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ii. Abstract 

Investigating the role of demography and selection in genome scale patterns 
of common and rare variant diversity in humans 

Alexander Mörseburg, Department of Archaeology and Robinson College 

In the last decade, an unprecedented increase in the availability of whole genome sequence 

(WGS) data has reshaped the field of human evolutionary genomics. However, many earlier 

sequencing projects like the HapMap and 1000 Genomes panels focussed on a limited set of 

populations. Therefore, more research has been required to better characterise genetic diversity 

in understudied regions, such as Island Southeast Asia and Siberia. This thesis contributes to 

this ongoing effort in the form of three partially related subprojects.  

Firstly, population structure and local adaptations in Southeast Asia were investigated using 

novel autosomal 730,000 SNP data from 146 individuals in the context of a larger worldwide 

panel of 1,825 humans. The Kankanaey Igorot from the highlands of the Philippine Mountain 

Province were highlighted as the closest living representatives of the source population that 

may have given rise to the Austronesian expansion. Furthermore, consistent with 

archaeological, cultural and linguistic evidence of Indian influence in Southeast Asia starting 

from 2.5 kya South Asian admixture in the region was estimated to date back to the last couple 

of thousand years.  

To provide an unbiased high-resolution picture of the patterns of functional and rare variants 

worldwide high coverage WGS data from 483 individuals (including 379 novel genomes) were 

analysed. Ingenuity Variant Analysis and the Ensembl Variant Effect Predictor were applied to 

a subset of these genomes (n = 382) to create a repository of functional and deleterious variants. 

Evidence for purifying selection in genes involved in pigmentation and immune defence against 

viruses was detected in African populations. The most differentiated sites across continental 

groups were integrated with haplotype-based selection tests and annotations from functional 

databases to pinpoint disease and metabolism-related candidate loci. 

A subset of the WGS dataset, designed to maximise coverage of diverse ethnic groups (n = 

447), was screened for variants occurring exclusively in two individuals in a heterozygous state 

(f2 variants). It was shown that f2 sharing correlates well with the results of 

CHROMOPAINTER, a state-of-the-art method to detect recent gene flow, and, allows for the 

detection of cryptic relatedness among distant populations. This was demonstrated by an 

example of a previously undetected low-scale African ancestry component in the South 

American Calchaquíes putatively related to the transatlantic slave trade.   
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1. Literature review and thesis rationale 

 

This chapter begins by introducing the scope of genetic variation in modern humans and then 

proceeds to provide a summary of the forces that have shaped it at the molecular level. It is 

followed by a brief overview of the main methodological and analytical advances in the field 

in the last decade and how they have improved our understanding of the recent evolutionary 

history of our species. The chapter concludes with a more detailed review of previous work in 

specific fields relevant to this thesis in sections 1.5, 1.6 and 1.7. In section 1.8 questions 

addressed in this work are highlighted. 

 
1.1 Human genetic variation 

 

1.1.1 SNPs 

Every human being alive today is biologically unique. Genomic individuality, which even 

extends to monozygotic twins due to postzygotic somatic mutations (Dal et al., 2014; Ouwens 

et al., 2018), underlies this phenotypic singularity. Explaining how patterns of genetic diversity 

arose during the history of our species and what role they play in adaptive processes are the 

main challenges of human evolutionary genetics today. 

Genetic variation manifests itself in elements of various lengths. The shortest and structurally 

simplest are single nucleotide polymorphisms (SNPs). In a broad sense, a SNP can be defined 

as a genomic site at which one base of the DNA sequence is substituted by another or a single 

base is inserted or deleted (indels). Furthermore, the minor allele frequency (MAF) of this 

change should be at least 1% in a population (Vignal et al., 2002). It should however be noted 

that the mechanisms which generate single-bp subs and single-bp indels are quite distinct (see 

section 1.1.2). In consequence, some authors (e.g. Sachidanandam et al., 2001) have adopted a 

narrower definition of the term SNP confined to the former. Rare variants (MAF <1%) have 

only recently become accessible due to improvements in sequencing technologies. In this thesis 

“variant” will be used as a general term to describe all differences between genome copies 

irrespective of their frequency. The term SNP will be used in a narrow sense, i.e. 

interchangeably to single base-pair substitutions and in the context of this work is limited to 

them unless single-bp indels are included explicitly. The total number of SNPs known in 
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humans is currently estimated at ca. 661 million (based on dbSNP build 151 as of 12/11/18, 

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summa

ry&build_id=151). 

The average number of SNPs relative to the human reference sequence in a randomly chosen 

African genome  (4.31*106) is higher than the average number of SNPs in an Eurasian genome 

(3.53*106) (The 1000 Genomes Project Consortium, 2015) because of larger long-term 

effective population size in Africa (for a definition of this concept, see section 1.2.2 and for a 

discussion of the population history generating the observed patterns, see section 1.4.2). 

Despite our wide-spread geographic range and current population size of more than seven 

billion these numbers are largely determined by long-term processes of natural history. This is 

supported by the observation that many great ape subpopulations exhibit higher levels of 

genome-wide heterozygosity than African and non-African humans despite their reduced 

habitats and correspondingly small population sizes today (Prado-Martinez et al., 2013). 

Broadly speaking the functional impact of a SNP is dependent on its genomic context. The most 

basic distinction can be made on whether a variant is located within a gene or in proximity to 

one (genic and gene-related) or not (intergenic). Another way of distinguishing SNPs is by 

regions that are subsequently translated into amino acid sequences, i.e.  are part of the protein 

coding sequence and those that are not.  

Less than 1% of all SNPs in an average genome lie in protein-coding sequences (The 1000 

Genomes Project Consortium, 2015). The potential importance of non-protein-coding SNPs in 

a regulatory context has been appreciated more in the last decade as our knowledge of these 

processes has expanded. However, in most functional studies protein-coding SNPs have been 

the focus. There are two groups of mutations that have a direct impact on the amino acid 

sequence, collectively referred to as non-synonymous mutations. The first is known as missense 

mutations; they cause the substitution of the original amino acid by another. The second are 

nonsense/stop-gain mutations, in which a triplet coding for an amino acid is replaced by a stop 

codon. Another class are called synonymous mutations in which there is a change observed at 

the base pair level, but the encoded amino acid remains the same. The functional implications 

of these variant classes are described in more detail in section 1.6 
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1.1.2 Short indels and other types of genomic variation 

 
Figure 1.1: Different types of structural variation.  A) A subset of these only affect one chromosome and 
can increase or decrease the number of copies of a certain region relative to the reference. B) Some of them 
are on a larger scale and involve multiple chromosomes, with often severe functional consequences (adapted 
from Alqallaf et al., 2013). 

SNPs are the most studied type of sequence difference, however other types of genetic variation 

(Figure 1.1) can also be informative about human evolutionary history and can have a 

considerable impact on the phenotype.  

Short indels are here defined as comprising all insertion/deletion polymorphisms up to 50 bp. 

As mentioned above (section 1.1.1), there are substantial differences in the mechanisms 

underlying single base-pair substitutions and indels which is also true for the estimated severity 

of their impact. The former, which are SNPs in a narrow sense, mainly arise due to 

misincorporation of nucleotides during replication and mutagenesis caused by various factors 

(see section 1.2.1). On the other hand, the majority of small indels are caused by DNA 

polymerase slippage, with other less well understood mechanisms also contributing 

(Montgomery et al., 2013). 

On average, indels are assumed to have a more negative effective on phenotypical fitness than 

SNPs. Their impact is dependent on their position in the genome relative to other functional 

elements. The first possibility is that the indel is outside of the open reading frame (ORF), i.e.  

beyond all the regions of a gene contributing to the relevant protein product. The impact of this 

change is dependent on whether the relevant region plays a role in regulatory processes and can 

be assumed to be comparable to non-protein-coding SNPs. Indels which lie in an ORF can cause 

a frameshift in the translation machinery if they are not a multiple of three bases, which can 
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lead to devastating consequences on the protein product. There are however protein quality-

control mechanisms which under certain conditions can lead to the degradation of these 

molecules (see section 1.6.2). Lastly, in-frame indels most likely have comparable impact to 

non-synonymous SNPs (Montgomery et al., 2013). The focus of this dissertation is on small 

scale variation which constitutes the vast majority (>99%) of all described variants.  

 

1.2. Origins of human genetic diversity 

 

1.2.1 Molecular forces creating genetic diversity 

In a sexually reproducing species genetic variation arises because of two processes: de novo 

mutations and recombination events. As described in section 1.1., this variation manifests itself 

in the genome on different levels. Frequency changes of genomic variants mainly reflect 

demographic history and the impact of different kinds of directional selective forces, the latter 

often tightly linked to environmental factors. 

While “mutation” is a summary term for any change in the DNA sequence, the class most 

widely used in demographic analyses and in this thesis are single base pair substitutions, also 

known as point mutations. Biochemically these are mainly the result of the mis-incorporation 

of nucleotides during replication while to a lesser extent they are also the outcome of 

spontaneous mutagenesis due to other endogenous processes and external chemical and 

physical mutagens (Cooper and Krawczak, 1990). Generally, DNA replication operates with 

very high precision and in case of a wrongly incorporated base there are stringent repair 

mechanisms; the error rates of DNA replication in different eukaryotes have been estimated as 

ranging from 10-9 to 10-11 bp-1 for each round of replication (Drake et al., 1998). The rate of 

germline mutations on the human lineage is a crucial parameter for theoretical studies in 

evolutionary genetics and more applied problems, e.g. understanding of the incidence rates of 

Mendelian diseases. In the last few decades a wide variety of approaches has been used to 

estimate germline mutations rates in the human lineage (reviewed in Scally, 2016). 

