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SUMMARY

Ribosome assembly occurs mainly in the nucleolus,
yet recent studies have revealed robust enrichment
and translation of mRNAs encoding many ribosomal
proteins (RPs) in axons, far away from neuronal cell
bodies. Here, we report a physical and functional
interaction between locally synthesized RPs and ri-
bosomes in the axon. We show that axonal RP trans-
lation is regulated through a sequence motif, CUIC,
that forms an RNA-loop structure in the region imme-
diately upstream of the initiation codon. Using imag-
ing and subcellular proteomics techniques, we show
that RPs synthesized in axons join axonal ribosomes
in a nucleolus-independent fashion. Inhibition of
axonal CUIC-regulated RP translation decreases
local translation activity and reduces axon branching
in the developing brain, revealing the physiological
relevance of axonal RP synthesis in vivo. These re-
sults suggest that axonal translation supplies cyto-
plasmic RPs to maintain/modify local ribosomal
function far from the nucleolus in neurons.

INTRODUCTION

RNA localization and local translation play key roles in the as-

sembly, maintenance, and repair of neuronal connections (De-

glincerti and Jaffrey, 2012; Holt and Schuman, 2013; Jung

et al., 2012; Rishal and Fainzilber, 2014; Willis and Twiss,

2006). Recent genome-wide studies on the axonal transcriptome
Cell Repo
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reveal that thousands of mRNAs are localized to axons (An-

dreassi et al., 2010; Gumy et al., 2011; Nijssen et al., 2018; Zivraj

et al., 2010). A consistent but unexpected finding of these

studies is the robust enrichment of mRNAs that encode ribo-

somal proteins (RPs) in axons of a variety of neuron types (An-

dreassi et al., 2010; Briese et al., 2016; Cajigas et al., 2012; Gioio

et al., 2004; Gumy et al., 2011; Moccia et al., 2003; Saal et al.,

2014; Taylor et al., 2009; Zivraj et al., 2010). This finding cannot

simply be explained by Brownian diffusion of mRNAs from the

soma, since several studies showed that these transcripts are

significantly enriched in the axon compared to the cell body (An-

dreassi et al., 2010; Saal et al., 2014), suggesting the presence of

mechanisms that selectively target RP-coding transcripts to the

axon. Furthermore, recent studies provide evidence that RP-

coding mRNAs are robustly translated in retinal ganglion cell

(RGC) axons both in vivo (Shigeoka et al., 2016) and in vitro (Cag-

netta et al., 2018), raising the possibility that locally supplied RPs

serve to support axonal function.

Axons are long neuronal processes that carry out many vital

specific cellular functions far from their cell bodies, including

translation, and must therefore maintain their protein synthetic

machinery in good order. However, because eukaryotic ribo-

some assembly is known to occur mainly in the nucleolus (Fro-

mont-Racine et al., 2003; Lastick and McConkey, 1976; Peña

et al., 2017), the physiological function of axonally synthesized

RPs in a neuronal subcellular compartment far distant from the

nucleus is enigmatic. Recent studies on spinal muscular atrophy

(SMA) implicated a potential role for free RPs in the maintenance

of ribosomes in axons (Bernabò et al., 2017; Rage et al., 2013).

The depletion of the survival motor neuron (SMN) protein, an

RNA-binding protein that associates with RP-coding mRNAs

(Rage et al., 2013), caused a significant decrease in translation
rts 29, 3605–3619, December 10, 2019 ª 2019 The Authors. 3605
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. RP-Coding mRNAs Harbor a Common Loop Structure-Forming Sequence Motif in the 50 UTR
(A) Enrichment of GO terms in the Xenopus laevis RGC axon transcriptome.

(B) Relative abundance (FPKM) of translated mRNAs coding for RPs (red) and other proteins (gray) in the mouse RGC axon (y axis) and retina (x axis), obtained by

the Axon-TRAP system in vivo. The histogram (lower) shows the distribution of the ratio of abundance of 2 consecutive stages (refinement [P7.5]/branching

[P0.5]). p value: Kolmogorov-Smirnov test between RP coding mRNAs and non-RP mRNAs.

(legend continued on next page)
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levels of RP-coding mRNAs (Bernabò et al., 2017). SMN deple-

tion also leads to a 27% reduction in the number of ribosomes

in axons (Bernabò et al., 2017). Although the causal relation re-

mains uncertain, one possibility is that axonally synthesized

RPs are used to make integral components of functional

ribosomes.

The eukaryotic ribosome is a macromolecular machine

composed of 4 ribosomal RNA (rRNA) molecules and �80

different RPs. Eukaryotic RPs are shipped into the nucleus for

assembly into ribosomal subunits within the nucleolus, although

a few ribosomal proteins are added to the ribosome in the cyto-

plasm, such as Rpl24/eL24, Rpl10/uL16, and Rplp0/uL10 (Panse

and Johnson, 2010). A number of previous studies called into

question the widely held view of the ribosome as a stable molec-

ular machine whose components remain unchangeable during

its lifetime. For example, several RPs in the ribosome have higher

turnover rates than other RP components, suggesting the possi-

bility that individual RPs in the ribosome can be replaced by free

cytoplasmic RPs (Lastick and McConkey, 1976; Mathis et al.,

2017; Samir et al., 2018). These studies, together with the robust

axonal translation of RPs, prompted us to ask whether axonal ri-

bosomes incorporate locally synthesized RPs to maintain ribo-

some function far from the cell body.

In this study, we explored roles of axonally synthesized RPs

using a range of technical approaches, including live imaging,

in vivo axon-specific knockdown, and mass spectrometry-

based proteomics. We found that RP translation is regulated

by a branch-promoting factor, Netrin-1, through a loop struc-

ture-forming sequence motif called CUIC, that is shared by

�70%of RP-codingmRNAs. Isoforms of RPmRNAswith a short

50 UTR truncated at the CUIC region are highly enriched in axons.

Transcriptome and proteome analyses revealed that the struc-

tural positions of axonally abundant RPs are biased toward the

surface of the ribosome subunits. Live imaging and subcellular

proteomic approaches showed that axonally synthesized RPs

physically associate with axonal ribosomes in a nucleolus-inde-

pendent fashion. Furthermore, we show that inhibition of axonal

RP synthesis leads to a significant decrease in the level of axonal

mRNA translation and severe axon branching defects in vivo.

These results support the view that ribosome function is main-

tained by a cytoplasmic pool of locally synthesized RPs in axons.

RESULTS

RP-Coding mRNAs Harbor a Common Loop Structure-
Forming Sequence Motif in Their 50 UTR
To analyze the axonal transcriptome and proteome, we used a

well-established method to harvest pure RGC axons from em-

bryonic Xenopus eyes grown on microporous transfilters (Fig-
(C) Relative position of the CUIC and RNA-secondary structure of 50 UTRs of mous

the predicted secondary structure. The position of CUIC is aligned at center (0 n

(D) Average fraction of double-stranded nucleotides around the CUIC motif in 5

window).

(E) The ranking of RBPs that specifically bind to the CUICmotif of RP-codingmRN

in the upper panel. The histogram (left) shows the average of the specificity sco

ponents, and blue dots mark TIA1 and TIAL1.

(F) UCSC Genome browser view of CLIP clusters of eIF3 components on 2 RP-c
ure S1A) (Cagnetta et al., 2018; Zheng et al., 2001). The intact

nature of the eyes permits only the axons, not the dendrites, of

RGCs to grow out of the eye (via the optic nerve) onto the trans-

filter with soma-excluding 1mm pores (Figure S1A). The purity of

the axon sample was confirmed by RT-PCR and immunostaining

of soma/nuclear factors (Figure S1B) (Cagnetta et al., 2018). Us-

ing this pure axon material, we first performed an RNA

sequencing (RNA-seq) analysis of RGC axons. Consistent with

previous studies (Deglincerti and Jaffrey, 2012), RPs were

robustly enriched in the axonal transcriptome (Figure 1A). Next,

we investigated a potential physiological role of axonal RP syn-

thesis by analyzing our genome-wide translatome data of mouse

RGC axons in vivo (Shigeoka et al., 2016). The axonal translation

ofmost RP-codingmRNAs peaks during the branching/synapto-

genesis stage (postnatal day [P] 0.5) and declines thereafter in a

synchronous manner (Figure 1B). The pattern of translational

changes of RP-coding mRNAs during the postnatal period

(P0.5–P7.5) was significantly different from the other translated

mRNAs (Figure 1B, lower panel), suggesting the presence of a

mechanism that co-regulates the synthesis of many different

RPs in axons.

The coordinated axonal RP synthesis led us to infer that RP-

coding mRNAs may have a common cis-regulatory element(s).

A de novomotif discovery algorithm (Heinz et al., 2010) revealed

that�70%of RP-codingmRNAs share a 50 UTR sequencemotif,

YYYYTTYC (Figure S1C). Since this motif is located immediately

(20–80 nt) upstream of the initiation codon of RP-coding mRNAs

in most cases (>90%) (Figures 1C and S1D), we called this motif

cis-element upstream of the initiation codon (CUIC). Gene

Ontology (GO) enrichment analysis revealed that not only ribo-

some-related GO terms but also those linked to neuron morpho-

genesis are enriched in all CUIC-containing mouse genes (Fig-

ure S1E), suggesting a potential role of the CUIC motif in axon

projection and branching. Consistent with this, translatome anal-

ysis in RGC axons reveals that CUIC-containing transcripts have

significantly higher translation levels than those without (Fig-

ure S1F). The predicted RNA secondary structure of 50 UTRs of

RP-coding mRNAs shows that the nucleotide region around

the CUIC motif tends to form a single-stranded loop, which

may allow trans factors to recognize this motif (Figures 1C and

S1G; Table S1). The sequence and the loop structure are well

conserved among animal species (Figures 1D and S1H).

To explore which RNA-binding proteins (RBPs) associate with

the CUICmotif, we analyzed published cross-linking immunopre-

cipitation (CLIP)-seq datasets in the POSTAR2 database (Zhu

et al., 2019). In this analysis, we counted the number of CLIP clus-

ters that overlapped with the CUIC region of RP-coding mRNAs

for each RBP and normalized them to the total number of clusters

on any region of the mRNAs to evaluate the specificity of RBP
e RP-coding mRNAs. Each bar represents 50 UTR sequences and is colored by

t) and the x axis indicates the distance from the CUIC motif.
0 UTRs of all CUIC-containing mouse genes and RPs (moving average, 7-nt

As. The heatmap color indicates the specificity score calculated by the formula

re of each RBP for all CUIC-containing RP mRNAs. Red dots mark eIF3 com-

oding mRNAs.
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Figure 2. CUIC Motif Is Involved with Alternative 50 End and Netrin-1-Stimulated Translation of Axonal RP mRNAs

(A) Plot showing the difference of the position of 50 terminal of CUIC-containing mRNAs between the axon and the whole embryo. The x axis indicates the relative

position of 50 terminal compared to CUIC.

(legend continued on next page)
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binding (Figure 1E). This revealed that components of the eIF3

complex are particularly enriched in the proteins that specifically

bind to the CUIC motif of RP-coding mRNAs (Figures 1E and 1F).

