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Abstract

In this thesis, we study the representation theory of the symmetric groups Sn, their

Sylow p-subgroups Pn and related algebras.

For all primes p and natural numbers n, we determine the maximum number of

distinct irreducible constituents of degree coprime to p of restrictions of irreducible

characters of Sn to Sn−1, and show that every value between 1 and this maximum is

attained. These results can be stated graph-theoretically in terms of the Young lattice,

which describes branching for symmetric groups. We present new graph isomorphisms

between certain subgraphs of the Young lattice and find self-similar structures. This

generalises from p = 2 to all p work of Ayyer, Prasad and Spallone which was central

in the construction of character correspondences for symmetric groups in the context

of the McKay Conjecture, a fundamental open problem in the representation theory of

finite groups.

Linear characters of Sylow subgroups have also played a central role in character

correspondences verifying the McKay Conjecture, becoming the focus of much current

interest. For instance, a consequence of recent work of Giannelli and Navarro shows

the existence of linear constituents in the restriction of every irreducible character of a

symmetric group to its Sylow p-subgroups. We now identify these linear constituents,

using a mixture of algebraic and combinatorial techniques including Mackey theory and

an analysis of Littlewood–Richardson coefficients.

We determine precisely when the trivial character 1Pn appears as a constituent of

the restriction of an irreducible character of Sn, for all n and odd p. As a consequence,

we determine the irreducible characters of the Hecke algebra corresponding to the per-

mutation character 1Pn
xSn

. Analogous results are obtained for the alternating groups

An. We then extend our scope to arbitrary linear characters of Pn, proving in particular

that for all p, given linear characters φ and φ′ of Pn, the induced characters φ
xSn

and

φ′
xSn

are equal if and only if φ and φ′ are NSn(Pn)–conjugate.

Finally, we consider the representation theory of Schur algebras in all characteristics.

We classify the classical Schur algebras S(n, r) which are Ringel self-dual, using decom-

position numbers for symmetric groups, tilting module multiplicities and combinatorial

methods.
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Chapter 1

Introduction

Symmetries exist in the world all around us, from vast planetary orbits to microscopic

molecules. They play an active role in the way we process information: the existence of

symmetry allows us to filter data efficiently in order to simplify and solve many com-

plex problems. These natural phenomena can be studied in the abstract mathematical

framework of group theory and representation theory, in particular that of the symmet-

ric groups, whose importance extends beyond algebra and mathematics to all areas of

science. From Cayley’s theorem, stating that any finite group can be embedded into

a symmetric group, to the role of symmetric groups as pioneering examples for which

theories and conjectures concerning groups are first investigated, symmetric groups have

always been central in and continue to lie at the forefront of research in representation

theory.

Local–Global Conjectures. The Local–Global Conjectures form one of the most

significant families of conjectures in representation theory. Throughout, let G denote a

finite group and p a prime number. Though the ordinary representation theory of finite

groups was first developed over a century ago by mathematicians such as Frobenius,

Burnside and Schur, and modular representation theory by Brauer some decades after,

even today there are still many fundamental open problems in this vast and active area

of research.

Lying at the heart of modern representation theory, the Local–Global Conjectures

posit that certain information about the representation theory of a group G — the

‘global’ level — can be described using corresponding information about the p-local

structure of G, such as Sylow p-subgroups and Sylow normalisers, and in particular the

local subgroups of G, namely NG(P ) for non-trivial p-subgroups P of G. We refer the

reader to [45] and [51] for detailed surveys on the topic.

Obtaining information at a global level by investigating local behaviours is both a

natural and fruitful process, most notably evidenced by the classification of finite simple

groups. Indeed, a promising strategy towards proving these conjectures is to reduce to

(smaller) groups which are well-understood, or to situations where specific machinery
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may be developed, such as partitioning problems about a group into problems about

certain subgroups, or problems about group algebras into problems concerning their

blocks; verifying and understanding the conjectured statements in the case of well-known

or large families of groups; and reductions to simple groups.

Following this last approach, significant progress has already been made towards

Brauer’s Height Zero Conjecture by Kessar and Malle, who proved completely one di-

rection of the equivalence in its statement in 2013 [42], and also the McKay Conjecture

by Malle and Späth in 2016, who resolved it completely for p = 2 [46]. Moreover, these

ideas have led to the development of novel tools, techniques and results with applications

extending beyond the immediate origins of group theory and representation theory.

All of these new developments point to the existence of some rich, underlying theory

which would explain the various local–global phenomena, but this theory is as yet elusive.

These topics have therefore generated much interest and led to a plethora of international

research activities both past and upcoming on representation theory and finite group

theory, and in particular on the Local–Global Conjectures.

The McKay Conjecture. We now focus on one key conjecture in particular. A

central member of the Local–Global Conjectures is the McKay Conjecture. As explained

by Navarro in [51], it is no exaggeration to say that this open problem is the crux of

modern representation theory. Beyond its own importance, the McKay Conjecture has

a fundamental place in this family of conjectures as an origin from which several others

were conceived, including the Alperin–McKay Conjecture, the Dade Conjecture and

Broué’s Abelian Defect Group Conjecture [45]. For a finite group G, let Irr(G) denote

the set of ordinary irreducible characters of G. For p a prime, let Irrp′(G) denote the

subset of those irreducible characters of degree coprime to p.

Conjecture (McKay, 1972 [49]). Let G be a finite group and p be a prime. Let P be a

Sylow p-subgroup of G. Then

|Irrp′(G)| = |Irrp′(NG(P ))|

where NG(P ) denotes the normaliser of P .

There have been many results over the last few decades on the McKay Conjecture,

including Isaacs [35], who verified the conjecture for all finite groups of odd order at

all primes p, and Olsson [53], for symmetric groups and general linear groups. While

deceptively simple to state, the general McKay Conjecture is still open, though remark-

able progress has been made in recent years. A landmark paper of Isaacs, Malle and

Navarro [37] reduced this to a problem concerning simple groups in 2007 using certain

equivariant maps between sets of characters, leading to a major breakthrough by Malle

and Späth who verified the conjecture completely for p = 2 in 2016 [46].

The process of restriction of characters has played a key role in the construction of

bijections between Irrp′(G) and Irrp′(NG(P )) in the case that a Sylow p-subgroup P is

self-normalizing, see for example [50] and [52] for odd p. We remark that under this
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assumption, Irrp′(NG(P )) = Irrp′(P ) coincides exactly with the set of linear characters

of P . It was later shown in [26] that symmetric groups Sn where n is a power of 2 exhibit

the same phenomenon when p = 2: one finds that the restriction of every χ ∈ Irrp′(G)

to P contains a unique irreducible constituent χ∗ of degree coprime to p, and χ 7→ χ∗

is a correspondence of characters witnessing the truth of the McKay Conjecture. A

remarkable feature of these correspondences is that restriction is a choice-free process,

and indeed a natural operation to consider in the context of characters of a group and its

subgroups. The existence of ‘natural’ bijections respecting certain algebraic structures

or properties is a strong indication towards a theory that would explain the deeper

algebraic connections between G and its local subgroups.

Following this, the bijection in [26] became fundamental in the construction of a

canonical bijection between Irr2′(Sn) and Irr2′(Pn) for all natural numbers n in [28],

where Pn denotes a Sylow 2-subgroup of Sn. Here canonical refers to the property that

the bijection commutes with the action of Galois and group automorphisms, and a purely

algebraic description of this canonical McKay bijection was later given in [38]. Another

key ingredient used in [38] is [1, Theorem 1], showing that every odd-degree irreducible

character of a symmetric group Sn contains a unique odd-degree irreducible constituent

upon restriction to Sn−1. The first main result of this thesis can be summarised as

follows:

For all primes p, we describe the number of irreducible constituents of degree

coprime to p of restrictions χ
y
Sn−1

, for χ ∈ Irrp′(Sn).

This extends [1] from p = 2 to all p, and is described in more detail in Chapter 3.

A central theme in the character theory of finite groups is the relationship between

Irr(G) and Irr(P ). Though the aforementioned results illustrate the importance of con-

sidering the restrictions of characters of finite groups to their Sylow subgroups, sur-

prisingly little is known in general when, for instance, we do not impose the condition

P = NG(P ). This is the case even for symmetric groups, that is, when p is odd. A very

recent step towards providing a fuller picture of such restrictions is the following conse-

quence of work by Giannelli and Navarro [31]: for any prime p and any χ ∈ Irr(Sn), the

restriction of χ to a Sylow p-subgroup always contains a linear constituent. In fact, they

show that if p divides the degree of χ, then the restriction contains at least p different

linear constituents.

Despite this, it is not known a priori which linear constituents appear in such re-

strictions. Investigating such linear constituents is the primary focus of this thesis (see

Chapters 4, 5 and 6). The second main result of this thesis shows that it suffices to

consider only a subfamily of those linear characters of the Sylow subgroup.

Let p be any prime. Given linear characters φ and ψ of a Sylow p-subgroup

Pn of Sn, we show that the induced characters φ
xSn

and ψ
xSn

are equal if

and only if φ and ψ are NSn(Pn)–conjugate.
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This is an analogue for symmetric groups of a theorem of Navarro for p-solvable

groups [50], and is described in Chapter 4. Following this, we wish to identify those

linear constituents appearing in the restrictions of irreducible characters of symmetric

groups to their Sylow subgroups. The third main result of this thesis can be summarised

as follows:

Given a linear character φ of a Sylow p-subgroup Pn of Sn, we describe the

set of irreducible constituents of φ
xSn

.

The case of the trivial character φ is studied in Chapter 5, and arbitrary φ in Chap-

ter 6.

Schur algebras. In a related but distinct line of research, we investigate certain prop-

erties of Schur algebras. Around the turn of the twentieth century, Frobenius and Schur

discovered a fundamental link between the complex representation theories of the finite

symmetric groups Sr and the general linear groups GLn(C), for natural numbers n and

r, via what are now known as the Schur algebras S(n, r). These algebras lie at the inter-

section of significant areas in representation theory, capturing algebraic group theoretic

properties from GLn, but also being readily analysed using combinatorial techniques

analogous to those well-known in the study of Sr.

To understand the rational representation theory of GLn, it is enough to understand

their polynomial representations, and these in turn are equivalent to representations of

S(n, r). On the other hand, the application of so-called Schur functors passes structural

information from module categories of the Schur algebras to those of certain symmetric

groups. This is described in Green’s prominent monograph [33], which underpinned

much of the work in this area following its publication in 1980.

While we do not make explicit use of the following in our work, we must mention

the importance of Schur–Weyl duality, which relates the representations of GLn and Sr

through the tensor power E⊗r of the natural n-dimensional module E. This, amongst

other results, has motivated much work in recent decades to understand the close rela-

tionship between general linear groups and symmetric groups through the use of Schur

algebras.

The natural actions of GLn and Sr on E⊗r motivate an equivalent definition of

the Schur algebra S(n, r) as EndSr (E
⊗r), showing that it is an endomorphism ring

of certain permutation modules for symmetric groups. This form allows us to make

a generalisation parallel to the one from symmetric group algebras to Hecke algebras

in type A, from (classical) Schur algebras S(n, r) to the quantized q-Schur algebras

Sq(n, r) as introduced by Dipper and James in [10]. The role of the general linear group

is taken over by a certain Hopf algebra which is a quantized version of GLn. We will

not comment further here on these quantum general linear groups, except to say that

[13] provides a comprehensive introduction, in particular to their standard homological

properties.
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In some sense, Schur algebras are also more well-behaved than their motivating coun-

terparts. They are finite-dimensional, unlike the group algebras of GLn, and they are

quasi-hereditary algebras, unlike the group algebras of symmetric groups. The latter

point is of particular importance. Quasi-hereditary algebras were first introduced by

Cline, Parshall and Scott in [4], connecting the rational representation theory of re-

ductive algebraic groups in positive characteristic with the Bernstein–Gelfand–Gelfand

categoryO for semisimple complex Lie algebras. Quasi-hereditary algebras come in pairs

called Ringel duals, and a Ringel dual of S can be defined in terms of tilting modules

for S. This duality can be used to phrase the Kazhdan–Lusztig conjectures, another

significant family of conjectures in representation theory, in terms of maps between tilt-

ing modules and also composition factors in good or cogood filtrations [43]. Chapter 7

contains the final main result of this thesis, which is as follows:

We classify those (classical) Schur algebras which are Ringel self-dual.

Structure. We now describe the content of each chapter in turn.

In Chapter 3, we give best-possible bounds on the maximum number of distinct

irreducible constituents of degree coprime to p of the restriction χ
y
Sn−1

, as χ runs

over Irr(Sn), for any prime p and natural number n. We further determine all of the

attainable values for the numbers of such constituents. These results can also be stated

combinatorially in terms of the Young graph, a well-studied object at the interface of

representation theory and algebraic combinatorics describing the branching behaviour

of the symmetric groups. This work generalises from p = 2 to all primes p Theorem

1 of [1], which was central in the construction of character correspondences in [28] for

symmetric groups in the context of the McKay Conjecture. We then give analogous

results for character inductions, observing that more complex behaviours are exhibited

in this case, and describe graph isomorphisms between certain subgraphs of the Young

graph. This generalises from p = 2 to all primes p Theorems 2 and 3 of [1].

Fix a prime p. For each natural number n, let Pn denote a Sylow p-subgroup of the

symmetric group Sn. In Chapter 4, for all natural numbers n and all primes p we show

that if φ and ψ are linear characters of Pn, then the inductions φ
xSn

and ψ
xSn

are

equal if and only if φ and ψ are conjugate via an element of the normaliser NSn(Pn).

This is an analogue for symmetric groups of a result of Navarro for p-solvable groups

[50].

In Chapter 5, we determine the set of χ ∈ Irr(Sn) such that the trivial character 1Pn

of Pn appears as a constituent of χ
y
Pn

, for all natural numbers n and odd primes p. We

prove analogous results for the alternating groups An, and consequently determine the

irreducible characters of the Hecke algebras corresponding to the permutation characters

1Pn

xSn
and 1Pn

xAn
.

Extending our investigations from the trivial character to arbitrary linear characters

φ of Pn, we describe the set Ω(φ), the subset of Irr(Sn) consisting of the irreducible

5



constituents of φ
xSn

. This is done in Chapter 6 using new results on Littlewood–

Richardson coefficients.

In Chapter 7, we determine when the Schur algebra S(n, r) is Ringel self-dual for

all natural numbers 3 ≤ n < r. In particular, we complete the classification of classical

Schur algebras which are Ringel self-dual, following work of Donkin [12] and Erdmann

and Henke [21].
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Chapter 2

Preliminaries

2.1 Notation

We first record some notational conventions that will be used throughout this thesis.

Sets of numbers

We denote the set {1, 2, 3, . . . } of natural numbers by N, and the set of non-negative

integers by N0.

For m ∈ N, we let N≥m = {m,m+1,m+2, . . . } and N>m = {m+1,m+2,m+3, . . . }.
Furthermore, [m] := {1, 2, . . . ,m} and [m] := {0, 1, 2, . . . ,m− 1}.

Groups and characters

For n ∈ N, let Sn denote the symmetric group on n points, and An the alternating

subgroup of Sn. Also, let Cn denote a cyclic group of order n. For a set X, let SymX

be the group of permutations of X.

Let G be a finite group. Then Irr(G) denotes a complete set of ordinary irreducible

characters of G, and Lin(G) denotes the subset of those characters which are linear

(i.e. of degree 1). The trivial character of G is denoted by 1G. We also let Char(G)

denote the set of all (ordinary) characters of G.

Let p be a prime number. Define Irrp′(G) = {χ ∈ Irr(G) | p - χ(1)}. Also, Sylp(G)

denotes the set of Sylow p-subgroups of G.

Let H ≤ G. We denote conjugation of group elements by hg := g−1hg, and extend

this to subgroups so Hg := {hg | h ∈ H}. For χ ∈ Char(H) and g ∈ G, we define

χg ∈ Char(Hg) by setting χg(x) := χ(gxg−1) for all x ∈ Hg.

The restriction of the character χ from G to H is denoted by χ
yG
H

, or simply χ
y
H

when the original group is understood. Similarly, if φ is a character of H then φ
xG
H

(or

simply φ
xG) denotes the induction of φ from H to G. (If the meaning is clear from

context, we may also denote induction and restriction without the arrows.)

7



Symbols

Let M and N be finite-dimensional, not necessarily irreducible modules for some (finite-

dimensional) algebra A, usually a group algebra. We write M | N to mean that M is a

direct summand ofN , and use the same terminology and notation for their corresponding

characters. That is, if M (resp. N) affords the character χM (resp. χN ), then we also

write χM | χN and say that χM is a direct summand of χN . We use - to indicate ‘is not

a direct summand of’.

As usual, δij or δi,j denotes the Kronecker delta for variables i and j, taking value

1 if i = j and 0 otherwise. When the meaning is clear, we use the Kronecker delta for

more general objects i and j than just numbers, such as (ordered) sequences of numbers,

or characters of a group.

For emphasis, disjoint unions may sometimes be written using t. This does not

preclude A ∩B = ∅ when we simply write A ∪B.

To ease notation, we omit extra sets of parentheses when the meaning is clear from

context. For instance, if s = (s1, . . . , sn) is a sequence and f is a function taking such a

sequence as its input, we will sometimes write f(s1, . . . , sn) for f((s1, . . . , sn)). Similarly,

when we concatenate sequences, say t = (t1, . . . , tm) and u = (u1, . . . , un), we may write

(t, u) for the sequence (t1, . . . , tm, u1, . . . , un).

p-adic expansions

Let n ∈ N and p be a prime number. We notate the p-adic expansion or base p expansion

of n in two ways (depending on convenience for the context at hand): either

(1) n =
∑t
j=1 aip

ni , in which case t ∈ N, ai ∈ [p− 1] for all i ∈ [t] and 0 ≤ n1 < n2 <

· · · < nt are integers (we will always specify the order of the indices ni); or

(2) n =
∑t
i=0 aip

i for some t ∈ N, so ai ∈ {0, 1, . . . , p − 1} for i ∈ {0, 1, . . . , t} and

at 6= 0. (Alternatively we may also write n =
∑
i≥0 aip

i to mean there exists some

t ∈ N such that ai = 0 for all i > t.)

We denote by νp(n) the p-adic valuation of n. That is, pνp(n) is the highest power

of p dividing n.

2.1.1 Partitions

By a partition, we mean a finite non-increasing sequence λ = (λ1, λ2, . . . , λk) of natural

numbers. We say that λ is a partition of a natural number n, written λ ` n, if λ1 +

· · · + λk = n. We also say that n is the size of the partition λ, and write n = |λ|. We

denote by P(n) the set of partitions of n and we let

P =
⋃
n∈N
P(n).

Hence we sometimes also write λ ∈ P(n) in place of λ ` n.
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The λi are known as the parts of the partition. The length of λ, often written l(λ),

is the number of parts of λ, i.e. l(λ) = k. Repeated parts are often denoted using

index notation for convenience; the meaning should always be clear from context. For

instance, (2, 1, 1, 1) = (2, 13) 6= (2, 1), while (pk) could denote a single part of size pk or

(p, . . . , p) where the part p appears k times, and we interpret this based on context by

specifying (pk) ` pk or (pk) ` kp respectively.

Given a partition λ, its conjugate partition is the partition λ′ = (µ1, µ2, . . . , µt)

where t = λ1 and µi := |{j ∈ [l(λ)] | λj ≥ i}|.

Young diagrams

The Young diagram [λ] corresponding to the partition λ = (λ1, λ2, . . . , λk) is the subset

of the Cartesian plane defined by:

[λ] = {(i, j) ∈ N× N | 1 ≤ i ≤ k, 1 ≤ j ≤ λi},

where we view the diagram in matrix orientation, with the node (1, 1) in the upper left

corner. Pictorially, [λ] is often drawn using left-aligned boxes (nodes) such that there are

λi boxes in row i, with the rows numbered downward (so that the top row is numbered

1). For example,

is the Young diagram of the partition (4, 2, 1). In particular, the Young diagram of the

conjugate partition λ′ can be obtained by reflecting [λ] about the main diagonal y = −x.

Call a box in the Young diagram [λ] removable if there are no boxes to the right or

below it. In other words, if λ = (λ1, . . . , λk) then a box in [λ] is removable if and only

if it is the rightmost box of a row i where λi > λi+1 or i = k. Addable positions are

defined similarly: they are (empty) positions to which a box may be added such that the

resulting shape is the Young diagram of a partition. It is easy to see that the number

of addable positions for any [λ] is one more than the number of removable boxes of [λ].

We use λ and [λ] interchangeably when the meaning is clear from context; for in-

stance, for partitions µ and λ we say [µ] ⊆ [λ] if l(µ) ≤ l(λ) and µi ≤ λi for all i ≤ l(µ),

or equally write µ ⊆ λ. In this case we say that µ is a subpartition of λ (or λ contains

µ, or µ is contained in λ).

If µ ⊆ λ (possibly µ = ∅), then we may define a skew diagram (or skew shape)

[λ \ µ] := [λ] \ [µ], and call λ \ µ a skew partition. We refer the reader to [41, §1.4] for

more detail.
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Combinatorics of partitions

The dominance ordering E on the set P of all partitions is a partial order defined by

µ = (µ1, . . . , µk) E λ = (λ1, . . . , λk) ⇐⇒
m∑
i=1

µi ≤
m∑
i=1

λi ∀ m ∈ [k],

where k = max{l(µ), l(λ)} (and we append trailing zeros to µ or λ as necessary). We

sometimes also use the lexicographical ordering on P(n) for n ∈ N, which is the total

order given by µ < λ if µi < λi, where i := min{j | λj 6= µj}.

A partition λ is called a hook or hook partition if λ2 ≤ 1. Equivalently, its Young

diagram does not contain the box in position (2, 2).

For e ∈ N, we also use extensively the notions of e-hooks, e-rim hooks, leg lengths

of hooks, e-cores and e-quotients of partitions in Chapter 3. We give a brief summary

below, and refer the reader to [54, Chapter I] or [41, §2.3] for detailed definitions.

If (i, j) is a box in the Young diagram of a partition [λ], then the (i, j)-hook of λ

(often denoted Hλ(i, j)) is the set of boxes

{(i′, j′) ∈ [λ] | i = i′ and j′ ≥ j, or j = j′ and i′ > i}.

A hook of λ is Hλ(i, j) for some (i, j) ∈ [λ].

The length or size e of a hook is the number of boxes in it, in which case we call it

an e-hook of λ. We denote by H(λ) the set of hooks of λ and by He(λ) the subset of

H(λ) consisting of those hooks of λ having length divisible by e.

We also sometimes denote the size of Hλ(i, j) by |Hλ(i, j)| or hλ(i, j); in particular,

hλ(i, j) = (λi−j)+(λ′j−i)+1. The rim of λ isR(λ) = {(i′, j′) ∈ [λ] | (i′+1, j′+1) /∈ [λ]},
and the (i, j)-rim hook of λ is Rλ(i, j) = {(i′, j′) ∈ R(λ) | i′ ≥ i and j′ ≥ j}. The leg

length of a hook or rim hook is one less than the number of rows it occupies, so for

instance, the leg length of Hλ(i, j) is λ′j − i = |λ| − 1− λi + j.

Informally, the e-core of a partition λ is the partition obtained by successively remov-

ing e-(rim) hooks from λ until no more can be removed, and is denoted by Ce(λ); this

process turns out to be well-defined, see for instance [54, Lemma 3.1]. The e-quotient

Qe(λ) of a partition λ is more readily described on a construction known as James’

abacus; we describe these objects in more detail in Chapter 3 for ease of reference.

Specific conventions

We conclude this section with some notation which is not necessarily standard in the

literature.

If n ∈ N and α is a partition with α1 ≤ n, then we let (n, α) denote the concatenation

of the partitions (n) and α. More generally, if β is another partition such that αl(α) ≥ β1,

then we simply denote the concatenation of α and β by (α, β). The meaning should

always be clear from context.
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For two partitions λ and µ, let the sum of λ and µ be the partition λ + µ :=

(λ1 +µ1, λ2 +µ2, . . . ) (where we introduce trailing zeros to λ or µ as necessary). Clearly

this definition extends to sums of multiple partitions.

Finally, we introduce some useful definitions concerning sets of partitions.

Definition 2.1. Suppose A ⊆ P. We define A′ := {λ′ | λ ∈ A} and A◦ := A ∪A′.
For n ∈ N and m a positive real number, define

Bn(m) = {λ ` n | λ1 ≤ m and l(λ) ≤ m}.

Thus Bn(m) is the set of those partitions of n whose Young diagrams fit inside an

m ×m square grid. We will usually take m to be an integer. In particular, Bn(m) is

closed under taking conjugates of partitions, i.e. Bn(m)◦ = Bn(m).

2.2 The representation theory of symmetric groups

For each n ∈ N, the complete set Irr(Sn) of irreducible characters of Sn is naturally in

bijection with P(n), the set of all partitions of n (see [41, Theorem 2.1.11] or [40, §11],

for example). For λ ` n, we denote the corresponding irreducible character by χλ. We

sometimes identify the labelling partition with the corresponding irreducible character,

and hence write λ ∈ Irr(Sn) to denote at once the partition λ of n and the irreducible

character χλ; the meaning of this notation will always be clear from context. We refer

the reader to [40], [41] and [54] for detailed accounts of the representation theory of

symmetric groups and related algebraic combinatorics.

Conjugate partitions

Under the natural bijection between Irr(Sn) and P(n), the trivial character of Sn

corresponds to (n), and the sign or alternating character to (1n) [41, 2.1.7]. We record

another easy and useful fact.

Lemma 2.2. Let p be an odd prime, n ∈ N and Pn ∈ Sylp(Sn). Let λ ` n. Then

χλ
y
Pn

= χλ
′y
Pn

, where Pn ∈ Sylp(Sn).

Proof. It is well-known that χλ
′

= χλ · χ(1n) (see [41, 2.1.8], for example). Since p is

odd, Pn is contained in the alternating subgroup of Sn, and the assertion follows.

The Murnaghan–Nakayama Rule

The Murnaghan–Nakayama rule (see [41, 2.4.7] or [40, 21.1], for example) provides a

combinatorial formula for computing the values of the ordinary irreducible characters

of symmetric groups. This is described using skew shapes. A border strip is defined to

be a skew shape which is a rim hook in the Young diagram of some partition. If γ is a

border strip, then h(γ) is the leg length of such a corresponding rim hook.
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Theorem 2.3 (Murnaghan–Nakayama rule). Let r, n ∈ N with r < n. Suppose that

πρ ∈ Sn where ρ is an r-cycle and π is a permutation of the remaining n− r numbers.

Then

χλ(πρ) =
∑

(−1)h(λ\µ)χµ(π),

where the sum runs over all µ ⊆ λ such that [λ \ µ] is a border strip of size r. In

particular, if λ ` n and σ ∈ Sn is an n-cycle, then

χλ(σ) =

0 if λ is not a hook,

(−1)l if λ is a hook of leg length l.

Corollary 2.4. Let p be a prime and λ ` p. Let σ ∈ Sp be a p-cycle, P = 〈σ〉 and ψ

be the regular character of P . Then

χλ
ySp

P
=

m · ψ if λ is not a hook,

m′ · ψ + (−1)l · 1P if λ is a hook of leg length l,

for some integers m and m′.

Proof. It follows from Theorem 2.5 (below; see also Theorem 3.12) that p - χλ(1) if and

only if λ is a hook, since λ ` p.
If λ is not a hook, then χλ(σi) = 0 for all i ∈ [p− 1] by Theorem 2.3. Hence χλ is a

multiple of ψ, since ψ(1) = p and ψ(σi) = 0 for all i ∈ [p− 1].

If λ is a hook of leg length l, then χλ(σi) = (−1)l for all i ∈ [p− 1] by Theorem 2.3,

while χλ(1) =
(
p−1
l

)
(see the hook length formula below, for instance). But

(
p−1
l

)
≡

(−1)l (mod p), so the result follows.

Degrees of irreducible characters of symmetric groups

Let p be a prime. For a partition λ ` n, we write λ `p′ n if the corresponding character

χλ labelled by λ has p′-degree, that is, degree coprime to p. Thus λ `p′ n is equivalent to

χλ ∈ Irrp′(Sn), and in this case we also say that λ is a p′-partition of n (and sometimes

simply write λ ∈ Irrp′(Sn)).

While the remarkable hook length formula (see e.g. [41, Theorem 2.3.21])

χλ(1) =
n!∏

(i,j)∈[λ] hλ(i, j)
∀ λ ` n

provides a purely combinatorial method for calculating the degrees of irreducible charac-

ters of symmetric groups, it turns out that a recursive description of p′-partitions given

by Macdonald [44] (and later developed by Olsson [54] using the theory of p-core towers)

is more convenient for our purposes. We introduce these towers briefly here, and refer

the reader to [54] for a detailed description.

We can more generally define e-quotient towers and e-core towers for all e ∈ N.

Let λ be a partition, and let its e-quotient Qe(λ) be denoted by (λ(0), . . . , λ(e−1)).
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(The e-quotient of a partition is more easily described using James’ abacus, so we

postpone its definition to Section 3.1.1 below; we refer the reader to [54] for further

detail.) This is a sequence of e partitions. We then recursively set Qe(λ
(i1,...,ij)) =

(λ(i1,...,ij ,0), . . . , λ(i1,...,ij ,e−1)) for all j ∈ N for all (i1, . . . , ij) ∈ [e]j .

Now, let TQ(λ)0 = (λ) and for all j ∈ N, let

TQ(λ)j = (λ(0,...,0), . . . , λ(e−1,...,e−1)) = (λ(i1,...,ij))(i1,...,ij)∈[e]j

where the indexing sequences (i1, . . . , ij) are taken in lexicographical order. Each TQ(λ)j

is a sequence of ej partitions, and the collection of all of the sequences TQ(λ)j for j ∈ N0

is known as the e-quotient tower of λ, denoted by TQ(λ) (or TQe (λ)). The e-core tower

of λ, denoted by TC(λ) (or TCe (λ)) is obtained from TQ(λ) by replacing each partition

by its e-core. That is, TC(λ) = (TC(λ)0, T
C(λ)1, . . . ) where TC(λ)0 =

(
Ce(λ)

)
and

TC(λ)j =
(
Ce(λ

(0,...,0)), . . . , Ce(λ
(e−1,...,e−1))

)
=
(
Ce(λ

(i1,...,ij))
)

(i1,...,ij)∈[e]j

with indexing sequences taken in lexicographical order, for each j ∈ N.

Given a tower sequence T = (T0, T1, . . . ) where each Tj = (µ(1), . . . , µ(ej)) is a

sequence of ej partitions, we define |Tj | := |µ(1)|+ · · ·+ |µ(ej)|. The following result was

first proven by MacDonald in [44] and is fundamental to our work in Chapter 3.

Theorem 2.5. Let p be a prime. Let n ∈ N with p-adic expansion n =
∑
j≥0 ajp

j. Let

λ ` n. Then

νp
(
χλ(1)

)
=

∑
j≥0 |TC(λ)j | −

∑
j≥0 aj

p− 1
.

In particular, νp(χ
λ(1)) = 0 if and only if |TC(λ)j | = aj for all j ∈ N0.

We reformulate MacDonald’s result in language that will be convenient for our pur-

poses in Theorems 3.12 and 3.13.

The Branching Theorem and the Young graph

Recall that P denotes the set of partitions of natural numbers. For λ ` n, we let

(λ, µ) ∈ E if and only if χµ is an irreducible constituent of the restriction χλ
y
Sn−1

. The

Young graph Y has P as its set of vertices and E as its set of edges.

We recall the Branching Theorem (or branching rule for symmetric groups) (see [40,

Chapter 9] or [41, Theorem 2.4.3], for instance) which tells us that

χλ
y
Sn−1

=
∑
µ∈λ−

χµ

for any χλ ∈ Irr(Sn), where λ− denotes the set of all partitions µ ` n − 1 such that

[µ] is obtained from [λ] by removing a single box. (In particular, such a box must be a
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removable box in [λ].) By Frobenius Reciprocity, we have that

χλ
xSn+1

=
∑
µ∈λ+

χµ,

where λ+ denotes the set of all partitions µ ` n+ 1 such that [µ] is obtained from [λ] by

adding a single box. Since the Young graph describes branching for symmetric groups,

it is sometimes also called the branching graph in this context. Notice, in particular,

that branching for symmetric groups is multiplicity-free.

It is useful to let S0 be the trivial 1-element group, with P(0) = {∅} where χ∅

denotes the irreducible character of S0. In this case we may add a root vertex labelled

∅ to the Young graph Y, and an edge connecting it to the vertex (1).

For p a prime, let Yp′ be the subgraph of Y induced by the subset of vertices (par-

titions) labelling irreducible characters of p′-degree. By analogy, we let

λ−p′ = {µ ∈ λ− | p - χµ(1)} and λ+
p′ = {µ ∈ λ+ | p - χµ(1)}.

These sets describe the neighbourhood of λ in Yp′ whenever λ is itself a p′-partition.

The branching theorem turns out to be a special case of the Littlewood–Richardson

rule, as we will see now.

2.2.1 Littlewood–Richardson coefficients

Littlewood–Richardson coefficients arise in many contexts, appearing in the decompo-

sition of tensor products of irreducible representations of symmetric groups (and of

course, the closely related general linear groups), as coefficients when a product of two

Schur polynomials is expressed as a linear combination of Schur polynomials in the ring

of symmetric polynomials, and also in geometry and topology (see [25] and [33], for

example).

Let m,n ∈ N with m < n. For µ ` m and ν ` n −m, the Littlewood–Richardson

rule (see [40, Chapter 16]) describes the decomposition into irreducible constituents of

the induced character

(χµ × χν)
xSn

Sm×Sn−m
,

with Littlewood–Richardson coefficients arising as the multiplicities.

Before we recall the Littlewood–Richardson rule, we introduce some notation and

technical definitions. By convention, the highest row of [λ] for a partition λ is numbered

1, but the highest row of a skew shape γ = [λ \ µ] := [λ] \ [µ] need not be 1.

Definition 2.6. Let n ∈ N. Let λ = (λ1, . . . , λk) ` n and let C = (c1, . . . , cn) be a

sequence of positive integers. We say that C is of weight λ if

|{i ∈ {1, . . . , n} : ci = j}| = λj
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for all j ∈ {1, . . . , k}. We say that an element cj of C is good if cj = 1 or if

|{i ∈ {1, 2, . . . , j − 1} : ci = cj − 1}| > |{i ∈ {1, 2, . . . , j − 1} : ci = cj}|.

Finally, we say that the sequence C is good if cj is good for every j ∈ {1, . . . , n}.

We can now describe the Littlewood–Richardson coefficients cλµν , which we also some-

times denote by cλµ,ν for clarity.

Theorem 2.7 (Littlewood–Richardson rule). Let m,n ∈ N with m < n. Let µ ` m and

ν ` n−m. Then

(χµ × χν)
xSn

Sm×Sn−m
=
∑
λ`n

cλµν χ
λ

where cλµν equals the number of ways to replace the nodes of [λ \ µ] by natural numbers

such that

(i) the sequence obtained by reading the numbers from right to left, top to bottom is a

good sequence of weight ν;

(ii) the numbers are non-decreasing (weakly increasing) left to right along rows; and

(iii) the numbers are strictly increasing down columns.

Let ν be a partition. We call a way of replacing the nodes of a skew shape γ

with |ν| boxes by numbers satisfying conditions (i)–(iii) of Theorem 2.7 a Littlewood–

Richardson filling of γ of weight ν. It is easy to see that every skew shape has at

least one Littlewood–Richardson filling. For convenience, let LR(γ) denote the set of

all possible weights of Littlewood–Richardson fillings of a skew shape γ. For example,

LR([(4, 1) \ (2)]) = {(3), (2, 1)}.
Moreover, the Littlewood–Richardson coefficients described in Theorem 2.7 are sym-

metric: cλµν = cλνµ for all partitions µ, ν and all partitions λ ` |µ|+ |ν|. We write γ ∼= [λ]

if γ is an orientation-preserving translation of the Young diagram of the partition λ in

the plane. In other words, γ = {(i + a, j + b) | (i, j) ∈ [λ]} for some fixed a, b ∈ Z. We

denote by γ◦ the 180◦-rotation of γ (up to translation). For A a set of partitions and/or

skew shapes, we also write γ ∈ A if γ ∼= α for some α ∈ A.

We record below some useful lemmas.

Lemma 2.8 ([3, Lemma 4.4]). Let µ and γ be partitions such that [γ] $ [µ]. The

following are equivalent:

(i) |LR([µ \ γ])| = 1;

(ii) there is a unique Littlewood–Richardson filling of [µ \ γ];

(iii) [µ \ γ] ∼= [ν] or [µ \ γ]◦ ∼= [ν], for some partition ν ` |µ| − |γ|.

Lemma 2.9. Let γ be a skew shape. Suppose the non-empty rows of γ are numbered

1 ≤ r1 < r2 < . . . < rt. Then in any Littlewood–Richardson filling of γ, the boxes in

row ri can only be filled with numbers from {1, 2, . . . , i}, for each i ∈ {1, . . . , t}.
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Proof. This is immediate from conditions (i)–(iii) of Theorem 2.7.

Lemma 2.10. Let µ and ν be partitions. Let λ be a partition of |µ| + |ν| and suppose

that cλµν > 0. Then λ1 ≤ µ1 + ν1 and l(λ) ≤ l(µ) + l(ν).

Proof. Fix a Littlewood–Richardson filling of [λ \ µ] of weight ν: all of the boxes in the

first row of this skew shape (which has length λ1 − µ1) must be filled with the number

1. Hence λ1 − µ1 ≤ ν1, since there may be other 1s elsewhere in this filling of [λ \ µ].

Similarly, consider the numbers that have been filled into the first column of [λ \ µ]

in this filling of weight ν. These numbers must be distinct, and hence correspond to

different parts of the partition ν. Hence l(λ)− l(µ) ≤ l(ν).

We can similarly define iterated Littlewood–Richardson coefficients cλµ1,...,µr as fol-

lows. Let r ∈ N and µ1, . . . , µr be partitions, and let λ ` n := |µ1| + · · · + |µr|. Then

cλµ1,...,µr is the multiplicity of χλ as a constituent of (χµ
1 × · · · × χµr )

xSn

S|µ1|×···×S|µr|
.

When r = 2, these are the usual Littlewood–Richardson coefficients as defined above,

and letting m = |µ1|+ · · ·+ |µr−1| when r ≥ 2, it is easy to see that

cλµ1,...,µr =
∑
γ`m

cγµ1,...,µr−1 · cλγ,µr . (2.1)

From (2.1) and Theorem 2.7 we observe that if cλµ1,...,µr > 0 then λ ≤ µ1 + · · · + µr

in the lexicographical ordering on partitions, and that cµ
1+···+µr
µ1,...,µr = 1. The iterated

Littlewood–Richardson coefficients are also symmetric under any permutation of the

partitions µ1, . . . , µr. An iterated Littlewood–Richardson (LR) filling of [λ] by µ1, . . . , µr

is a way of replacing the nodes of [λ] by numbers defined recursively as follows: if r = 1

then [λ] = [µ1] has a unique LR filling, of weight µ1; if r ≥ 2 then we mean an iterated

LR filling of [γ] by µ1, . . . , µr−1 together with an LR filling of [λ \ γ] of weight µr (for

some γ ⊆ λ such that this is possible).

Lemma 2.11. Let a, b1, . . . , ba ∈ N. Let ν1, . . . , νa be partitions such that bi ≥ |νi| for

all i and let c = |ν1|+ · · ·+ |νa|. Let µ ` c and let λ = (b1 + b2 + · · ·+ ba, µ). Then the

iterated Littlewood–Richardson coefficients cλ(b1,ν1),...,(b1,νa) and cµν1,...,νa are equal.

Proof. Clearly cµν1,...,νa ≤ c
λ
(b1,ν1),...,(b1,νa), since we may take any Littlewood–Richardson

filling of [µ] by ν1, . . . , νa and replace each number i by i + 1, then combine with

the first row of [λ] filled with all 1s to produce a Littlewood–Richardson filling of [λ]

by (b1, ν
1), . . . , (ba, ν

a). Conversely, any such filling of [λ] contains 1s in exactly the

first row of [λ] since λ1 = b1 + · · · + ba, so this process is bijective. Thus cµν1,...,νa =

cλ(b1,ν1),...,(b1,νa).

We conclude this section by introducing an operator that will be useful later.

Definition 2.12. For n,m ∈ N and A ⊆ P(n), B ⊆ P(m), let

A ? B := {λ ` n+m | ∃ µ ∈ A, ν ∈ B such that cλµν > 0}.
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Clearly ? is commutative, which follows from the symmetry of the Littlewood–

Richardson coefficients, and associative.

2.3 Characters of wreath products

Let G be a finite group and let H be a subgroup of Sn for some n ∈ N. We denote by

G×n the direct product of n copies of G. The natural action of Sn on the direct factors

of G×n induces an action of Sn (and therefore of H ≤ Sn) via automorphisms of G×n,

giving the wreath product G o H := G×n o H. (In this thesis, we consider only finite

wreath products, in which case the restricted wreath product and unrestricted wreath

product agree and we make no distinction.) We sometimes refer to G×n as the base

group of the wreath product G oH.

As in [41, Chapter 4], we denote the elements of G oH by (g1, . . . , gn;h) for gi ∈ G
and h ∈ H. Let V be a CG–module and suppose it affords the character φ. We let

V ⊗n := V ⊗ · · · ⊗ V (n copies) be the corresponding CG×n–module. The left action of

G oH on V ⊗n defined by linearly extending

(g1, . . . , gn;h) : v1 ⊗ · · · ⊗ vn 7−→ g1vh−1(1) ⊗ · · · ⊗ gnvh−1(n) (2.2)

turns V ⊗n into a C(G o H)–module, which we denote by Ṽ ⊗n (see [41, (4.3.7)]). We

denote by φ̃ the character afforded by the C(G oH)–module Ṽ ⊗n. For any ψ ∈ Char(H),

we let ψ also denote its inflation to G oH and let

X (φ;ψ) := φ̃ · ψ

be the character of G oH obtained as the product of φ̃ and ψ. If K ≤ G and L ≤ H are

finite groups, then we have by the definition of X that

X (φ;ψ)
yGoH
KoL = X (φ

yG
K

;ψ
yH
L

).

Let φ ∈ Irr(G) and let φ×n := φ × · · · × φ denote the corresponding irreducible

character of G×n. Observe that φ̃ ∈ Irr(G oH) is an extension of φ×n. For ψ ∈ Irr(H)

we have that X (φ;ψ) ∈ Irr(G o H | φ×n), the set of irreducible characters χ of G o H
whose restriction χ

y
G×n

contains φ×n as an irreducible constituent. Indeed, Gallagher’s

Theorem [36, Corollary 6.17] gives

Irr(G oH | φ×n) = {X (φ;ψ) | ψ ∈ Irr(H)}.

More generally, if K ≤ G and ψ ∈ Irr(K) then we denote by Irr(G | ψ) the set of

characters χ ∈ Irr(G) such that ψ is an irreducible constituent of the restriction χ
y
K

.

When clear from context, we also abbreviate X (χγ ;χν) involving characters of symmet-

ric groups (so γ and ν are partitions) to X (γ; ν).

Wreath product characters of the form X (φ;ψ) will play an important role in Chap-
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ters 4 to 6. The general form of an irreducible character of a wreath product group will

also be important; for a precise description of the full set of pairwise non-isomorphic

irreducible characters of an arbitrary wreath product G oH, we refer the reader to [41,

§4.3]. Here we simply record the following: let ξ1, . . . , ξk be representatives for the orbits

of the conjugation action of G o H on Irr(G×n). By Clifford theory (see [36, Theorem

6.2], for instance), we have that

Irr(G oH) =

k⊔
i=1

Irr(G oH | ξi).

To describe each Irr(G o H | ξi), fix i and suppose ξi ∈ Irr(G×n) is given by ξi =

φi1 × · · · × φin for some ij , where Irr(G) = {φ1, . . . , φt}. We partition [n] into subsets

α1, . . . , αk according to the relation ix = iy; that is, x, y ∈ [n] belong to the same subset

if and only if ix = iy. Define I to be the Young subgroup Sα1
× · · · ×Sαk of Sn. By

Gallagher’s Theorem [36, Corollary 6.17], for all χ ∈ Irr(G oH | ξi) there exists a unique

θ ∈ Irr(H ∩ I) such that

χ = ξ̃i · θ
xGoH
Go(H∩I),

where ξ̃i is an extension of ξi from Irr(G×n) to Irr(G o (H ∩ I)) with action as defined in

(2.2), and where θ also denotes its inflation from Irr(H ∩ I) to Irr(G o (H ∩ I)). In fact,

the following map is a bijection (see [36, Theorem 6.11]):

Irr(G o (H ∩ I) | ξi) −→ Irr(G oH | ξi) , η 7−→ η
xGoH .

In the special case where n = p is a prime number and H = Cp, we see that H ∩ I
can only be the trivial group or all of H itself (according to whether φi1 , . . . , φin are all

not equal or are all equal, respectively), and so necessarily the inertia group G o (H ∩ I)

is either simply G×p = G o 1 or G oH. Thus every ψ ∈ Irr(G o Cp) is either of the form

(a) ψ = φi1 × · · · × φip
xGoCp
G×p

, where φi1 , . . . , φip ∈ Irr(G) are not all equal; or

(b) ψ = X (φ; θ) for some φ ∈ Irr(G) and θ ∈ Irr(Cp).

When (a) holds, ψ
y
G×p

is the sum of the p irreducible characters of G×p whose p

factors are a cyclic permutation of φi1 , . . . , φip . When (b) holds, ψ
y
G×p

= φ×p · θ(1) =

φ×p.

2.3.1 Irreducible constituents of characters of wreath products

We record some results concerning characters of wreath products that will be useful

later in this thesis.

Lemma 2.13 ([41, Lemma 4.3.9]). Let n ∈ N. Let H ≤ Sn and G be finite groups. Let
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φ ∈ Irr(G) and ψ ∈ Irr(H). Then for all f1, . . . , fn ∈ G and π ∈ H,

X (φ;ψ)(f1, . . . , fn;π) =

c(π)∏
v=1

φ(fjv · fπ−1(jv) · fπ−2(jv) · · · fπ−lv+1(jv)) · ψ(π),

where c(π) is the number of disjoint cycles in π, lv is the length of the vth cycle, and

for each v, jv is some fixed element in the vth cycle.

The element fjv · fπ−1(jv) · fπ−2(jv) · · · fπ−lv+1(jv) ∈ G is called the vth cycle product

of (f1, . . . , fn;π), and is determined up to conjugation (a different choice of jv yields a

G-conjugate of the given element). The character formula in Lemma 2.13 is well-defined

since φ is a character of G. For example, if n = 8 and π = (1, 3, 7, 2)(5, 8, 6)(4), then

X (φ;ψ)(f1, . . . , f8;π) = φ(f2f7f3f1) · φ(f6f8f5) · φ(f4) · ψ(π).

Lemma 2.14 (Associativity of wreath products). Let l,m, n ∈ N and let G ≤ Sl,

H ≤ Sm and I ≤ Sn. Then the following map θ : (G o H) o I −→ G o (H o I) is an

isomorphism of groups:

(
(g11, . . . , g1m;h1), . . . , (gn1, . . . , gnm;hn) ; π

)
7−→

(
g11, . . . , g1m, g21, . . . , g2m, . . . , gn1, . . . , gnm ; (h1, . . . , hn;π)

)
,

where gji ∈ G, hi ∈ H and π ∈ I. Moreover, for α ∈ Char(G), β ∈ Char(H) and

γ ∈ Char(I), we have that

X
(
X (α;β); γ

)
(x) = X

(
α;X (β; γ)

)
(θ(x))

for all x ∈ (G oH) o I.

Proof. The first statement is a routine check, following the notational convention in [41,

§4.1]. The second statement follows from Lemma 2.13.

In particular, associativity for three terms as in Lemma 2.14 then gives associativity

for k-term wreath products for all k ≥ 3, and so from now on we simply write G1 o
G2 o · · · o Gk without internal parentheses when referring to such groups, and identify

corresponding elements under such isomorphisms.

We remark that the map θ above is ‘natural’, in the sense that θ behaves well with

respect to the canonical permutation representations of wreath products described in

[41, 4.1.18]. Specifically, for G ≤ Sl and H ≤ Sm we have a permutation representation

ψ : G oH → Slm = Sym{1, 2, . . . , lm} given by the map

(g1, . . . , gm;h) 7−→
(
(j − 1)l + i 7−→ (h(j)− 1)l + gh(j)(i)

)
(2.3)

for all j ∈ [m] and i ∈ [l]. In the same vein, we may define permutation representations

ψ′ : (G o H) o I → Slmn and ψ′′ : G o (H o I) → Slmn. Then ψ′(x) = ψ′′(θ(x)), for all

x ∈ (G oH) o I.
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Next, we record some results describing the irreducible constituents of restrictions

and inductions of characters of wreath products.

Lemma 2.15. Let G be a finite group and H ≤ Sn for some n ∈ N. Let χ ∈ Irr(G).

Then

χ×n
xGoH
G×n

=
∑

θ∈Irr(H)

θ(1) · X (χ; θ).

Proof. Observe since
∑
θ∈Irr(H) θ(1)2 = |H|, we have that

deg(χ×n
xGoH
G×n

) = |G oH : G×n| ·(degχ)n = |H|(degχ)n = deg

 ∑
θ∈Irr(H)

θ(1) · X (χ; θ)

 .

Moreover, for any θ ∈ Irr(H),

〈χ×n
xGoH
G×n

,X (χ; θ)〉 = 〈χ×n,X (χ; θ)
y
G×n
〉 = 〈χ×n, θ(1) · χ×n〉 = θ(1),

and the claim follows.

Lemma 2.16 ([36, Problem 5.2]). Let G be a finite group. Suppose H,K ≤ G with

KH = G. Let φ be a character of H. Then φ
xG
H

y
K

= φ
yH
H∩K

xK .

Proof. By Mackey’s Theorem (see [36, §5], for example),

φ
xG
H

y
K

=
∑

g∈H\G/K

φg
yHg
Hg∩K

xK
where the sum runs over a set of (H,K)–double coset representatives g. However, KH =

G implies (that HK = G also, and hence) we can simply take the single representative

g = 1, from which the claim follows immediately.

Remark 2.17. We often wish to apply Lemma 2.16 to G of the form Sm o L for some

finite group L ≤ Sl where l,m ∈ N, with H = (Sm)×l and K = P oL for some subgroup

P of Sm (usually a Sylow subgroup). Indeed, since

K = {(f1, . . . , fl;π) | fi ∈ P, π ∈ L} and H = {(g1, . . . , gl; 1) | gi ∈ Sm},

then

KH = {(f1gπ−1(1), . . . , flgπ−1(l);π)}

which ranges over all of G as fi, gj and π vary accordingly. Hence KH = G. ♦

Lemma 2.18. Let p be an odd prime and G be a finite group. Let η ∈ Char(G) and

ϕ ∈ Irr(G). If 〈η, ϕ〉 ≥ 2, then

〈X (η; τ),X (ϕ; θ)〉 ≥ 2

for all τ, θ ∈ Irr(Cp).
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Proof. Let η = ϕ+ ∆, so 〈∆, ϕ〉 ≥ 1. Fix some τ ∈ Irr(Cp). We first decompose X (ϕ+

∆; τ) into various summands by considering the corresponding G oCp–module. Let ϕ be

afforded by G–module V , ∆ by G–module W , and τ by Cp–module A. Then X (ϕ+∆; τ)

is afforded by ˜(V ⊕W )⊗p ⊗A, which has a decomposition into M0 ⊕M1 ⊕ · · · ⊕Mp as

G o Cp–modules where

Mp = Ṽ ⊗p ⊗A, M0 = W̃⊗p ⊗A

and for i ∈ [p − 1], Ni is the vector space direct sum of the (external) tensor products

of all ordered sequences of V s and W s of length p with exactly i V s, and Mi = Ni ⊗A.

For example,

M1 = (VW · · ·W +WVW · · ·W + · · ·+W · · ·WV )⊗A, and

M2 = (V VW · · ·W + VWVW · · ·W + · · ·+W · · ·WV V )⊗A,

where XY denotes X⊗Y for X,Y ∈ {V,W} and + denotes a direct sum of vector spaces.

Clearly Mp affords the character X (ϕ; τ) and M0 the character X (∆; τ). Letting ψi be

the character of Mi for i ∈ [p− 1], we now wish to determine ψi.

Since dimA = 1, the restriction ψi
yGoCp
G×p

is the sum of the
(
p
i

)
characters of G×p

whose summands are permutations of ϕ×i × ∆×(p−i). Let s(ϕ,∆) denote an ordered

sequence of length p with entries taken from {ϕ,∆} (and suppose that both ϕ and ∆

appear in the sequence), and let s(ϕ,∆) denote the corresponding character of G×p.

We denote by s(V,W ) the sequence obtained from s(ϕ,∆) by replacing ϕ,∆ with V,W

respectively, and let s(V,W ) denote the vector subspace of Ni given by the tensor prod-

uct corresponding to s(V,W ) where s(ϕ,∆) has i terms equal to ϕ. Given s(V,W ), let

ŝ(V,W ) denote the vector space direct sum of t(V,W ) over all p cyclic permutations

t(V,W ) of s(V,W ). Then by inspection of the action of G×p on ˜(V ⊕W )⊗p and observ-

ing that {(1, . . . , 1;σ) | σ ∈ Cp} is a set of coset representatives for G×p in G o Cp, we

find that ŝ(V,W ) is a G o Cp–module affording the character s(ϕ,∆)
xGoCp
G×p

. Hence ψi

is the sum of
(
p
i

)
/p characters of the form s(ϕ,∆)

xGoCp
G×p

· τ , where s(ϕ,∆) runs over a

set of orbit representatives for the permutation action of Cp on the set of such length p

sequences with i terms equal to ϕ. For example, we may take the single representative

(ϕ,∆, · · · ,∆) for i = 1, while for i = 2, the p−1
2 sequences

(ϕ,ϕ,∆, . . . ,∆), (ϕ,∆, ϕ,∆, . . . ,∆), · · · , (ϕ,∆, . . . ,∆︸ ︷︷ ︸
(p−3)/2

, ϕ,∆, . . . ,∆)

form a set of representatives. Moreover, the induced character s(ϕ,∆)
xGoCp
G×p

is zero on

elements (g1, . . . , gp;σ) ∈ G o Cp \ G×p, that is, whenever σ ∈ Cp \ {1}. On the other

hand, τ((g1, . . . , gp;σ)) = τ(σ) by the definition of inflation. Hence

s(ϕ,∆)
xGoCp
G×p

· τ = s(ϕ,∆)
xGoCp
G×p

,
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since τ is linear. In particular, we conclude that

X (ϕ+ ∆; τ) = X (ϕ; τ) + X (∆; τ) +

p−1∑
i=1

∑
s(ϕ,∆)

xGoCp
G×p

where the last summation runs over the appropriate representatives, i.e. there are
(
p
i

)
/p

terms in the ith sum. Since 〈∆, ϕ〉 ≥ 1, ϕ×p
xGoCp
G×p

is a direct summand of every

s(ϕ,∆)
xGoCp
G×p

, whence ϕ×p
xGoCp
G×p

is a direct summand of X (ϕ + ∆; τ) of multiplicity

m where

m ≥
p−1∑
i=1

(
p
i

)
p
≥ 2.

Finally, ϕ×p
xGoCp
G×p

=
∑
θ∈Irr(Cp) X (ϕ; θ) by Lemma 2.15, so the claim follows.

Lemma 2.19. Let G, H be finite groups with H ≤ Sm for some m ∈ N, and let

θ ∈ Irr(H). Let α ∈ Irr(G) and ∆ ∈ Char(G) be such that 〈∆, α〉 = 1. Then for any

β ∈ Irr(H),

〈X (∆; θ),X (α;β)〉 = 〈θ, β〉 = δθ,β .

Proof. Let ζ = X (∆; θ) and c = 〈ζ,X (α; θ)〉. Clearly c ≥ 1, since α is a constituent of

∆. (More generally, if ∆ = ψ1 + · · ·+ ψr is a decomposition into irreducible characters

ψi which are not necessarily distinct, then
∑
i X (ψi; θ) is a direct summand of X (∆; θ).)

Now ζ
y
G×m

= θ(1) ·∆×m, so

θ(1) = θ(1) · (〈∆, α〉)m = 〈ζ
y
G×m

, α×m〉 =
∑

γ∈Irr(GoH)

〈ζ, γ〉 · 〈γ
y
G×m

, α×m〉

≥
∑

β∈Irr(H)

〈ζ,X (α;β)〉 · 〈X (α;β)
y
G×m

, α×m〉 =
∑

β∈Irr(H)

β(1) · 〈ζ,X (α;β)〉

≥ θ(1) · c ≥ θ(1).

Thus the above inequalities in fact hold with equality and the claim follows, since β(1) ∈
N and 〈ζ,X (α;β)〉 ∈ N≥0.

We conclude by mentioning two useful results concerning wreath products of sym-

metric groups.

Theorem 2.20 ([32, Theorem 3.5]). Let p be an odd prime and let k ∈ N. Let K :=

Spk−1 oSp ≤ Spk and let χ ∈ Irrp′(Spk). The restriction χ
y
K

has a unique irreducible

constituent χ∗ lying in Irrp′(K), appearing with multiplicity 1. Moreover, the map χ 7→
χ∗ is a bijection between Irrp′(Spk) and Irrp′(K).

More precisely, such a character χ is equal to χλ for a hook partition λ ` pk. If

λ = (pk−(mp+x), 1mp+x) for some x ∈ {0, 1, . . . , p−1}, then χ∗ ∈ {X (µ; ν1),X (µ; ν2)},
where

µ = (pk−1 −m, 1m), ν1 = (p− x, 1x) and ν2 = (x+ 1, 1p−1−x).
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Theorem 2.21 ([55, Corollary 9.1]). Let m,n ∈ N. Let µ = (µ1, . . . , µk) ` m and

ν = (ν1, . . . , νl) ` n. The lexicographically greatest partition λ of mn such that χλ is an

irreducible constituent of X (µ; ν)
xSmn

SmoSn
is

λ = (nµ1, . . . , nµk−1, n(µk − 1) + ν1, ν2, . . . , νl).

Moreover, χλ occurs as a constituent with multiplicity 1.

2.3.2 Sylow subgroups of symmetric groups

We recall some facts about Sylow subgroups of symmetric groups, and refer the reader

to [41, Chapter 4] for a more detailed discussion. Fix a prime p and let n ∈ N. Let Pn

denote a Sylow p-subgroup of Sn. Clearly P1 is the trivial group while Pp is cyclic of

order p. More generally, Ppk = (Ppk−1)×poPp = Ppk−1 oPp ∼= Pp o · · · oPp (k-fold wreath

product) for all k ∈ N. Let n ∈ N and let n =
∑t
i=1 aip

ni be its p-adic expansion, where

0 ≤ n1 < · · · < nt. Then Pn ∼= (Ppn1 )×a1 × · · · × (Ppnt )
×at .

Conjugating by an appropriate element of Sn, we may assume the following:

◦ For each k ∈ N, Ppk is generated by σ1, . . . , σk ∈ Spk = Sym{1, 2, . . . , pk} where

σi =

pi−1∏
j=1

(j , pi−1 + j , 2pi−1 + j , · · · , (p− 1)pi−1 + j)

for each i. For example, when p = 3 we have

σ1 = (1, 2, 3), σ2 = (1, 4, 7)(2, 5, 8)(3, 6, 9), σ3 = (1, 10, 19) · · · (9, 18, 27),

and so on. This choice of Ppk for all k ∈ N is compatible with the identification of

k-fold wreath products in Lemma 2.14 and realises the permutation representation

(2.3).

◦ For n =
∑t
i=1 aip

ni , Pn is a direct product of factors Ppni ≤ Spni permuting

disjoint subsets of {1, 2, . . . , n}. For instance, if i ∈ [t] and j ∈ [ai], then the

jth factor Ppni ≤ Spni permutes the numbers {r + 1, r + 2, . . . , r + pni}, where

r = a1p
n1 + · · ·+ ai−1p

ni−1 + (j − 1)pni .