One method is an indirect phylogenetic calibration using the known genetic divergence between 

two species and the time since they split according to the fossil record. From these calculations 

an approximate value of 1.0*10-9 bp-1 yr-1 for the yearly mutation rate on the hominin lineage 

was derived (Nachman and Crowell, 2000). Recently, advances in whole genome sequencing 
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(WGS) technologies have made new approaches to estimate mutation rates possible.  The most 

direct of these is family sequencing where genomes from parent-child trios are compared and 

the new mutations in the offspring are divided by the whole length of the currently accessible 

genome to yield rate estimates for the last 1-2 generations (Genome of the Netherlands 

Consortium, 2014; Roach et al., 2010; Wong et al., 2016). Other approaches enable researchers 

to estimate mutation rates for a somewhat older time scale. An example of this is a method 

which compares chromosomes within an individual and then infers the mutation rate using the 

expected heterozygosity in diploid genomes and a fine-scaled recombination map of the human 

genome (Lipson et al., 2015). Where high quality ancient DNA (aDNA) data from an externally 

dated sample are available the mean number of additional mutations in present-day individuals 

can be divided by the time separating present-day humans and the ancient sample to yield a 

mutation rate (Fu et al., 2014a). 

These estimates cover a range of approximately 0.4-0.6*10-9 bp-1 yr-1, which is considerably 

lower than the rate obtained using the interspecies approach with fossil dates as calibration. One 

possible explanation for these differences is heterogeneity in germline mutation rates in space 

and time. Generally, it is assumed that the mutation rate has slowed down in more recent times 

on the primate tree. When using a low mutation rate to estimate ancient species splits based on 

molecular divergence this yields dates (e.g. for human and macaque) much older than the 

current fossil evidence seems to suggest (Scally and Durbin, 2012). These heterogeneities could 

be the result of variation in life history variables, e.g. generation time and of processes at the 

molecular level such as the efficiency of DNA repair. Both affect the number of germline 

mutations as the latter mostly result from replication errors during the cell divisions leading to 

gametes.  

There is growing evidence for population-specific variation in modern human mutation rates, 

particularly for an increase in non-Africans vs Africans (Harris, 2015; Mallick et al., 2016; 

Mathieson and Reich, 2017). Irrespective of this, given the current state of evidence it seems 

reasonable to assume a lower mutation rate of ca. 0.5*10-9 bp-1 yr-1 for inferences about recent 

evolutionary events on the human lineage, i.e. within the last few hundred thousand years as 

suggested by Scally (2016).  

The other main process generating genetic variation is recombination. Most recombination 

events are caused by a mechanism known as “crossing over”. This term describes the exchange 
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of genetic materials between paired maternal and paternal homologous chromosomes in the 

germ line during meiosis. 

When studying two polymorphic loci on the same chromosome it can be measured to what 

extent certain allelic states at these two positions are inherited together. If the latter is the case 

the loci are said to be linked, i.e. few recombination events have occurred in the base pairs 

between them in the history of the respective population. This property can formally be 

described as linkage disequilibrium (LD) and quantified by various statistics such as D´ and r2 

(VanLiere and Rosenberg, 2008). Both can be considered normalised representations of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Generation of genetic diversity through recombination: a) an example region in the genome 
contains four bi-allelic SNPs. Without recombination events this results in five possible haplotypes. b) when 
one recombination point is introduced this results in four additional haplotypes (adapted from Jobling et 
al., 2013). 

correlation of particular alleles at adjacent loci, i.e. whether these alleles are more often passed 

on together than would be expected if they were inherited independently. A combination of 

Figure removed for copyright reasons. Copyright holder is Garland Science, Taylor & 
Francis Group, LLC. 
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closely linked allelic states of polymorphisms along the same chromosome is described as a 

haplotype. In practice, these haplotypes are inferred by “phasing” algorithms (Browning and 

Browning, 2011), as shotgun sequencing typically yields genotypes without explicit phase 

information except for those located on the same short read. Recombination increases the 

number of haplotypes and therefore the observed genetic diversity (Figure 1.2). Generally loci 

which are physically close in the genome are also more often inherited together, however there 

is no a simple linear correlation of recombination probability and physical distance 

(Christiansen, 2008). The genetic map (of a species or a population) describes the distribution 

of linkage patterns and therefore implicitly also recombination probabilities across the genome. 

Understanding the variation in recombination patterns across the genome is relevant for a wide 

range of applications, including genome-wide association studies (GWAS). 

It is also relevant for approaches using the length of shared genetic segments between 

individuals to infer the extent and time depth of shared ancestry (see section 1.3.3). The two 

main approaches by which a genetic map can be inferred are observing patterns of LD in a 

sample from a population or by tracking down recombination events in pedigrees.  

The most well-known examples for the first approach are the HapMap (Frazer et al., 2007) and 

1000 Genomes (The 1000 Genomes Project Consortium, 2010) projects which used high 

density SNP and whole genome sequence data respectively to estimate LD from worldwide 

population samples. Kong et al. (2010) reconstructed the first pedigree-based map based from 

over 15,000 parent-child pairs from Iceland, which had a resolution to a level of 10 kb and 

yielded more detailed information on sex-specific recombination events. Both studies 

confirmed that recombination probabilities are unevenly spread across the genome. The 

majority of recombination events (~60%, according to Frazer et al., 2007) occur within so-

called recombination hotspots, most of which are only 1-2 kb long (Myers et al., 2006) and 

therefore cover only a relatively small fraction of the genome. 

An important mechanism where a stretch of DNA is copied nonreciprocally from one 

chromosome onto the other while these are paired during meiosis is known as gene conversion. 

It can occur alongside crossing-overs or without them. This depends on how the heteroduplex 

characteristic for recombination events is resolved (Duret and Galtier, 2009). In this specific 

context, the term “heteroduplex” describes a structure which consists of one strand originating 

from the paternal copy of the chromosome and the one originating from the maternal copy, 

assuming that there are allelic differences between the two parental copies of a chromosome in 
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this region. The importance of gene conversion for understanding human evolution lies in a 

well-studied bias where  GC alleles are favoured over AT alleles which leads to an increase in 

the frequency of the former over long evolutionary timescales (Glémin et al., 2015). This 

process is a relevant confounder for population genetic analyses at it can mimic or counteract 

selective processes (Capra et al., 2013) 

 

1.2.2 The neutral theory and demographic forces that shape genetic variation 

It first became possible to measure genetic diversity in humans and other species directly in the 

1960s when small, functionally relatively well understood proteins were sequenced. The degree 

of polymorphism observed was many times greater than previously expected leading to the 

need for explanations such as offered by Kimura's (1968) neutral theory of molecular evolution. 

Its core statement is that the fate of most newly arising mutations is determined by stochastic 

processes, subsumed as genetic drift, and that selective forces mainly eliminate deleterious 

mutations from the gene pool. Genetic drift results from the observation that the genotypes in 

each generation of a species are a finite sample from the previous generation and that this 

sampling introduces randomness. The current weak version of the theory, arising from long 

debates between the “neutralists” and “selectionists” (reviewed in Nei et al., 2010) states that 

while the neutral theory applies to the majority of sites in the human genome at any given point 

in time in its strict version it is not sufficient to explain the observed patterns of genetic variation 

and adaptation in humans and other species (Jobling et al., 2013).  

Assuming certain simplifying conditions of which the most important are constant population 

size, random mating and non-overlapping generations the expected patterns of genetic diversity 

under neutrality can be described by an approach known as the Wright-Fisher model (Fisher, 

1930; Wright, 1931). It yields many quantitative predictions about genetic properties and 

therefore despite the abstractions involved can serve as a useful null hypothesis against which 

departures from these conditions can be detected. Therefore, it forms the ultimate theoretical 

basis underlying many of the analyses presented in this thesis. 

Deviations from this simple model not only occur due to selective forces but also because of a 

range of demographic processes which violate the assumptions stated above and create distinct 

genetic patterns. 
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A way to quantify changes in population size and to understand their impact on genetic variation 

is the concept of effective population size (Ne). It was originally defined as the size of a 

population under the Wright-Fisher model which experiences the same amount of drift as the 

studied population (Crow and Kimura, 1970). Many factors are known to influence Ne 

(Charlesworth, 2009) and its relationship to the actual (census) population size N is complex. 

Ne is more than five orders of magnitude lower than N in humans, one reason being that there 

is high reproductive variance and therefore some individuals do not pass on their genetic 

material. Furthermore, the extent of genetic variation in a population is determined by its long-

term Ne, which is the harmonic mean of the values of Ne over time, and, heavily affected by the 

lowest value of Ne across the whole time series. Therefore, in a recently expanded species such 

as humans the smaller ancestral population sizes largely determine the level of genetic diversity. 

It was first estimated as ca. 10,000 based on limited nucleotide diversity data in the 1990s (e.g. 

Takahata, 1993). In recent years WGS data have been used to infer human long-term Ne. Its 

value for the human ancestral population before the split of Africans and non-Africans was 

estimated at 9,000 (Gronau et al., 2011), which was subsequently corrected upwards to 

potentially as high as 14,000 as more genomes have become available (The 1000 Genomes 

Project Consortium, 2015). 

Population size reductions that influence allele fixation rates are mainly caused by two 

processes: bottlenecks and founder effects. Both lead to a decline in the degree of 

polymorphism at many loci and consequently to a lowered overall diversity and heterozygosity. 

However, the underlying processes are different: the term bottleneck describes the sudden 

reduction of the size of an original population. A founder effect occurs when a subset of a larger 

population is spatially separated from its ancestral source group, e.g. during the colonisation of 

new territory. 

The effect of geographical structure on Ne compared to random mating is complex. Under the 

assumption that there is some gene flow due to migration between the subpopulations and that 

humans as a whole are a continuous population the changes in genetic similarity over 

geographical distances can be modelled by an isolation by distance model (Wright, 1943). It 

states that mating choices are restricted by distance and that therefore the frequency of 

reproductive dispersals is negatively correlated to geographical distance.  
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1.2.3 Natural selection 

Natural selection can be defined as all the deterministic forces leading to the differential 

propagation of an allele due to its impact on the phenotype (Vitti et al., 2013). 

The origins of this concept lie in the seminal works of Charles Darwin and Alfred Russell 

Wallace and it was elaborated and mathematically formalised by Fisher (1930) and Haldane 

(1949) among others. In the following the main modes of selection and their effects on diversity 

are briefly outlined, computational methods for identifying selection signals will be described 

in more detail in section 1.3.4 and examples for selection at specific loci will be discussed in 

appropriate contexts. 

When a variant increases the evolutionary fitness of its carrier it will likely undergo positive 

selection leading to an increase in frequency of the selected allele. This also affects surrounding 

neutral variation, which is referred to as “hitchhiking” effect. Especially when this process 

happens rapidly, which is also known as a selective sweep, this causes a reduction in genetic 

diversity surrounding the causal site (Smith and Haigh, 1974). 