CUIC Motif Is Associated with Alternative 50 Ends and
Netrin-1-Stimulated Translation of Axonal mRNAs
Our analysis of CLIP-seq data also showed that TIA1 and TIAL1

bind with high specificity to the CUIC region (Figure 1E). Since

these proteins were reported to be key factors in 50 terminal oli-

gopyrimidine tract (50 TOP) mRNA regulation (Damgaard and

Lykke-Andersen, 2011), we sought to understand the relation

between CUIC and 50 TOP mRNAs. Although both the CUIC

and 50 TOP motif are a tract of pyrimidine nucleotides in the 50

UTR, CUIC is always immediately upstream of the initiation

codon and is usually distant from the 50 end, unlike the 50 TOP

sequence, which is always at the 50 terminal of mRNAs (Meyu-

has, 2000). Several RP-coding mRNAs contain both the 50 TOP

and CUIC motifs in separate positions (Figure S2A). However,

since we found that the mouse expressed sequence tag (EST)

showed that the positions of 50 ends of the CUIC-containing

RP mRNAs are highly variable, an interesting possibility is that

the alternative 50 end formed at the CUIC region generates a 50

TOP-like sequence. To explore this possibility, we analyzed the

50 end sequence of CUIC-containing mRNAs in our Xenopus

RGC axon RNA-seq data. Whereas the 50 ends of CUIC-contain-
ing transcripts detected in Xenopus whole embryos (Ding et al.,

2017) are located upstream (0–300 nt) of the CUIC region in most

cases, the 50 ends of those in the RGC axon sample tended to

have short 50 UTRs that were truncated at the CUIC region (Fig-

ures 2A, 2B, and S2B). This prevalence of short isoforms in axons

was validated by 50 rapid amplification of cDNA ends (RACE)

comparing the 50 end of Rps4x/eS4 transcripts between the

RGC axon and the somal (whole-eye) samples (Figure 2C).

Sequencing of the amplified cDNAs showed that the 50 end of

the Rps4x/eS4 short isoform is precisely located at the CUIC re-

gion (Figure 2C). These results suggest that the alternative 50 end
at the CUIC region can generate a 50 TOP-like sequence in RP-

coding mRNAs (Figure 2B). Since 50 TOP mRNAs are regulated

by the mammalian target of rapamycin (mTOR) pathway (Jeff-

eries et al., 1997), and the mTOR pathway is required for Ne-

trin-1-mediated local translation (Campbell and Holt, 2001), the

CUIC motif could play a crucial role in regulated RP synthesis

in the axon. To investigate the relation between Netrin-1 stimula-

tion and CUIC-containing RPmRNAs, we analyzed a proteomics

dataset of the cue-induced nascent (newly synthesized) prote-

ome in cultured Xenopus RGC axons (Cagnetta et al., 2018).

The analysis revealed that RPs are particularly enriched in the

group of proteins whose translation is promoted by Netrin-1
(B) Diagram showing 2 isoforms of the CUIC-containing mRNA with alternative 5

(C) Diagram (left), gel image (middle), and Sanger sequencing result (right) of 50 R
(D and E) Representative images (D) and quantification of quantitative immunoflu

Netrin-1 + CHX) and Rps4x/eS4 (n = 59, control; 50, CHX; 70, Netrin-1; 44, Netrin

(CHX) treatment (bars, average with 95% confidence interval [CI], Mann-Whitney

(F and G) Plots (F) and representative images (G) of relative fluorescence recove

growth cones. ***p < 0.0001; 2-way ANOVA comparing full-length UTRs (n = 8) w

(H) Moving average (20 s window) of the count of detected translation events per u

imaging. p value: Mann-Whitney U test between full-length UTRs (n = 11) and De
(p = 0.0001, enrichment of GO: 0005840) (Figure S2C; Tables

S2 and S3). Consistent with this result, quantification of the

immunofluorescence (QIF) signal showed that Netrin-1 in-

creases the translation of most, but not all, RPs tested in axonal

growth cones (Figures 2D, 2E, S2D, and S2E). We next investi-

gated the effect of the CUICmotif on axonal RP synthesis by per-

forming fluorescence recovery after photobleaching (FRAP)

experiments using the fast-folding fluorescent protein Venus, ex-

pressed from mRNAs with and without the CUIC motif in the

UTR. We tested the UTR of Rps4x/eS4, the RP that shows the

greatest increase in axonal translation after Netrin-1 stimulation

(Figures 2D, 2E, and S2C). While no significant difference was

observed in the FRAP signal in basal conditions over the

10-min period of imaging, the addition of Netrin-1 elicited a

significantly higher FRAP signal with the full-length 50 UTR re-

porter compared to the CUIC-deleted or 50 UTR-deleted reporter

constructs (Figures 2F and 2G), indicating a higher translation

rate of the CUIC-containing mRNA. The inhibition of translation

with anisomycin abolished this difference (Figure S2F). Consis-

tent with these FRAP results, independent experiments using a

single-molecule translational imaging approach (Ifrim et al.,

2015; Ströhl et al., 2017; Tatavarty et al., 2012) that captures in-

dividual translation events in real-time revealed a significantly

higher number of translation events with the CUIC-containing

reporter, compared to the CUIC-deleted reporter, in Netrin-1-

stimulated axonal growth cones (Figure 2H). These data provide

evidence that the CUIC motif is, at least partially, responsible for

the Netrin-1-induced axonal translation of RPs.

Surface Components of the Ribosomal Subunits Are
Enriched in the Axoplasm
The coordinated regulation of numerous axonally synthesized

RPs suggests that they may have a common ribosome-related

function rather than a disparate variety of extra-ribosomal roles

(Warner and McIntosh, 2009) in axons. However, since most ri-

bosomal proteins are thought to be assembled into ribosomes

exclusively in the nucleolus, it seemed puzzling that ribosomal

proteins are synthesized in the distal axon, far away from the

nucleolus (Fromont-Racine et al., 2003). To test the possibility

that the retrograde transport of axonally synthesized RPs allows

their assembly into ribosomes in the nucleolus, we focused on

the abundance of RPs outside of ribosomes (free cytoplasmic

RPs) in the distal axon. Robust axonal RP translation should

result in the accumulation of free RPs in the axon, unless these

are retrogradely transported toward the soma or quickly

degraded. To detect free RPs in the axon, we performed sucrose

density gradient fractionation on pure-axon lysates, generated

using Boyden chambers, as well as on whole-brain lysates
0 ends and the 50 TOP mRNA.

ACE products of Rps4x/eS4 mRNAs in axon and eye samples.

orescence (QIF) (E) for Rps14/uS11 (n = 42, control; 59, CHX; 66, Netrin-1; 64,

-1 + CHX) in RGC growth cones with or without Netrin-1 (5 min)/cycloheximide

U test compared to the control, ***p % 0.001, *p % 0.05). Scale bar, 5 mm.

ry of Venus reporter constructs after photobleaching (error bar, SEM) in RGC

ith Del-motif (n = 12). Scale bar, 2 mm.

nit area per second with the Netrin-1 stimulation in single-molecule translation

l-motif (n = 12) using the total count in each growth cone.
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A

B

C Figure 3. Structural Positions of RPs En-

coded by Axonally Localized mRNAs Are

Surface Biased

(A) Formula of interface-index (upper) and a partial

structure of the ribosome, generated with PyMOL,

showing the relation between RP position and

interface-indices.

(B) Human 80S ribosome structure, generated

with PyMOL, showing the position of all RPs that

are classified based on the interface-index.

(C) Ranking of abundance (average FPKM) of RPs

coding mRNAs (n = 2) and interface-index scores

of RPs (more blue = higher, more red = lower).
(Figures S3A–S3C). Mass spectrometry analysis of the fraction-

ated samples showed a robust accumulation of free RPs in ribo-

some-free fractions of the axon lysate, whereas RPs were

strongly depleted in ribosome-free fractions of the whole-brain

lysate (Figure S3D), suggesting that axonally translated RPs

have function(s) in the axon rather than in the nucleolus.

To evaluate whether axonally translated RPs are involved in ri-

bosomal function, we focused on the position of these RPs in the

ribosome structure. We reasoned that if the axonally translated

RPs are used to replace/repair components of the ribosome,

the position of these RPs may be biased to the surface of the

ribosome because RPs that penetrate deeply into the rRNA

core of ribosomal subunits are less likely to be replaced or de-

tached. To address this, we performed an unbiased classifica-

tion of RPs (surface or core/penetrated) based on their structural

position in the human 80S ribosome structure (Natchiar et al.,

2017). For each RP, we assigned an interface-index score based

on the fraction of residues that interface with rRNA by using

the PyMOL function InterfaceResidues (https://pymolwiki.org/

index.php/Main_Page). RPs with a high interface-index score

(high fraction of rRNA interface residues) tend to be located

deep in the ribosome core or have long tails that penetrate into
3610 Cell Reports 29, 3605–3619, December 10, 2019
the core (Figures 3A and 3B). We found

that the group of RPs whose mRNAs are

abundant in the axon (FPKM > 100,

61 RPs) had a significantly lower inter-

face-index average (0.42) than the less

abundant (FPKM < 100) group (0.57, Kol-

mogorov-Smirnov test, p = 0.014) (Fig-

ure 3C). Consistently, RPs with high

interface-indices (>0.6; Figure 3B) were

significantly depleted from the abundant

group (5.0-fold depletion, Fisher’s exact

test, p = 0.0016) (Figure 3C). Although

label-free quantification (LFQ) of mass

spectrometry is a less robust quantitative

method compared to RNA-seq, we

observed a similar trend in which high

interface-indices (>0.6) were significantly

depleted from the group of RPs with high

abundance (LFQ abundance score > 1) in

the axonal ribosome-free fraction (Fig-

ure S3E). These results indicate that the

axon, but not the cell body, contains a
large cytoplasmic pool of extra-ribosomal RPs that are biased

to occupy superficial structural positions in the ribosome and

suggest the possibility that surface components of axonal ribo-

somes may be replaced by these cytoplasmic free RPs in axons.

Axonally Synthesized RPs Become Physically
Associated with Ribosomes
To investigate the interaction of axonally synthesized RPs with

the ribosome, we first performed an in situ proximity ligation

assay (PLA), a technology capable of detecting the close phys-

ical association between 2 molecules (<400 Å) (Yoon et al.,

2012). We carried out metabolic labeling of newly synthesized

proteins with L-azidohomoalanine (AHA) in severed axons (Diet-

erich et al., 2007). After biotin conjugation to AHA via ‘‘click’’

chemistry, we performed PLA to detect the association between

axonally synthesized proteins (biotin antibody) and ribosomes,

using the anti-rRNA antibody Y10B (Aakalu et al., 2001) (Fig-

ure 4A). As eukaryotic ribosomes are 250–300 Å in diameter,

the proximity between the AHA-labeled RPs and the rRNA is ex-

pected to generate a PLA signal if axonally synthesized RPs are

incorporated into axonal ribosomes (Figure 4A). To eliminate

the detection of elongating nascent AHA-labeled polypeptide

https://pymolwiki.org/index.php/Main_Page
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Figure 4. Axonally Synthesized RPs Co-

localize with Ribosome-Containing Gran-

ules

(A) Experimental workflow and a diagram

describing the positional relation of each protein/

probe in the rRNA-FUNCAT-PLA experiments.

(B and C) Representative images (B) and plots for

the number of PLA puncta in each condition (C)

detected in the axon (bars, average with 95% CI,

Mann-Whitney U test, ***p % 0.001). Scale bar,

5 mm.

(D) Experimental workflow of the Venus + Cy5-

UTP FRAP experiments (upper). Live imaging of

Cy5-UTP (magenta) and UTR-Rps4x-Venus fusion

or UTR-Venus (green) reporter before and 0, 5, and

10 min after photobleaching of the Venus (green)

fluorescence. The yellow arrowheads indicate the

sites of co-localization, and thewhite lines indicate

the outlines of axons. Scale bar, 2 mm.

(E) Plot showing Pearson’s correlation coefficient

of pixel intensities between Cy5-UTP signals and

recovered Venus signals (Venus-Rps4x [n = 8] or

Venus-only [n = 12]). Bars, average with SEM,

Mann-Whitney U test, *p % 0.05.
chains, axons were treated with 200 mM puromycin, which re-

leases growing polypeptide chains from the ribosome (Cioni

et al., 2019; Nathans, 1964) before the sample fixation. We

observed a clear PLA signal in the axons, which was abolished

by anisomycin treatment (Figures 4B and 4C). We also found

that the PLA signal was significantly higher in Netrin-1-stimu-

lated axons than in unstimulated axons (Figures 4B and 4C),

which is consistent with the results that Netrin-1 promotes

axonal RP synthesis (Figures 2 and S2). While these proximity-

based results do not rule out the association of newly synthe-

sized non-RP factors with the surface of axonal ribosomes,

they demonstrate that some proteins synthesized in response

toNetrin-1 in axons become closely associated on-site with ribo-

somes and support the idea that newly synthesized RPs join

axonal ribosomes.

