equivalent to the basic
algebra oy, where m = |B].

For B of finite type, the simple B-modules may be linearly ordered (see [19, Propo-
sition 4.1], for example), and the Morita equivalence above is in fact one of quasi-
hereditary algebras. Indeed, by considering the form of the decomposition matrix for
B, we find that B only has two possible quasi-hereditary structures: that given by the
stated linear order, and another given by its reverse. That B of finite type is Ringel

self-dual follows immediately from the Ringel self-duality of .o7,,:
Proposition 7.22. The quasi-hereditary algebra <, is Ringel self-dual.

Proof. Let Ly, Ls,..., Ly, denote the simple 7,—modules, corresponding to the ver-
tices 1,2,...,m respectively. By [I8, 1.5.6], we can calculate the Loewy layers of the
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corresponding indecomposable projective modules P;, which are as follows:

L; .
Py = L, P, = L'i—l?Li+1, P, = Lﬁ:il (2 <i:1<m— 1)
1 :

i

By (7.1), [I5, Corollary 1.3] and Brauer-Humphreys reciprocity, we then deduce that
Ar=Vi=L, A=, wvi="1  (2<i<m)

where A; (resp. V;) denotes the standard (resp. costandard) 7, —-modules corresponding
to L;, for 1 <1¢ < m. Finally, observe that Py, Py, ..., P,_1 are indecomposable tilting
modules. Thus by (7.2), we have the following;:

Ly L;_1 i
T, = Ll, T, = %2, T; = Li®Li—2, (3 <1< m)
1

From this it is also clear that dimg Hom,,, (T;,7;) = 1 whenever |i — j| = 1. Hence by
[21, Proposition 3.2], o7, := Endg, (®1",T;) = o, as quasi-hereditary algebras.. [

Corollary 7.23. Let B be a block of a Schur algebra. If B has finite representation
type, then B is Ringel self-dual.

7.2.5 Quantized Schur algebras

Finally, we conclude with some remarks on quantized Schur algebras. Quantized Schur
algebras Sy(n,r), or g-Schur algebras, were introduced by Dipper and James in [10] as
a generalisation or quantization (deformation) of the classical Schur algebras. This is in
analogy with the relationship between symmetric group algebras and their deformations,
known as the Hecke algebras of type A, coming from the general linear groups. We refer
the reader to [I3] for a detailed account of the ¢-Schur algebras, their representation
theory, and connections with the representation theory of Hecke algebras and quantum
general linear groups.

For all natural numbers n and r and non-zero elements g € K, the g-Schur algebra
Sq(n, ) is also quasi-hereditary with respect to (A*(n, ), <). Thus, a natural extension

of the question considered in the first part of this chapter is the following:
Question 7.24. Which q-Schur algebras are Ringel self-dual?

Since g-Schur algebras have the same indexing posets for their irreducible modules
as their corresponding classical Schur algebra, Proposition implies that if S,(n,r) is
Ringel self-dual then n < 2, n > r or (n,r) € {(3,4),(3,5),(3,7),(3,8),(4,5)}. Donkin
has proved self-duality in the case n > r in [I3] §4.1], and the remaining cases are still
open.

As in the classical case, a semisimple g-Schur algebra S, (n, ) is Ringel self-dual (for
our current definition) if and only if AT (n,r) is reversible. Thus in order to classify

the Ringel self-dual ¢g-Schur algebras, it remains to investigate those S;(n,r) which are
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not semisimple. Semisimplicity of ¢-Schur algebras was determined by Erdmann and
Nakano in [23].

Moreover, the blocks of ¢g-Schur algebras are described by Cox in [7, Theorem 5.3].
Assuming that a non-semisimple g¢-Schur algebra S,(n,r) is Ringel self-dual further
imposes combinatorial restrictions on the posets indexing irreducible modules in each
block, as in Section [7.2.2] and we may then similarly consider decomposition numbers
for the corresponding Hecke algebras and filtration multiplicities for tilting modules of
Sq(n,r).

Extending our techniques from this chapter to the case of ¢g-Schur algebras is a first
step towards tackling our primary goal along this line of research, which is to answer

Question [7.24] and provide a classification of the Ringel self-dual g-Schur algebras.
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Appendix A

Structure of partition posets

The vertices at small distance from the minimal element of H(n,r) when 4 < n < r

(excluding (n,r) = (4,5)) are as follows:

8

|

7,1

6,1,

/
\

Figure A.1: H(4,38).