Conversely negative or purifying selection occurs when a variant has a negative effect on 

survival and/or reproduction and therefore declines in frequency. Most novel mutations are 

thought to be slightly deleterious on average and subject to this mode of selection (see section 

1.6.). Therefore, genetic regions under strong purifying selection exhibit significantly reduced 

diversity as novel variants are removed from the gene pool before they can reach higher 

frequencies (e.g. Li, 1997). 

Balancing selection is best understood as a process where multiple alleles are maintained at 

intermediate frequencies at a certain locus as this state is more beneficial than the fixation of 

any of these variants. There are two main mechanisms of balancing selection. The first is 

heterozygote advantage where the heterozygote state is actively selected for because of the 

positive effect it confers (Kwiatkowski, 2005; Poolman and Galvani, 2007). 

Another possibility is frequency-dependent selection. In a simple case a rare allele provides a 

selective advantage and will lose this property over time once it reaches a higher frequency. 

The latter mechanism has been especially argued for in the coevolution of humans and their 

pathogens. In this scenario the carrier of a rare cell surface antigen will have an advantage 

because the pathogen will not yet have had the time to adapt to infecting the cell with this 

particular surface marker (Takahata and Nei, 1990). 
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1.3 Methods for genome-scale analysis of human population history 

 

1.3.1 High coverage SNP arrays 

Historically, processes shaping human genetic diversity were investigated using a subset of 

microsatellites, mtDNA and the non-recombining region of the Y-chromosome. These 

pioneering studies yielded valuable insights (e.g. Cann et al., 1987 for mtDNA). However, they 

presented only a limited perspective on overall variation. In the last two decades a more 

unbiased picture has gradually become available due to technological advances. 

SNP array technology represents the first approach relevant in this context. The most important 

commercially available sets were developed by Affymetrix and Illumina. Both utilise a 

hybridization approach where fluorescence-marked fragments of single-stranded DNA bind to 

arrays containing a large set of unique nucleotide probe sequences representing the variable 

positions (reviewed in LaFramboise, 2009). The first incarnations of these technologies yielded 

information on thousands of markers on one chip while the resolution had increased to nearly 

one million by the end of the 2000s. 

One of the first large scale projects to apply these technologies was the International HapMap 

project. Its main goal was to construct a common SNP-based genome-wide haplotype map to 

aid searches for disease susceptibility genes. Its first phase focussed on three groups 

representing Europeans, East Asians and West Africans respectively: Utah Residents with 

Northern and Western European Ancestry (CEU), Han Chinese from Beijing (CHB) and 

Yoruba from Ibadan (YRI). Its final phase included ca. 1,200 individuals from 11 European, 

African, East and South Asian populations genotyped for 1.6*106 markers (International 

HapMap3 Consortium et al., 2010). HapMap provided a comprehensive picture of common 

variation in humans and a haplotype map indicating the extent of LD in their genomes 

(International HapMap Consortium et al., 2007). The latter was of great importance for medical 

research using SNP array data. One of the first large scale GWAS for a range of common 

diseases was undertaken by the Wellcome Trust Case Control Consortium (2007), it involved 

17,000 individuals typed for 500k SNPs. 

Another large-scale effort of a similar nature is the Human Genome Diversity Project (HGDP), 

which was launched in 1991. Its primary aims were anthropological with a focus of collecting 

data from isolated indigenous people around the globe. Lymphoblastoid cell lines were created 
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from these samples which were made available to investigators in 2002 (Cann et al., 2002). The 

most seminal application of SNP array technology on DNA from these was a paper by Li et al. 

(2008) that reported genotype data for 938 individuals from 51 indigenous populations for 650k 

SNPs. This allowed for the most comprehensive characterisation of human genetic variation up 

to this point in time and provided a reference still widely used for comparative purposes.  

In conclusion, SNP arrays provide a cost-effective way to study common variants in a 

population, for making inferences about population structure, differentiation and admixture as 

well as haplotype homozygosity which is informative of recent selective processes. 

One weakness of SNP arrays is ascertainment bias. Early genome-wide SNP array studies 

underestimated variation in non-European, particularly African, populations (e.g. Lachance and 

Tishkoff, 2013). Furthermore, SNP arrays by their nature have limited power to detect rare 

variants and do not allow for the discovery of novel variants. Another disadvantage is that 

commercially available arrays have been designed to include only one or a few SNPs from each 

of the LD blocks identified by projects such as HapMap. Additional SNPs from these LD blocks 

would not provide more information for a standard medical GWAS approach as they do not 

represent independent tests. This often results in too low (Clark et al., 2003a)  and/or imprecise 

(Pengelly et al., 2015) estimates of the extent of population-specific LD from SNP array data.  

 

1.3.2 Whole genome sequencing 

The limitations of SNP array approaches make the need for a more unbiased way to access 

information from across the genome apparent. This problem has been addressed by 

technological breakthroughs, which have allowed the fast and relatively cost-effective 

sequencing of hundreds to thousands of human genomes (Figure 1.3). In the following, the 

basic approach, the most important platforms and some crucial pioneering studies are briefly 

described. 
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Figure 1.3: Decline of DNA sequencing costs at sequencing centres funded the by US National Human 
Genome Research Institute. The costs refer to sequencing to a Phred score-equivalent of 20 and to a human-
sized genome respectively. The cost per Mbp refers only to the expenditures to generate the raw sequence 
data, whereas the cost per genome includes bioinformatic processing steps (data from Wetterstrand "DNA 
Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)" as of 12/09/2019, available 
from www.genome.gov/sequencingcostsdata). 

The prevailing method is “shotgun sequencing”, which consists of four basic steps. First, 

nuclear genetic material from the individual of interest is broken down (either physically or 

enzymatically) into small fragments and a library is constructed from these fragments. These 

libraries are then sequenced in a massively parallel manner to obtain information about the 

sequence of nucleotides in these genome fragments. The resulting sequence reads are mapped 

to the reference sequence or assembled de novo. The length of the sequenced reads, which is 

highly variable between technology platforms, determines the length of accessible genome. 

 

For the shotgun approach to be widely adapted, two conditions had to be fulfilled. Firstly, for 

many species, including humans, a reference sequence (presented by the International Human 

Genome Sequencing Consortium in 2001) was generated from scratch as an artificial composite 
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of DNA from many individuals. The reference genome is not static and is constantly updated 

incorporating our increased understanding of underlying genomic complexity. Secondly, there 

has been extraordinarily rapid progress in bringing down the costs and time required while 

increasing the output for each single step mentioned above. Currently, the next generation 

sequencing (NGS) market is dominated by the Illumina (Bentley et al., 2008) strategy. Each 

approach has different technical specifications, strengths and weaknesses (reviewed in 

Goodwin et al., 2016). The WGS sequences analysed in chapters 3 and 4 of this thesis were 

generated using technology from one of Illumina’s main competitors, Complete Genomics 

(now belonging to BGI) (Drmanac et al., 2010). 

 

These distinct features of the sequencing technologies and additional specifications in the 

bioinformatic protocols used to process the raw sequencing data result in considerable 

differences which need to be considered when interpreting data generated by different 

sequencing platforms. Generally, the Illumina approach is thought to operate with a very high 

sensitivity, however in its earlier versions, it was known to also have a relatively high false 

positive rate of 2.5% compared to micro-arrays (Bentley et al., 2008). Complete Genomics on 

the other hand reports a very low false positive rate, which can lead to true variants being missed 

(Bobo et al., 2016), this balance can be shifted by altering call quality thresholds (Drmanac et 

al., 2010). Follow-up studies indicate that the factors influencing error rates besides sequencing 

technologies are mainly related to the variant-calling algorithms used (Lam et al., 2011). In 

most cases the genotype quality scores obtained by downstream methods likely underestimate 

the true error rates for Illumina as well as Complete Genomics (Wall et al., 2014). Another 

contributing factor is that generally GC-content has been reported to result in higher sequencing 

coverage (Benjamini and Speed, 2012), even though decreased coverage for both AT-and GC-

rich regions has been observed in some studies (Rieber et al., 2013). 

Lam et al. (2011) systematically compared the genome of one individual sequenced by both 

Complete Genomics and Illumina technologies to a high coverage (76´). While ca. 88% of all 

SNP calls were concordant between the two platforms, the majority (60%) of the platform-

specific inferences could be verified as true variants by independent approaches. Furthermore 

only 26.5% of all indels detected by the two approaches were overlapping. This very low 

concordance is most likely due to the higher complexity involved in calling these elements 

covering up to 200 bp by Lam et al.’s definition. One important effort to mitigate the problems 
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arising from these inconsistencies is the work of the Genome in a Bottle Consortium. They 

generated an integrated set of high confidence variant calls from different sequencing platforms 

and variant callers using a consensus approach that accounts for platform-specific biases for a 

small set of reference genomes (Zook et al. 2014, 2018). Thereby, they provided a benchmark 

against which sequencing and bioinformatics methods can be assessed. 

NGS approaches have been applied to a vast range of questions of medical and anthropological 

relevance. The most important project, which greatly expanded the known range of human 

diversity and yielded insights into evolutionary history, is the 1000 Genomes Project. In many 

ways it can be seen as a continuation and expansion of HapMap (The 1000 Genomes Project 

Consortium, 2010, 2012, 2015). Its primary aim was to provide a public resource of genetic 

variation for next-generation medical association studies, finding all accessible single 

nucleotide variants at a frequency of ≥ 1% across the genome in the studied populations. Its 

final phase yielded genomic information from 2,504 individuals hailing from Europe, East Asia, 

South Asia, some parts of the Americas and sub-Saharan Africa using a combination of low- 

and high-coverage full genome and exome sequencing. The term “exome” describes the totality 

of all exons across the genome, these are regions retained in the mature mRNA. It therefore 

encompasses all protein-coding genes including some flanking regulatory regions. It is analysed 

using a target enrichment approach where sequence-specific probes bind to single-stranded 

genomic DNA fragments which after purification and amplification are then sequenced (Coffey 

et al., 2011). Depending on the probes used it represents 1-2% of the total human genome. The 

1000 Genomes Project resulted in a total of ca. 88 million variants which were phased in 

haplotypes. 