To look specifically at the question of whether newly synthe-

sized RPs themselves co-localize with ribosomes, we used a
Cell Reports
modified FRAP approach and dual-chan-

nel time-lapse imaging in live axons. We

have previously shown that blastomere-

injected labeled UTP is incorporated pre-

dominantly into ribosomal RNAs (Wong

et al., 2017) and that translation takes

place on these Cy5-UTP granules in live

retinal axons (Wong et al., 2017; Cioni

et al., 2019). Therefore, we used Cy5-

UTP as a live reporter of ribosome/RNA-

rich granules. We also introduced a

cDNA encoding Venus-Rps4x/eS4, an

RP fusionprotein.Weobserved thatbright

fluorescent puncta of Venus-Rps4x/eS4,

but not theVenus-only control, co-localize

and co-move with Cy5 fluorescent

puncta, confirming that Cy5-UTP labels
ribosome/RNA-rich granules (Figures 4D and S4). Next, to visu-

alize the newly synthesized Venus proteins, we performed photo-

bleaching of the Venus fluorescence with 488-nm laser light and

then examined the co-localization between Cy5-UTP fluores-

cence and the recovered Venus signal. Before photobleaching,

we cut the axons to exclude the signal of Venus proteins trans-

ported from the soma. Immediately post-cut and before photo-

bleaching,weaddedNetrin-1 to stimulate axonalRps4x/eS4syn-

thesis. Time-lapse imaging revealed that the signal of recovered

(axonally synthesized) Venus-Rps4x/eS4 protein, but not of con-

trol Venus protein, exhibited sustained co-localization with Cy5-

labeled RNA after photobleaching in severed somaless RGC

axons (Figures 4D and S4). This result was further confirmed by

a spatial correlation analysis, in which the correlation (Pearson’s

correlation coefficient) of the pixel intensities between recovered

Venus-Rps4x and Cy5-UTP signals was significantly higher than

that between Venus-only control and Cy5-UTP (Figure 4E).
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Figure 5. Axonally Synthesized RPs Physi-

cally Interact with the Ribosome in a Nucle-

olus-Independent Manner

(A) Experimental strategy of axon purification,

SILAC labeling, and axonal ribosome purification.

(B) Diagram and gel image of RT-PCR detection of

mature 18S rRNA and pre-rRNA.

(C) Cumulative percentage of the relative position

of labeled peptides detected in axonal (cyan) and

eye (red) ribosome samples.

(D) List of RPs whose labeled peptides were de-

tected in the axonal ribosomes. The heatmap

shows the translation levels of RPs in 3 different

developmental stages of in vivo mouse RGC

axons.

(E) Human 80S ribosome structure with indication

of the RPs whose labeled peptides were detected

in the axonal ribosomes. The colors of the squares

represent the interface-index of each labeled RP

(see Figure 3).

(F) Immunostaining of ribosomal assembly factors

and a secondary antibody-only control in cultured

Xenopus laevis RGC axons. Scale bar, 5 mm.
To obtain biochemical evidence for the axonal incorporation of

axonally synthesized RPs into axonal ribosomes, we combined

axon-pSILAC (Cagnetta et al., 2018) with axonal ribosome puri-

fication (Figure 5A). In thismethod, we labeled newly synthesized

proteins with heavy amino acids for 3 h in somaless axons

cultured in a Boyden chamber. Together with heavy amino acids,

Netrin-1 was added to stimulate the axonal translation of RPs.

After the lysis of labeled axons, axonal ribosomes were purified

using a sucrose cushion and ultracentrifugation, followed by the

identification of newly synthesized proteins withmass spectrom-

etry (Figure 5A). To obtain sufficient axonal material,�2,000 eyes

were cultured for each sample. Mature 18S rRNA was detected

in both somas and axons, whereas the pre-rRNA, which is pre-

sent only in the nucleolus, was detected only in somata (Fig-

ure 5B), confirming that there was no contamination of the

axon samples with somata/nuclei in these experiments. We

used the same method as a control sample on isolated eyes
3612 Cell Reports 29, 3605–3619, December 10, 2019
that were treated with heavy amino acids

for 48 h. Mass spectrometry analysis re-

vealed that�93% of all detected proteins

in the axonal ribosome samples were in a

single gene-network cluster that includes

RPs and ribosome-interacting proteins,

validating the ribosome purification pro-

cedure (Figure S5A). Mass spectrometry

detected a number of labeled (i.e., axo-

nally synthesized) RP peptides in the

axonal ribosome samples. The ratios of

labeled/unlabeled RP peptides in the

axonal ribosome samples were highly

variable among RPs, whereas relatively

constant ratios of labeled RPs were

observed in whole cells (the eye sample)

(Figure S5B). These results not only

show that locally synthesized RPs physi-
cally associate with ribosomes in the axon but they also exclude

the possibility that the detection of labeled RPs in the axonal

ribosome samples is caused by contamination of our axon sam-

ple with cell bodies. We still detected labeled RP peptides in

axons even when the axon lysate was treated with RNase A/T1

and puromycin, which dissociate mRNA-binding proteins,

including the poly(A)-binding protein from the purified ribosomes

(Figures S5C–S5F). This result suggests that the detection of

these labeled RP peptides was not due to the binding of free

extra-ribosomal RPs to the ribosome-bound mRNAs. The puro-

mycin step also ensured that we were not detecting growing

polypeptide chains, which is consistent with the fact that

the position of heavy labeled RP peptides was not biased

toward the N terminus (Figure 5C). Analysis of our mouse in vivo

axonal translatome showed that most (85%) of the labeled RPs

detected in the axonal ribosome samples are axonally synthe-

sized during the branching stage of RGC axon development
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Figure 6. Locally Synthesized Rps4x/eS4 Is

Required to Maintain Ribosome Function in

Axons

(A) Diagram (left) and image of RGC axons after

FITC-morpholino introduction in a microfluidic

chamber.

(B–F) Images (B, D, and E) and QIF plots (bars,

average, 95% CI, and distribution of normalized

levels) (C and F) of Rps3a/eS1, Rps4x/eS4, Rpl17/

uL22, and puromycin immunostaining in axons

treated with control morpholinos (Cont.) or with

morpholinos against rps3a (eS1) (B and C) or

against rps4x (eS4) (D–F), with Welch t test

(*p = 0.030, C; 0.015, F; ***p = 0.0004; n.s., not

significant).

(G) qRT-PCR quantification, normalized to control

MO, of 18S rRNA in axonal samples treated with

control or rps4x (eS4) morpholinos (n.s., not sig-

nificant in Mann-Whitney U test).
(Figure 5D). Most (91%) of these are not deeply penetrated RPs

(Figure 3B) in the ribosome structure (2.2-fold depletion of inter-

face-index < 0.6) (Figures 5D and 5E). Although the subcellular

nature of our material prohibited the use of approaches to

resolve whether the axonally synthesized RPs are actually

embedded in the ribosome in their normal positions, these re-

sults support the idea that locally synthesized RPs physically

associate with axonal ribosomes in a nucleolus-independent

manner.

To explore the possibility that nucleolar ribosome assembly

factors mediate the axonal interaction between RPs and ribo-

somes (Kressler et al., 2010), we searched our Xenopus RGC

axon proteome data (Cagnetta et al., 2018) for proteins whose

mouse ortholog genes were annotated with the GO terms
Cell Reports
‘‘nucleolus’’ (GO: 0005730) or ‘‘ribosome

assembly’’ (GO: 0042255). We found

that 12.6% (124 of 982) of proteins with

these GO terms were detected in our

axon sample, some of which were

confirmed by immunostaining (Figure 5F).

Many of these factors were detected in

the axons of different types of neurons,

such asmouse callosal axons (Poulopou-

los et al., 2019) and axons of rat cortical

neurons (Chuang et al., 2018), suggesting

that the functions of these factors are

conserved among these neuron types

(Figure S5G).

Locally Synthesized Rps4x/eS4 Is
Required to Maintain Ribosome
Function in Axons
Next, we focused on the functional inter-

action between axonally synthesized RPs

and axonal ribosomes. To ask whether

local RP synthesis affects the protein

synthesis activity of axonal ribosomes,

we performed axon-specific inhibition of
RP synthesis using a microfluidic chamber that isolates the

axonal compartment from the cell body compartment (Taylor

et al., 2005). Taking advantage of the fluidic isolation of the

chamber (Taylor et al., 2005), we delivered a FITC-conjugated

morpholino only into the axonal compartment to inhibit axonal

RP synthesis (Figure 6A) for three RPs—Rps3a/eS1, Rps4x/

eS4, and Rpl5/uL18—all of which are synthesized/translated

robustly in RGC axons (Cagnetta et al., 2018; Shigeoka et al.,

2016). Although we could not find a significant effect on axonal

protein synthesis after rps3a (eS1) or rpl5 (uL18) morpholino de-

livery, we found that the rps4x (eS4) morpholino significantly

reduced the level of proteins labeled with puromycin, a structural

analog of aminoacylated-tRNA which labels newly synthesized

proteins (Starck et al., 2004; tom Dieck et al., 2015) in axonal
29, 3605–3619, December 10, 2019 3613
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growth cones (Figures 6B–6D, 6F, S6C, and S6D). The rps4x

morpholino decreases the Rps4x/eS4 protein level only in the

axons but not in the somata (Figures 6D, 6F, Figures S6A and

S6B). In addition, we found that neither the level of Rpl17/uL22

nor the level of 18S rRNA was changed by the rps4xmorpholino

(Figures 6E–6G), suggesting that the decreased level of newly

synthesized proteins in axons is not caused by a reduced num-

ber of axonal ribosomes. These data show that the inhibition of

axonal rps4x/eS4 translation decreases the level of translation

activity in the axon, suggesting a crucial role for axonally synthe-

sized Rps4x/eS4 in axonal ribosome function.

Axonal Synthesis of Rps4x/eS4 Is Crucial for Axon
Branching In Vivo

Next, we asked whether newly synthesized RPs incorporated

into axonal ribosomes are critical for axon development in vivo.

Our analysis showed that the axonal synthesis of RPs is

enhanced by Netrin-1, which promotes axon branching (Dent

et al., 2004; Manitt et al., 2009), and it peaks at the branching

stage in mouse RGC axons in vivo (Figure 1B). A previous study

demonstrated that exposed intact brains treated acutely with

protein synthesis inhibitors show a reduction in axonal branch-

ing dynamics in the optic tectum (Wong et al., 2017). Thus, our

finding that Rps4x/eS4 knockdown inhibits axonal protein syn-

thesis (Figure 6) prompted us to test whether the local synthe-

sis of Rps4x/eS4 is essential for the normal branching of axons.

Taking advantage of an in vivo system to visualize single Xen-

opus RGC axons (Wong and Holt, 2018; Wong et al., 2017),

we inhibited Rps4x/eS4 synthesis by morpholino-based knock-

down (Figure 7A). In vivo electroporation of rps4x morpholino

into stage 28 eyes significantly reduced the number, length,

and complexity of RGC axon branches in the optic tectum at

stage 45 (Figures 7A–7D and S7A–S7C). These branching phe-

notypes were rescued by a morpholino-resistant rps4x cDNA

with full-length UTRs, but not by an rps4x cDNA lacking either

the entire 50 UTR or the CUIC motif, suggesting that the CUIC-

mediated regulation of Rps4x/eS4 synthesis is crucial for axon

branching (Figures 7B–7D and S7A–S7C). We next investigated

the role of Rps4x/eS4 synthesis in the dynamics of axon

branching. We first performed in vivo live imaging of axons after

morpholino electroporation into the eye at stage 28 (Wong

et al., 2017). In control embryos at stages 41–43, we observed

a significant bias in the addition over the removal of filopodia

and branches, in agreement with previous work showing that

this bias helps to build arbor complexity (Wong et al., 2017). In-
Figure 7. Axonal Translation of Rps4x/eS4 Is Crucial for Axon Branchi
(A) Experimental workflow (upper) for eye electroporation and live image acquisit

conditions.