We record a characterisation of pk-cycles in Ppk .

Lemma 2.22. Let k ∈ N and p be a prime. Let x ∈ Ppk = Ppk−1 o Pp ≤ Spk , so

x = (f1, . . . , fp;σ) for some fi ∈ Ppk−1 and σ ∈ Pp. If x has a fixed point, then σ = 1.

Moreover, x is a pk-cycle if and only if σ 6= 1 and fσp−1(1) · · · fσ(1) · f1 is a pk−1-cycle.

Proof. We embed Ppk ≤ Spk via the permutation representation (2.3). For i ∈ [p], let

Ji = {(i − 1)pk−1 + t | t ∈ [pk−1]}. If σ = 1, then x permutes Ji for each i, while if

σ 6= 1, then x sends elements of Ji to Jσ(i) 6= Ji. Thus if x has a fixed point then σ = 1,

while if x is a pk-cycle then σ 6= 1.
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So now suppose σ 6= 1. We may represent x = (f1, . . . , fp;σ) as a permutation of

{1, . . . , pk} pictorially as follows (see Figure 2.1):

Jσp−1(1)

· · ·

Jσ2(1)Jσ(1)J1

•t σ ◦

fσ(1)

•
x(t)

σ ◦
fσ2(1)

•x2(t)

◦

fσp−1(1)

•xp−1(t)◦
f1

•
xp(t)

Figure 2.1: The permutation x = (f1, . . . , fp;σ) on {1, 2, . . . , pk}.

That is, for each i ∈ [p] and t ∈ [pk−1], σ sends ipk−1 + t to σ(i)pk−1 + t, while the fi

component of x sends (i− 1)pk−1 + t to (i− 1)pk−1 + fi(t). Given t ∈ J1, xj(t) ∈ J1 if

and only if j | p. Moreover, xp(t) = f1 · fσp−1(1) · · · fσ(1)(t), so x is a pk-cycle if and only

if min{j ∈ N | xj(t) = t} = pk−1, in other words, if and only if g := f1 · fσp−1(1) · · · fσ(1)

is a pk−1-cycle. Finally, observe that fσp−1(1) · · · fσ(1) · f1 = f−1
1 gf1 has the same cycle

type as g.

Let Irr(Pp) = {φ0, φ1, . . . , φp−1} = Lin(Pp), where φ0 = 1Pp is the trivial character

of the cyclic group Pp. (This labelling follows from the fact that we may write Pp = 〈g〉
and φj(g) = ωj for each j ∈ {0, 1, . . . , p − 1} = [p], where ω = e2πi/p.) Note that

the regular character of Pp equals
∑p−1
i=0 φi. When m ≥ 2, an easy application of [36,

Corollary 6.17] shows that

Lin(Ppm) =
⊔

φ∈Lin(Ppm−1 )

Irr(Ppm | φ×p).

In particular, Irr(Ppm | φ×p) = {X (φ;ψ) | ψ ∈ Lin(Pp)}.

Using the above observations, we may naturally define a bijection s←→ φ(s) between

the set [p]m of sequences of length m with elements from [p] and the set Lin(Ppm). More

precisely, if m = 0 we let the empty sequence of length 0 correspond to the trivial

character of P1, and if m = 1 we let s = (x) correspond to φx, for each x ∈ [p]. If m ≥ 2

then for any s = (s1, . . . , sm) ∈ [p]m, we recursively define

φ(s) := X
(
φ(s−);φ(sm)

)
,

where s− = (s1, . . . , sm−1) ∈ [p]m−1. By Lemma 2.14,

φ(s) = X (φ(s1, . . . , si);φ(si+1, . . . , sm))

for any i ∈ [m−1]. We remark that the abelianisation Ppk/P
′
pk is isomorphic to (Cp)

k, by

[53, Lemma 1.4]. Once we fix a natural isomorphism Ppk/P
′
pk → (Cp)

k (see Lemma 4.3
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below), then our indexing of Lin(Ppk) can in fact be obtained equivalently from the

canonical bijection Lin(Ppk)←→ Irr(Ppk/P
′
pk).

Now let n ∈ N and let n =
∑t
i=1 aip

ni be its p-adic expansion, where 0 ≤ n1 < · · · <
nt. Since Pn ∼= (Ppn1 )×a1 × · · · × (Ppnt )

×at ,

Lin(Pn) = {φ(s) | s =
(
s(1, 1), . . . , s(1, a1), s(2, 1), . . . , s(2, a2), . . . , s(t, at)

)
}, (2.4)

where for all i ∈ [t] and j ∈ [ai] we have that s(i, j) ∈ [p]ni , and

φ(s) := φ(s(1, 1))× · · · × φ(s(1, a1))× φ(s(2, 1))× · · · × φ(s(2, a2))× · · · × φ(s(t, at)).

When we suppose that φ(s) is a linear character of Pn, we mean that s is a sequence of

sequences, of the form described in (2.4) above.

Sylow normalisers

Next, we describe the structure of the normaliser NSn(Pn). Following the notation

n =
∑t
i=1 aip

ni , by [53, Lemma 4.1] we have that

NSn(Pn) ∼= N1 oSa1 × · · · ×Nt oSat ,

where Ni = NSpni (Ppni ). Moreover, for k ∈ N,

NS
pk

(Ppk) ∼= Ppk o (Cp−1)×k, (2.5)

from which it follows that NSn(Pn) = Pn for all n when p = 2. The structure of

Sylow normalisers for symmetric groups is well-known; for our purposes, we record the

following presentation:

NS
pk

(Ppk) = 〈Ppk , ρ
(k)
1 , ρ

(k)
2 , . . . , ρ

(k)
k 〉

where Ppk = 〈σ1, . . . , σk〉 as above, and ρ
(j)
i are defined recursively as follows. Let c

be a primitive root modulo p, and set ρ
(1)
1 = (c1, c2, . . . , cp−1) ∈ Sym{1, . . . , p} where

ci ∈ [p] is such that ci ≡ ci (mod p). For an integer m, let τm ∈ Spk be the permutation

i 7→ i+m with numbers modulo pk (taken in the range {1, . . . , pk}). For 1 ≤ j < k, set

ρ
(k)
j =

p−1∏
i=0

τipk−1 · ρ(k−1)
j · τ−ipk−1

and

ρ
(k)
k =

pk−1−1∏
i=0

τ−i · (c1pk−1, c2p
k−1, . . . , cp−1p

k−1) · τi

with numbers modulo pk (taken in the range {1, . . . , pk}). Notice that for each k, the

permutation σk is a product of p-cycles; ρ
(k)
k is simply the product over all p-cycles
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(a1, a2, . . . , ap) in σk of (ac1 , ac2 , . . . , acp−1). By construction, each ρ
(k)
j is a product

of (p − 1)-cycles, and the ρ
(k)
j commute for all j for each fixed k. We deduce that

NS
pk

(Ppk) = Ppk o 〈ρ
(k)
j | j ∈ [k]〉 ∼= Ppk o (Cp−1)×k.

For example, when p = 5 we may choose c = 2 so that ρ
(1)
1 = (2, 4, 3, 1),

ρ
(2)
1 = (2, 4, 3, 1)(7, 9, 8, 6)(12, 14, 13, 11)(17, 19, 18, 16)(22, 24, 23, 21)

and

ρ
(2)
2 = (6, 16, 11, 1)(7, 17, 12, 2)(8, 18, 13, 3)(9, 19, 14, 4)(10, 20, 15, 5).

Relation to the alternating group An

Finally, we relate the normalisers of Pn to the alternating subgroup An of Sn. Note

when p is odd then Pn ≤ An for all n, and so Sylp(An) = Sylp(Sn). It is clear to see

that χλ
y
An

= χλ
′y

An
. The ordinary irreducible characters of An can be indexed as

follows:

Irr(An) = {χλ
y
An
| λ 6= λ′ ∈ P(n)} ∪ {ψλ+, ψλ− | λ = λ′ ∈ P(n)}.

We refer the reader to [41, Chapter 2.5] for a detailed discussion of the representation

theory of An.

Lemma 2.23. Let p be a prime and let n ∈ N≥p. Then there exists g ∈ NSn(Pn) \An.

In particular, if λ ` n is self-conjugate, then (ψλ+)g = ψλ−.

Proof. If p = 2, then P2k contains a transposition for all k ∈ N, since P2 = 〈(12)〉. If

p is odd, then NS
pk

(Ppk) contains an element of cycle type (p − 1) · · · (p − 1) (pk−1

times). The case of n not a power of p then follows. The final assertion follows from the

definition of ψλ± (see [41], for example).

Corollary 2.24. Let p be a prime and let n ∈ N. Suppose λ ` n is self-conjugate. Then

〈ψλ+
y
Pn
,1Pn〉 = 〈ψλ−

y
Pn
,1Pn〉.

Proof. If n < p then the assertion is clear since Pn is trivial and degψλ+ = degψλ−.

Otherwise, let g ∈ NSn(Pn) \ An. Then since (1Pn)g = 1Pn , we have that

〈ψλ−
y
Pn
,1Pn〉 = 〈(ψλ+)g

y
Pn
, (1Pn)g〉 = 〈(ψλ+

y
Pn

)g, (1Pn)g〉 = 〈ψλ+
y
Pn
,1Pn〉.
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Chapter 3

On the p′-subgraph of the

Young graph

The first part of this chapter which is centred around character restrictions is based on

the paper [30], joint with Dr Eugenio Giannelli and Dr Stuart Martin. The results in

Section 3.1 were obtained in collaboration, with Dr Giannelli and I contributing equally

to the proofs and Dr Martin providing guidance throughout. In the latter parts of this

chapter, we extend our investigations to character inductions and further properties of

the Young graph.

As described in the introduction, a key ingredient in the character bijection in [28]

between Irr2′(Sn) and Irr2′(Pn) where Pn ∈ Syl2(Sn) is Theorem 1 of [1], which states

the following: for any natural number n and irreducible character χ of Sn of odd degree,

the restriction χ
y
Sn−1

contains a unique irreducible constituent of odd degree. In their

same paper [28], Giannelli, Kleshchev, Navarro and Tiep give a generalisation of this

result by changing the ambient group from the symmetric groups to general linear groups

and special linear groups. Isaacs, Navarro, Olsson and Tiep extend [1, Theorem 1] for

symmetric groups in a different direction, changing the depth of restriction: they show

for any natural numbers 2k ≤ n and any χ ∈ Irr2′(Sn) that the restriction χ
y
S
n−2k

contains a unique irreducible constituent of odd degree appearing with odd multiplicity

[38]. We now generalise the third main ingredient of [1, Theorem 1]: the prime p itself.

3.1 Restriction

Let p be a prime number. We study the restriction to Sn−1 of irreducible characters of

Sn of degree coprime to p. In particular, we study the combinatorial properties of the

subgraph Yp′ of the Young graph Y. This is an extension to odd primes of the work

done in [1] for p = 2.

The Young graph, as described in Section 2.2, is a well-understood and extensively

studied combinatorial object, deeply connected to the representation theory of sym-
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metric groups. It is thus somewhat surprising that only recently in [1], the following

remarkable fact was shown to hold.

Theorem 3.1 ([1, Theorem 1]). Let n ∈ N and let χ ∈ Irr2′(Sn). Then the restriction

χ
y
Sn−1

has a unique irreducible constituent of odd degree.

Theorem 3.1 shows that the odd subgraph Y2′ of the Young graph Y is a rooted tree.

Starting from this observation, the rest of [1] is devoted to describing the combinatorial

structure of Y2′ . We remark that the relevance of [1] transcends the study of the Young

graph: in fact, Theorem 3.1 was recently used in the construction of several types of

character correspondences (see [26], [28] and [38]).

In this chapter, we study the combinatorial structure of Yp′ for any odd prime p. As

remarked in [1, Section 7], Y3′ is not a tree. Indeed, for every odd prime p, there exists

an irreducible character χ of p′-degree of some Sn whose restriction χ
y
Sn−1

has more

than one irreducible constituent of p′-degree (namely χ(2,1)
y
S2

= χ(2) + χ(12), to give

the smallest example). Yet notably, given any prime p and any irreducible character χ

of p′-degree of Sn, Theorems 3.2 and 3.3 below give sharp bounds on the number of

irreducible constituents of p′-degree of χ
y
Sn−1

. In particular, this is a generalisation of

Theorem 3.1 to all primes.

Let p be any prime. Given a partition λ ` n, recall from Section 2.2 that λ−p′ denotes

the set consisting of all partitions µ `p′ n− 1 such that χµ is an irreducible constituent

of χλ
y
Sn−1

. Next, we define Ep(n) to be the set

Ep(n) =
{
|λ−p′ | : λ `p′ n

}
,

and we let brp(n) be the maximal value in Ep(n). Note that brp(n) is well-defined: clearly

Ep(n) is non-empty since the trivial character of Sn has degree 1. When p is fixed and

understood, we will also write E(n) and br(n), without the subscript p. Our first result

describes Ep(n) and gives a recursive formula for the exact value of brp(n).

Theorem 3.2. Let n ∈ N and let p be a prime. Let n =
∑t
j=1 ajp

nj be its p-adic

expansion, where 0 ≤ n1 < n2 < · · · < nt. Then Ep(n) = {1, 2, . . . , brp(n) − 1, brp(n)}
and

brp(n) = brp(a1p
n1) +

t∑
j=2

Φ(aj , brp(mj))

where mj =
∑j−1
i=1 aip

ni , and where Φ is the function described explicitly in Definition 3.6

below.

Theorem 3.2 is proven in Section 3.1.2. In Section 3.1.4 we determine brp(ap
k) for

any prime p, any k ∈ N0 and any a ∈ {1, . . . , p− 1}. The following result serves as the

base case for computing brp(n) for any natural number n, using the recursive expression

given in Theorem 3.2.
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Theorem 3.3. Let p be an odd prime, k ∈ N0 and a ∈ {1, . . . , p− 1}. Then

brp(ap
k) =


f(2a) if k = 0,

p− 1 + 2b 2a−(p−1)
6 c if k = 1 and p

2 < a < p,

2a otherwise.

Here f(x) = max{y ∈ N0 | y(y + 1) ≤ x}.

Theorems 3.2 and 3.3 provide us with a recursive formula for brp(n), the maximal

number of downward edges from a vertex on level n of Yp′ to level n− 1. Later in this

chapter we show that the slightly involved expression for the value of brp(n) described

in Theorem 3.2 can be bounded from above by a simpler function of the p-adic digits of

n.

Corollary 3.4. Let n ∈ N and let p be a prime. Let n =
∑t
j=1 ajp

nj be its p-adic

expansion, where 0 ≤ n1 < n2 < · · · < nt. Then 1 ≤ brp(n) ≤ Bp(n), where

Bp(n) := brp(a1p
n1) +

t∑
j=2

⌊aj
2

⌋
≤ 2a1 +

t∑
j=2

⌊aj
2

⌋
.

Theorem 3.3 and Corollary 3.4 are proven in Section 3.1.4. Corollary 3.4 has some

interesting consequences (see Section 3.1.3). For instance, in Remark 3.29 below, we

observe that when p ∈ {2, 3} then Bp(n) = brp(n). In particular, our result is a gener-

alisation of Theorem 3.1. Moreover, for any prime p we observe that the upper bound

Bp(n) is attained for every n having all of its p-adic digits lying in {0, 1, 2, 3}.
We further show that the upper bound Bp(n) given in Corollary 3.4 is indeed a

good approximation of brp(n). In fact, the following result shows that the difference

εp(n) := Bp(n)− brp(n) can be bounded by a function depending only on the prime p,

and not on n ∈ N.

Proposition 3.5. For any n ∈ N, we have εp(n) < p
2 log2(p).

Proposition 3.5 is proven in Section 3.1.3. A consequence is that for any odd prime p

we have sup{brp(n) | n ∈ N} = ∞. This is false when p = 2, since by Theorem 3.1 we

have that br2(n) = 1 for all n ∈ N.

3.1.1 James’ abacus

We fix some notation that will be used throughout this chapter. We begin by introducing

a technical definition necessary for stating and proving Theorem 3.2.

Definition 3.6. For a ∈ N0 and L ∈ N, define

Φ(a, L) := max

{
L∑
i=1

f(ai)

∣∣∣∣∣ a1 + · · ·+ aL ≤ a and ai ∈ N0 ∀ i ∈ [L]

}
,

where f(x) = max{y ∈ N0 | y(y + 1) ≤ x}.
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We now record some properties of this function Φ which will be useful for later proofs.

Lemma 3.7. Let a ∈ N0 and L ∈ N. Then Φ(a, L) ≤ ba2 c. Moreover, if L ≥ ba2 c then

Φ(a, L) = ba2 c.

Proof. Suppose Φ(a, L) = f(a1) + · · ·+ f(aL) such that ai ∈ N0 and a1 + · · ·+ aL ≤ a.

Observe that for all integers x ≥ 2, we have f(x) ≤ f(2) + f(x− 2). Hence

f(ai) ≤
⌊ai

2

⌋
· f(2) + f(δi)

for all i ∈ [L], where δi = ai − 2bai2 c ∈ {0, 1}. Thus

Φ(a, L) ≤
L∑
i=1

(⌊ai
2

⌋
· f(2) + f(δi)

)
=

L∑
i=1

⌊ai
2

⌋
≤
⌊a

2

⌋
,

where the middle equality follows from the fact that f(2) = 1 and f(1) = f(0) = 0.

Finally, if L ≥ ba2 c then we see that Φ(a, L) = ba2 c by considering

a1 = a2 = · · · = aba2 c
= 2 and aba2 c+1

= · · · = aL = 0,

which satisfy
∑L
i=1 ai = 2 · ba2 c ≤ a and

∑L
i=1 f(ai) = ba2 c.

Lemma 3.8. Let k ∈ N. Then 2k−1 ≤ Φ(2k + 2, 2k−1) ≤ 2k−1 + 1.

Proof. When k = 1, we note that Φ(4, 1) = 1. Now assume k ≥ 2. The upper bound

follows from Lemma 3.7. The lower bound follows from the fact that 2k + 2 = 6 + 2 ·
(2k−1 − 2) + 0, and f(6) + f(2) · (2k−1 − 2) + f(0) = 2k−1.

Let λ be a partition. For any natural number e, we denote by Ce(λ) and Qe(λ) =

(λ0, λ1, . . . , λe−1) the e-core and e-quotient of λ respectively (see [54, Chapter I] for

precise definitions). The e-weight of λ is the natural number we(λ) defined by we(λ) =

|λ0|+ |λ1|+ · · ·+ |λe−1|. We remark that given a partition λ of n, the e-quotient Qe(λ)

is uniquely determined up to a cyclic permutation of its components. Moreover, it is

well-known that, up to such cyclic permutations, any partition is uniquely determined

by its e-core and e-quotient; we refer the reader to [54] for a detailed discussion.

Recall that H(λ) denotes the set of hooks of λ and He(λ) the subset of H(λ) con-

sisting of those hooks of λ having length divisible by e. We let H(Qe(λ)) = ∪e−1
i=0H(λi).

As explained in [54, Theorem 3.3], there is a bijection between He(λ) and H(Qe(λ))

mapping hooks in λ of length ex to hooks of length x in the quotient of λ. Moreover,

the bijection respects the process of hook removal. Namely, any partition µ obtained

by removing an ex-hook from λ is such that Ce(µ) = Ce(λ) and the e-quotient of µ is

obtained by removing a x-hook from one of the e partitions involved in the e-quotient

of λ. A fundamental result is the following.
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Proposition 3.9 ([54, Proposition 3.6]). Let λ ∈ P(n). The number of e-hooks that

must be removed from λ to obtain Ce(λ) is we(λ). Moreover, we(λ) = |He(λ)| = (|λ| −
|Ce(λ)|)/e.

All of the operations on partitions concerning addition and removal of e-hooks de-

scribed above are best illustrated on James’ abacus. We give here a brief description

of this important object (in particular, fixing our convention for the orientation and

labelling of the abaci that we will use), and refer the reader to [41, Chapter 2] for a

complete account of the combinatorial properties of James’ abacus.

An e-abacus configuration A consists of e vertical runners, labelled A0, A1, . . . , Ae−1

from left to right, and the rows are labelled by integers such that row numbers increase

downwards. Each position (i, j), i.e. the position in row i on runner Aj , in the abacus

configuration either contains a bead or not; we also call an empty position a gap. As is

customary, all abaci contain finitely many rows and hence finitely many beads, but in

all instances enough to perform all of the necessary operations. We say that position

(i, j) is the first gap in A if there are beads in positions (x, y) for all x < i and all y,

and in positions (i, y) for all y < j.

The partition λ corresponding to an abacus configuration A is given as follows: if a

bead b on the abacus lies in position (i, j), let λb be the number of gaps (x, y) such that

either x < i, or x = i and y < j. Then {λb | b is a bead on A} gives the multiset of parts

of the partition λ, from which we remove zeros and sort its elements into non-increasing

order to produce λ. We also sometimes simply say that A is an e-abacus for λ, or that

A represents the partition λ.

For j ∈ {0, . . . , e−1}, denote by |Aj | the number of beads on runner j. Moreover, we

denote by A↑ the e-abacus obtained from A by sliding all of the beads on each runner

upwards as much as possible. Extending the notation just introduced, we denote by

A↑0, . . . , A
↑
e−1 the runners of A↑. As explained in [41, Chapter 2], A↑ is an e-abacus for

the e-core Ce(λ) of λ, and (up to a cyclic permutation of the runners) the individual

runners A0, . . . Ae−1 are 1-abacus configurations for the partitions λ0, . . . , λe−1 in the

e-quotient Qe(λ) of λ.

Let the operation of sliding any single bead down (resp. up) one row on its runner be

called a down-move (resp. up-move). Of course, such a move is only possible for a bead

in position (i, j) if the respective position (i± 1, j) was empty initially. On the level of

partitions, performing a down- or up-move corresponds to adding or removing an e-hook,

respectively. In analogy with the notation used for partitions, we denote by w(A) the

total number of up-moves needed to obtain A↑ from A. Similarly, for i ∈ {0, . . . , e− 1}
we let w(Ai) be the number of those up-moves that were performed on runner i in the

transition from A to A↑. It is easy to see that we(λ) = w(A) = w(A0) + · · ·+w(Ae−1).

Suppose that c is a bead in position (i, j) of A. We say that c is a removable bead if

j 6= 0 and there is no bead in (i, j − 1), or if j = 0 and there is no bead in (i− 1, e− 1).

Denote by A←c the abacus obtained by sliding c into position (i, j − 1) (respectively

(i − 1, e − 1)). Clearly removable beads in an abacus A for λ correspond to removable
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nodes in [λ], so the set of such A←c is in natural bijection with λ−. Addable beads are

defined analogously and correspond to elements of λ+.

Finally, for j ∈ {0, . . . , e−1} we denote by Rem(Aj) the number of removable beads

in A lying on runner Aj . In particular, we have that |λ−| = Rem(A0)+· · ·+Rem(Ae−1).

Similarly, we let Add(Aj) denote the number of addable beads in A lying on Aj .

When we depict partitions on James’ abacus, we adopt the convention of denoting

beads on the abacus by X, and empty positions by O (or no symbol at all when the

meaning is clear).

Lemma 3.10. Let e ∈ N. Let λ be a partition and let A be an e-abacus for λ. Suppose

c is a removable bead on runner Aj and let µ ` n − 1 be the partition represented by

A←c. Then

we(µ)− we(λ) =

|Aj | − |Aj−1| − 1 if j 6= 0

|A0| − |Ae−1| − 2 if j = 0.

Proof. First suppose j 6= 0. Without loss of generality we can relabel the rows of the e-

abacus A such that there is no empty position in any row labelled by a negative integer.

Let B := A←c. Clearly w(Ai) = w(Bi) for all i ∈ {0, . . . , e− 1} \ {j − 1, j}. Hence

we(µ)− we(λ) = w(Bj−1) + w(Bj)− w(Aj−1)− w(Aj).

Let s and t be the numbers of beads lying in rows labelled by non-negative integers

in runners Aj−1 and Aj respectively. Suppose that the s beads on Aj−1 lie in rows

0 ≤ x1 < · · · < xs and that the t beads on Aj lie in rows 0 ≤ y1 < · · · < yt. Then

w(Aj−1)+w(Aj) =

s∑
i=1

(xi− (i−1))+

t∑
i=1

(yi− (i−1)) =

s∑
i=1

xi+

t∑
i=1

yi− s(s−1)
2 − t(t−1)

2 .

Suppose that the bead c lies in row yl for some l ∈ [t]. Since c is removable, yl 6=
xi for all i ∈ [s]. Thus the beads on Bj−1 lie in rows 0 ≤ x′1 < · · · < x′s+1 with

{x′1, . . . , x′s+1} = {x1, . . . , xs, yl} and the beads on Bj lie in rows 0 ≤ y′1 < · · · < y′t−1

with {y′1, . . . , y′t−1} = {y1, . . . , yl−1, yl+1, . . . , yt}. Hence

w(Bj−1)+w(Bj) =

s+1∑
i=1

(x′i−(i−1))+

t−1∑
i=1

(y′1−(i−1)) =

s∑
i=1

xi+

t∑
i=1

yi− s(s+1)
2 − (t−1)(t−2)

2

and we conclude that we(µ)− we(λ) = t− s− 1 = |Aj | − |Aj−1| − 1.

The case when j = 0 is similar.

Remark 3.11. Given a partition λ and a fixed e-abacus A for λ we let λi be the partition

corresponding to the runner Ai, considered as a 1-abacus. The resulting e-quotient

(λ0, λ1, . . . , λe−1) depends on the choice of the abacus A (a different choice of e-abacus,

e.g. having first gap in a different position, may induce a cyclic permutation of the

components of the e-quotient). Nevertheless, all of the results presented in this chapter
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hold independently of this observation. For instance, the e-weight we(λ) does not depend

on the choice of e-abacus; the same discussion holds for Theorem 3.13 below. ♦

Let p be a prime. As outlined in Section 2.2, the irreducible characters of Sn of

p′-degree were characterised in [44]. We restate this result in language convenient for

our purposes.

Theorem 3.12. Let n ∈ N and let λ ∈ Irr(Sn). Let a ∈ {1, . . . , p − 1} and k ∈ N0 be

such that apk ≤ n < (a+1)pk. Then λ ∈ Irrp′(Sn) if and only if Cpk(λ) ∈ Irrp′(Sn−apk).

Theorem 3.12 says that λ is a p′-partition if and only if wpk(λ) = a and the partition

Cpk(λ) obtained from λ by successively removing all possible pk-hooks is a p′-partition

of n− apk. It will sometimes be useful to use the following equivalent version of Theo-

rem 3.12.

Theorem 3.13. Let n ∈ N and let n =
∑k
j=0 ajp

j be its p-adic expansion. Let λ ∈
Irr(Sn) and let Qp(λ) = (λ0, λ1, . . . , λp−1). Then λ ∈ Irrp′(Sn) if and only if

(i) Cp(λ) ` a0, and

(ii) for all t ∈ {0, 1, . . . , p− 1} there exists b1t, b2t, . . . , bkt ∈ N0 such that

p−1∑
t=0

bjt = aj for all j ∈ {1, . . . k}, and λt `p′
k∑
j=1

bjtp
j−1.

Proof. This characterisation of p′-partitions of n ∈ N follows from considering the p-core

tower associated to any partition of n (see Section 2.2 and [54, Chapters I and II]).

3.1.2 The core map

Fix an arbitrary prime p. In this section we state some combinatorial results crucial to

the proofs of the main theorems of this chapter. As a consequence of these observations,

we are able to give a proof of Theorem 3.2. As appropriately remarked later in this

section, the proofs of Theorem 3.3 and Corollary 3.4 are postponed to Section 3.1.4 to

improve readability.

Notation 3.14. Unless otherwise stated, in this section we fix n ∈ N such that n =

apk + m for some k ∈ N, a ∈ [p − 1] and 0 < m < pk. To be precise, this will be the

standing assumption from Theorem 3.15 to Proposition 3.23.

The following result, which we believe is of independent interest, is one of the key

steps in proving Theorem 3.2.

Theorem 3.15. Let λ `p′ n and let α ∈ λ−p′ . Then Cpk(α) ∈ µ−p′ , where µ := Cpk(λ).

In particular, we deduce that the map

Cpk : λ−p′ −→ µ−p′ ,

is well-defined. Moreover, it is surjective.
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Proof. Let A be the pk-abacus for µ having first gap in position (0, 0). It is easy to see

that rows i ≥ 1 must be empty, since |µ| = m < pk. (We will not need rows i with

|i| > a, so we may assume row −a is the top row of the abacus and +a the bottom row.)

So |A0| = a and |Aj | ∈ {a, a+ 1}, for all j ∈ {0, 1, . . . , pk − 1}. Let B be the pk-abacus

for λ such that B↑ = A. By Proposition 3.9, we have that wpk(λ) = a and B is obtained

from A after performing exactly a down-moves.

Let c be the bead in B such that B←c represents α, and suppose c lies on runner Bj .

Since α is a p′-partition of n− 1 = apk + (m− 1) ≥ apk we deduce from Theorem 3.12

that wpk(α) = a. By Lemma 3.10 we have that |Bj | = 1+ |Bj−1| (j cannot be 0 because

|Bl| = |Al| ∈ {a, a+1} for all l ∈ {0, . . . , pk−1}). It follows that there exists a bead d in

position (0, j) of A and that position (0, j− 1) of A is empty. Hence A←d is a pk-abacus

for Cpk(α), which by Theorem 3.12 must be a p′-partition. Thus Cpk(α) ∈ µ−p′ and the

map Cpk : λ−p′ −→ µ−p′ is well-defined.

To show that the map is surjective we proceed as follows. Let A be the pk-abacus

for µ as described above. For any β ∈ µ−p′ there exists a bead d in A such that A←d

is a pk-abacus for β. Let j ∈ {1, . . . , pk − 1} be such that d is in position (0, j) in

A and such that position (0, j − 1) is empty. Let B be the pk-abacus for λ described

above. Clearly we have that |Bj | = |Aj | = 1 + |Aj−1| = 1 + |Bj−1|. Hence there

exists a row y ∈ {−a, . . . , a} such that position (y, j − 1) of B is empty and such that

there is a bead (say e) in position (y, j). Let α be the partition corresponding to the

pk-abacus B←e. By Lemma 3.10 we deduce that wpk(α) = a. Moreover it is clear that

Cpk(α) = β ∈ Irrp′(Sn−apk). By Theorem 3.12 we deduce that α ∈ λ−p′ and therefore

Cpk is surjective.

Corollary 3.16. Let λ `p′ n. Then |Cpk(λ)−p′ | ≤ |λ
−
p′ |.

Keeping n = apk +m as in Notation 3.14, we now introduce the following definition.

Given γ `p′ m, define

brp(n, γ) := max{|λ−p′ | | λ `p′ n and Cpk(λ) = γ}.

(As usual, we omit the subscript p when it is understood.) Clearly br(n), the main object

of our study, is equal to the maximal br(n, γ) over all p′-partitions γ of m. Corollary 3.16

allows us to give the following definition.

Definition 3.17. Let n = apk +m be as in Notation 3.14, and let γ `p′ m. We define

N(a, pk, γ) ∈ N0 to be such that |γ−p′ |+N(a, pk, γ) = br(n, γ).

Proposition 3.18. Let γ `p′ m and let L = |γ−p′ |. Then N(a, pk, γ) = Φ(a, L), where

Φ is as described in Definition 3.6.

In order to prove Proposition 3.18, we introduce the following combinatorial concepts.

Definition 3.19. Let n = apk +m be as in Notation 3.14, and let γ `p′ m. Denote by

Aγ the pk-abacus for γ having first gap in position (0, 0). Define RAγ to be the subset of
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{0, 1, . . . , pk− 1} such that j ∈ RAγ if and only if there is a removable bead c on runner

j of Aγ and the partition corresponding to the pk-abacus A←cγ is a p′-partition of m− 1.

Since Aγ has first gap in position (0, 0) and since |γ| = m < pk we deduce that all

removable beads in Aγ lie in row 0. Hence |RAγ | = |γ−p′ |. By the definition of removable

beads, we have in particular that 0 /∈ RAγ , and for j ∈ [pk − 2] we have that if j ∈ RAγ
then j + 1 /∈ RAγ .

Lemma 3.20. Let γ `p′ m. Let λ `p′ n be such that Cpk(λ) = γ and let B be the

pk-abacus for λ such that B↑ = Aγ . Let c be a removable bead on runner j of B and let

µ be the partition of n − 1 corresponding to B←c. Then µ is a p′-partition if and only

if j ∈ RAγ .

Proof. Let A := Aγ . First suppose j ∈ RA. In particular, j 6= 0. Then

|Bj | = |Aj | = |Aj−1|+ 1 = |Bj−1|+ 1,

so wpk(µ) = a by Lemma 3.10. We also have that (B←c)↑ is an abacus configuration for

Cpk(µ). Moreover if d is the bead in position (0, j) of A then (B←c)↑ = A←d. Therefore

we deduce that Cpk(µ) ∈ γ−p′ and hence µ `p′ n− 1 by Theorem 3.12.

Now suppose that j /∈ RA. If j = 0 then |B0| = |A0| 6= |Apk−1| + 2 = |Bpk−1| + 2.

Hence wpk(µ) 6= a by Lemma 3.10, so µ is not a p′-partition by Theorem 3.12. Otherwise,

suppose that j 6= 0. Then Cpk(µ) is represented by the pk-abacus (B←c)↑ = A←d, where

d is a bead lying in position (0, j) of A. Since j /∈ RA we deduce that Cpk(µ) is not a

p′-partition, and so µ is not a p′-partition by Theorem 3.12.

Corollary 3.21. Let γ `p′ m and let λ `p′ n be such that Cpk(λ) = γ. Let B be the

pk-abacus for λ such that B↑ = Aγ . Then

|λ−p′ | =
∑

j∈RAγ

Rem(Bj).

Recall from Definition 3.6 that f(x) = max{y ∈ N0 | y(y + 1) ≤ x}. The following

lemma describes the key relationship between this function f and certain removable

beads, which will be necessary for the proof of Proposition 3.18 (below).

Lemma 3.22. Let λ ∈ {∅, (1)} and let Tλ denote the 2-abacus for λ having first gap in

position (0, 0). Let x ∈ N0 and let Tλ(x) be the set of all 2-abaci U such that w(U) = x

and U↑ = Tλ. Then

max{Rem(U1) | U ∈ Tλ(x)} =

f(x) + 1 if λ = (1),

b
√
xc if λ = ∅.

Proof. This is clear if x = 0 or x = 1, so we may assume now that x ≥ 2 (and

hence f(x) > 0). We first fix λ = (1); this is the case that we use in the proof of

Proposition 3.18 below. Since λ is now fixed, we ease the notation by letting T = T(1)
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and T (x) = T(1)(x) for all x ∈ N0. Moreover, let F (x) := max{Rem(U1) | U ∈ T (x)}.
We first show that there exists A ∈ T (x) satisfying w(A0) = 0 (equivalently w(A1) = x)

and Rem(A1) = F (x).

Let U ∈ T (x) be such that w(U0) = ` and Rem(U1) = r for some l ∈ {1, 2, . . . , x}
and some r ∈ {0, 1, . . . , F (x)}. Then there exists a 2-abacus V ∈ T (y) for some y ≤ x

such that w(V0) < ` and Rem(V1) ≥ r. This follows from the following observation.

Since ` ≥ 1 there exists i ∈ Z such that there is a bead in position (i, 0) of U but not

in (i − 1, 0). Recalling that beads are denoted by X and gaps by O, consider the four

possibilities for rows i− 1 and i of U (with the left- and right-hand runners labelled by

0,1 respectively):
i−1
i

O
X
O
X

O
X
O
O

O
X
X
X

O
X
X
O

In the first three instances, we can move the bead in (i, 0) to (i − 1, 0) to obtain the

desired V . In the fourth (i.e. rightmost) case, we need to additionally move the bead in

(i− 1, 1) to (i, 1). Hence, if B ∈ T (x) satisfies Rem(B1) = F (x) then there exists y ≤ x
and A′ ∈ T (y) such that Rem(A′1) = F (x), w(A′0) = 0 and w(A′1) = y. Let (i, 1) be the

lowest position occupied by a bead (say d) in A′. Moving d to position (i + (x − y), 1)

we obtain a 2-abacus configuration A ∈ T (x) such that Rem(A1) = Rem(A′1) = F (x),

w(A0) = 0 and w(A1) = x, as desired.

It remains to show that F (x) = f(x) + 1. First suppose for a contradiction that

F (x) ≥ f(x) + 2, and let A ∈ T (x) be such that Rem(A1) = F (x) and w(A0) = 0.

By construction there exist integers 0 ≤ j1 < j2 < · · · < jf(x)+2 such that there is a

bead in position (jk, 1) of A for all k ∈ [f(x) + 2]. This implies that w(A) = w(A1) ≥
(f(x) + 1)(f(x) + 2) > x, a contradiction. Hence F (x) ≤ f(x) + 1.

Now let y := f(x) · (f(x) + 1) ≤ x. Let B be the 2-abacus obtained from T by first

sliding down the bead in position (0, 1) to position (f(x) + x − y, 1) and then sliding

down the bead in position (i, 1) to position (i+f(x), 1) for each i ∈ {−1,−2, . . . ,−f(x)}.
Clearly B ∈ T (x) and Rem(B1) = f(x) + 1. Thus F (x) = f(x) + 1, as desired.

The case λ = ∅ is similar.

Proof of Proposition 3.18. Let λ `p′ n be such that Cpk(λ) = γ and |λ−p′ | = br(n, γ).

Let B be the pk-abacus for λ such that B↑ = Aγ . In particular, B is obtained from Aγ

by performing a down-moves. Let RAγ = {j1, . . . , jL}. Then by Corollary 3.21, we have

L+N(a, pk, γ) = br(n, γ) = |λ−p′ | =
L∑
i=1

Rem(Bji).

Let ai = w(Bji−1) + w(Bji) for i ∈ [L], so a1 + · · ·+ aL ≤ a. Since no two numbers

in RAγ are consecutive (as remarked after Definition 3.19), we can regard the pairs

of runners of (Bj1−1, Bj1), (Bj2−1, Bj2), . . . , (BjL−1, BjL) as L disjoint 2-abaci, whose

2-cores are all equal to the 2-abacus T(1) considered in Lemma 3.22. It is easy to see

that the 2-abacus identified with the pair (Bji−1, Bji) lies in T(1)(ai) for all i ∈ [L].

Lemma 3.22, together with the maximality of |λ−p′ | among all the p′-partitions of n with
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pk-core equal to γ, allows us to deduce that Rem(Bji) = f(ai) + 1, for all i ∈ [L]. Hence

we obtain

N(a, pk, γ) =

L∑
i=1

Rem(Bji)− L =

L∑
i=1

f(ai).

We conclude the proof by showing that

N(a, pk, γ) = max

{
L∑
i=1

f(a′i) | a′1 + · · ·+ a′L ≤ a, a′i ∈ N0 ∀ i

}
= Φ(a, L).

Suppose for a contradiction that there exists a natural number y ≤ a and (a′1, . . . , a
′
L)

a composition of y such that
∑L
i=1 f(a′i) > N(a, pk, γ). Since f is a non-decreasing func-

tion, without loss of generality we can assume that y = a. Then by using constructions

analogous to those in the proof of Lemma 3.22, we can construct a partition λ̃ `p′ n with

Cpk(λ̃) = γ, wpk(λ̃) = a and pk-abacus B̃ satisfying B̃↑ = Aγ such that w(B̃ji) = a′i
and Rem(B̃ji) = f(a′i) + 1 for all i ∈ [L]. This implies that

br(n, γ) ≥ |λ̃−p′ | = L+

L∑
i=1

f(a′i) > L+N(a, pk, γ) = |λ−p′ | = br(n, γ),

which is a contradiction. Hence N(a, pk, γ) = Φ(a, L).

Proposition 3.23. Let γ `p′ m. Then br(n) = br(n, γ) if and only if |γ−p′ | = br(m). In

particular, br(n) = br(m) + Φ(a, br(m)).

Proof. Suppose that br(n) = br(n, γ). Let λ `p′ n be such that Cpk(λ) = γ and

|λ−p′ | = br(n), so that br(n) = |γ−p′ |+Φ(a, |γ−p′ |) by Proposition 3.18. Let δ `p′ m be such

that |δ−p′ | = br(m). Then, since Φ is non-decreasing in each argument (when the other

argument is fixed), we have

br(n) ≥ br(n, δ) = |δ−p′ |+ Φ(a, |δ−p′ |) = br(m) + Φ(a, br(m)) ≥ |γ−p′ |+ Φ(a, |γ−p′ |) = br(n),

whence we in fact have equalities everywhere. This proves all three statements: br(m) =

|γ−p′ | gives the only if direction; br(n) = br(n, δ) gives the if direction (with δ in place of

γ); and the final assertion is clear.

Corollary 3.24. Let n ∈ N. Let n =
∑t
j=1 ajp

nj be its p-adic expansion, where

0 ≤ n1 < · · · < nt. Let mj =
∑j−1
i=1 aip

ni . Then

br(n) = br(a1p
n1) +

t∑
j=2

Φ(aj , br(mj)).

Thus we have shown that the second statement of Theorem 3.2 holds. In the last

part of this section we complete the proof of Theorem 3.2 by studying the set E(n) =

{|λ−p′ | : λ ` n and p - χλ(1)}.
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Theorem 3.25. Let p be a prime, k ∈ N0 and a ∈ {1, 2, . . . , p − 1}. Then E(apk) =

{1, 2, . . . , br(apk)}.

The proof of Theorem 3.25 is rather more technical and so has been postponed

to Section 3.1.4. More precisely, Theorem 3.25 follows from Propositions 3.30, 3.33

and 3.43, which are proved in Section 3.1.4 below.

The next statement extends the observations already made in Lemma 3.22, and is

crucial to completing the description of the set E(n).

Lemma 3.26. Let B = T(1) denote the 2-abacus for the partition (1) having first gap

in position (0, 0). Let x ∈ N0 and let T (x) be the set consisting of all 2-abaci U such

that w(U) = x and U↑ = B. Then {Rem(U1) | U ∈ T (x)} = {1, 2, . . . , f(x) + 1}.

Proof. From Lemma 3.22 we know that the maximal value of {Rem(U1) | U ∈ T (x)} is

f(x)+1. For any r ∈ {0, 1, . . . , f(x)}, let U(r) be the 2-abacus obtained from B by first

sliding down the bead in position (0, 1) to position (x− r(r + 1), 1) and then (if r > 0)

sliding down the bead in position (i, 1) to position (i+r, 1) for each i ∈ {−1,−2, . . . ,−r}.
Clearly U(r) ∈ T (x) and Rem(U(r)1) = r + 1.

Theorem 3.27. Let p be a prime and let n ∈ N. Let n =
∑t
j=1 ajp

nj be its p-adic

expansion, where 0 ≤ n1 < n2 < · · · < nt. Then E(n) = {1, 2, . . . , br(n)}.

Proof. We proceed by induction on t, the p-adic length of n. If t = 1 then the statement

follows from Theorem 3.25.

Now assume that t ≥ 2. Let m =
∑t−1
j=1 ajp

nj and let γ be a p′-partition of m such

that |γ−p′ | = br(m). For convenience, let L = br(m) and k = nt. As in Definition 3.19

let A := Aγ be the pk-abacus for γ having first gap in position (0, 0). Moreover, let

RA = {j1, . . . , jL}.
Applying Lemma 3.26 to the L pairs of runners (Aji−1, Aji) of A, we see that for each

r ∈ {0, 1, . . . ,Φ(at, L)}, there exists a sequence of at down-moves that can be performed

on A to produce a pk-abacus Br such that∑
j∈RA

Rem(Brj ) = L+ r.

Let λ(r) be the partition of n corresponding to Br. Clearly Cpk(λ(r)) = γ and by

Theorem 3.12 we deduce that λ(r) `p′ n. Moreover, |λ(r)−p′ | = L+ r by Corollary 3.21.

Hence L+ r ∈ E(n), and thus {L,L+ 1, . . . , br(n)} ⊆ E(n), noting that L+ Φ(at, L) =

br(n, γ) = br(n) by Proposition 3.23.

If L = 1 then the proof is complete; otherwise, using the inductive hypothesis we

have that for any i ∈ {1, 2, . . . , L − 1}, there exists γ(i) `p′ m such that |γ(i)−p′ | = i.

Taking r = 0 and replacing γ by γ(i) in the above construction, we construct β(i) `p′ n
such that Cpk(β(i)) = γ(i) and |β(i)−p′ | = i+ 0. Hence {1, 2, . . . , L− 1} ⊆ E(n), and we

conclude that E(n) = {1, 2, . . . , br(n)}.

Proof of Theorem 3.2. This follows directly from Corollary 3.24 and Theorem 3.27.
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3.1.3 The upper bound B(n)

In this section we prove Proposition 3.5. Fix a prime p and let n ∈ N. Let n =∑t
j=1 ajp

nj be its p-adic expansion, where 0 ≤ n1 < · · · < nt. Recall that Bp(n) is

defined as follows:

Bp(n) = brp(a1p
n1) +

t∑
j=2

⌊aj
2

⌋
.

From Lemma 3.7 and Corollary 3.24, we see that brp(n) ≤ Bp(n), and the difference

εp(n) = Bp(n)− brp(n) can be written as

εp(n) =

t∑
j=2

(⌊aj
2

⌋
− Φ(aj , brp(mj))

)

where mj =
∑j−1
i=1 aip

ni . The following statement will be useful in the proof of Propo-

sition 3.5, below.

Lemma 3.28. Let s, t ∈ N0 with s ≤ t. Let b0, b1, . . . , bt ∈ {0, 1, . . . , p − 1} with

b0, b1, . . . , bs not all zero. Then br
(∑s

j=0 bjp
j
)
≤ br

(∑t
j=0 bjp

j
)

.

Proof. This follows directly from Proposition 3.23.

Proof of Proposition 3.5. Fix n ∈ N and its p-adic expansion as above. Let ε(j) =

baj2 c − Φ(aj , br(mj)). If aj ≤ 3 then ε(j) = 0 by Lemma 3.7, since br(mj) ≥ 1. Hence

if aj ≤ 3 for all j ≥ 2, then in fact εp(n) = 0. Thus if p ≤ 3 then εp(n) = 0, so from

now on we may assume p ≥ 5 and that there exists i ∈ {2, . . . , t} such that ai ≥ 4. In

particular, there exists a unique k ∈ N and integers 1 = i0 < i1 < i2 < · · · < ik ≤ t such

that for all j ∈ [k],

ij = min
{
x ∈ {ij−1 + 1, . . . , t− 1, t} | ax ≥ 2j + 2

}
,

and {x ∈ {ik + 1, . . . , t − 1, t} | ax ≥ 2k+1 + 2} = ∅. Note that k must satisfy 2k < p,

because if 2k ≥ p then aik ≥ 2k + 2 > p − 1, contradicting the fact that aik is a p-adic

digit.

We first show that br(mij ) ≥ 2j−1 for all j ∈ [k] by induction. This is clear for j = 1.

For j ∈ {2, . . . , k}, we have

br(mij ) ≥ br(mij−1+1) = br(mij−1
) + Φ(aij−1

, br(mij−1
))

≥ 2j−2 + Φ(2j−1 + 2, 2j−2) ≥ 2j−1.

The inequalities above hold by Lemma 3.28, the fact that Φ is non-decreasing in

each argument, the inductive hypothesis, and Lemma 3.8, while the equality follows

from Proposition 3.23. Thus for all x ≥ ij + 1 we have

br(mx) ≥ br(mij+1) = br(mij ) + Φ(aij , br(mij )) ≥ 2j−1 + Φ(2j + 2, 2j−1) ≥ 2j .
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Now let x ∈ {2, . . . , t} be such that ij < x < ij+1 for some j ∈ [k−1]. Since x < ij+1

and x > ij , we have ax ≤ 2j+1+1, and since x > ij , we have by the above discussion that

br(mx) ≥ 2j . Therefore br(mx) ≥ bax2 c and hence ε(x) = 0 by Lemma 3.7. Similarly if

x < i1 then ax ≤ 3 and so ε(x) = 0, while if x > ik then br(mx) ≥ 2k ≥ bax2 c and thus

ε(x) = 0 also. Hence

εp(n) =

k∑
j=1

ε(ij).

Finally, for each j ∈ [k], we have by Lemma 3.8 that

ε(ij) =
⌊aij

2

⌋
− Φ(aij , br(mij )) ≤

p− 1

2
− Φ(2j + 2, 2j−1) ≤ p− 1

2
− 2j−1.

Hence

εp(n) ≤
k−1∑
i=0

(
p− 1

2
− 2i

)
= k · p− 1

2
− (2k − 1) < k · p

2
<
p

2
log2 p.

Remark 3.29. Proposition 3.5 shows that the difference between the upper bound B(n)

and the actual value of br(n) is small, and is bounded independently of n. If p ∈
{2, 3} then εn = 0, as observed in the first part of the proof of Proposition 3.5 above.

In particular, fixing p = 2 we recover [1, Theorem 1]. As already mentioned in the

introduction, the proof of Proposition 3.5 also shows that for any prime p, we have

B(n) = br(n) whenever all of the p-adic digits of n are at most 3. ♦

3.1.4 p′-constituents when n = apk

The main goals in this section are to prove Theorem 3.3 (determining the value of

brp(ap
k)), Corollary 3.4 and Theorem 3.25 (showing that Ep(apk) is the set of consec-

utive integers {1, 2, . . . , brp(apk)}). These two results play the role of base cases for

Theorem 3.2.

For the rest of this section, let p be an odd prime. The case when k = 0 is straight-

forward and is described in the following proposition.

Proposition 3.30. Let a ∈ {1, 2, . . . , p−1}. Then E(a) = {1, 2, . . . , br(a)} and br(a) =

f(2a).

Proof. Every partition of a−1 is a p′-partition, and we can always construct a partition

λ of a such that |λ−| = m for any m ∈ {1, 2, . . . , f(2a)}, since f(2a) is the maximum

number of parts of distinct size achieved by a partition of a.

In the following proposition we provide a naive upper bound for br(apk), for all k ∈ N
and a ∈ {1, . . . , p− 1}. As we will show in the rest of this section, this bound turns out

to be tight for almost all values of a and k.
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Proposition 3.31. Let a ∈ {1, 2, . . . , p− 1} and let k ∈ N. Then br(apk) ≤ 2a.

Proof. Let C and D be pk-abacus configurations such that D is obtained from C by

performing a single down-move. It is easy to see that the number of removable beads

in D is at most the number of removable beads in C plus two. Hence if λ is a partition

such that Cpk(λ) = ∅ then |λ−| ≤ 2wpk(λ). Now let n = apk and let λ `p′ n satisfy

|λ−p′ | = br(n). From Theorem 3.12 we know that Cpk(λ) = ∅ and wpk(λ) = a. The result

follows.

Proof of Corollary 3.4. This is a straightforward consequence of Lemma 3.7, Corollary

3.24 and Proposition 3.31.

To complete the proof of Theorem 3.3, it will be convenient to split the remainder of

this section into two parts. In each part we will appropriately fix the natural numbers

a and k according to the statement of Theorem 3.3.

Part I

In this first part, we consider the case k = 1 and a < p
2 , and the case k ≥ 2.

Proposition 3.32. Let a ∈ {1, 2, . . . , p − 1} and let k ∈ N. If k = 1 and a < p
2 , or if

k ≥ 2, then br(apk) = 2a.

Proof. It is enough to construct λ `p′ apk such that |λ−p′ | = 2a, by Proposition 3.31.

(i) First suppose k = 1 and a < p
2 . Let λ = (p−1, p−2, . . . , p−a, a, a−1, . . . , 2, 1) ` ap.

Figure 3.1 depicts the p-abacus configuration for λ having first gap in position (0, 0),

where we have indicated the row numbers on the left and the runner numbers above

each column.

0 1 2 3 · · · 2a− 2 2a− 1 2a · · · p− 1
−1 × × × × · · · × × × · · · ×
0 ◦ × ◦ × · · · ◦ × ◦ · · · ◦
1 × ◦ × ◦ · · · × ◦ ◦ · · · ◦

Figure 3.1: The partition λ = (p− 1, p− 2, . . . , p− a, a, a− 1, . . . , 2, 1) ` ap.

Since Cp(λ) = ∅ we have that λ `p′ ap by Theorem 3.12. Moreover, we observe that

wp(µ) = wp(λ) − 1 = a − 1 for each µ ∈ λ−, by Lemma 3.10, and so Cp(µ) ` p − 1 by

Proposition 3.9. But every partition of p−1 is of p′-degree, so by Theorem 3.12 we have

that µ `p′ ap− 1 for every µ ∈ λ−, whence λ−p′ = λ− and so |λ−p′ | = 2a.

(ii) Suppose now that k ≥ 2. Let r = pk−1 − a > 0 and let

λj = a+ p− 2 + rp+ (a− j)(p− 1) = pk − (j − 1)(p− 1)− 1

for each j ∈ {1, 2, . . . , a}. Let

λ =
(
λ1, λ2, . . . , λa, a, (a− 1)p−1, (a− 2)p−1, . . . , 2p−1, 1p−1

)
` apk.
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The best way to verify that λ has the required properties is to look at it on James’ abacus.

We describe below and depict in Figure 3.2 a p-abacus configuration A corresponding

to λ such that:

· the first gap is in position (1, 0);

· rows 1 ≤ i ≤ a− 1 have a gap only in position (i, 0);

· row a has a bead only in position (a, 1);

· rows a+ 1 to a+ r are all empty;

· rows a+ 1 + r ≤ i ≤ 2a+ r have a bead only in position (i, 0);

· there is a gap in position (x, y) for all x > 2a+ r.

0 1 2 · · · p− 1
1 ◦ × × · · · ×
.
..

.

..
.
..

a− 1 ◦ × × · · · ×
a ◦ × ◦ · · · ◦
a+ 1 ◦ ◦ ◦ · · · ◦
...

...
...

a+ r ◦ ◦ ◦ · · · ◦
a+ 1 + r × ◦ ◦ · · · ◦
...

...
...

2a+ r × ◦ ◦ · · · ◦

Figure 3.2: The partition λ =
(
λ1, λ2, . . . , λa, a, (a− 1)p−1, (a− 2)p−1, . . . , 2p−1, 1p−1

)
` apk.

We observe that Qp(λ) = (λ0, ∅, . . . , ∅), where λ0 = (pk−1, . . . , pk−1) ` apk−1. From [54,

Theorem 3.3], we deduce that wpk(λ) = wpk−1(λ0) = a and Cpk(λ) = ∅. Thus λ `p′ apk,

by Theorem 3.12.

Notice that λ has exactly 2a removable nodes, corresponding to the 2a removable

beads in A lying in positions (i, 1) and (a + r + i, 0) for i ∈ [a]. Let c be a removable

bead in position (i, 1) of A, for some i ∈ [a]. Then A←c corresponds to the partition

µ ` apk − 1 such that Cp(µ) = (p− 1) ` p− 1 and Qp(µ) = (µ0, µ1, ∅, . . . , ∅), where

µ0 = (pk−1 − 1, . . . , pk−1 − 1, i− 1) ` a(pk−1 − 1) + i− 1 and µ1 = (1a−i) ` a− i.

We observe that µ0 `p′ (a − 1)pk−1 + m, where m := pk−1 − a + (i − 1). This follows

from Theorem 3.12 since wpk−1(µ0) = a − 1 and Cpk−1(µ0) = (m) `p′ m. Moreover,

µ1 `p′ a− i. We can now use Theorem 3.13 to deduce that µ `p′ apk − 1 and therefore

µ ∈ λ−p′ .
A similar argument shows that for every j ∈ [a] the p-abacus A←d obtained from A

by sliding the bead d in position (a+r+j, 0) to position (a+r+j−1, p−1), corresponds

to a p′-partition µ of apk − 1, that is, µ ∈ λ−p′ . Thus |λ−p′ | = 2a.

Proposition 3.33. Let a ∈ {1, 2, . . . , p − 1} and let k ∈ N. If k = 1 and a < p
2 , or if

k ≥ 2, then E(apk) = {1, 2, . . . br(apk)}.

42



Proof. It is enough to construct λ `p′ apk such that |λ−p′ | = m for each m ∈ [2a− 1], by

Proposition 3.32.

(i) First suppose that k = 1 and a < p
2 . We first exhibit λ(j) `p′ ap such that

|λ(j)−p′ | = 2j for each j ∈ [a− 1]:

· let λ(1) = (ap− 1, 1);

· for each fixed j ∈ {2, . . . , a− 1}, let λ(j) = (λ1, λ2, . . . , λ2j) where

- λ1 = (a− j + 1)p− 2j + 1,

- λx = p+ 2− x for x ∈ {2, . . . , j}, and

- λy = 2j + 1− y for y ∈ {j + 1, . . . , 2j}.

The p-abacus for λ(j) having first gap in position (0, 0) is depicted in Figure 3.3.

0 1 2 3 · · · 2j − 2 2j − 1 2j · · · p− 1
−1 × × × × · · · × × × · · · ×
0 ◦ × ◦ × · · · ◦ × ◦ · · · ◦
1 ◦ ◦ × ◦ · · · × ◦ ◦ · · · ◦
2 ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦
...

...
...

a− j + 1 × ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦

Figure 3.3: The partition λ(j).

That λ(j) `p′ ap follows from Theorem 3.12. Moreover, wp(µ) = wp(λ(j))−1 = a−1

for each µ ∈ λ(j)− by Lemma 3.10, and so |Cp(µ)| = p−1 by Proposition 3.9. But then

Cp(µ) `p′ p− 1 and so by Theorem 3.12 we have that µ `p′ ap− 1 for each µ ∈ λ(j)−,

whence λ(j)−p′ = λ(j)− and so |λ(j)−p′ | = 2j. Hence {2, 4, . . . , 2a− 2} ⊆ E(ap).

Next we exhibit β(j) `p′ ap such that |β(j)−p′ | = 2j − 1 for each j ∈ [a]:

· let β(1) =
(
(a− 1)p+ 1, 1p−1

)
;

· let β(a) = (2a− 1, 2a− 2, . . . , a+ 1, ap−2a+2, a− 1, . . . , 2, 1);

· for each fixed j ∈ {2, . . . , a− 1}, let β(j) = (β1, . . . , βp) where

- β1 = (a− j)p+ 1,

- βx = 2j + 2− x for x ∈ {2, . . . , j},
- βy = j for y ∈ {j + 1, . . . , p− j + 1}, and

- βz = p+ 1− z for z ∈ {p− j + 2, . . . , p}.

The p-abacus for β(j) having first gap in position (0, 0) is depicted in Figure 3.4.

0 1 2 3 · · · 2j − 2 2j − 1 2j · · · p− 1
−1 × × × × · · · × × × · · · ×
0 ◦ × ◦ × · · · ◦ × × · · · ×
1 ◦ ◦ × ◦ · · · × ◦ ◦ · · · ◦
2 ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦
...

...
...

a− j + 1 × ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦

Figure 3.4: The partition β(j).
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That β(j) `p′ ap follows from Theorem 3.12. By Lemma 3.10, if j 6= a then |β(j)−| =
2j and |β(j)− \β(j)−p′ | = 1, while if j = a then |β(j)−p′ | = |β(j)−| = 2a−1. In both cases

we have |β(j)−p′ | = 2j− 1, giving {1, 3, . . . , 2a− 1} ⊆ E(ap). Thus E(ap) = {1, 2, . . . , 2a}
as claimed.