The Exome Aggregation Consortium (ExAC) (Lek et al., 2016) provided exomes from 60,706 

individuals of diverse ancestries sequenced to a mean coverage of ~65´. Their contribution 

focussed especially on identifying genes for which the observed number of predicted protein-

truncating variants is lower than would be theoretically expected and thereby identifying 

potential human knock-out genes (see section 1.6.2). As already mentioned, the coverage of the 

world in these datasets is not even, many indigenous populations from regions such as Siberia 

and Island Southeast Asia, but also from the Americas, Australia and Sub-Saharan Africa are 

not well represented. Several publications have attempted to close these gaps. Lachance et al. 

(2012) sequenced 15 genomes of African hunter gatherer populations, which considerably 

increased the known scope of human variation and uncovered potential adaptations relevant to 
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the pygmy phenotype. Subsequent studies have provided more whole genomes from these 

pygmy groups (Hsieh et al., 2016) as well as from across the whole African continent 

(Gurdasani et al., 2015).  

On a global scale Mallick et al. (2016) recently reported the Simons Genome Diversity Project 

(SGDP) which provides high coverage sequences from 300 individuals representing a wide 

anthropological, linguistic and cultural diversity. Besides considerably improving the 

geographical spread of available human sequence data the authors found evidence for deep 

population splits of some African groups vs all other modern humans (>100 thousands of years 

ago, in the following abbreviated as kya). Malaspinas et al. (2016) presented whole genomes 

from 108 indigenous Australians and Papuans. They were the first to be able to give a deep 

picture of Australian population history and detected deep structure in populations of this region 

while generally supporting a scenario where all non-Africans descend from a single migration 

wave. 

In the context of the previously unprecedented amounts of data which are now available, the 

developments in aDNA-sequencing can only be hinted at here (reviewed in Hofreiter et al., 

2015 and Orlando et al., 2015). Together with the NGS techniques described above the 

improvements in enrichment capture have allowed the generation of high-quality whole 

genome aDNA data. This has offered researchers a window into the genomic past based on data 

from archaic hominins (Green et al., 2010; Meyer et al., 2012; Prüfer et al., 2013) and 

Palaeolithic modern humans (e.g. Raghavan et al., 2013) and from recent historical times (e.g. 

Rasmussen et al., 2011). Keeping in mind that the two main challenges in isolating and 

analysing aDNA are its degradation over time and the ubiquity of contamination the seminal 

studies mentioned above vary considerably in genomic coverage, but the obtained read lengths 

are very similar. For the former, the maximum achieved was 52´ coverage for a Neanderthal 

individual from the Denisova cave in the Altai mountains in Siberia (Prüfer et al., 2013) 

compared to the lowest observed coverage of 1´ observed for a 24 kya-old modern human 

individual from Mal’ta, also in Siberia (Raghavan et al., 2013). This range reflects differences 

in sample preservation as well as in the techniques used to retrieve and enrich DNA. The 

underlying aDNA fragment lengths fall mostly between 20-150 bp with the corresponding read 

lengths between 50-200 bp, i.e. in the lower range of most shotgun-sequencing analyses of 

modern DNA. 
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Overall, the last decade has seen major advances in the availability of WGS data, offering 

significant new insights into questions of evolutionary history and medical applications, 

especially in the rare variant spectrum. A limitation which affects many of the current high-

throughput methods is their short read length of 35-700 bp depending on the specific approach 

used (reviewed in Goodwin et al., 2016). This results in a limited ability to correctly infer 

structural variation and to resolve information from repetitive regions of the genome. Current 

approaches to generate long reads are more expensive and slower but have a huge potential to 

expand our knowledge of the structure of the human genome by making previously 

unresolvable regions accessible (e.g. Seo et al., 2016). 

The available datasets have increased in size and complexity during the last decade, which has 

brought new analytical and interpretative challenges. Some of the most frequently used 

approaches shall be summarised in the following sections. 

 

1.3.3 Methods investigating population structure and neutral demographic processes 

Since data from classical markers became available in the 1960s various statistical measures 

have been used to describe diversity within and among groups. These were mostly derived from 

the theoretical frameworks of F-statistics (Wright, 1951) and coalescent theory (Kingman, 

1982). One commonly used example is π which describes the number of pairwise differences 

between two nucleotide sequences (Li and Sadler, 1991). Others include the heterozygosity H 

and the fixation index FST. The latter can be interpreted as the ratio of the variance of allele 

frequencies among subpopulations relative to the total variance, e.g. of humans from different 

continents relative to our species as a whole (Wright, 1965). In the last two decades these 

statistics have been partly superseded by approaches allowing a finer scale characterisation of 

population structure and inference of dynamic processes (reviewed by Schraiber and Akey, 

2015). 

When dealing with high coverage data consisting of hundreds of thousands or millions of 

markers typed across many individuals it is essential to get a first overview of the dataset to 

understand its basic characteristics and detect confounders. The most widely used approach for 

such purposes in population genomics is principal component analysis (PCA) (Price et al., 

2006). 
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Assuming the dataset consists of n individuals an (n x n) matrix can be constructed to describe 

the covariance of genotypes among individuals. PCA extracts the eigenvectors of this 

covariance matrix. Each of these vectors provides a coefficient for a linear combination of 

genotypes which most efficiently differentiates the various samples. The eigenvector explaining 

the highest proportion of variance is known as the first principal component (PC) and the 

following eigenvectors are ordered and named accordingly. The first two PCs are often plotted 

to obtain a PC space where individuals with similar genotypes will cluster. However, there are 

caveats to interpreting PC plots in terms of underlying population history. Novembre and 

Stephens (2008) used simulations to show that when spatial data are analysed and genetic 

similarity decays with geographic distance the application of PCA can result in highly 

structured patterns related to sinusoidal functions. Such a decay pattern can be produced by a 

homogenous short-range migration process and does not necessarily imply population 

expansions or long-distance migrations. More generally, PCA, like all unsupervised clustering 

methods, is highly dependent on sample sizes and the distribution of sampling locations. 

In contrast to PCA there is a class of clustering approaches imposing an a priori stratification 

on the samples to find individuals sharing common underlying allele frequencies and to detect 

admixture events. They are summarised as STRUCTURE-like methods (named after the 

method published in 2000 by Pritchard et al. forming their conceptual basis). Apart from 

STRUCTURE itself FRAPPE (Tang et al., 2005) and ADMIXTURE (Alexander et al., 2009) 

are the most widely used of these approaches. Each individual (represented by a row in the 

input matrix) is analysed as the sum of k ancestral components. As mentioned above k is defined 

in advance and can be understood as the number of ancestral groups necessary to explain the 

observed diversity in each population. In the next step the genetic composition of each sample 

is described as a linear combination of these ancestral populations and the fraction coming from 

each ancestral group is estimated. The underlying technical details vary somewhat between 

approaches, for example ADMIXTURE, which is used in this thesis, utilises a likelihood 

method. The general goal of the latter class of approaches is to maximise the probability of the 

observed data occurring given the particular parameters of different models which are 

compared. 

One potential error source are assumptions concerning the correct number of potential ancestral 

groups.  Attempts have been made to optimise k, ADMIXTURE for example uses a method 

estimating the cross-validation error (Alexander and Lange, 2011).  To calculate this quantity 
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a part of the genotypes in the dataset are masked/set to missing. ADMIXTURE analyses are 

run on the rest of the dataset and their output can be used to predict the missing genotypes. The 

goal is to minimise the error of this prediction. Furthermore, there are many evolutionary 

scenarios where the admixture of discrete ancestral groups that were (relatively) isolated for a 

previous time period is a misrepresentation of the true population history (Weiss and Lambert, 

2014). The latter possibility needs to be considered for proper interpretation of the outcomes.  

Furthermore, this class of approaches, like PCA, does not incorporate haplotype information 

and explicitly needs all entered polymorphisms to be independent of each other and therefore 

requires LD-pruning. This also means that it cannot make explicit inferences about which 

regions of the genome in an admixed individual derive from which putative ancestral group. 

More recently, chromosome-painting methods addressing this need have been developed. 

These approaches are based on comparing each genome of interest (the recipient) to a set of 

phased chromosomes from a range of individuals (donors) serving as approximate matches for 

the putative ancestral sources. This comparison results in a probability for each segment of the 

recipient genome that this region derives from one of the donor individuals (Figure 1.4). These 

inferences require a model describing how ancestry changes along a genome. One of the most 

widely used approaches, which relies on a theoretical framework first proposed by Li and 

Stephens (2003), is ChromoPainter/fineSTRUCTURE (Lawson et al., 2012). As the results 

obtained with the latter will be incorporated in the analyses presented here, it shall be described 

briefly. The method consists of several subroutines. Firstly, ChromoPainter is used to construct 

a coancestry matrix xij, which displays the expected number of distinct genomic chunks shared 

by the recipient individual i with each possible donor individual j. The sum of these chunks 

over all chromosomes can be interpreted as a count of the number of recombination events 

leading to individual i being most closely related to j and is therefore an intuitive measure of 

ancestry sharing. 
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Figure 1.4: A possible visualisation of the autosomal local ancestry of a population derived from three source 
groups. In this case for most of the genome the maternal and paternal haplotypes in any given region are 
from different ancestry backgrounds. (adapted from Moreno-Estrada et al., 2013)  

fineSTRUCTURE uses Bayesian inferences of populations to partition the dataset into k groups 

with indistinguishable genetic ancestry using a Markov chain Monte Carlo (MCMC) algorithm. 

A population is defined such that a chunk from any recipient individual within this group has 

an identical donor and recipient distribution. This output can then be further analysed with the 

MCMC approach to yield a population tree. 

One key limitation of ChromoPainter/fineSTRUCTURE is that it depends on the availability of 

good proxies for ancestral/donor groups which are not represented in the dataset. This has been 

partly addressed by the development of the GLOBETROTTER method (Hellenthal et al., 

2014). It modifies and extends the fineSTRUCTURE approach accounting for ancestry from 

unsampled groups and uses the ancestral affinities and tract lengths to quantify and date the 

gene flow due to admixture events. One caveat with GLOBETROTTER and similar approaches 

is the underlying assumption that the admixture tract lengths are exponentially distributed and 

independent. This is a good approximation for low rates of admixture (Pool and Nielsen, 2008), 

however it has been shown to be less precise for recent strong gene flow (Liang and Nielsen, 

2014). 