(B) Lateral view of a single in vivo RGC axon in the tectum with color-coded ima

branches.

(C and D) Average, 95% CI, and distribution of total branch length per axon (C) a

electroporated with the morpholino/rescue constructs (1-way ANOVA with 2-sta

test); n = 21 (Cont. MO), 47 (MO), 21 (MO + WT), 25 (MO + del-50 UTR), and 37 (

(E–G) Experimental workflow for each knockdown (KD) experiment (left) and quan

after eye electroporation (whole-cell KD) (n = 12, Cont.; 20, Rps4x) (E) and tectum

(F), and at stages 35–38 (tectum KD) (lower, n = 10, Cont.; 15, Rps4x) (G). Images

red, and green, respectively). Line graphs (right) show the number of added/remo

not significant).
hibition of Rps4x/eS4 synthesis in RGCs abolished this bias. In

addition, the numbers of filopodia and branches being added

and removed were both reduced after rps4x knockdown (Fig-

ures 7E and S7D).

To test whether these phenotypes were caused by the inhibi-

tion of local axonal rather than somal translation of rps4x, we

delivered the rps4x morpholino directly into arborizing RGC

axons in the tectum by electroporation at stages 41–43 (Fig-

ure 7F) (Yoon et al., 2012). To eliminate the possibility that the

intracellular diffusion of the morpholino affects somal ribosome

biogenesis and the number of ribosomes in the RGC axon, we

physically removed the eye, which contains the RGC cell bodies,

before morpholino delivery (Figure 7F) (Wong et al., 2017).

Similar to the global inhibition of rps4x translation in RGCs, local

inhibition of axonal rps4x translation abolished the addition/

removal bias and reduced the number in both filopodia and

branches (Figures 7F and S7E). To evaluate the extent of sec-

ondary effects due to morpholino-electroporated tectal cells,

we delivered the morpholino locally into the tectum before the

arrival of RGC axons (stages 35/36–37/38) and subsequently

visualized the branching dynamics of axons after tectal entry at

stages 41–43. No significant differences were observed in

branching dynamics, indicating that the inhibition of Rps4x/

eS4 synthesis in tectal cells is not responsible for the observed

branching defects in RGC axons (Figures 7G and S7F). These re-

sults indicate that the CUIC-mediated axonal synthesis of

Rps4x/eS4 is critical for the proper arbor development of RGC

axons in vivo (Figure S7G).

DISCUSSION

Our results provide multiple independent lines of evidence

that are consistent with the hypothesis that locally synthesized

RPs in RGC axons are incorporated into axonal ribosomes

and are required to maintain axonal ribosome function and

normal neuronal developmental processes. Since the distal

regions of axons are far away from their somata, our findings

suggest the possibility that they have adopted a nucleolus-in-

dependent mechanism for the on-site repair and/or modifica-

tion of their ribosomes through the local supply of newly

synthesized RPs. Since we could not detect 18S pre-rRNA in

axons (Figure 5B), it is unlikely that de novo assembly of ribo-

somes takes place in axons. A more plausible hypothesis is

that free, extra-ribosomal RPs in axons are incorporated into

pre-existing ribosomes in the axon through the replacement
ng In Vivo
ion of axon branches/arbors. Dual promoter constructs (lower) used for rescue

ges of axon shaft (white), primary (red), secondary (blue), and tertiary (yellow)

nd axon complexity index (ACI; see Figure S7B for formula) (D) in the embryos

ge step-up method of Benjamini, Krieger, and Yekutiei multiple comparisons

MO + del-CUIC).

tification (right) of in vivo axon branching in control MO� and rps4x MO+ axons

electroporation at stages 41–43 (axonal KD) (middle, n = 14, Cont.; 19, Rps4x)

(middle panel) show a merged overlay of 3 time points (0, 5, and 10 min in blue,

ved branches/filopodia (paired and unpaired t test, **p < 0.01, ***p < 0.001; n.s.,
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or addition of components. This model is consistent with recent

proteomics and cryoelectron microscopy studies, which

showed the presence of ribosomes lacking specific RP compo-

nents in eukaryotic cells (Shi et al., 2017; Slavov et al., 2015;

Samir et al., 2018). It seems possible that axonal RP synthesis

plays an important role in ribosome maintenance, particularly

for the surface ribosomal components that may be prone

to damage (Figures 3 and S3). It is also possible, however,

that it modifies the ribosomal composition to generate

‘‘specialized’’ ribosomes (Genuth and Barna, 2018; Kondra-

shov et al., 2011; Shi et al., 2017; Xue et al., 2015), which are

tuned to preferentially translate specific mRNAs that regulate

axon function.

We found that free extra-ribosomal RPs are enriched in axons

compared to the whole cell (Figure S3). This may partly explain

the much higher frequencies of the ribosomal incorporation of

newly synthesized RPs in Netrin-1-stimulated axons (Fig-

ure S5B) than those predicted from previous turnover studies

performed on whole cells (Dice and Schimke, 1972; Lastick

and McConkey, 1976). As Netrin-1-induced axonal RP synthe-

sis may significantly increase the concentration of free RPs in

axons, it may also elicit a transient increase in ribosome incor-

poration of newly synthesized RPs in axons (Figure 5). An impor-

tant question related to this is whether the ribosomal incorpora-

tion of RPs in axons needs any catalytic activity of trans-acting

auxiliary factors. In prokaryotes, a factor-free in vitro assembly

of functional ribosomal subunits has been successfully demon-

strated by bringing together purified rRNAs and RPs (Pulk et al.,

2010; Sykes and Williamson, 2009), but this has not yet been re-

ported in eukaryotes. Accumulating evidence suggests that a

large number of non-ribosomal factors (>200) and small nucle-

olar RNAs are involved in the de novo ribosome assembly in

eukaryotic cells, but most of these factors are related to rRNA

processing or transport of RPs/pre-ribosomes, while only a

few factors have been demonstrated to support the incorpora-

tion of RPs (Kressler et al., 2010). We found that surface compo-

nents of the ribosomal subunits are enriched in the axons. The

binding of RPs to the surface of the ribosome may therefore

be a simpler and different process compared to de novo ribo-

some biogenesis, which comprises the processing and folding

of the pre-rRNA and its sequential assembly with deeply

embedded ribosomal proteins. It is also possible that some

ribosome assembly factors have roles in the axonal incorpora-

tion of some RPs. We detected a considerable number of ribo-

some assembly factors in the axon, although we have not

identified any axonal function for these factors. To fully under-

stand the mechanisms underlying axonal RP incorporation,

further work on the axonally detected ribosome assembly fac-

tors is needed.

We identified a motif called CUIC, which is a form of pyrim-

idine-rich element (PRE) in the region immediately upstream of

the initiation codon of many axonally translated RP mRNAs. It is

known that the 50 TOP sequence plays an important role in the

translational control of mRNAs, including RP-coding mRNAs,

downstream of the mTOR signaling pathway (Levy et al.,

1991). We showed that alternative short isoforms of RP-coding

transcripts truncated at the CUIC region are highly enriched in

the axon, suggesting the possibility that CUIC can function as a
3616 Cell Reports 29, 3605–3619, December 10, 2019
50 TOP-like sequence for these short isoforms in axons. This

finding may provide an integrated explanation for functions of

the 50 TOP motif and other previously reported pyrimidine-

rich sequences, such as the pyrimidine-rich translational

element (PRTE) (Hsieh et al., 2012). Our analysis using previous

CLIP-seq studies revealed that, in addition to the eIF3 com-

ponents, TIA1 and TIAL1, proteins involved with N6-

methyladenosine (m6A) methylation (RBM15 and RBM15B)

and the recognition of m6A (YTHDF1, YTHDF2, and YTHDC1)

(Patil et al., 2016) are specifically associated with the CUIC

region (Figure 1E). Since a recent study reported that an m6A

in the 50 UTR directly binds eIF3, which is sufficient to

recruit the 43S complex to initiate translation in a cap-indepen-

dent manner (Meyer et al., 2015), RNA methylation at

regions surrounding the CUIC motif core sequence and the

subsequent recruitment of the eIF3-43S complex may be

involved in the CUIC-mediated axonal translation. Since CUIC

is located immediately upstream of the initiation codon, one

interesting possibility is that CUIC changes the distance be-

tween the 50 end and the initiation codon through alternative

50 end formation, affecting the positional relation among initia-

tion factors and ribosomes on the mRNA, which in turn may

affect the speed or reliability of translation in response to a

signal.

In this study, we uncovered crucial functions of locally syn-

thesized Rps4x/eS4 in axonal mRNA translation and in proper

axon branching in vivo. Although we cannot exclude the possi-

bility that some unknown extra-ribosomal function of Rps4x/

eS4 is responsible for the axon branching phenotype, we pro-

pose that the intra-ribosomal function of Rps4x/eS4 is more

likely to explain the phenotype observed after axonal inhibition

of Rps4x/eS4 synthesis, since several lines of evidence suggest

that the process of axon branching is highly dependent on local

translation. A previous study showed that RNA granules dock at

sites of branch emergence and invade stabilized branches and

that acute inhibition of axonal translation by protein synthesis

inhibitors and downregulation of the eIF2a pathway cause a

very similar axon branching defect as observed after Rps4x/

eS4 knockdown (Cagnetta et al., 2019; Wong et al., 2017).

Furthermore, our previous analysis of the developmental

changes of the axonal translatome (Shigeoka et al., 2016)

showed that the number of axonally translated mRNAs is high-

est during branching stages, when synapses are being formed.

A recent proteomic study showed that Rps4x/eS4 is the most

significantly sub-stoichiometric among all of the RPs in polyso-

mal ribosomes of eukaryotic cells (Slavov et al., 2015), suggest-

ing an interesting possibility that, compared to Rps4x/eS4-

containing ribosomes, Rps4x/eS4-deficient ribosomes have

less translation elongation activity, which may cause a polyso-

mal ‘‘traffic jam’’ on the mRNA (Chu et al., 2014). These results

suggest the possibility that axonal RP translation induced by

Netrin-1 and the CUIC motif may make axonal ribosomes

competent for the extensive protein synthesis needed for

axon arborization and synaptogenesis (Figure S7G). Collec-

tively, our findings suggest that ribosomes may be dynamic

structures in axons, exchanging/repairing components in

response to extrinsic signals. Further studies are needed to pro-

vide a fuller understanding of how RP mRNA translation in



axons contributes to fundamental processes that establish and/

or maintain neural circuits.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Rps4x Proteintech Cat#14799-1-AP; RRID: AB_2238567

Rabbit polyclonal anti-Rpl17 Proteintech Cat#14121-1-AP; RRID: AB_2253985

Rabbit polyconal anti-Rps14 Abcam Cat#ab174661

Mouse monoclonal anti-Rpl19 Abcam Cat#ab58328; RRID: AB_945305

Mouse monoclonal anti-Rps23 Abcam Cat#ab57644; RRID: AB_945314

Rabbit polyclonal anti-Rps3a Proteintech Cat#14123-1-AP; RRID: AB_2253921

Mouse monoclonal anti-Neurofilament A DSHB Cat#3A10; RRID: AB_531874

Rabbit polyclonal anti-Rpl39 Abcam Cat#ab74740; RRID: AB_1524345)

Rabbit polyclonal anti-Rps12 Proteintech Cat#16490-1-AP; RRID: AB_2146233

Rabbit monoclonal anti-Gtpbp4 Abcam Cat#ab92342; RRID: AB_2049721

Mouse monoclonal anti-Npm1 Origene Cat#BM5524; RRID: AB_1008764

Rabbit polyclonal anti-Abce1 Abcam Cat#ab32270; RRID: AB_722514

Rabbit polyclonal anti-b-actin Abcam Cat#ab8227; RRID: AB_2305186

Rabbit polyclonal anti-b-catenin Sigma-Aldrich Cat#C2206; RRID: AB_476831

Mouse monoclonal anti-puromycin, clone 12D10 Sigma-Aldrich Cat#MABE343; RRID: AB_2566826