(k +2, (/{ + 1)[—2.’ k.n—H»l) ? E ((k + 1>l+l’kn—l—27k _ 1)

>~

Figure A2: n >4, r=nk+1,1€{2,3,...,n—2}.
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(k+2,k"2, k- 1) E ((k+1)%, k772, (k= 1)?)

~

:E ((k+1)2 k"3, k — 1)

!

E (k+ 1,k

Figure A.3: n>5,r=nk+ 1.

((k+2)2, (k+1)"% k%) E :@j (k+2,(k+1)"2,k—1)

~

(k+2,(k+1)"3 k?)

!

B o

Figure Ald: n > 5, r=nk+n—1.

(k+2,k+1,(k-1)?) F :@ ((k+1)3,k—2)
NS
:@ ((k+1)%k,k—1)
:@j (k+1,k%)

Figure A5: n=4,r=4k+ 1, k > 2.
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(k+3,k%) :EID :ﬁj (k+2,(k+1)%k—1)
~N S
F (k+2,k+1,k?)

E ((k+ 1) k)

Figure A.6: n =4, r =4k + 3.

k+1 kn(‘ /.71

(k+2,k"73, (k- 1)?) :? E (k+1)% k"3, k- 2)

|
P
(k+ 1,672k — 1)
_H
!
H
(k™)
_H

Figure A.7: n > 6, r = nk.
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(k+2,k k —2)
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~ — T —

(k+ 2,82, (k —1)?) @ :@ ((k+1)%,k% k- 2)

\/

? ((k+ 1%k, (k- 1)?)

% (k+1,k%k—1)
B o

Figure A.8: n =5, r = bk.

(k+2,k% k —2)
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o~ TS T
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—
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E (k+1,k2 k- 1)

|
e

Figure A.9: n =4, r =4k, k > 3.
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Appendix B

Tilting matrices and

decomposition numbers

For the tilting matrices considered, entries in the columns T'(\) for p-regular A equal
certain decomposition numbers of symmetric groups, which may be found in |40l Ap-
pendix| or calculated using [40, Theorems 21.11, 24.1], for instance. Also, composition

factors of A(r) always occur with multiplicity one, by [?].

Composition factors Example A\, u F 7 s.t.
(n,7,p) of A(r) (T(A) : Ap)) i [A(tp) : L(tN)]
(3,4,3) L(2%), L(4) (T(3,1): A(2,1%)) =0 [A4): L(2%)] =1
(3,5,2) || L(3,1%),L(3,2), L(5) (T(5): A2%1) =1 [A(5) : L(22,1)] =0
(3,5,5) L(4,1), L(5) (T(3,1%): A(2%,1)) =0 [A(B) : L(4,1)] =1
L(32,1), L(5,1%), ) e
(3,7,2) L(3,2%), L(T) (T(6,1): A(3,2%)) =0 [A(7): L(3%,1)] =1
,3) L(5,2), L(7) (T(6,1): A(3,2*) =1 , [A(7):L(3%1)]=0
7) L(6,1), L(7) (T(3%,1): AB,22) =0 , [A(D):L6,1D)]=1
L(3%,2), L(7,1), ) )
(3,8,2) L(6.2), L(#2), L(8) (T(8): A(3%,2) =2 . [A8):L(3%2)]=1
(3,8,3) L(5,2,1), L(8) (T(5,3): A(3%,2)=0 , [A®):L(5,2,1)]=1
(3,8,5) L(4%), L(8) (T(6,1%): A(3%,2) =0 [A(8): L(4*)] =1
(3,8,7) L(6,2), L(8) (T(4,3,1) : A(3%,2)) =0 [A(8): L(6,2)] =1
(4,5,2) || L(3,1%),L(3,2),L(5) | (T(4,1):A(2,1%) =1 [A(5) : L(22,1)] =0
(4,5,3) L(22,1), L(5) (T(4,1): A(2,1%) =0 [A(B) : L(2%,1)] =1
(4,5,5) L(4,1), L(5) (T(3,1%): A(2,1%) =1 [A(5) : L(3,2)] =0

Table B.1: Data giving a second proof of Theorem [7.18} see Remark

For (n,r,p) = (3,7,5), the composition factors of A(7) are L(4,3) and L(7). While
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the order-reversing isomorphism ¢t on A*(3,7) is not unique (¢ either fixes (5,12) or
t(5,1%) = (4,3)), we have that (T(4,3) : A(3,22)) = (T(5,1%) : A(3,2%)) = 0 but
[A(T): L(4,3)] = 1.
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