Most approaches described until this point provide an understanding of the structure of the 

sample while working in an at least partly unsupervised manner. Other methods test complex 
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and parameter-rich models describing specific processes and properties such as population 

divergence times, migrations, gene flow events and changes in Ne. The majority of these are 

likelihood based and require the explicit specification of the model and starting estimates of 

relevant parameters. 

These methods can be classified according to the type of data they require. A first class of 

approaches relies on the site frequency spectrum (SFS). It represents the distribution of variants 

present at each possible derived allele count in a sample of n chromosomes and has been shown 

to be a rich resource containing information on underlying neutral demographic history as well 

as selective events (Williamson et al., 2005). To enable quantitative estimates of the population 

history revealed by the SFS the methods described here use a Poisson random field model. The 

derived allele counts across the different frequencies are assumed to follow a Poisson 

distribution (Sawyer and Hartl, 1992), i.e. new mutations are presumed to occur in a population 

as a Poisson process, which is used in statistics to describe the incidence of high impact rare 

events. 

The most widely used approach, which allows for up to three populations to be analysed 

relatively fast is known as “diffusion approximations for demographic inference” (∂a∂i) 

(Gutenkunst et al., 2009). It consists of the calculation of the expected SFS given a set of 

parameters specifying a demographic model under a diffusion approach which approximates 

the population genetics of a discrete set of individuals in discrete generations. The expected 

SFS is then compared to the observed SFS. The demographic model for which this similarity is 

maximised is chosen using a maximum likelihood framework.  

Another approach which can yield information about the population history of multiple groups 

while being comparatively fast and requiring only a limited number of input parameters is 

TreeMix (Pickrell and Pritchard, 2012). It does not model the SFS as such but utilises a 

covariance matrix of allele frequencies between given populations while trying to account for 

LD by grouping neighbouring SNPs together. As in ∂a∂i the model which yields the covariance 

matrix most similar to the observed one is chosen. TreeMix allows the estimation of the 

underlying population tree and admixture events between populations.  

The F-statistics first introduced by Reich et al. (2009) also belong in this context. The F-

statistics sensu Reich (as opposed to Wright’s fixation indices) can be thought of as representing 

genetic drift shared between populations, i.e. the correlation of allele frequencies (Peter, 2016). 
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f3 and f4 statistics have interpretations as branch lengths in a tree describing the relationships of 

three and four taxa to each other respectively. The value of these statistics can be used to obtain 

the underlying tree topologies. If the assumed source groups are sufficiently diverged and the 

mixture proportions are high enough to have a detectable effect on the common allele frequency 

spectrum, admixture can be robustly inferred and quantified. TreeMix as well as the type of F-

statistics sensu Reich described were used to analyse a part of the data presented here. 

To analyse fine-scale population structure the focus should ideally be on haplotypes and on 

including all recombination events occurring across a genome in the models used to reconstruct 

demographic history. Applying the framework of coalescent theory, the genealogy underlying 

each region in the genome can be reconstructed, while recombination causes changes of these 

trees along the genome. The genealogies can be used to yield features of interest, e.g. Ne. The 

number of coalescent events detectable in a certain region of the genome is known to be 

inversely proportional to Ne. However, the full coalescent is very complex to model due to the 

long range correlations between sites along a genome and correspondingly an extremely large 

number of possible genealogies (Wiuf and Hein, 1999). 

The sequential Markovian coalescent (SMC) framework proposed by McVean and Cardin 

(2005) addresses this problem by approximating the full coalescent under the assumption that 

the genealogy of the site where the recombination event occurs depends only on the 

genealogical tree underlying one neighbouring site. 

The most widely used approach employing this framework is the Pairwise Sequentially 

Markovian Coalescent (PSMC) model developed by Li and Durbin (2011). In it each 

heterozygous site in a genome of interest is interpreted as resulting from the contributions of 

two haploid genomes. The density of heterozygous sites in each region can be used to infer the 

time to most recent common ancestor (TMRCA) between these two hypothetical genomes. A 

clustering of heterozygote sites indicates an older age of the common ancestor in a particular 

section of the genome. As mentioned above changes of Ne over time can then be inferred from 

the distribution of coalescent events throughout the past. PSMC has several advantages over 

other methods as it is non-parametric and no specific underlying (growth) dynamics are 

assumed and the input data do not require phasing. However, in its original version it is limited 

to a single individual. An extension of PSMC known as multiple SMC (MSMC) (Schiffels and 

Durbin, 2014), which requires phased data, can handle multiple individuals from different 

populations and yields estimates of the coalescence times within and between groups which can 
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in turn be used to approximate population split times. Besides the SMC-related there are a range 

of other methods to estimate Ne, each having different strengths and weaknesses, i.e. certain 

methods might give better estimates for certain timeframes. 

Overall, the last two decades have seen great advances in our ability to infer human 

demographic history. Generally, there has been a move towards more sophisticated models 

often based on a maximum likelihood framework. While the exact likelihoods can in practice 

only be calculated for simple models there are robust frameworks to approximate these for 

many scenarios. Finally, due to the stochastic nature of coalescence processes we can never 

obtain a full picture of past demographic events solely based on present-day diversity. 

 

1.3.4 Methods testing for signatures of natural selection 

As described in section 1.2.3, selective processes can be subdivided according to their 

modalities and the resulting effects on genetic diversity. The focus of this section is on 

approaches detecting positive selection from genome-wide data; purifying selection will be 

considered in sections 1.6.3 and 1.6.4. 

The approaches reviewed here infer events on a microevolutionary scale within our species as 

opposed to a macroevolutionary perspective, where the focus is on adaptations specific to 

modern humans. Methods to detect the latter include the Ka/KS (also known as dN/dS) (Hurst, 

2002), the McDonald-Kreitman test (McDonald and Kreitman, 1991) and the Hudson-

Kreitman-Aguadé (HKA) test (Hudson et al., 1987). They are based on the comparison of the 

ratio of different site classes and/or types of polymorphism across various species to detect 

changes particular to one lineage. Generally, an excess of species divergence as opposed to 

intraspecies polymorphism could result from positive selection in a specific lineage whereas an 

excess of intraspecies polymorphism is thought to reflect balancing selection. 

The earliest studies investigating the genetic basis of adaptations were based on a forward 

genetics approach. Phenotypes were hypothesised to be targets of natural selection and the 

underlying genetic basis was subsequently identified. One example of such a trait in humans is 

lactase persistence, for which positive selection was suggested as early as 1973 by Cavalli-

Sforza and signatures of strong selection in the region of the lactase gene (LCT) were later 

detected by Bersaglieri et al. (2004). Another phenotype of this kind is skin pigmentation, its 

adaptive value was debated throughout the 20th century (e.g. Blum, 1961) and signals for 
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positive and purifying selection were subsequently found in multiple pigmentation related-

genes (Harding et al., 2000; Norton et al., 2007). Technological advances allowed a shift 

towards approaches scanning the whole genome to identify candidate region targeted by natural 

selection without a priori knowledge of the underlying phenotypes (Sabeti et al., 2007; Voight 

et al., 2006). A plethora of methods have since then been applied to find candidates for positive 

selection on a genome-wide level (reviewed by Vitti et al., 2013; Wollstein and Stephan, 2015). 

The basic rationale of most methods is to calculate a certain test statistic capturing one aspect 

of genetic diversity for one or multiple regions in the genome and to compare it to the 

expectations under a model of neutral evolution. It has been noted (e.g. Nielsen et al., 2007) 

that deviations from neutrality can also be caused by demographic events. One way to further 

evaluate the results of neutrality tests is to expand on the simple null hypothesis and instead use 

multiple non-neutral hypotheses for comparison. The demography of a specific population can 

also be explicitly modelled to identify loci with unusual properties given a particular 

demographic history. 

A complementary approach is known as outlier analysis. It assumes that selection is locus-

specific while demographic history should affect all regions of the genome more uniformly. 

Therefore, the empirical distribution of a statistic over all loci/regions of the genome should 

approximately reflect the null model. A threshold is then set and genomic units exhibiting a 

value of the test statistic more extreme than it are considered as candidates. One problem with 

outlier approaches it that it is very difficult to state with certainty what fraction of the genome 

has experienced a specific selective pressure. Therefore it has been recommended to consider 

outlier analysis as an enrichment tool for loci which require further analysis instead of providing 

conclusive evidence for selection on its own (Akey, 2009). 

Another classification of tests depends on the different ways putative selective events affect the 

observed patterns of human diversity. Different tests detect a range of signals (Figure 1.5), 

which also has implications for the approximate underlying selection coefficients and time 

scales which can be investigated. Under the assumption that different populations are living in 

specific environments and are therefore subject to distinct selective pressures, frequency 

changes at particular loci might be caused by these different selective regimes.  Accordingly, a 

locus with extreme frequency divergences between populations compared to the average 

difference could be the result of selection. A basic statistic to examine these patterns is known 

as ΔDAF. It is defined as the absolute value of the difference in the DAF between two 
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populations for a particular site (Colonna et al., 2014; The 1000 Genomes Project Consortium, 

2012, 2015). It is considerably more powerful when unbiased WGS data are available. Another 

simple measurement of this particular effect selection has on genetic diversity is the FST. A high 

value at a particular locus would imply strong population differentiation potentially due to 

selection (Akey, 2002). 

A wide range of statistics either derive from the FST or the ΔDAF. One example is the 

divergence statistic di introduced by Akey et al. (2010). It provides a measurement of locus-

specific population structure (here FST) for a subgroup i of a species compared to all other 

subgroups normalised by the genome-wide average. This possibly indicates adaptive processes 

acting in a specific lineage. Some of the genomic data in this thesis will be analysed with the 

ΔDAF as well as di. 

False positives are a challenge for the selection tests based on population differentiation, as 

strong population structure and drift can generate extreme allele frequency patterns. 