Mouse monoclonal anti-ribosomal RNA (Y10B) Abcam Cat#ab171119

Rabbit monoclonal anti-biotin Cell Signaling Cat#5597; RRID: AB_10828011

Goat anti-rabbit Alexa Fluor 568 Abcam Cat#ab150117; RRID: AB_2688012

Goat anti-mouse Alexa Fluor 594 Abcam Cat#ab150080; RRID: AB_2650602

Mouse monoclonal anti-puromycin, clone 12D10,

Alexa Fluor 647 Conjugate

Sigma-Aldrich Cat#MABE343-AF647

Goat anti-mouse HRP Abcam Cat#ab6789; RRID: AB_955439

Goat anti-rabbit HRP Abcam Cat#ab97080; RRID: AB_10679808

Bacterial and Virus Strains

BioBlue Chemically Competent Cells Bioline Cat#BIO-85037

Chemicals, Peptides, and Recombinant Proteins

AHA (L-Azidohomoalanine) ThermoFisher Cat#C10102

Leibovitz’s L-15 Medium ThermoFisher Cat#11415064

Leibovitz’s L-15 medium -Lys -Arg GIBCO Life technologies N/A (customized)

Stable isotope-coded amino acids Lys8 Silantes GmbH Cat#211603902

Stable isotope-coded amino acids Arg10 Silantes GmbH Cat#20160390

Antibiotic-Antimycotic (100X) Thermo Fisher Scientific Cat#15240062

Poly-L-lysine Sigma-Aldrich Cat#P1274

Laminin Sigma-Aldrich Cat#L2020

Puromycin Sigma-Aldrich Cat#P8833

Cycloheximide Sigma-Aldrich Cat#C4859

Anisomycin Sigma-Aldrich Cat#A9789

Cy5-UTP PerkinElmer Cat#NEL582001EA

SUPERase In RNase Inhibitor Ambion Cat#AM2696

FluorSave Merck Millipore (Calbiochem) Cat#345789-20

Duolink In Situ Mounting Medium with DAPI Sigma-Aldrich Cat#DUO82040-5ML

Recombinant mouse Netrin-1 R&D systems Cat#1109-N1

RNase A Ambion Cat#EN0531

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rnase T1 Ambion Cat#EN0541

n-Octylglucoside Sigma-Aldrich Cat#10634425001

Critical Commercial Assays

NeuroPORTER transfection reagent Sigma-Aldrich Cat#NPT01

Rneasy mini kit QIAGEN Cat#74104

SuperScript II First Strand Synthesis kit Thermo Fisher Scientific Cat#18080051

Quantitect SYBR Green PCR kit QIAGEN Cat#204141

KAPA HyperPrep kit Roche Cat#KK8503

NextSeq 500/550 high output v2 kit (150 cycles) Illumina Cat#FC-404-2002

Duolink In Situ Detection Reagents Green Sigma-Aldrich Cat#DUO92014

Duolink In Situ PLA probe Anti-Rabbit PLUS Sigma-Aldrich Cat#DUO92002

Duolink In Situ PLA probe Anti-Mouse MINUS Sigma-Aldrich Cat#DUO92004

Click-iT Cell Reaction Buffer Kit Thermo Fisher Scientific Cat#10269

Deposited Data

Proteomics data This study PRIDE: PXD011032

PRIDE: PXD015574

RNA-sequencing data This study GSE135502

Experimental Models: Organisms/Strains

Xenopus laevis Nasco Cat#LM00715, Cat#LM00535

Oligonucleotides

Morpholino: Control MO 50-CCTCTTACCTCAGTTA

CAATTTATA-30
Gene tools N/A

Morpholino: Rps4x.S MO 50-TTCTTCGGTCCGCGA

GCCATG-30
Gene tools N/A

Morpholino: Rps4x.L MO 50-CTTTTTCGGTCCACG

AGCCATTTTC-30
Gene tools N/A

Morpholino: Rpl5 MO 50- ACCTTTACGAACCCC

ATTTTGCTCT �30
Gene tools N/A

Morpholino: Rps3a.S MO 50- TCTTGTTCTTGCCG

ACTGCCATC �30
Gene tools N/A

Morpholino: Rps3a.S MO 50- GTTCTTGCCCACTGC

CATCTTGC �30
Gene tools N/A

Primers for 18S rRNA (Xenopus laevis) qRT-PCR

forward: 50-GTAACCCGCTGAACCCCGTT-30
This study N/A

Primers for 18S rRNA (Xenopus laevis) qRT-PCR

reverse: 50-CCATCCAATCGGTAGTAGCG-30
This study N/A

50RACE oligo 1: 50-GGTCCACGAGCAAAGACA

CCAGTCAA �30
This study N/A

50RACE oligo 1st PCR: 50- GCAAAGACACCAGTCA

ACTTGTCCAACATC �30
This study N/A

50RACE oligo 2nd PCR: 50- AACACGCTTCAAGTGCT

TTTTCGGTCCA �30
This study N/A

50RACE sequencing oligo: 50- GTGCTTTTTCGGT

CCACGAGCAAAGAC �30
This study N/A

Primers for 18S pre-rRNA (Xenopus laevis) RT-PCR

forward: 50-GAGCGAGAGAGAAAGACGGA �30
This study N/A

Primers for 18S pre-rRNA (Xenopus laevis) RT-PCR

reverse: 50-TCTAGAGTCACCAAAGCGGC �30
This study N/A

Recombinant DNA

Plasmid: pCS2+-Venus-Rps4x-Full length This study N/A

Plasmid: pCS2+-Venus-Rps4x-Del CUIC This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: pCS2+-Venus-Rps4x-Del 50UTR This study N/A

Plasmid: pCS2+-Venus-Rps4x-Del 50UTR-30UTR This study N/A

Plasmid: pCS2+-Venus-Rps4x (Xenopus) This study N/A

Plasmid: pCS2+-mGFP Das et al., 2003 N/A

Plasmid: pCS2+-mRFP Poggi et al., 2005 N/A

Plasmid: pCS2+-Mo resistant Rps4x del-5’UTR/mGFP

dual promotor

This study N/A

Plasmid: pCS2+-Mo resistant Rps4x del-CUIC/mGFP

dual promotor construct

This study N/A

Plasmid: pCS2+-MO resistant Rps4x/mGFP dual

promotor construct

This study N/A

Software and Algorithms

Volocity PerkinElmer Version 6.0.1, RRID:SCR_002668

R v.3.2.2 RRID: SCR_001905

TopHat2 v.2.0.12 RRID: SCR_013035

Cufflinks v.2.2.1 RRID: SCR_014597

HISAT2 v.2.1.0 RRID: SCR_015530

HOMER v.3.0 RRID: SCR_010881

Vienna RNA v.2.4.3 RRID: SCR_008550

DAVID v.6.8 RRID: SCR_001881

FIJI Schindelin et al., 2012 Version 2.0.0-rc-65/1.51w, RRID:SCR_002285

Simple Neurite Tracer Longair et al., 2011 https://imagej.net/Simple_Neurite_Tracer

MATLAB Mathworks; v. R2016b RRID:SCR_001622

GraphPad PRISM Graphpad; v.5 RRID:SCR_002798

MaxQuant v.1.4.1.2 RRID: SCR_014485

RapidSTORM Wolter et al., 2012 N/A

PyMOL https://www.pymol.org2/2 RRID:SCR_000305

Other

RNA-seq dataset Shigeoka et al., 2016 GEO: GSE79352

RNA-seq dataset Ding et al., 2017 GEO: GSM1948717

Proteome dataset Cagnetta et al., 2018 PRIDE: PXD005469

POSTAR2 database Zhu et al., 2019 N/A

Microfluidic chambers Xona Microfluidics Cat#SOC150

Falcon Cell Culture Inserts Thermo Fisher Scientific Cat#08-771-7/353102
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources and reagents should be directed to the Lead Contact, Christine E. Holt (ceh33@cam.

ac.uk). All unique plasmids are available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Xenopus laevis Embryos
Xenopus laevis eggs were fertilized in vitro and embryos were raised in 0.1x Modified Barth’s Saline (MBS; 8.8mMNaCl, 0.1 mMKCl,

0.24mM NaHCO3, 0.1 mM HEPES, 82mM MgSO4, 33mM Ca(NO3)2, 41mM CaCl2) at 14-20
�C and staged according to the tables of

Nieuwkoop and Faber (1994). All animal experiments were approved by the University of Cambridge Ethical Review Committee in

compliance with the University of Cambridge Animal Welfare Policy. This research has been regulated under the Animals (Scientific

Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the University of Cambridge Animal Welfare and

Ethical Review Body (AWERB).
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Primary Xenopus Retinal Cultures
Eye primordia were dissected from Tricaine Methanesulfonate (MS222) (Sigma-Aldrich) anesthetized embryos of either sex at stage

35/36 and cultured on 10mg/ml poly-L-lysine (Sigma-Aldrich)- and 10mg/ml laminin (Sigma-Aldrich)-coated glass bottom dishes

(MatTek) in 60% L-15 medium (ThermoFisher), 1x Antibiotic-Antimycotic (ThermoFisher) at 20�C for 24-48 hours. 10-20 eye

primordia (from 5-10 embryos) were cultured per dish and, typically, 2-3 dishes were used per experimental condition for each bio-

logical replicate. Replicates in each experiment using Xenopus laevis in this study were obtained from different batches of embryos.

METHOD DETAILS

RNA-seq analysis of Xenopus laevis axons
Weperformed the axon cultures using eyes of stage 33/34-37/38 embryos of Xenopus laevis (Nieuwkoop and Faber, 1994) on a Boy-

den chamber device as described above at room temperature for 48hrs. To obtain the axonal transcriptome, we isolated total RNA

from RGC axons separated from their cell bodies by a Boyden chamber device (1 mm pore, Falcon Cell Culture Inserts, 10289270/

353102, Thermo fisher scientific) coated on both sides of the membrane with poly-L-lysine (10 mg/ml) and only on the bottom side

with laminin (10 mg/ml). We cultured 500 eyes of Xenopus laevis embryos (stage 33/34-37/38) for each sample, yielding < 4-5mg

axonal material. Eyes were dissected out and cultured as whole eyes on the upper surface of the transfilter in 60% L15 medium con-

taining penicillin streptomycin fungizone (GIBCO) at room temperature for 48 hours. After 48 hours, we removed the cell bodies and

lysed the axons in RLT buffer (QIAGEN) containing b-mercaptoethanol. RNA was then extracted using the RNeasy Mini kit (QIAGEN)

followed by in-column DNase I treatment to remove genomic DNA contamination. We then amplified cDNA using a method devel-

oped for single cell transcriptomics (Tang et al., 2009) with minor modifications (Shigeoka et al., 2016). The cDNA library preparation

was performed using a KAPA Hyperprep kit (Roche) and cDNA libraries were subjected to a RNA-sequencing run on Next-seq 500

instrument (Illumina) using the 150 cycles high output kit (Illumina). The sequence reads were mapped using HISAT 2 version 2.1.0,

and FPKM values were estimated using Cufflinks version 2.1.1. If RP-coding mRNAs are transcribed from two homeologs, we calcu-

lated the average FPKM of homeologs. We used previously published RNA-seq data (GSM1948717) of Xenopus laevis whole em-

bryos for a control.