(ii) Suppose now that k ≥ 2. We first construct a partition λ(j) `p′ apk such that

|λ(j)−p′ | = 2a− j, for all j ∈ [a− 1]. Let r = pk−1 − a > 0 and let

λ(j) :=
(
ηa−1, . . . , ηj , θj , . . . , θ1, a, (a− 1)p−1, . . . , (j+ 1)p−1, jp−2, (j− 1)p−1, . . . , 1p−1

)
,

where θt = a+ pr+ t(p− 1) and ηt = θt + (p− 2) for t ∈ [a− 1]. We describe below and

depict a p-abacus Aj for λ(j) in Figure 3.5:

· the first gap is in position (1, 1);

· rows 1 ≤ x ≤ j have a gap only in position (x, 1);

· rows j + 1 ≤ x ≤ a− 1 have a gap only in position (x, 0);

· row a has a bead only in position (a, 1);

· rows a+ 1 to a+ r are all empty;

· rows a+ r + 1 ≤ x ≤ a+ r + j have a bead only in position (x, 1);

· rows a+ r + j + 1 ≤ x ≤ 2a+ r have a bead only in position (x, 0);

· there is a gap in position (x, y) for all x > 2a+ r.

0 1 2 · · · p− 1
1 × ◦ × · · · ×
.
..

.

..
.
..

j × ◦ × · · · ×
j + 1 ◦ × × · · · ×
...

...
...

a− 1 ◦ × × · · · ×
a ◦ × ◦ · · · ◦
a+ 1 ◦ ◦ ◦ · · · ◦
...

...
...

a+ r ◦ ◦ ◦ · · · ◦
a+ r + 1 ◦ × ◦ · · · ◦
...

...
...

a+ r + j ◦ × ◦ · · · ◦
a+ r + j + 1 × ◦ ◦ · · · ◦
...

...
...

2a+ r × ◦ ◦ · · · ◦

Figure 3.5: A p-abacus Aj for the partition λ(j).

Since j is fixed, we denote λ(j) by λ and Aj by A from now on. Arguing as in the

proof of Proposition 3.32, we deduce that λ `p′ apk. Moreover, it is clear that |λ−| = 2a.

Let x ∈ [j] and let c be the bead lying in position (x, 2) of A. Let µ(x) be the partition

of apk − 1 corresponding to the p-abacus A←c. Then Cp(µ
(x)) = (p, 1p−1). Therefore

µ(x) is not a p′-partition, by Theorem 3.13. It follows that |λ−p′ | ≤ 2a− j.
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We now show that all of the other 2a − j removable beads in A correspond to p′-

partitions of apk−1. Let x ∈ {j+1, j+2, . . . , a} and let c be the bead in position (x, 1)

of A. Let µ(x) be the partition of apk − 1 corresponding to the p-abacus A←c. Then

Cp(µ
(x)) = (p− 1) `p′ p− 1 and Qp(µ

(x)) = (µ0, µ1, ∅, . . . , ∅), where

µ0 =
(
(pk−1 − 1)a−j , x− j − 1

)
and µ1 =

(
(r + j + 1)j , (j + 1)a−x, jx−j−1

)
.

By Theorem 3.12, both µ0 and µ1 are p′-partitions, since

|µ0| = (a− j − 1)pk−1 + (p− 1)

k−2∑
i=1

pi + [(p− 1)− (a− x)]

and

|µ1| = jpk−1 + (a− x).

This implies µ(x) `p′ apk − 1, by Theorem 3.13.

Now let c be the bead in position (a + r + x, 1) for some x ∈ [j], and let µ(x) be

the partition corresponding to the p-abacus A←c. Arguing as before, we deduce from

Theorem 3.13 that µ(x) `p′ apk − 1.

Finally, let c be the bead in position (a + r + x, 0) for some x ∈ {j + 1, . . . , a}
and let µ(x) be the partition corresponding to A←c. First, we observe that Cp(µ

(x)) =

(p− 2, 1) `p′ p− 1. Moreover, Qp(µ
(x)) = (µ0, µ1, ∅, . . . , ∅, µp−1), where

µ0 =
(
(pk−1 + 1)a−x, (pk−1)x−j−1

)
, µ1 =

(
(r + j)j , ja−j

)
, and µp−1 = (r + x− 1).

Again, µ(x) `p′ apk − 1 by Theorem 3.13, and so |λ−p′ | = 2a − j. Thus {a + 1, a +

2, . . . , 2a− 1} ⊆ Eapk .

Finally, we construct a partition β(j) `p′ apk such that |β(j)−p′ | = a − j, for all

j ∈ {0, 1, . . . , a− 1}. Let Bj be the p-abacus obtained from the p-abacus Aj described

above by replacing the bead in position (a, 1) with a gap so that row a is now empty.

Let β(j) be the partition of apk corresponding to the p-abacus Bj . Since j is fixed we

denote Bj by B and β(j) by β.

It is clear that β `p′ apk and |β−| = 2a − j − 1. Moreover, if c is one of the a − 1

removable beads lying on runner 1 of B and µ is the partition of apk − 1 corresponding

to the p-abacus B←c, then Cp(µ) = (p, 1p−1) and therefore µ is not a p′-partition by

Theorem 3.13. Hence |β−p′ | ≤ a − j. Arguing as before, the partition corresponding to

the p-abacus B←c for any removable bead c lying on runner 0 of B is a p′-partition of

apk − 1. Hence |β−p′ | = a− j, and so {1, 2, . . . , a} ⊆ E(apk).

Thus E(apk) = {1, 2, . . . , 2a} as claimed.

Part II

In this second part of Section 3.1.4, we fix k = 1 and a ∈ N such that p
2 < a < p. The

main aim in Part II is to prove the following fact.
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Proposition 3.34. Let a ∈ N and suppose that p
2 < a < p. Then br(ap) = p − 1 +

2b 2a−(p−1)
6 c.

The proof of Proposition 3.34 is split into a series of technical lemmas. We start by

fixing some notation which will be kept throughout Part II.

Notation 3.35. Let a ∈ N satisfy p
2 < a < p. Let x := a− p−1

2 , and write x = 3q + δ

for some q ∈ N0 and δ ∈ {0, 1, 2}. In particular, q = bx3 c = b 2a−(p−1)
6 c.

Definition 3.36. Denote by A∅ the p-abacus for the empty partition ∅ such that A∅

has first gap in position (0, 0). We then define Z(a) to be the set of p-abaci B such that

w(B) = a and B↑ = A∅.

It is clear by Theorem 3.12 that Z(a) is naturally in bijection with Irrp′(Sap).

Lemma 3.37. Let λ `p′ ap and let B ∈ Z(a) be the p-abacus corresponding to λ. Then

|λ−p′ | =
p−1∑
i=1

Rem(Bi) and br(ap) = max
B∈Z(a)

p−1∑
i=1

Rem(Bi).

Proof. The statement follows directly from Lemma 3.10 and Theorem 3.12.

Lemma 3.38. For a ∈ N such that p
2 < a < p, we have br(ap) ≥ p− 1 + 2q.

Proof. We exhibit a partition β `p′ ap such that |β−p′ | = p− 1 + 2q. If δ = 0 then let

β = (p+ 2q, p+ 2q − 1, . . . , p+ q + 1, p+ q − 1, . . . , q + 1, qp−2q+1, q − 1, . . . , 2, 1),

while if δ 6= 0 then let

β =
(
p(δ+1)+2, p+2q+1, p+2q, . . . , p+q+3, p+q−1, . . . , q+1, qp−2q+1, q−1, . . . , 1

)
.

We describe below and depict a p-abacus Bβ ∈ Z(a) for β in Figure 3.6:

0 1 2 3 4 · · · 2q − 2 2q − 1 2q 2q + 1 2q + 2 · · · p− 3 p− 2 p− 1
−3 × × × × × · · · × × × × × · · · × × ×
−2 × ◦ × ◦ × · · · × ◦ × × × · · · × × ×
−1 × ◦ × ◦ × · · · × ◦ × ◦ × · · · × ◦ ×
0 ◦ × ◦ × ◦ · · · ◦ × ◦ × ◦ · · · ◦ × ◦
1 ◦ ◦ ◦ × ◦ · · · ◦ × ◦ ◦ ◦ · · · ◦ ◦ ◦
2 ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦
.
.
.

.

.

.
.
.
.

1 + δ ◦ × ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦

Figure 3.6: A p-abacus Bβ for the partition β.

· for j ∈ {0, 2, . . . , p− 3, p− 1}, runner j has beads in positions (x, j) for all x ≤ −1;

· runner 1 has beads in positions (0, 1), (1 + δ, 1) and (y, 1) for all y ≤ −3;

· for j ∈ {3, 5, . . . , 2q− 1}, runner j has beads in positions (0, j), (1, j) and (y, j) for

all y ≤ −3;
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· for j ∈ {2q + 1, 2q + 3, . . . , p− 2}, runner j has beads in positions (0, j) and (y, j)

for all ≤ −2.

Observe that Cp(β) = ∅ and wp(β) = a, whence β `p′ ap by Theorem 3.12. Moreover,

by Lemma 3.37 we have β− = β−p′ . Hence br(ap) ≥ |β−p′ | = p− 1 + 2q.

Thus it remains to show that |λ−p′ | ≤ p− 1 + 2q for all λ `p′ ap. In order to do this

we introduce a new combinatorial object.

Definition 3.39. Let T∅ be the 2-abacus for the empty partition ∅ having first gap

in position (0, 0). Let U (0), U (1) . . . , U (p−1) be 2-abaci such that (U (i))↑ = T∅ for all

i ∈ {0, 1, . . . , p − 1}. If w(U (0)) + w(U (1)) + · · · + w(U (p−1)) = w ∈ N0 then we call

the sequence U = (U (0), U (1), . . . , U (p−1)) a doubled p-abacus of weight w and write

w(U) = w in this case. Moreover, we denote by D(w) the set of doubled p-abaci of

weight w.

Finally, given any w ∈ N0 we let M(w) = max
{
ρ(U) | U ∈ D(w)

}
, where for any

U ∈ D(w) we define ρ(U) as

ρ(U) =

p−1∑
i=1

Rem(U
(i)
1 ).

We denote by U
(i)
0 (resp. U

(i)
1 ) the left- (resp. right-) hand runner of the 2-abacus U (i).

Remark 3.40. Let λ `p′ ap and let B ∈ Z(a) correspond to λ. For i ∈ [p − 1], let

U (i) = (Bi−1, Bi) and let U (0) = (Bp−1, B0). Then U := (U (0), U (1), . . . , U (p−1)) ∈
D(2a) and ρ(U) = |λ−p′ |, by Lemma 3.37. With this in mind, we define D(Z(a)) to be

the subset of D(2a) of sequences U := (U (0), U (1), . . . , U (p−1)) such that U
(i)
0 = U

(i−1)
1

for all i ∈ {0, 1, . . . , p− 1} (here two runners are equal if they coincide as 1-abaci; that

is, they have beads in exactly the same rows). Clearly the set D(Z(a)) is naturally in

bijection with Z(a) via the construction described above. ♦

Lemma 3.41. Let a and x be as in Notation 3.35. Then br(ap) ≤M(2a) = p−1+b 2x
3 c.

Proof. It follows from Remark 3.40 that br(ap) ≤M(2a), so it remains to proveM(2a) =

p− 1 + b 2x
3 c.

Let U = (U (0), U (1), . . . , U (p−1)) ∈ D(2a) be such that ρ(U) = M(2a). Let wi =

w(U (i)). Clearly w1 + w2 + · · ·wp−1 ≤ 2a. Moreover, arguing as in the proof of

Lemma 3.22 we can assume that w(U
(i)
1 ) = wi and w(U

(i)
0 ) = 0 for all i ∈ [p − 1].

From the maximality of ρ(U) we deduce using Lemma 3.22 (in the case λ = ∅) that

Rem(U
(i)
1 ) = b√wic and hence

M(2a) = max

{
p−1∑
i=1

b
√
bic

∣∣∣∣∣ b1 + · · ·+ bp−1 ≤ 2a and bi ∈ N0 ∀ i ∈ [p− 1]

}
.

Let b = (b1, . . . , bp−1) be such that bi ∈ N0 for all i,
∑
i bi ≤ 2a and

∑
ib
√
bic =

M(2a); we will call any (p−1)-tuple satisfying these conditions maximal. If there exists i

47



such that bi ≥ 9, then there exists j such that bj ≤ 1. This follows since
∑
i bi ≤ 2a < 2p.

Replacing bi by b′i = bi−4 and bj by b′j = bj + 4 in b we obtain a new maximal sequence

b′. Hence we may assume without loss of generality that our maximal sequence b has

bi ≤ 8 for all i ∈ [p− 1].

Now if there exists i such that bi = 0 then there exists j such that bj ≥ 2, because

2a > p. In this case, replacing bi by b′i = 1 and bj by b′j = bj − 1 in b we obtain a new

maximal sequence b′. Hence we may further assume that b has bi ≥ 1 for all i ∈ [p− 1].

The observations above show that without loss of generality we may assume

b
√
b1c = · · · = b

√
btc = 2, b

√
bt+1c = · · · = b

√
bp−1c = 1,

for some t ∈ {0, . . . , p− 1}.
In particular, bi ∈ {4, . . . , 8} for i ∈ [t] and bj ∈ {1, 2, 3} for j ∈ {t + 1, . . . , p − 1}.

Thus 4t + (p − 1 − t) ≤
∑
i bi ≤ 2a, which gives t ≤ b 2x

3 c since t is an integer. This in

turn implies that M(2a) = 2t+ (p− 1− t) ≤ p− 1 + b 2x
3 c.

Finally, equality holds because we can construct U ∈ D(2a) such that w(U (1)) =

· · · = w(U (t)) = 4, w(U (t+1)) = · · · = w(U (p−1)) = 1 and w(U (0)) = 2a − 3t − (p − 1),

where t = b 2x
3 c, with Rem(U

(j)
1 ) = 2 for j ∈ [t] and Rem(U

(j)
1 ) = 1 for j ∈ {t+1, . . . , p−

1}.

Lemmas 3.38 and 3.41 show that p−1 + 2bx3 c ≤ br(ap) ≤ p−1 + b 2x
3 c. In particular,

if δ 6= 2 then we have that b 2x
3 c = 2q + b 2δ

3 c = 2q = 2bx3 c. In this case we have

br(ap) = M(2a) = p − 1 + 2q. To deal with the remaining case of δ = 2 where

p− 1 + 2q ≤ br(ap) ≤M(2a) = p− 1 + 2q + 1, we have the following lemma.

Lemma 3.42. Let a ∈ N be as in Notation 3.35 and suppose that δ = 2. Then br(ap) ≤
M(2a)− 1.

Proof. From Remark 3.40 it is enough to show that if U ∈ D(2a) and ρ(U) = M(2a),

then U /∈ D(Z(a)). To do this we will show that if ρ(U) = M(2a) then there exists

i ∈ {0, 1, . . . , p− 1} such that U
(i)
0 6= U

(i−1)
1 .

For i ∈ {0, 1, . . . , p − 1}, let bi = w(U (i)). Arguing as in the proof of Lemma 3.41

we see that ρ(U) =
∑p−1
i=1 b
√
bic. Moreover, given any composition w = (w1, . . . , wp−1)

such that w1 + · · · + wp−1 ≤ 2a there exists V ∈ D(2a) such that w(V i) = wi for all

i ∈ [p− 1], w(V 0) = 2a− (w1 + · · ·+ wp−1) and ρ(V ) =
∑p−1
i=1 b
√
wic.

Let b = (b1, . . . , bp−1) and suppose that bi ≥ 9 for some i ∈ [p− 1].

· If there exists j such that bj = 0, then replacing (bi, bj) by (b′i, b
′
j) := (bi − 4, 4)

in b we obtain a new composition b′ such that
∑p−1
i=1 b
√
wic > ρ(U), contradicting the

maximality of ρ(U).

· If bi ≥ 10, then there exists j 6= l such that bj = bl = 1 since a < p. But then we

may replace (bi, bj , bl) by (bi − 6, 4, 4) in b to obtain a contradiction as before.

· If there exists i′ 6= i such that bi′ ≥ 9, then since we cannot have bi′ ≥ 10 we deduce

that bi′ = 9. In particular, 2a ≥ 18 so p > 3. Since a < p, there exist distinct j, j′, j′′
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such that bj = bj′ = bj′′ = 1. But then we may replace (9, 9, 1, 1, 1) by (5, 4, 4, 4, 4) in b

to obtain a contradiction.

The above observations show that if bi ≥ 9 for some i ∈ [p − 1] then in fact bi = 9

and 1 ≤ bi ≤ 8 for all j 6= i. In particular, there exists t ∈ {0, 1, . . . , p − 2} such that

b has t parts satisfying b
√
bjc = 2 and p − 2 − t parts satisfying b

√
bjc = 1. Hence

M(2a) = 3 + 2t + (p − 2 − t) = p − 1 + b 2x
3 c = p − 1 + 2q + 1, so t = 2q − 1. But this

implies that

2a ≥
p−1∑
m=1

bm ≥ 9 + 4t+ (p− 2− t) = p− 1 + 6q + 5.

Therefore 6q + 5 ≤ 2a − (p − 1) = 2x = 6q + 4, a contradiction. Thus bi ≤ 8 for all

i ∈ [p− 1].

So suppose there are t values of i for which b
√
bic = 2, s values for which it is 1, and

p− 1− s− t values for which it is 0. Then

p+ 2q = M(2a) = 2t+ s ≤ p− 1 + t,

so t ≥ 2q + 1. In particular t ≥ 1, so there exists i with b
√
bic = 2. If there exists j 6= l

such that bj = bl = 0, then we may replace (bi, bj , bl) by (bi − 2, 1, 1) in b to obtain

a contradiction to the maximality of ρ(U). So there is at most one bj = 0 and thus

s+ t ∈ {p− 2, p− 1}.
If s+ t = p− 2, then p+ 2q = M(2a) = 2t+ s implies t = 2q + 2, and so

6q + 4− b0 = 2x− b0 =

p−1∑
m=1

bm − (p− 1) ≥ 4t+ s− (p− 1) = 6q + 5,

which is a contradiction. Thus s+ t = p− 1 and t = 2q + 1. Since

6q + 4− b0 =

p−1∑
m=1

bm − (p− 1) ≥ 4t+ s− (p− 1) = 6q + 3,

one of the following must hold:

(i) |{i : bi = 4}| = t, |{i : bi = 1}| = s and b0 = 1; or

(ii) |{i : bi = 4}| = t− 1, |{i : bi = 5}| = 1, |{i : bi = 1}| = s and b0 = 0; or

(iii) |{i : bi = 4}| = t, |{i : bi = 2}| = 1, |{i : bi = 1}| = s− 1 and b0 = 0.

Now, suppose for a contradiction that U ∈ D(Z(a)). Then we have that the bead

configurations on U
(i−1)
1 and U

(i)
0 are equal for all i: call this property (?). The key in

the following is to notice that t = |{i : bi ≥ 4}| = 2q + 1 is odd.

In case (i), let i ∈ [p − 1] be such that bi = 4. Then (w(U
(i)
0 ), w(U

(i)
1 )) = (j, 4 − j)

for some j ∈ {0, 1, . . . , 4}. If j = 2 then (?) would imply bi+1 ≥ 2, and hence bi+1 = 4,

since bl ∈ {1, 4} for all l. This then gives w(U
(i+1)
0 ) = w(U

(i+1)
1 ) = 2. We can iterate
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this argument to deduce that w(U
(y)
0 ) = w(U

(y)
1 ) = 2 for all y ∈ {0, 1, . . . , p− 1}, which

is a contradiction. Thus j ∈ {0, 1, 3, 4}.
If j = 0, then w(U

(i)
1 ) = 4, so (?) implies that w(U

(i+1)
0 ) = 4 and hence bi+1 = 4

also. Similarly if j = 1, then w(U
(i+1)
0 ) = 3 and hence bi+1 = 4. On the other hand, if

j = 3 or j = 4 then similarly we deduce that bi−1 = 4. These observations imply that t

is an even natural number (because if j ∈ {0, 1} then we may pair off i and i+ 1 where

bi = bi+1 = 4, and if j ∈ {3, 4} then we may pair off i and i − 1 where bi = bi−1 = 4).

This gives a contradiction, and so U /∈ D(Z(a)), as desired. The analyses of cases (ii)

and (iii) are similar.

Thus when δ = 2 we also have that br(ap) = p − 1 + 2bx3 c, by Lemmas 3.38, 3.41

and 3.42. This proves Proposition 3.34.

Proof of Theorem 3.3. This follows directly from Propositions 3.30, 3.32 and 3.34.

We devote the final part of this section to the description of E(ap) for any p
2 < a < p.

Proposition 3.43. Let a ∈ N be such that p
2 < a < p. Then E(ap) = {1, 2, . . . , br(ap)}.

Proof. Let β `p′ ap with p-abacus B := Bβ as defined in Lemma 3.38. In particular, we

proved that |β−p′ | = br(ap) = p− 1 + 2q, with q defined as in Notation 3.35.

Denote by b the bead in position (1 + δ, 1) of B. For i ∈ {1, 2, . . . , p−1
2 } let ci be

the bead in position (0, p − 2i) of B and let B(i) be the p-abacus obtained from B by

sliding b down to position (1 + δ + i, 1) and by sliding cj up to position (−1, p− 2j) for

all j ∈ {1, . . . , i}. Let µ(i) ` ap be the partition corresponding to the p-abacus B(i).

From Theorem 3.12 we have that µ(i) `p′ ap and |µ(i)−p′ | = |β
−
p′ | − 2i. It follows that

{2q, 2q + 2, · · · , br(ap)− 2, br(ap)} ⊆ E(ap).

Now let A := B(p−1
2 ). For i ∈ {1, 2, . . . , q−1} let A(i) be the p-abacus obtained from

A by sliding down bead b from position (1 + δ+ p−1
2 , 1) to position (1 + δ+ p−1

2 + 3i, 1)

and by replacing runner A2j+1 with A↑2j+1 for all j ∈ {1, . . . , i}. This step is depicted

in Figure 3.7:

2j 2j + 1 2j + 2
−2 × ◦ ×
−1 × × ×
0 ◦ ◦ ◦
1 ◦ × ◦

−→

2j 2j + 1 2j + 2
−2 × × ×
−1 × × ×
0 ◦ ◦ ◦
1 ◦ ◦ ◦

Figure 3.7: Obtaining A(i) from A.

Let ν(i) ` ap be the partition corresponding to the p-abacus A(i). Since w(A2i+1) =

3 for all i ∈ {1, 2, . . . , q − 1}, it follows from Theorem 3.12 that ν(i) `p′ ap and

|ν(i)−p′ | = |µ(p−1
2 )−p′ | − 2i. Thus {2, 4, 6, · · · , 2q − 2} ⊆ E(ap), and so it remains to

show {1, 3, . . . , br(ap)− 1} ⊆ E(ap).
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First suppose q ≥ 1. Consider the p-abacus C obtained from B by sliding down the

bead in position (−1, 0) to position (0, 0) and by sliding up the bead in position (0, 1)

to position (−1, 1).

Let γ be the partition corresponding to C. It is easy to see that γ `p′ ap and

that |γ−p′ | = br(ap) − 1. We can now repeat the strategy used above to see that

{3, 5, . . . , br(ap) − 1} ⊆ E(ap). Of course, 1 ∈ E(ap) by considering the trivial par-

tition (ap) `p′ ap.
If q = 0 we begin with the p-abacus C ′ obtained from B by swapping runners 0 and

1, instead of C. The same argument then shows {1, 3, . . . , br(ap)− 1} ⊆ E(ap).

Proof of Theorem 3.25. This follows from Propositions 3.30, 3.33 and 3.43.

3.2 Induction

Let p be a prime number. In the first part of this chapter, we studied the restrictions

of irreducible characters of the symmetric group Sn of degree coprime to p to Sn−1,

giving a generalisation from p = 2 to all primes p of [1, Theorem 1]. In this section,

we now investigate the more complex behaviours exhibited by character inductions to

Sn+1, generalising [1, Theorem 2] from p = 2 to all p as a consequence.

3.2.1 Main results

Let p be any prime. For n ∈ N and λ ` n, define

λ+
p′ = {µ `p′ n+ 1 : χµ

∣∣ χλxSn+1},

E+
p (n) = {|λ+

p′ | : λ `p′ n}, and br+
p (n) = max E+

p (n).

(As usual, we omit the subscript p when it is understood.) Our main results in this

section are the following:

Theorem 3.44. Let n ∈ N0 and let p be any prime. Let n + 1 =
∑t
j=1 ajp

nj be the

p-adic expansion of n+ 1, where 0 ≤ n1 < n2 < . . . < nt. Then

br+(n) = br+(a1p
n1 − 1) +

t∑
j=2

Φ(aj , br
+(mj − 1)) + ∆(n, p),

where mj =
∑j−1
i=1 aip

ni and Φ and ∆ are defined in Definition 3.49 below. In particular,

br+(n) = 1 if and only if n = 0 or n =
∑u
j=1 p

kj for some u ∈ N and 1 ≤ k1 < · · · < ku.

Theorem 3.45. Let n ∈ N0 and let p be any prime. Then 1 ∈ E+(n) if and only if

p | n, and

0 ∈ E+(n) if and only if


p | n+ 1 if p ≥ 5,

9 | n+ 1 if p = 3,

8 | n+ 1 if p = 2.
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Moreover, when br+(n) > 1, then

{2, 3, . . . , br+(n)} ⊆ E+(n) ⊆ {0, 1, 2, . . . , br+(n)}.

Theorem 3.46. Let p be a prime, a ∈ [p− 1] and k ∈ N0. Then

br+(apk − 1) =

b
√
ac+ 1 if k > 0,

f(2a− 2) + 1 if k = 0

where f is as defined in Definition 3.49 below.

Theorems 3.44 and 3.46 give an exact recursive formula for the exact value of br+(n),

while Theorem 3.45 determines the set of achievable values for the quantity |λ+
p′ | as λ

runs over the p′-partitions of n. In other words, we determine all possible numbers of

upward edges that a vertex in the Young subgraph Yp′ can have.

When p = 2, the expressions in Theorems 3.44 and 3.45 afford a simpler form: we

obtain Corollary 3.66 below, which records the values of br+
2 (n) and E+

2 (n) for all n ∈ N0,

thus recovering [1, Theorem 2]. When p is odd, we can further give a bound to easily

estimate the size of br+(n) in terms of the p-adic digits of n.

Corollary 3.47. Let the notation be as in Theorem 3.44, and suppose further that p is

odd. Then

br+(n) ≤ B+(n) := 2 +
√

2a1 +

t∑
j=2

⌊aj
2

⌋
.

Moreover, B+(n)− br+(n) < p log2(p) for all n. Thus

sup{br+(n) | n ∈ N} =∞.

Notice that this is in contrast to sup{br+
2 (n) | n ∈ N} = 2 when p = 2, which

follows from [1, Theorem 2] (or Corollary 3.66). The proofs of our main results appear

in Section 3.2.3, below.

3.2.2 Differences between restriction and induction

Our main results extend from p = 2 to all primes p Theorem 2 of [1], which we restate

in our present notation below.

Theorem 3.48 ([1, Theorem 2]). Let n ∈ N. Then br+
2 (n) ≤ 2, so Y2′ is an incomplete

binary tree. Moreover, E+
2 (n) = {1} if n is even, and E+

2 (n) ⊆ {0, 2} if n is odd. In

particular, for λ `2′ n when n is odd, |λ+
2′ | = 0 if and only if C2ν2(n+1)(λ) is not a hook.

Before we prove our main results in Section 3.2.3 below, we discuss in the present sec-

tion some behaviours exhibited by character inductions and their p′-constituents which

differ from those exhibited by the character restrictions investigated in the previous

chapter.
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Indeed, we can already see from Theorem 3.48 that 1 is not always an element of

E+
2 (n). Moreover, by Theorem 3.44, for every prime p there exists n ∈ N such that

0 ∈ E+
p (n), in contrast to the situation of restriction where Ep(n) = {1, 2, . . . , br(n)} 63 0

for all n ∈ N.

Notice that starting at any vertex λ `p′ n, there exists a sequence λ = λ(n),

λ(n−1), . . . , λ(1), λ(0) in Yp′ such that λ(i) `p′ i and λ(i) ∈ λ(i+1)−
p′ for all i ∈ {0, 1, . . . , n−

1}; that is, we may always trace a downward path to the root vertex ∅. However, not ev-

ery λ ∈ Yp′ lies on an infinite ray {λ(i)}∞i=0 such that λ(i) `p′ i and λ(i) ∈ λ(i+1)−
p′ for all i.

By Theorem 3.12 it is easy to see that Irrp′(Spk) consists exactly of the hook partitions

of pk, and thus the only infinite rays in Yp′ are {(i)}∞i=0 and {(1i)}∞i=0, corresponding

respectively to the trivial and sign representations of the symmetric groups.

We determine the values of n for which 0 ∈ E+
p (n). Before we do this, we set up some

preliminaries. (The definitions of Φ and f were given in Definition 3.6; for convenience

we restate them here.)

Definition 3.49. For a ∈ N0 and L ∈ N, define

Φ(a, L) := max

{
L∑
i=1

f(ai)

∣∣∣∣∣ a1 + · · ·+ aL ≤ a and ai ∈ N0 ∀ i ∈ [L]

}
,

where f(x) = max{y ∈ N0 | y(y + 1) ≤ x}. Let ζ(x) = max{y ∈ N0 | y(y + 2) ≤ x}, and

define

g(a) =

2f(a)− 1 if f(a) > ζ(a),

2f(a) otherwise.

Also define M(a) = max{f(a− b) + g(b) | b ∈ {0, 1, . . . , a}}.
Now let n ∈ N0 and p be a prime. Let n =

∑
i≥0 dip

i be the p-adic expansion of n,

and let d(n) := (d1, d0). Define

∆(n, p) =

1 if p = 5 and d(n) = (3, 3), or p = 7 and d(n) ∈ {(3, 5), (5, 5)},

0 otherwise.

It is easy to see that ζ(a) ≤ f(a) ≤ g(a) ≤ 2f(a) for all a ∈ N0. We remark that

f(a) > ζ(a) occurs precisely when y(y + 1) ≤ a < y(y + 2) for some y ∈ N0, in which

case y = f(a) by the definition of f .

Next, we record the addable bead analogue of Lemma 3.10.

Lemma 3.50. Let e ∈ N. Let λ be a partition and let A be an e-abacus for λ. Suppose

c is an addable bead on runner Aj and let µ ` n+1 be the partition represented by Ac→.

Then

we(µ)− we(λ) =

|Aj | − |Aj+1| − 1 if j 6= e− 1,

|Ae−1| − |A0| if j = e− 1.

Proof. This follows from Lemma 3.10.
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Let p be a prime. Let k ∈ N and let γ `p′ m where 0 < m < pk. By Proposition 3.18,

|λ−p′ | = |γ−p′ | for all λ `p′ pk + m such that Cpk(λ) = γ, since Φ(1, L) = 0 for all L.

Thus when a = 1 the core map in Theorem 3.15 is in fact bijective. We record its

useful induction analogue; the ideas used its proof are completely analogous to those in

Theorem 3.15.

Corollary 3.51. Let p be a prime and k ∈ N. Let n = apk +m where a ∈ [p− 1] and

0 ≤ m ≤ pk − 2. Let λ `p′ n. Then the map

Cpk : λ+
p′ −→

(
Cpk(λ)

)+
p′

is well-defined and surjective.

Proof. Well-definition follows directly from Theorem 3.15: let δ ∈ λ+
p′ , so λ ∈ δ−p′ . Then

Cpk(λ) ∈ Cpk(δ)−p′ , so Cpk(δ) ∈ Cpk(λ)+
p′ .

For surjectivity, let A be the pk-abacus for µ := Cpk(λ) with first gap in position

(0, 0), so |Aj | ∈ {|A0|, |A0|+ 1} for each j ∈ {0, 1, . . . , pk − 1}. In particular, |µ| = m ≤
pk−2 so position (0, pk−1) is also empty. Let B be the pk-abacus for λ such that B↑ = A.

Let β ∈ µ+
p′ and let d be the addable bead in A such that Ad→ (defined in the obvious

way) is a pk-abacus for β. Suppose d lies in position (0, j) for some j ∈ [pk − 2] (and so

position (0, j+1) is empty). Surjectivity then follows from Lemma 3.50 and an analogous

argument (using Ad→ instead of A←d) to that in the proof of Theorem 3.15.

We remark that the above corollary does not hold if m = pk − 1: in this case

Cpk(λ)+
p′ ⊆ P(pk), while Cpk(µ) = ∅ for µ ∈ λ+

p′ . (This is analogous to the case of m = 0

in Theorem 3.15, since ∅− is undefined.)

Before we deduce that the core map in Corollary 3.51 is in fact also bijective when

a = 1, we remark that we can now characterise when 0 ∈ E+
p (n).

Proposition 3.52. Let n ∈ N0 and let p be a prime. Then

0 ∈ E+
p (n) if and only if


p | n+ 1 if p ≥ 5,

9 | n+ 1 if p = 3,

8 | n+ 1 if p = 2.

Proof. We prove this proposition in steps.

(1) If p - n+ 1, then |λ+
p′ | > 0 for every λ `p′ n: this is immediate since χλ

xSn+1

Sn
(1) =

|Sn+1 : Sn| · χλ(1) = (n+ 1) · χλ(1).

(2) If p ≥ 5 and p | n + 1, then λ = (n − p−1
2 , p−1

2 ) satisfies λ `p′ n and |λ+
p′ | = 0:

this clearly holds for n = p − 1, and holds by inspection for n > p − 1 by observing

that λ+ = {(n − p−1
2 + 1, p−1

2 ), (n − p−1
2 , p−1

2 + 1), (n − p−1
2 , p−1

2 , 1)} but λ+
p′ = ∅, by

Theorem 3.12 (or the hook length formula).

(3) If 9 - n+1, then |λ+
3′ | > 0 for every λ `3′ n: by (1), it remains to consider n ∈ N such

that 3 | n+ 1 but 9 - n+ 1. Let the 3-adic expansion of n be at3
nt + · · ·+ a13n1 + 3δ+ 2
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where δ ∈ {0, 1}, t ∈ N0, 2 ≤ n1 < · · · < nt and ai ∈ {1, 2} for all i. From Corollary 3.51,

we have that

|λ+
3′ | ≥ |C3nt (λ)+

3′ | ≥ · · · ≥ |C3n1 (· · · (C3nt (λ)) · · · )+
3′ | = |C3n1 (λ)+

3′ |

and C3n1 (λ) `3′ 3δ+ 2 ∈ {2, 5} by Theorem 3.12. By inspection, |µ+
3′ | > 0 for all µ `3′ 2

and all µ `3′ 5. Thus |λ+
3′ | > 0.

(4) If 9 | n + 1, then λ = (n − 4, 4) satisfies λ `3′ n and |λ+
3′ | = 0: this clearly holds

for n = 8, and holds by inspection for n > 8 by observing that λ+ = {(n − 3, 4), (n −
4, 5), (n− 4, 4, 1)} but λ+

3′ = ∅.

(5) If 8 - n + 1, then |λ+
2′ | > 0 for every λ `2′ n: let the binary expansion of n be

2nt + · · · + 2n1 + c where t ∈ N0, 3 ≤ n1 < · · · < nt and c ∈ {1, 3, 5} (by (1), we may

now assume n is odd). Then by Corollary 3.51,

|λ+
2′ | ≥ |C2nt (λ)+

2′ | ≥ · · · ≥ |C2n1 (· · · (C2nt (λ)) · · · )+
2′ | = |C2n1 (λ)+

2′ |

and C2n1 (λ) `2′ c by Theorem 3.12. By inspection, all odd partitions µ of c ∈ {1, 3, 5}
satisfy |µ+

2′ | = 2. Hence |λ+
2′ | > 0.

(6) If 8 | n + 1, then λ = (n − 3, 2, 1) satisfies λ `2′ n and |λ+
2′ | = 0: this holds by

inspection by observing that λ+ = {(n− 2, 2, 1), (n− 3, 3, 1), (n− 3, 2, 2), (n− 3, 2, 1, 1)}
but λ+

2′ = ∅.

In fact, we can further characterise when |λ+
p′ | = 0 in terms of cores.

Lemma 3.53. Let p be a prime. Suppose a ∈ [p− 1], k ∈ N and λ `p′ apk − 1. Then

(i) |λ+
p′ | ≥ |Cpk(λ)+

p′ |, and

(ii) |λ+
p′ | = 0 if and only if |Cpk(λ)+

p′ | = 0.

Proof. By Theorem 3.12, Cpk `p′ pk − 1, so the assertions are trivially true if a = 1.

From now on we may assume a ≥ 2.

(i) That |λ+
p′ | ≥ |Cpk(λ)+

p′ | is clear if |Cpk(λ)+
p′ | = 0, so suppose ξ ∈ Cpk(λ)+

p′ . Then

ξ `p′ pk, so ξ is a hook. In particular, Cpk(λ) ⊂ ξ must then also be a hook, so

Cpk(λ) = (pk−1−t, 1t) of degree
(
pk−2
t

)
for some t ∈ {0, 1, . . . , pk−2}. Then Cpk(λ)+ =

{(pk−t, 1t), (pk−1−t, 1t+1), (pk−1−t, 2, 1t−1)}, where the first two elements are hooks

of degree
(
pk−1
t

)
and

(
pk−1
t+1

)
respectively. Since

(
pk−1
t

)
(pk − 1− t) =

(
pk−2
t

)
(pk − 1) =

(
pk−1
t+1

)
(t+ 1)

and p -
(
pk−2
t

)
as Cpk(λ) is a p′-partition, and also (pk − 1− t, 2, 1t−1) is not a hook, we

have that Cpk(λ)+
p′ = {(pk − t, 1t), (pk − 1− t, 1t+1)}.

Letting A be the pk-abacus for Cpk(λ) with first gap in (0, 0), A has beads precisely

in positions (i, j) for all i ≤ −1 and all j, (0, 1), (0, 2), . . . , (0, t) (if t 6= 0) and (0, pk−1).

(That |Cpk(λ)+
p′ | = 2 may also be verified on the abacus by using Lemma 3.50 and
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Theorem 3.12.) Let B be the pk-abacus for λ obtained from A by performing wpk(λ) =

a − 1 down-moves, so B↑ = A. If d is an addable bead on runner Bpk−1 and ζ is

represented by Bd→, then wpk(ζ) − wpk(λ) = |Bpk−1| − |B0| = |Apk−1| − |A0| = 1 by

Lemma 3.50, whence wpk(ζ) = a. Moreover, Cpk(ζ) is represented by the pk-abacus

A′ obtained from A by deleting the bead in position (0, pk − 1) and creating a bead

in position (0, 0), showing that Cpk(ζ) = ∅. Thus ζ `p′ apk by Theorem 3.12, and in

particular ζ ∈ λ+
p′ . Finally, since |Bpk−1| = |B0| + 1, there must be at least 2 addable

beads on Bpk−1. Thus |λ+
p′ | ≥ 2 = |Cpk(λ)+

p′ |.

(ii) To show that |λ+
p′ | = 0 if and only if |Cpk(λ)+

p′ | = 0, we have already seen from

(i) that if |Cpk(λ)+
p′ | > 0, then |λ+

p′ | > 0. Conversely, if |λ+
p′ | > 0 then let β ∈ λ+

p′ .

Thus β `p′ apk, Cpk = ∅ and wpk(β) = a. Let B be the pk-abacus for β such that B↑

(representing the empty partition) has beads on all runners in rows i < 0, and is empty

in rows i ≥ 0. Then λ is represented by B←c for some bead c on Bj , and moreover j 6= 0

by Lemma 3.10 since wpk(λ) = a− 1. Hence Cpk(λ) is represented by (B←c)↑, which is

obtained from B↑ by deleting the bead in (−1, j) and creating a bead in (0, j − 1), and

we read off from the abacus that Cpk(λ) = (j, 1p
k−1−j). Setting t = pk − 1 − j, we see

from (i) that Cpk(λ)+
p′ = {(pk − t, 1t), (pk − 1− t, 1t+1)}, which completes the proof.

Proposition 3.54. Let p be a prime. Suppose n+1 ∈ N has p-adic expansion
∑t
i=1 aip

ni

where t ∈ N and 0 ≤ n1 < · · · < nt. Let λ `p′ n. Then |λ+
p′ | = 0 if and only if

|Cpn1 (λ)+
p′ | = 0.

Proof. If n1 = 0 then p - n + 1 and also p - |Cpn1 (λ)| + 1. Thus by Proposition 3.52,

|λ+
p′ | > 0 and |Cpn1 (λ)+

p′ | > 0. From now on, we may assume n1 ≥ 1.

When t = 1, the assertion follows from Lemma 3.53.

Now suppose t ≥ 2. Since Ce = Ce ◦ Cef for all e, f ∈ N, by Theorem 3.12,

α := Cpn2 (λ) = Cpn2 (Cpn3 (· · ·Cpnt (λ) · · · )) `p′ a1p
n1 − 1.

Let A be the pn2 -abacus for α with first gap in position (0, 0). Since |α| ≤ pn2 −2, there

are no beads in rows i ≥ 1 or in position (0, pn2 − 1) of A.

First suppose µ ∈ α+
p′ . Then µ is represented by Ac→ for some bead c in position (0, j)

of A where j ∈ {0, 1, . . . , pn2 − 2}. Let β = Cpn3 (λ), a p′-partition of a2p
n2 + a1p

n1 − 1

by Theorem 3.12. Then α = Cpn2 (β) and wpn2 (β) = a2, and there is a pn2-abacus B

representing β obtained from A by performing a2 down-moves. Since |Bj | = |Aj | =

|Aj+1| + 1 = |Bj+1| + 1, there exists an addable bead d on runner Bj . The partition

ν represented by Bd→ satisfies wpn2 (ν) = a2 by Lemma 3.50, and Cpn2 (ν) = µ since

B↑ = A. Thus ν is a p′-partition by Theorem 3.12, so ν ∈ β+
p′ . Next we consider β

on a pn3-abacus A′ with first gap in position (0, 0), so ν is represented by (A′)c
′→ for

some bead c′ in position (0, j′) of A′ where j′ ∈ {0, 1, . . . , pn3 − 2} since |β| ≤ pn3 − 2.

Letting γ = Cpn4 (λ), we deduce as above that there exists some ω ∈ γ+
p′ . Iterating this

procedure, we produce a partition in Cpn4 (λ)+
p′ , . . . , Cpnt (λ)+

p′ , and finally λ+
p′ .
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Conversely, suppose ξ ∈ λ+
p′ . By Corollary 3.51,

Cpn2 (ξ) = Cpn2 (Cpn3 (· · ·Cpnt (ξ) · · · )) ∈
(
Cpn2 (Cpn3 (· · ·Cpnt (λ) · · · ))

)+
p′

=
(
Cpn2 (λ)

)+
p′
.

Thus we have shown that |λ+
p′ | = 0 if and only if |α+

p′ | = 0. Finally, by Lemma 3.53

we have that |α+
p′ | = 0 if and only if |Cpn1 (λ)+

p′ | = 0, since Cpn1 (α) = Cpn1 (λ).

Remark 3.55. Proposition 3.54 allows us to we recover the characterisation of when

|λ+
2′ | = 0 in Theorem 3.48 by observing that |Cpn1 (λ)+

p′ | = 0 if and only if Cpn1 (λ) is not

a hook. This is because Cpn1 (λ) `p′ pn1 − 1, and the p′-partitions of pn1 are precisely

the hook partitions. ♦

Finally, we characterise when 1 ∈ E+(n), noting for contrast that 1 ∈ E(n) for all

n ∈ N in the case of restriction.

Lemma 3.56. Let n ∈ N0 and let p be a prime. Then 1 ∈ E+(n) if and only if p | n.

Proof. If p | n, then λ = (n) `p′ n and λ+
p′ = {(n+ 1)}. Thus 1 ∈ E+(n).

Conversely, suppose λ `p′ n with |λ+
p′ | = 1. Write n + 1 =

∑t
i=1 aip

ni where t ∈ N
and 0 ≤ n1 < · · · < nt. If t ≥ 2, let α := Cpn2 (λ) and observe by Corollary 3.51 that

|λ+
p′ | ≥ |Cpnt (λ)+

p′ | ≥ |Cpn2 (· · · (Cpnt (λ)) · · · )+
p′ | = |Cpn2 (λ)+

p′ | = |α
+
p′ |,

while if t = 1 then set α := λ. In all cases, α `p′ a1p
n1 − 1 by Theorem 3.12. Let

β = Cpn1 (λ). Then |β+
p′ | > 0 by Proposition 3.54 since |λ+

p′ | > 0.

If n1 ≥ 1, then |α+
p′ | ≥ |β

+
p′ | by Lemma 3.53. But from part (i) of the proof of

Lemma 3.53 we find that |β+
p′ | > 0 implies |β+

p′ | = 2, contradicting 1 = |λ+
p′ | ≥ |α

+
p′ |.

Hence n1 = 0.

Thus α ` a1−1. But then 1 = |λ+
p′ | ≥ |α

+
p′ | = |α+| = |α−|+1, from which we deduce

|α−| = 0. Thus implies α = ∅, the unique partition of zero; in particular, a1 = 1. Hence

n+ 1 =
∑t
i=2 aip

ni + 1 (where n2 ≥ 1 if t ≥ 2), and so p | n.

Returning to the discussion of the crucial core map of Corollary 3.51, we now set up

some constructions analogous to those regarding character restrictions in Section 3.1,

and analyse the differences that arise.

Notation 3.57. Unless otherwise stated, we fix a prime p and n ∈ N such that n =

apk +m for some k ∈ N, a ∈ [p− 1] and 0 ≤ m ≤ pk − 2. To be precise, this will be the

standing assumption from here until the end of Section 3.2.2.

Given γ `p′ m, we may now define

br+
p (n, γ) = br+(n, γ) : max{|λ+

p′ | | λ `p′ n and Cpk(λ) = γ},

and

N+(a, pk, γ) := br+(n, γ)− |γ+
p′ | ∈ N0.
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In order to determine N+(a, pk, γ), we need to analyse certain properties of the functions

f , g, Φ and M .

Definition 3.58. Let γ `p′ m. Let Aγ be the pk-abacus for γ with first gap (0, pk − 1).

Define RAγ to be the subset of {0, 1, . . . , pk − 1} such that j ∈ RAγ if and only if there

is an addable bead c on runner j of Aγ and the partition corresponding to Ac→γ has

p′-degree.

Sincem ≤ pk−2, we deduce that there are no beads in Aγ in rows i ≥ 2 or in positions

(1, pk − 2) and (1, pk − 1). Notice that there is an addable bead in position (0, pk − 2),

and all other addable beads lie in (1, j) for some 0 ≤ j ≤ pk−3. Moreover, observe that

|RAγ | = |γ+
p′ |, pk − 1 /∈ RAγ , and {j, j + 1} ⊆ RAγ implies j = pk − 3. In particular, if

there is a bead in Aγ in position (1, pk − 3), then γ is necessarily a hook partition and

m = pk − 2. This is because if the number of beads occupying positions (1, j) where

0 ≤ j < pk−3 in Aγ is t, then each of those beads corresponds to a part of γ, and the bead

in (1, pk−3) corresponds to γ1 = pk−2− t. Hence m = |γ| ≥ (pk−2− t)+ t ·1 = pk−2,

whence equality holds. Thus if {pk− 3, pk− 2} ⊆ RAγ , then in fact |RAγ | ∈ {2, 3} since

γ is a hook.

Lemma 3.59. Let γ `p′ m. Let λ `p′ n satisfy Cpk(λ) = γ and let B be the pk-abacus

for γ such that B↑ = Aγ . Let c be an addable bead on Bj and suppose Bc→ represents

µ ` n+ 1. Then p - χµ(1) if and only if j ∈ RAγ . In particular,

|λ+
p′ | =

∑
j∈RAγ

Add(Bj).

Proof. The proof is entirely analogous to that of Lemma 3.20.

Proposition 3.60. Let γ `p′ m. Then

N+(a, pk, γ) =


g(a) if RAγ = {pk − 3, pk − 2},

M(a) if {pk − 3, pk − 2} $ RAγ ,

Φ(a, |γ+
p′ |) otherwise.

The fact that RAγ may now contain consecutive integers, in contrast to Defini-

tion 3.19, gives rise to the more complex behaviour of the quantity N+(a, pk, γ). We

begin by dealing with the familiar case.

Lemma 3.61. Let γ `p′ m. If {pk − 3, pk − 2} 6⊆ RAγ , then N+(a, pk, γ) = Φ(a, |γ+
p′ |).

Proof. Let RAγ = {j1, . . . , jL}, where L = |γ+
p′ |. Under the given assumption, RAγ

contains no consecutive integers. Thus we may regard (Bji , Bji+1), . . . , (BjL , BjL+1) as

L disjoint 2-abaci whose 2-cores are equal to the 2-abacus representing ∅ with first gap

(0, 1) (resp. (1, 1)) if ji = pk − 2 (resp. ji 6= pk − 2). Let V be the 2-abacus for ∅ with

first gap (0, 1).
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Observe that for x ∈ N0 and W a 2-abacus such that W ↑ = V and w(W ) = x,

Add(W0) is equal to Rem(U1) for a 2-abacus U ∈ T(1)(x) as defined in Lemma 3.22.

(Consider flipping or mirroring the 2-abaci about a vertical axis.) Hence

max{Add(W0) |W ↑ = V, w(W ) = x} = f(x) + 1.

That N+(a, pk, γ) = Φ(a, L) then follows by the same argument as in the proof of

Proposition 3.18.

In order to analyse the case when {pk − 3, pk − 2} ⊆ RAγ , we have the following

lemma.

Lemma 3.62. Let X be the 3-abacus for (1) with first gap (0, 2). For b ∈ N0, let Y(b)

be the set of all 3-abaci Y such that Y ↑ = X and w(Y ) = b. Then

max{Add(Y0) + Add(Y1) | Y ∈ Y(b)} = 2 + g(b).

Proof. The claim is clear if b ∈ {0, 1}, so from now on we may assume b ≥ 2 (in particular

f(b) ≥ 1). First, we exhibit Y such that Add(Y0) + Add(Y1) = 2 + g(b).

Notice that Add(X0) = Add(X1) = 1. For u ∈ N, let Z(u) be the 3-abacus with

beads in precisely {(i, 0) | i ≤ −1} ∪ {(i, 1) | i ≤ −u− 1, i = 0, 2 ≤ i ≤ u+ 1} ∪ {(i, 2) |
i ≤ −1}. Observe that

Z(u)↑ = X, w(Z(u)) = u(u+ 2) and Add(Z(u)0) + Add(Z(u)1) = 2u+ 2.

Let Z ′(u) be the 3-abacus with beads in precisely {(i, 0) | i ≤ 1} ∪ {(i, 1) | i ≤ −u, 2 ≤
i ≤ u+ 1} ∪ {(i, 2) | i ≤ −1}. Then

Z ′(u)↑ = X, w(Z ′(u)) = u(u+ 1) and Add(Z ′(u)0) + Add(Z ′(u)1) = 2u+ 1.

The abaci X, Z(u) and Z ′(u) are depicted in Figure 3.8.

If g(b) = 2f(b), then the abacus Y ∈ Y(b) obtained from Z(f(b)) by performing

b− f(b) · (f(b) + 2) down-moves on the bead in position (f(b) + 1, 1) satisfies Add(Y0) +

Add(Y1) = 2f(b) + 2 = g(b) + 2. On the other hand, if g(b) = 2f(b)− 1 then the abacus

Y ′ ∈ Y(b) obtained from Z ′(f(b)) by performing b− f(b) · (f(b) + 1) down-moves on the

bead in position (f(b) + 1, 1) satisfies Add(Y ′0) + Add(Y ′1) = 2f(b) + 1 = g(b) + 2.

Next, suppose A ∈ Y(b) is such that a := Add(A0) + Add(A1) is maximal. From

above, we already know that a ≥ 2 + g(b). By a similar argument to the proof of

Lemma 3.22, we can construct from A a 3-abacus B ∈ Y(b′) such that w(B) = w(B1) =

b′ (i.e. w(B0) = w(B2) = 0) and Add(B0) + Add(B1) = a, for some b′ ≤ b. Notice

that there must be a bead in position (i, 1) of B for all i ≤ −b, since w(B) ≤ b.

Thus there are exactly b beads in (i, 1) of B where i > −b, since B↑ = X. Moreover,

Add(B0) = |{j ∈ {−b+ 1, . . . ,−1, 0, 1} | B1 has a gap in row j}| and Add(B1) = |{j ≥
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0 1 2

...

−1 × × ×
0 × × ◦
1 × ◦ ◦
2 ◦ ◦ ◦

...

0 1 2
...

−u− 1 × × ×
−u × ◦ ×
...

...
−1 × ◦ ×
0 × × ◦
1 × ◦ ◦
2 ◦ × ◦
...

...
u+ 1 ◦ × ◦
u+ 2 ◦ ◦ ◦

...

0 1 2
...

−u × × ×
−u+ 1 × ◦ ×
...

...
−1 × ◦ ×
0 × ◦ ◦
1 × ◦ ◦
2 ◦ × ◦
...

...
u+ 1 ◦ × ◦
u+ 2 ◦ ◦ ◦

...

Figure 3.8: The 3-abaci X, Z(u) and Z ′(u).

0 | B1 has a bead in row j}|. Hence

a = Add(B0) + Add(B1) = 1 + δ0 − δ1 + 2u

where u := |{j > 0 | B1 has a bead in row j}|, and δi = 1 if B1 has a bead in row i and

δ = 0 otherwise. In particular, u ≥ 1 since b ≥ 2. We split into four cases depending on

the values of δ0, δ1 ∈ {0, 1}.

If δ1 = 1 and δ0 = 0, then a = 2u. Moreover, the u − 1 beads in rows i > 1 of B1

must occupy rows i2 < . . . < iu where ij ≥ j for all j ∈ {2, . . . , u}. Since B↑1 = X1

(noting that the lowest u beads on X1 lie in rows 0,−1, . . . ,−u+ 1), we must have

b ≥ b′ = w(B) ≥ u(u− 1) + u = u2.

Thus u− 1 ≤ f(b) and so a = 2u ≤ 2f(b) + 2. We know that g(b) ∈ {2f(b)− 1, 2f(b)};
suppose g(b) = 2f(b) − 1. By definition of g, we must have f(b) > ζ(b) and hence

f(b) · (f(b) + 1) ≤ b < f(b) · (f(b) + 2). But a ≥ 2 + g(b) = 2f(b) + 1 implies u =

f(b) + 1, giving b ≥ u2 > f(b) · (f(b) + 2), a contradiction. Thus g(b) = 2f(b) and so

a ≤ 2f(b) + 2 = g(b) + 2. The other three cases are similar.

Lemma 3.63. Let γ `p′ m. If {pk − 3, pk − 2} ⊆ RAγ , then RAγ ∈ {2, 3} and

N+(a, pk, γ) =

g(a) if |RAγ | = 2,

M(a) if |RAγ | = 3.

Proof. We have already shown following Definition 3.58 that if {pk − 3, pk − 2} ⊆ RAγ ,

then γ is a hook and hence RAγ ∈ {2, 3}. Let λ `p′ n satisfy Cpk(λ) = γ and |λ+
p′ | =

br+(n, γ), and let B be the pk-abacus for λ such that B↑ = Aγ .

If RAγ = {pk − 3, pk − 2}, then |λ+
p′ | = Add(Bpk−3) + Add(Bpk−2) by Lemma 3.59.
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Therefore |λ+
p′ | = 2 + g(a) by Lemma 3.62 and the maximality of |λ+

p′ |.
Otherwise, suppose |RAγ | = 3. If γ is the hook (pk − 2− t, 1t), then |γ+| ≥ |γ+

p′ | = 3

implies 0 < t < pk − 3. In fact, the beads in row 1 of Aγ lie precisely in runners

0, 1, . . . , t − 1, and we deduce that RAγ = {t − 1, pk − 3, pk − 2}. Since the sets of

runners (Bt−1, Bt) and (Bpk−3, Bpk−2, Bpk−1) are disjoint, the claim N+(a, pk, γ) =

M(a) follows from the maximality of |λ+
p′ |, the definition of M(a) (see Definition 3.49),

and Lemmas 3.59 and 3.62.

Proof of Proposition 3.60. This follows from Lemmas 3.61 and 3.63.

Corollary 3.64. The core map in Corollary 3.51 is bijective when a = 1.

Proof. This follows from Proposition 3.60 and the fact that g(1) = M(1) = Φ(1, L) = 0

for all L ∈ N.

3.2.3 Proofs of main results

Proposition 3.65. Let p be a prime, a ∈ [p− 1] and k ∈ N0. Then

br+(apk − 1) =

b
√
ac+ 1 if k > 0,

f(2a− 2) + 1 if k = 0

and {2, 3, . . . , br+(apk − 1)} ⊆ E+(apk − 1) whenever apk − 1 > 0.

Proof. We begin with the case when k = 0, which is in analogy with Proposition 3.30.

When a = 1 then clearly br+(apk − 1) = br+(0) = 1, and f(0) = 0. Next, observe that

|λ+| = |λ−| + 1 for any partition λ, and λ+ = λ+
p′ if |λ| ≤ p − 2. Thus for a > 1 we

have that br+(a − 1) = f(2a − 2) + 1, since f(2a − 2) is the maximal number of parts

of distinct size in any partition of a − 1, and hence the maximal number of removable

boxes in any partition of a − 1. Moreover, it is easy to see that there exists λ ` a − 1

such that |λ−| = m for any m ∈ {1, 2, . . . , f(2a − 2)}, and hence |λ+| = m + 1 ∈
{2, . . . , f(2a− 2), f(2a− 2) + 1}.

From now on, we may assume that k > 0. We proceed in steps, showing that:

(i) 2 ∈ E+(apk − 1);

(ii) {3, 4, . . . , b
√
ac+ 1} ⊆ E+(apk − 1) (if a ≥ 4); and

(iii) br+(apk − 1) ≤ b
√
ac+ 1.

(i) Writing n = apk − 1, we have λ = (n) `p′ n and λ+ = {(n+ 1), (n, 1)} = λ+
p′ . Hence

2 ∈ E+(apk − 1).

(ii) We show that whenever a ≥ (b + 2)2 for some b ∈ N0, then b + 3 ∈ E+(apk − 1),

from which the claim that {3, 4, . . . , b
√
ac+ 1} ⊆ E+(apk − 1) follows by setting b+ 2 =

2, 3, . . . , b
√
ac. We exhibit a partition λ `p′ apk − 1 such that |λ+

p′ | = b + 3, describing
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below and depicting a pk-abacus for λ with first gap in (0, q − 1) in Figure 3.9 (where

q = pk for convenience):

· rows 0 ≤ x ≤ b+ 1 have a gap only in position (x, q − 1);

· rows b+ 2 ≤ x ≤ 2b+ 1 have a bead only in position (x, q − 1);

· row 2b+ 2 has a bead only in position (2b+ 2, q − 2);

· rows 2b+ 3 ≤ x ≤ 2b+ t+ 2 are empty;

· row 2b+ t+ 3 has a bead only in position (2b+ t+ 3, q − 1).

Explicitly, λ is the following partition:

λ =
(
(b+ t+ 2)q, (b+ 1)q, bq + 2, . . . , 2q + b, q + b+ 1, (b+ 1)q−1 . . . , 2q−1, 1q−1

)
.

0 · · · q − 3 q − 2 q − 1
0 × · · · × × ◦
..
.

...
...

b+ 1 × · · · × × ◦
b+ 2 ◦ · · · ◦ ◦ ×
...

...
...

2b+ 1 ◦ · · · ◦ ◦ ×
2b+ 2 ◦ · · · ◦ × ◦
2b+ 3 ◦ · · · ◦ ◦ ◦
...

...
...

2b+ t+ 2 ◦ · · · ◦ ◦ ◦
2b+ t+ 3 ◦ · · · ◦ ◦ ×

Figure 3.9: The pk-abacus for λ `p′ apk − 1 with first gap (0, q − 1).

From the abacus it is clear that wq(λ) = a− 1 and Cq(λ) = (q− 1) `p′ q− 1, whence

λ `p′ apk−1 by Theorem 3.12. By Lemma 3.50, the b+3 addable beads on runner q−2

(in rows 0, 1, . . . , b + 1, 2b + 2) correspond to elements of λ+
p′ , while the b + 1 addable

beads on runner q − 1 (in rows b + 2, . . . , 2b + 1, 2b + t + 3) correspond to elements of

λ+ \ λ+
p′ , and there are no other addable beads. Hence |λ+

p′ | = b+ 3 as claimed.