As displayed in Figure 1.5 a selective sweep affects the SFS at neighbouring loci. In its early 

stages it causes a reduction of genetic diversity surrounding the locus. As time progresses novel 

mutations occur on this relatively homogeneous background, leading to an excess of rare 

alleles. The most commonly used test to detect this particular signal is Tajima’s D (Tajima, 

1989). It measures the number of pair-wise differences between individuals and compares it 

with the total number of segregating (i.e. polymorphic in an alignment) sites. As low frequency 

alleles contribute less to the number of pair-wise differences than intermediate frequency alleles 

this affects the difference between these statistics. Therefore, an excess of rare variants causes 

a negative D score which could either be due to positive selection or population expansion 

whereas balancing selection is thought to lead to an increase of intermediate frequency variants 

which would result in a positive D. 

The genetic hitchhiking effect observed around the selected site can also be measured in terms 

of LD. As the causal allele and its neighbouring variants define a haplotype this particular 

combination of alleles will rapidly increase in frequency during the selective sweep as 

recombination acts much slower to break down the relevant associations. Therefore, a long 

(relative to the population average) high frequency haplotype is thought to be indicative of a 

selective sweep. This class of approaches is particularly powered to detect recent selective 

events (Vy and Kim, 2015). The integrated haplotype score (iHS) (Pickrell et al., 2009; Voight 
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et al., 2006) is a widely used test statistic to quantify these processes. It utilises the concept of 

extended haplotype homozygosity (EHH). The latter is defined based on a core allele (here the 

potential selection target) and an extended range spanning from it to a specified base. The EHH 

measures the probability than any two randomly sampled chromosomes within a group carrying 

the core allele are identical by descent (IBD) for the extended region. Given the molecular 

mechanisms underlying LD EHH decreases the further one moves away from the core region. 

For whole-genome data the iHS is calculated for each SNP and the area under the curve based  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Methods detecting selective sweeps at the microevolutionary level.  a) A beneficial mutation (red 
asterisk) rising in frequency also causes an increase in the frequency of derived variants surrounding the 
site. After completion of the sweep, novel mutations cause an excess of rare alleles. b) Extended haplotype 
homozygosity (EHH) is a measure of LD. It rises across the haplotype carrying the selected allele. After 
fixation novel mutations and recombination events lead to a breaking down of the EHH patterns. c) If 
selection acts in a specific population this will cause an increase in allele frequency differentiation as 
measured by the FST and other statistics. d) Composite methods integrate multiple signals of selection and 
can help pinpoint causal variants. The same can be achieved by WGS resequencing if the data were 
previously in genotype format (adapted from Vitti et al., 2013). 

Figure removed for copyright reasons. Copyright holder is Annual Reviews. 
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on the EHH is compared for the ancestral and derived alleles. This statistic is then standardised 

for the whole genome, empirical outliers with unusually long haplotypes surrounding either the 

ancestral or derived allele are considered sites of interest. The cross-population EHH (XP-EHH) 

(Sabeti et al., 2007) is another variation of the same framework. It relies on the comparison of 

haplotype lengths between populations and can therefore highlight localised population-

specific selection. Simulations imply that the iHS and the XP-EHH are complementary: the 

former excels at detecting incomplete sweeps, the latter performs best for a sweep nearing 

completion in a particular population (Pickrell et al., 2009).  

However, neither iHS nor XP-EHH were designed to pinpoint the causative selection targets at 

the variant level, they rather highlight regions with unusual haplotype homozygosity patterns.  

A tool known as derived intra-allelic nucleotide diversity (DIND) test (Barreiro et al., 2009) 

allows more  precise inferences, at least for selection on derived variants. Under neutrality it is 

assumed that an allele with a high DAF has likely been segregating in the population for a long 

time. Therefore, it should be associated with high levels of diversity within the class of 

haplotypes defined by this core allele. For the DIND the standardised intra-allelic diversity is 

calculated for both the ancestral and the derived allele. These scores for the two alleles are then 

compared as a ratio statistic and plotted against the derived allele frequency (DAF) for all 

variants of interest. Outliers (either empirically or based on simulations) with high derived 

population frequency but low internal diversity at linked sites are then chosen as candidate 

variants. 

Fagny et al. (2014) applied iHS and DIND to simulated and real low-coverage WGS data. Their 

outcomes indicate that both approaches are particularly powerful to detect selective sweeps 

targeting either a newly arisen allele or low frequency standing variation rising to high 

frequency in WGS data (80-100% at an allele frequency >0.4). They were also found to be 

robust to variation in recombination and mutation rates, negative background selection and 

coverage; however, they are sensitive to sample size. 

One of the most widely used approaches which attempts to increase the power to detect 

selection by combining information from multiple tests is known as composite of multiple 

signals (CMS). It encompasses five selection tests including all three classes described above 

(Grossman et al., 2010, 2013). In its latest implementation a Bayesian framework is applied to 

calculate a factor for each test. This factor denotes the probability that a certain SNP with a 

particular score for a test statistic is under selection. The latter is inferred from comparing the 
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empirical test score to the bins of a spectrum of simulated scores for sites of which some are 

“known” selection targets (fixed in the simulation). These factors are then multiplied to obtain 

the composite score. 

One major criticism of genome-wide selection scans has been the lack of reproducibility of 

selection signals. This has been attributed to the low power of individual tests to detect 

particular types of signals (e.g. Zhai et al., 2009) and signals being obscured and or mimicked 

by complex demographic histories which can be difficult to incorporate even in simulation 

approaches (Teshima et al., 2006). 

In this aspect there have been some improvements in the last few years. Crisci et al. (2013) 

quantified the impact of particular demographic scenarios which deviate from a simple 

equilibrium model (e.g. bottlenecks) on the type I and type II errors for various haplotype 

homozygosity-based selection tests. Recent studies have indicated that more research is 

necessary to understand the statistical power of each test under different scenarios (Jacobs et 

al., 2016) and that caution should be taken against the over-interpretation of these results 

without additional functional follow-ups (Pavlidis et al., 2012). Nevertheless, there is a small 

but growing subset of loci mainly related to adaptations to agriculture, environmental variables 

and pathogen resistance (Fu and Akey, 2013; Wollstein and Stephan, 2015) which are 

consistently detected by selection screens. 

A related question is the accuracy of the classic selective sweep model and its importance in 

human evolution. Generally, empirical data have revealed that the features which would be 

expected under the idealised strong and complete sweep scenario are relatively rare in human 

genomes. Among these are the low number of fixed differences between human populations 

and also the genome-wide absence of a pronounced decrease in diversity around human-specific 

missense mutations (Hernandez et al., 2011; Pritchard et al., 2010). However, work on the 1000 

Genomes dataset implies a moderate but significant role for hard selective sweeps (Fagny et 

al., 2014). Soft selective sweeps and polygenic adaptations have been suggested as alternative 

modes of selection (e.g. Pritchard and Di Rienzo, 2010). While no definite consensus has been 

reached, it appears that multiple modes of selection have been important during recent human 

evolution and more work is required to understand the genetic signatures of those differing from 

the classic selective sweep model. 
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Another general trend has been relating selection candidates to functional information. This can 

be done a posteriori by using existing annotations from functional databases or by performing 

functional follow-up studies. Other approaches have explicitly incorporated information on 

environmental factors and have studied their correlation with allele frequency data  (Coop et 

al., 2010; Fumagalli et al., 2011; Raj et al., 2013). 

Finally, the explosive growth of genomic data has also opened new avenues in creating statistics 

to measure selection. For example, Field et al. (2016) used newly available whole genome data 

from the British population to infer very recent (beginning 2-3 kya) hard-sweep type selective 

events on derived alleles. The authors developed a new statistic, the singleton density score 

(SDS) which utilises the impact of recent selection on the rare variant spectrum. It exploits the 

lack of singletons and the distortion of the genealogy for haplotypes which are undergoing a 

selective sweep. To this aim, the distance between a test SNP and the nearest singletons is 

calculated to infer the ratio of terminal branch lengths (marked by singletons) for the derived 

vs ancestral alleles. Outliers with very short terminal branches are thought to be recent targets 

of selection.  

A last aspect, which can only be briefly mentioned here, are the advances of aDNA studies. 

They provide an opportunity to study the temporal dynamics of selective processes (e.g. 

Mathieson et al., 2015 for Bronze Age Western Eurasia) and have yielded considerable 

improvements to estimates of selection coefficients.  

 

1.4 The recent evolutionary history of humans: insights from modern genomics 

 

1.4.1 African origins and early population splits 

Unravelling the history of the human species requires integration of evidence from the fields of 

palaeoanthropology, archaeology, palaeoclimatology and evolutionary genetics. In the 

following the main insights gained from the recent progress of genetic studies into the 

development of our species in recent (primarily < 250 kya) evolutionary times will be reviewed. 

For most of the 20th century there were two competing classes of models describing modern 

human origins. The first is known as the Out of Africa (OOA) model: according to it all living 

modern humans derive the vast majority of their ancestry from a relatively recent (Middle 

Pleistocene) African ancestral group that colonised the rest of the world and totally replaced 
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archaic hominins (Stringer and Andrews, 1988). In contrast multiregional models argued for an 

earlier dispersal and long-term continuity of Pleistocene hominins such as Homo erectus in 

different regions of the world (Weidenreich, 1947; Wolpoff et al., 1984). This would imply 

independent or partially independent, if gene flow was allowed, evolutionary lineages of these 

populations (Templeton, 2007). 

The first studies of worldwide human genetic diversity which yielded phylogenetic trees based 

on mitochondrial (Cann et al., 1987; Ingman et al., 2000), Y-chromosomal (Thomson et al., 

2000) and autosomal microsatellite (Bowcock et al., 1994) data identified Africa as the putative 

source of the human gene pool for these markers as it harbours the most diversity. Furthermore, 

it was hypothesised that all earlier hominins were completely replaced by the OOA wave and 

did not contribute to the modern human gene pool. The increase in the amount and complexity 

of genome-wide high coverage data has led to the development of more computationally 

intensive methods to estimate split times and other parameters of population histories (see 

section 1.3.3). In the following, the most important insights on human population history from 

evolutionary genetics will be summarised. The temporal subdivisions describing important 

transitions during the evolution of Homo sapiens are adapted from Mirazón Lahr (2016). 