Plasmid Construction
To construct Venus reporter plasmids used in FRAP and single molecule translation imaging, Venus cDNA and 50 / 30 UTR of mouse

Rps4x/eS4 (NM_009094) were integrated into BamHI-XbaI sites of pCS2+ (University of Michigan, Ann Arbor, Mich.). 8 nucleotides

(CTCTTTCC) in the 50 UTRwere deleted in the ‘‘Del-motif’’ construct. To generate Rps4x-Venus fusion constructs, Venus andX.laevis

Rps4x.S sequences were inserted into the BamHI-RcoRI sites of pCS2+. In these constructs, a CMV promoter drives the expression

of 50 UTR(Rps4x.S)-Venus-linker (Gly-Gly-Ser-Gly-Gly-Gly-Ser-Gly)-CDS (Rps4x.S, NM_001097003.1)-30 UTR(Rps4x.S). Because
frog 50 UTR sequences of Rps4x.S in public databases could be truncated, we used a sequence of actually transcribed mRNA in

frog embryos, which is obtained from a previously published RNA-seq data (GSM1948717) mapped to genome Xla.v91: 50-cgcg
ctctcttcctgccagagttcagcgcgcactctttatcccggcgggaccggaaggaggaggtcttttcc-30. To construct the plasmids for the rescue experiment

of the morpholino phenotype, we replaced the b-actin cDNA of the morpholino insensitive b-actin/mGFP dual promoter construct

(Wong et al., 2017) with 50 UTR-CDS-30 UTR of Rps4x.S in which silent mutations (ATGGCTCGCGGACCGAAGAAGC = > ATGGCA

CGGGGCCCCAAAAAAC) were introduced to avoid morpholino binding. In the ‘‘del-CUIC’’ rescue construct, both of the two motifs

(TCTCTTCC and TCTTTTCC) in the 50 UTR were removed.

Axon Culture and SILAC
We performed the axon cultures as described above for RNA-seq analysis. Then, we treated the eyes with lysine- and arginine-free

L15 (60%)medium for 1hr. After eye removal to eliminate the cell bodies, the axonswere cultured in L15 depletionmedium containing

‘‘heavy’’ amino acids (84 mg/ml [13C6,15N4] l-arginine, 146 mg/ml [13C6,15N2] l-lysine (Silantes, Germany) and Netrin-1 (600 ng/ml;

R&D systems) for 3hrs. Soma removal was confirmed by absence of nuclear DAPI staining. For the preparation of control eye sam-

ples, we cultured dissected eyes in L15 depletion medium containing ‘‘heavy’’ amino acids at room temperature for 48hrs. Lysis of

axons was performed using 500 mL Lysis buffer (9mM Tris-HCl pH 7.4, 270mM KCl, 9 mM MgCl2, 1% n-octylglycoside (Sigma-

Aldrich),100mg/ml cycloheximide (Sigma-Aldrich), 0.5mM DTT, EDTA-free protease inhibitor cocktail (Roche) and SUPERase In

RNase Inhibitor (Ambion)). Lysates were centrifuged at 16.000 g at 4�C for 15 min and the supernatant was transferred to an ice-

cold 1.5ml tube. For the puromycin/RNaseA/T1 treated sample, axons were treated with 200 mM puromycin for 15min before lysis

and lysates were treated with 10 mg/ml RNase A (Ambion) and 250U RNase T1 (Ambion) for 15 min at 25�C.

Polysome Fractionation
For density gradient fractionation, the lysate was layered on a sucrose gradient (10%–50%) and ultracentrifugation was performed

using a Beckman SW-40Ti rotor and Beckman Optima L-100 XP ultracentrifuge, with a speed of 35,000 rpm at 4�C for 160min. Frac-

tionations and UV absorbance profiling were carried out using Density Gradient Fractionation System (Teledyne ISCO). For sucrose

cushioning, the lysate was layered on a 20% sucrose solution (20% sucrose, 10 mM Tris-HCl pH 7.4, 300 mM KCl,10 mM MgCl2),

which contains a high concentration of KCl to avoid the aspecific binding of proteins to ribosomes. Then, ultracentrifugation was
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performed using a Beckman SW-55Ti rotor and Beckman Optima L-100 XP ultracentrifuge, with a speed of 41,000rpm at 4�C for

120 min. Proteins were precipitated from each fraction using methanol-chloroform precipitation and pellets were resuspended in

1x NuPAGE LDS sample buffer and used for western blotting as described below. RNA from each fraction was isolated as described

below.

Quantitative PCR
RNA from fractionated samples or from the axonal compartment of themicrofluidic chambers were isolated using the RNeasymini kit

(QIAGEN) and reverse transcribed into cDNAusing randomhexamers and the SuperScript III First-strand synthesis kit (Thermo Fisher

Scientific). Triplicate reactions for qPCRwere prepared using this cDNA and theQuantitect SYBRGreen PCR kit (QIAGEN) according

tomanufacturer’s instructions. Plates were centrifuged shortly and run on a LightCycler 480machine (Roche) using the following PCR

conditions: denaturation step for 15 s at 94�C; annealing step for 30 s at 60�C; extension step for 30 s at 72�C. The following primers

were used for qPCR: 18S rRNA 50-GTAACCCGCTGAACCCCGTT-30 and 50-CCATCCAATCGGTAGTAGCG-30.

50RACE and RT-PCR
We used 50 RACE System for Rapid Amplification of cDNA Ends, version 2.0 (Thermo Fisher scientific) and followed. For the cDNA

synthesis, we used the primer: 50-GGTCCACGAGCAAAGACACCAGTCAA-30. For the 1st PCR amplification, we used a reverse

primer: 50-GCAAAGACACCAGTCAACTTGTCCAACATC-30. For the 2nd PCR amplification, we used a reverse primer: 50-AACAC
GCTTCAAGTGCTTTTTCGGTCCA-30.

We purified the amplified product from gel after the electrophoresis by using Wizard SV Gel and PCR Clean-Up System (Promega)

and performed the direct sequence of the purified DNA using the primer: 50-GTGCTTTTTCGGTCCACGAGCAAAGAC-30. For the
amplification of pre-rRNA, the following primers were used: 18S-5end-F 50-GAGCGAGAGAGAAAGACGGA-30 and 18S-5end-R

50- TCTAGAGTCACCAAAGCGGC-30.
PCR amplifications were performed using Ex Taq HS (Takara).

Axonal Morpholino Delivery in vitro

Modified microfluidic chambers (Xona microfluidics, SOC150) were pre-coated with poly-L-lysine (10 mg/ml) and laminin (10 mg/ml).

Eyes dissected from stage 30-33 X. laevis embryos were plated in the open chamber of SOC150. RGC axons were grown in 60% L15

medium containing mg/ul penicillin streptomycin fungizone at room temperature for 48 hr. For the morpholino introduction, we pre-

pared two solutions: diluted transfection reagent (2 mL NeuroPORTER Transfection Reagent (Sigma-Aldrich) with 5.5 mL L15 (60%))

and morpholino solution (2.5 mL of 1mM morpholino oligonucleotide (mixture of 50-CTTTTTCGGTCCACGAGCCATTTTC-30 (against
Rps4x.L) and 50-TTCTTCGGTCCGCGAGCCATG-30 (against Rps4x.S) or 50-ACCTTTACGAACCCCATTTTGCTCT-30 (against Rpl5) or
a mixture of 50-TCTTGTTCTTGCCGACTGCCATC-30 (against Rps3a.S) and 50-GTTCTTGCCCACTGCCATCTTGC-30 (against

Rps3a.L) with 5 mL L15 (60%)). We mixed 7.5 mL morpholino solution with 7.5 mL diluted transfection reagent and incubated the

mixture at room temperature for 5 min. We added the 15 mL of mixture directly to 200 mL of the medium present in the axon chamber

and incubated it at room temperature for 18-24 hours.

Immunohistochemistry
Microfluidic chamber cultures were treated with 600ng/ml Netrin-1 (R&D systems) for 20 minutes and then fixed after detaching mi-

crofluidic chambers from the glass bottom dishes in 2% formaldehyde/7,5% sucrose in PBS for 20 min at 20�C. The fixed cultures

were steamed for 10min in sodium citrate buffer for antigen retrieval in case of ribosomal protein staining. Subsequently, they were

permeabilized for 3-5 min in 0.1% Triton X-100 in PBS and blocked with 5% heat-inactivated goat serum in PBS for 45 min at 20�C.
Primary antibodies were incubated overnight at 4�C, followed by Alexa Fluor-conjugated secondary antibodies for 45 min at 20�C in

the dark. Cultures were mounted in FluorSave (Calbiochem).

Antibodies were used at the following dilutions. Primary antibodies: rabbit anti-Rps4x (Proteintech, Cat#14799-1-AP; RRID:

AB_2238567, 1:200), 1:200 rabbit anti-Rpl17 (Proteintech, Cat#14121-1-AP; RRID: AB_2253985, 1:200), rabbit-anti-Rps3a (Protein-

tech, Cat#14123-1-AP; RRID: AB_2253921). Secondary antibodies: goat anti-rabbit Alexa Fluor 594 (Abcam, Cat#ab150080; RRID:

AB_2650602, 1:1000). Culture medium in the axonal compartment was replaced with 200 mL of culture medium containing 600ng/ml

Netrin-1 and 10mg/ml puromycin (Sigma). After 20min, the axonal compartment was washed once with fresh culture medium before

detaching the microfluidic chamber from the dish. The retinal culture was immediately fixed in 2% formaldehyde/7,5% sucrose in

PBS for 20 min at 20�C, permeabilized for 3-5 min in 0.1% Triton X-100 in PBS, blocked with 5% heat-inactivated goat serum in

PBS for 30 min at 20�C and then labeled with Alexa Fluor 647-conjugated mouse anti-puromycin antibody (Millipore,

Cat#MABE343-AF647, 1:250) overnight at 4�C. Cultures were mounted in FluorSave (Calbiochem).

Transfilters from Boyden chambers were immunostained after eye removal using mouse-anti-neurofilament A (Developmental

Studies Hybridoma Bank, Cat#3A10; RRID: AB_531874) and DAPI, as previously described (Cagnetta et al., 2018).

For qIF or immunostaining on regular Xenopus retinal cultures (Figures 2D, 2E, 5F, S2D, and S2E), cultures were treated with or

without 50 mM cycloheximide (Sigma) and 600ng/ml Netrin-1 for 5 minutes before fixation in 2% formaldehyde/7,5% sucrose in

PBS for 20 min at 20�C. For Rps12 qIF, 600ng/ml Netrin-1 was added for 30 minutes before fixation. The fixed cultures were

steamed for 10min in sodium citrate buffer for antigen retrieval in case of ribosomal protein and Npm1 staining. For Abce1 and
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Gtpbp4 immunostaining, methanol fixation was used. The cultures were then permeabilized and blocked as described above and

stained with primary antibodies were incubated overnight at 4�C, followed by Alexa Fluor-conjugated secondary antibodies for

45 min at 20�C in the dark. Cultures were mounted in FluorSave (Calbiochem). The following antibodies were used: rabbit anti-

Rps14 (Abcam, Cat#ab174661; 1:200), rabbit anti-Rps4x (Proteintech, Cat#14799-1-AP; RRID: AB_2238567, 1:200), rabbit anti-

Rpl39 (Abcam, Cat#ab74740; RRID: AB_1524345, 1:200), rabbit anti-Rps12 (Proteintech, Cat#16490-1-AP; RRID: AB_2146233,

1:200), rabbit anti-Abce1 (Abcam, Cat#ab32270; RRID: AB_722514, 1:200), rabbit anti-Gtpbp4 (Abcam, Cat#ab92342; RRID:

AB_2049721, 1:200), mouse anti-Npm1 (Origene, Cat#BM5524; RRID: AB_1008764, 1:200), Secondary antibodies: goat anti-rabbit

Alexa Fluor 594 (Abcam, Cat#ab150080; RRID: AB_2650602, 1:1000), goat anti-mouse Alexa Fluor 568 (Abcam, Cat#ab150117;

RRID: AB_2688012, 1:1000).

Randomly selected non-collapsed growth cones were imaged at 60x on a Nikon Eclipse TE2000-U invertedmicroscope equipped

with an EMCCD camera. For Abce1, Gtpbp4 and Npm1 immunostaining, imaging was carried out at 100x on a Perkin Elmer Spinning

Disk UltraVIEW ERS, Olympus IX81 inverted microscope. Exposure time was kept constant and below gray-scale pixel saturation.