(iii) Let λ `p′ apk − 1 and suppose |λ+
p′ | > 0. If a = 1, then λ+

p′ is the set of hook

partitions in λ+. Thus |λ+
p′ | > 0 implies that λ itself is a hook. Therefore |λ+

p′ | = 2.

Since λ `p′ pk − 1 was arbitrary, br+(pk − 1) ≤ 2.

Now suppose a ∈ {2, . . . , p − 1} and fix some µ ∈ λ+
p′ . In particular, µ `p′ apk so

Cpk = ∅ and wpk(µ) = a. Let A be the pk-abacus for Cpk(µ) with first gap in (0, 0)

(so all rows x < 0 are filled, and all rows x ≥ 0 are empty). Let B be the pk-abacus

for µ such that B↑ = A, so B is obtained from A by performing a down-moves. Since

λ ∈ µ−p′ , λ is represented by the abacus X := B←c for some removable bead c in B. But

wpk(λ) = a− 1 since λ `p′ apk − 1 = (a− 1)pk + (p− 1)
∑k−1
i=0 p

i, by Theorem 3.12, so c

lies on runner Bj for some j 6= 0 by Lemma 3.10. Thus the abacus X↑ which represents

Cpk(λ) has form as depicted in Figure 3.10 (where if j = 1 then we omit the column

labelled j − 2, and if j = pk − 1 then we omit column j + 1):
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0 · · · j − 2 j − 1 j j + 1 · · · pk − 1
−2 × · · · × × × × · · · ×
−1 × · · · × × ◦ × · · · ×
0 ◦ · · · ◦ × ◦ ◦ · · · ◦
1 ◦ · · · ◦ ◦ ◦ ◦ · · · ◦

Figure 3.10: The pk-abacus X↑ for Cpk (λ).

For any ν ∈ λ+
p′ , ν is represented by Xd→ for some addable bead d in X. Since

wpk(ν) = a and wpk(λ) = a− 1, by Lemma 3.50 the bead d must lie on runner Xj−1, as

|Xi| − |Xi+1| − 1 = 1 if and only if i = j − 1 (when i 6= pk − 1) and |Xpk−1| − |X0| 6= 1.

Therefore λ+
p′ is in bijection with the set of addable beads on Xj−1. It remains to show

that the maximal number m of addable beads on runner j−1 attained after performing

wpk(λ) = a− 1 down-moves on the pk-abacus X↑ is (at most) b
√
ac+ 1.

Observe that m is also the maximal number of addable beads on runner 0 attained

after performing at most a − 1 down-moves on T , the 2-abacus for the partition (1)

with first gap (0,−1). (As runners, T0 coincides with X↑j−1 and T1 with X↑j .) By a

similar argument to that in the proof of Lemma 3.22, this optimum m is achieved by

a 2-abacus U such that U↑ = T , w(U1) = 0 and w(U0) ≤ a − 1. Thus there exist

integers −1 ≤ j1 < j2 < · · · < jm such that there is a bead in position (jk, 0) of U for

all k ∈ [m]. Hence w(U) = w(U0) ≥ m(m− 2), since the beads on T0 occupied precisely

those rows x ≤ 0. But then if m ≥ b
√
ac+ 2, then m(m− 2) ≥ (b

√
ac+ 1)2− 1 > a− 1,

a contradiction since w(U0) ≤ a− 1. Thus m ≤ b
√
ac+ 1.

Proof of Theorem 3.46. This follows directly from Proposition 3.65.

We can now fully recover Theorem 3.48 (Theorem 2 of [1]) by setting p = 2 in our

results thus far.

Corollary 3.66. Let n ∈ N0. Then br+
2 (n) = 1 if n is even, while br+

2 (n) = 2 if n is

odd. Moreover,

E+
2 (n) =


{1} if 2 | n,

{0, 2} if 8 | n+ 1,

{2} otherwise.

Proof. Suppose n+1 has binary expansion
∑t
j=1 2nj where t ∈ N and 0 ≤ n1 < · · · < nt.

For all λ `2′ n =
∑t
j=2 2nj + (2n1 − 1), we have |λ+

2′ | = |C2n2 (λ)+
2′ | by Corollary 3.64,

where we note that C2n2 (λ) `2′ 2n1 − 1 by Theorem 3.12. Also by Theorem 3.12,

given any µ `2′ 2n1 − 1 there exists some λ `2′ n such that C2n2 (λ) = µ. Hence

br+
2 (n) = br+

2 (2n1 − 1). If n is even (i.e. n1 = 0), then br+
2 (n) = br+

2 (0) = 1. If n

is odd, then br+
2 (n) = 2 by Proposition 3.65. The final assertion then follows from

Proposition 3.52 and Lemma 3.56.

We remark that Corollary 3.66 is exactly the statement of Theorem 3.44 and Theo-

rem 3.45 when p = 2, since the only non-zero binary digit is 1 and Φ(1, L) = 0 for all

63



L ∈ N. Therefore, for the remainder of this section we may assume p is an odd prime.

In order to prove a recursive formula for the value of br+(n) (namely Theorem 3.44),

we first investigate a single step of the recursion. That is, we relate the quantities br+(n)

and br+(m), where n = apk +m with a ∈ [p− 1] and m < pk − 1.

Proposition 3.67. Let p be an odd prime and k ∈ N. Let n = apk+m where a ∈ [p−1]

and 0 ≤ m ≤ pk − 2. Then

br+(n) = br+(m) + Φ(a, br+(m)) + δ

where δ = 1 if k = 1, m = p− 2 and (p, a) ∈ {(5, 3), (7, 3), (7, 5)}, and δ = 0 otherwise.

Proof. If m 6= pk − 2, then {pk − 3, pk − 2} 6⊆ RAγ for all γ `p′ m (recall the set RAγ
from Definition 3.58) and thus br+(n) = br+(m) + Φ(a, br+(m)) by exactly the same

argument as in Proposition 3.23. Notice that δ = 0 in this case.

From now on, we may suppose m = pk−2. Let γ `p′ m be such that |γ+
p′ | = br+(m).

Let λ `p′ n be such that Cpk(λ) = γ and |λ+
p′ | = br+(n, γ). Since g(a),M(a),Φ(a, L) ≥ 1

whenever a ≥ 2 (for all L ∈ N), then br+(n) ≥ |λ+
p′ | ≥ br+(m) + 1 by Proposition 3.60.

Hence we have the following inequality:

br+(n) ≥ br+(m) + 1 if a ≥ 2. (3.1)

First, suppose br+(m) ≤ 3. Since m = pk − 2 = (p − 1)
∑k−1
i=1 p

i + (p − 2), then

br+(m) ≥ br+(p−2)+k−1 by (3.1). By Proposition 3.65, this implies k+f(2p−4) ≤ 3

since p − 1 ≥ 2. Hence (p, k) ∈ {(3, 1), (3, 2), (5, 1), (7, 1)}. We find by direct compu-

tation that br+(n) = br+(m) + Φ(a, br+(m)) in all of these cases except if (p, k, a) ∈
{(5, 1, 3), (7, 1, 3), (7, 1, 5)}, in which case br+(n) = br+(m) + Φ(a, br+(m)) + 1.

We may now assume that br+(m) ≥ 4; in particular, δ = 0. Since |γ+
p′ | = br+(m), the

partition γ cannot be a hook. In particular, {pk−3, pk−2} 6⊆ RAγ and so N+(a, pk, γ) =

Φ(a, |γ+
p′ |), by Proposition 3.60. Thus br+(n) ≥ br+(n, γ) = br+(m) + Φ(a, br+(m)).

Let α `p′ n be such that |α+
p′ | = br+(n). Let β = Cpk(α), so β `p′ m and |β+

p′ | ≤
br+(m). If {pk − 3, pk − 2} 6⊆ RAβ , then N+(a, pk, β) = Φ(a, |β+

p′ |) and hence

br+(n) = |α+
p′ | = |β

+
p′ |+ Φ(a, |β+

p′ |) ≤ br
+(m) + Φ(a, br+(m)) ≤ br+(n).

Thus br+(n) = br+(m) + Φ(a, br+(m)).

On the other hand, if {pk − 3, pk − 2} ⊆ RAβ , then N+(a, pk, β) = g(a) or M(a),

in which case |β+
p′ | = 2 or 3 respectively. We claim that br+(m) + Φ(a, br+(m)) ≥

3 + M(a) > 2 + g(a) for any a ∈ [p − 1]: for clarity, this is proven separately in

Lemma 3.68 below. But this lemma then gives us

br+(n) ≥ br+(m) + Φ(a, br+(m)) ≥ |β+
p′ |+N+(a, pk, β) = br+(n, β) = br+(n),

whence br+(n) = br+(m) + Φ(a, br+(m)) as desired.

64



Lemma 3.68. Let the notation be as in Proposition 3.67, and further suppose that

m = pk − 2 and br+(m) ≥ 4. Then br+(m) + Φ(a, br+(m)) ≥ 3 +M(a) > 2 + g(a).

Proof. It is clear from Definition 3.49 that 3 + M(a) > 2 + g(a). To show the first

inequality, first suppose br+(m) ≤ 5. Since m = pk − 2, then br+(m) ≥ k + f(2p − 4)

by (3.1) and Proposition 3.65. Hence p ≥ 13, and we verify directly that Φ(a, 5) + 5 >

3 +M(a) for all a ∈ [12]. If in fact br+(m) = 4, then necessarily p ≤ 11, and we verify

directly that Φ(a, 4) + 4 ≥ 3 +M(a) for all a ∈ [10].

Now suppose that br+(m) ≥ 6, so br+(m) + Φ(a, br+(m)) ≥ 6 + Φ(a, 6). Since

f(x) ∈ {b
√
xc − 1, b

√
xc} for all x ∈ N0, we have that

Φ(a, 6) ≥ 6 · f
(
ba6 c
)
≥ 6

(
b(
√
ba6 c)c − 1

)
= 6

(
b
√

a
6 c − 1

)
≥ 6

(√
a
6 − 2

)
=
√

6a− 12.

On the other hand, since f(b) ≤ 2g(b) we have that

M(a) ≤ max{f(a− b) + 2f(b) | b ∈ {0, 1, . . . , a}} ≤ max
b∈[0,a]

(
√
a− b+ 2

√
b) =

√
5a.

Thus 6 + Φ(a, 6) ≥
√

6a − 6 ≥ 3 +
√

5a ≥ 3 + M(a) for all a ≥ 1778, and for a ≤ 1777

we verify that 6 + Φ(a, 6) ≥ 3 +M(a) computationally.

Proof of Theorem 3.44 for odd p. This follows from Proposition 3.67 by induction on

the p-adic length t of n+ 1.

Proof of Theorem 3.45 for odd p. Proposition 3.52 and Lemma 3.56 characterise when

0 and 1 belong to E+(n) respectively. Now suppose br+(n) ≥ 2. We wish to show that

{2, 3, . . . , br+(n)} ⊆ E+(n). We proceed by induction on t, the p-adic length of n + 1,

and observe that the case t = 1 has been shown in Proposition 3.65.

Now suppose t ≥ 2. Let m =
∑t−1
j=1 ajp

nj − 1 = n − atpnt , and write L = br+(m),

k = nt and a = at for convenience. Since br+(n) ≥ 2, then n is not of the form
∑
j p

nj

with p | n, by Theorem 3.44. In particular, m is also not of this form, so br+(m) ≥ 2.

We first show that {2, 3, . . . , L} ⊆ E+(n): by the inductive hypothesis, for each

i ∈ {2, . . . , L} there exists δ `p′ m such that |δ+
p′ | = i. Recall the pk-abacus Aδ from

Definition 3.58, and fix some j ∈ RAδ . Let λ `p′ n be the partition represented by the pk-

abacus B obtained from Aδ by performing a down-moves on the unique addable bead on

runner j of Aδ. By Lemma 3.59, |λ+
p′ | = |RAδ | = |δ

+
p′ |, and hence {2, 3, . . . , L} ⊆ E+(n).

To show that {L + 1, . . . , br+(n)} ⊆ E+(n): let γ `p′ m be such that |γ+
p′ | = L. If

{pk − 3, pk − 2} 6⊆ RAγ , then N+(a, pk, γ) = Φ(a, L), and {L,L+ 1, . . . , L+ Φ(a, L)} ⊆
E+(n) follows from exactly the same argument as in Theorem 3.27. Otherwise, (i)

RAγ = {pk − 3, pk − 2} or (ii) RAγ = {pk − 3, pk − 2, t} for some 0 ≤ t < pk − 4. Let

A = Aγ .

(i) In this case, L = 2 and br+(n) = 2 + g(a), by Proposition 3.60. Observe that the

runners (Apk−3, Apk−2, Apk−1) when viewed as a 3-abacus represents the partition (1)
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with first gap (0,2); that is, it coincides with the 3-abacus X defined in Lemma 3.62.

Recall also the 3-abaci Z(u) and Z ′(u) from Lemma 3.62.

If g(a) = 2f(a) − 1, then for each u ∈ {1, . . . , f(a)}, the abacus Y ′ obtained from

Z ′(u) by performing a−u(u+ 1) down-moves on the bead in position (1, u+ 1) satisfies

w(Y ′) = a and Add(Y ′0) + Add(Y ′1) = 2u + 1. The partition λ represented by Y

therefore satisfies λ `p′ n and |λ+
p′ | = 2u + 1. Hence {3, 5, . . . , 2 + g(a)} ⊆ E+(n).

Moreover, for each u ∈ {1, . . . , f(a)−1}, the abacus Y obtained from Z(u) by performing

a − u(u + 2) down-moves on the bead in position (1, u + 1) satisfies w(Y ) = a and

Add(Y0) + Add(Y1) = 2u+ 2, from which we deduce {2, 4, . . . , 1 + g(a)} ⊆ E+(n). Thus

{L+ 1, . . . , br+(n)} ⊆ E+(n) as required.

The case g(a) = 2f(a) is similar.

(ii) In this case, L = 3 and br+(n) = 3 + M(a). Suppose b ∈ {0, 1, . . . , a} satisfies

M(a) = f(a − b) + g(b). Then for each i ∈ {2, 3, . . . , g(b) + 2}, there exists some 3-

abacus Y such that Y ↑ = X, w(Y ) = b and Add(Y0) + Add(Y1) = i, by case (i) above.

Also, for each j ∈ {1, 2, . . . , f(a − b) + 1}, there exists some 2-abacus U such that

U↑ = V , the 2-abacus for ∅ with first gap (0,1), w(U) = a− b and Add(U0) = j, by the

same ideas as in the proof of Lemma 3.26. Let B be the pk-abacus obtained from A by

replacing the runners (At, At+1) with the 2-abacus U , and (Apk−3, Apk−2, Apk−1) by Y .

Then w(B) = a and
∑
x∈RA Add(Bx) = i + j. Thus the partition λ represented by B

satisfies λ `p′ n and |λ+
p′ | = i + j, by Lemma 3.59. Therefore {3, 4, . . . , 3 + M(a)} =

{2, . . . , 2 + g(b)}+ {1, . . . , f(a− b)− 1} ⊆ E+(n), as required.

Proof of Corollary 3.47. By Theorem 3.44, we have that

br+(n) = br+(a1p
n1 − 1) +

t∑
j=2

Φ(aj , br
+(mj − 1)) + ∆(n, p).

By Proposition 3.65, br+(a1p
n1 − 1) ≤ max{b√a1c, f(2a1 − 2)}+ 1 <

√
2a1 + 1. Com-

bining this with Lemma 3.7, we get

br+(n) < (
√

2a1 + 1) +

t∑
j=2

⌊aj
2

⌋
+ 1 = B+(n)

as desired. To bound the difference B+(n)− br+(n), observe that

B+(n)− br+(n) < 2
√
p+ 1 +

t∑
j=2

ε(j) where ε(j) :=
⌊aj

2

⌋
− Φ(aj , br

+(mj − 1)).

We show that ε :=
∑t
j=2 ε(j) <

p
2 log2(p)− 1.

If aj ≤ 3 then ε(j) = 0, by Lemma 3.7 and the fact that br+(m) ≥ 1 for all m ∈ N0.

Hence if aj ≤ 3 for all j ∈ {2, . . . , t}, then ε = 0. In particular, ε = 0 if p = 3, and so

B+(n)− br+(n) < 3 log2(3).

Otherwise, there exists j ∈ {2, . . . , t} such that aj ≥ 4 (and so p ≥ 5). Then there
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exists a unique k ∈ N and integers 1 = i0 < i1 < · · · < ik ≤ t such that ij = min{x ∈
{ij−1+1, . . . , t} | ax ≥ 2j+2} for all j ∈ [k] and {x ∈ {ik+1, . . . , t} | ax ≥ 2k+1+2} = ∅.
In particular, 2k < p. By a similar argument to that in the proof of Proposition 3.5

(replacing every instance of br(mj) by br+(mj − 1)), we find that

ε ≤
k∑
i=0

(
p− 1

2
− 2i

)
<
kp

2
− 1.

Hence B+(n)− br+(n) < 2
√
p+ 1 + ε < 2

√
p+ p

2 log2(p) < p log2(p) as desired.

3.3 Self-similarities in the Young graph

3.3.1 Graph isomorphisms

In [1, Theorem 3] it was shown that the tree Y2′ exhibited ‘self-similarities at all scales’.

To state this more precisely: given a partition λ ∈ Y2′ and k ∈ N0, let λ+[0,k] denote

the induced subtree rooted at λ consisting of those vertices µ of Y2′ such that µ ≥ λ in

the dominance partial ordering on partitions, and |λ| ≤ |µ| ≤ |λ|+ k.

Theorem 3.69 ([1, Theorem 3]). Let n, ν ∈ N and suppose ν2(n) ≥ ν. Let λ `2′ n.

Then

C2ν : λ+[0,2ν−1] → ∅+[0,2ν−1]

is an isomorphism of trees.

In other words, for each k ∈ N, the subtree of Y2′ consisting of partitions λ such

that |λ| ≤ 2k − 1 is ‘repeated infinitely often’ inside the full tree Y2′ .

On the other hand, it is clear that the subgraph Yp′ is never a tree when p is odd.

Nevertheless, there are still certain isomorphic structures in the induced subgraphs of

Yp′ for all p. Our main result is the following:

Theorem 3.70. Let p be any prime. Suppose n =
∑k
i=1 p

ni for some k ∈ N and integers

0 ≤ n1 < n2 < . . . < nk. Let λ `p′ n and ν ≤ n1. Then

Cpν : λ↑[0,p
ν−1] −→ ∅↑[0,p

ν−1]

is a graph isomorphism.

The induced subgraphs λ↑[p
ν−1] and ∅↑[0,pν−1] of Yp′ are defined explicitly in Defini-

tion 3.72. Examples of these graph isomorphisms are presented in Figures 3.11 and 3.12,

where we say a partition λ lies on level n if λ ` n. Theorem 3.70 is proved in Section 3.3.2

below, and we comment on the general case of n =
∑k
i=1 aip

ni at the end of the section

in Remark 3.78.

In particular, observe that we recover all of the isomorphisms of subtrees in [1] for

the tree Y2′ when we set p = 2 in Theorem 3.70. These isomorphisms can be also
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2
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5

∅

(1)

(2) (12)

(3) (2, 1) (13)

(4) (3, 1)
(22)

(2, 12) (14)

(5) (4, 1) (3, 12) (2, 13) (15)

Figure 3.11: Y5′ from levels 0 to 5.

thought of as refinements of the following observation, which can be seen by considering

partitions on James’ abacus.

Observation 3.71. Let n ∈ N and p be a prime. Let n = apk + m where k ∈ N,

a ∈ {1, 2, . . . , p− 1} and 0 ≤ m < pk. Then

Cpk : Irrp′(Sn) −→ Irrp′(Sn−apk)

is surjective and exactly |Irrp′(Sapk)|-to-1.

(Here we have identified partitions λ with their corresponding characters χλ.)

3.3.2 On hooks and their leg lengths

Definition 3.72. Let p be any prime. Let s ≤ t ∈ N0 and let λ↑[s,t] denote the induced

subgraph of Yp′ on the set of vertices µ ∈ Yp′ such that |µ| = |λ| + m for some s ≤
m ≤ t, and such that there exist partitions µ(0) = λ, µ(1), µ(2), . . . , µ(m) = µ satisfying

µ(i) ∈ Yp′ and µ(i−1) ∈ µ(i)−
p′ for all i ∈ [m]. When s = t, we simply denote λ↑[s,t] by

λ↑[s].

The partitions µ(m), . . . , µ(0) form a path of minimal length from µ to λ inside Yp′ .
Let such a path be called a p-downpath from µ to λ, or simply a downpath from µ

to λ whenever the value of p is clear from context. Thus λ↑[0,t] contains exactly those

partitions µ with a downpath to λ such that |λ| ≤ |µ| ≤ |λ|+ t.

When we write µ ∈ G for some subgraph G of Y, we will always mean that µ is a

vertex of G, and hence µ is a partition. Clearly Y and hence Yp′ is a graded poset with

rank function r given by r(λ) = |λ|. Thus informally, λ↑[0,t] is the ‘cone-like’ subgraph

of Yp′ with apex λ, between ranks |λ| and |λ|+ t.

A beautiful result of Bessenrodt [2] on leg lengths of addable and removable hooks

which we will refer to later is the following.
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6

7

8

9

10

Figure 3.12: Y5′ from levels 5 to 10. The five coloured subgraphs between levels 5
to 9 are each isomorphic to levels 0 to 4. The red (leftmost) and violet (rightmost)
subgraphs between levels 9 and 10 are isomorphic to levels 4 to 5, while the remaining
three subgraphs are not (indicated by dashed lines).
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Theorem 3.73 ([2, Theorem 1.1]). Let λ be a partition of n ∈ N. For k ∈ N, k ≤ n

and 0 ≤ l ≤ k− 1, let Ak,l(λ) be the number of k-hooks of leg length l that can be added

to [λ] to give the Young diagram of a partition of n+ k, and let Rk,l(λ) be the number

of k-hooks of leg length l that can be removed from [λ] to give the Young diagram of a

partition of n− k. Then Ak,l(λ) = 1 +Rk,l(λ).

The key step in proving Theorem 3.70 is the following.

Proposition 3.74. Let p be a prime. Suppose n =
∑k
i=1 p

ni for some k ∈ N and

integers 0 ≤ n1 < n2 < . . . < nk. Let λ `p′ n. Then

Cpnk : λ↑[0,p
n1−1] −→

(
Cpnk (λ)

)↑[0,pn1−1]

is a graph isomorphism.

Before we prove this proposition, we present some useful lemmas. Let p be any prime.

Let λ `p′ n where pk < n < 2pk for some k ∈ N. Then |Hpk(λ)| = 1 by Theorem 3.12

(and in fact, the hook in Hpk(λ) has length precisely pk since n < 2pk). Similarly, µ has

a unique pk-hook for all µ ∈ λ−p′ . Thus it makes sense to refer to the pk-hook of λ (and

similarly for µ); this notation will be kept in Lemma 3.75 below.

Lemma 3.75. Let µ ∈ λ−p′ . Then the pk-hooks of λ and µ have the same leg length.

Proof. Let A be the pk-abacus for λ with first gap (0, 0). Positions (i, j) in A are

empty whenever i ≥ 2, since |λ| < 2pk. Since λ has a unique pk-hook, there is a unique

t ∈ {0, 1, . . . , pk−1} such that (0, t) is empty but (1, t) contains a bead. Moreover, its leg

length is given by |{(i, j) contains a bead in A : i = 0, j > t or i = 1, j < t}| =: bA(t).

Let c be the bead in A such that B := A←c is a pk-abacus for µ. Similarly, there is

a unique s ∈ {0, 1, . . . , pk − 1} such that (0, s) is empty but (1, s) contains a bead, and

the leg length of this hook is bB(s). It remains to observe that bA(t) = bB(s).

If c is not in position (0, t + 1) or (1, t) in A, then s = t and so bA(t) = bB(s) by

inspection. (If t = pk − 1 then set (0, t+ 1) := (1, 0).) If c is in position (0, t+ 1), then

s 6= t. Clearly bA(t) = bB(s) if s 6= t+ 1 also, while if s = t+ 1 then bA(t) = bB(s) since

(0, t+ 1) contains a bead in A but not in B and (1, t) contains a bead in both A and B.

The case if c lies in (1, t) in A is similar.

In Corollary 3.76 and Lemma 3.77 below, let n =
∑k
i=1 p

ni for some k ∈ N and

integers 0 ≤ n1 < n2 < · · · < nk, and let m ∈ {0, 1, . . . , pn1 − 1}. Fix λ `p′ n. By

Theorem 3.12, every partition α of p′-degree such that n ≤ |α| ≤ n + m has a unique

pnk -hook, since pnk ≤ n and n+ pn1 − 1 < 2pnk .

Corollary 3.76. Let λ `p′ n and suppose µ ∈ λ↑[m]. Then the pnk -hook of µ and he

pnk -hook of λ have the same leg length.

Proof. We proceed by induction on m; the assertion is clear for m = 0 so now assume

m ≥ 1. Since µ ∈ λ↑[m], there exists δ ∈ µ−p′ ∩ λ↑[m−1]. By the inductive hypothesis,
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the leg length of the pnk -hook of δ equals that of λ. The assertion then follows from

Lemma 3.75.

In fact, the converse is also true.

Lemma 3.77. Let µ `p′ n+m. Suppose that Cpnk (µ) ∈ Cpnk (λ)↑[m]. Further suppose

that the leg lengths of the pnk -hooks of µ and λ are equal. Then µ ∈ λ↑[m].

Proof. Let l be the leg length of the pnk -hook of λ. We proceed by induction on m.

When m = 0, Cpnk (µ) = Cpnk (λ). By Theorem 3.73, λ is the unique partition of

n obtained from Cpnk (λ) by adding a pnk -hook of leg length l, since Cpnk (λ) has no

removable pnk -hooks. Hence µ = λ.

Now assume m ≥ 1. Since Cpnk (µ) ∈ Cpnk (λ)↑[m], there exists δ ∈ Cpnk (µ)−p′ ∩
Cpnk (λ)↑[m−1]. By Theorem 3.15, there exists D ∈ µ−p′ such that Cpnk (D) = δ. By

Lemma 3.75, the pnk -hooks of D and µ have equal leg length, and hence by the inductive

hypothesis, D ∈ λ↑[m−1]. Thus µ ∈ D+
p′ ⊆ λ↑[m].

Proof of Proposition 3.74. The assertion is trivially true if n1 = 0 (since both graphs

consist of a single point), so we may assume n1 > 0 from now on. We show that (i) the

stated map is well-defined; (ii) it is a bijection on the sets of vertices; and (iii) (µ, δ) is

an edge in λ↑[0,p
n1−1] if and only if

(
Cpnk (µ), Cpnk (δ)

)
is an edge in

(
Cpnk (λ)

)↑[0,pn1−1]
.

(i) Well-definition: we first show that λ↑[m] maps into Cpnk (λ)↑[m] for each m ∈
{0, 1, . . . , pn1 − 1}, which implies that Cpnk : λ↑[0,p

n1−1] −→
(
Cpnk (λ)

)↑[0,pn1−1]
is

well-defined. We proceed by induction on m. When m = 0, we have λ↑[0] = {λ},
Cpnk (λ)↑[0] = {Cpnk (λ)} and λ 7→ Cpnk (λ).

Now let m ≥ 1 and let µ ∈ λ↑[m]. Since pnk ≤ n < |µ| ≤ n + pn1 − 1 < 2pnk , we

have Cpnk (µ) `p′ |µ| − pnk = |Cpnk (λ)|+m by Theorem 3.12. Thus it suffices to find a

downpath from Cpnk (µ) to Cpnk (λ).

Since µ ∈ λ↑[m], there exists some downpath from µ to λ. In particular, there

exists some δ ∈ µ−p′ on this downpath, so δ ∈ λ↑[m−1]. By the inductive hypothesis,

Cpnk (δ) ∈ Cpnk (λ)↑[m−1] so there exists some downpath

γ(m−1) = Cpnk (δ), γ(m−2), . . . , γ(1), γ(0) = Cpnk (λ)

in Yp′ . By Theorem 3.15, Cpnk (δ) ∈ Cpnk (µ)−p′ , so we may set γ(m) = Cpnk (µ) and see

that γ(i−1) ∈ γ(i)−
p′ for all i ∈ [m] as required.

(ii) Bijection on vertices: By (i), the map

Cpnk : λ↑[m] −→ Cpnk (λ)↑[m]

is well-defined for each m ∈ {0, 1, . . . , pn1 − 1}. We now show that this is a bijection on

the vertices for each m.

Surjectivity: we proceed by induction on m. This is clear for m = 0, so assume

m ≥ 1. Let δ ∈ Cpnk (λ)↑[m]. Then there exists some ε ∈ δ−p′ ∩ Cpnk (λ)↑[m−1]. By the

71



inductive hypothesis, there exists a partition E ∈ λ↑[m−1] such that Cpnk (E) = ε. Also,

pnk ≤ n ≤ |E| = n+m− 1 ≤ n+ pn1 − 2 < 2pnk − 1, so by Corollary 3.51 there exists

a partition D ∈ E+
p′ such that Cpnk (D) = δ. Since E ∈ λ↑[m−1], we have D ∈ λ↑[m].

Injectivity: suppose

Cpnk (A) = Cpnk (B) =: α ∈ Cpnk (λ)↑[m]

for some m and some A,B ∈ λ↑[m]. Since α has no removable pnk -hooks, α has a

unique addable pnk -hook of each leg length l ∈ {0, 1, . . . , pnk − 1}. By Corollary 3.76,

the pnk -hooks of A and B have the same leg length, so A = B.

(iii) Edges: suppose (µ, δ) is an edge in λ↑[0,p
n1−1]. So δ ∈ µ−p′ , µ ∈ λ↑[m] and δ ∈

λ↑[m−1] for somem ∈ {1, 2, . . . , pn1−1}. By (i), we know that Cpnk (µ) ∈ Cpnk (λ)↑[m] and

Cpnk (δ) ∈ Cpnk (λ)↑[m−1]. But by Theorem 3.15, δ ∈ µ−p′ implies Cpnk (δ) ∈ Cpnk (µ)−p′ ,

and so
(
Cpnk (µ), Cpnk (δ)

)
is an edge in

(
Cpnk (λ)

)↑[0,pn1−1]
.

Conversely, suppose that α ∈ Cpnk (λ)↑[m] is joined to β ∈ Cpnk (λ)↑[m−1] for some

m ∈ {1, 2, . . . , pn1 − 1}. By (ii), there exists a unique partition A ∈ λ↑[m] such that

Cpnk (A) = α, and a unique B ∈ λ↑[m−1] such that Cpnk (B) = β. Consider the map

Cpnk : B+
p′ −→ β+

p′ . This map is surjective by Corollary 3.51, and α ∈ β+
p′ , so suppose

A′ lies in the preimage of α. Then A′ ∈ B+
p′ and B ∈ λ↑[m−1], so A′ ∈ λ↑[m] and

Cpnk (A′) = α. By uniqueness of A, we have A = A′ and thus A ∈ B+
p′ . Therefore (A,B)

is an edge in λ↑[0,p
n1−1].

Let us now highlight a link between the graph isomorphisms of Proposition 3.74

and Bessenrodt’s theorem [2] on hooks. Let n =
∑k
i=1 p

ni be as above and let µ `p′
n − pnk . Since |µ| < pnk , µ has a unique addable pnk -hook Hl of each leg length

l ∈ {0, 1, . . . , pnk − 1}. Let λ(l) ` n be the result of µ with Hl added. Then λ(l) `p′ n
for all l by Theorem 3.12. If λ `p′ n is such that Cpnk (λ) = µ, then λ = λ(l) for some l.

Moreover, the map

Cpnk : λ(l)↑[0,p
n1−1]

−→ µ↑[0,p
n1−1]

is a graph isomorphism, and λ(l)↑[0,p
n1−1]

and λ(l′)↑[0,p
n1−1]

are edge and vertex disjoint

whenever l 6= l′. (This is because if γ ∈ λ(l)↑[m] ∩ λ(l′)↑[m], then the unique pnk -hook of

γ has leg length l = l′.)

Therefore the disjoint copies of µ↑[0,p
n1−1] obtained by adding pnk -hooks are indexed

precisely by the leg length of the added hook. It is easy to see that the cones λ↑[0,p
n1−1]

and λ̃↑[0,p
n−1−1] are also disjoint if Cpnk (λ) 6= Cpnk (λ̃), for λ, λ̃ `p′ n.

Proof of Theorem 3.70. We proceed by induction on k. When k = 1 and n = pn1 , by

Theorem 3.12 we have that Cpn1 (λ) = ∅. The assertion then follows from Proposi-

tion 3.74 since Cpν = Cpν ◦ Cpn1 whenever ν ≤ n1.
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For the inductive step, suppose k ≥ 2. Composing the successive graph isomorphisms

λ↑[0,p
n1−1]

Cpnk−−−→ Cpnk (λ)↑[0,p
n1−1]

C
p
nk−1

−−−−−→ Cpnk−1 (λ)↑[0,p
n1−1]

C
p
nk−2

−−−−−→ · · ·

· · ·
Cpn1−−−→ Cpn2 (λ)↑[0,p

n1−1] Cpn2−−−→ Cpn1 (λ)↑[0,p
n1−1] = ∅↑[0,p

n1−1]

given by Proposition 3.74, we find that Cpn1 = Cpn1 ◦Cpn2 ◦ · · · ◦Cpnk gives an isomor-

phism of graphs λ↑[p
ν−1] −→ ∅↑[0,pν−1]. The result for ν ≤ n1 then follows.

Remark 3.78. (1) Since n1 is the p-adic valuation of n, setting p = 2 exactly recovers

[1, Theorem 3].

(2) Let λ `p′ n =
∑k
i=1 p

ni , and let µ `p′ |λ|+m where m ∈ {0, 1, . . . , pn1 − 1}. Then

a corollary of these graph isomorphisms is that

µ ∈ λ↑[0,p
n1−1] ⇐⇒ µ ≥ λ

(where the latter condition denotes the dominance partial ordering), since this

assertion clearly holds when λ = ∅. Note pn1 − 1 cannot be exceeded in general:

for example, µ = (4, 1) `3′ 5 dominates λ = (2, 1) `3′ 3 but there is no downpath

from µ to λ since µ−3′ = {(4)}.

(3) Theorem 3.70 is stated for n such that all of the p-adic digits of n belong to

{0, 1}. The result does not hold in general when n has p-adic digits greater than

1. For example, let p = 3, n = 6, λ = (4, 12) and ν = n1 = 1. Then λ+
3′ =

{(4, 2, 1), (4, 13)}, but C3(λ) = ∅ and |∅+3′ | = 1.

Also, the graph isomorphism does not in general extend beyond ν ≤ n1. Consider

the following example where ν > n1: let p = 2, n = 7, ν = 1 > 0 = n1 and

λ = (4, 2, 1). Then |λ+
2′ | = 0, but C2(λ) = (1) and |(1)+

2′ | = 2.

(4) Finally, recall from Definition 3.72 that the induced subgraph λ↑[s,t] (for some

0 ≤ s ≤ t) is said to contain the vertex µ if there exists a downpath from µ to λ in

Yp′ . With the notation as in Theorem 3.70, letting µ ∈ λ↑[1,pn1−1], in fact every

element of µ−p′ lies in λ↑[0,p
n1−1]. Indeed, Theorem 3.70 implies

|µ−p′ ∩ λ
↑[0,pn1−1]| = |Cpn1 (µ)−p′ ∩ ∅

↑[0,pn1−1]| = |Cpn1 (µ)−p′ |.

But the maps Cpni : Cpni+1 (µ)−p′ −→ Cpni (µ)−p′ are bijections for all 1 ≤ i < k

(where we let Cpnk+1 (µ) := µ), so |µ−p′ | = |Cpn1 (µ)−p′ |. Hence µ−p′ ⊆ λ↑[0,p
n1−1]. ♦
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Chapter 4

Linear characters of Sylow

subgroups of symmetric groups

This chapter is based on joint work with Dr Eugenio Giannelli and Jason Long. The

results in Section 4.3 were obtained in collaboration with J. Long, and the results in

Sections 4.2 and 4.4 with Dr Giannelli.

We investigate the linear constituents of restrictions of irreducible characters of sym-

metric groups to their Sylow subgroups. Specifically, let p be any prime and fix a Sylow

p-subgroup Pn of the symmetric group Sn. Let φ and ψ be linear characters of Pn and

let N = NSn(Pn). We show that if the inductions of φ and ψ to Sn are equal, then φ

and ψ are N -conjugate. This is an analogue for symmetric groups of a result of Navarro

for p-solvable groups [50]. We further show that the set of irreducible constituents of

the induced character determines the N–orbit of φ when n is a power of p.

4.1 Outline

In recent years, the restriction of characters from a finite group G to a Sylow subgroup P

of G has played a major role in character correspondences in the context of the McKay

Conjecture (see [28], [38] and [52], for example). Little is known about such restrictions

in general, however, even in the case of symmetric groups.

A consequence of a recent result [31] of Giannelli and Navarro is the existence of a

linear constituent in any restriction of an irreducible character of Sn to Pn, for all n and

p. A natural question is to identify which linear characters appear in such restrictions,

or equivalently, to describe the irreducible constituents of the induction φ
xSn

for every

linear character φ of Pn, for all n and p.

For any finite group G and P a Sylow subgroup of G, the normaliser N = NG(P )

acts on the set of linear characters of P by conjugation. It is easy to see that if two

linear characters are N–conjugate then their inductions to N , and hence G, are equal.

Thus when considering induced characters φ
xG, it is sufficient to consider a set of orbit
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representatives φ under this action of N . However, is the converse true? That is, if φ and

ψ are two linear characters of P such that φ
xG = ψ

xG, must φ and ψ be N–conjugate?

This was answered in the affirmative for all p-solvable groups by Navarro in [50],

though there exist finite groups (such as PSL(3, 3) with p = 3) for which the answer

is negative. In the course of investigating character restrictions and inductions for the

symmetric groups and their Sylow subgroups, we prove that the answer is also affirmative

for all Sn and all primes p.

Theorem 4.1. Let p be any prime and let n ∈ N. Let Pn ∈ Sylp(Sn) and let N =

NSn(Pn). Let φ and ψ be linear characters of Pn. Then φ
xSn

Pn
= ψ

xSn

Pn
if and only if φ

and ψ are N–conjugate.

As part of the proof of Theorem 4.1, we provide an entirely combinatorial condition

equivalent to the algebraic statement that two linear characters are N–conjugate, and

an explicit description of certain character values, both of which we believe to be of

independent interest. The details are given in Sections 4.2 and 4.3 respectively.

Finally, the action of N just described is also related to the action given by Galois

conjugation on the set of linear characters. In Section 4.4 we show that the partition by

N–orbits is a strict coarsening of the partition by Galois orbits whenever n ≥ 2p, and

also compare these to the equivalence classes given by the relation on linear characters

φ, ψ of Pn defined via Ω(φ) = Ω(ψ), where Ω(φ) is the set of irreducible constituents of

the induced character φ
xSn

.

We record a proof of the easy direction of Theorem 4.1.

Lemma 4.2. Let G be a finite group and p be a prime. Let P ∈ Sylp(G) and N =

NG(P ). Suppose φ, ψ ∈ Char(P ) and ψ = φn for some n ∈ N . Then φ
xN
P

= ψ
xN
P

, and

hence φ
xG
P

= ψ
xG
P

.

Proof. Let α ∈ Irr(N). Note that αn = α. Then by Frobenius reciprocity,

〈φ
xN , α〉 = 〈φ, α

y
P
〉 = 〈φn, (α

y
P

)n〉 = 〈ψ, (αn)
y
P
〉 = 〈ψ

xN , α〉.
Thus φ

xN = ψ
xN , as α is arbitrary.

4.2 On a conjugacy action of Sylow normalisers

Throughout this chapter, let p denote an arbitrary, fixed prime, and let n ∈ N. The main

aim of this section is to prove Theorem 4.1 for all primes p. Recall the notation from

(2.4) in Section 2.3.2 for linear characters φ(s) of Pn. We begin by proving an equivalent

condition on the indexing sequences s and t for the corresponding linear characters φ(s)

and φ(t) of Pn to beNSn(Pn)–conjugate, in Lemma 4.3 (the case n = pk) and Lemma 4.5

(for arbitrary n ∈ N) below.
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Given k ∈ N and s ∈ [p]k we let

Σ(s) := {t ∈ [p]k | tj = 0 if and only if sj = 0, ∀ j ∈ [k]}.

If t ∈ Σ(s), then we say also that φ(t) ∈ Σ(s), where φ(t) is the linear character of

Ppk corresponding to t ∈ [p]k. (We refer the reader to Section 2.3.2 for a description of

Lin(Ppk).) When we say φ ∈ Σ(s), we mean that φ = φ(t) for some t ∈ [p]k such that

t ∈ Σ(s). It will be clear from context whether we refer to Σ(s) as a subset of Lin(Ppk)

or of [p]k.

Lemma 4.3. Let k ∈ N and let φ, ψ ∈ Lin(Ppk). Then φ and ψ are NS
pk

(Ppk)–

conjugate if and only if there exists s ∈ [p]k such that φ, ψ ∈ Σ(s).

Proof. Let G = Spk , P = Ppk and N = NS
pk

(Ppk). Since P ′ is characteristic in P we

have that P ′ / N . Moreover, the standard map

Lin(P ) −→ Irr(P/P ′) = Lin(P/P ′), φ 7−→ φ̃, φ̃(gP ′) := φ(g) ∀ g ∈ P

is well-defined and a bijection. Let g ∈ N , x ∈ P and φ ∈ Lin(P ). Then

(φ̃)gP
′
(xP ′) = φ̃(gxg−1P ′) = φ(gxg−1) = φg(x) = φ̃g(xP ′).

Hence (φ̃)gP
′

= φ̃g. From [53, Lemma 1.4] we have that P/P ′ ∼= (Ppk−1/Ppk−1
′)×Cp ∼=

(Cp)
×k. Specifically, define

θk : P −→ (Ppk−1/Ppk−1
′)× Cp, (x1, . . . , xp;σ) 7−→ (x1 · · ·xpPpk−1

′, σ),

where xi ∈ Ppk−1 and σ ∈ Pp. This is a surjective homomorphism with kernel

{(x1, . . . , xp;σ) | x1 · · ·xp ∈ Ppk−1
′, σ = 1},

which by [53, Lemma 1.4] is exactly P ′. Thus P/P ′ ∼= (Ppk−1/Ppk−1
′) × Cp, so by

iterating we find that P/P ′ ∼= (Cp)
×k. We also have from a direct application of [53,

Proposition 1.5] that

N/P ′ ∼= (NS
pk−1

(Ppk−1)/Ppk−1
′)×NSp(Cp) ∼= (NSp(Cp))

×k ∼= (Cp o Cp−1)×k.

In particular, if (x1, . . . , xk) ∈ [p]k, χ = φx1 × · · · × φxk ∈ Lin(P/P ′) = Irr((Cp)
×k)

and h = (h1, . . . , hk) ∈ N/P ′ ∼= (NSp(Cp))
×k then we have that

χh = (φx1
)h1 × · · · × (φxk)hk .

Since NSp(Cp) acts on Lin(Cp) by fixing the trivial character φ0 and transitively permut-

ing φ1, φ2, . . . , φp−1, it follows that φx1
×· · ·×φxk and φy1×· · ·×φyk are N/P ′–conjugates

if and only if there exists s ∈ [p]k such that (x1, . . . , xk), (y1, . . . , yk) ∈ Σ(s). This shows

that in order to conclude the proof, it remains to show that if φ = φ(x) ∈ Lin(P ) for
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some x = (x1, . . . , xk) ∈ [p]k, then φ̃ = φx1
× · · · × φxk . This can be seen inductively as

follows. The case k = 1 is clear. Let k ≥ 2 and let γ be the p-cycle (1, 2 . . . , p) ∈ Pp.
We now let γ1 = γ ∈ Pp and for j ∈ {2, 3, . . . , k − 1} we denote by γj the element of

Ppj = Ppj−1 oPp defined by γj = (1, 1, . . . , 1; γ). Using the description of P ′ given in [53,

Lemma 1.4] we deduce that

P/P ′ =
〈
ω

(k)
1 P ′

〉
×
〈
ω

(k)
2 P ′

〉
× . . .×

〈
ω

(k)
k P ′

〉
,

where the elements ω
(k)
j ∈ P = Ppk are defined as follows, recalling that Ppk is the k-fold

wreath product Pp o · · · o Pp: let ω
(k)
k = γk. Then let ω

(k)
k−1 = (γk−1, 1, . . . , 1; 1). Then

let ω
(k)
k−2 =

(
(γk−2, 1, . . . , 1; 1), 1, . . . , 1; 1

)
, and similarly define ω

(k)
j to be the ‘nested’

element
((
. . .
(
(γj , 1, . . . , 1; 1), 1, . . . , 1; 1

)
. . .
))

for all j ∈ [k − 1]. (See Example 4.4

below.)

Finally, given any j ∈ [k] we have by Lemma 2.13 that

φ̃(ω
(k)
j P ′) = φ(ω

(k)
j ) = φ(x1, . . . , xk)(ω

(k)
j )

= X
(
φ(x1, . . . , xj−1);φxj

)
(γj) = φxj (γ) =

(
φx1 × · · · × φxk

)
(ω

(k)
j P ′),

This shows that φ̃ = φx1
× · · · × φxk , as desired.

Example 4.4. Let k = 2 and let Q = Pp2 . Then Q/Q′ ∼= (Pp/P
′
p) × Cp. The element

(1, . . . , 1; γ) ∈ Pp o Pp = Q maps into the second direct factor Cp under θ2. The fac-

tor Pp/P
′
p is isomorphic to Cp = 〈γ〉, which is mapped onto by (γ, 1, . . . , 1; 1) ∈ Q.

Thus Q/Q′ ∼= 〈ω(2)
1 Q′〉 × 〈ω(2)

2 Q′〉 where ω
(2)
1 = (γ, 1, . . . , 1; 1) ∈ Q and ω

(2)
2 = γ2 =

(1, . . . , 1; γ) ∈ Q.

Now let k = 3. The above two generators ω
(2)
1 , ω

(2)
2 can be ‘lifted’ via Pp3/Pp3

′ ∼=
(Q/Q′)× Cp to give

ω
(3)
1 =

(
(γ, 1, . . . , 1; 1), 1, . . . , 1; 1

)
∈ Pp3 , ω

(3)
2 =

(
(1, . . . , 1; γ), 1, . . . , 1; 1

)
∈ Pp3 .

The final Cp factor is generated by ω
(3)
3 Pp3

′ where ω
(3)
3 = (1, . . . , 1; γ) ∈ Pp3 , by the

definition of θ3.

More generally, γk ∈ Ppk viewed as an element of Spk = Sym{1, . . . , pk} via the

permutation representation (2.3) coincides with σk as defined in Section 2.3.2 for all

k ∈ N, and ω
(k)
j = γj ∈ Sym{1, . . . , pj} ≤ Sym{1, . . . , pk} for all j ≤ k. ♦

Lemma 4.5. Let n ∈ N and let n =
∑k
i=1 aip

ni be its p-adic expansion. Let φ(t), φ(u) ∈
Lin(Pn). Then φ(t) and φ(u) are NSn(Pn)–conjugate if and only if there exists σ ∈
Sym[a1]× · · · × Sym[ak] such that for each i ∈ [k], there exists s(i) ∈ [p]ni satisfying

t(i, σ(j)), u(i, j) ∈ Σ
(
s(i)
)

for all j ∈ [ai].
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Proof. For each i ∈ [k], let Ni = NSpni (Ppni ). Since NSn(Pn) = N1 oSa1×· · ·×Nk oSak ,

the statement follows from Lemma 4.3.

Next, we have two technical lemmas.

Lemma 4.6. Let n,m ∈ N. Let A and B be characters of Sn and let Z be a non-zero

character of Sm. Then

(A× Z)
xSn+m

Sn×Sm
= (B × Z)

xSn+m

Sn×Sm
if and only if A = B.

Proof. The ‘if’ direction is clear, so now suppose that (A×Z)
xSn+m

= (B ×Z)
xSn+m

and assume for a contradiction that A 6= B. For X ∈ {A,B,Z}, let cXλ :=
〈
X,χλ

〉
,

where λ is a partition of n (resp. m) if X ∈ {A,B} (resp. X = Z). We define the

following sets:

M = {λ ` n | cAλ 6= cBλ } and N = {µ ` m | cZµ 6= 0},

which by assumption are non-empty. Let λ and µ be the lexicographically greatest

partitions in M and N respectively, and let α be the partition of n + m defined by

α = λ+ µ := (λ1 + µ1, λ2 + µ2, . . .). By the Littlewood–Richardson rule, we have that〈
(A× Z)

xSn+m
, χα

〉
= cA

λ
cZµ c

α
λµ

+
∑
λ>λ

∑
µ∈N

cAλ c
Z
µ c

α
λµ = cA

λ
cZµ c

α
λµ

+
∑
λ>λ

∑
µ∈N

cBλ c
Z
µ c

α
λµ

6= cB
λ
cZµ c

α
λµ

+
∑
λ>λ

∑
µ∈N

cBλ c
Z
µ c

α
λµ =

〈
(B × Z)

xSn+m
, χα

〉
.

since cZµ c
α
λµ
6= 0. This contradicts (A× Z)

x = (B × Z)
x.

Lemma 4.7. Let a, n,m ∈ N and suppose n > m. Let P ×Q ≤ San×Sm ≤ San+m be

such that P contains an element σ which is a product of a disjoint n-cycles. Let g ∈ Q.

Let χ be a character of P and η be a character of Q. Then

(χ× η)
xSan+m

P×Q (σg) = χ
xSan

P
(σ) · η

xSm

Q
(g).

Proof. This follows from the definition of induced characters, after observing that σx ∈
P ×Q if and only if σx ∈ P , for all x ∈ San+m.

It turns out that the difficult part of Theorem 4.1 is the case when n = apk, which we

have stated as Theorem 4.8 below and whose proof has been postponed to Section 4.3.

Theorem 4.8. Let a ∈ [p− 1] and k ∈ N. Let φ, ψ ∈ Lin(Papk) be such that φ
xS

apk =

ψ
xS

apk . Then φ and ψ are NS
apk

(Papk)–conjugate.

Assuming Theorem 4.8, we are able to prove Theorem 4.1.

Proof of Theorem 4.1. Let n = a1p
n1 + · · · + akp

nk be the p-adic expansion of n, with

k ∈ N, ai ∈ [p − 1] for all i and 0 ≤ n1 < · · · < nk. We proceed by induction on k. If
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k = 1 then the statement holds by Theorem 4.8. Suppose that k ≥ 2 and assume for

a contradiction that φ and ψ are not NSn(Pn)–conjugate. Let m = akp
nk and write

φ = φ1×φ2 and ψ = ψ1×ψ2 where φ1, ψ1 ∈ Lin(Pm) and φ2, ψ2 ∈ Lin(Pn−m). Since φ

and ψ are not NSn(Pn)–conjugate and NSn(Pn) ∼= NSm(Pm)×NSn−m(Pn−m), at least

one of the following two statements must hold:

(i) φ1 and ψ1 are not NSm(Pm)–conjugate;

(ii) φ2 and ψ2 are not NSn−m(Pn−m)–conjugate.

Since Pn ∼= Pm × Pn−m, we have that

(φ1

xSm

Pm
× φ2

xSn−m

Pn−m
)
xSn

= φ
xSn

Pn
= ψ

xSn

Pn
= (ψ1

xSm

Pm
× ψ2

xSn−m

Pn−m
)
xSn

and so using Lemmas 4.2, 4.6 and the inductive hypothesis, we deduce that both con-

ditions (i) and (ii) must hold. Let g ∈ Sn−m be such that φ2

xSn−m
(g) 6= ψ2

xSn−m
(g);

such an element exists by the inductive hypothesis. Let σ ∈ Pm ≤ Sm be a product of

ak disjoint pnk -cycles. We now denote by h the element of Sm ×Sn−m ≤ Sn defined

as follows:

h =

σ if φ1

xSm
(σ) 6= ψ1

xSm
(σ),

σg otherwise.

Then φ
xSn

(h) 6= ψ
xSn

(h) by Lemma 4.7, a contradiction.

4.3 Induced character values

Throughout this section, let n = apk where k ∈ N and a ∈ [p−1]. Recall from (2.4) that

the linear characters of Pn are parametrised as φ(u) where u =
(
u(1),u(2), . . . ,u(a)

)
with u(i) ∈ [p]k for each i. By Lemmas 4.2 and 4.5, we need only distinguish when the

elements of the sequences u(i) are equal to 0 (corresponding to 1Pp) or not (correspond-

ing to some non-trivial linear character of Pp). Thus we may identify all of the values

which are not equal to 0. Our proofs involve computing certain character values, for

which the following notational convention will be useful, in particular for Lemma 4.13.

Notation 4.9. In this section (Section 4.3) only, we sometimes rewrite u(i) ∈ [p]k as

ui = (ui1, . . . , u
i
k) ∈ {0, 1}k where

uij =

1 if u(i)j = 0

0 if u(i)j ∈ {1, 2, . . . , p− 1},

and let u = (u1, . . . , ua).

So for instance, in this section we do not distinguish between characters φ(s), φ(t) ∈
Lin(Ppk) for s, t ∈ [p]k if φ(t) ∈ Σ(s). If u ∈ {0, 1}k then by φ(u) we mean a (any) linear
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character φ(s) ∈ Lin(Ppk) where s ∈ [p]k such that u corresponds to u ∈ [p]k in the sense

of Notation 4.9, and s and u have 0s in the same positions. We shall adhere to using

italics or bold (e.g. s, s) to denote elements of [p]k, and sans serif (e.g. u) for elements

in {0, 1}k. We then extend these notational conventions from Lin(Ppk) to Lin(Pm) for

all m ∈ N.

The aim of this section is to prove the following statement, which, in light of

Lemma 4.5, is equivalent to Theorem 4.8.

Theorem 4.10. Let k ∈ N and let a ∈ [p − 1]. Let φ(s), φ(t) ∈ Lin(Papk). Suppose

φ(s)
xS

apk = φ(t)
xS

apk . Then there exists a permutation σ ∈ Sym{1, . . . , a} such that

si = tσ(i) for all i.

The key idea is to consider the values φ
xSn

(g) where φ ∈ Lin(Pn) and g is a product

of disjoint cycles whose lengths are distinct powers of p. By the definition of induced

characters,

φ
xSn

Pn
(g) =

|CSn(g)|
|Pn|

∑
x∈cclSn (g)∩Pn

φ(x)

for any g ∈ Sn, where cclSn(g) denotes the conjugacy class of g in Sn.

Remark 4.11. Our proof involves computing the values of induced characters at elements

of Sn of several distinct cycle types. In general, a single cycle type may or may not be

enough to distinguish the inductions φ
xSn

as φ runs over a set of orbit representatives

in Lin(Pn) under the action of NSn(Pn). That is, we do not know whether there exists

g ∈ Sn with the property that φ
xSn

(g) = ψ
xSn

(g) for φ, ψ ∈ Lin(Pn) if and only if φ

and ψ are NSn(Pn)–conjugate.

Nevertheless, since there is no loss in considering elements of several different cycle

types compared with limiting ourselves to just one type, in our arguments below we

consider all g which are products of distinct p-power length cycles. ♦

Definition 4.12. Let b ∈ [p − 1] and suppose that l1, l2, . . . , lb are distinct elements of

[k]. Let g ∈ Spk have disjoint cycles of length pl1 , pl2 , · · · , plb , 1, . . . , 1 (we also say g

has cycle type pl1pl2 · · · plb) and let u ∈ {0, 1}k. Define

Γl1l2...lb;k(u) =
∑

x∈cclS
pk

(g)∩P
pk

φ(u)(x).

If b ≥ 2 and li = k for some i, then we set Γl1l2...lb;k(u) to be 0. More generally, we

define Γl1l2...lb;k(u) for any distinct natural numbers l1, . . . , lb by setting the value to be

0 if li > k for any i.

In particular,

φ(u)
xS

pk

P
pk

(g) =
|CS

pk
(g)|

|Ppk |
· Γl1...lb;k(u).

Thus for such a fixed element g, when we compare the values of φ(u)
xS

pk

P
pk

(g) and
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φ(u′)
xS

pk

P
pk

(g) for some u and u′, it is enough to compare the values of Γl1...lb;k(u) and

Γl1...lb;k(u′).

Lemma 4.13. Let l ∈ [k] and let u = (u1, . . . , uk) ∈ {0, 1}k. Then

Γl;k(u) = pk · Cl(u), where Cl(u) = p
pl−1
p−1 −2l

l∏
m=1

(pum − 1).

Remark 4.14. It is useful to observe that Cl(u) does not depend on ul+1, . . . , uk; that

is, Cl(u) = Cl
(
(u1, . . . , ul)

)
. ♦

Proof of Lemma 4.13. Observe that if l = k = 1, then

Γ1;1(u) =
∑

x∈Pp\{1}

φ(u)(x) =

p− 1 if φ(u) = 1Pp (i.e. if u = (1)),

−1 otherwise.

(In other words, Γ1;1(u) = pu1 − 1.) Now let k ≥ 2 and first suppose l = k. Let

x = (f1, . . . , fp;σ) ∈ Ppk = Ppk−1 o Pp where fi ∈ Ppk−1 and σ ∈ Pp. If x is a pk-cycle,

then σ 6= 1 and fσp−1(1) · · · fσ(1) · f1 must be a pk−1-cycle in Ppk−1 by Lemma 2.22.

Letting u− = (u1, . . . , uk−1) and Y be the set of elements in Ppk−1 of cycle type pk−1,

we find by Lemma 2.13 that

Γk;k(u) =
∑

x=(f1,...,fp;σ)∈P
pk

of cycle type pk

X
(
φ(u−);φ(uk)

)︸ ︷︷ ︸
φ(u)

(
(f1, . . . , fp;σ)

)

=
∑

x=(f1,...,fp;σ),
σ∈Pp\{1}, f1,...,fp∈Ppk−1 ,

fσp−1(1)···fσ(1)·f1∈Y

φ(u−)(fσp−1(1) · · · fσ(1) · f1) · φ(uk)(σ)

=
∑

σ∈Pp\{1}

φ(uk)(σ) · |Ppk−1 |p−1 ·
∑
y∈Y

φ(u−)(y)

= (puk − 1) · pp
k−1−1 · Γk−1;k−1(u−),

where the third equality holds since for any fixed y ∈ Y , we may choose the elements

f1, . . . , fσp−2(1) in Ppk−1 freely, after which fσp−1(1) · · · fσ(1) · f1 = y uniquely determines

fσp−1(1). Inductively, we have

Γk;k(u) = p(pk−1+pk−2+···+1)−k ·
k∏

m=1

(pum − 1) = p
pk−1
p−1 −k ·

k∏
m=1

(pum − 1).

Next, let 1 ≤ l < k. If x = (f1, . . . , fp;σ) ∈ Ppk has cycle type pl then it must have

a fixed point as l < k. Thus σ = 1 and fi has cycle type pl for a unique 1 ≤ i ≤ p and
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fj = 1 for all j 6= i. Letting Z be the set of elements in Ppk−1 of cycle type pl,

Γl;k(u) =
∑

x=(f1,...,fp;1),
∃!i, fi∈Z, fj=1 ∀ j 6=i

φ(u−)(f1) · · ·φ(u−)(fp) · φ(uk)(1)

= p
∑
z∈Z

φ(u−)(z) = p · Γl;k−1(u−) = pk−l · Γl;l
(
(u1, . . . , ul)

)
.

Hence for all 1 ≤ l ≤ k,

Γl;k(u) = pk−l · p
pl−1
p−1 −l ·

l∏
m=1

(pum − 1).