Much of the earliest history of our species and its origins remain unknown. Early fossil 

specimens exhibiting an unequivocally modern human morphology come from the sites of Omo 

Kibish and Herto, both in present-day Ethiopia, and are dated to 190-200 kya (McDougall et 

al., 2005) and 160-154 kya (Clark et al., 2003b) respectively.  Very recently, these origins have 

been pushed back further by re-analysed as well as newly excavated specimens from the 

Moroccan site of Jebel Irhoud, situated in a layer dated to 350-280 kya (Richter et al., 2017). 

These fossil remains exhibit a mixture of archaic and derived traits with a facial morphology 

closer to modern Homo sapiens than any other currently known taxon (Hublin et al., 2017). 

Genetic data cannot pinpoint the exact time at which a species arose because speciation is a 

gradual process, however it can be assumed that considerable substructure already existed in 

the hominin population which gave rise to Homo sapiens (e.g. Harding and McVean, 2004), 

which is consistent with archaeological evidence.  

An African origin followed by a range expansion as suggested by uniparental marker analyses 

has been confirmed from world-wide samples of genome-wide SNP and WGS data (Sousa et 

al., 2014). Firstly, it has been shown that African genomes exhibit the highest variant numbers 
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(The 1000 Genomes Project Consortium, 2015). Furthermore, non-African diversity is mostly 

a subset of African variation (Campbell and Tishkoff, 2008) and genetic diversity between and 

within continents decreases along a presumed expansion axis which is compatible with multiple 

founder effects (Henn et al., 2012a; Prugnolle et al., 2005; Ramachandran et al., 2005). This is 

further supported by higher levels of LD (The 1000 Genomes Project Consortium, 2010) and 

longer runs of homozygosity observed in non-African populations (Frazer et al., 2007). It is 

debated in which part of Africa anatomically modern humans originated (reviewed by Lopez et 

al., 2016).  

Some of the earliest known findings of Homo sapiens outside of Africa are from the sites of 

Skhul (Grün et al., 2005) and Qafzeh (Hovers, 2009) dating to 120 kya and 100-90 kya, 

respectively. The current interpretation is that these individuals are representatives of an early 

OOA movement which did not expand further and these populations either died out or returned 

to Africa. A recent finding consisting of anatomically modern human teeth from Southern China 

dated to at least 80 kya (Liu et al., 2015) corroborates earlier modern human dispersals. This is 

further confirmed by aDNA evidence from an at least 50 kya-old Neanderthal genome from the 

Altai mountains for which gene flow from an old modern human lineage was inferred 

(Kuhlwilm et al., 2016). 

The deepest currently known split within extant humans is between the South African Khoisan 

and all other populations. Contingent on downward revisions of the genome-wide mutation rate 

(see section 1.2.1) this split could have occurred as long as 250-300 kya (Gronau et al., 2011; 

Scally and Durbin, 2012). Considering recent aDNA evidence from 2,000 year old South 

African Stone Age hunter-gatherer genomes this has even been pushed further back to 350-260 

kya as recent admixture from an East African/Eurasian source into all modern Khoisan biases 

the divergence date estimated using the latter downwards (Schlebusch et al., 2017). 
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Figure 1.6: Reconstruction of Ne based on WGS data using the PSMC method. A Li and Durbin (2011), B-
C Schiffels and Durbin (2014), D-F Mallick et al. (2016) 

The first inferences of Ne based on the PSMC methodology (Figure 1.6) indicated a shared 

increase for all modern humans populations until ca. 100 kya (Li and Durbin, 2011). This could 

either reflect a real increase in population size as suggested by the evidence for population 

expansion from the fossil and archaeological data or population structure involving separation 

and admixture. However, later studies (Mallick et al., 2016; Schiffels and Durbin, 2014) 

questioned these findings by showing a consistent decline of non-African Ne starting at 200 

kya, long before any proposed OOA movement. These studies also found either a slight decline 

or constant population sizes for African groups during the period of interest.  

Figure removed for copyright reasons. Copyright holder for all three original underlying 
figures is Springer Nature. 
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1.4.2 Peopling the world: dispersal out of Africa 

The next period of human evolutionary history can be described as a time of dispersals (70-

50/45 kya) (Figure 1.7). From the fossil and archaeological record, we know that by its end 

modern humans coming from Africa had peopled most of the world excluding the Americas. 

They arrived in Europe (Fu et al., 2015; Nigst et al., 2014), East and Southeast Asia (Bae et al., 

2017; Demeter et al., 2012) and Australasia (Clarkson et al., 2015) at least 55-45 kya. Generally, 

the climate throughout the world during this period was colder and drier than today, which 

would have made passages across straits easier for humans, however the sea barrier between 

Southeast Asia and Sahul (Australia and parts of Papua New Guinea) would still have posed a 

considerable obstacle (Davidson, 2010). 

 

Figure 1.7: One possible scenario for the temporal and spatial framework of the OOA migrations.  Wide 
arrows indicate major founder events while thin arrows symbolise migration paths. This depiction is a 
simplification of a more complex reality and some details displayed in this graphic are still very much 
debated, these include a) a southern African origin, b) a southern route exit from Africa, c) a relatively late 
arrival in Australasia. Figure taken from Henn et al. (2012a). 

Recently, there has been much debate about the modalities of the OOA event. The first concerns 

the exact route taken when leaving Africa, the main two scenarios being a northern route (via 

Egypt and the Sinai) and a southern route (via Ethiopia and the Arabian Peninsula).   

evidence consistent with a northern exodus comes from Pagani et al. (2015) who generated 225 

mostly low-coverage whole genomes from modern-day Egyptians and Ethiopians. After the 

genomic components derived from recent Eurasian admixture in these populations were masked 

the Egyptian haplotypes showed a greater affinity to the non-African haplotypes than those 

from any other African population. This could be evidence that Egypt was the “last stop” on 
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the OOA migration, but this is dependent on underlying assumptions about population 

continuity and the geographical origins of the Egyptians’ African component which are difficult 

to test without aDNA. 

Another set of questions concerns the exact dating of the OOA event which gave rise to present-

day non-Africans and the number of potential dispersals. One way to estimate these parameters 

is to develop spatially explicit simulations of human demography during the OOA expansion 

with different parameter combinations, generate summary statistics from these and then 

compare the latter to observed present-day genetic patterns (e.g. Eriksson et al., 2012).  

Given certain assumptions about the geographical origin of particular haplogroups the 

mitochondrial evidence indicates an OOA event giving rise to modern humans at ca. 60-65 kya 

(Fernandes et al., 2012; Jobling et al., 2013). Time estimates based on WGS data are more 

variable depending on the methodology and the respective datasets used. Identity-by-state (IBS) 

(Harris and Nielsen, 2013) and coalescent-based (Gronau et al., 2011) approaches estimate the 

divergence times between Africans and Eurasians at 55 kya and 38–64 kya respectively. The 

PSMC and MSMC results (Li and Durbin, 2011; Schiffels and Durbin, 2014), as mentioned 

above, indicate a long continuous divergence process with considerable differences as early as 

100 kya with continually ongoing gene flow until more recent times. The most comprehensive 

Markovian coalescent analyses suggest a divergence between Europeans and West Africans at 

ca. 63 kya and substantial differentiation between different non-Africans in terms of 

coalescence events and Ne starting ca. 50 kya (Mallick et al., 2016). 

Another subject of debate is the number of OAA migration waves. The most parsimonious 

scenario would assume only one wave while others have proposed multiple migration events 

(reviewed by Groucutt et al., 2015). Most studies indicate that the genetic evidence for the 

relationships between different modern human groups are consistent with a single wave and a 

serial founder effect model (Deshpande et al., 2009). However, “weaker” versions of a multiple 

OOA model are still potentially viable. Firstly, recent simulations by Pickrell and Reich (2014) 

have shown that the characteristic decrease in heterozygosity with increasing distance from 

Africa can also result from past demographics diverging from this scenario with fewer 

bottlenecks and varying levels of admixture between different populations.  

A second issue is how the Australo-Papuans (term hereafter used for Australians and Papuans) 

relate to Eurasians. Because of specific aspects of their morphology, mainly a higher robusticity 
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across multiple cranial features that they share with early anatomically modern humans, and 

the archaeological record Lahr and Foley (1994) proposed that they might derive their ancestry 

from an earlier OOA dispersal at 50-100 kya from a structured African population. While the 

genetic data have made this model in its strong form unlikely Australo-Papuans could still I) be 

derived from an earlier dispersal from a deme which gave rise to all non-Africans and/or II) 

exhibit a minor genomic component from an earlier OOA event. 

A study of high coverage SNP data which included 25 individuals from Papua New Guinea 

applied  an approximate Bayesian computation framework to address this question (Wollstein 

et al., 2010). Bayesian methods have already been mentioned several times in this chapter, 

broadly speaking, their goal in a population genetic context is to obtain the probability of 

demographic parameter values for a specified evolutionary model given the observed genomic 

data. Following Bayes’ theorem, the probabilities of all possible parameter values, also known 

as the posterior distribution, can be computed as the product of the prior, here the assumed a 

priori plausibility of different demographic parameter values, and the likelihood function, here 

the probability of observed genomic data given all possible demographic parameter values. 

However, for complex demographic models the true likelihood function is very challenging to 

solve analytically. The key innovation of approximate Bayesian computation is that sampling 

from the posterior distribution can be performed without requiring explicit likelihood 

calculations (Beaumont et al., 2002). While the highest posterior probability was obtained by 

Wollstein et  al. for a single-OOA scenario in which the New Guineans split from a common 

Eurasian ancestor there was also some support for a model in which the Papuans branch of from 

an ancestral East Asian clade. Rasmussen et al. (2011) sequenced the genome of an aboriginal 

Australian living ca. 100 years ago. They found support for an early branching of Australian 

aborigines from other Eurasians which they dated to 75-62 kya. As mentioned above (section 

1.3.2) Malaspinas et al. (2016) provided an in-depth study of Australian and Papuan genomic 

diversity. Their analyses indicated that Australo-Papuans and Eurasians descend from the same 

OOA event. By comparing SFS spectra simulated under different demographic models to the 

observed patterns and MSMC analyses they found that the ancestors of Aboriginal Australians 

and Papuans diverged from other Eurasians shortly after the OOA event at 58 kya (51–72 kya).  