Blastomere Microinjection
Embryosweremicroinjected with Cy5-UTP at 100 mM in a total volume of 5nl (PerkinElmer) into both of the dorsal blastomeres at 4- or

8-cell stage (Wong et al., 2017). Embryos were first de-jellied in 2% Cysteine (Sigma-Aldrich) in 1x MBS (pH 8.0), washed 3 times in

0.1x MBS and aligned on a grid in 4% Ficoll (Sigma-Aldrich) in 0.1x MBS with 1X antibiotic-antimyotic (Thermo Fisher Scientific). In-

jections were performed using glass capillary needles (outer diameter: 1.0mm; inner diameter: 0.5mm; Harvard Apparatus) and a

pressurized microinjector (Picospritzer, General Valve).

FUNCAT-rRNA Proximity Ligation Assay
Xenopus retinal explants from stage 35-36 embryos were first cultured as described above in complete 60% L-15 medium (GIBCO,

Thermo Fisher Scientific) for 24 hours, whichwas then replacedwithmethionine-free L-15medium (GIBCO, Thermo Fisher Scientific)

for a further 12 hours. After 11 hours, 200mM anisomycin (Sigma-Aldrich) was added into the culture for the +anisomycin condition

and an equal concentration and volume of DMSO (Sigma-Aldrich) was added to all other conditions. After 1 hour, axons were severed

from the explants to exclude axonal transport of nascent peptides synthesized in the cell bodies, immediately followed by the addi-

tion of 1mM AHA (Thermo Fisher Scientific) and 600ng/ml Netrin-1 (R&D) in the +AHA +Netrin-1 and +anisomycin conditions, 1mM

AHA in the +AHA -Netrin condition, or an equal concentration and volume of DMSO (as in the AHA stock solution) and 600ng/ml Ne-

trin-1 in the -AHA condition. After 45minutes, 200mMpuromycin (Sigma-Aldrich) wasmixed into the AHA- and/or Netrin-1-containing

medium for a further 15 min incubation to release all synthesizing polypeptides from axonal ribosomes. After washing once with PBS

to remove unincorporated AHA, the cultures were fixed in 2% formaldehyde/7.5% sucrose in PBS for 20 min at 20�C and permea-

bilized for 5 min in 0.1% Triton X-100 in PBS. The Click Chemistry reaction was performed according to the manufacturer’s protocol

(Click-iT Cell Reaction Buffer Kit, Thermo Fisher Scientific) starting with washing the fixed cultures with 2% BSA in PBS (w/v) and

incubating the culture for 30 min at 20�C in freshly prepared Click-iT reaction cocktail containing the Click-iT cell reaction buffer,

the buffer additive, CuSO4 and 5mM biotin-alkyne (Thermo Fisher Scientific). The cultures were then washed once in 2% BSA in

PBS (w/v) and blockedwith 5%heat-inactivated goat serum in PBS for 30min at 20�C. Amouse anti-ribosomal RNA (Y10B) antibody

(1:100, Abcam, Cat#ab171119) and a rabbit anti-biotin antibody (1:200, Cell Signaling, Cat#5597, RRID: AB_10828011) were incu-

bated overnight at 4�C. The proximity ligation assay was carried out according to the manufacturer’s protocol (Duolink, Sigma-Al-

drich) with minor modifications. Dishes were washed twice for 5 minutes with 0.002% Triton X-100 in PBS and incubated with

anti-rabbit (+) and anti-mouse (-) PLA probes for 1 hour at 37�C, with ligase for 30min at 37�C andwith the polymerasemix with green

fluorescence for 100 min at 37�C. The samples were subsequently mounted with mounting medium (Duolink, Sigma-Aldrich) and

imaged using an Olympus IX81 inverted microscope fitted with a PerkinElmer Spinning Disk UltraVIEW VoX using a 60x silicone

oil objective (1.4 N.A., Olympus), and an ORCA-Flash4.0 V2 CMOS camera (Hamamatsu). Volocity 6.3.0 software (PerkinElmer)

was used for acquisition. The number of discrete fluorescent puncta within a randomly chosen 50mm axon segment in each image

was counted using Volocity software.

Fluorescence Recovery After Photobleaching
Retinal cultures for FRAP assays were obtained from eyes of stage 33/34 embryos expressing one of the four Venus constructs (Fig-

ures 2F and S2F) or Venus-Rps4x / Venus-only for Cy5-UTP colocalization experiments (Figures 4D, 4E, and S4). These constructs

were introduced by eye-targeted electroporation at stage 26 as described in previous studies (Falk et al., 2007; Wong et al., 2017).

1mg/ml Venus construct (Figures 2F and S2F) or 1.5mg/ml of Venus-Rps4x (Venus only) with 100uM Cy5-UTP (Figures 4D, 4E, and S4)

were injected for the electroporation.

FRAP imagingwas performed on anOlympus IX81 invertedmicroscope equippedwith a PerkinElmer SpinningDisk UltraVIEWVoX

and a 60x (NA, 1.30) Olympus silicone oil immersion objective. Images were acquired with an ORCA-Flash4.0 V2 CMOS camera

(Hamamatsu) using Volocity software (PerkinElmer). Photobleaching was performed using an UltraVIEW PhotoKinesis device

(PerkinElmer). Photobleaching was performed at 85%–90% laser power (488 nm laser line) with 20–30 bleach cycles.

For the FRAP experiment imaging axons expressing Rps4x UTR-containing Venus constructs or the Venus-only construct indi-

cated in Figures 2F and S2F, axons of the 24h retinal cultures were severed from the eye and 600ng/ml Netrin-1 was added into
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the culture. A randomly selected fluorescent growth cone of a severed axon then proceeded to the photobleaching step using 488 nm

laser line, immediately after pre-photobleaching fluorescent and phase contrast images were acquired. The photobleached area was

manually defined so that growth cones and > 50 mm of the axon shaft were bleached (thus reducing likelihood of fluorescence re-

covery resulting from Venus diffusion from unbleached areas of the axon shaft). In anisomycin-treated condition, 24h cultures

were incubated with 100mM anisomycin for 20 min before severing the axons. Time-lapse post-photobleaching images were

captured at 1 min intervals using a 488 nm laser line at 20% laser power, together with phase contrast images for the corresponding

time point. Exposure time was adjusted to avoid pixel saturation.

For the FRAP experiment imaging axons expressing Cy5-UTP and Venus-Rps4x fusion construct or Venus-only construct shown

in Figures 4D and S4, axons of the 24h retinal cultures were severed from the eye and 600ng/ml Netrin-1 was added into the culture. A

30 s pre-photobleaching movie at maximum speed of a randomly selected Cy5- and Venus-positive 50 mmaxon segment was taken,

followed by photobleaching of the Venus fluorescence using a 488 nm laser line. 30 s post-photobleaching fluorescent and phase

contrast movies at maximum speed were acquired at 0 min, 5 min and 10 min after the completion of photobleaching. Exposure

time was adjusted to avoid pixel saturation.

Single Molecule Translation Imaging
Single molecule translation imaging was done as previously described(Ströhl et al., 2017; Tatavarty et al., 2012). Embryos at

stage 26 were electroporated with plasmids expressing Rps4x UTR-containing Venus constructs or the Venus-only and left in

0.1X MBS to continue to develop. Venus-expressing eyes from electroporated embryos at stage 34 were dissected and cultured.

After 24 hours, a non-collapsed fluorescent growth cone was randomly selected and, prior to the bleaching step, imaged with

low irradiance (< 2W/cm2) in both fluorescence and bright field mode to generate an outline image. The growth cone was then photo-

bleached for 10-30 s with an irradiance of 1.5 kW/cm2 to eliminate the fluorescence. A reduced laser intensity of 0.3 kW/cm2 was

used to ensure survival of the axons while simultaneously bleaching newly synthesized Venus proteins. The flash-like recovery of

Venus fluorescence recorded with an exposure time of 200 ms for 180 s. After that another bright field image was taken to check

for survival. Retracted growth cones were excluded from analysis. In Netrin-1-stimulated conditions, 600ng/ml of Netrin-1 was

bath applied immediately before the photobleaching step. All imaging steps were performed under epifluorescence illumination.

An EM gain of 200 was used on the EMCCD camera to ensure single molecule sensitivity. The field of illumination was twice the

size of the imaged field of view to bleach diffusing or transported fluorescent proteins from outside the growth cone before entering

the field of view. Imaging was performed on a custom-made inverted single-molecule fluorescence microscope built around a com-

mercial microscope frame (Olympus IX73). The illumination laser wavelength was at 488nm (Coherent Sapphire) for excitation of the

YFP derivate Venus in combination with a 525/645-emission filter (Semrock) and a dichroic beam splitter (Chroma ZT405/488/561/

640rpc). The laser beam was circularly polarized to excite fluorescent proteins homogeneously regardless of their orientation. The

microscope was equipped with an EM-CCD camera (Andor iXon Ultra 897) with effective pixel size on the sample of 118 nm. A

100x NA = 1.49 oil immersion TIRF objective (Olympus) was used.

In Vivo Knockdown and Imaging
Targeted eye and tectal electroporations were performed as previously described (Falk et al., 2007; Wong et al., 2017). Stage 28 em-

bryos were anesthetized in 0.4mg/ml MS222 in 1X MBS. The retinal primordium was injected with electroporation mixture, followed

by electric pulses of 50ms duration at 1000ms intervals, delivered at 18V (please refer to the list below for themixture and the number

of electric pulses delivered for each experiment). The embryos were recovered and raised in 0.1X MBS until the desired embryonic

stage for experiment.

1) Mature axon visualization (Figures 7B–7D and S7): 1mg/ml of pCS2+mGFP (or 1mg/ml of pCS2+mGFP/MO resistant Rps4x

rescue dual promoter construct cDNA for rescue experiments), 0.5mM control/Rps4x MO; 1 pulse.

2) Axon branching dynamics (Figures 7E–7G and S7): 1mg/ml of pCS2+mGFP or 1mg/ml of pCS2+mRFP, 0.5mM control/Rps4x

MO; 4 pulses.

For tectal electroporation (Figures 7 and S7), the lateral surface of the hemisphere of the brain contralateral to the eye labeled with

mRFP (electroporated at Stage 28 as described above) was exposed by careful removal of overlying eye and epidermis. 8X 18V elec-

tric pulses of 50ms duration at 1000ms intervals were delivered immediately after the 1mM control/Rps4x MO was locally ejected at

the vicinity of the target area. The procedure was repeated once to ensure efficient delivery of the MO (Wong et al., 2017). Embryos

were lightly anaesthetized with 0.4mg/ml MS222 in 1xMBS. The lateral surface of the brain contralateral to the electroporated eye

was exposed by carefully removing the overlying epidermis and the contralateral eye. The electroporated eyes were also surgically

removed to prevent somal contribution of proteins in Figures 7F and S7. Embryos were mounted in an oxygenated chamber created

with Permanox slides (Sigma-Aldrich) and Gene Frame (ThermoFisher) and bathed in 1xMBS with 0.1mg/ml MS222, for visualization

with fluorescence microscopy. Imaging was performed using 40X (NA 1.25) or 60X UPLSAPO objectives (NA 1.3) with a PerkinElmer

Spinning Disk UltraVIEW ERS, Olympus IX81 inverted spinning disk confocal microscope. Z stack intervals of 1-2mmwere employed

for acquiring images with Volocity (PerkinElmer).
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Western Blotting
Proteins were resolved by SDS-PAGE on NuPage 4%–12% Bis-Tris gels (Invitrogen) and transferred to a nitrocellulose membrane

(Bio-Rad). The blots were blocked in blocking buffer (5%milk in TBS-T) and then incubated with primary antibodies in blocking buffer

overnight at 4�C. After 3washes (5minutes each) with TBS-T, the blots were incubatedwith HRP-conjugated secondary antibodies in

blocking buffer for 1 hour at RT, washed again for 3 times (5 minutes each) in TBS-T and developed using ECL-based detection

(Pierce ECL plus, Thermo Scientific). The following primary antibodies were used for western blot analysis: mouse anti-Rpl19

(Abcam, Cat#ab58328; RRID: AB_945305, 1:1000), mouse anti-Rps23 (Abcam, Cat#ab57644; RRID: AB_945314, 1:1000), rabbit

anti-Rps4X (Proteintech, Cat#14799-1-AP; RRID: AB_2238567, 1:1000), rabbit b-catenin (Sigma-Aldrich, Cat#C2206; RRID:

AB_476831, 1:8000) and rabbit anti-b-actin (Abcam, Cat#ab8227; RRID: AB_2305186).