Remark 4.15. Lemma 4.13 is already enough to prove Theorem 4.10 when a = 1. Indeed,

let φ(s), φ(t) ∈ Lin(Ppk) for some s, t ∈ {0, 1}k and suppose φ(s)
xS

pk = φ(t)
xS

pk . Then

φ(s)
xS

pk (g) = φ(t)
xS

pk (g) for each g ∈ Spk , in particular g of cycle type pl for every

l ∈ [k]. By Lemma 4.13, this implies

l∏
m=1

(psm − 1) =

l∏
m=1

(ptm − 1)

for all l ∈ [k]. Therefore sm = tm for all m ∈ [k], and thus s = t.

However, Lemma 4.13 is not enough when a > 1. For example, let a = 2, k = 3

and consider s =
(
(1, 0, 0), (0, 1, 1)

)
and t =

(
(1, 0, 1), (0, 1, 0)

)
. The induced characters

φ(s)
xS2p3 and φ(t)

xS2p3 agree on p, p2 and p3-cycles, though are not equal. This

motivates considering more complicated cycle types, see Proposition 4.17 below. ♦

From now on, we may assume 2 ≤ a < p, and hence also that p is odd.

Definition 4.16. For a set A, let PartA = {X |
⊔
Y ∈X Y = A} be the set of partitions

of A. (Our convention is that Y 6= ∅, i.e. ∅ /∈ X.) Suppose X = {Y1, . . . , Ym} is a

partition of the set A, with yi = |Yi| for each i and y1 ≥ · · · ≥ ym ≥ 1. We say that

(y1, y2, . . . , ym), a partition of the number
∑
i yi = |A|, is the type of X.

Proposition 4.17. Let b ∈ {2, 3, . . . , p− 1}. Let 1 ≤ l1 < l2 < · · · < lb ≤ k be integers

and let u ∈ {0, 1}k. Then

Γl1l2...lb;k(u) = pk ·Cl1(u) · · ·Clb(u) · (pk − plb)(pk − plb − plb−1) · · · (pk − plb − · · · − pl2).

Proof. Both sides of the equation equal 0 if lb = k, so from now on assume lb < k. We

proceed by induction on b, beginning with the base case b = 2. Let u− = (u1, . . . , uk−1).

Let x = (f1, . . . , fp;σ) ∈ Ppk = Ppk−1 o Pp be of cycle type pl1pl2 . Then it must have a

fixed point as l1 < l2, and so σ = 1. Let gz ∈ Ppk−1 be of cycle type plz for z ∈ {1, 2},
let g3 ∈ Ppk−1 be of cycle type pl1pl2 and let Gz = cclS

pk−1
(gz)∩Ppk−1 for z ∈ {1, 2, 3}.
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Then by Lemma 2.13,

Γl1l2;k(u) =
∑

x=(f1,...,fp;1)∈P
pk

of cycle type pl1pl2

φ(u)(x)

=

p∑
i=1

p∑
j=1
j 6=i

∑
fi∈G1, fj∈G2,
fh=1 ∀ h6=i,j

φ(u−)(fi) · φ(u−)(fj) ·
(
φ(u−)(1)

)p−2 · φ(uk)(1)

+

p∑
i=1

∑
fi∈G3,

fh=1 ∀ h6=i

φ(u−)(fi) ·
(
φ(u−)(1)

)p−1 · φ(uk)(1)

= p(p− 1) · Γl1;k−1(u−) · Γl2;k−1(u−) + p · Γl1l2;k−1(u−).

Recalling that Γl1l2;k′(u) = 0 if l2 ≥ k′, we therefore have by Lemma 4.13 that

Γl1l2;k(u) = (p− 1)

k−1∑
i=l2

pk−i · Γl1;i

(
(u1, . . . , ui)

)
· Γl2;i

(
(u1, . . . , ui)

)
= (p− 1)

k−1∑
i=l2

pk−i · piCl1(u) · piCl2(u)

= pk · Cl1(u) · Cl2(u) · (p− 1)

k−1∑
i=l2

pi = pk · Cl1(u) · Cl2(u) · (pk − pl2).

This concludes the base case b = 2.

For the inductive step: if x = (f1, . . . , fp;σ) ∈ Ppk has cycle type pl1 · · · plb then it

must have a fixed point as the li are distinct. Hence σ = 1, and thus the cycle type of

x = (f1, . . . , fp; 1) is the product of the cycle types of f1, . . . , fp. By Lemma 2.13,

Γl1...lb;k(u) =
∑

x=(f1,...,fp;1)∈P
pk

of cycle type pl1 ···plb

φ(u)(x)

=
∑
x

φ(u−)(f1) · φ(u−)(f2) · · ·φ(u−)(fp) · φ(uk)(1).

(Notice that φ(uk)(1) = 1 since φ(uk) is linear.)

By considering the cycle type of each fi, we can rewrite this sum as follows. Let

I = {i | fi = 1} and suppose |I| = p − L for some L ∈ {0, 1, . . . , p − 1}. Say [p] \ I =

{i1, . . . , iL}, and suppose for each j ∈ [L] that the cycle type of fij is
∏
m∈νj p

lm . Then

{νj}Lj=1 is a partition of the set [b], since x has cycle type pl1 · · · plb . (Note that for each

j, νj 6= ∅ since ij /∈ I, and νj is a genuine set rather than a multiset since l1, . . . , lb are

distinct.)

We sum over such partitions {νj}Lj=1 of [b], grouping by type (see Definition 4.16). In

particular, if {νj}Lj=1 has type λ ` b, then L = l(λ) and so p− l(λ) many of the elements

f1, . . . , fp are equal to 1. Conversely, given λ ` b and some ν = {ν1, . . . , νl(λ)} ∈ Part[b]
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of type λ, there are p!
(p−l(λ))! many injective mappings F from ν to [p]. Each such F

represents a different assignment of cycle types to the elements f1, . . . , fp: for i ∈ [p], if

i /∈ Im(F ) then fi = 1, and if i = F (νj) then the cycle type of fi is
∏
m∈νj p

lm .

If ω = {w1, . . . , wt} ⊂ [b], let Γω;k−1(u−) denote Γlw1
...lwt ;k−1(u−). Since and

Γνj ;k−1(u−) =
∑
y φ(u−)(y) as y runs over the elements of Ppk−1 of cycle type

∏
m∈νj p

lm ,

and φ(u−) is linear, then

Γl1...lb;k(u) =
∑

x=(f1,...,fp;1)∈P
pk

of cycle type pl1 ···plb

φ(u−)(f1) · φ(u−)(f2) · · ·φ(u−)(fp)

=
∑
λ`b

∑
ν∈Part[b]
of type λ

p!(
p− l(λ)

)
!
·
∏
ω∈ν

Γω;k−1(u−) ·
(
φ(u−)(1)

)p−l(λ)

= p ·
∑
λ`b
λ 6=(b)

∑
ν∈Part[b]
of type λ

(p− 1)!(
p− l(λ)

)
!
·
∏
ω∈ν

Γω;k−1(u−) + p · Γl1...lb;k−1(u−).

Inductively, we therefore have

Γl1...lb;k(u) =

k−1∑
i=lb

pk−i
∑
λ`b
λ 6=(b)

∑
ν∈Part[b]
of type λ

(p− 1)!(
p− l(λ)

)
!
·
∏
ω∈ν

Γω;i

(
(u1, . . . , ui)

)
(4.1)

since l1 < · · · < lb and Γl1...lb;j(u) = 0 if li > j for any i.

Since λ 6= (b), every ω appearing in (4.1) satisfies |ω| < b. Therefore, if ω = {w1 >

w2 > · · · > wt} then by the inductive hypothesis and Remark 4.14,

Γω;i

(
(u1, . . . , ui)

)
= pi · Clw1

(u) · · ·Clwt (u) · (−1)t−1 · Pωi

where

Pωi := (−pi + plw1 )(−pi + plw1 + plw2 ) · · · (−pi + plw1 + plw2 + · · ·+ plwt−1 )

if t > 1, or Pωi := 1 if t = 1. Substituting this into (4.1),

Γl1...lb;k(u) =

k−1∑
i=lb

pk−i
∑
λ`b
λ6=(b)

∑
ν∈Part[b]
of type λ

(p−1)!(
p−l(λ)

)
!
·
∏
ω∈ν

[
pi

(∏
w∈ω

Clw(u)

)
· (−1)|ω|−1 · Pωi

]

=

k−1∑
i=lb

pk−i
∑
λ`b
λ6=(b)

∑
ν∈Part[b]
of type λ

(p−1)!·pil(λ)·(−1)b−l(λ)(
p−l(λ)

)
!

· Cl1(u) · · ·Clb(u) ·
∏
ω∈ν

Pωi

= (−1)b−1pk
b∏
i=1

Cli(u)

k−1∑
i=lb

∑
λ`b
λ6=(b)

∑
ν∈Part[b]
of type λ

(p−1)!·pi(l(λ)−1)·(−1)l(λ)−1(
p−l(λ)

)
!

·
∏
ω∈ν

Pωi .

Thus, to conclude the proof of the proposition, it suffices to show that the following
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equality holds:

(−pk + plb)(−pk + plb + plb−1) · · · (−pk + plb + · · ·+ pl2)

=

k−1∑
i=lb

∑
λ`b
λ6=(b)

∑
ν∈Part[b]
of type λ

(p−1)!·pi(l(λ)−1)·(−1)l(λ)−1(
p−l(λ)

)
!

·
∏
ω∈ν

Pωi .
(4.2)

Observe by the inductive hypothesis that (4.2) holds (replacing b by b′) for all b′ < b,

and indeed for all sets X of size b′ (by replacing [b] by X). We rewrite the right-hand

side of (4.2) as a sum over µ ` b − 1 and γ ∈ Part{2, 3, . . . , b} where ν is either γ with

one of its elements X replaced by X ∪ {1}, or ν = γ ∪ {{1}}. Thus the right-hand side

of (4.2) equals

k−1∑
i=lb

[ ∑
µ`b−1
µ6=(b−1)

∑
γ∈Part{2,...,b}

of type µ

(
(p−1)!·pi(l(µ)−1)·(−1)l(µ)−1(

p−l(µ)
)

!

∏
ω∈γ

Pωi ·
∑
ω∈γ

(−pi +
∑|ω|
h=1 p

lwh )︸ ︷︷ ︸
ν = γ with 1 added to an existing member of γ

+
(p− 1)! · pil(µ) · (−1)l(µ)(

p− l(µ)− 1
)
!

·
∏
ω∈γ

Pωi︸ ︷︷ ︸
ν = γ ∪ {{1}}

)
+ (p−1)!·pi·(−1)

(p−2)! · P {2,3,...,b}i · P {1}i︸ ︷︷ ︸
µ=(b−1) term: γ={{2,3,...,b}},
λ 6=(b) so ν={{1},{2,...,b}} only

]

=

k−1∑
i=lb

[ ∑
µ`b−1
µ6=(b−1)

∑
γ∈Part{2,...,b}

of type µ

(p−1)!·pi(l(µ)−1)·(−1)l(µ)−1(
p−l(µ)

)
!

∏
ω∈γ

Pωi · (pl2 + · · ·+ plb − pi+1)

− (p− 1)pi · P {2,...,b}i

]
.

Let

Qi =
∑
µ`b−1
µ6=(b−1)

∑
γ∈Part{2,...,b}

of type µ

(p−1)!·pi(l(µ)−1)·(−1)l(µ)−1(
p−l(µ)

)
!

∏
ω∈γ

Pωi .

Since (4.2) holds for b′ = b− 1 and the set X = {l2, . . . , lb}, we have that

(−pk + plb)(−pk + plb + plb−1) · · · (−pk + plb + · · ·+ pl3) =

k−1∑
i=lb

Qi.

Since the only condition on k for this immediately preceding equation to hold is that

k > lb, we also know for all i > lb (by replacing k by i) that

(−pi + plb)(−pi + plb + plb−1) · · · (−pi + plb + · · ·+ pl3) =

i−1∑
j=lb

Qj .

86



Thus the right-hand side of (4.2) is equal to

k−1∑
i=lb

[
Qi · (pl2 + · · ·+ plb − pi+1)− (p− 1)pi(−pi + plb) · · · (−pi + plb + · · · pl3)

]
= (−pk + plb) · · · (−pk + plb + · · ·+ pl3)(pl2 + · · ·+ plb)

−
k−1∑
i=lb

[
pi+1Qi + (p− 1)pi(−pi + plb) · · · (−pi + plb + · · ·+ pl3)

]
.

To show that (4.2) holds for b and the set [b] as we originally required, and hence to

conclude the inductive step and the proof of this proposition, it therefore remains to

show that pk(−pk + plb) · · · (−pk + plb + · · ·+ pl3) equals

k−1∑
i=lb

[
pi+1Qi + (p− 1)pi(−pi + plb) · · · (−pi + plb + · · ·+ pl3)

]
.

This is clear if lb = k − 1, so now assuming that lb < k − 1, we have

k−1∑
i=lb

[
pi+1Qi + (p− 1)pi(−pi + plb) · · · (−pi + plb + · · ·+ pl3)

]
=

k−1∑
i=lb

pi+1Qi + (p− 1)

k−1∑
i=lb+1

pi
i−1∑
j=lb

Qj

=

k−2∑
h=lb

Qh ·

(
ph+1 + (p− 1)

k−1∑
z=h+1

pz

)
+ pk ·Qk−1

= pk ·
k−1∑
h=lb

Qh = pk(−pk + plb) · · · (−pk + plb + · · ·+ pl3)

as required.

Proposition 4.18. Let a ∈ {2, 3, . . . , p− 1}. Let φ(s), φ(t) ∈ Lin(Papk). Suppose that

φ(s)
xS

apk = φ(t)
xS

apk . Let b ∈ [a] and let l1, . . . , lb be distinct integers in [k]. Then

a∑
j=1

Cl1(sj) · Cl2(sj) · · ·Clb(sj) =

a∑
j=1

Cl1(tj) · Cl2(tj) · · ·Clb(tj).

For clarity, we postpone the proof of Proposition 4.18 to the end of this section. We

continue with a series of lemmas, culminating in the proof of Theorem 4.10.

For notational convenience, we denote multisets by asterisks. For example, the multi-

set equality of (i) in Lemma 4.19 below may be rewritten as {s1, . . . , sa}∗ = {t1, . . . , ta}∗.

Lemma 4.19. Let q ∈ N≥2. Let a ∈ [q] and sj , tj ∈ N0 for j = 1, 2, . . . , a. If

a∑
j=1

(−q)sj =

a∑
j=1

(−q)tj ,
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then either

(i) {s1, . . . , sa} = {t1, . . . , ta} is an equality of multisets; or

(ii) a = q and the multisets {s1, . . . , sa} and {t1, . . . , ta} are {w,w− 1, . . . , w− 1} and

{w − 2, . . . , w − 2} for some w ∈ N≥2.

Proof. We proceed by induction on a. The assertion is clear if a = 1, so now assume

2 ≤ a ≤ q, and suppose {s1, . . . , sa}∗ 6= {t1, . . . , ta}∗. If si = tj for some i, j ∈ [a],

then by the inductive hypothesis for a − 1 6= q, we have {s1, . . . , si−1, si+1, . . . , sa}∗ =

{t1, . . . , tj−1, tj+1, . . . , ta}∗. But then {s1, . . . , sa}∗ = {t1, . . . , ta}∗, a contradiction.

Thus si 6= tj for all i, j ∈ [a]. Without loss of generality suppose s1 = max{si, tj}i,j∈[a],

so in particular tj < s1 for all j. By multiplying both sides of the equality of sums in

the statement of the lemma by −q if necessary, we may further assume that s1 is even.

Then

qs1−1 ≤ qs1 − (a− 1)qs1−1 ≤
a∑
j=1

qsj (−1)sj =

a∑
j=1

qtj (−1)tj ≤ aqs1−2 ≤ qs1−1.

Hence all inequalities in the above must hold with equalities, implying that a = q,

sj = s1 − 1 for all j 6= 1, and tj = s1 − 2 for all j ∈ [a]. This is exactly case (ii).

Recall n = apk where k ∈ N and now a ∈ {2, 3, . . . , p− 1}, following Remark 4.15.

Lemma 4.20. Let a ∈ {2, 3, . . . , p−1}. Let φ(s), φ(t) ∈ Lin(Pn) and suppose φ(s)
xSn

=

φ(t)
xSn

. Let l ∈ [k]. Then

{
l∑

m=1

s1m, . . . ,
l∑

m=1

sam

}∗
=

{
l∑

m=1

t1m, . . . ,
l∑

m=1

tam

}∗
.

Proof. First suppose l < k. Let u ∈ {0, 1}k and let u− = (u1, . . . , uk−1). Define

∆l;k(u) =
∑

x∈P
pk

of

cycle type plpl

φ(u)(x), for l ∈ [k − 1] and ∆k;k(u) = 0.

Then

∆l;k(u) =
∑

x=(f1,...,fp;1)∈P
pk

of cycle type plpl

φ(u)(x)

=

(
p

2

)
·

∑
f1,f2∈Ppk−1

both of cycle type pl

φ(u−)(f1) · φ(u−)(f2) + p ·
∑

f1∈Ppk−1 of

cycle type plpl

φ(u−)(f1)

=

(
p

2

)
· Γl;k−1(u−) · Γl;k−1(u−) + p ·∆l;k−1(u−)

=

(
p

2

) k−1∑
i=l

pk−1−i · Γl;i
(
(u1, . . . , ui)

)2
=

(
p

2

) k−1∑
i=l

pk−1+i · Cl(u)2
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by Lemma 4.13. Now let φ(u) ∈ Lin(Pn) where u = (u1, . . . , ua). Recalling that Pn =

Ppk × · · · × Ppk (a times), we have that∑
x∈Pn of

cycle type plpl

φ(u)(x) =
∑

x=x1···xa, xi∈Ppk
x of cycle type plpl

φ(u1)(x1) · · ·φ(ua)(xa)

=
∑

{i,j}⊆[a]

∑
xi,xj∈Ppk each

of cycle type pl

φ(ui)(xi) · φ(uj)(xj) +

a∑
i=1

∑
xi∈Ppk of

cycle type plpl

φ(ui)(xi)

=

a∑
i=1

a∑
j=1
j 6=i

Γl;k(ui) · Γl;k(uj) +

a∑
i=1

∆l;k(ui)

=

a∑
i=1

a∑
j=1
j 6=i

pkCl(u
i) · pkCl(uj) +

a∑
i=1

(
p

2

) k−1∑
h=l

pk−1+h · Cl(ui)2

= p2k

(
a∑
i=1

Cl(u
i)

) a∑
j=1

Cl(u
j)

+

a∑
i=1

Cl(u
i)2

[
−p2k +

(
p

2

) k−1∑
h=l

pk−1−h

]

= p2k

(
a∑
i=1

Cl(u
i)

) a∑
j=1

Cl(u
j)

+
[
−p

k

2 (pk + pl)
]
·
a∑
i=1

Cl(u
i)2. (4.3)

Note s = (s1, . . . , sa) and t = (t1, . . . , ta). Since φ(s)
xSn

(g) = φ(t)
xSn

(g) for g ∈ Sn of

cycle type pl, we have that

a∑
i=1

Γl;k(si) =

a∑
i=1

Γl;k(ti)

and thus
a∑
i=1

Cl(s
i) =

a∑
i=1

Cl(t
i)

by Lemma 4.13. Using expression (4.3) and the fact that φ(s)
xSn

(g) = φ(t)
xSn

(g) for

g ∈ Sn of cycle type plpl then gives

a∑
i=1

Cl(s
i)2 =

a∑
i=1

Cl(t
i)2,

and therefore
a∑
i=1

l∏
m=1

(psi − 1)2 =

a∑
i=1

l∏
m=1

(pti − 1)2

by Lemma 4.13. Thus,

a∑
i=1

(−q)σj =

a∑
i=1

(−q)τj where q = p− 1, σj = 2

l∑
m=1

sjm and τj = 2

l∑
m=1

tjm,
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so by Lemma 4.19 we must have {σ1, . . . , σa}∗ = {τ1, . . . , τa}∗ (case (ii) is not possible

as all σj and τj are even). The assertion of the present lemma for l < k then follows

directly.

Finally, for l = k: by a similar argument we obtain an expression similar to (4.3)

where instead of the term −p
k

2 (pk + pl) we have −p2k. The rest then follows as in the

case l < k.

Proposition 4.21. Let a ∈ {2, 3, . . . , p − 1}. Let φ(s), φ(t) ∈ Lin(Pn) and suppose

φ(s)
xSn

= φ(t)
xSn

. Let b ∈ [a] and let l1, . . . , lb be distinct integers in [k]. Then

{σ1, . . . , σa}∗ = {τ1, . . . , τa}∗, where

σj =

b∑
i=1

li∑
m=1

sjm and τj =

b∑
i=1

li∑
m=1

tjm

for each j ∈ [a].

Proof. By Proposition 4.18,

a∑
j=1

b∏
i=1

li∏
m=1

(psjm − 1) =

a∑
j=1

b∏
i=1

li∏
m=1

(ptjm − 1),

and hence
∑a
j=1(−p + 1)σj =

∑a
j=1(−p + 1)τj . The assertion follows by Lemma 4.19:

case (ii) cannot occur because
∑a
j=1 σj =

∑a
j=1 τj by Lemma 4.20.

Definition 4.22. Let b, k ∈ N. Given natural numbers l1, . . . , lb ≤ k and a sequence

s = (s1, . . . , sk) ∈ {0, 1}k, define

f(l1, . . . , lb; s) =

b∑
i=1

li∑
m=1

sm.

Let a ∈ N. Given an a-tuple s = (s1, . . . , sa) where si ∈ {0, 1}k for all i, define

f(l1, . . . , lb; s) = {f(l1, . . . , lb; s
1), . . . , f(l1, . . . , lb; s

a)}∗.

Thus the result of Proposition 4.21 may be restated as

f(l1, . . . , lb; s) = f(l1, . . . , lb; t)

for all distinct integers l1, . . . , lb in [k], where b ≤ a < p.

Lemma 4.23. Let {l1, . . . , lb}∗ = {m1, . . . ,mb}∗. Suppose that in addition we have

{l1 + 1, . . . , lc + 1, lc+1, . . . , lb}∗ = {m1 + 1, . . . ,mc + 1,mc+1, . . . ,mb}∗

for some c ∈ [b− 1]. Then {l1, . . . , lc}∗ = {m1, . . . ,mc}∗.
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Proof. Suppose for the sake of contradiction that {l1, . . . , lc}∗ 6= {m1, . . . ,mc}∗. Let us

suppose without loss of generality that l1 ≤ · · · ≤ lc and m1 ≤ · · · ≤ mc. Let j ≤ c be

maximal such that lj 6= mj , and without loss of generality we assume that lj < mj .

Given a multiset S and v ∈ N we let S≥v = {x : x ∈ S, x ≥ v}∗. Observe that since

{l1, . . . , lb}∗ = {m1, . . . ,mb}∗ we have that {l1, . . . , lb}∗≥v = {m1, . . . ,mb}∗≥v for any v.

Similarly

{l1 + 1, . . . , lc + 1, lc+1, . . . , lb}∗≥v = {m1 + 1, . . . ,mc + 1,mc+1, . . . ,mb}∗≥v

for any v. We now consider v = mj + 1. Note that

|{l1 + 1, . . . , lc + 1, lc+1, . . . , lb}∗≥mj+1| − |{l1, . . . , lb}∗≥mj+1|

= |{lj+1 + 1, . . . , lc + 1}∗≥mj+1| − |{lj+1, . . . , lc}∗≥mj+1|

by cancelling off equal elements in the two multisets and noting that li < mj for all

i ≤ j. Moreover,

|{m1 + 1, . . . ,mc + 1,mc+1, . . . ,mb}∗≥mj+1| − |{m1, . . . ,mb}∗≥mj+1|

≥ |{mj + 1, . . . ,mc + 1}∗≥mj+1| − |{mj , . . . ,mc}∗≥mj+1|

= 1 + |{mj+1 + 1, . . . ,mc + 1}∗≥mj+1| − |{mj+1, . . . ,mc}∗≥mj+1|

= 1 + |{lj+1 + 1, . . . , lc + 1}∗≥mj+1| − |{lj+1, . . . , lc}∗≥mj+1|

by maximality of j. In particular, we have

|{m1 + 1, . . . ,mc + 1,mc+1, . . . ,mb}∗≥mj+1| − |{m1, . . . ,mb}∗≥mj+1|

≥ 1 + |{l1 + 1, . . . , lc + 1, lc+1, . . . , lb}∗≥mj+1| − |{l1, . . . , lb}∗≥mj+1|

which is a contradiction.

Theorem 4.24. Let a, k ∈ N. Let s = (s1, . . . , sa) and t = (t1, . . . , ta) where si, ti ∈
{0, 1}k for all i. Suppose that for any distinct integers l1, l2, . . . , lb ∈ [k] such that b ∈ [a]

we have

f(l1, . . . , lb; s) = f(l1, . . . , lb; t). (4.4)

Then there exists a permutation σ ∈ Sym[a] such that si = tσ(i) for all i.

Proof. We prove the assertion for (a, k) by induction on a + k. When k = 1 and a

is arbitrary, the assertion is clear since the single term of each sequence si is simply

f(1; si). When a = 1 and k is arbitrary, note that s11 = f(1; s1) = f(1; t1) = t11, and

s1r = f(r; s1)−f(r−1; s1) = f(r; t1)−f(r−1; t1) = t1r for all r ∈ {2, 3, . . . , k}, so s1 = t1

as required.

Now suppose a, k ≥ 2. Write ŝi for the sequence (sij)
k
j=2 ∈ {0, 1}k−1 and let ŝ =

(̂s1, . . . , ŝa). Define t̂i and t̂ similarly.
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First suppose that si1 = ti1 = z for all i ∈ [a], for some z ∈ {0, 1}. Observe that for

any distinct integers l1, . . . , lb ∈ [k − 1] such that b ∈ [a] we have

f(l1 + 1, . . . , lb + 1; si) = f(l1, . . . , lb; ŝ
i) + bz,

and similarly

f(l1 + 1, . . . , lb + 1; ti) = f(l1, . . . , lb; t̂
i) + bz.

Thus by (4.4), we have that

f(l1, . . . , lb; ŝ) = f(l1, . . . , lb; t̂).

By the inductive hypothesis for (a, k − 1), there exists a permutation σ ∈ Sym[a] such

that ŝi = t̂σ(i) for all i ∈ [a]. Therefore si = tσ(i) as required.

Otherwise, we may now suppose that not all si1 and ti1 are equal. Let Is = {i ∈
[a] : si1 = 1} and define It similarly. Since f(1; s) = f(1; t), then |Is| = |It|, so we may

without loss of generality reorder t to assume that si1 = ti1 for all i ∈ [a]. Let I = Is = It

and note that I ∈ [a− 1].

For any distinct integers l1, . . . , lb ∈ [k − 1] such that b ∈ [a− 1] we have

f(l1 + 1, . . . , lb + 1; si) = bsi1 + f(l1, . . . , lb; ŝ
i)

and

f(l1 + 1, . . . , lb + 1; ti) = bsi1 + f(l1, . . . , lb; t̂
i)

since si1 = ti1. Thus

f(l1 + 1, . . . , lb + 1; s) = {bsi1 + f(l1, . . . , lb; ŝ
i) : i ∈ [a]}∗

= f(l1 + 1, . . . , lb + 1; t) = {bsi1 + f(l1, . . . , lb; t̂
i) : i ∈ [a]}∗.

(4.5)

In addition,

f(1,l1 + 1, . . . , lb + 1; s) = {(b+ 1)si1 + f(l1, . . . , lb; ŝ
i) : i ∈ [a]}∗

= f(1, l1 + 1, . . . , lb + 1; t) = {(b+ 1)si1 + f(l1, . . . , lb; t̂
i) : i ∈ [a]}∗.

Therefore, by Lemma 4.23, we have that

{b+ f(l1, . . . , lb; ŝ
i) : i ∈ I}∗ = {b+ f(l1, . . . , lb; t̂

i) : i ∈ I}∗,

which implies

{f(l1, . . . , lb; ŝ
i) : i ∈ I}∗ = {f(l1, . . . , lb; t̂

i) : i ∈ I}∗ (4.6)
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and therefore by (4.5) also

{f(l1, . . . , lb; ŝ
i) : i ∈ [a] \ I}∗ = {f(l1, . . . , lb; t̂

i) : i ∈ [a] \ I}∗. (4.7)

Let ŝ(1) and ŝ(0) be the sequences (̂si)i∈I and (̂si)i/∈I respectively, and define t̂
(1)

and t̂
(0)

similarly. Since (4.6) and (4.7) hold for any valid choice of {li}, this tells us that for any

distinct integers l1, . . . , lb ∈ [k − 1] such that b ∈ [a− 1] we have

f(l1, . . . , lb; ŝ
(1)) = f(l1, . . . , lb; t̂

(1)
) and f(l1, . . . , lb; ŝ

(0)) = f(l1, . . . , lb; t̂
(0)

).

Since |I| and a− |I| are both at most a− 1, we may apply the inductive hypotheses for

(|I|, k − 1) and (a− |I|, k − 1) to obtain permutations σ1 ∈ Sym I such that ŝi = t̂σ1(i)

for all i ∈ I (and hence si = tσ1(i)) and σ0 ∈ Sym([a] \ I) such that ŝi = t̂σ0(i) for all

i /∈ I (and hence si = tσ0(i)). Finally, let σ = σ0 · σ1 ∈ Sym[a], so si = tσ(i) for all i as

desired.

Proof of Theorem 4.10. This follows from Proposition 4.21 and Theorem 4.24.

4.3.1 Proof of Proposition 4.18

Let k ∈ N and n = apk where a ∈ {2, 3, . . . , p−1}. Let b ∈ [a] and let l1, . . . , lb be distinct

integers in [k]. Let φ(s), φ(t) ∈ Lin(Papk), and suppose that φ(s)
xS

apk = φ(t)
xS

apk .

The statement we wish to prove is

a∑
j=1

Cl1(sj) · Cl2(sj) · · ·Clb(sj) =

a∑
j=1

Cl1(tj) · Cl2(tj) · · ·Clb(tj).

We proceed by induction on by b. The case b = 1 follows from evaluating φ(s)
xSn

=

φ(t)
xSn

on an element of Sn of cycle type pl1 . We present our argument for b = 2

explicitly as an illustrative template for the general inductive argument.

Let 1 ≤ l1 < l2 ≤ k and let φ(u) ∈ Lin(Pn). We have that

∑
x∈Pn of

cycle type

pl1pl2

φ(u)(x) =

a∑
i=1

a∑
j=1
j 6=i

Γl1;k(ui) · Γl2;k(uj) +

a∑
i=1

Γl1l2;k(ui)

=

(
a∑
i=1

Γl1;k(ui)

) a∑
j=1

Γl2;k(uj)

− a∑
j=1

Γl1;k(uj) · Γl2;k(uj) +

a∑
j=1

Γl1l2;k(uj).

(4.8)

Observe by Lemma 4.13 and Proposition 4.17 that

−
a∑
j=1

Γl1;k(uj) · Γl2;k(uj) +

a∑
j=1

Γl1l2;k(uj) = −pk · pl2 ·
a∑
j=1

Cl1(uj) · Cl2(uj). (4.9)

93



By the inductive hypothesis (that is, the case b = 1),
∑a
i=1 Γl;k(si) =

∑a
i=1 Γl;k(ti)

for any l ∈ [k]. Since the coefficient −pk ·pl2 of
∑a
j=1 Cl1(uj)·Cl2(uj) in (4.9) is non-zero,

by evaluating φ(s)
xSn

= φ(t)
xSn

on an element of Sn of cycle type pl1pl2 , we find using

(4.8) that
a∑
j=1

Cl1(sj) · Cl2(sj) =

a∑
j=1

Cl1(tj) · Cl2(tj)

as claimed.

In the general inductive argument, the main steps are as follows:

(i) write
∑
x∈Pn, of cycle type pl1 ···plb φ(u)(x) as a sum of terms Γlh···li;k(uj) for subsets

{h, . . . , i} of [b]: in the b = 2 example, this is the first line of (4.8);

(ii) replace sums with ‘restricted’ indices by sums with ‘unrestricted’ indices: when

b = 2, we replaced the sum over the restricted index j 6= i by sums involving only

unrestricted indices i and j which were free to run over 1, 2, . . . , a, in the second

line of (4.8);

(iii) consider those sums of products of Γ terms involving all of l1, . . . , lb, rearrange to

obtain a product of some coefficient with
∑a
j=1 Cl1(uj) · · ·Clb(uj) and show that

this coefficient is non-zero: when b = 2 this coefficient (up to sign) is pk · pl2 6= 0.

When evaluating φ(s)
xSn

= φ(t)
xSn

on an element of Sn of cycle type pl1 · · · plb , by

the inductive hypothesis those sums of products of Γ terms involving only a strict subset

of l1, . . . , lb in Step (ii) will be equal for u = s and u = t. Combined with the fact that

the coefficient in Step (iii) is non-zero, we find that
∑a
j=1 Cl1(uj) · · ·Clb(uj) is equal for

u = s and u = t, as required.

Before proceeding with the inductive argument for general b, we describe the process

of replacing ‘restricted’ sums in Step (ii) more formally. Let N ∈ N and let F1, . . . , FN

be functions from domain [a] to some codomain, usually Z. Consider the expression

F(F1, . . . , FN ;N) :=

a∑
i1=1

a∑
i2=1
i2 6=i1

· · ·
a∑

iN=1
iN 6=i1,i2,...,iN−1

F1(i1) · F2(i2) · · ·FN (iN ).

We express F(F1, . . . , FN ;N) in terms of F(G; 1) for various functions G to obtain

an ‘unrestricted’ sum expression U(F1, . . . , FN ;N) (whose value equals that of F) as

follows. Note that when N = 1, F(F; 1) =
∑a
i=1 F (i) is already an ‘unrestricted’ sum

(meaning that the summation index i is free to range over [a]), so define U(F ; 1) =

F(F ; 1). When N = 2,

F(F1, F2; 2) =

a∑
i=1

a∑
j=1,
j 6=i

F1(i)F2(j) = F(F1; 1) · F(F2; 1)−F(F1F2; 1)︸ ︷︷ ︸
=: U(F1,F2;2)

,

so define U(F1, F2; 2) to be the expression following the last equals sign in the above.
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Note that F1F2 denotes pointwise multiplication, F1F2(i) = F1(i)F2(i). When N = 3:

F(F1, F2, F3; 3) = F(F1; 1) · F(F2; 1) · F(F3; 1)−F(F1, F2F3; 2)−F(F2, F1F3; 2)

−F(F3, F1F2; 2)−F(F1F2F3; 1)

=

3∏
i=1

F(Fi; 1)−F(F1; 1) · F(F2F3; 1)−F(F2; 1) · F(F1F3; 1)

−F(F3; 1) · F(F1F2; 1)+2F(F1F2F3; 1)

so define U(F1, F2, F3; 3) to be the expression following the last equals sign in the above.

Observe that

N∏
i=1

F(Fi; 1) =
∑
λ`N

∑
ν∈Part[N ]
of type λ

a∑
i1=1

Fν11Fν12 · · ·Fν1λ1 (i1) · · ·
a∑

iy=1
iy 6=i1,...
...,iy−1

Fνy1Fνy2 · · ·Fνyλy (iy)

=
∑
λ`N

∑
ν∈Part[N ]
of type λ

F(Fν11 · · ·Fν1λ1 , . . . , Fνy1 · · ·Fνyλy ; y)

where y = l(λ), and for each ν we fix some ordering ν = {ν1, . . . , νl(λ)} such that

|νj | = λj and let νj = {νj1, νj2, . . . , νjλj}. Thus we give the following recursive definition

for U for general N ∈ N:

U(F1, . . . , FN ;N) =

N∏
i=1

F(Fi; 1)−
∑
λ`N

λ 6=(1N )

∑
ν∈Part[N ]
of type λ

U(Fν11 · · ·Fν1λ1 , . . . , Fνy1 · · ·Fνyλy ; y)

and note this is well-defined because λ 6= (1N ) implies that y = l(λ) < N for all such λ.

Lemma 4.25. Let a,N ∈ N and let F1, . . . , FN be functions defined on [a]. Let DN

denote the coefficient of F(F1 · · ·FN ; 1) in the expression U(F1, . . . , FN ;N). Then

DN = (−1)N−1(N − 1)!.

Proof. We proceed by induction on N . By the examples calculated above, we can see

that the assertion holds for N = 1, 2, 3 (DN = +1,−1,+2 respectively, from +F(F ; 1),

−F(F1F2; 1) and +2F(F1F2F3; 1) which we highlighted in bold above). From the re-

cursive definition of U , we have that

DN = −
∑
λ`N

λ 6=(1N )

∑
ν∈Part[N ]
of type λ

Dl(λ)

= −

[ ∑
µ`N−1

µ6=(1N−1)

∑
γ∈Part[N−1]

of type µ

(
l(µ) ·Dl(µ)︸ ︷︷ ︸

ν=γ with N added
to an existing
member of γ

+ Dl(µ)+1︸ ︷︷ ︸
ν=γ with
{1} added

)]
− (N − 1)DN−1︸ ︷︷ ︸

µ=(1N−1) term
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= −(N − 1)DN−1

since Dl = (−1)l−1(l − 1)! = −(l − 1)Dl−1 for all l = l(µ) ≤ N − 1 by the inductive

hypothesis. Thus DN = (−1)N−1(N − 1)! as claimed.

Proof of Proposition 4.18. As stated already, we proceed by induction on b and it re-

mains to show the inductive argument. Now suppose b ≥ 3 and that the assertion of

the proposition holds for all b′ < b. Let φ(u) ∈ Lin(Pn) and let g ∈ Sn be an element

of cycle type pl1 · · · plb . Then

∑
x∈cclSn (g)∩Pn

φ(u)(x) =
∑
λ`b

∑
ν∈Part[b]
of type λ

a∑
i1=1

a∑
i2=1
i2 6=i1

· · ·
a∑

il(λ)=1
il(λ) 6=i1,...
...,il(λ)−1

Γν1;k(ui1) · · ·Γνl(λ);k(uil(λ))

(4.10)

where for each ν we fix an ordering ν = {ν1, . . . , νl(λ)} such that |νj | = λj , and if

νj = {w1, w2, . . . , wλj} then Γνj ;k(u) denotes Γlw1
lw2

...lwλj
(u). Next we fix some ν and

consider the expression

U
(

Γν1;k(u(−)), . . . , Γνl(λ);k(u(−)); l(λ)
)
. (4.11)

where (−) denotes the argument of the function Γνj ;k(u(−)), for each j. This is a sum

of products of terms of the form
∑a
i=1 Γνj1 ;k(ui) · · ·Γνjm ;k(ui) for subsets {j1, . . . , jm}

of {1, . . . , l(λ)}. Let V = νj1 ∪ · · · ∪ νjm . By Proposition 4.17 and its proof (including

the definition of Pωi ), we have

a∑
i=1

Γνj1 ;k(ui) · · ·Γνjm ;k(ui) =

a∑
i=1

pmk ·
∏
w∈V

Clw(ui) · (−1)m−1
m∏
h=1

P
νjh
k . (4.12)

If |V | < b then by the inductive hypothesis, since φ(s)
xSn

= φ(t)
xSn

, the right-hand

side of (4.12) is equal for u = s and u = t. Subtracting this from (4.10), we find that the

expression given by the sum of only the |V | = b terms from the U expression in (4.11)

is equal for u = s and u = t; by Lemma 4.25, this is the following:

∑
λ`b

∑
ν∈Part[b]
of type λ

(−1)l(λ)−1 ·
(
l(λ)− 1

)
! ·

a∑
i=1

Γν1;k(ui) · · ·Γνl(λ);k(ui)

=
∑
λ`b

∑
ν∈Part[b]
of type λ

(−1)l(λ)−1 ·
(
l(λ)− 1

)
! ·

a∑
i=1

pkl(λ) ·
b∏

h=1

Clb(u
i) · (−1)b−l(λ) ·

∏
ω∈ν

Pωk

= (−1)b−1
a∑
i=1

pkl(λ) · Cl1(ui) · · ·Clb(ui) ·
∑
λ`b

∑
ν∈Part[b]
of type λ

(
l(λ)− 1

)
! · pkl(λ) ·

∏
ω∈ν

Pωk .

Thus it remains to show that the coefficient of
∑a
i=1 Cl1(ui) · · ·Clb(ui) is non-zero in
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order to see that
∑a
i=1 Cl1(si) · Cl2(si) · · ·Clb(si) =

∑a
i=1 Cl1(ti) · Cl2(ti) · · ·Clb(ti) and

conclude the proof. We do this by proving the following for all integers 1 ≤ l1 < l2 <

· · · < lb ≤ k and 2 ≤ b ≤ a < p:∑
λ`b

∑
ν∈Part[b]
of type λ

pkl(λ) ·
(
l(λ)−1

)
!·pkl(λ) ·

∏
ω∈ν

Pωk = pk ·plb(plb+plb−1) · · · (plb+plb−1 +· · ·+pl2)

(4.13)

and noting that the right-hand side of (4.13) is non-zero, while the left-hand side is

(−1)b−1 times the coefficient we are interested in. To prove that (4.13) holds, we proceed

by induction on b; the cases b = 2 and b = 3 are straightforward to verify, so we now

show the inductive step. Notice by the inductive hypothesis that (4.13) holds with b

replaced by b′, for any b′ < b, and with {l1, . . . , lb} replaced by any subset of [k] of size

b′. Observe that

∑
λ`b

∑
ν∈Part[b]
of type λ

pkl(λ) ·
(
l(λ)− 1

)
! · pkl(λ) ·

∏
ω∈ν

Pωk

=
∑
µ`b−1

∑
γ∈Part{2,...,b}

of type µ

[
pkl(µ) ·

(
l(µ)− 1

)
!
∏
ω∈γ

Pωk ·
∑
ω∈γ

(−pk +
∑
w∈ω

pw)︸ ︷︷ ︸
ν=γ with 1 added to an existing member of γ

+ pk(l(µ)+1) · l(µ)!
∏
ω∈γ

Pωk︸ ︷︷ ︸
ν=γ with {1} added

]

=
∑
µ`b−1

∑
γ∈Part{2,...,b}

of type µ

pkl(µ) ·
(
l(µ)− 1

)
!
∏
ω∈γ

Pωk · (plb + plb−1 · · · pl2)

= pk · plb(plb + plb−1) · · · (plb + plb−1 + · · · pl3) · (plb + plb−1 · · · pl2)

and thus the proof is complete.

4.4 Equivalence relations on Lin(Pn)

In this section, we compare the orbits of Lin(Pn) under the conjugation action of

NSn(Pn) to those under the action of the Galois group Gal(Q(φ)/Q) for φ ∈ Lin(Pn),

and to the equivalence classes given by the relation Ω(φ) = Ω(ψ) for φ, ψ ∈ Lin(Pn) (we

recall the definition of Ω(−) below).

Let p be a prime and let ω denote a primitive pth root of unity in C. It is clear that

{φ(g) | φ ∈ Lin(Pp), g ∈ Pp} = {1, ω, ω2, . . . , ωp−1} =: lµ.. p.
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By Lemma 2.13, we also have

{φ(g) | φ ∈ Lin(Pn), g ∈ Pn} = lµ.. p

for any n ∈ N such that n ≥ p. (When n < p, Pn is the trivial group and so the only

character value is 1.) Indeed, the field of character values Q(φ), obtained by adjoining

all values of φ to Q, is equal to Q(ω) for every φ ∈ Lin(Pn) \ {1Pn}. Thus we may

consider the action of the Galois group G := Gal(Q(ω)/Q) on the characters of Pn.

Note that this is trivial when p = 2, so from now on we fix p to be an odd prime.

Let n ∈ N and let its p-adic expansion be n =
∑k
i=1 aip

ni where 0 ≤ n1 < · · · < nk.

Let φ(s), φ(t) ∈ Lin(Pn). We say φ(s) and φ(t) are Galois conjugates, which we denote

by φ(s) ∼ φ(t), if there exists σ ∈ G such that φ(s)σ = φ(t). That is, φσ(g) := (φ(g))σ =

σ(φ(g)) for g ∈ Pn and φ a character of Pn.

For φ ∈ Lin(Pn), let Ω(φ) denote the set of irreducible characters of Sn containing

φ in its restriction. Equivalently,

Ω(φ) := {χ ∈ Irr(Sn) : χ | φ
xSn}.

If φ = φ(s), then we also denote Ω(φ) by Ω(s). Note that since p is odd, the set Ω(φ) is

closed under conjugation of partitions, by Lemma 2.2.

We thus have three equivalence relations on the set Lin(Pn), given by the following

conditions for φ, ψ ∈ Lin(Pn):

(i) Ω(φ) = Ω(ψ), i.e. the inductions have the same set of irreducible constituents;

(ii) NSn(Pn)–conjugacy, i.e. φ
xSn

= ψ
xSn

by Theorem 4.1; and

(iii) Galois conjugacy, φ ∼ ψ.

Clearly if φ
xSn

= ψ
xSn

then Ω(φ) = Ω(ψ). It is also easy to see that if φ ∼ ψ then

φ
xSn

= ψ
xSn

, since all characters of symmetric groups are integer-valued. Indeed,

since Ω(1Pp) = Irr(Sp) \ {χ(p−1,1), χ(2,1p−2)} and Ω(φ) = Irr(Sp) \ {χ(p), χ(1p)} for

all φ ∈ Lin(Pp) \ {1Pp}, it follows that all three conditions (i) – (iii) are equivalent

whenever p ≤ n < 2p, as Pn ∼= Pp×Pn−p ∼= Pp in this case (and vacuous when n < p as

|Lin(Pn)| = 1).

However, the reverse implications do not hold in general, and we give explicit coun-

terexamples below.

Lemma 4.26. Let n ∈ N be such that n ≥ 2p. Then there exist φ(s), φ(t) ∈ Lin(Pn)

such that φ(s)
xSn

= φ(t)
xSn

but φ(s) 6∼ φ(t).

Proof. First let n = pk with k ≥ 2. By Theorem 4.1 and Lemma 4.3, it suffices to

exhibit two sequences s, t ∈ [p]k such that t ∈ Σ(s) but φ(s) 6∼ φ(t). Recall Pp = 〈g〉
with φi(g) = ωi for i ∈ [p]; we may without loss of generality take g = (p, p−1, . . . , 2, 1).

We show that φ(s) 6∼ φ(t) where s = (1, . . . , 1) ∈ [p]k and t = (1, . . . , 1, 2) ∈ [p]k. Let
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u = (1, . . . , 1) ∈ [p]k−1. Suppose for the sake of contradiction that φ(s)σ = φ(t) for

some σ ∈ G. Then for any g1, . . . , gp ∈ Ppk−1 , setting γ = (g1, . . . , gp; g) ∈ Ppk and

γ′ = (g1, . . . , gp; 1) ∈ Ppk gives

φ(s)σ(γ) = φ(t)(γ) and φ(s)σ(γ′) = φ(t)(γ′),

which by Lemma 2.13 implies

(
φ(u)(g1 · · · gp) · φ1(g)

)σ
= φ(u)(g1 · · · gp) · φ2(g)

and (
φ(u)(g1) · · ·φ(u)(gp)

)σ
= φ(u)(g1) · · ·φ(u)(gp)

respectively. Setting g1 = . . . = gp = 1, we have (φ1(g))σ = φ2(g) and thus σ is

determined as the unique element of G satisfying σ(ω) = ω2. But setting g2 = . . . =

gp = 1, we find that (φ(u)(g1))σ = φ(u)(g1) for all g1 ∈ Ppk−1 . Since φ(u) 6= 1P
pk−1

,

there exists g1 ∈ Ppk−1 such that φ(u)(g1) = ωj for some j ∈ [p − 1]. But then

ω2j = σ(ωj) = ωj , a contradiction.

Next let n > p2. Letting n =
∑t
i=1 aip

ni be its p-adic expansion where 0 ≤ n1 <

· · · < nt, then k := nt ≥ 2. Let m = n − pk. Then φ(s) := 1Pm × φ(s) and φ(t) :=

1Pm × φ(t) are not Galois conjugates, but φ(s)
xSn

= φ(t)
xSn

by Lemmas 4.5 and 4.2.

For n = 2p, we may take φ(s) = φ1 × φ1 and φ(t) = φ1 × φ2, while for 2p < n < p2

we may take φ(s) = 1Pn−2p
× φ1 × φ1 and φ(t) = 1Pn−2p

× φ1 × φ2.

Similarly, Ω(φ) = Ω(ψ) clearly does not imply φ
xSn

= ψ
xSn

in general. Indeed,

an equality of induced characters implies that every χ ∈ Irr(Sn) appears with the same

multiplicity in φ
xSn

as in ψ
xSn

, while Ω(φ) = Ω(ψ) simply says that one multiplicity

is non-zero if and only if the other is non-zero.

Example 4.27. Let p ≥ 5 be a prime. We present infinitely many natural numbers n and

pairs of linear characters φ, ψ ∈ Lin(Pn) such that Ω(φ) = Ω(ψ) but φ
xSn 6= ψ

xSn
.

Let k 6= l ∈ N≥2 and set n = pk + pl. Let φ(s), φ(t) ∈ Lin(Pn) where s =(
(0k−1, 1), (0l)

)
and t =

(
(0k), (0l−1, 1)

)
∈ [p]k × [p]l, with 0m denoting the all 0s

sequence of length m. By Theorem 5.1,

Ω(0k) = Irr(Spk) \ {χ(pk−1,1), χ(2,1p
k−2)},

and by direct verification (or by Lemma 6.4 in Chapter 6 later),

Ω(0k−1, 1) = Irr(Spk) \ {χ(pk), χ(1p
k

)}

for all k ≥ 2. By the Littlewood–Richardson rule, we find that

Ω(s) = Ω(t) = Irr(Sn) \ {χ(n), χ(1n)},

99



but since k 6= l we also have φ(s)
xSn 6= φ(t)

xSn
by Lemma 4.5 and Theorem 4.1. ♦

Surprisingly, when n is a power of p then knowing just the set Ω(φ) of irreducible

constituents without the multiplicities with which these constituents appear is enough

to determine the NSn(Pn)–orbit of the linear character φ.

Lemma 4.28. Let k ∈ N and φ, ψ ∈ Lin(Ppk). If Ω(φ) = Ω(ψ), then φ
xS

pk = ψ
xS

pk .

Lemma 4.28 is immediate from the following lemma. Since there is a natural bijection

between Irr(Sn) and P(n), for φ ∈ Lin(Pn) we may equally view Ω(φ) as a subset of

P(n). Below, ≤ denotes the lexicographical ordering on partitions.

Lemma 4.29. Let k ∈ N.

(a) Let s ∈ [p]k and let λ be the lexicographically greatest partition in Ω(s). If sk 6= 0,

then λ contains a part of size 1.

(b) Let s, t ∈ [p]k be such that t /∈ Σ(s). Let x ∈ [k] be minimal such that {sx, tx}
contains exactly one 0, and suppose that sx = 0 and tx 6= 0. Let α be the lexico-

graphically greatest partition in Ω(s). Then 〈χα
y
P
pk
, φ(s)〉 = 1, and also α > ν

for all ν ∈ Ω(t).

Before we prove Lemma 4.29, we show how to deduce Lemma 4.28 from it.

Proof of Lemma 4.28. Suppose φ
xS

pk 6= ψ
xS

pk . Then φ and ψ are not NS
pk

(Ppk)–

conjugate, by Lemma 4.2. Thus φ = φ(s) and ψ = φ(t) for some s, t ∈ [p]k such that

t /∈ Σ(s) by Lemma 4.3. Then Lemma 4.29 (b) shows that Ω(φ) 6= Ω(ψ).

The proof of Lemma 4.29 uses two results from Chapter 6 later, where we further

investigate the sets Ω(φ) for φ ∈ Lin(Pn).

Proof of Lemma 4.29. (a) If si = 0 for all i < k, then λ = (pk − 1, 1) by Lemma 6.4

(notice that Lemma 6.4 and its proof hold as stated also when p = 3 with the single

exception Ω(0, 1) = B9(8) \ {(33)}). If si 6= 0 for some i < k, then the assertion follows

by induction on the number of non-zero entries of s, using Lemma 6.11 (which holds in

its entirety also when p = 3) combined with Lemma 6.4.

(b) We proceed by induction on k. The base case k = 1 is clear since s = (0), Ω(s) =

P(p) \ {(p− 1, 1), (2, 1p−2)}, λ = (p), t = (1) and Ω(t) = P(p) \ {(p), (1p)}.
Now assume k ≥ 2, and consider the following subgroups of Spk : let P = Ppk =

Ppk−1 o Pp and let B be its base group, namely P = B o Pp and B ∼= (Ppk−1)×p. Let

Y = (Spk−1)×p be the Young subgroup of Spk naturally containing B. We define two

further subgroups of Spk as follows: H := Y oSp
∼= Spk−1 oSp and W := Y o Pp ∼=

Spk−1 o Pp. Clearly P ≤ W ≤ H. Let s− = (s1, . . . , sk−1) and t− = (t1, . . . , tk−1). Let

µ = (µ1, . . . , µr) be the lexicographically greatest partition in Ω(s−). We split into two

cases according to x = k or x < k.

Case 1: x = k. In this case, t− ∈ Σ(s−) so Ω(s−) = Ω(t−). Let λ = (pµ1, . . . , pµr).
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1. λ ∈ Ω(s): observe that 〈X (µ; (p)), χλ
y
H
〉 = 1 by Theorem 2.21. Since φ(s) =

X (φ(s−);φ0), then φ(s) | X (µ; (p))
yH
P
| χλ

y
P

.

2. λ is lexicographically greatest in Ω(s): suppose ν ∈ Ω(s). Then φ(s−)×p =

φ(s)
y
B
| χν

y
B

= (χν
y
Y

)
y
B

. So there exists an irreducible constituent of χν
y
Y

,

say χη1 × · · · × χηp ∈ Irr(Y ), such that ηi ∈ Ω(s−) for all i. But cνη1,...,ηp > 0

implies ν ≤ η1 + · · ·+ ηp, and ηi ≤ µ by definition of µ. Hence ν ≤ η1 + · · ·+ ηp ≤
µ+ · · ·+ µ = λ.

3. 〈χλ
y
P
pk
, φ(s)〉 = 1: applying the argument in Step 2 to ν = λ, we see that the

only irreducible constituent χη1 × · · · × χηp of χλ
y
Y

such that ηi ∈ Ω(s−) for all

i is (χµ)×p, and it occurs with multiplicity 1. Since (χµ)×p | X (µ; (p))
y
Y

and

X (µ; (p)) | χλ
y
H

, it follows that

〈χλ
y
P
pk
, φ(s)〉 = 〈X (µ; (p))

yH
P
, φ(s)〉 = 〈X (µ;φ0)

yW
P
, φ(s)〉

= 〈X (µ
y
P
pk−1

;φ0),X (φ(s−);φsk)〉 = 1

where the final equality follows from Lemma 2.19 since 〈χµ
y
P
pk−1

, φ(s−)〉 =

δ0,sk = 1 by the inductive hypothesis.

4. λ > ν for all ν ∈ Ω(t): suppose ν ∈ Ω(t). By the same argument as in Step 2, there

exists η1, . . . , ηp ∈ Ω(t−) such that χη1 ×· · ·×χηp | χν
y
Y

. But Ω(t−) = Ω(s−), so

ηi ≤ µ for all i and we similarly obtain ν ≤ η1 + · · ·+ηp ≤ µ+ · · ·+µ = λ. Thus it

remains to show λ /∈ Ω(t). As in Step 3, 〈χλ
y
P
pk
, φ(t)〉 = 〈X (µ; (p))

yH
P
, φ(t)〉 since

the only irreducible constituent χη1 × · · · × χηp | χλ
y
Y

with ηi ∈ Ω(t−) for all i

is (χµ)×p with multiplicity 1. Finally, observe that X (µ; (p))
yH
P
, φ(t)〉 = δ0,tk = 0

by Lemma 2.19.

Case 2: x < k. In this case, µ > γ for all γ ∈ Ω(t−), by the inductive hypothesis. Let

λ =

(pµ1, . . . , pµr) if sk = 0,

(pµ1, . . . , pµr−1, p− 1, 1) if sk 6= 0.

Notice that if sk 6= 0 then λ = (pµ1, . . . , pµr−1, pµr − 1, 1) by (a), and λ immediately

precedes (pµ1, . . . , pµr) in lexicographical order.

1. λ ∈ Ω(s): by Theorem 2.21, 〈X (µ; θ), χλ
y
H
〉 = 1, so φ(s) | χλ.

2. λ is lexicographically greatest in Ω(s): suppose ν ∈ Ω(s). By the same argument

as in Step 2 of Case 1, we find that ν ≤ (pµ1, . . . , pµr). Thus ν ≤ λ if sk = 0. On

the other hand, if sk 6= 0 then it remains to prove that if ν = (pµ1, . . . , pµr) then

ν /∈ Ω(s).

Suppose ν ∈ Ω(s). Since the only irreducible constituent χη1 × · · · × χηp | χν
y
Y

with ηi ∈ Ω(s−) for all i is (χµ)×p with multiplicity 1, there is a unique ψ ∈ Irr(W )
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such that ψ | χν
y
W

and φ(s) | ψ
y
P

. Moreover, ψ = X (µ;φj) for some j ∈ [p]

since necessarily ψ ∈ Irr(W | (χµ)×p). From Step 1, we know that X (µ; θ) =

X (µ; (p − 1, 1)) | χν
y
H

. But χ(p−1,1)
y
Pp

=
∑p−1
i=1 φi, so X (µ;φi) | χν

y
W

for all

i ∈ [p− 1], a contradiction.

3. 〈χλ
y
P
pk
, φ(s)〉 = 1: consider all irreducible constituents χη1 × · · · × χηp | χλ

y
Y

such that ηi ∈ Ω(s−) for all i.

If sk = 0, then cλη1,...,ηp > 0 implies λ ≤ η1 + · · · + ηp ≤ µ + · · · + µ = λ,

so the only such constituent is (χµ)×p, and it occurs with multiplicity 1. Then

〈χλ
y
P
pk
, φ(s)〉 = 1 follows by the same argument as in Step 3 of Case 1.

If sk 6= 0, then λ = (pµ1, . . . , pµr−1, pµr − 1, 1) = (pµ1, . . . , pµr−1, p− 1, 1). Hence

the only such constituent is (χµ)×p, and it occurs with multiplicity p− 1. Thus

〈χλ
y
P
pk
, φ(s)〉 = 〈X (µ; (p− 1, 1))

yH
P
, φ(s)〉

=

p−1∑
i=1

〈X (µ
y
P
pk−1

;φi), φ(s)〉 =

p−1∑
i=1

δi,sk = 1

by Lemma 2.19.

4. λ > ν for all ν ∈ Ω(t): suppose ν ∈ Ω(t). Then there exists η1, . . . , ηp ∈ Ω(t−)

such that χη1 × · · · × χηp | χν
y
Y

. Since ηi � µ for all i and p ≥ 3, then ν ≤
η1 + · · ·+ ηp � (pµ1, . . . , pµr−1, pµr − 1, 1) ≤ λ.

Thus in all cases, we have shown that the lexicographically greatest partition in Ω(s)

has the claimed properties.

Therefore, in terms of the three equivalence relations (i), (ii) and (iii), we have that

(iii) =⇒ (ii) =⇒ (i) and (iii) 6⇐= (ii) 6⇐= (i) in general, but (i) ⇐⇒ (ii) when n = pk.

The results of Chapter 4 are first steps towards the goal of describing the sets Ω(φ)

explicitly. We say more on this in Chapters 5 and 6.
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Chapter 5

On permutation characters

and Sylow p-subgroups of Sn

This chapter is based on the paper [29], joint with Dr Eugenio Giannelli. Here, we are

able to present a shorter proof of Theorem 5.14 ([29, Theorem 3.2]) using new results on

Littlewood–Richardson coefficients (Section 5.2), proved in collaboration with J. Long.

In this chapter, we identify all of the irreducible characters of the symmetric group Sn

containing the trivial character as a constituent upon restriction to a Sylow p-subgroup,

for all n and odd primes p.

We would like to mention that following the publication of our article [29], our main

result Theorem 5.1 was applied to the representation theory of simple groups by Malle

and Zalesski in [47] as part of a study of so-called Sylp-regular characters and Steinberg-

like characters, culminating in their classification of projective indecomposable modules

of certain dimensions for simple groups G.

5.1 Outline

We investigate the decomposition into irreducible constituents of the permutation char-

acter 1Pn
xSn

, where n is any natural number, p is an odd prime and Pn is a Sylow

p-subgroup of Sn. More precisely, our main result determines all of the irreducible

constituents of the permutation module induced by the action of Sn on the cosets of a

Sylow p-subgroup Pn, whose character is 1Pn
xSn

.

Theorem 5.1. Let p be an odd prime, let n be a natural number and let λ ∈ P(n).

Then χλ is not an irreducible constituent of 1Pn
xSn

if and only if n = pk for some

k ∈ N and λ ∈ {(pk−1, 1), (2, 1p
k−2)}, or p = 3 and λ is one of the following partitions:

(2, 2); (3, 2, 1); (5, 4), (24, 1), (4, 3, 2), (32, 2, 1); (5, 5), (25).

Excluding the few exceptions arising for small symmetric groups at the prime 3,

103



Theorem 5.1 shows that given any natural number n which is not a power of p, the

restriction to Pn of any irreducible character of Sn has the trivial character 1Pn as a

constituent. We remark that this clearly does not hold for p = 2. For instance, the

sign representation of Sn restricts irreducibly and non-trivially to a Sylow 2-subgroup

of Sn. More generally, when n is a power of 2, [26, Theorem 1.1] shows that no non-

trivial irreducible character of odd degree of Sn appears as an irreducible constituent of

1Pn

xSn
, where Pn ∈ Syl2(Sn). The above observations underline that for the prime 2

the situation is notably less regular than for odd primes, and at the time of writing we

do not have a conjecture for a characterisation of the subset of P(n) labelling irreducible

characters appearing as constituents of 1Pn
xSn

when p = 2.

Let H := H(Sn, Pn,1Pn) be the Hecke algebra naturally corresponding to the per-

mutation character 1Pn
xSn

. We refer the reader to [8, Chapter 11D] for the complete

definition and properties of this correspondence. It is well-known that the number of

irreducible representations of H equals the number of distinct irreducible constituents

of the corresponding permutation character (see for example [8, Theorem (11.25)(ii)]).

Therefore our Theorem 5.1 has the following consequence.

Corollary 5.2. Let p be an odd prime and let n > 10 be a natural number. If n 6= pk

(respectively n = pk) then the Hecke algebra H has exactly |P(n)| (respectively |P(n)|−2)

irreducible representations.

As explained in [8, Theorem 11.25(iii)], understanding the dimensions of the irre-

ducible representations of H is equivalent to determining the multiplicities of the irre-

ducible constituents of 1Pn
xSn

. For this reason we believe that it would be interesting

to find a solution to the following problem.

Question 5.3. Is there a combinatorial description of the map f : P(n) −→ N0, where

f(λ) equals the multiplicity of χλ as an irreducible constituent of 1Pn
xSn

?

A second consequence of Theorem 5.1 is a precise description of the constituents of

the permutation character 1Qn
xAn

, where An is the alternating group of degree n and

Qn is a Sylow p-subgroup of An. Recall that χλ
y
An

= χλ
′y

An
, and that the ordinary

irreducible characters of An can be labelled as

Irr(An) = {χλ
y
An
| λ 6= λ′ ∈ P(n)} ∪ {ψλ+, ψλ− | λ = λ′ ∈ P(n)}.

Theorem 5.4. Let p ≥ 5 be a prime, let n be a natural number and let ψ ∈ Irr(An).

Then ψ is not an irreducible constituent of 1Qn
xAn

if and only if n = pk for some k ∈ N
and ψ = χλ

y
An

with λ ∈ {(pk − 1, 1), (2, 1p
k−2)}.

If p = 3, then ψ ∈ Irr(An) is not an irreducible constituent of 1Qn
xAn

if and only if

one of the following holds:

◦ n = 3k for some k ≥ 2 and ψ = χλ
y
An

with λ ∈ {(3k − 1, 1), (2, 13k−2)}; or
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◦ n ≤ 10 and ψ ∈ {ψ(2,1)
± , ψ

(2,2)
± , ψ

(3,2,1)
± , χλ

y
An
} where

λ ∈ {(5, 4), (24, 1), (4, 3, 2), (32, 2, 1), (52), (25)}.

Theorem 5.4 follows from Theorem 5.1 and Corollary 2.24 by observing that when

p is odd, Qn is a Sylow p-subgroup of Sn.

We conclude by mentioning that Theorem 5.1 gives information on the eigenvalues of

the irreducible representations of Sn, at elements of odd prime power order. This may

already be known to experts, but we were not able to find a reference in the literature.

Corollary 5.5. Let p ≥ 5 be a prime and let n be a natural number. Let λ ∈ P(n) and

let ρλ be a representation of Sn affording χλ. If n is not a power of p, or if n = pk but

λ /∈ {(pk − 1, 1), (2, 1p
k−2)}, then ρλ(g) has an eigenvalue equal to 1 for any g ∈ Sn of

order a power of p. In particular, if P is a fixed Sylow p-subgroup of Sn then for all

g ∈ P the matrices ρλ(g) have a common eigenvector for the eigenvalue 1.

An analogous study was done extensively in [58] in the case of Chevalley groups.

The case of elements of prime order was discussed in [59] for quasi-simple groups.

5.2 Littlewood–Richardson combinatorics

In this section we prove some results concerning Littlewood–Richardson coefficients,

which we believe are of independent interest, that will be useful in proving Theorem 5.1

as well as several key results later in Chapter 6. Recall the notation Bn(m) from Defi-

nition 2.1, and the operator ? from Definition 2.12.

Lemma 5.6. Let t, t′ ∈ N. Then B2t−1(t) ? B2t′−1(t′) = B2t+2t′−2(t+ t′).

Proof. That B2t−1(t) ? B2t′−1(t′) ⊆ B2t+2t′−2(t + t′) follows directly from Lemma 2.10.

To prove the converse, we proceed by induction on t + t′. The base case follows from

the observation that for any natural numbers N and M such that N < 2M , we have

BN (M) ? B1(1) ⊇ BN+1(M + 1): given any partition λ ∈ BN+1(M + 1), either λ ∈
BN+1(M) in which case considering any removable box of λ shows that λ ∈ BN (M) ?

B1(1); or λ1 = M + 1, in which case λ2 < M + 1 since N < 2M , and so considering

µ = (λ1 − 1, λ2, . . . ) ∈ λ− shows that λ ∈ BN (M) ? B1(1) (and the case if l(λ) = M + 1

is dealt with similarly).

We may now assume that t, t′ ≥ 2. For the inductive step, we take as inductive

hypothesis B2t−3(t − 1) ? B2t′−1(t′) = B2t+2t′−4(t + t′ − 1). By applying − ? B1(1) to

both sides, we find

B2t−3(t− 1) ? B2t′(t
′ + 1) = B2t+2t′−3(t+ t′),

and then applying B1(1) ?− to both sides, we find

B2t−2(t) ? B2t′(t
′ + 1) = B2t+2t′−2(t+ t′ + 1).
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Hence

B2t+2t′−2(t+ t′) ⊆ B2t+2t′−2(t+ t′ + 1) = B2t−2(t) ? B2t′(t
′ + 1).

Thus, letting λ ∈ B2t+2t′−2(t+t′), there exist partitions µ ∈ B2t−2(t) and ν ∈ B2t′(t
′+1)

such that cλµν > 0. In particular, fix a Littlewood–Richardson filling F of weight ν of the

skew shape [λ \ µ].

To complete the inductive step, we construct µ̂ ∈ B2t−1(t) and ν̂ ∈ B2t′−1(t′) such

that cλµ̂ν̂ > 0, from which we conclude therefore that B2t+2t′−2(t + t′) ⊆ B2t−1(t) ?

B2t′−1(t′). The main idea is to remove an appropriate box b from the skew shape [λ\µ],

set [µ̂] = [µ] ∪ b and exhibit an appropriate filling F′ of [λ \ µ̂] of weight ν̂, whence

cλµ̂ν̂ > 0.

Since all sets considered are closed under conjugation of partitions, we may without

loss of generality assume ν1 ≥ l(ν) (by taking λ′, µ′ and ν′ instead of λ, µ and ν if

necessary). Let k ≥ 1 be such that ν1 = ν2 = . . . = νk > νk+1, and let x denote the

box containing the last 1 in the Littlewood–Richardson reading order of the filling F

(namely right to left, top to bottom). Clearly this must lie at the top of its column and

leftmost in its row in [λ \ µ], and so must be an addable box for µ. We split into three

cases according to the position of x.

Case (i): if the position of x is neither (1, t+ 1) nor (t+ 1, 1). Since x is an addable box

for µ ∈ B2t−2(t), setting µ̂ to be the partition whose Young diagram is [µ] ∪ x we find

that µ̂ ∈ B2t−1(t).

If k = 1 then the filling F′ defined as F restricted to the boxes of [λ\µ̂] is a Littlewood–

Richardson filling of weight ν̂ := (ν1 − 1, ν2, . . . , νl(ν)) ∈ B2t′−1(t′ + 1). Moreover,

ν̂1 = ν1 − 1 ≤ t′ + 1 − 1 = t′, and l(ν̂) = l(ν) ≤ t′ since l(ν) ≤ ν1 and |ν| = 2t′. Thus

ν̂ ∈ B2t′−1(t′).

If k > 1, then (ν1−1, ν2, . . . , νl(ν)) is not a partition: in this case we define F′ and ν̂ as

follows. Let i ∈ {2, . . . , k} and consider the position of the last i in the reading order of

the filling F. By the definition of Littlewood–Richardson fillings, the last i must appear

later in the reading order than the last i − 1 since νi−1 = νi. Since this holds for all

i ∈ {2, . . . , k}, the box containing the last i must be the leftmost i in its row in [λ\µ] (and

hence leftmost in its row), and either at the top of its column or immediately below the

box containing the last i−1 in the reading order of F. Thus we may define a Littlewood–

Richardson filling F′ of [λ \ µ̂] to be obtained from F by removing the 1 corresponding

to the box x, then relabelling the last i in F by the number i − 1, for each 2 ≤ i ≤ k.

In particular, the weight of F′ is the partition ν̂ := (ν1, . . . , νk−1, νk − 1, νk+1, . . . , νl(ν)).

Moreover, k > 1 and l(ν) ≤ ν1 imply that ν ∈ B2t′(t
′), and hence ν̂ ∈ B2t′−1(t′). An

example is shown in Figure 5.1.

Thus for all values of k, setting b = x and taking µ̂, ν̂ as described above we find

that λ ∈ B2t−1(t) ? B2t′−1(t′) as claimed.

Case (ii): if x lies in position (1, t+ 1). Then µ1 = t and λ1 = µ1 + ν1 since x contains

the last 1 of F. Let y denote the box containing the last 2 in the reading order of F;

this exists as ν 6= (2t′). The box y must be leftmost in its row, as all of the 1s in F
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1 1 1

1 1 2 2 2

2 2 3 3

3 3 4

3 4 5

;

1 1 1

1 2 2 2

1 2 3 3

3 3 4

2 4 5

Figure 5.1: Example of case (i): t = 8, t′ = 9, λ = (9, 8, 7, 5, 3) ` 32, µ = (6, 3, 3, 2),
ν = (53, 2, 1), k = 3 and F as shown. On the left, the box x is shaded, and the last i of F is
circled for 2 ≤ i ≤ k. On the right, F′ is shown with µ̂ = (6, 4, 3, 2) and ν̂ = (52, 4, 2, 1). The
boxes containing the circled numbers have been relabelled to produce F′.

lie precisely in the first row of [λ \ µ]. If it does not lie at the top of its column, it

must lie immediately under a 1 in F, from which we deduce that y occupies position

(2, j) for some j ≥ t + 1. But then µ2 ≥ t, contradicting |µ| = 2t − 2. Thus y lies at

the top of its column and is an addable box for µ. Moreover, y cannot lie in position

(t+ 1, 1) or else |µ| ≥ µ1 + l(µ)− 1 = t+ t− 1. Thus, if y occupies position (r, µr + 1)

then µ̂ := (µ1, . . . , µr−1, µr + 1, µr+1, . . . , µl(µ)) ∈ B2t−1(t) (note µ̂ is well-defined since

µr < µr−1).

Let j ≥ 2 be such that ν2 = ν3 = . . . = νj > νj+1. Similarly to case (i), we

define a Littlewood–Richardson filling F′ of [λ \ µ̂] to be obtained from F by removing

the 2 corresponding to the box y, then relabelling the last i in F by the number i − 1

for each 3 ≤ i ≤ j (or no relabelling required if j = 2). The resulting weight is

ν̂ := (ν1, ν2, . . . , νj−1, νj−1, νj+1, . . . , νl(ν)) ∈ B2t′−1(t′+1). Since λ1 = µ1 +ν1 ≤ t+ t′,

we must have l(ν) ≤ ν1 ≤ t′, and so in fact ν̂ ∈ B2t′−1(t′).

Thus setting b = y and taking µ̂, ν̂ as described we find that λ ∈ B2t−1(t)?B2t′−1(t′)

as claimed.

Case (iii): if x lies in position (t+ 1, 1). Let z denote the box containing the second-to-

last 1 in the reading order of F; this exists as ν 6= (12t′). It cannot be in position (t+1, 2),

or else |µ| ≥ µ′1 + µ′2 = 2t. Thus z must be leftmost in its row (in some row r < t) and

lie at the top of its column, so it must be an addable box for µ. Moreover, z cannot be

in position (1, t+ 1) as |µ| = 2t− 2 and so µ̂ := (µ1, . . . , µr−1, µr + 1, µr+1, . . . , µl(µ)) ∈
B2t−1(t).

Recall ν1 = . . . = νk > νk+1. If k = 1, then the filling F′ defined as F restricted to the

boxes of [λ \ µ̂] is a Littlewood–Richardson filling of weight ν̂ := (ν1 − 1, ν2, . . . , νl(ν)) ∈
B2t′−1(t′). If k > 1, then since the last 1 lies in the box x at position (t + 1, 1), the

last i lies in position (t + i, 1) for each 2 ≤ i ≤ k, and notice that µ′2 ≤ t − 2 since

l(µ) = t. Similarly to case (i), we define a Littlewood–Richardson filling F′ of [λ \ µ̂] to

be obtained from F by removing the 1 corresponding to the box z, then relabelling the

second-to-last i in F by the number i − 1, for each 2 ≤ i ≤ k. The resulting weight is

ν̂ := (ν1, . . . , νk−1, νk − 1, νk+1, . . . , νl(ν)) ∈ B2t′−1(t′).

Thus setting b = z and taking µ̂, ν̂ as described we find that λ ∈ B2t−1(t)?B2t′−1(t′)

as claimed.
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Proposition 5.7. Let n, n′, t, t′ ∈ N be such that n
2 < t ≤ n and n′

2 < t′ ≤ n′. Then

Bn(t) ? Bn′(t′) = Bn+n′(t+ t′).

Proof. That Bn(t) ?Bn′(t′) ⊆ Bn+n′(t+ t′) follows from Definition 2.12. For the reverse

inclusion, and hence equality of sets, we proceed by induction on the quantity 2t− n+

2t′−n′ ≥ 2, with the base case given by Lemma 5.6. Now suppose 2t−n+ 2t′−n′ > 2,

so without loss of generality assume t′ − 1 > n′−1
2 . Then Bn′−1(t′ − 1) ? B1(1) = Bn′(t′)

and Bn(t) ? Bn′−1(t′ − 1) = Bn+n′−1(t+ t′ − 1) by the inductive hypothesis. Thus

Bn(t) ? Bn′(t′) = Bn(t) ?
(
Bn′−1(t′ − 1) ? B1(1)

)
=
(
Bn(t) ? Bn′−1(t′ − 1)

)
? B1(1)

= Bn+n′−1(t+ t′ − 1) ? B1(1)

= Bn+n′(t+ t′)

as claimed.

Lemma 5.8. Let n,m, t ∈ N and suppose that m
2 < t ≤ m. If n ≥ 5, then

Bm(t) ? (Bn(n− 2) ∪ {(n)}◦) = Bm+n(t+ n).

In particular, P(m+ n) = P(m) ? (P(n) \ {(n− 1, 1)}◦).

Proof. If t = 1 then m = 1 and the result follows from the branching rule (see Sec-

tion 2.2), so from now on we may assume t ≥ 2.

Let X := Bm(t) ? (Bn(n− 2)∪ {(n)}◦). Since n ≥ 5, we have that n− 2 > n
2 , and so

Bm+n(t+ n− 2) ⊆ X by Proposition 5.7. Moreover, X ⊆ Bm(t) ?P(n) = Bm+n(t+ n),

by Proposition 5.7. Since X◦ = X, it remains to show that if λ ` m + n with λ1 ∈
{t+ n− 1, t+ n}, then λ ∈ X.

First suppose λ = t + n, so λ = (t + n, µ) for some µ ` m − t < t. Observe that

χ(t,µ) × χ(n) | χλ
y
Sm×Sn

and µ ∈ Bm(t), so λ ∈ X.

Otherwise we have λ1 = t + n − 1, so λ = (t + n − 1, µ) for some µ ` m − t + 1. If

µ1 ≥ t, then m = 2t− 1 and thus λ = (t + n− 1, t). Since χ(t,t−1) × χ(n) | χλ
y
Sm×Sn

and (t, t − 1) ∈ Bm(t), then λ ∈ X. If l(µ) ≥ t then similarly m = 2t − 1 and λ =

(t+ n− 1, 1t), and we similarly observe that λ ∈ X since (t, 1t−1) ∈ Bm(t). Otherwise,

µ ∈ Bm−t+1(t − 1), so (t − 1, µ) ∈ Bm(t). But clearly χ(t−1,µ) × χ(n) | χλ
y
Sm×Sn

, so

λ ∈ X.

Recall that LR(γ) denotes the set of weights of Littlewood–Richardson fillings of a

skew shape γ, and ν+ denotes the set of partitions indexing the irreducible constituents

in the induced character χν
xS|ν|+1 , for any partition ν.

Lemma 5.9. Let X = [λ \ µ] be a skew shape, and suppose ν ∈ LR(X). Let Y be a

skew shape obtained from X by adding a single box. Then LR(Y ) ∩ ν+ 6= ∅.
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Proof. Let |λ| = n and |µ| = m. First suppose Y is obtained from X by adding a

box externally, that is, Y = [λ̃ \ µ] for some λ̃ ∈ λ+. Since ν ∈ LR(X), the iterated

Littlewood–Richardson coefficient cλ̃µ,ν,(1) = 〈χλ̃, χµ×χν×χ(1)
xSn+m+1

Sn×Sm×S1
〉 is positive.

But by the branching rule,

0 < cλ̃µ,ν,(1) =
〈
χλ̃, χµ × (χν × χ(1))

xSn×Sm+1

Sn×Sm×S1

xSn+m+1

Sn×Sm+1

〉
=

〈
χλ̃,

∑
ν̃∈ν+

χµ × χν̃
xSn+m+1

Sn×Sm+1

〉
=
∑
ν̃∈ν+

〈
χλ̃, χµ × χν̃

xSn+m+1

Sn×Sm+1

〉

so there exists ν̃ ∈ ν+ such that
〈
χλ̃, χµ × χν̃

xSn+m+1

Sn×Sm+1

〉
> 0. Hence ν̃ ∈ LR(Y ).

Otherwise, if Y is obtained from X by adding a box internally, that is, Y = [λ\ µ̃] for

some µ̃ ∈ µ−, a similar argument considering the subgroup Sn−1 ×S1 ×Sm ≤ Sn+m

and observing that χ(1) × χν
xSm+1

S1×Sm
= χν × χ(1)

xSm+1

Sm×S1
=
∑
ν̃∈ν+ χν̃ shows that

LR(Y ) ∩ ν+ 6= ∅ in this case also.

The following definition will be useful for the next section.

Definition 5.10. Let q, y ∈ N be such that q ≥ 2 and let B ⊆ P(y). Let H = (Sy)×q ≤
Sqy. We let D(q, y,B) be the subset of P(qy) consisting of all those partitions λ ∈ P(qy)

for which there exists µ1, µ2, . . . , µq ∈ B, not all equal, such that

χµ1 × χµ2 × · · · × χµq
∣∣∣ χλy

H
.

We remark that if B◦ = B, then D(q, y,B)◦ = D(q, y,B): this follows from the

fact that χλ
′

= χλ · χ(1qy) for all λ ` qy, and χ(1qy)
y

(Sy)×q
= χ(1y) × · · · × χ(1y) (see

Section 2.2).

Proposition 5.11. Let m, t ∈ N and suppose m
2 + 1 < t ≤ m. Let λ ∈ B2m(2t − 1).

Then either λ ∈ D
(
2,m,Bm(t)

)
, or χλ

y
Sm×Sm

has two irreducible constituents χα×χα

and χβ × χβ where α 6= β ∈ Bm(t).

Proof. First suppose λ = (m,m). Notice that χα × χα is a constituent of χλ
y
Sm×Sm

where α ∈ Bm(t) if and only if α = (α1,m−α1) with m
2 ≤ α1 ≤ t (the conditions of the

proposition imply that t ≥ 2). But t > m
2 + 1, so there are at least two possible integer

values that α1 ∈ [m2 , t] can take. Thus we find two irreducible constituents χα×χα and

χβ × χβ where α 6= β ∈ Bm(t) as required.

Moreover, χλ
′

= χλ × χ(1n) where χ(1n) is the sign character, so χα
′ × χα

′
and

χβ
′ ×χβ′ are two different irreducible constituents of χλ

′y
Sm×Sm

, and α′ 6= β′ ∈ Bm(t)

since Bm(t) is closed under conjugation.

Now let λ ∈ B2m(2t − 1) \ {(m,m)}◦. By Proposition 5.7, there exist partitions

µ ∈ Bm(t) and ν ∈ Bm(t− 1) such that cλµν > 0. If µ 6= ν then λ ∈ D
(
2, 2m,Bm(t)

)
and

we are done, so assume that µ = ν ∈ Bm(t − 1). By ‘passing a box’ between [µ] and

[λ \ µ], we construct partitions
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(i) µ̂ ∈ Bm+1(t) and ν̂ ∈ Bm−1(t− 1) such that cλµ̂ν̂ > 0; then

(ii) µ̃ ∈ Bm(t) and ν̃ ∈ Bm(t) such that cλµ̃ν̃ > 0, and µ̃ 6= µ,

whence the assertion of the proposition follows. We now explain in detail the construc-

tions (i) and (ii).

Step (i): Fix a Littlewood–Richardson filling F of [λ \ µ] of weight ν. Let b denote the

box of [λ \ µ] containing the last 1 in the reading order of F; clearly this is an addable

box for µ. We split into three cases depending on the shape of [µ] + b.

Case (a): If [µ] + b is not a rectangle, then define µ̂ via [µ̂] := [µ] + b. Let k ∈ N be

such that ν1 = ν2 = · · · = νk > νk+1. Define F′ to be obtained from F by removing the

1 corresponding to the box b, and then if k > 1 additionally relabelling the last i in F

by the number i − 1, for each 2 ≤ i ≤ k. Thus F′ is a Littlewood–Richardson filling of

[λ \ µ̂] of weight ν̂ := (ν1, . . . , νk−1, νk − 1, νk+1, . . . , νl(ν)), by the same argument as in

the proof of Lemma 5.6.

Now we may assume [µ] + b is a rectangle. Notice m ≥ 3, so either (2, 1) ⊆ µ

or µ ∈ {(m), (1m)}. If µ = (m), then F being a filling of weight ν = µ and the

definition of b together imply that λ = (2m), a contradiction. Similarly if µ = (1m)

then λ = (12m) /∈ B2m(2t− 1). Thus when [µ] + b is a rectangle then (2, 1) ⊆ µ.

Case (b): If [µ] + b is a rectangle and l(λ) > l(µ), let c be the box in row l(µ) + 1,

column 1, and define [µ̂] := [µ] + c. Suppose in F the box c is filled with the number

j. Since the rows of [λ \ µ] are filled weakly increasingly, and the columns strictly

increasingly, the j in c must be the last j that appears in the reading order of F.

Suppose νj = νj+1 = . . . = νl > νl+1. Define F′ to be obtained from F by removing the

j corresponding to the box c, and then if l > j additionally relabelling the last i in F

by the number i− 1, for each j + 1 ≤ i ≤ l. Thus F′ is a Littlewood–Richardson filling

of [λ \ µ̂] of weight ν̂ := (ν1, . . . , νl−1, νl− 1, νl+1, . . . , νl(ν)), by the same argument as in

the proof of Lemma 5.6.

Case (c): Otherwise [µ] + b is a rectangle but l(λ) = l(µ). If l(µ) > 2, then the

number 2 appears in F precisely as the entries in the second row of [λ \ µ], and thus

ν2 = λ2 − µ2. But the number ν1 of 1s in F is equal to λ1 − µ1 + 1 (they appear in the

first row of [λ \ µ] and b). Thus µ = ν and µ1 = µ2 give λ2 = λ1 + 1, a contradiction.

Thus l(µ) = 2, in which case µ is of the form (a, a − 1) ` m, but since l(λ) = l(µ) = 2

then in fact λ = (m,m), a contradiction. Thus case (c) in fact cannot occur.

Observe that in cases (a) and (b), [µ̂] is obtained from [µ] by adding a single addable

box, so µ ∈ Bm(t − 1) implies µ̂ ∈ Bm+1(t). Also since ν ∈ Bm(t − 1), clearly ν̂ ∈
Bm−1(t− 1).

Step (ii): Let x = [µ̂] \ [µ]. By construction, x is not the only removable box of [µ̂].

Choose a removable box of µ̂ different from x, say y. Let µ̃ be defined via [µ̃] := [µ̂]− y,

so µ̃ 6= µ. Also µ̂ ∈ Bm+1(t), so µ̃ ∈ Bm(t). By Lemma 5.9, there exists a Littlewood–

Richardson filling of [λ \ ν̂] ∪ y of weight ν̃, for some ν̃ ∈ ν̂+. But ν̂ ∈ Bm−1(t − 1), so

ν̃ ∈ Bm(t).
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Proposition 5.12. Let m, t ∈ N be such that m
2 + 1 < t ≤ m. Let q ∈ N≥3. Then

Bqm(qt− 1) ⊆ D
(
q,m,Bm(t)

)
.

Proof. We proceed by induction on q, beginning with the base case q = 3. Let λ ∈
B3m(3t− 1). Then B2m(2t− 1) ? Bm(t) = B3m(3t− 1) by Proposition 5.7, and so there

exists µ ∈ B2m(2t − 1) and ν ∈ Bm(t) such that cλµν > 0. By Proposition 5.11, one of

the following holds:

(i) µ ∈ D
(
2,m,Bm(t)

)
, in which case cµστ > 0 for some σ 6= τ ∈ Bm(t). Then cλστν > 0

and hence λ ∈ D
(
3,m,Bm(t)

)
; or

(ii) χα×χα, χβ×χβ are both constituents of χµ
y
Sm×Sm

where α 6= β ∈ Bm(t). Then

cλααν , cλββν > 0, but either ν 6= α or ν 6= β and so we have λ ∈ D
(
3,m,Bm(t)

)
in

this case also.

Now suppose q ≥ 4 and assume the statement of the proposition holds for q− 1. Let

λ ∈ Bqm(qt− 1). Then there exists µ ∈ B(q−1)m

(
(q − 1)t− 1

)
and ν ∈ Bm(t) such that

cλµν > 0, by Proposition 5.7. By the inductive hypothesis, µ ∈ D
(
q − 1,m,Bm(t)

)
, so

there exists µ1, . . . , µq−1 ∈ Bm(t) which are not all equal such that cµµ1...µq−1
> 0. Hence

cλµ1...µq−1ν > 0, which gives λ ∈ D
(
q,m,Bm(t)

)
.

5.3 The prime power case

Fix an odd prime p. The aim of this section is to prove Theorem 5.1 for n = pk. As we

will see, this is the crucial part of Theorem 5.1. In fact, the complete statement for all

natural numbers follows relatively easily from the prime power case.

Definition 5.13. For n ∈ N≥3, let ∆(n) = P(n) \ {(n− 1, 1), (2, 1n−2)}. For q ∈ N≥2,

let D(q, n) := D(q, n,∆(n)).

The main objective of this section is to establish the following:

Theorem 5.14. Let k ∈ N and λ ` pk 6= 9. Then 〈χλ
y
P
pk
,1P

pk
〉 = 0 if and only if

λ /∈ ∆(pk). If pk = 9 then 〈χλ
y
P9
,1P9
〉 = 0 if and only if

λ ∈ {(8, 1), (5, 4), (4, 3, 2), (32, 2, 1), (24, 1), (2, 17)}.

Our proof is by induction on k ∈ N. We start with the base case k = 1.

Lemma 5.15. Let n ∈ N and suppose n ≤ p. Let λ ` n. Then 〈χλ
y
Pn
,1Pn〉 = 0 if and

only if n = p and λ ∈ {(p− 1, 1), (2, 1p−2)}.

Proof. This follows from Corollary 2.4.

The following proposition is one of the key steps in our proof of Theorem 5.14.
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Proposition 5.16. Let k ∈ N. Let µ1, . . . , µp be partitions of pk, not all the same,

such that for all i ∈ [p], we have 〈χµi
y
P
pk
,1P

pk
〉 6= 0. Let λ ∈ P(pk+1) be such that

χµ1 × · · · × χµp is an irreducible constituent of χλ
y
S×p
pk

. Then 〈χλ
y
P
pk+1

,1P
pk+1
〉 6= 0.

Proof. Let G = Spk+1 , H = (Spk)×p ≤ G and set ψ = χµ1 × · · · × χµp ∈ Irr(H). Let

P = Ppk+1 be such that P = BoD where (Ppk)×p ∼= B ≤ H and Pp ∼= D ≤ G, naturally

acting on H by permuting (as blocks for its action) the p direct factors of H. Hence

W := HoD satisfies H ≤W ≤ G and W ∼= Spk oPp, and D is chosen such that P ≤W .

Since χλ ∈ Irr(G|ψ), there exists χ ∈ Irr(W |ψ) such that χ is a constituent of χλ
y
W

.

Since µ1, . . . , µp are not all equal, then χ = ψ
xW
H

by the description of Irr(Spk o Pp) in

Section 2.3. It is clear that PH = W , so χ
y
P

= ψ
y
B

xP by Lemma 2.16.

Moreover, ψ
yH
B

= χµ1
y
P
pk
× · · · × χµp

y
P
pk

, so since 〈χµi
y
P
pk
,1P

pk
〉 6= 0 for all i,

we have that 1B is a constituent of ψ
y
B

. Thus 1B
xP is a direct summand of ψ

y
B

xP .

But 1P = X (1P
pk
o Pp) is a constituent of 1B

xP by Lemma 2.15, so 〈χλ
y
P
,1P 〉 > 0 as

claimed.

In light of Proposition 5.16, we now focus on the study of the restriction of irreducible

characters of Spk+1 to the Young subgroup S×p
pk

.

Our next goal is to show that D(p, pk) is a very large subset of ∆(pk+1), where we

recall the notation D(p, pk) from Definitions 5.10 and 5.13. This is done in Corollary 5.18

below. Recall the definition of the set Bn(m) for m,n ∈ N from Definition 2.1.

Proposition 5.17. Let k ∈ N be such that pk /∈ {3, 5, 9}. Then for all q ∈ {3, . . . , p},

D(q, pk) = Bqpk(qpk − 2).

Proof. Clearly D(q, pk) ⊆ Bqpk(qpk − 2). Since pk > 6, Proposition 5.12 shows that

Bqpk(qpk − 2q − 1) ⊆ D(q, pk). Since both D(q, pk) and Bqpk(qpk − 2) are closed under

conjugation, it remains to prove that if λ = (qpk − r, µ) where r ∈ {2, 3, . . . , 2q} and

µ ` r, then λ ∈ D(q, pk).

If k ≥ 2, then r ≤ (q−1)pk and pk−r ≥ r = |µ|, so (pk−r, µ) ∈ LR([λ\
(
(q−1)pk

)
]).

Thus χ(pk)×· · ·×χ(pk)×χ(pk−r,µ) | χλ
y

(S
pk

)×q
, so λ ∈ D(q, pk) since (pk−r, µ) ∈ ∆(pk).

Otherwise, k = 1. Since r ∈ {2, 3, . . . , 2q}, we can write r = m1 + . . . + mq where

mi ∈ {0, 2, 3} and mi are not all equal (for r = 2q, we take m1 = . . . = mq−3 = 2,

mq−2 = mq−1 = 3 and mq = 0). We may reorder the mi such that mi 6= 0 for all i ∈ [j]

and mi = 0 for all i > j, for some j ∈ [q]. Then there exist νi ` mi for each i ∈ [j] such

that cµν1,...,νj > 0. Since p ≥ 7 (as k = 1), we have by Lemma 2.11 that

c
(jp−r,µ)
(p−m1,ν1),...,(p−mj ,νj) = cµν1,...,νj > 0,

noting
∑j
i=1mi = r. Hence cλ(p−m1,ν1),...,(p−mj ,νj),(p),...,(p) > 0, from which we deduce

that λ ∈ D(q, p) since (p) and (p−mi, νi) ∈ ∆(p) for all i.
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Corollary 5.18. Let k ∈ N, and if p = 3 then further assume k ≥ 3. Then

D(p, pk) = Bpk+1(pk+1 − 2).

Proof. When pk 6= 5, the statement follows from Proposition 5.17 by setting q = p. If

pk = 5, then direct verification shows that D(5, 5) = B25(23).

We are now ready to prove Theorem 5.14.

Proof of Theorem 5.14. We proceed by induction on k ∈ N for p ≥ 5 and on k ∈ N≥3

for p = 3. The base case for p ≥ 5 follows from Lemma 5.15, while the assertion may be

verified computationally for k ≤ 3 if p = 3. Now assume the statement holds for some

k ∈ N (where k ≥ 3 if p = 3). To ease the notation, let n = pk+1, P = Pn and let A be

the set defined by

A = {λ ` n | 〈χλ
y
P
,1P 〉 6= 0}.

From Proposition 5.16 together with the inductive hypothesis, we deduce that D(p, pk) ⊆
A. Moreover, (n), (1n) ∈ A since χ(n)

y
P

= 1P = χ(1n)
y
P

. Hence we have that

∆(n) ⊆ A, by Corollary 5.18. By Lemma 2.2 it remains to show that (n− 1, 1) /∈ A.

Let B = S×p
pk

, B ≤ Spk o Sp ≤ Spk+1 and let C ≤ B where C ∼= P×p
pk

. From [32,

Lemma 3.2] and the Littlewood–Richardson rule we see that χ(n−1,1)
y
B

= (p−1)1B+Θ,

where

Θ = (χµ×1×· · ·×1) + (1×χµ×· · ·×1) + · · ·+ (1×· · ·×1×χµ) and µ = (pk− 1, 1).

(Here 1 denotes 1S
pk

.) From [27, Theorem 4.2, Proposition 4.3] there exists ν ∈ {(p−
1, 1), (2, 1p−2)} such that

χ(n−1,1)
y
S
pk
oSp

= X ((pk); ν) + ∆,

where ∆ is a sum of irreducible characters of Spk oSp each of which has degree divisible

by p. Since X ((pk); ν)
y
B

= (p − 1)1B , we have that ∆
y
B

= Θ. Using the inductive

hypothesis, we see that 1P
pk

is not a constituent of χµ
y
P
pk

. Hence 〈Θ
y
C
,1C〉 = 0.

Together these show that 〈∆
y
C
,1C〉 = 〈Θ

y
C
,1C〉 = 0 and hence 〈(χ(n−1,1))

y
P
,1P 〉 =

〈X ((pk); ν)
y
P
,1P 〉.

Finally, by Lemma 5.15 we know that 〈χν
y
Pp
,1Pp〉 = 0. Since 1P = X (1P

pk
;1Pp)

we deduce that 〈X ((pk); ν)
y
P
,1P 〉 = 0, whence 〈(χ(n−1,1))

y
P
,1P 〉 = 0 as required.

Thus the statement of the theorem holds for k + 1. This concludes the proof.

5.4 Proof of Theorem 5.1

In the final section of this chapter, we prove Theorem 5.1 for all odd primes p and all

natural numbers n. We begin with a short technical lemma.
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Lemma 5.19. Let γ be a skew shape and let m = |γ| ≥ 4. Suppose (m− 1, 1) ∈ LR(γ).

Then one of the following holds:

(i) γ ∼= [(m− 1, 1)] or γ ∼= [(m− 1, 1)]◦;

(ii) LR(γ) ∩ {(m), (m− 2, 2), (m− 2, 1, 1)} 6= ∅.

Proof. Since (m−1, 1) ∈ LR(γ), no three boxes of γ lie in the same column, and γ has at

most one column containing two boxes. Suppose (i) does not hold. Then (m) ∈ LR(γ)

if (a) no two boxes of γ lie in the same column; or (m − 2, 1, 1) ∈ LR(γ) if (b) γ has

precisely two connected components, one of which is a row of m−2 boxes and the other

of which is a column of two boxes.

Now assume γ satisfies neither (a) nor (b). Then γ has a unique connected component

δ whose boxes lie in exactly two rows, say rows j and j + 1, and each of the other

components lies entirely within one row. Moreover, if δ = γ is the unique connected

component then δ has at least two boxes in each of rows j and j + 1, while if δ contains

only two boxes then by assumption γ has at least three connected components. In all

instances, (m− 2, 2) ∈ LR(γ).

Now, we prove Theorem 5.1, beginning with the case when p ≥ 5.

Proposition 5.20. Let p ≥ 5 be a prime and n ∈ N. Let λ ` n. Then 〈χλ
y
Pn
,1Pn〉 = 0

if and only if n = pk for some k ∈ N and λ ∈ {(pk − 1, 1), (2, 1p
k−2)}.

Proof. Let Σ(n) denote the sum of the p-adic digits of n, that is, the sum of the digits

when n is expressed in base p. We prove the assertion by induction on Σ(n). Theo-

rem 5.14 and Lemma 5.15 show that the statement holds when Σ(n) = 1, and when

n ≤ p.
Now assume that n > p and Σ(n) ≥ 2. Let k be such that pk < n < pk+1 and set

m = n− pk. Clearly k > 0 and Σ(m) = Σ(n)− 1. Call (µ, ν) ∈ P(m)×P(pk) a suitable

pair for λ ∈ P(n) if cλµν 6= 0 and 〈χµ
y
Pm
,1Pm〉 · 〈χν

y
P
pk
,1P

pk
〉 > 0. We denote by

S(λ) the set of suitable pairs for λ. It is clear that if S(λ) 6= ∅ then 〈χλ
y
Pn
,1Pn〉 > 0,

since Pn ∼= Pm × Ppk . We now show that S(λ) 6= ∅ for all λ ∈ P(n).

First suppose that Σ(m) > 1 and let λ ∈ P(n). Theorem 5.14 together with the

inductive hypothesis shows that S(λ) = {(µ, ν) ∈ P(m) ×∆(pk) | cλµν 6= 0}. If λ2 ≥ 2

then there exists ν ∈ ∆(pk) such that [ν] ⊆ [λ]. Hence LR([λ \ ν]) × {ν} ⊆ S(λ) 6= ∅.
Otherwise λ is a hook partition. Since |λ| > pk, there exists some hook partition

ν /∈ {(pk − 1, 1), (2, 1p
k−2)} such that [ν] ⊂ [λ]. Therefore again we have LR([λ \ ν])×

{ν} ⊆ S(λ) 6= ∅.
Now we may assume that Σ(m) = 1, that is, m = pl ≤ pk for some integer l.

First suppose l = k. Since S(λ) 6= ∅ for all λ ` 10, we may assume pk ≥ 7. By

Proposition 5.17, if λ ∈ B2pk(2pk − 5) then S(λ) 6= 0 since Bpk(pk − 2) ⊂ ∆(pk).

Since S(λ) 6= ∅ if and only if S(λ′) 6= ∅, it remains to consider λ ` 2pk such that

λ1 ≥ 2pk − 4. If λ1 = 2pk − 4 then (α, α) ∈ S(λ) for some α ∈ {(pk − 2, 2), (pk − 2, 12)};

114



if λ1 ∈ {2pk − 3, 2pk − 2} then ((λ1 − pk, µ), (pk)) ∈ S(λ) where λ = (λ1, µ); and if

λ1 ≥ 2pk − 1 then ((pk), (pk)) ∈ S(λ).

Suppose finally that k > l. As above, |λ| > pl implies that there exists some

µ ∈ ∆(pl) such that [µ] ⊂ [λ]. Let ν ∈ LR([λ \µ]). If ν ∈ ∆(pk) then (µ, ν) ∈ S(λ) 6= ∅.
Otherwise, LR([λ \ µ]) ⊆ {(pk − 1, 1), (2, 1p

k−2)}. By Lemmas 5.19 and 2.8, we must

have

[λ \ µ] ∈ {[(pk − 1, 1)], [(pk − 1, 1)]◦, [(2, 1p
k−2)], [(2, 1p

k−2)]◦}.

Since k > l, we observe that [λ \ µ] 6∼= [(pk − 1, 1)]◦ and [λ \ µ] 6∼= [(2, 1p
k−2)]◦. Hence if

µ = (µ1, . . . , µs), we must have either

(a) λ = (µ1 + pk − 1, µ2 + 1, µ3, . . . , µs) and µ1 = µ2, or

(b) λ = (µ1, . . . , µs, 2, 1
pk−2) and µs ≥ 2.

However, any partition satisfying (b) is conjugate to a partition satisfying (a), so by

Lemma 2.2 it remains to consider only one of the two cases. Suppose we are in the

situation of case (a). Letting µ̃ = (µ1 + 1, µ2, . . . , µs−1, µs − 1), we have that (pk) ∈
LR([λ \ µ̃]). Moreover, µ1 = µ2 implies that µ̃ 6= (pl − 1, 1). Hence (µ̃, (pk)) ∈ S(λ)

unless µ̃ = (2, 1p
l−2). But in this case we would have µ = (1p

l

), λ = (pk, 2, 1p
l−2) and

therefore ((22, 1p
l−4), (pk − 2, 12)) ∈ S(λ) 6= ∅. Thus in all instances we have found a

suitable pair for λ ` n, and hence 〈χλ
y
Pn
,1Pn〉 > 0.

Finally, we conclude by verifying Theorem 5.1 for p = 3.

Proposition 5.21. Let p = 3. Then 〈χλ
y
Pn
,1Pn〉 = 0 if and only if n = 3k for some

k ∈ N and λ ∈ {(3k−1, 1), (2, 13k−2)}, or n ≤ 10 and λ is one of the following partitions:

(2, 2); (3, 2, 1); (5, 4), (24, 1), (4, 3, 2), (32, 2, 1); (5, 5), (25).

Proof. The same argument as in the proof of Proposition 5.20 shows that the assertion

holds for all n ∈ N divisible by 27. Since the assertion may be verified computationally

for n ≤ 27, it remains to consider n of the form 27t+ u where t, u ∈ N and u < 27.

Given λ ` n, it is clear that there exists µ ` 27t (and if 27t is a power of 3, say 3k,

we can further choose µ such that µ ∈ ∆(3k)) such that [µ] ⊂ [λ]. Let ν ∈ LR([λ \ µ]).

If u /∈ {3, 4, 6, 9, 10}, then

〈χλ
y
Pn
,1Pn〉 ≥ 〈χµ × χν

y
P27t×Pu

,1P27t×Pu〉 = 〈χµ
y
P27t

,1P27t
〉 · 〈χν

y
Pu
,1Pu〉 > 0.

From now on we may assume u ∈ {3, 4, 6, 9, 10}. Let λ = (λ1, . . . , λt) and let

T (3) = {(2, 1)}, T (4) = {(2, 2)}, T (6) = {(3, 2, 1)},

T (9) = {(8, 1), (5, 4), (4, 3, 2), (32, 2, 1), (24, 1), (2, 17)}, T (10) = {(5, 5), (25)}.
(5.1)

By Lemma 5.22 (below), there exists µ ∈ P(u) \ T (u) satisfying [µ] ⊂ [λ]. Thus, if

27t is not a power of 3 then we may take any ν ∈ LR([λ\µ]) to see that 〈χλ
y
Pn
,1Pn〉 ≥
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〈χµ
y
Pu
,1Pu〉 · 〈χν

y
P27t

,1P27t
〉 > 0.

So now we may assume 27t is a power of 3. Let 27t = 3k for some k ≥ 3. Tak-

ing µ ∈ P(u) \ T (u) such that [µ] ⊂ [λ], we may take any ν ∈ LR([λ \ µ]) to

see that 〈χλ
y
Pn
,1Pn〉 ≥ 〈χµ

y
Pu
,1Pu〉 · 〈χν

y
P27t

,1P27t〉 > 0, unless LR([λ \ µ]) ⊆
{(3k − 1, 1), (2, 13k−2)}.

Thus it remains to deal with the case LR([λ \ µ]) ⊆ {(3k − 1, 1), (2, 13k−2)}. By

Lemmas 5.19 and 2.8, [λ \ µ] ∈ {[(3k − 1, 1)], [(3k − 1, 1)]◦, [(2, 13k−2)], [(2, 13k−2)]◦}.
Recall that we have reduced to u ∈ {3, 4, 6, 9, 10}, so in particular u ≤ 10. Letting

µ = (µ1, . . . , µs), we must have either

(a) λ = (µ1 + 3k − 1, µ2 + 1, µ3, . . . , µs) and µ1 = µ2, or

(b) λ = (µ1, . . . , µs, 2, 1
p3−2) and µs ≥ 2.

However, any partition satisfying (b) is conjugate to a partition satisfying (a), so by

Lemma 2.2 it remains to consider only one of the two cases. Suppose we are in the

situation of case (a). If µ = (1u), then λ = (3k, 2, 1u−2) and χλ
y
P

3k
×Pu

has χ(3k−2,2) ×

χ(3,1u−3) as a constituent. Otherwise, χλ
y
P

3k
×Pu

has χγ × χ(u) as a constituent where

γ = (u1 + 3k − u, µ2, . . . , µs) ∈ ∆(3k).

Lemma 5.22. Let λ = (λ1, . . . , λt) be a partition such that |λ| ≥ 28. Let u ∈
{3, 4, 6, 9, 10} and let T (u) be as defined in (5.1). Then there exists µ ∈ P(u) \ T (u)

satisfying [µ] ⊂ [λ].

Proof. If u ∈ {3, 4, 6} then the assertion is clear since either λ1 ≥ u or t ≥ u, whence

[(u)] ⊆ [λ] or [(1u)] ⊆ [λ]. For u ∈ {9, 10}, we proceed with proof by contradiction:

suppose that [µ] ⊆ [λ] implies µ ∈ T (u) whenever µ is a partition of u.

If u = 9, then [(9)], [(19)], [(33)] 6⊆ [λ] so λ1 ≤ 8, λ3 ≤ 2 and t ≤ 8. Thus |λ| ≤
8 · 2 + 2 · 6 = 28 with equality if and only if λ = (82, 26), but (7, 2) ⊂ (82, 26).

Finally if u = 10, then [(10)], [(110)] 6⊆ [λ] so λ1 ≤ 9 and t ≤ 9. Since |λ| ≥ 28, we

must have λ4 ≥ 1. Since [(7, 13)] 6⊆ [λ], we have λ1 ≤ 6. Also λ3 ≤ 2 since [(33, 1)] 6⊆ [λ].

But then |λ| ≤ 6 · 2 + 2 · 7 < 28, a contradiction.

To conclude, we remark that we can in fact say more about the multiplicity with

which 1Pn appears in the restriction of irreducible characters of Sn, and hence about

the degrees of the irreducible representations of H(Sn, Pn,1Pn). If k ∈ N and λ ` pk+1,

and µ1, . . . , µp ` pk are not all equal and satisfy χµ1 × · · · × χµp | χλ
yS

pk+1

(S
pk

)×p , then

〈χλ
y
P
pk+1

,1P
pk+1
〉 ≥

p∏
i=1

〈χµi
y
P
pk
,1P

pk
〉.

This follows immediately from the proof of Proposition 5.16. Using this, one can for

instance compute when f(λ) = 1, where f is the function described in Question 5.3;

indeed, Theorem 5.1 determines precisely when f(λ) = 0.
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Chapter 6

Identifying linear constituents

in character restrictions

This chapter is based on joint work with Dr Eugenio Giannelli, and uses our new results

on Littlewood–Richardson coefficients in Section 5.2.

We describe the sets Ω(φ) introduced in Section 4.4 consisting of the irreducible

constituents of the induced character φ
xSn

, for all natural numbers n, primes p ≥ 5,

and linear characters φ of a Sylow p-subgroup Pn of the symmetric group Sn. We give

sharp bounds for Ω(φ) which afford an explicit, combinatorial description in terms of the

indexing set for φ ∈ Lin(Pn). This extends the work in Chapter 5, where we considered

only the trivial character φ = 1Pn .

6.1 Outline

Let p ≥ 5 be a prime and let Pn be a Sylow p-subgroup of Sn, for n ∈ N. For

φ ∈ Lin(Pn), recall from Section 4.4 that Ω(φ) := {χ ∈ Irr(Sn) : χ | φ
xSn}. By

identifying irreducible characters of symmetric groups with their indexing partitions,

throughout this chapter we view Ω(φ) as a subset of P(n). In other words, we set

Ω(φ) = {λ ` n : χλ | φ
xSn}.

We remark that Ω(φ) is closed under conjugation of partitions, by Lemma 2.2.

To describe Ω(φ), we first recall the notion Bn(m): this is the set of partitions λ ` n
whose Young diagrams fit inside an m ×m square grid. As we will see below, it turns

out that Ω(φ) is always of the form Bn(m) t B where B is small (or empty), and m is

a natural number depending on φ. In fact, every partition λ ∈ B satisfies m < λ1 ≤M
or m < l(λ) ≤M , where M ∈ N and M −m is small.

In order to formalise this description, we introduce some technical definitions. For a
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linear character φ of Pn, define

m(φ) = max{x ∈ N | Bn(x) ⊆ Ω(φ)} and M(φ) = min{x ∈ N | Ω(φ) ⊆ Bn(x)}.

When n = pk for some k ∈ N, recall that φ ∈ Lin(Pn) may be indexed as φ = φ(s)

where s runs over [p]k, with 1Pn corresponding to s = (0, . . . , 0). (Recall that if φ = 1P
pk

,

then M(φ) and m(φ) are already known, by Theorem 5.1.) For s 6= (0, . . . , 0), define

f(s) = min{i ∈ [k] | si 6= 0}.

Furthermore, if |{i ∈ [k] : si 6= 0}| ≥ 2, then define

g(s) = min{i > f(s) | si 6= 0}.

For arbitrary n ∈ N, Lin(Pn) = {φ(s) | s} as in (2.4). Throughout, if φ = φ(s) (for some

indexing label s), then we also refer to m(φ), M(φ) and Ω(φ) as m(s), M(s) and Ω(s)

respectively. The main result of this chapter is the following:

Theorem 6.1. Let p ≥ 5 be a prime. Let k ∈ N, and suppose φ = φ(s) ∈ Lin(Ppk) \
{1P

pk
}. Then M(φ) = pk − pk−f(s), and

m(φ) =

pk − pk−f(s) − 1 + δf(s),k if |{i ∈ [k] : si 6= 0}| = 1,

pk − pk−f(s) − pk−g(s) if |{i ∈ [k] : si 6= 0}| ≥ 2.

Let n ∈ N and suppose it has p-adic expansion n =
∑t
i=1 aip

ni , with 0 ≤ n1 < · · · < nt.

For φ = φ(s) = φ(s(1, 1))× · · · × φ(s(t, at)) ∈ Lin(Pn), we have

M(φ) =
∑
(i,j)

M(s(i, j)) and m(φ) =
∑
(i,j)

N(s(i, j)),

where the sums run over all i ∈ [t] and j ∈ [ai], and N(s(i, j)) is as in Definition 6.18

below.

Theorem 6.1 (combined with Theorem 5.1 for φ = 1Pn) shows that a large proportion

of P(n) is contained inside Ω(φ) for each φ ∈ Lin(Pn). Let Ωn be the intersection of

all the sets Ω(φ) where φ is free to run among the elements of Lin(Pn). A corollary of

Theorems 6.1 and 5.1 is the following:

Corollary 6.2.

lim
n→∞

|Ωn|
|P(n)|

= 1.

The structure of this chapter is as follows: in Section 6.2, we consider the case where

n is a power of the prime p, and in Section 6.3 we extend our scope to arbitrary natural

numbers n. The precise statements and proofs of the various parts of Theorem 6.1 can

be found as follows:
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· for n = pk, M(φ) is determined in Theorem 6.8;

· for n = pk, m(φ) is determined in Lemma 6.4, Theorem 6.10 and Lemma 6.12;

· for arbitrary n, M(φ) is determined in Theorem 6.17; and

· for arbitrary n, m(φ) is determined in Theorems 6.19 and 6.20.

A proof of Corollary 6.2 appears in Section 6.3.

6.2 Types of sequences

Throughout this section, fix a prime p ≥ 5. Let k ∈ N and let φ = φ(s) ∈ Lin(Ppk) for

some s ∈ [p]k. The aim of this section is to determine the following numbers:

m(s) = max{x ∈ N | Bpk(x) ⊆ Ω(s)} and M(s) = min{x ∈ N | Ω(s) ⊆ Bpk(x)}.

We have already determined these values when φ = 1P
pk

(corresponding to s =

(0, . . . , 0) ∈ [p]k) in Theorem 5.1, so we now treat the non-trivial linear characters of Ppk .

It will be useful to recall that whenever n ∈ N is not a power of p then Ω(1Pn) = P(n),

while if n = pk then Ω(1P
pk

) = P(pk) \ {(pk − 1, 1)}◦. In this section (Section 6.2),

when k ∈ N and s ∈ [p]k, we will assume that s = (s1, s2, . . . , sk) and denote by s− the

sequence (s1, s2, . . . , sk−1) ∈ [p]k−1.

After beginning with some useful lemmas, we determine M(s) and m(s) for sequences

s ∈ [p]k corresponding to non-trivial φ(s). From the results in this section, we will see

that the form of Ω(s) falls into four types (see Definition 6.14), and we summarise our

findings in Remark 6.15.

Lemma 6.3. Let x ∈ [p]. Then

Ω(x) =

P(p) \ {(p− 1, 1), (2, 1p−2)} if x = 0,

P(p) \ {(p), (1p)} = Bp(p− 1) if x ∈ [p− 1].

Proof. By Corollary 2.4, if λ is not a hook then χλ
y
Pp

is a multiple of the regular

character
∑p−1
i=0 φi of Pp; otherwise if λ is a hook of leg length l then χλ(1) =

(
p−1
l

)
≡

(−1)l (mod p). In particular, χλ(1) = 1 if and only if λ ∈ {(p), (1p)}, and χλ(1) = p−1

if and only if λ ∈ {(p− 1, 1), (2, 1p−2)}, so the assertion follows.

Lemma 6.4. Let k ∈ N0 and let s = (0, . . . , 0, x) ∈ [p]k+1 where x 6= 0. Then Ω(s) =

Bpk+1(pk+1 − 1). Moreover,
〈
χ(pk+1−1,1)

y
P
pk+1

, φ(s)
〉

= 1.

Proof. The assertion follows directly from Lemma 6.3 when k = 0. Now assume k ≥ 1,

so D(p, pk) = Bpk+1(pk+1 − 2) by Corollary 5.18. Let λ ∈ D(p, pk). Arguing exactly

as in the proof of Proposition 5.16, we see that 1B
xP is a direct summand of χλ

y
P

where P = Ppk+1 and B ∼= (Ppk)×p ≤ P . But 1B

xP =
∑
θ∈Irr(Pp) X (1P

pk
; θ) by
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Lemma 2.15, so setting θ = φx shows that φ(s) is an irreducible constituent of χλ
y
P

.

Hence D(p, pk) ⊆ Ω(s).

Since Ω(s) is closed under conjugation, in order to conclude that Ω(s) = Bpk+1(pk+1−
1) it remains to show (pk+1) /∈ Ω(s) and (pk+1−1, 1) ∈ Ω(s). Clearly if λ = (pk+1) then

χλ
y
P

= 1P 6= φ(s), so (pk+1) /∈ Ω(s). On the other hand, if λ = (pk+1 − 1, 1), then by

Theorem 2.20, χλ
yS

pk+1

S
pk
oSp

contains X ((pk); ν) as a constituent for some ν ∈ {(p−1, 1)}◦.
But then

X ((pk); ν)
yS

pk
oSp

P
= X

(
χ(pk)

yS
pk

P
pk

;χν
ySp

Pp

)
=

p−1∑
z=1

X (1P
pk

;φz).

This shows that φ(s) is an irreducible constituent of χλ
y
P

. Hence (pk+1 − 1, 1) ∈ Ω(s).

Keeping λ = (pk+1 − 1, 1), we now wish to show that 〈χλ
y
P
, φ(s)〉 = 1. Let H ∼=

(Spk)×p with B ≤ H. From [32, Lemma 3.2] and the Littlewood–Richardson rule we

see that χλ
y
H

= (p− 1)1H + Θ, where

Θ = (χµ×1×· · ·×1) + (1×χµ×· · ·×1) + · · ·+ (1×· · ·×1×χµ) and µ = (pk− 1, 1).

(Here 1 denotes 1S
pk

.) Since we already know that X ((pk); ν) is a constituent of

χλ
y
S
pk
oSp

, then by the description of Irr(Spk o Pp) from Section 2.3,

χλ
y
S
pk
oPp

=

p−1∑
i=1

X (1S
pk

;φi) + (χµ × 1× · · · × 1︸ ︷︷ ︸
=:α

)
xS

pk
oPp

H
.

Finally, 〈X (1S
pk

;φi), φ(s)〉 = 〈X (φ(s−), φi),X (φ(s−), φx)〉 = δix, and

〈α
xS

pk
oPp

H

y
P
, φ(s)〉 = 〈α

y
B

xP , φ(s)〉 = 〈α
y
B
, φ(s)

y
B
〉 = 〈χµ

y
P
pk
,1P

pk
〉 = 0,

by Lemma 2.16 and Theorem 5.1. Since x ∈ [p−1], we deduce that 〈χλ
y
P
, φ(s)〉 = 1.

Next, recall the notation D(q, y,B) from Definition 5.10. This allows us to relate the

sets Ω(s−) and Ω(s), for φ(s) ∈ Lin(Ppk) and k ∈ N≥2.

Lemma 6.5. Let k ∈ N≥2, s = (s1, . . . , sk) ∈ [p]k and let s− = (s1, . . . , sk−1). Then

D(p, pk−1,Ω(s−)) ⊆ Ω(s).

Proof. We consider the following subgroups of Spk : let P = Ppk = Ppk−1 o Pp. Let B =

(Ppk−1)×p be the base group of the wreath product P , and let H = (Spk−1)×p ≤ Spk

naturally contain B. Let W = BH = H o Pp ≤ Spk , so W ∼= Spk−1 o Pp.
Let λ ∈ D(p, pk−1,Ω(s−)), so χλ

y
H

has a constituent ψ := χµ1 × · · · ×χµp ∈ Irr(H)

such that the partitions µi ` pk−1 are not all equal, and µi ∈ Ω(s−) for all i ∈ [p]. Since

χλ ∈ Irr(Spk | ψ), there exists χ ∈ Irr(W | ψ) such that χ is a constituent of χλ
y
W

.

Since µ1, . . . , µp are not all equal, then χ = ψ
xW
H

by the description of Irr(Spk o Pp) in
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Section 2.3. It is clear that PH = W , so χ
y
P

= ψ
y
B

xP by Lemma 2.16. Moreover,

ψ
y
B

= χµ1
y
P
pk−1
×· · ·×χµp

y
P
pk−1

, so φ(s−)×p is a constituent of ψ
y
B

since µi ∈ Ω(s−)

for all i ∈ [p]. Thus φ(s−)×p
xP is a direct summand of χλ

y
P

.