Mass Spectrometry
1D gel bands were transferred into a 96-well PCR plate. The bands were cut into 1mm2 pieces, de-stained, reduced (DTT) and alky-

lated (iodoacetamide) and subjected to enzymatic digestion with chymotrypsin overnight at 37�C. After digestion, the supernatant

was pipetted into a sample vial and loaded onto an autosampler for automated LC-MS/MS analysis. LC-MS/MS experiments

were performed using a Dionex Ultimate 3000 RSLC nanoUPLC (Thermo Fisher Scientific Inc., Waltham, MA, USA) system and a

Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific Inc, Waltham, MA, USA). Separation of peptides was performed

by reverse-phase chromatography at a flow rate of 300nL/min and a Thermo Scientific reverse-phase nano Easy-spray column

(Thermo Scientific PepMap C18, 2 mm particle size, 100A pore size, 75 mm i.d. x 50cm length). Peptides were loaded onto a pre-col-

umn (Thermo Scientific PepMap 100 C18, 5 mm particle size, 100A pore size, 300 mm i.d. x 5mm length) from the Ultimate 3000 au-

tosampler with 0.1% formic acid for 3 minutes at a flow rate of 10 mL/min. After this period, the column valve was switched to allow

elution of peptides from the pre-column onto the analytical column. Solvent A was water + 0.1% formic acid and solvent B was 80%

acetonitrile, 20%water + 0.1% formic acid. The linear gradient employed was 2%–40%B in 30 minutes. The LC eluant was sprayed

into the mass spectrometer by means of an Easy-Spray source (Thermo Fisher Scientific Inc.). All m/z values of eluting ions were

measured in anOrbitrapmass analyzer, set at a resolution of 70000 andwas scanned betweenm/z 380-1500. Data-dependent scans

(Top 20) were employed to automatically isolate and generate fragment ions by higher energy collisional dissociation (HCD,

NCE:25%) in the HCD collision cell and measurement of the resulting fragment ions was performed in the Orbitrap analyzer, set

at a resolution of 17500. Singly charged ions and ions with unassigned charge states were excluded from being selected for MS/

MS and a dynamic exclusion window of 20 s was employed. For the label-free quantification of proteins, peptide identification

and relative quantification was carried out in Proteome Discoverer version 2.3. A standard label free quantification workflow was uti-

lized with the Mascot search algorithm, against a Xenopus laevis proteins downloaded from Xenbase. The search parameters

included: trypsin as the proteolytic enzyme, with maximum of two missed cleavages; variable oxidation modification of methionine,

and deamidation of asparagine and glutamine; fixed carbamidomethylation modification of cysteine; precursor and fragment mass

tolerances of 20 ppm and 0.1 Da respectively. The false discovery rate (FDR) was set at < 1% with two peptide matches to proteins

considered as reliable. For the analysis of SILAC labeled proteins, we used Maxquant in addition to Proteome Discoverer since it is

the most commonly used software for SILAC analysis. Raw data were processed using Maxquant (version 1.6.1.0) (Cox and Mann,

2008) with default settings. MS/MS spectra were searched against the X. laevis protein sequences from Xenbase (xlaevisProtein.

fasta). Enzyme specificity was set to trypsin/P, allowing a maximum of two missed cleavages. The minimal peptide length allowed

was set to seven amino acids. Global false discovery rates for peptide and protein identification were set to 1%. Thematch-between

runs and re-quantify options were enabled. To avoid false positives, we analyzed only those RPs where more than two labeled pep-

tides were detected by the software or if the MS spectrum of the detected labeled peptides showed clear peaks at the expected m/z

value.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
The n number for each experiment, details of statistical analysis and software are described in the figure legends or main text. Sta-

tistical analyses used in this study include one-way ANOVA, Welch’s t test, Mann-Whitney U test, Kolmogorov–Smirnov test and

Fisher’s exact Test. Statistical significance is defined as, n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001. Statistical analysis

was performed using R version 3.2.2 or Prism (GraphPad).

Bioinformatics Analysis
We analyzed the developmental change of level of all mRNAs translated in the mouse RGC axons in dataset (GSE79352). The

sequence reads were mapped to the mouse genome (mm10) using TopHat 2 version 2.0.12 with default settings, except for the

‘‘–read- realign- edit-dist 0’’ option. Transcript assembly and estimation of FPKM (Fragments Per Kilobase of transcript per Million

fragments sequenced) values were performed using Cufflinks version 2.2.1. For RNA-seq analysis of frog RGC axons, the sequence

reads were mapped to the X. laevis v9.2 genome (Xenbase) using HISAT2 2.1.0 with default settings. Transcript assembly and esti-

mation of FPKM (Fragments Per Kilobase of transcript per Million fragments sequenced) values were performed using Cufflinks

version 2.1.1. For the GO enrichment analysis, we only analyzed genes showing FPKM > 1 in both of two replicates. For analysis
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of the pSILAC-SP3 results, we extracted all proteins that show a significant change (FDR < 0.01) by stimulation (5min or 30min) of

Netrin-1. We performed a GO enrichment analysis using DAVID 6.8 with default settings for BP-direct, MF-direct and CC-direct cat-

egories and used all detected proteins as the background of the enrichment calculation. For the ribosome structure analysis, we used

the PyMOL function InterfaceResidues (https://pymolwiki.org/index.php/Main_Page) to know the interface residues of RPs with

rRNAs. We analyzed the structure of human 80S ribosome (6ek0) published previously (Natchiar et al., 2017). For the small ribosomal

subunit proteins, we analyzed interface residues between RPs and 18S rRNA. For the large ribosomal subunit proteins, we analyzed

the interface residues of RPs with 5S, 5.8S and 28S rRNAs.

Motif Analysis
All sequences of mouse cDNAs were retrieved from BioMart at Ensembl (GRCm38, ensemble Genes 91).De novomotif analysis was

performed using HOMER version 3.0 with custom FASTA files containing all 50 UTR sequences of mouse RP-coding cDNAs. For the

analysis of CUIC-containing genes, we selected all genes whosemRNA contains the 8-mer nucleotides (T/C)(T/C)(T/C)(T/C)TT(T/C)C

located less than 100nt upstream of the initiation codon. The secondary structure analysis of UTRs was performed using performed

using RNAfold in the ViennaRNA package version 2.4.3 with default settings. The conservation among species of all CUIC-containing

RP mRNAs was calculated from phastCons60way.UCSC.mm10. For the analysis of proteins binding the CUIC region, we used Hu-

man RBP binding sites data downloaded from the POSTAR2 database (Zhu et al., 2019). To visualize the binding sites of EIF com-

ponents, we created custom tracks on the UCSC genome browser.

Quantification of Immunofluorescence
For quantitation of fluorescence intensity, the growth cone outline was traced on the phase contrast image using Volocity version

6.0.1 (PerkinElmer), then superimposed on the fluorescent image. The software calculated the fluorescent intensity within the growth

cone, giving a measurement of pixel intensity per unit area. The growth cone outline was then placed in an adjacent area clear of

cellular material to record the background fluorescent intensity. This reading was subtracted from the growth cone reading, yielding

the background-corrected intensity.

FRAP analysis
Quantification of fluorescence intensity was performed using Volocity software (PerkinElmer). At each time point, the outline of the

growth cone was traced using phase contrast images. Mean gray values from the 488-channel were subsequently calculated as

mean pixel intensity per unit area within the specified region of interest (ROI). This ROI was then placed in an adjacent area clear

of cellular material to record the background fluorescent intensity. This reading was subtracted from the growth cone reading,

yielding the background-corrected intensity. Unhealthy axons exhibiting signs of photo-toxicity after FRAP (characterized by bleb-

bing, growth cone collapse and/or retraction) were excluded from analysis. In addition, only growth cones of axons extending more

than 100 mm from the eye explant were quantified to reduce effects of somal diffusion. Relative fluorescent recovery (R) at each time

point was calculated by the formula: Rx = (Ix – Ipost) / (Ipre – Ipost). Where, Ix = normalized fluorescent intensity of the growth cone

ROI at time point ‘x’, Ipre = normalized fluorescent intensity before photobleaching and Ipost = normalized fluorescent intensity

immediately after photobleaching (t = 0mins). Significance was tested using a two-way ANOVA. Colocalization analysis between

Cy5-RNA granules and Venus-Rps4x (N = 8 axons) or Venus (N = 12 axons) in Figure 4E was performed on the first image of a

30 s movie taken 10min post-photobleaching. In each image, a 5um axon segment containing Cy5-RNA granules and recovered

Venus-Rps4x or Venus signal was chosen and the Pearson’s correlation coefficient between Cy5 and Venus channels within the

selected area was measured by Volocity software.

Single Molecule Translation Imaging Analysis
Translation event counting was performed by manual counting supplemented with the previously reported software-assisted auto-

mated event detection(Ströhl et al., 2017), where localizations of individual protein translation events were retrieved using maximum

likelihood estimation with a Gaussian model fit via the software package rapidSTORM. A threshold of�6700 ADC, corresponding to

�500 photons per localization, was applied to filter out noise and non-Venus blinking events. This threshold was found by manual

selection of Venus flashes and determination of the ‘‘average’’ photon budget of a single emitting Venus molecule. The tracking op-

tion of rapidSTORM was used to recombine photons emanating from the same Venus protein over multiple frames. All events in a

small area around the growth cones were included for analysis due to the high mobility of filopodia. Results are normalized to the

growth cone area, thus given as event/s/mm2.

Branching Analysis
A filopodiumwas defined as a protrusionwith length < 5 mmwhile a branchwas defined as a protrusionwith length > 5 mm (Drinjakovic

et al., 2010; Hörnberg et al., 2013; Kalous et al., 2014; Wong et al., 2017). Data were analyzed in PRISM 7 (GraphPad). ‘n’ represents

the number of axons. *p < 0.05, **p < 0.01, ***p < 0.001, #p < 0.05, ##p < 0.01, ###p < 0.001. Details of statistic results such as

p values, degree of freedom, and t/F values are presented in the figure legends. For axon arbor analysis, 3D projection of axon arbors

acquired at 40X were semi-automatically traced through the z axis using the Simple Neurite Tracer plugin (Longair et al., 2011) in Fiji.

The resulting traces were then analyzed for the number and the length of axon branches as well as the Axon Complexity Index (ACI)
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(Marshak et al., 2007). These measured parameters were compared using one-way ANOVA with the Two-stage step-up method of

Benjamini, Krieger and Yekutieli multiple comparisons test. Cumulative distribution curves of total branch number represent least-

squares fits to a Gaussian function and were compared using Extra sum-of-squares F test. The proportions of simple (ACI < 1.4)

and complex (ACI R 1.4) arbors in different groups were compared using Fisher’s exact test (Drinjakovic et al., 2010). For analysis

of branching dynamics, the numbers of protrusions added and removedwere counted on the terminal 50 mmofmGFP/mRFP-labeled

RGC axons for 10min (imaged at an interval of 30 s) (Wong et al., 2017). The addition and removal of protrusions were then compared

statistically. A paired t test was used for intragroup comparison and unpaired t test was used for intergroup comparisons.

Western Blot Analysis
Developed films from western blot detection were scanned and imported into FIJI. The color was inverted and the background cor-

rected signals for Rps4x and b-catenin were measured. Measured Rps4x levels were then normalized to b-catenin to obtain a ratio-

metric readout. A paired t test was used to assess differences in Rps4X protein levels between control MO and Rps4X MO samples

(n = 3 independent experiments).

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the mass spectrometry proteomics data reported in this paper are PRIDE: PXD011032 and PRIDE:

PXD015574. The accession number for the RNA-seq data reported in this paper is GEO: GSE135502.
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