But by Lemma 2.15, φ(s−)×p
xP =

∑
θ∈Irr(Pp) θ(1) · X (φ(s−); θ), so taking θ = φsk

shows that φ(s) = X (φ(s−);φsk) is a constituent of χλ
y
P

. Thus λ ∈ Ω(s), which

concludes the proof.

It turns out that the leading non-zeros in the sequence s govern the form of Ω(s),

the set of irreducible constituents of φ(s)
xS

pk . In order to describe m(s) and M(s), we

give the following definition, recalling f(s) and g(s) from Section 6.1.

Definition 6.6. Let k ∈ N and s ∈ [p]k.

• For z ∈ {0, 1, . . . , k}, let Uk(z) = {s ∈ [p]k : |{i ∈ [k] : si 6= 0}| = z}. Note U0(z)

is empty for z ∈ N, and U0(0) = {∅}.

• If s ∈ Uk(z) where z ≥ 1, then define f(s) = min{i ∈ [k] | si 6= 0}.

• If s ∈ Uk(z) where z ≥ 2, then define g(s) = min{i > f(s) | si 6= 0} and set

η(s) = pk − pk−f(s) − pk−g(s).

First, we determine the value of M(s).

Proposition 6.7. Let k ∈ N, and let s ∈ [p]k \ Uk(0). Then Ω(s) ⊆ Bpk(pk − pk−f(s)),

that is, M(s) ≤ pk − pk−f(s).

Proof. We proceed by induction on k − f(s). The base case f(s) = k follows from

Lemma 6.4. Now suppose f(s) < k and consider s−. In particular, f(s) = f(s−). Let

λ /∈ Bpk(pk − pk−f(s)), so we may without loss of generality assume

λ1 > pk − pk−f(s) = p(pk−1 − pk−1−f(s−)).

Then for each irreducible constituent χµ1 × · · · × χµp of χλ
y

(S
pk−1 )×p

(so each µi is a

partition of pk−1), by the Littlewood–Richardson rule there exists some 1 ≤ i ≤ p such

that (µi)1 > pk−1 − pk−1−f(s−). Thus by the inductive hypothesis µi /∈ Ω(s−), since

µi /∈ Bpk−1(pk−1 − pk−1−f(s−)).

Suppose that λ ∈ Ω(s), so then φ(s)
y

(P
pk−1 )×p

= φ(s−)×p is a constituent of

χλ
y

(P
pk−1 )×p

. Since φ(s−)×p is irreducible, it must therefore be a constituent of

χµ1
y
P
pk−1

× · · · × χµp
y
P
pk−1

for some χµ1×· · ·×χµp as described above. In particular, this implies that µ1, . . . , µp ∈
Ω(s−), a contradiction. Hence λ /∈ Ω(s), and so P(pk) \ Bpk(pk − pk−f(s)) ⊆ P(pk) \
Ω(s).

Theorem 6.8. Let k ∈ N, and let s ∈ [p]k \ Uk(0). Then M(s) = pk − pk−f(s).
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Proof. It remains to exhibit a partition λ ∈ Ω(s) such that λ1 = pk − pk−f(s), since

we already know by Proposition 6.7 that Ω(s) ⊆ Bpk(pk − pk−f(s)). We proceed by

induction on k − f(s). For the base case f(s) = k, we have Ω(s) = Bpk(pk − 1) from

Lemma 6.4, which implies that λ = (pk − 1, 1) ∈ Ω(s).

Now suppose f(s) < k and consider s−. In particular, f(s) = f(s−). There exists

some partition µ = (µ1, . . . , µm) ∈ Ω(s−) such that µ1 = pk−1 − pk−1−f(s−), by the

inductive hypothesis. First suppose sk 6= 0. Let

λ = (pµ1, pµ2, . . . , pµm−1, p(µm − 1) + p− 1, 1).

Then by Theorem 2.21, X
(
µ; (p− 1, 1)

)
is a constituent of χλ

yS
pk

S
pk−1 oSp

, whence

X
(
µ; (p− 1, 1)

)y
P
pk

∣∣∣ χλy
P
pk
.

Observe that

X
(
µ; (p− 1, 1)

)y
P
pk

= X
(
χµ
yS

pk−1

P
pk−1

;χ(p−1,1)
ySp

Pp

)
=

p−1∑
i=1

X
(
χµ
yS

pk−1

P
pk−1

;φi
)
,

and X (φ(s−);φi) is a summand of X (χµ
yS

pk−1

P
pk−1

;φi) since µ ∈ Ω(s−). Since sk 6= 0, we

see therefore that

φ(s) = X (φ(s−);φsk)
∣∣∣ X (µ; (p− 1, 1))

y
P
pk

∣∣∣ χλy
P
pk
.

Thus λ ∈ Ω(s), and λ1 = pµ1 = pk − pk−f(s).

Otherwise, suppose sk = 0. Let

λ = (pµ1, pµ2, . . . , pµm−1, p(µm − 1) + p).

Then by Theorem 2.21, X
(
µ; (p)

)
is a constituent of χλ

yS
pk

S
pk−1 oSp

, whence

X
(
µ; (p)

)y
P
pk

∣∣ χλy
P
pk
.

But X
(
µ; (p)

)y
P
pk

= X
(
µ
yS

pk−1

P
pk−1

;1Pp
)

contains X
(
φ(s−);φ0

)
as a summand, since

µ ∈ Ω(s−). Hence

φ(s) = X
(
φ(s−);φsk

) ∣∣∣ X (µ; (p))
y
P
pk

∣∣∣ χλy
P
pk
.

Thus λ ∈ Ω(s), and λ1 = pµ1 = pk − pk−f(s).

Next, we determine the value of m(s). We prove more, in fact, about the structure

of Ω(s).

Definition 6.9. We say that a partition λ is thin if λ is a hook, l(λ) ≤ 2, or λ1 ≤ 2.
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Theorem 6.10. Let m, k ∈ N with 2 ≤ m ≤ k. Let s ∈ Uk(m). Then

(i) m(s) = η(s);

(ii) Ω(s) \ Bpk(η(s)) contains no thin partitions;

(iii) Ω(s) ∩ {λ ∈ P(pk) | λ1 = M(s)}◦ = {(M(s), µ) | µ ∈ Ω(sf(s)+1, . . . , sk)}◦; and

(iv) 〈χλ
y
P
pk
, φ(s)〉 ≥ 2 for all λ ∈ {(η(s), pk − η(s)), (η(s), 1p

k−η(s))}◦.

We remark that the value ofm(s) for s ∈ Uk(1) is determined in Lemmas 6.4 and 6.12.

We first show that statement (iii) of Theorem 6.10 holds.

Lemma 6.11. Let k,m ∈ N, and let s ∈ Uk(m) be such that f(s) < k. Then

Ω(s) ∩ {λ ` pk | λ1 = M(s)}◦ = {(M(s), µ) | µ ∈ Ω(sf(s)+1, . . . , sk)}◦.

In particular, if m ≥ 2 then Ω(s) ∩ {λ ` pk|λ1 = M(s)}◦ contains no thin partitions.

Proof. Let f = f(s), t = (s1, . . . , sf ) and u = (sf+1, . . . , sk). Let W = Spf oSpk−f ≤
Spk and let Y be the base group of the wreath product W , namely Y = (Spf )×p

k−f ≤
W . Let P = Ppk , and note that since P = Ppf o Ppk−f we have that P ≤W . Finally we

denote by B the base group of P , that is, B = (Ppf )×p
k−f ≤ Y .

Let λ = (M(s), µ) ∈ P(pk), for some µ ∈ P(pk−f ). It suffices to prove the following

two statements:

(i)
〈
χλ
y
P
, φ(s)

〉
=
〈
X ((pf − 1, 1);µ)

y
P
, φ(s)

〉
; and

(ii)
〈
X ((pf − 1, 1);µ)

y
P
, φ(s)

〉
> 0 if and only if µ ∈ Ω(u).

The first assertion of the lemma then follows, since Ω(s) is closed under conjugation.

The second statement follows simply from the observation that if m ≥ 2 then u 6=
(0, . . . , 0) ∈ [p]k−f , and hence {(pk−f ), (1p

k−f
)} ∩ Ω(u) = ∅.

We now prove (i) and (ii). For convenience, let α = (pf − 1, 1) and q = pk−f .

(i) By Theorem 6.8, M(s) = pk − pk−f = q(pf − 1). Hence for µ1, . . . , µq ` pf , if

cλµ1,...,µq > 0 then either µ1 = · · · = µq = α or there exists j ∈ [q] such that µj = (pf ).

Since (pf ) /∈ Ω(t) by Lemma 6.4, it follows that

〈
χλ
y
B
, φ(t)×q

〉
=
〈
χλ
y
Y
, (χα)×q

〉
·
〈
(χα)×q

y
B
, φ(t)×q

〉
.

Moreover, by Lemma 2.11 we have that

〈
χλ
y
Y
, (χα)×q

〉
= cλα,...,α = cµ(1),...,(1) = χµ(1),

and thus
〈
χλ
y
B
, φ(t)×q

〉
= χµ(1) ·

(
〈χα

y
P
pf
, φ(t)〉

)q
. By Theorem 2.21 we know that

X (α;µ) is an irreducible constituent of χλ
y
W

. Moreover,

〈
X (α;µ)

y
Y
, (χα)×q

〉
= χµ(1).
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Writing χλ
y
W

= X (α;µ) + ∆ for some character ∆ of W , and X (α;µ)
y
Y

= χµ(1) ·
(χα)×q + θ for some character θ of Y , we have that

〈χλ
y
B
, φ(t)×q〉 = 〈X (α;µ)

yW
B
, φ(t)×q〉+ 〈∆

yW
B
, φ(t)×q〉

= χµ(1) ·
(
〈χα

y
P
pf
, φ(t)〉

)q
+ 〈θ

yY
B
, φ(t)×q〉+ 〈∆

yW
B
, φ(t)×q〉,

and therefore

〈θ
yY
B
, φ(t)×q〉 = 〈∆

yW
B
, φ(t)×q〉 = 0.

Letting c = 〈∆
yW
P
, φ(s)〉, then since φ(s)

yP
B

= φ(t)×q, we have that

0 = 〈∆
yW
B
, φ(t)×q〉 ≥ c〈φ(s)

yP
B
, φ(t)×q〉 = c,

from which we conclude c = 0. Thus
〈
χλ
y
P
, φ(s)

〉
=
〈
X (α;µ)

y
P
, φ(s)

〉
.

(ii) Now let γ = χα
yS

pf

P
pf

. By Lemma 6.4, 〈γ, φ(t)〉 = 1. Moreover, we observe that

X (α;µ)
y
P

= X (α;µ)
yS

pf
oSq

P
pf
oPq

= X (γ;χµ
ySq

Pq
) =

∑
τ∈Irr(Pq)

〈χµ
y
Pq
, τ〉 · X (γ; τ).

Since φ(s) = X (φ(t);φ(u)), we have that

〈X (α;µ)
y
P
, φ(s)〉 =

∑
τ∈Irr(Pq)

〈χµ
y
Pq
, τ〉 · 〈X (γ; τ), φ(s)〉

=
∑

τ∈Irr(Pq)

〈χµ
y
Pq
, τ〉 · δφ(u),τ = 〈χµ

y
Pq
, φ(u)〉,

by Lemma 2.19. By definition of Ω(u), 〈χµ
y
Pq
, φ(u)〉 > 0 if and only if µ ∈ Ω(u).

Recall that η(s) was defined in Definition 6.6 for sequences s ∈ [p]k containing at

least two non-zero entries.

Lemma 6.12. Let k ∈ N, s ∈ Uk(1) and x ∈ [p]. Let f = f(s). Then

(a) Ω(s, x) = Bpk+1(pk+1−pk+1−f−1)t{(pk+1−pk+1−f , µ) : µ ∈ Ω(sf+1, . . . , sk, x)}◦;

(b) moreover, if x 6= 0 and λ ∈ {(η(s, x), pk+1−f + 1), (η(s, x), 1p
k+1−f+1)}◦, then

〈χλ
y
P
pk+1

, φ(s, x)〉 ≥ 2.

Proof. (a) Let f = f(s), t = (s1, . . . , sf ) and u = (sf+1, . . . , sk). We proceed by

induction on k and distinguish between two cases depending on the value of sk.

Case 1. First suppose that sk 6= 0. In particular, f = k. Then Ω(s) = Bpk(pk − 1), by

Lemma 6.4. By Proposition 5.12, we deduce that

Bpk+1(pk+1 − p− 1) ⊆ D
(
p, pk,Bpk(pk − 1)

)
,

so by Lemma 6.5 we find that Bpk+1(pk+1−p−1) ⊆ Ω(s, x) for all x ∈ [p]. On the other
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hand, by Theorem 6.8 we know that Ω(s, x) ⊆ Bpk+1(pk+1 − p). Hence pk+1 − p − 1 ≤
m(s, x) ≤ pk+1 − p. The statement (a) now follows directly from Lemma 6.11.

In particular, we observe that we did not need to use an inductive hypothesis in Case

1. Moreover, we showed that the base case k = 1 of our induction holds.

Case 2. Now suppose that sk = 0 (so necessarily k ≥ 2). Then f(s−) = f ∈ [k− 1], and

by the inductive hypothesis applied to s = (s−, sk) we have that

Ω(s) = Bpk(pk − pk−f − 1) t {(pk − pk−f , µ) | µ ∈ Ω(u)}◦. (6.1)

By Proposition 5.12 and Lemma 6.5, we deduce that

Bpk+1(pk+1− pk+1−f − p− 1) ⊆ D
(
p, pk,Bpk(pk − pk−f − 1)

)
⊆ D(p, pk,Ω(s)) ⊆ Ω(s, x).

We now want to show that for all r ∈ {0, 1, . . . , p − 1} and all µ ` pk+1−f + p − r,

the partition λ := (pk+1 − pk+1−f − p + r, µ) belongs to Ω(s, x). This would allow

us to conclude that Bpk+1(pk+1 − pk+1−f − 1) ⊆ Ω(s, x), since Ω(s, x) is closed under

conjugation.

If r = 0 then µ ` pk+1−f+p. Since Ω(u) = P(pk−f )\{(pk−f−1, 1)}◦ by Theorem 5.1,

there certainly exists a partition ν1 ∈ Ω(u) such that ν1 ⊆ µ. Hence there exist partitions

ν2 ` pk−f + 2 and ν3, . . . , νp ` pk−f + 1 such that cµν1,...,νp > 0. By Lemma 2.11 we

deduce that

cλ(pk−pk−f ,ν1),(pk−pk−f−2,ν2),(pk−pk−f−1,ν3),...,(pk−pk−f−1,νp) = cµν1,...,νp > 0.

Since p ≥ 5 and f ∈ [k−1], we have that pk−f+2 ≤ pk−pk−f−2, whence (pk−pk−f , ν1),

(pk−pk−f−2, ν2) and (pk−pk−f−1, νi) for all i ∈ {3, . . . , p} are all partitions. Moreover,

they belong to Ω(s) by (6.1), so by Lemma 6.5 we conclude that λ ∈ D(p, pk,Ω(s)) ⊆
Ω(s, x), for all x ∈ [p].

If r ∈ [p − 1] then µ ` pk+1−f + p − r and there exists a partition ν ` rpk−f such

that ν ⊆ µ. (If r = 1 then we choose ν ∈ Ω(u); this is possible by Theorem 5.1.)

By Theorem 5.1 we know that the trivial character of Prpk−f is an irreducible con-

stituent of χν
y
P
rpk−f

. Thus there exist ν1, . . . , νr ∈ Ω(u) such that cνν1,...,νr > 0, since

φ(u) = 1P
pk−f

. Moreover, there exist partitions νr+1, . . . , νp ` pk−f + 1 such that

cµν1,...,νr,νr+1,...,νp > 0. Using Lemma 2.11 we deduce that

cλ(pk−pk−f ,ν1),...,(pk−pk−f ,νr),(pk−pk−f−1,νr+1),...,(pk−pk−f−1,νp) = cµν1,...,νp > 0.

Note that (pk − pk−f , νi) for i ∈ [r] and (pk − pk−f − 1, νj) for j ∈ {r + 1, . . . , p} are

indeed partitions as pk−f + 1 ≤ pk − pk−f − 1. Moreover, they belong to Ω(s) by (6.1),

so λ ∈ D(p, pk,Ω(s)) ⊆ Ω(s, x) for all x ∈ [p], by Lemma 6.5.

Thus we have shown that Bpk+1(pk+1−pk+1−f−1) ⊆ Ω(s, x) for all x. The statement

(a) now follows from Lemma 6.11, since M(s, x) = pk+1 − pk+1−f by Theorem 6.8.
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(b) We turn to the proof of statement (b). Let t = (s, x) and observe that f(t) = f(s) =

f . Let P = Ppk+1 = Ppk o Pp and let B be its base group, namely P = B o Pp and

B ∼= (Ppk)×p. Let Y = (Spk)×p be the Young subgroup of Spk+1 naturally containing

B. We define two further subgroups of Spk+1 as follows: H := Y oSp
∼= Spk oSp and

W := Y o Pp ∼= Spk o Pp. Clearly P ≤W ≤ H.

First, we let λ = (η(t), pk+1 − η(t)) and define µ, ν ` pk as follows:

µ = (pk − pk−f , pk−f ) and ν = (pk − pk−f − 1, pk−f + 1).

Note µ, ν ∈ Ω(s) (by part (a) of the present lemma if f < k, and by Lemma 6.4 if

f = k). Moreover, it is easy to see that letting µ1 = · · · = µp−1 = µ, we have that

cλµ1,...,µp−1,ν = 1. Since θ := (χµ)×(p−1) × χν is an irreducible constituent of χλ
y
Y

,

there exists ρ ∈ Irr(W |θ) such that ρ | χλ
y
W

. But µ 6= ν, so by the description of

Irr(Spk o Pp) in Section 2.3, we have that ρ = θ
xW
Y

. From Lemma 2.16, we see that

ρ
y
P

= θ
y
B

xP , which has φ(s)×p
xP as a direct summand, and hence 〈ρ

y
P
, φ(t)〉 ≥ 1

by Lemma 2.15 since φ(t) = X (φ(s);φx). On the other hand, X (µ; (p − 1, 1)) | χλ
y
H

by [9, Theorem 1.5]. Thus β := X (µ;φx) is an irreducible constituent of χλ
y
W

, since

χ(p−1,1)
ySp

Pp
=
∑p−1
i=1 φi, and clearly 〈β

y
P
, φ(t)〉 ≥ 1. Since ρ 6= β are both irreducible,

we find that

〈χλ
y
P
, φ(t)〉 ≥ 〈ρ

y
P
, φ(t)〉+ 〈β

y
P
, φ(t)〉 ≥ 2.

For λ = (η(t), 1p
k+1−η(t)), a similar argument using µ = (pk − pk−f , 1p

k−f
) and

ν = (pk − pk−f − 1, 1p
k−f+1), and using Theorem 2.20 to show that X (µ; τ) | χλ

y
H

for

some τ ∈ {(p− 1, 1)}◦ shows that 〈χλ
y
P
, φ(t)〉 ≥ 2.

Finally, since χλ
y
P

= χλ
′y
P

, statement (b) follows.

Remark 6.13. If s ∈ Uk(2) and sk 6= 0, then Lemma 6.12 shows that Ω(s) \ Bpk(pk −
pk−f(s) − 1) contains no thin partitions. This follows from the observation that

(pk−f(s)), (1p
k−f(s)

) /∈ Ω(sf(s)+1, . . . , sk) = Bpk−f (pk−f − 1),

by Lemma 6.4. ♦

We are now ready to prove Theorem 6.10.

Proof of Theorem 6.10. We proceed by induction on k, where the base case is k = 2.

If either k = 2, or k ≥ 3, m = 2 and sk 6= 0 (so s− ∈ Uk−1(1)), then statements (i)

and (iii) follow from Lemma 6.12 (a), statement (ii) from Remark 6.13, and statement

(iv) from Lemma 6.12 (b).

Suppose now that m ≥ 3, or that m = 2 and sk = 0 (so necessarily k ≥ 3). Then

s− ∈ Uk−1(m′) where m′ ≥ 2. Also f(s−) = f(s) =: f ∈ [k − 1]. By the inductive

hypothesis, we have that

Ω(s−) = Bpk−1(η(s−)) tA(s−) t {(pk−1 − pk−1−f , µ) : µ ∈ Ω(sf+1, . . . , sk−1)}◦,
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where A(s−) := Ω(s−)∩{λ ` pk−1 : η(s−) < λ1 < M(s−)}◦ contains no thin partitions.

By Proposition 5.12 and Lemma 6.5, we deduce that

Bpk(pη(s−)− 1) ⊆ D
(
p, pk−1,Bpk−1(η(s−))

)
⊆ D

(
p, pk−1,Ω(s−)

)
⊆ Ω(s).

Note that η(s) = pη(s−), so letting ρ(s) = pk − η(s) and ρ(s−) = pk−1 − η(s−), we also

have ρ(s) = pρ(s−).

Let λ = (η(s), µ) for some µ ` ρ(s). If µ /∈ {(ρ(s))}◦, then by Proposition 5.12

there exist ν1, . . . , νp ` ρ(s−), not all equal, such that cµν1,...,νp > 0. Indeed, µ ∈
Bρ(s)(ρ(s)− 1) ⊆ D

(
p, ρ(s−),P(ρ(s−))

)
. Hence by Lemma 2.11 we have that

cλ(η(s−),ν1),...,(η(s−),νp) = cµν1,...,νp > 0.

Notice that (η(s−), νi) is indeed a partition for all i, and in fact belongs to Ω(s−), since

η(s−) ≥ 1 + ρ(s−) follows from f ≥ 1, g ≥ 2 and k ≥ 3. Hence λ ∈ D(p, pk−1,Ω(s−)) ⊆
Ω(s), by Lemma 6.5.

Otherwise if µ ∈ {(ρ(s)), (1ρ(s))}, then λ ∈ {λ0, λ1} where λ0 = (η(s), ρ(s)) and

λ1 = (η(s), 1ρ(s)). Let ν ` pk−1 be the partition defined as follows:

ν = ν(λi) =

(η(s−), ρ(s−)) if i = 0,

(η(s−), 1ρ(s
−)) if i = 1.

With ν thus defined, let H = Spk−1 oSp and let X ∈ Irr(H) be defined as follows:

X = X (λi) =

X
(
ν(λi); (p)

)
if i = 0,

X
(
ν(λi);α

)
if i = 1,

where α ∈ {(p), (1p)} is chosen such that X (λ1) | χλ1y
H

, according to Theorem 2.20.

Moreover, X (λ0) | χλ0y
H

, by Theorem 2.21. By the inductive hypothesis, we know that

〈χν(λi)
y
P
pk−1

, φ(s−)〉 ≥ 2 for i ∈ {0, 1}. Hence from Lemma 2.18 we deduce that

〈χλ
iy
P
pk
, φ(s)〉 ≥ 〈X (λi)

y
P
pk
, φ(s)〉 ≥ 2.

This shows at once that η(s) ≤ m(s), since Ω(s)◦ = Ω(s) so Bpk(η(s)) ⊆ Ω(s), and also

that statement (iv) holds, since χλ
y
P
pk

= χλ
′y
P
pk

.

Next, we turn to the proof of statement (ii). In particular, statement (i) that m(s) =

η(s) then follows immediately, since (ii) implies (η(s) + 1, pk − η(s) − 1) /∈ Ω(s), for

instance. In order to prove (ii), it suffices to consider partitions λ ` pk such that

λ1 > η(s), since Ω(s)◦ = Ω(s).

Let x ∈ {1, 2, . . . , pk−g(s)} and first let λ = (η(s)+x, ρ(s)−x). (We remark that x is

chosen so that λ1 varies between η(s)+1 and M(s).) Since λ1 > η(s) = pη(s−), we have

that for any sequence of partitions (µ1, . . . , µp) ∈ P(pk−1)×p such that cλµ1,...,µp > 0,
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there exists j ∈ [p] such that (µj)1 > η(s−). Moreover, µj ⊆ λ so l(µj) ≤ 2, and

thus µj /∈ Ω(s−) by the inductive hypothesis. Letting B = (Ppk−1)×p, we deduce that

〈χλ
y
B
, φ(s−)×p〉 = 0, and therefore that λ /∈ Ω(s).

To conclude the proof of (ii), it remains to consider λ = (η(s) + x, 1ρ(s)−x). In this

case λ /∈ Ω(s) follows from a similar argument, noticing instead that since λ is a hook

then µ1, . . . , µp ⊆ λ must also be hooks. Thus we have proven statement (ii), and as

described previously also statement (i).

Finally, statement (iii) follows from Lemma 6.11, since f(s) < k.

We conclude this section by introducing the following definition, which allows us to

summarise the values of m(s) obtained thus far, and will be useful for our discussion in

the next section. Recall the notation Uk(z), f(s) and η(s) from Definition 6.6.

Definition 6.14. Let k ∈ N and s ∈ [p]k. The type of the sequence s is the number

τ(s) ∈ {1, 2, 3, 4} defined as follows:

τ(s) =



1 if s ∈ Uk(0),

2 if s ∈ Uk(1) and sk = 0,

3 if s ∈ Uk(1) and sk 6= 0,

4 if s ∈ Uk(z) for some z ≥ 2.

Remark 6.15. We collect here a description of m(s) for s ∈ [p]k, k ∈ N, depending on

the type of s:

m(s) =



pk − 2 if τ(s) = 1,

pk − pk−f(s) − 1 if τ(s) = 2,

pk − 1 if τ(s) = 3,

η(s) if τ(s) = 4.

If τ(s) ∈ {1, 2, 3} then we have a complete description of Ω(s), namely

Ω(s) =


Bpk(m(s)) ∪ {(pk)}◦ if τ(s) = 1,

Bpk(m(s)) ∪ {(m(s) + 1, µ) : µ ∈ Ω(1P
pk−f(s)

)}◦ if τ(s) = 2,

Bpk(m(s)) if τ(s) = 3,

If τ(s) = 4, then Ω(s) \ Bpk(m(s)) contains no thin partitions by Theorem 6.10 .

For convenience, when k = 0 and s is the empty sequence we set τ(s) = 1, though

notice m(s) = pk = 1 as Ω(s) = P(1).

Finally, we remark that for all k ∈ N0, we have that m(s) > pk

2 for s ∈ [p]k of all

types. ♦

128



6.3 Bounding Ω(φ)

Let p ≥ 5 be a prime. Following on from the previous section, the aim of the present

section is to determine the numbers m(φ) and M(φ) for all φ ∈ Lin(Pn) where n is now

an arbitrary natural number.

Let n ∈ N and let n =
∑t
j=1 ajp

nj be its p-adic expansion, where 0 ≤ n1 < · · · < nt.

Recall that we may write φ = φ(s) = φ(s(1, 1))× · · · × φ(s(t, at)) as in (2.4), and recall

the operator ? from Section 2.2.1.

Lemma 6.16. For all n ∈ N and φ(s) ∈ Lin(Pn),

Ω(s) = Ω(s(1, 1)) ? · · · ? Ω(s(i, j)) ? · · · ? Ω(s(t, at)).

Proof. Since φ(s) = φ(s(1, 1))×· · ·×φ(s(t, at)), the statement follows from the definitions

of Ω and ? by considering the chain of subgroups

Sn ≥ (Spn1 )×a1 × · · · × (Spnt )
×at ≥ (Ppn1 )×a1 × · · · × (Ppnt )

×at = Pn.

Theorem 6.17. For all n ∈ N and φ(s) ∈ Lin(Pn), M(s) =
∑

(i,j)M(s(i, j)).

Proof. Let M :=
∑

(i,j)M(s(i, j)). For k ∈ N0 and s ∈ [p]k, we have that M(s) =

pk−pk−f(s) by Theorem 6.8 if s 6= (0, . . . , 0), and M(0, . . . , 0) = pk since χ(pk) = 1S
pk
∈

Ω(0, . . . , 0) = Ω(1P
pk

). Hence M(s(i, j)) > pni/2 for all (i, j), so by Lemma 6.16 and

Proposition 5.7 we have that

Ω(s) = Ω(s(1, 1)) ? · · · ? Ω(s(t, at))

⊆ Bpn1

(
M(s(1, 1))

)
? · · · ? Bpnt

(
M(s(t, at))

)
= Bn(M).

Thus M(s) ≤M .

On the other hand, let λ(i,j) ∈ Ω(s(i, j)) be such that λ
(i,j)
1 = M(s(i, j)) for each

(i, j) (this is possible since Ω(s(i, j)) is closed under conjugation). Set λ = λ(1,1) + · · ·+
λ(t,at), so the iterated Littlewood–Richardson coefficient cλ

λ(1,1),...,λ(t,at)
= 1. Hence λ ∈

Ω(s(1, 1)) ? · · · ? Ω(s(t, at)) = Ω(s), but also λ1 =
∑

(i,j) λ
(i,j)
1 = M , so M(s) ≥M .

The rest of this section is devoted to the determination of m(φ) for all φ ∈ Lin(Pn)\
{1Pn}, since the result for φ = 1Pn follows from Theorem 5.1. To simplify notation, we

let R =
∑t
j=1 aj and let {s1, . . . , sR} = {s(i, j) | i ∈ [t], j ∈ [ai]} as multisets. We let

kj be the length of sj , so {k1, . . . , kR} = {n1, . . . , nt} and |{j ∈ [R] | kj = ni}| = ai.

Where φ = φ(s) and s is identified with {s1, . . . , sR} as above, we also denote m(φ) or

m(s) by m(s1, . . . , sR). Note that the order of s1, . . . , sR does not matter in determining

m(φ) by Lemma 4.5, since if two linear characters of Pn are NSn(Pn)–conjugate then

their inductions to Sn are equal (Lemma 4.2). Thus we may without loss of generality

permute the si freely in our arguments.
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Since Pn is trivial whenever n < p, from now on we may assume that n ≥ p.

Moreover, we may assume that R ≥ 2 since the case of R = 1 is treated in Section 6.2.

Fix some φ ∈ Lin(Pn) with corresponding sequences {s1, . . . , sR} as described above.

Furthermore, we assume for the rest of this section that there exists some i ∈ [R] such

that τ(si) 6= 1, since φ 6= 1Pn . We wish to express m(φ) in terms of the quantities

m(s1),m(s2), . . . ,m(sR) that we determined in Section 6.2. In order to do this, we give

the following definition.

Definition 6.18. Let k ∈ N0 and s ∈ [p]k. The integer N(s) is defined as follows:

N(s) =


pk if τ(s) = 1,

m(s) + 1 if τ(s) = 2,

m(s) if τ(s) ∈ {3, 4}.

(Note that if k = 0, then s is the empty sequence and N(s) = pk = 1.)

For φ ∈ Lin(Pn) as described above, let N(φ) be defined as follows:

N(φ) =

R∑
j=1

N(sj).

We are now ready to describe m(φ). This is done in the following two theorems,

whose proofs appear in the next and final section of this chapter.

Theorem 6.19. Let n ∈ N and φ ∈ Lin(Pn) be as described above. Suppose that

τ(si) = 4 for some i ∈ [R]. Then

(i) m(φ) = N(φ), and

(ii) Ω(φ) \ Bn(m(φ)) contains no thin partitions.

If no sequence si is of type 4, then we can in fact completely describe Ω(φ).

Theorem 6.20. Let n ∈ N and φ ∈ Lin(Pn) be as described above. Suppose that

τ(si) 6= 4 for all i ∈ [R]. Then

Ω(φ) = Bn(N(φ)),

unless

|{i ∈ [R] | τ(si) = j}| =


R− 1 if j = 1,

1 if j = 2,

0 if j ∈ {3, 4},

in which case

Ω(φ) = Bn(N(φ)− 1) t {(N(φ), µ) | µ ∈ Ω(1P
pki−f(si)

)}◦,

where i is the unique element of [R] such that τ(si) = 2.
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We remark that Theorem 6.20 in fact holds for φ = 1Pn as well, since Ω(1Pn) = P(n)

by Theorem 5.1 and N(1Pn) = n. We illustrate the results of Theorems 6.19 and 6.20

in Example 6.25 below. A corollary of our description of m(φ) is the following:

Corollary 6.21. Let n ∈ N and let φ ∈ Lin(Pn). Then Bn(n2 ) ⊆ Ω(φ).

Proof. Recall from Remark 6.15 that for all k ∈ N and s ∈ [p]k of all types, we have

m(s) > pk

2 . Thus the claim follows when n is a power of p. Otherwise, letting φ

correspond to s1, . . . , sR for some R ≥ 2, we see from Theorems 6.19 and 6.20 that

m(φ) ≥
∑R
i=1m(s) > n

2 .

Proof of Corollary 6.2. This follows immediately from Corollary 6.21.

Remark 6.22. We remark that the growth of the partition function |P(n)| is well-known,

given by the celebrated asymptotic formula of Hardy and Ramanujan [34]:

|P(n)| ∼ 1

4n
√

3
exp(c

√
n),

where c = π
√

2
3 . Of course, we did not require its full power in order to deduce Corol-

lary 6.2, though we have included it as well as the following classical result of Erdős and

Lehner [24, (1.4)] to highlight that |Bn(n2 )| is in fact extremely close to |P(n)| when n is

large: if f(n) is any function such that f(n)→∞ as n→∞, then for all but o(|P(n)|)
partitions λ of n, the quantities λ1 and l(λ) lie between

√
n · ( logn

c ± f(n)). ♦

Before we conclude this chapter by proving Theorems 6.19 and 6.20 below, we remark

that the situation when p ∈ {2, 3} is more complex.

It is not hard to verify that our determination of M(φ) holds also for the prime

3. However, crucially for m(φ), Lemma 6.12 is not true as stated when p = 3, and

a number of our Littlewood–Richardson results also cannot be applied directly when

p = 3. (For instance, if we wish to apply Lemma 5.8 with n = 3, then the result changes

to Bm(t) ? {(3)}◦ = Bm+3(t+ 3) \ {(t+ 1, t+ 1)}◦ in the special case where m = 2t− 1.)

The sets Ω(φ) in the case of p = 2 exhibit less regular patterns still. As already

remarked in Chapter 5, the sign character χ(1n) of Sn restricts irreducibly and non-

trivially to a Sylow 2-subgroup of Sn. Since χλ
′

= χλ · χ(1n), the sets Ω(φ) themselves

are no longer closed under conjugation in general. On the other hand, sets of partitions

of the form Bn(m) are always closed under conjugation, so approximating Ω(φ) using

sets of the form Bn(m) is less informative when p = 2. Nevertheless, it turns out for

k ∈ N and P2k ∈ Syl2(S2k) that

χ(12k )
y
P

2k
= φ(1, 0, . . . , 0) = X (φ1;1P

2k−1
) ∈ Irr(P2 o P2k−1),

and so for instance, for s ∈ [2]k we have that Ω(t) = Ω(s)′ where t = (t1, s2, . . . , sk) and

t1 = s1 + 1 (mod 2).
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6.3.1 Proofs of Theorems 6.19 and 6.20

Let n ∈ N and φ ∈ Lin(Pn) be as described immediately following Theorem 6.17.

Lemma 6.23. Suppose that

|{i ∈ [R] | τ(si) = j}| =


R− 1 if j = 1,

1 if j = 2,

0 if j ∈ {3, 4},

and let i ∈ [R] be such that τ(si) = 2. Then

Ω(φ) = Bn(N(φ)− 1) t {(N(φ), µ) | µ ∈ Ω(1P
pki−f(si)

)}◦.

Proof. Let m = n − pki , so φ = φ(s1) × · · · × φ(sR) = 1Pm × φ(si). Since R ≥ 2 and

τ(si) = 2, we have that m ∈ N and ki ≥ 2. To ease the notation, let k = ki, s = si and

f = f(si).

By Lemma 6.16, we have that Ω(φ) = Ω(1Pm) ? Ω(s). By Theorem 5.1 and Re-

mark 6.15, we have that Ω(1Pm) = P(pl) \ {(pl − 1, 1)}◦ if m = pl for some l ∈ N, and

Ω(1Pm) = P(m) otherwise. Moreover,

Ω(s) = Bpk(pk − pk−f − 1) t {(pk − pk−f , µ) | µ ∈ Ω(1P
pk−f

)}◦,

so in particular

Bpk(m(s)) ⊆ Ω(s) ⊆ Bpk(m(s) + 1). (6.2)

Case 1: if Ω(1Pm) = P(m). Since m(s) > pk

2 , applying P(m)? to (6.2) gives

Bn
(
N(φ)− 1

)
⊆ Ω(φ) ⊆ Bn

(
N(φ)

)
by Proposition 5.7, as N(φ) = m + pk − pk−f = n − pk−f . Since Ω(φ)◦ = Ω(φ), it

suffices to find which partitions λ ` n with λ1 = N(φ) satisfy λ ∈ Ω(φ), noting that

λ ∈ Ω(φ) = P(m) ? Ω(s) if and only if cλαβ > 0 for some α ` m and β ∈ Ω(s).

So fix a partition λ ` n such that λ1 = N(φ). If cλαβ > 0 for some α ` m and β ∈ Ω(s),

then λ1 ≤ α1 + β1 ≤ m+ (pk − pk−f ) = N(φ), so in fact this holds with equality. Thus

α = (m) and β = (β1, µ) where µ ∈ Ω(1P
pk−f

), since β ∈ Ω(s) and β1 = pk − pk−f .

Moreover, λ1 = α1 +β1 and α = (m) together imply that β = (λ1−m,λ2, λ3, . . . ), that

is, λ = (N(φ), µ).

Conversely, if λ = (N(φ), µ) for some µ ∈ Ω(1P
pk−f

), then clearly λ ∈ P(m)?Ω(s) =

Ω(φ) since χ(m) × χ(pk−pk−f ,µ) | χλ
y
Sm×Spk

, and thus the set Ω(φ) is as claimed.

Case 2: if m = pl for some l ∈ N and Ω(1Pm) = P(pl) \ {(pl − 1, 1)}◦. We have that

Ω(φ) ⊆ P(pl) ? Bpk(m(s) + 1) = Bn
(
N(φ)

)
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by Proposition 5.7. On the other hand,

Ω(φ) =
(
P(pl) \ {(pl − 1, 1)}◦

)
? Ω(s)

⊇
(
P(pl) \ {(pl − 1, 1)}◦

)
? Bpk(pk − pk−f − 1) = Bn

(
N(φ)− 1

)
by Lemma 5.8. We find by the same argument as in Case 1 that Ω(φ) = Bn(N(φ)−1)t
{(N(φ), µ) | µ ∈ Ω(1P

pk−f
)}◦, as required.

Proof of Theorem 6.20. We may now assume that s1, . . . , sR do not satisfy the hypoth-

esis of Lemma 6.23. That is, s1, . . . , sR are such that either there exists i ∈ [R] with

τ(si) = 3, or there exists i 6= j ∈ [R] with τ(si) = τ(sj) = 2 and τ(sl) ∈ {1, 2} for all

l ∈ [R]. We proceed by induction on R.

We begin with the base case R = 2. Recall from the exact description of Ω(si) from

Remark 6.15 and that Ω(φ) = Ω(s1) ? Ω(s2) from Lemma 6.16. Since we may reorder

the si without loss of generality, we may assume that

(
τ(s1), τ(s2)

)
∈ {(1, 3), (2, 3), (3, 3), (2, 2)}.

The arguments in each case are similar, but for clarity we will treat each one separately.

To ease the notation we let k = k1, f = f(s1) (if τ(s1) 6= 1), l = k2 and e = f(s2).

If
(
τ(s1), τ(s2)

)
= (1, 3): we have that

Ω(φ) =

P(1) ? Bpl(pl − 1) if k = 0,

(P(pk) \ {(pk − 1, 1)}◦) ? Bpl(pl − 1) otherwise,

which equals Bn
(
N(φ)

)
in each instance by Proposition 5.7 and Lemma 5.8 respectively,

as N(φ) = pk + pl − 1.

If
(
τ(s1), τ(s2)

)
= (2, 3): we have Bpk(m(s1)) ⊆ Ω(s1) ⊆ Bpk(m(s1) + 1), and hence

Bn
(
N(φ)− 1

)
⊆ Ω(φ) ⊆ Bn

(
N(φ)

)
since N(φ) = m(s1) + 1 +m(s2) = pk− pk−f + pl− 1. Let λ = (N(φ), µ) where µ is any

partition of pk−f + 1. Since pk−f + 1 is not a power of p, Ω(1P
pk−f+1

) = P(pk−f + 1) by

Theorem 5.1. But 1P
pk−f+1

= 1P
pk−f

× 1P1
, so µ ∈ Ω(1P

pk−f+1
) = Ω(1P

pk−f
) ?Ω(1P1

).

That is, there exists ν ∈ Ω(1P
pk−f

) such that cµν,(1) > 0. Then by Lemma 2.11,

c
(N(φ),µ)

(pk−pk−f ,ν),(pl−1,1)
= cµν,(1) > 0,

and thus λ ∈ Ω(s1)?Ω(s2) = Ω(φ). Since Ω(φ)◦ = Ω(φ), we have that Ω(φ) = Bn
(
N(φ)

)
.

If
(
τ(s1), τ(s2)

)
= (3, 3): then Ω(φ) = Bpk(pk − 1) ? Bpl(pl − 1) = Bn

(
N(φ)

)
, by

Proposition 5.7.

If
(
τ(s1), τ(s2)

)
= (2, 2): then clearly Bn

(
N(φ)− 2

)
= Bpk(m(s1)) ?Bpl(m(s2)) ⊆ Ω(φ)

and Ω(φ) ⊆ Bpk(m(s1) + 1) ? Bpl(m(s2) + 1) = Bn
(
N(φ)

)
, by Proposition 5.7. In order
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to show that Bn
(
N(φ)

)
= Ω(φ), since Ω(φ)◦ = Ω(φ) it remains to show that

λ = (N(φ)− 2 + j, µ) ∈ Ω(φ) ∀ j ∈ {1, 2} ∀ µ ` pk−f + pl−e + 2− j.

Fix some µ ` pk−f + pl−e + 2− j and consider λ = (N(φ)− 2 + j, µ). Clearly |µ| is not

a power of p, so

µ ∈ P(|µ|) = Ω(1P|µ|) = Ω(1P
pk−f

) ? Ω(1P
pl−e+2−j

).

That is, there exist ν ∈ Ω(1P
pk−f

) and ω ∈ Ω(1P
pl−e+2−j

) such that cµν,ω > 0. Then

c
(N(φ)−2+j,µ)

(pk−pk−f ,ν),(pl−pl−e−2+j,ω)
= cµν,ω > 0

by Lemma 2.11, and thus λ ∈ Ω(φ). Hence Bn
(
N(φ)

)
= Ω(φ) in all cases when R = 2.

Now for the inductive step: let R ≥ 3 and suppose that the statement of the theorem

holds for R−1. Since s1, . . . , sR do not satisfy the hypothesis of Lemma 6.23, then there

exists i ∈ [R] such that s1, . . . , si−1, si+1, . . . , sR also do not satisfy the hypothesis of

Lemma 6.23. Without loss of generality, let i = 1. Let k = k1, s = s1, f = f(s1) (if

τ(s1) 6= 1) and let ψ ∈ Lin(Pn−pk) be such that φ = φ(s)×ψ. Then Ω(φ) = Ω(s) ?Ω(ψ)

and Ω(ψ) = Bn−pk
(
N(ψ)

)
, by the inductive hypothesis. In order to show that Ω(φ) =

Bn
(
N(φ)

)
, we split into cases depending on τ(s) ∈ {1, 2, 3}.

If τ(s) = 1: then

Ω(φ) =

P(1) ? Bn−pk
(
N(ψ)

)
if k = 0,

(P(pk) \ {(pk − 1, 1)}◦) ? Bn−pk
(
N(ψ)

)
otherwise,

which equals Bn
(
N(φ)

)
in each instance by Proposition 5.7 and Lemma 5.8 respectively,

as N(φ) = pk +N(ψ).

If τ(s) = 2: then

Bn
(
N(φ)− 1

)
⊆ Ω(φ) ⊆ Bn

(
N(φ)

)
,

where N(φ) = m(s) + 1 +N(ψ) = pk − pk−f +N(ψ). Since Ω(φ)◦ = Ω(φ), it suffices to

show that

λ = (N(φ), µ) ∈ Ω(φ) ∀ µ ` n−N(φ) = n− pk + pk−f −N(ψ).

Fix such a partition λ. Notice that

µ ∈ P
(
n− pk + pk−f −N(ψ)

)
=
(
P(pk−f ) \ {(pk−f − 1, 1)}◦

)
? P(n− pk −N(ψ))

by Lemma 5.8 since pk−f ≥ p ≥ 5. (Note {τ(sj) | j ≥ 2} 6= {1}, so N(ψ) � n − pk.)

Thus there exist ν ∈ P(pk−f ) \ {(pk−f − 1, 1)}◦ and ω ∈ P(n − pk − N(ψ)) such that
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cµν,ω > 0. This shows by Lemma 2.11 that

c
(N(φ),µ)

(pk−pk−f ,ν),(N(ψ),ω)
= cµν,ω > 0,

and so λ ∈ Ω(s) ? Bn
(
N(ψ)

)
= Ω(φ) as required.

If τ(s) = 3: then Ω(φ) = Bpk(pk − 1) ? Bn−pk
(
N(ψ)

)
= Bn

(
N(φ)

)
by Proposition 5.7.

Hence Ω(φ) = Bn
(
N(φ)

)
in all cases.

Lemma 6.24. For i ∈ {1, 2}, let ni,mi ∈ N be such that ni
2 < mi ≤ ni. Furthermore,

let ∆i ⊆ P(ni) be such that Bni(mi) ⊆ ∆i and ∆i \Bni(mi) contains no thin partitions.

Then

Bn1+n2
(m1 +m2) ⊆ ∆1 ?∆2

and (∆1 ?∆2) \ Bn1+n2
(m1 +m2) contains no thin partitions.

Proof. By Proposition 5.7, we know that Bn1+n2
(m1 +m2) ⊆ ∆1 ?∆2.

First, suppose λ ∈ (∆1?∆2)\Bn1+n2
(m1+m2) satisfies l(λ) ≤ 2. Then λ1 > m1+m2.

But λ ∈ ∆1 ?∆2 implies that cλµ,ν > 0 for some µ ∈ ∆1 and ν ∈ ∆2. Thus µ1 + ν1 ≥ λ1,

giving either µ1 > m1 or ν1 > m2. However, µ, ν ⊆ λ so l(µ), l(ν) ≤ l(λ) ≤ 2. That is,

both µ and ν are thin but either µ ∈ ∆1 \Bn1
(m1) or ν ∈ ∆2 \Bn2

(m2), a contradiction.

Next, suppose λ ∈ (∆1?∆2)\Bn1+n2
(m1+m2) satisfies λ1 ≤ 2. Then l(λ) > m1+m2.

But then similarly we find that cλµ,ν > 0 for some µ ∈ ∆1 and ν ∈ ∆2, meaning

l(λ) ≤ l(µ) + l(ν), but µ, ν ⊆ λ are also thin. Thus we obtain a contradiction.

Finally if λ ∈ (∆1 ?∆2) \ Bn1+n2
(m1 +m2) is a hook, then either λ1 > m1 +m2 or

l(λ) > m1 + m2. But any µ, ν ⊆ λ must again be hooks, so we obtain a contradiction

by a similar argument to the above.

We are now ready to prove Theorem 6.19.

Proof of Theorem 6.19. We show that Bn
(
N(φ)

)
⊆ Ω(φ) and that Ω(φ) \ Bn

(
N(φ)

)
contains no thin partitions, from which we also deduce that m(φ) = N(φ).

We proceed by induction on R, beginning with the base case R = 2. Without loss

of generality we may assume that τ(s2) = 4. Let k = k1, f = f(s1) (if τ(s1) 6= 1)

and let l = k2. By Lemma 6.16, we know that Ω(φ) = Ω(s1) ? Ω(s2), and recall from

Remark 6.15 that m(s2) = η(s2) and Ω(s2) \ Bpl(η(s2)) contains no thin partitions. We

split into cases according to τ(s1) ∈ {1, 2, 3, 4}.

(i) If τ(s1) = 1: we have that N(φ) = pk +m(s2). If k = 0, then

Ω(φ) = P(1) ? Ω(s2) ⊇ P(1) ? Bpl(m(s2)) = Bn
(
N(φ)

)
by Proposition 5.7 and Ω(φ) contains no thin partitions, by Lemma 6.24. Otherwise if

k ≥ 1, then

Ω(φ) ⊇
(
P(pk) \ {(pk − 1, 1)}◦

)
? Bpl(m(s2)) = Bn

(
N(φ)

)
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by Lemma 5.8. Suppose λ ∈ Ω(φ) \ Bn
(
N(φ)

)
satisfies l(λ) ≤ 2, so λ1 > N(φ) = pk +

m(s2). Then cλµ,ν > 0 for some µ ∈ Ω(s1) and ν ∈ Ω(s2), and λ1 ≤ µ1 +ν1. But µ1 ≤ pk,

so ν1 > m(s2). However, ν ⊆ λ so l(ν) ≤ 2, contradicting ν ∈ Ω(s2) \ Bpl(m(s2)). Also

there cannot be any λ ∈ Ω(φ) \ Bn
(
N(φ)

)
such that λ1 ≤ 2, since Ω(φ) and Bn

(
N(φ)

)
are both closed under conjugation. A similar argument shows that there are no hooks

in Ω(φ) \ Bn
(
N(φ)

)
.

(ii) If τ(s1) = 2: then by Definition 6.14 and Remark 6.15 we have that

Ω(φ) ⊇ Bpk(pk − pk−f − 1) ? Bpl(m(s2)) = Bn
(
N(φ)− 1

)
.

Let λ = (N(φ), µ) where µ ` n −N(φ). Then µ ∈ P(n −N(φ)) = Ω(1P
pk−f

) ? P(pl −
m(s2)) by Lemma 5.8, so

cλ(pk−pk−f ,ν),(m(s2),ω) = cµν,ω > 0

for some ν ∈ Ω(1P
pk−f

) and ω ` pl −m(s2), by Lemma 2.11. Thus λ ∈ Ω(s1) ?Ω(s2) =

Ω(φ), and hence Bn
(
N(φ)

)
⊆ Ω(φ) since Ω(φ)◦ = Ω(φ). If λ ∈ Ω(φ)\Bn

(
N(φ)

)
satisfies

l(λ) ≤ 2, then cλµ,ν > 0 for some µ ∈ Ω(s1) and ν ∈ Ω(s2) but µ1 ≤ pk − pk−f implies

that v1 > m(s2), as λ1 > N(φ) = pk − pk−f +m(s2). But then ν ∈ Ω(s2) \ Bpl(m(s2))

and l(ν) ≤ 2, a contradiction. A similar argument shows that Ω(φ)\Bn
(
N(φ)

)
contains

no other thin partitions.

(iii) If τ(s1) ∈ {3, 4}: then the assertions follow from Proposition 5.7 and Lemma 6.24.

Finally, we turn to the inductive step. Assume R ≥ 3 and that the statement

of the theorem holds for R − 1. Let k = k1, and let ψ ∈ Lin(Pn−pk) be such that

φ = φ(s1)×ψ, so ψ corresponds to s2, . . . , sR and Ω(φ) = Ω(s1) ?Ω(ψ). We distinguish

two cases, depending on the validity of the following equation:

|{i ∈ [R] | τ(si) = j}| =


R− 2 if j = 1,

1 if j ∈ {2, 4},

0 if j = 3.

(6.3)

First suppose that (6.3) holds. Since R ≥ 3, we may without loss of generality assume

that τ(s1) = 1. By the inductive hypothesis, m(ψ) = N(ψ) and Ω(ψ) \ Bn−pk
(
N(ψ)

)
contains no thin partitions. Then Bn

(
N(φ)

)
⊆ Ω(φ) and that Ω(φ)\Bn

(
N(φ)

)
contains

no thin partitions follows from a similar argument to case (i) above.

Otherwise, suppose that (6.3) does not hold. In this case we may without loss

of generality assume that τ(s1) = 4. If |{i ∈ {2, 3, . . . , R} | τ(si) = 4}| = 0 then

the first part of Theorem 6.20 gives us that Ω(ψ) = Bn−pk
(
N(ψ)

)
. The required

results then follow from Proposition 5.7 and Lemma 6.24. On the other hand, if

|{i ∈ {2, 3, . . . , R} | τ(si) = 4}| > 0, then by the inductive hypothesis we have that

m(ψ) = N(ψ) and Ω(ψ) \ Bn−pk
(
N(ψ)

)
contains no thin partitions. The required re-

sults then also follow from Proposition 5.7 and Lemma 6.24.
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We conclude with an example illustrating the main theorems of this chapter.

Example 6.25. Let p = 5. We consider (i) n = 25, (ii) n = 125 and (iii) n = 175.

(i) n = 25. We describe Ω(φ) completely for all φ ∈ Lin(P25). This is summarised in

Table 6.1 below.

By Theorem 4.1 and Lemma 4.3, it suffices to consider φ running over a set of orbit

representatives for the conjugacy action of NS25(P25) on Lin(P25). That is, we need

only consider φ = φ(s) for s ∈ {(0, 0), (0, ∗), (∗, 0), (∗, ∗)}, where each ∗ represents any

element of {1, 2, . . . , p− 1}. Let P ′(m) := P(m) \ {(m− 1, 1)}◦ = Bm(m− 2) t {(m)}◦

for m ∈ N≥5.

s type τ(s) f(s) m(s) M(s) Ω(s)

(0, 0) 1 n/a 23 25 P ′(25)

(0, ∗) 3 2 24 24 B25(24)

(∗, 0) 2 1 19 20 B25(19) t {(20, µ) | µ ∈ P ′(5)}◦

(∗, ∗) 4 1 19 20 B25(19) t {(20, µ) | µ ∈ B5(4)}◦

Table 6.1: Data on Ω(φ) for φ = φ(s) ∈ Lin(P25).

The case of τ(s) = 1 follows from Theorem 5.1. For τ(s) 6= 1, a precise description

of Ω(s) is given in Lemma 6.4 (for τ(s) = 3) and Lemma 6.12 (for τ(s) ∈ {2, 4}). We

can similarly describe Ω(φ) explicitly for all φ ∈ Lin(Pp2), for all primes p ≥ 5.

(ii) n = 125. There are 8 orbits under the action of NS125(P125) on Lin(P125). Repre-

sentatives φ = φ(s) and their corresponding Ω(s) are summarised in Table 6.2 below.

s τ(s) f(s) g(s) η(s) m(s) M(s) Ω(s)

(0, 0, 0) 1 n/a n/a n/a 123 125 P ′(125)

(0, 0, ∗) 3 3 n/a n/a 124 124 B125(124)

(0, ∗, 0) 2 2 n/a n/a 119 120 B125(119) t {(120, µ) | µ ∈ P ′(5)}◦

(0, ∗, ∗) 4 2 3 119 119 120 B125(119) t {(120, µ) | µ ∈ B5(4)}◦

(∗, 0, 0) 2 1 n/a n/a 99 100 B125(99) t {(100, µ) | µ ∈ P ′(25)}◦

(∗, 0, ∗) 4 1 3 99 99 100 B125(99) t {(100, µ) | µ ∈ B25(24)}◦

(∗, ∗, 0) 4 1 2 95 95 100 (see below)

(∗, ∗, ∗) 4 1 2 95 95 100 (see below)

Table 6.2: Data on Ω(φ) for φ = φ(s) ∈ Lin(P125).

Recall from Remark 6.15 that we know Ω(s) exactly whenever τ(s) 6= 4. We are able

to determine Ω(s) completely for s = (0, ∗, ∗) and s = (∗, 0, ∗) even though τ(s) = 4

because M(s) = m(s) + 1 in these cases, so the result follows from Theorem 6.10(iii).

In the remaining instances when τ(s) = 4, i.e. for s = (∗, ∗, 0) and s = (∗, ∗, ∗),
then B125(95) ⊆ Ω(s) ⊆ B125(100) and Ω(s) \ B125(95) contains no thin partitions, by
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Theorem 6.10. (In other words, Ω(s) does not contain (95 + i, 30− i), (95 + i, 130−i) or

their conjugates for any i ∈ [5].) Moreover,

Ω(∗, ∗, x) ∩ {(100, µ) | µ ` 25}◦ = {(100, µ) | µ ∈ Ω(∗, x)}◦

for all x ∈ {0, 1, . . . , 4} where Ω(∗, x) has already been determined in (i) above.

(iii) n = 175. There are 80 orbits under the action of NS175
(P175) on Lin(P175): a set

of orbit representatives φ(s) is given by s = (s1, s2, s3) where s1 ∈ [5]3 (i.e. s1 ∈ {0, ∗}3,

giving 8 choices) and s2, s3 ∈ [5]2 (i.e. s2, s3 ∈ {0, ∗}2) with τ(s2) ≤ τ(s3) (giving 10

choices for the pair s2, s3).

By Theorem 6.20, the set Ω(s) is determined completely whenever τ(si) 6= 4 for all

i ∈ [3]. This comprises 24 of the 80 representatives s. Of the 56 remaining s, we can

actually determine Ω(s) fully without further computation in 36 of the cases by using

Lemma 6.16, because we know Ω(∗, ∗), Ω(0, ∗, ∗) and Ω(∗, 0, ∗) exactly from (i) and

(ii) above. In the remaining 20 cases corresponding to s1 = (∗, ∗, 0) or s1 = (∗, ∗, ∗),
Theorems 6.17 and 6.19 give sharp bounds B175(N(φ)) ⊆ Ω(φ) ⊆ B175(M(φ)), and

Ω(φ) \ B175(N(φ)) contains no thin partitions.

To give some examples, we list the exact descriptions of Ω(s) when s1 = (0, 0, 0) in

Table 6.3 below. ♦

s2, s3 τ(si)i=1,2,3 N(si)i=1,2,3;N(φ) Ω(s)

(0, 0), (0, 0) 1, 1, 1 125, 25, 25; 175 P(175)

(0, 0), (∗, 0) 1, 1, 2 125, 25, 20; 170 B175(169) t {(170, µ) | µ ∈ P ′(5)}◦

(0, 0), (0, ∗) 1, 1, 3 125, 25, 24; 174 B175(174)

(∗, 0), (∗, 0) 1, 2, 2 125, 20, 20; 165 B175(165)

(∗, 0), (0, ∗) 1, 2, 3 125, 20, 24; 169 B175(169)

(0, ∗), (0, ∗) 1, 3, 3 125, 24, 24; 173 B175(173)

(0, 0), (∗, ∗) 1, 1, 4 125, 25, 19; 169 B175(169) t {(170, µ) | µ ∈ B5(4)}◦

(∗, 0), (∗, ∗) 1, 2, 4 125, 20, 19; 164 B175(164) t {(165, µ) | µ ∈ B10(9)}◦

(0, ∗), (∗, ∗) 1, 3, 4 125, 24, 19; 168 B175(168) t {(169, µ) | µ ∈ B6(5)}◦

(∗, ∗), (∗, ∗) 1, 4, 4 125, 19, 19; 163 B′ (defined below)

B′ := B175(163) t {(164, µ) | µ ∈ B11(10)}◦ t {(165, ν) | ν ∈ B10(8)}◦.

Table 6.3: Data on Ω(φ) for φ = φ(s1, s2, s3) ∈ Lin(P175) with s1 = (0, 0, 0). This
follows from Theorem 6.20 when τ(si) 6= 4 for all i, and Lemma 6.16 otherwise.
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Chapter 7

Ringel duality for Schur

algebras

In [21], Erdmann and Henke determined the values of r for which the classical Schur

algebra S(2, r) is Ringel self-dual by constructing explicit Morita equivalences, for exam-

ple from maps between tilting and projective modules, and considering Cartan numbers.

In [13], Donkin showed that S(n, r) is always Ringel self-dual for n ≥ r via direct calcu-

lations of certain exterior algebras which are S(n, r)–S(n, r)–bimodules. This holds in

the general quantized case Sq(n, r) in fact; the classical Schur algebras are exactly those

where q = 1.

In this chapter, we determine which classical Schur algebras S(n, r) are Ringel self-

dual in the remaining open cases 3 ≤ n < r. Section 7.2.3 follows from work done in

collaboration with Dr Karin Erdmann.

Throughout this chapter, all modules are finite-dimensional left modules and all

algebras finite-dimensional unless otherwise stated. Fix K to be an algebraically closed

field of characteristic p ≥ 0 (and all fields to which we refer will be algebraically closed).

We begin with the classical Schur algebras S(n, r) for natural numbers n and r. After

setting up the necessary notation, we present some straightforward combinatorial results

on order-reversing isomorphisms of certain partition posets in Section 7.1.2. These are

used to reduce the classification problem to a small number of cases, which are then

considered in Sections 7.2.2 and 7.2.3 using block theory, ∆–filtrations of tilting modules

and decomposition numbers for symmetric groups. The classification of Ringel self-dual

Schur algebras when 3 ≤ n < r is completed in Theorem 7.18. On a related note, it

was remarked by Erdmann that if B is a block of a Schur algebra and B has finite

representation type, then B is Ringel self-dual. For convenience, we record a proof of

this fact in Section 7.2.4.
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7.1 Combinatorial setup

7.1.1 Notation

We say λ is a maximal element of a partially ordered set (Λ,≤) if there is no µ ∈ Λ

such that µ > λ. Throughout this chapter we will consider only finite Λ, and in this

case (Λ,≤) has a unique maximal element λ if and only if λ ≥ µ for all µ ∈ Λ. Minimal

elements are similarly defined and there is a corresponding characterisation of unique

minimal elements. We denote the opposite (partial) ordering of ≤ by ≤op, so that

λ ≤op µ if and only if µ ≤ λ.

For λ, µ ∈ Λ, we say λ covers µ, written λ → µ, if λ > µ and there does not exist

ν ∈ Λ such that λ > ν > µ. The Hasse diagram of (Λ,≤) is a graph with vertex set Λ

and a directed edge from λ to µ if and only if λ→ µ.

For n, r ∈ N, let Λ+(n, r) be the set of partitions of r into at most n parts, partially

ordered by the dominance order E. Let S(n, r) = SK(n, r) denote the Schur algebra

over K. Its module category modSK(n, r) is equivalent to the category MK(n, r) of

homogeneous polynomial representations of degree r of the general linear group GLn(K);

we refer the reader to [33] for a detailed construction. S(n, r) is a quasi-hereditary

algebra with respect to (Λ+(n, r),E) (see Section 7.2). Let H(n, r) denote the Hasse

diagram of (Λ+(n, r),E).

Let λ be a partition and consider its Young diagram [λ]. Define a one-box move from

λ to be the removal of one removable box of [λ] and its addition to an addable position

in a strictly lower row in [λ] such that the result is again a partition. In particular,

the addable position in question cannot be directly below (in the same column as) the

removable box, although it would be in a strictly lower row. For instance, the only

one-box move from λ = (2, 1) results in the partition (13). We say there is a one-box

move from λ to µ and write λ; µ if µ is the result of performing a one-box move from

λ. Clearly if λ ; µ then λ . µ. In the examples below, the ‘moved’ box is indicated

with a ?:

(a) λ =
?

; µ =
?

, (b) λ =

?

; µ =

?

We say a one-box move from λ to µ is minimal if, letting A = λ \ µ denote the

removable box of λ and B = µ \ λ denote the addable position to which A is moved:

(i) A is the lowest removable box of λ in a row above B that could have been moved

down into B; and

(ii) B is the highest addable position in λ in a row below A down to which the box A

may be moved.

Here, the height of a box or position refers to its row in the Young diagram. Note

that (i) and (ii) are not equivalent: in the pictured example λ = (3, 2, 2), B is indeed
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A

C

B

the highest addable position below A satisfying (ii), but C is the lowest removable box

above B satisfying (i) and A 6= C.

To abbreviate, we also call such minimal one-box moves minimal moves, and write

λ
min

µ. In the two examples (a) and (b) above, (a) does not depict a minimal move,

while (b) does. Let G(n, r) be the minimal move graph of Λ+(n, r): it is the directed

graph with vertex set Λ+(n, r), and there is a directed edge from λ to µ if and only if

λ
min

µ.

For a directed graph G, let E(G) denote the set of edges of G, and let the degree of

a vertex v be its total degree, i.e. the number of edges into v plus the number of edges

out of v. This denoted degG(v), or deg(v) when the graph is understood.

7.1.2 Reversibility

For the notion of a Ringel dual of a quasi-hereditary algebra (described in the next

section), and in particular those of the Schur algebras, it will be useful to consider

order-reversing isomorphisms on Λ+(n, r).

By an order-reversing isomorphism on a poset (Λ,≤) we mean an order isomorphism,

or bijection of sets preserving the order relation, between (Λ,≤) and (Λ,≤op). Since

Λ+(2, r) is totally ordered by dominance, there is a unique order-reversing isomorphism

on (Λ+(2, r),E). When n ≥ r, the poset Λ+(n, r) is simply the set of all partitions

of r and (Λ+(n, r),E) has a natural order-reversing isomorphism given by mapping a

partition to its conjugate.

Proposition 7.1. Let 3 ≤ n < r be natural numbers and let Λ = Λ+(n, r). Then

there exists an order isomorphism between (Λ,E) and (Λ,Eop) if and only if (n, r) ∈
{(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)}.

This section is devoted to the proof of Proposition 7.1. First, we record the structure

of the Hasse diagram H(n, r) around the unique maximal element (r). We show that

Λ+(n, r) has a unique minimal element α in Lemma 7.2, and conclude the desired result

by describing the vertices at small distance from α in H(n, r) in Propositions 7.5 and 7.7.

In fact, we are able to give a combinatorial characterisation of the edges in H(n, r): this

is done in Propositions 7.3 and 7.4, giving a quick method to verify the structures

described in Propositions 7.5 and 7.7.

Let 3 ≤ n < r. We begin with the structure of H(n, r) around (r). Clearly

• (r) is the unique maximal element of (Λ,E),

• (r − 1, 1) is the unique maximal element of (Λ \ {(r)},E), and

• (r − 2, 2) is the unique maximal element of (Λ \ {(r), (r − 1, 1)},E).
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r ≥ 6

(r)
deg 1

r ≥ 10

(r)
deg 1

(r − 1, 1)
deg 2

(r − 2, 2)
deg 3

(r − 2, 1, 1)
deg 2

(r − 3, 3)
deg 3

(r − 3, 2, 1)
deg 3 if n=3
deg 4 if n≥4

(r − 3, 1, 1, 1)
deg 2

(r − 4, 4)
deg 3

(r − 4, 3, 1)
deg 4

(r − 4, 2, 2)
deg 2 if n=3
deg 3 if n≥4

(r − 4, 2, 1, 1)
deg 3

(r − 5, 5) (r − 5, 4, 1) (r − 5, 3, 2) (r − 5, 3, 1, 1)

Figure 7.1: Vertices inH(n, r) at small distance from (r) and their degrees, for 3 ≤ n < r.

Hence degH(n,r)((r)) = 1 and degH(n,r)((r− 1, 1)) = 2. Also, (r− 2, 1, 1) ∈ Λ+(n, r)

and when r ≥ 6, (r − 3, 3) ∈ Λ+(n, r), and these two are the only maximal elements of

(Λ \ {(r), (r− 1, 1), (r− 2, 2)},E). Continuing this analysis, we obtain Figure 7.1, which

illustrates the vertices of H(n, r) at small distance from (r), with their degrees as stated

for the values of r indicated (noting that the rightmost column only exists for n ≥ 4).

Lemma 7.2. Let 3 ≤ n < r. Write r = nk + l, where l ∈ {0, 1, . . . , n− 1} and k ∈ N.

Define α = (k + 1, . . . , k + 1, k . . . , k) =
(
(k + 1)l, kn−l

)
` r. Then α is the unique

minimal element of (Λ+(n, r),≤).

Proof. First, suppose λ = (λ1, . . . , λn) ∈ Λ+(n, r) is such that α > λ. Thus λi ≤ k for

some i ≤ l. If i < l, then
∑
j λj ≤ (l − 1)(k + 1) + (n − l + 1)k < r, a contradiction.

Next suppose there exists λ ∈ Λ+(n, r) such that λ 6D α, so λ is incomparable to α.

Clearly λ1 > α1, and there exists 1 < m < n such that
∑m
i=1 λi <

∑m
i=1 αi as λ and

α are incomparable. Let m be minimal such that this holds, so λm < αm. Otherwise,∑m−1
i=1 λi ≥

∑m−1
i=1 αi and λm ≥ αm would give

∑m
i=1 λi ≥

∑m
i=1 αi, contradicting the

choice of m. But then λm < αm ≤ k + 1, so λm ≤ k. Then since λ, α ` r,

(n−m)k ≥ (n−m)λm ≥
n∑

i=m+1

λi >

n∑
i=m+1

αi ≥ (n−m)k,
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a contradiction. Thus λ D α for all λ ∈ Λ+(n, r).

Let G = G(r), the minimal move graph of (Λ,E) where Λ = Λ+(r) is the set of

all partitions of r. Also let H = H(r), the Hasse diagram of (Λ,E). For 3 ≤ n < r,

the directed graphs G(n, r) and H(n, r) are obtained from G and H respectively by

removing any vertices λ with more than n parts and their incident edges.

Proposition 7.3. Let r ∈ N and let λ, µ ` r. If there is a minimal move λ
min

µ, then

λ covers µ. That is, E(G) ⊆ E(H).

Proof. Since λ; µ, we have that

λ = (µ1, µ2, . . . , µi−1, µi + 1, µi+1, . . . , µj−1, µj − 1, µj+1, . . . )

and

µ = (µ1, . . . , µi−1, µi, µi+1, . . . , µj−1, µj , µj+1, . . . )

for some 1 ≤ i < j with µi−1 ≥ µi + 1 and µj − 1 ≥ µj+1. Let A = λ \ µ, so A is the

removable box of λ in row i, column µi + 1, and let B = µ \ λ, so B is the addable

position of λ in row j, column µj .

Suppose ν ` r satisfies λ D ν D µ. Clearly νt = µt for 1 ≤ t < i and j ≤ t, and

νi = µi or νi = µi + 1. If j = i + 1, then ν = µ or ν = λ respectively. Otherwise,

j ≥ i+ 2, so A and B are not in consecutive rows. We show that µi = . . . = µj , whence

νi = µi or νi = µi + 1 implies ν = µ or ν = λ respectively.

If µi > µi+1, then the highest addable position in λ in a row below A down to which

A may be moved is (i+ 1, µi+1 + 1) 6= B, contradicting λ
min

µ.

Suppose µi = µi+1 = · · · = µl−1 > µl ≥ · · · ≥ µj for some i + 2 ≤ l ≤ j. Then

the highest addable position in λ in a row below A down to which A may be moved is

(l, µl+1), so λ
min

µ implies B lies in row l. Thus l = j, and µ1 = . . . = µj−1 > µj . On

the other hand, the lowest removable box of λ in a row above B that could have been

moved down into B is in row j − 1, since µj−1 ≥ (µj − 1) + 2. Thus λ
min

µ implies

i = j − 1, a contradiction. Hence there does not exist such l, and so µi = . . . = µj as

claimed.

Proposition 7.4. Let r ∈ N and λ, µ ` r.

(i) λ D µ if and only if there exists a (possibly empty) sequence of one-box moves from

λ down to µ; and

(ii) if λ; µ then there exists a sequence of minimal moves from λ down to µ.

Hence E(H) ⊆ E(G), and thus G = H. In particular, G(n, r) = H(n, r) ∀ n ∈ N.

Proof. (i) Since λ ; µ =⇒ λ . µ, the if direction is clear. For the only if direction,

suppose λ D µ. We proceed by induction on r, and then on λ1 − µ1 for each fixed

r. The result is clear for r ≤ 3, and if λ1 − µ1 = 0 then removing the first row of

both λ and µ reduces to a smaller value of r. Now assume λ1 > µ1: we exhibit
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a partition ν ` r such that ν ; µ, λ D ν and λ1 − ν1 < λ1 − µ1, whence we are

done by the inductive hypothesis.

Let e = min{m |
∑m
i=1 λi =

∑m
i=1 µi}. By assumption, e ≥ 2. Let the highest

removable box of µ not in the first row be in row j ≥ 2, so µ1 ≥ µ2 = · · · = µj >

µj+1. If j > e, then µ2 = · · · = µe = µe+1 =: c, and

e∑
i=1

λi =

e∑
i=1

µi,

e+1∑
i=1

λi ≥
e+1∑
i=1

µi =⇒ λe+1 ≥ µe+1.

Hence λ2 ≥ · · · ≥ λe ≥ λe+1 ≥ c, and so
∑e
i=1 λi ≥ λ1 + c(e − 1) >

∑e
i=1 µi, a

contradiction. Thus j ≤ e.

Let ν = (µ1 +1, µ2, . . . , µj−1, µj−1, µj+1, . . . ), so ν ; µ. It suffices to show λ D ν.

Since λ1 > µ1, we have λ1 ≥ ν1 = µ1 + 1. Also

m∑
i=1

λi ≥
m∑
i=1

µi =

m∑
i=1

νi ∀ m ≥ j

since λ D µ. Finally, since j ≤ e,

m∑
i=1

λi ≥
m∑
i=1

µi + 1 =

m∑
i=1

νi ∀ 2 ≤ m ≤ j − 1.

(ii) For a box or position C in a Young diagram, write r(C) for the number of the row

in which C lies. Let A = λ \ µ and B = µ \ λ, so r(A) < r(B). We proceed by

induction on r(B)− r(A): clearly if r(B)− r(A) = 1 then the one-box move of A

down to B is minimal, and λ
min

µ.

Now suppose r(B)−r(A) > 1. If the move of A to B is minimal then we are done.

Otherwise, either:

– the lowest removable box of λ in a row above B that could have been moved

down into position B is some box Y 6= A, so r(Y ) > r(A); or

– the highest addable position of λ in a row below A down to which A could

have been moved is some position X 6= B, so r(X) < r(B).

In the latter case, let ν be the partition such that [ν] = ([λ]\A)∪X, so λ; ν ; µ.

Since r(A) − r(X) < r(A) − r(B) and r(X) − r(B) < r(A) − r(B) then by the

inductive hypothesis there exists chains of minimal moves from λ to ν and from ν

to µ. In the former case, a similar argument holds for [ν] := ([µ] \ Y ) ∪B.

To deduce that E(H) ⊆ E(G), suppose λ → µ. Then λ . µ, whence there is a

sequence of minimal moves λ =: ν0
min

ν1
min · · · min

νk−1
min

νk := µ by (i) and

(ii). But E(G) ⊆ E(H) by Proposition 7.3, so k = 1 and λ
min

µ as required.

Proposition 7.5. Let r > 3. There exists an order-reversing isomorphism on Λ+(3, r)

if and only if r ∈ {4, 5, 7, 8}.
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4

3, 1

2, 2

2, 1, 1

5

4, 1

3, 2

3, 1, 1

2, 2, 1

7

6, 1

5, 2

5, 1, 1 4, 3

4, 2, 1

3, 3, 1

3, 2, 2

8

7, 1

6, 2

6, 1, 1 5, 3

5, 2, 1 4, 4

4, 3, 1

4, 2, 2

3, 3, 2

Figure 7.2: H(3, r) for r = 4, 5, 7, 8.

(k + 2, k − 1, k − 1) (k + 1, k + 1, k − 2)

(k + 1, k, k − 1)

(k, k, k)

Figure 7.3: Vertices at small distance from (k, k, k) in H(3, 3k), k ≥ 2.

Proof. Let Λ = Λ+(3, r) and H = H(3, r). From the Hasse diagrams in Figure 7.2, we

see there is exactly one order isomorphism (Λ,E) → (Λ,Eop) when r = 4, 5, 8 and two

when r = 7. Now let r /∈ {4, 5, 7, 8}.
If r = 3k, k ≥ 2: the vertices at distance ≤ 2 from α = (k, k, k) in H are as in

Figure 7.3 (this can be verified using Proposition 7.4). Any order isomorphism (Λ,E)→
(Λ,Eop) gives an isomorphism of (undirected) graphs H → H with (r) 7→ α. This must

extend to (r−1, 1) 7→ (k+1, k, k−1), but deg((r−1, 1)) = 2 < 3 = deg((k+1, k, k−1)).

Hence there is no order-reversing isomorphism on Λ.

If r = 3k + 1, r ≥ 3: the vertices at small distance from α = (k + 1, k, k) are

as in Figure 7.4. Any graph isomorphism H → H with (r) 7→ α must extend to

(r− 3, 2, 1) 7→ (k+ 3, k, k− 2), but degH((r− 3, 2, 1)) = 3 < 4 = degH((k+ 3, k, k− 2)).

If r = 3k+ 2, r ≥ 3: the vertices at small distance from α = (k+ 1, k+ 1, k) are as in

Figure 7.5. Any graph isomorphism H → H with (r) 7→ α must extend to (r−3, 2, 1) 7→
(k + 3, k + 1, k − 2), but degH((r − 3, 2, 1)) = 3 < 4 = degH((k + 3, k + 1, k − 2)).
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• •

• • •

• • •

• •

(k + 1, k, k)(k + 1, k + 1, k − 1)

(k + 2, k, k − 1)(k + 2, k + 1, k − 2)(k + 2, k + 2, k − 3)

(k + 3, k − 1, k − 1)(k + 3, k, k − 2)(k + 3, k + 1, k − 3)

(k + 4, k − 1, k − 2)(k + 4, k, k − 3)

Figure 7.4: Vertices at small distance from (k + 1, k, k) in H(3, 3k + 1), k ≥ 3.

•

•

•

• •

• • •

• •

(k + 1, k + 1, k)

(k + 2, k, k)(k + 2, k + 1, k − 1)(k + 2, k + 2, k − 2)

(k + 3, k, k − 1)(k + 3, k + 1, k − 2)(k + 3, k + 2, k − 3)

(k + 4, k − 1, k − 1)(k + 4, k, k − 2)(k + 4, k + 1, k − 3)

Figure 7.5: Vertices at small distance from (k + 1, k + 1, k) in H(3, 3k + 2), k ≥ 3.
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n≥4, r 6≡0,±1
(modn)

n≥4, r≡±1 (modn)
(n,r)6=(4,5)

n≥6, r≥12
r≡0 (modn)

n∈{4,5}, r≥10
r≡0 (modn)

(n,r)=(4,8)

...•
•
α

•
...•
•
•

•α

...
•
•
• •

•
•
α

...

•
•
•

•
•α

• • •

•
•
•

•

•
α

•

•
• •
••

•

•

•

•

Table 7.1: Vertices at small distance from α in H(n, r), for 4 ≤ n < r.

Remark 7.6. H(3, r) is always a graded poset, with rank function rank(λ) = λ1 − λ3.

Note {λ1, λ3} uniquely determines λ, since λ1 + λ2 + λ3 = r.

Similarly, H(r) is graded for r ≤ 6 so H(n, r) is graded for any n in this case. But

for n ≥ 4 and r ≥ 7, H(n, r) is never a graded poset because we have disjoint paths

from (n− 3, 2, 1) to (n− 4, 2, 1, 1) of length 2 and 3, namely

(n− 3, 2, 1)→ (n− 3, 13)→ (n− 4, 2, 12)

and

(n− 3, 2, 1)→ (n− 4, 3, 1)→ (n− 4, 22)→ (n− 4, 2, 12).

♦

Proposition 7.7. Let 4 ≤ n < r. There exists an order-reversing isomorphism on

Λ+(n, r) if and only if (n, r) = (4, 5).

Proof. Since Λ+(4, 5) is totally ordered under E, there is a unique order-reversing iso-

morphism on Λ+(4, 5). If (n, r) 6= (4, 5) then it is straightforward to verify that the

vertices at small distance in H(n, r) from the minimal element α of Λ+(n, r) are as de-

picted in Table 7.1, and so there cannot be an order-reversing isomorphism on Λ+(n, r).

These have been presented in more detail in Appendix A.

Proof of Proposition 7.1. This follows immediately from Propositions 7.5 and 7.7.

7.2 Quasi-hereditary algebras

Quasi-hereditary algebras are an important class of algebras which were first introduced

in the context of highest weight categories in the representation theory of semisimple

complex Lie algebras and algebraic groups [5]. These include many naturally occurring

algebras, such as the Schur algebras and Auslander algebras, and exhibit useful prop-

erties including finite global dimension and cellularity. We recall some standard facts

about quasi-hereditary algebras and Schur algebras, following the account in [14]. For

further detail, see also [13, Appendix], [20] and [48], for instance. The notion that a
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finite-dimensional algebra over a field is quasi-hereditary if and only if its module cat-

egory is a highest weight category provides a certain combinatorial structure of which

we make extensive use.

7.2.1 Background

Let S be a finite-dimensional K algebra, and denote by modS the category of finite-

dimensional left S–modules. Let {L(λ) : λ ∈ Λ} be a complete set of pairwise non-

isomorphic simple S–modules. For each λ ∈ Λ, let P (λ) denote a minimal projective

cover and I(λ) a minimal injective envelope of L(λ). Now let ≤ be a partial order on

the set Λ.

Letting M(λ) denote the (unique) maximal submodule of P (λ), the module ∆(λ) is

defined to be the quotient of P (λ) by U , where U is minimal amongst submodules U ′ of

M(λ) such that all of the composition factors of M(λ)/U ′ are of the form L(µ) for some

µ < λ. The module ∇(λ) is defined to be the submodule of I(λ) containing L(λ) such

that ∇(λ)/L(λ) is maximal amongst submodules of I(λ)/L(λ) all of whose composition

factors are of the form L(µ) for some µ < λ. A standard (resp. costandard) (also Weyl,

resp. dual Weyl) S–module is one which is isomorphic to ∆(λ) (resp. ∇(λ)) for some

λ ∈ Λ.

By construction, the composition multiplicities [∆(λ) : L(λ)] and [∇(λ) : L(λ)]

are both equal to one, and it is straightforward to observe that {[L(λ)] : λ ∈ Λ},
{[∆(λ)] : λ ∈ Λ} and {[∇(λ)] : λ ∈ Λ} are all Z-bases for the Grothendieck group of

modS. For an S–module V , we define (V : ∆(λ)) and (V : ∇(λ)) as follows:

[V ] =
∑
λ∈Λ

(V : ∆(λ))[∆(λ)] , [V ] =
∑
λ∈Λ

(V : ∇(λ))[∇(λ)].

Let F(∆) (resp. F(∇)) denote the full subcategory of modS of those modules which

have a standard or ∆-filtration (resp. costandard or ∇-filtration). If V ∈ F(∆), then

(V : ∆(λ)) equals the ∆-filtration multiplicity of ∆(λ) in every standard filtration

of V , and similarly for V ∈ F(∇). (We reserve parentheses for ∆- and ∇-filtration

multiplicities, and square brackets for composition multiplicities.)

The category modS is a highest weight category with respect to weight poset (Λ,≤)

if for all λ, µ ∈ Λ,

P (λ) ∈ F(∆), (P (λ) : ∆(λ)) = 1, and (P (λ) : ∆(µ)) > 0 =⇒ µ ≥ λ. (7.1)

Equivalently, S is a quasi-hereditary algebra (with respect to weight poset (Λ,≤)); see

[13, Appendix] or [48], for instance, though the definition just presented will be more

useful for our purposes than the equivalent definition of quasi-hereditary algebras us-

ing heredity ideals. We simply say that S is quasi-hereditary when the weight poset is

fixed or understood. Note that a given finite-dimensional K–algebra S may admit dif-

ferent quasi-hereditary structures (i.e. have different standard modules), corresponding
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to different partial orderings on an indexing set for simple S–modules which satisfy the

conditions in (7.1).

Suppose S is quasi-hereditary with respect to (Λ,≤). We have Brauer–Humphreys

reciprocity [14, Theorem 1.4]: for all λ, µ ∈ Λ,

(P (λ) : ∆(µ)) = [∇(µ) : L(λ)] , (I(λ) : ∇(µ)) = [∆(µ) : L(λ)].

A (partial) tilting module T is one that satisfies both T ∈ F(∆) and T ∈ F(∇). A

full set of pairwise non-isomorphic indecomposable tilting modules is given by {T (λ) :

λ ∈ Λ}, with the properties

(T (λ) : X(λ)) = 1, (T (λ) : X(µ)) > 0 =⇒ µ ≤ λ, for X ∈ {∆,∇}. (7.2)

A full tilting module is a tilting module T such that T (λ) occurs as a direct summand

of T for each λ ∈ Λ. Let T be a full tilting module. Then S′ = (EndS(T ))op is a Ringel

dual of S (where we have taken the opposite algebra in order to consider left, not

right, S′–modules). The algebra S′ is determined up to Morita equivalence, and S′′ is

Morita equivalent to S; we denote Morita equivalence by ∼M . Indeed, there exists a

suitable choice of full tilting modules such that S′′ is isomorphic to S as quasi-hereditary

algebras [14, Theorem 1.7]. We fix T = ⊕λ∈ΛT (λ) and set S′ = (EndS(⊕λ∈ΛT (λ)))
op

,

for convenience.

The Ringel dual S′ is again quasi-hereditary, but with respect to (Λ,≤op). The left

exact functor HomS(T,−) : modS −→ modS′ gives an equivalence between F(∇) and

F(∆′) [13, §A4], sending

∇(λ) 7−→ ∆′(λ), T (λ) 7−→ P ′(λ), I(λ) 7−→ T ′(λ)

for all λ ∈ Λ and where ∆′(−), P ′(−) and T ′(−) denote the standard, indecomposable

projective and indecomposable tilting modules for S′ respectively. Furthermore, the

filtration multiplicities satisfy

(T (λ) : ∇(µ)) = (P ′(λ) : ∆′(µ))

for all λ, µ ∈ Λ.

If S and T are quasi-hereditary algebras with respect to some given weight posets,

i.e. partial orderings on the indexing sets, then a Morita equivalence between S and T is

a Morita equivalence of quasi-hereditary algebras if the resulting bijection between the

set of simple S–modules and the set of simple T–modules respects the partial orders.

A quasi-hereditary algebra S (w.r.t. (Λ,≤)) is Ringel self-dual if S is Morita equivalent

to S′ as quasi-hereditary algebras. Letting {L′(λ) : λ ∈ Λ} denote a complete set of

simple S′–modules, the Morita equivalence maps L(λ) to L′(λ̂) with λ 7−→ λ̂ being an

order-reversing isomorphism on (Λ,≤).

For all natural numbers n and r, the Schur algebra S(n, r) is quasi-hereditary with
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respect to (Λ+(n, r),E). We remark that Donkin’s result of Ringel self-duality of S(n, r)

when n ≥ r gives the conjugation map on partitions λ 7−→ λ′, which is indeed order-

reversing on Λ+(n, r), in fact the set of all partitions of r in this case [13]. Moreover, for

Schur algebras there is a contravariant duality ◦ (see [33, §2.7]) such that for all λ ∈ Λ,

L(λ)◦ ∼= L(λ), ∆(λ)◦ ∼= ∇(λ), T (λ)◦ ∼= T (λ).

Hence we have identities such as [∆(λ) : L(µ)] = [∇(λ) : L(µ)] and (T (λ) : ∆(µ)) =

(T (λ) : ∇(µ)) by taking ◦.

Corollary 7.8. Let 3 ≤ n < r. For (n, r) /∈ {(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)}, the Schur

algebra S(n, r) is not Ringel self-dual.

Proof. Ringel self-duality would imply a Morita equivalence of quasi-hereditary algebras

S(n, r) → S(n, r)′ such that the permutation on the indexing set Λ = Λ+(n, r) of

irreducible modules is an order-reversing map on (Λ,E). The assertion then follows

from Proposition 7.1.

Remark 7.9. Our current definition of Ringel self-duality (see [21, (1.1)]) depends cru-

cially on the poset structure (Λ,≤). This dependence has the advantage of allowing

us to exploit combinatorial features of (Λ,≤) as in Corollary 7.8, for instance, but one

may also ask similar questions for a definition of Ringel duality ‘intrinsic’ to the quasi-

hereditary algebra. In [6, Theorem 2.1.1], Coulembier shows that if a finite-dimensional

algebra A has a simple-preserving duality, then up to equivalence there is only one pos-

sible quasi-hereditary structure (Λ,≤e) on A, where this ‘essential’ partial order ≤e is

derived from the unique choice of standard modules for A. Nevertheless, for now we

investigate only the specific dominance ordering E on partitions, ubiquitous in the study

of the representation theory of symmetric groups. ♦

7.2.2 Blocks of Schur algebras

The Ext1 quiver of an algebra S is a directed graph with vertices labelled by the simple

S–modules, say {Si}i∈I , and the number of arrows Si → Sj is equal to the dimension of

Ext1
S(Si, Sj). A (finite-dimensional) algebra S is indecomposable if and only if its Ext1

quiver is connected, and Ext1 quivers are preserved under Morita equivalence. Hence

if S ∼M T are algebras and S is indecomposable, then T is also indecomposable. We

begin with two easy results, whose proofs have been included for convenience.

Lemma 7.10. Let S be a quasi-hereditary algebra. If S = ⊕iBi is the block decompo-

sition of S, then each (Bi)
′ is indecomposable and ⊕i(Bi)′ ∼= S′.

Proof. Let the weight poset for S be (Λ,≤). For each λ ∈ Λ, clearly the simple module

L(λ) lies in some block, and the modules ∆(λ), ∇(λ), P (λ), I(λ) and T (λ) all lie in

that same block since they are indecomposable and have a non-zero map to L(λ). We

say λ lies in the block B if L(λ) lies in B. In particular, the blocks of S inherit a

150



quasi-hereditary structure from S and their weight posets form a partition of (Λ,≤),

since a block Bj acts as zero on any modules lying in a block Bi whenever i 6= j. Since

HomS(T (λ), T (µ)) = 0 whenever λ, µ ∈ Λ do not lie in the same block, we have that

(S′)op ∼=
⊕
i

EndS(⊕λ∈BiT (λ)) =
⊕
i

EndBi(⊕λ∈BiT (λ)) =
⊕
i

((Bi)
′)op.

It remains to observe that (Bi)
′ is again indecomposable, for Bi a block of S: if (Bi)

′

decomposes into blocks b1 ⊕ · · · ⊕ bl, then by a similar argument we find that (Bi)
′′ ∼=

(b1)′⊕· · ·⊕(bl)
′ is a decomposition into (non-zero) algebras. But Bi is Morita equivalent

to (Bi)
′′, so (Bi)

′′ is indecomposable and l = 1 as required.

Proposition 7.11. Let S be a quasi-hereditary algebra with weight poset (Λ,≤). Sup-

pose that S is semisimple and that there exists an order-reversing isomorphism t on

(Λ,≤). Then S is Ringel self-dual.

Proof. Since S is semisimple, in fact L(λ) = ∆(λ) = P (λ) for all λ ∈ Λ and each L(λ)

lies in its own block. Each block of S is isomorphic to a matrix algebra Matm(K),

which in turn is Morita equivalent to K for any m ∈ N, and the algebra K has a unique

quasi-hereditary structure. For λ ∈ Λ, let Bλ denote the block of S containing L(λ).

Using Lemma 7.10, we may construct a Morita equivalence between S and S′ which

sends Bλ to (Bt(λ))
′, and hence L(λ) to L′(t(λ)), for every λ ∈ Λ.

Doty and Nakano have determined exactly when S(n, r) is semisimple in [17].

Theorem 7.12 ([17, Theorem 2]). Let K be an infinite field of characteristic p ≥ 0,

and let n, r ∈ N. Then SK(n, r) is semisimple if and only if (i) p = 0, (ii) p > r, or

(iii) p = n = 2 and r = 3.

By Corollary 7.8 and Proposition 7.11, it remains to investigate whether S(n, r) is

Ringel self-dual in the following cases, where p = char(K):

S(3, 4), p ∈{2, 3}, S(3, 5), p ∈ {2, 3, 5}, S(3, 7), p ∈ {2, 3, 5, 7},

S(3, 8), p ∈ {2, 3, 5, 7}, S(4, 5), p ∈ {2, 3, 5}
(7.3)

In the rest of this and the following section we show that none of the Schur algebras

in (7.3) are Ringel self-dual, so the only S(n, r) with 3 ≤ n < r which are self-dual are

those which are semisimple with (n, r) ∈ {(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)}.
We record how the simple modules are partitioned into blocks for the Schur algebras

in (7.3), expressed as a partition of Λ+(n, r), from which it will be immediately clear

why most of these S(n, r) cannot be self-dual.

Proposition 7.13. Let (n, r) ∈ {(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)} and consider a Schur

algebra S(n, r) defined over a field K of characteristic 0 < p < r.

1. For (n, r) = (3, 4):
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(i) All four simple modules lie in the same block when p = 2.

(ii) There are three blocks when p = 3: {(4), (2, 2)}, {(3, 1)} and {(2, 1, 1)}.

2. For (n, r) = (3, 5):

(i) There are two blocks when p = 2: {(4, 1)} and Λ+(3, 5) \ {(4, 1)}.

(ii) There are three blocks when p = 3: {(5), (22, 1)}, {(4, 1), (3, 2)} and {(3, 12)}.

(iii) There are three blocks when p = 5: {(5), (4, 1), (3, 12)}, {(3, 2)} and {(22, 1)}.

3. For (n, r) = (3, 7):

(i) There are two blocks when p = 2: {(6, 1), (4, 3)} and Λ+(3, 7)\{(6, 1), (4, 3)}.

(ii) There are three blocks when p = 3: {(7), (5, 2), (4, 3), (4, 2, 1)}, {(6, 1), (3, 22)}
and {(5, 12), (32, 1)}.

(iii) There are four blocks when p = 5: {(5, 12)}, {(4, 2, 1)}, {(6, 1), (5, 2), (3, 22)}
and {(7), (4, 3), (32, 1)}.

(iv) There are six blocks when p = 7: {(7), (6, 1), (5, 1, 1)} and each of the remain-

ing λ lies in its own block.

4. For (n, r) = (3, 8):

(i) There are two blocks when p = 2: {(5, 2, 1)} and Λ+(3, 8) \ {(5, 2, 1)}.

(ii) There are three blocks when p = 3: {(6, 12), (32, 2)},
{(7, 1), (6, 2), (42), (4, 22)} and {(8), (5, 3), (5, 2, 1), (4, 3, 1)}.

(iii) There are five blocks when p = 5: {(6, 12), (5, 2, 1), (4, 22)}, {(4, 3, 1)},
{(8), (42)}, {(6, 2)} and {(7, 1), (5, 3), (32, 2)}.

(iv) There are eight blocks when p = 7: {(8), (6, 2), (5, 2, 1)} and each of the re-

maining λ lies in its own block.

5. For (n, r) = (4, 5):

(i) There are two blocks when p = 2: {(5), (3, 2), (3, 12), (22, 1)} and

{(4, 1), (2, 13)}.

(ii) There are three blocks when p = 3: {(4, 1), (3, 2)}, {(5), (22, 1), (2, 13)} and

{(3, 12)}.

(iii) There are three blocks when p = 5: {(5), (4, 1), (3, 1, 1), (2, 13)}, {(3, 2)} and

{(2, 2, 1)}.

Proof. This can be calculated directly from Donkin’s description of blocks in [11].

Since a Morita equivalence between algebras preserves the Ext1 quiver, blocks must

be mapped to blocks, being determined by (the existence of) non-split extensions be-

tween simple modules. Thus if a Schur algebra S = S(n, r) is Ringel self-dual, then the

Morita equivalence S ∼M S′ gives an order-reversing isomorphism t on Λ+(n, r) such

152



(n, r, p) λ |Bi| t(λ) |Bj |
(3, 4, 3) (4) 2 (2, 1, 1) 1
(3, 5, 2) (3, 1, 1) 4 (4, 1) 1
(3, 5, 3) (4, 1) 2 (3, 1, 1) 1
(3, 5, 5) (5) 3 (2, 2, 1) 1
(3, 7, 2) (3, 3, 1) 6 (6, 1) 2
(3, 7, 3) (7) 4 (3, 2, 2) 2
(3, 7, 5) (5, 2) 3 (4, 2, 1) 1
(3, 7, 7) (7) 3 (3, 2, 2) 1
(3, 8, 2) (5, 3) 9 (5, 2, 1) 1
(3, 8, 3) (8) 4 (3, 3, 2) 2
(3, 8, 5) (3, 3, 2) 3 (8) 2
(3, 8, 7) (8) 3 (3, 3, 2) 1
(4, 5, 2) (5) 4 (2, 13) 2
(4, 5, 3) (3, 2) 2 (3, 1, 1) 1
(4, 5, 5) (3, 1, 1) 4 (3, 2) 1

Table 7.2: Example λ and t(λ) showing that S(n, r) over a field of characteristic p is
not Ringel self-dual for all (n, r, p) 6= (3, 4, 2) in (7.3).

that λ and µ lie in the same block of S if and only if t(λ) and t(µ) lie in the same block

of S′, for all λ, µ ∈ Λ+(n, r). Let |B| denote the number of simple modules lying in the

block B. Let S = ⊕i∈IBi be a block decomposition of S. Given some block Bi of S,

suppose it is mapped under t to some block of S′: it is isomorphic to (Bj)
′ for some

j ∈ I, by Lemma 7.10, so

|Bi| = |(Bj)′| = |Bj |.

Then we obtain a contradiction to the assumption of Ringel self-duality of S if in fact

there is some i ∈ I such that there exists λ ∈ Bi and t(λ) ∈ Bj with |Bi| 6= |Bj |.

Example 7.14. Consider a Schur algebra S(3, 4) over a field of characteristic 3. The

blocks of S(3, 4) are {(4), (2, 2)}, {(3, 1)} and {(2, 1, 1)}. The map t being order-reversing

implies Bi 3 (4) 7→ (2, 1, 1) ∈ (Bj)
′, but |Bi| = 2 and |Bj | = 1. Hence S(3, 4) over a

field of characteristic 3 is not Ringel self-dual. ♦

Proposition 7.15. All of the Schur algebras S(n, r) in (7.3), except S(3, 4) over fields

K of characteristic 2, are not Ringel self-dual.

Proof. See Table 7.2.

Remark 7.16. This argument is inconclusive for S(3, 4) over a field of characteristic 2 as

the Schur algebra itself is indecomposable (i.e. a single block) in this case. A different

argument which covers this case is given in the next section. ♦

7.2.3 Tilting matrices and decomposition numbers

We compare ∆–filtration multiplicities of tilting modules with decomposition numbers

for symmetric groups to see that S(3, 4) over a field of characteristic 2 is not Ringel
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self-dual.

Let n, r ∈ N and letK be an algebraically closed field of characteristic p > 0. Suppose

that S = SK(n, r) is Ringel self-dual, so we have a Morita equivalence S′ ∼M S of quasi-

hereditary algebras, giving an order-reversing function t : Λ → Λ. For convenience we

write tλ for t(λ). Since ∆(λ)◦ ∼= ∇(λ) and T (λ) ∼= T (λ)◦, we have

(P (tλ) : ∆(tµ)) = (P ′(λ) : ∆′(µ)) = (T (λ) : ∇(µ)) = (T (λ) : ∆(µ)).

By Brauer-Humphreys reciprocity,

(P (tλ) : ∆(tµ)) = [∇(tµ) : L(tλ)],

which is equal to the decomposition number [∆(tµ) : L(tλ)] for S(n, r) as ◦ fixes simple

modules. Therefore

(T (λ) : ∆(µ)) = [∆(tµ) : L(tλ)].

Further, if λ is p-regular then (T (λ) : ∆(µ)) = [Sµ : Dλ], a decomposition number

for the symmetric group Sr, i.e. the multiplicity of the modular irreducible module Dλ

as a composition factor of the Specht module Sµ, by [20, Lemma 4.5]. Note for p-regular

λ, Sλ has simple top isomorphic to Dλ, and all other composition factors are isomorphic

to Dν with ν . λ.

Example 7.17. Let (n, r, p) = (3, 4, 2). Since Λ+(3, 4) is totally ordered under E, the

map t is uniquely determined. Consider the tilting matrix (T (λ) : ∆(µ)) for S(3, 4) over

characteristic 2:

T (4) T (3, 1) T (2, 2) T (2, 12)

∆(4) 1

∆(3, 1) 1 1

∆(2, 2) 0 1 1

∆(2, 12) 1 1 a 1

(For convenience, we write Tλ for T (λ), and so on, when the meaning is clear from

context.) The matrix as indexed is lower unitriangular. The columns corresponding

to the 2-regular partitions (4) and (3, 1) contain certain decomposition numbers for S4

when p = 2 as described above, and these values are known: see for example [41].

The only unknown value thus far is a := (T (2, 2) : ∆(2, 12)); to show S(3, 4) is not

self-dual we will not need to know its exact value (but nevertheless it is calculated

in Remark 7.20 below). In certain cases there are ad hoc methods to calculate such

multiplicities. In general it remains a central open problem in representation theory to

compute decomposition numbers.

The reverse decomposition matrix [∆(tµ) : L(tλ)] for S(3, 4) over characteristic 2,

indexed by λ, µ in the same order as the tilting matrix above, is also lower unitriangular:
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L(2, 12) L(2, 2) L(3, 1) L(4)

∆(2, 12) 1

∆(2, 2) ∗ 1

∆(3, 1) ∗ ∗ 1

∆(4) ∗ ∗ ∗ 1

We can use results of Erdmann and Kovács [22] on the structure of the symmetric

power SrE = ∇(r) ∼= ∆(r)◦ of the natural n-dimensional GLn–module E to find the last

row of decomposition numbers [∆(r) : L(tλ)]. Note here SrE is viewed as a SK(n, r)–

module via the equivalence of MK(n, r) and modSK(n, r) (see, for example, [33, (2.4d)]).

By [22, Lemma 4.6], SrE has a filtration whose quotients are isomorphic to

Sr, Sr−p ⊗ (S1E)F , Sr−2p ⊗ (S2E)F , . . . , Sr−kp ⊗ (SkE)F

where k = br/pc and F is the Frobenius functor (the first few quotients may vanish

when n(p − 1) < r). Here Sl = L(λ) where λ = (p − 1, p − 1, . . . , p − 1, b) ` l with

0 ≤ b < p− 1. So we can calculate the composition factors of SrE inductively.

Returning to (n, r, p) = (3, 4, 2): S4(E) has filtration quotients S4, S2 ⊗ EF and

S0 ⊗ (S2E)F .

• The factor S4 = L(14) vanishes when n = 3;

• S2 = L(12) and E = L(1);

• S0 = L(0), the trivial module, and S2E has filtration quotients S2 = L(12) and

S0 ⊗ EF = L(1)F .

Simplifying these using the Steinberg tensor product formula, S4(E) has the following

three composition factors:

• L(12)⊗ L(1)F = L(12)⊗ L(2) = L(3, 1),

• (S2)F = L(12)F = L(22), and

• EF 2

= L(1)F
2

= L(4),

giving

L(2, 12) L(2, 2) L(3, 1) L(4)

∆(2, 12) 1

∆(2, 2) ∗ 1

∆(3, 1) ∗ ∗ 1

∆(4) 0 1 1 1

So the bottom left entries (T (4) : ∆(2, 12)) and [∆(4) : L(2, 12)] of the tilting matrix

and decomposition matrix respectively are not equal, implying that S(3, 4) over a field

of characteristic 2 cannot be Ringel self-dual. ♦

We have at last shown the following:
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Theorem 7.18. Let 3 ≤ n < r and char(K) = p. Then the Schur algebra SK(n, r) is

Ringel self-dual if and only if

(i) (n, r) ∈ {(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)}, and

(ii) p > r or p = 0.

Remark 7.19. By considering tilting matrices and decomposition numbers, one can show

that the Schur algebras in (7.3) are not Ringel self-dual, giving a second proof of The-

orem 7.18. We need only consider the last row of the reverse decomposition matrix,

as in Example 7.17 above, when (n, r, p) 6= (3, 5, 3). These calculations are given in

Appendix B.

When (n, r, p) = (3, 5, 3), the tilting matrix is

T (5) T (4, 1) T (3, 2) T (3, 12) T (22, 1)

∆(5) 1

∆(4, 1) 0 1

∆(3, 2) 0 1 1

∆(3, 12) 0 0 0 1

∆(22, 1) 1 0 0 0 1

The composition factors of ∆(5) are L(22, 1) and L(5), so thus far the reverse de-

composition matrix is

L(22, 1) L(3, 12) L(3, 2) L(4, 1) L(5)

∆(22, 1) 1

∆(3, 12) b 1

∆(3, 2) ∗ c 1

∆(4, 1) ∗ ∗ ∗ 1

∆(5) 1 0 0 0 1

and we need to compare further entries. In [39] James proved first row and first column

removal theorems for the decomposition numbers of GLn of the form [∆(µ) : L(λ)], and

hence of Schur algebras; he further obtained these removal theorems for the symmetric

groups via the use of Schur functors. By first column removal,

b := [∆(3, 12) : L(22, 1)] = [∆(2) : L(12)]

and by first row removal,

c := [∆(3, 2) : L(3, 12)] = [∆(2) : L(12)]

also. But the entries corresponding to b and c in the tilting matrix above are not equal,

whence S(3, 5) in characteristic 3 cannot be Ringel self-dual. ♦
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Remark 7.20. When (n, r, p) = (3, 4, 2), we can in fact show that

a := (T3(2, 2, 0) : ∆3(2, 1, 1)) = 1

where we have added the subscript m to T (λ) and ∆(µ) to indicate that they are

S(m, r)–modules (for fixed r).

In general, (noting that it will sometimes be convenient to allow partitions to have

trailing zeros; the meaning should always be clear from context)

(Tn(λ) : ∆n(µ)) = (Tn−1(λ∗) : ∆n−1(µ∗))

if both λ and µ in Λ+(n, r) have at least one trailing zero and ∗ means to remove a trailing

zero. We can similarly remove trailing zeros for multiplicities involving L,∆,∇, T . This

follows directly from S(n, r) ∼= eS(N, r)e where N ≥ n and e is an appropriate idempo-

tent: see [33, §6.5] or [20, (3.9), (1.6), (1.7)]. Furthermore, if N ≥ r and λ, µ, λ′, µ′ ` r
all have at most N parts, then

(T (λ′) : ∇(µ′)) = [∇′(µ′) : L′(λ′)] = [∇(µ) : L(λ)].

The first equality follows from [12, Lemma 3.1], while the second follows from the Ringel

self-duality of S(N, r), sending λ 7→ λ′ from modS(N, r) to modS(N, r)′. Hence we may

pass from n = 3 to N = 4 = r to see that

a = (T4(2, 2, 0, 0) : ∆4(2, 1, 1, 0)) = [∆4(3, 1, 0, 0) : L4(2, 2, 0, 0)] = [∆2(3, 1) : L2(2, 2)]

which equals [∆2(2, 0) : L2(1, 1)] by first column removal. But S2(E) = ∇(2) has

composition factors S
2

= L(1, 1) and S
0 ⊗ EF = L(2), so

[∆2(2, 0) : L2(1, 1)] = [∇2(2, 0) : L2(1, 1)] = 1

as claimed.

This also completes the tilting matrix when (n, r, p) = (3, 5, 2) for instance, where

the value (T3(3, 1, 1, 0) : ∆3(2, 2, 1, 0)) can be seen to equal

[∆3(3, 2, 0) : L3(3, 1, 1)] = [∆2(2, 0) : L2(1, 1)] = 1.

♦

7.2.4 Ringel self-duality of blocks of finite type

Of independent interest are the Ringel duals of blocks of Schur algebras. An algebra

A has finite representation type if it has only finitely many isomorphism classes of

indecomposable modules in modA. It is straightforward to observe that if B is a block

of a Schur algebra and B has finite representation type, then B is Ringel self-dual. For
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convenience, we include a proof. We then have, for example when char(K) = 3, that

all of the blocks of S(3, 4) are self-dual (since S(3, 4) itself has finite type [16]) but the

whole algebra S(3, 4) is not self-dual via some global function t in the sense of [21], by

Theorem 7.18.

In fact, the blocks of finite type were classified completely by Donkin and Reiten in

[15], in terms of n, r, the characteristic p of the field and p-weights of blocks. For our

purposes, we need only observe that such blocks are Morita equivalent to certain basic

algebras.

A (finite-dimensional) algebra A over an algebraically closed field is basic if all ir-

reducible A–modules are 1-dimensional. Given an algebra A, there is a unique basic

algebra which is Morita equivalent to A (see [18, Corollary I.2.7], for example). Indeed,

to construct the basic algebra of A, we essentially perform an idempotent truncation

on A, taking a subset of idempotents in an orthogonal primitive idempotent decom-

position of 1 ∈ A corresponding to pairwise non-isomorphic indecomposable projective

A–modules. Moreover, if A is quasi-hereditary then its basic algebra is Morita equivalent

to A as quasi-hereditary algebras.

For each m ∈ N, define Am to be the algebra KQ/I where Q is the following quiver

with m vertices:
1
•

α1−−−→←−−−
β1

2
•

α2−−−→←−−−
β2

• · · · •
αm−1−−−−→←−−−
βm−1

m
•

and the ideal I is generated by relations (reading arrows in the order of function com-

position)

αiαi−1 = 0, βi−1βi = 0, αm−1βm−1 = 0, βiαi = αi−1βi−1 ∀ 2 ≤ i ≤ m− 1.

Then Am is quasi-hereditary with respect to ({1, 2, . . . ,m},≤), where ≤ denotes the

usual ordering on integers.

Proposition 7.21 ([15, Theorem 2.1], [19]). Let B be a block of a Schur algebra S(n, r).

If B has finite type, then the block algebra SB(n, r) is Morita equivalent to the basic

algebra Am where m = |B|.

For B of finite type, the simple B–modules may be linearly ordered (see [19, Propo-

sition 4.1], for example), and the Morita equivalence above is in fact one of quasi-

hereditary algebras. Indeed, by considering the form of the decomposition matrix for

B, we find that B only has two possible quasi-hereditary structures: that given by the

stated linear order, and another given by its reverse. That B of finite type is Ringel

self-dual follows immediately from the Ringel self-duality of Am:

Proposition 7.22. The quasi-hereditary algebra Am is Ringel self-dual.

Proof. Let L1, L2, . . . , Lm denote the simple Am–modules, corresponding to the ver-

tices 1, 2, . . . ,m respectively. By [18, I.5.6], we can calculate the Loewy layers of the
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corresponding indecomposable projective modules Pi, which are as follows:

P1 =
L1
L2
L1

, Pi =
Li

Li−1⊕Li+1

Li
, Pm = Lm

Lm−1
(2 ≤ i ≤ m− 1)

By (7.1), [15, Corollary 1.3] and Brauer–Humphreys reciprocity, we then deduce that

∆1 = ∇1 = L1, ∆i = Li
Li−1

, ∇i = Li−1

Li
, (2 ≤ i ≤ m)

where ∆i (resp.∇i) denotes the standard (resp. costandard) Am–modules corresponding

to Li, for 1 ≤ i ≤ m. Finally, observe that P1, P2, . . . , Pm−1 are indecomposable tilting

modules. Thus by (7.2), we have the following:

T1 = L1, T2 =
L1
L2
L1

, Ti =
Li−1

Li⊕Li−2

Li
, (3 ≤ i ≤ m)

From this it is also clear that dimK HomAm
(Ti, Tj) = 1 whenever |i− j| = 1. Hence by

[21, Proposition 3.2], A ′m := EndAm(⊕mi=1Ti)
∼= Am as quasi-hereditary algebras..

Corollary 7.23. Let B be a block of a Schur algebra. If B has finite representation

type, then B is Ringel self-dual.

7.2.5 Quantized Schur algebras

Finally, we conclude with some remarks on quantized Schur algebras. Quantized Schur

algebras Sq(n, r), or q-Schur algebras, were introduced by Dipper and James in [10] as

a generalisation or quantization (deformation) of the classical Schur algebras. This is in

analogy with the relationship between symmetric group algebras and their deformations,

known as the Hecke algebras of type A, coming from the general linear groups. We refer

the reader to [13] for a detailed account of the q-Schur algebras, their representation

theory, and connections with the representation theory of Hecke algebras and quantum

general linear groups.

For all natural numbers n and r and non-zero elements q ∈ K, the q-Schur algebra

Sq(n, r) is also quasi-hereditary with respect to (Λ+(n, r),E). Thus, a natural extension

of the question considered in the first part of this chapter is the following:

Question 7.24. Which q-Schur algebras are Ringel self-dual?

Since q-Schur algebras have the same indexing posets for their irreducible modules

as their corresponding classical Schur algebra, Proposition 7.1 implies that if Sq(n, r) is

Ringel self-dual then n ≤ 2, n ≥ r or (n, r) ∈ {(3, 4), (3, 5), (3, 7), (3, 8), (4, 5)}. Donkin

has proved self-duality in the case n ≥ r in [13, §4.1], and the remaining cases are still

open.

As in the classical case, a semisimple q-Schur algebra Sq(n, r) is Ringel self-dual (for

our current definition) if and only if Λ+(n, r) is reversible. Thus in order to classify

the Ringel self-dual q-Schur algebras, it remains to investigate those Sq(n, r) which are
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not semisimple. Semisimplicity of q-Schur algebras was determined by Erdmann and

Nakano in [23].

Moreover, the blocks of q-Schur algebras are described by Cox in [7, Theorem 5.3].

Assuming that a non-semisimple q-Schur algebra Sq(n, r) is Ringel self-dual further

imposes combinatorial restrictions on the posets indexing irreducible modules in each

block, as in Section 7.2.2, and we may then similarly consider decomposition numbers

for the corresponding Hecke algebras and filtration multiplicities for tilting modules of

Sq(n, r).

Extending our techniques from this chapter to the case of q-Schur algebras is a first

step towards tackling our primary goal along this line of research, which is to answer

Question 7.24 and provide a classification of the Ringel self-dual q-Schur algebras.
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Appendix A

Structure of partition posets

The vertices at small distance from the minimal element of H(n, r) when 4 ≤ n < r

(excluding (n, r) = (4, 5)) are as follows:

8

7, 1

6, 2

6, 1, 1 5, 3

5, 2, 1 4, 4

4, 3, 1

5, 13

4, 2, 2

4, 2, 1, 1 3, 3, 2

3, 3, 1, 1

3, 2, 2, 1

24

Figure A.1: H(4, 8).

·
·
·

(
k + 2, (k + 1)l−2, kn−l+1

) (
(k + 1)l+1, kn−l−2, k − 1

)

(
(k + 1)l, kn−l

)

Figure A.2: n ≥ 4, r = nk + l, l ∈ {2, 3, . . . , n− 2}.
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·
·
·

(
k + 2, kn−2, k − 1

) (
(k + 1)3, kn−5, (k − 1)2

)

(
(k + 1)2, kn−3, k − 1

)

(k + 1, kn−1)

Figure A.3: n ≥ 5, r = nk + 1.

·
·
·

(
(k + 2)2, (k + 1)n−5, k3

) (
k + 2, (k + 1)n−2, k − 1

)

(
k + 2, (k + 1)n−3, k2

)

(
(k + 1)n−1, k

)

Figure A.4: n ≥ 5, r = nk + n− 1.

·
·
·

(
k + 2, k + 1, (k − 1)2

) (
(k + 1)3, k − 2

)

(
(k + 1)2, k, k − 1

)

(k + 1, k3)

Figure A.5: n = 4, r = 4k + 1, k ≥ 2.
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·
·
·

(k + 3, k3)
(
k + 2, (k + 1)2, k − 1

)

(k + 2, k + 1, k2)

(
(k + 1)3, k

)

Figure A.6: n = 4, r = 4k + 3.

·
·
·

(
k + 2, kn−3, (k − 1)2

)
(
(k + 1)3, kn−6, (k − 1)3

)
(
(k + 1)2, kn−3, k − 2

)

(
(k + 1)2, kn−4, (k − 1)2

)

(
k + 1, kn−2, k − 1)

(kn)

Figure A.7: n ≥ 6, r = nk.
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·
·
·

(
k + 2, k + 1, (k − 1)3

)
(k + 2, k3, k − 2)

(
(k + 1)3, k − 1, k − 2

)

(
k + 2, k2, (k − 1)2

) (
(k + 1)2, k2, k − 2

)

(
(k + 1)2, k, (k − 1)2

)

(k + 1, k3, k − 1)

(k5)

Figure A.8: n = 5, r = 5k.

·
·
·

(
k + 3, (k − 1)3

) (k + 2, k2, k − 2) (
(k + 1)3, k − 3

)

(
k + 2, k, (k − 1)2

) (
(k + 1)2, k, k − 2

)

(
(k + 1)2, (k − 1)2

)

(k + 1, k2, k − 1)

(k4)

Figure A.9: n = 4, r = 4k, k ≥ 3.
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Appendix B

Tilting matrices and

decomposition numbers

For the tilting matrices considered, entries in the columns T (λ) for p-regular λ equal

certain decomposition numbers of symmetric groups, which may be found in [40, Ap-

pendix] or calculated using [40, Theorems 21.11, 24.1], for instance. Also, composition

factors of ∆(r) always occur with multiplicity one, by [?].

Composition factors Example λ, µ ` r s.t.

(n, r, p) of ∆(r) (T (λ) : ∆(µ)) 6= [∆(tµ) : L(tλ)]

(3, 4, 3) L(22), L(4) (T (3, 1) : ∆(2, 12)) = 0 , [∆(4) : L(22)] = 1

(3, 5, 2) L(3, 12), L(3, 2), L(5) (T (5) : ∆(22, 1)) = 1 , [∆(5) : L(22, 1)] = 0

(3, 5, 5) L(4, 1), L(5) (T (3, 12) : ∆(22, 1)) = 0 , [∆(5) : L(4, 1)] = 1

(3, 7, 2)
L(32, 1), L(5, 12),

(T (6, 1) : ∆(3, 22)) = 0 , [∆(7) : L(32, 1)] = 1
L(3, 22), L(7)

(3, 7, 3) L(5, 2), L(7) (T (6, 1) : ∆(3, 22)) = 1 , [∆(7) : L(32, 1)] = 0

(3, 7, 7) L(6, 1), L(7) (T (32, 1) : ∆(3, 22)) = 0 , [∆(7) : L(6, 1)] = 1

(3, 8, 2)
L(32, 2), L(7, 1),

(T (8) : ∆(32, 2)) = 2 , [∆(8) : L(32, 2)] = 1
L(6, 2), L(42), L(8)

(3, 8, 3) L(5, 2, 1), L(8) (T (5, 3) : ∆(32, 2)) = 0 , [∆(8) : L(5, 2, 1)] = 1

(3, 8, 5) L(42), L(8) (T (6, 12) : ∆(32, 2)) = 0 , [∆(8) : L(42)] = 1

(3, 8, 7) L(6, 2), L(8) (T (4, 3, 1) : ∆(32, 2)) = 0 , [∆(8) : L(6, 2)] = 1

(4, 5, 2) L(3, 12), L(3, 2), L(5) (T (4, 1) : ∆(2, 13)) = 1 , [∆(5) : L(22, 1)] = 0

(4, 5, 3) L(22, 1), L(5) (T (4, 1) : ∆(2, 13)) = 0 , [∆(5) : L(22, 1)] = 1

(4, 5, 5) L(4, 1), L(5) (T (3, 12) : ∆(2, 13)) = 1 , [∆(5) : L(3, 2)] = 0

Table B.1: Data giving a second proof of Theorem 7.18; see Remark 7.19.

For (n, r, p) = (3, 7, 5), the composition factors of ∆(7) are L(4, 3) and L(7). While
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the order-reversing isomorphism t on Λ+(3, 7) is not unique (t either fixes (5, 12) or

t(5, 12) = (4, 3)), we have that (T (4, 3) : ∆(3, 22)) = (T (5, 12) : ∆(3, 22)) = 0 but

[∆(7) : L(4, 3)] = 1.
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