However, Mallick et al. (2016) as part of their worldwide WGS study analysed 3*106 SNPs 

derived from WGS data with the f-statistic-based method ADMIXTUREGRAPH (Patterson et 
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al., 2012). While correcting for known archaic gene flow into Australo-Papuans the best-fitting 

model placed them in a clade together with mainland East Asians. 

The debate about the phylogenetic relationship of Australo-Papuans and other Eurasians is still 

ongoing and different studies have yielded apparently incompatible results. It has been noted 

that the long-term physical isolation and low Ne especially of some Australian and Papuan 

groups make the correct estimation of demographic parameters challenging (Lopez et al., 2016). 

Furthermore, approaches such as MSMC are hampered by phasing issues with Australo-Papuan 

samples, as these groups were not part of the 1000 Genomes Project.  More research is needed 

to address these concerns and reconcile the apparent contradictions. 

Regardless of this ongoing debate, studies of worldwide modern human diversity detect a split 

between West and East Eurasians which given the recent revisions of the nuclear mutation rate 

has been estimated at ca. 40–45 kya (Mallick et al., 2016). aDNA evidence has allowed us to 

place its lower boundary at a minimum of 36.2 kya based on the greater affinities of a 

Palaeolithic individual from Kostenki (Russia) to present-day Europeans than to East Asians 

(Seguin-Orlando et al., 2014). Similar observations for genomic fragments from a modern 

human from Tianyuan Cave (China), who clusters with an East Eurasian clade, support this and 

argue for a date of at least 40 kya (Fu et al., 2013). Furthermore the genome of a 7,000 old 

farmer from Stuttgart (Germany) revealed that this individual derived part of its ancestry from 

a “Basal Eurasian” group which branched off from all other non-Africans before the West-East-

Eurasian split (Lazaridis et al., 2014). 

These early divergences were followed by complex localised histories of population splits and 

gene flow events. For example modern Europeans are thought to trace their ancestry to at least 

three distinct groups: Western European hunter-gatherers, ancient north Eurasians (similar to 

ancient Siberian populations from the Upper Palaeolithic) and early European farmers with 

Middle Eastern affinities (Lazaridis et al., 2014). This model was further refined by Haak et al. 

(2015), who highlighted that these contributions were not necessarily direct. This complex 

ancestry of Europeans highlights that aDNA evidence often does not fit the most parsimonious 

demographic scenario constructed based on modern day genetic data (Haber et al., 2016). 
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1.4.3 Gene flow from archaic hominins 

The unprecedented deluge of aDNA data has also affected our understanding of the relationship 

between archaic hominin species and modern humans. Genomic data have been generated for 

several Neanderthals (Green et al., 2010; Hajdinjak et al., 2018; Prüfer et al., 2013) and three 

individuals forming a distinct hominin lineage found at Denisova cave in Siberia (Meyer et al., 

2012; Reich et al., 2010; Sawyer et al., 2015). These Denisovans are currently only represented 

by a phalanx and several teeth. Denisovans and Neanderthals are thought to form a clade which 

diverged from the ancestors of modern humans ca. 550–765 kya whereas the split between the 

two archaic hominins is estimated to have occurred ca. 381–373 kya (Prüfer et al., 2013). Based 

on D and f4 statistics it was estimated that the genome of all modern non-Africans contains 1.5–

2.1% Neanderthal ancestry (Green et al., 2010; Prüfer et al., 2013) that was proposed to derive 

from a single admixture event affecting the subpopulation all non-Africans trace their ancestry 

to.  

This interpretation was challenged on several grounds. Firstly, it was suggested based on 

simulations that the observed affinity between Neanderthals and non-Africans can also be 

generated under scenarios involving only population substructure in Africa (Eriksson and 

Manica, 2012) which was disputed by other authors (Yang et al., 2012). For the second 

objection, it is important to recall that African populations are more diverse than non-Africans. 

A correlation between heterogeneity and mutation rate has been shown for microsatellites by 

Amos et al. (2008), but remains unproven for SNPs. If the latter could be demonstrated the 

lower Neanderthal-sharing with Africans could possibly be due to novel mutations in the latter 

and not because of shared polymorphisms between non-Africans and the archaic hominins 

(Amos, 2013, 2016). Despite these controversies the majority view in the field is that the wide-

spread Neanderthal signature reflects genuine admixture. However, it is unclear how frequently 

it occurred and how many individuals were involved. Additional aDNA evidence from 

prehistoric non-Africans generally indicates longer shared tracts of ancestry with Neanderthals 

(Fu et al., 2014a, 2015; Seguin-Orlando et al., 2014) consistent with much more recent 

Neanderthal ancestry in these individuals and hinting towards multiple admixture events.  

Gene flow from Denisovans into modern Australo-Papuans is thought to account for 4-6% of 

their genome, while East Asians and Native American populations appear to exhibit 0.2% of 

this ancestry component (Prüfer et al., 2013; Reich et al., 2011). The modalities of this putative 
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admixture are currently under debate and depend on assumptions about the geographical 

distribution of Denisovan-like hominins in the past. 

Sankararaman et al. (2016) used a machine-learning approach to detect archaic ancestry based 

on WGS data and according to their own estimates they localised ca. 75% of all Neanderthal 

and 25% of all Denisovan ancestry. Consistent with other studies they showed that these regions 

are located less frequently than expected near genes implying that archaic ancestry on a modern 

human background has generally been detrimental to reproductive fitness. 

However, there are a few regions in the genome which have been identified as introgressed, 

based on local phylogenetic trees, long range LD and/or probabilistic modelling that have also 

been inferred as targets of selection after entering the modern human lineage (reviewed by 

Racimo et al., 2015). Perhaps the most prominent example for adaptive introgression is EPAS1, 

a gene encoding a transcription factor which is important in response to altitude-induced 

hypoxia. A particular set of intronic mutations define a haplotype almost exclusively found in 

Tibetans thought to be advantageous at high altitudes and to have originated in a Denisovan-

like population (Huerta-Sánchez et al., 2014). 

 

1.4.4 The spread of agriculture and the recent impact of natural selection 

The most recent phase in human evolutionary history largely corresponds to the Holocene, the 

current interglacial phase starting ca. 12 kya. Even before the Holocene the initial warming 

after the last glacial maximum led to an expansion of habitable niches in most parts of the world 

accompanied by an expansion of hunter-gatherers attested by the archaeological record (e.g. 

Housley et al., 1997; Sutton, 1977). This was followed by one of the most fundamental 

socioeconomic transformations in the history of our species: the adoption of farming and animal 

husbandry (Pinhasi and Stock, 2011). Its earliest centre was the Fertile Crescent with evidence 

for cattle herding and crop cultivation from 12 kya onwards (Zeder, 2008); during the first half 

of the Holocene domestication of animals and/or plants also originated in several other regions 

of the world (Bellwood, 2005; Diamond, 2002; Smith, 1998). These processes led to an increase 

in population sizes of the agriculturalist groups, which is also confirmed by the PSMC graphs 

of Ne for their modern descendants, especially for non-Africans (Figure 1.6), and to range 

expansions. It has long been debated to what extent these farmers replaced or assimilated the 

hunter-gatherers (Bellwood and Oxenham, 2008) and the available evidence from aDNA shows 
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that our understanding of the relationship of these ancient groups to contemporary genetic 

diversity is still evolving. 

The adoption of agriculture also subjected our ancestors to a variety of new selective pressures. 

Together with the novel environments after the OOA and infectious disease in general these are 

thought to be the most important selective influences in our recent evolutionary past. Even for 

well-supported cases of selection  (reviewed by Scheinfeldt and Tishkoff, 2013) the last few 

years have still yielded novel insights into their temporal and spatial dynamics. 

For example, large scale aDNA studies have demonstrated that rs4988235, the most common 

SNP upregulating the expression of the LCT gene and therefore strongly associated with lactase 

persistence in modern Europeans, was still only at 5% during the Bronze Age implying a very 

high selection coefficient in recent evolutionary times (Allentoft et al., 2015). Based on re-

analyses of worldwide modern human data a strong selection coefficient has also been 

estimated for the recessive (Hamblin et al., 2002) FY*O allele of ACKR1, which is protective 

against infection of erythrocytes by Plasmodium vivax, a major cause of malaria (McManus et 

al., 2017). Another phenomenon we have obtained first insights into is the adaptive role of 

structural variation. Inchley et al. (2016) demonstrated that the increased number of copies of 

an amylase gene (AMY1) in all modern humans relative to the great apes (Perry et al., 2007) is 

likely due to a shared selective sweep in the modern human lineage and potentially reflects the 

adaptation of a more starch-rich diet long predating agriculture. 

Many conclusions about the broader outlines of human history inferred from the originally 

sparse datasets of genetic markers in conjunction with non-genetic evidence have been 

confirmed by genomics. However, the rapid development during the last 5-10 years, which have 

been hailed as the “age of genomic discovery” (Slatkin and Racimo, 2016), has highlighted the 

remarkable complexity underlying the history of modern human populations. The emerging 

consensus might be called a leaky replacement model (Pääbo, 2015) followed by complex 

regionalised demographic transitions. There are limitations inherent in genetic data besides the 

stochasticity already mentioned. On their own they only have a limited ability to inform us 

about human behaviour and cognition. Nevertheless, the general picture painted in the last four 

sections demonstrates that human genomic data in conjunction with other lines of evidence 

constitute a very powerful tool for inferences about our past. 
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1.5 Population history of Southeast Asia 

 

Mainland (MSEA) and Island Southeast Asia (ISEA) are home to hundreds of different ethno-

linguistic groups each displaying a complex demographic history (Lewis et al., 2015). Previous 

studies have revealed strong genetic correlations between populations which are geographically 

and linguistically close and suggested a common origin of all Southeast Asian and East Asian 

populations from a single migration wave (HUGO Pan-Asian SNP Consortium et al., 2009). It 

is well known, however, that in the more recent past the populations living in this region have 

undergone major demographic changes. One particular process, known as the Austronesian 

expansion, which occurred during the last five thousand years is thought to be associated with 

the spread of the Austronesian languages (Bellwood, 2007) and the Neolithic cultural complex. 

The latter consists of a core package defined by pottery and certain shell artefacts, though it has 

been stressed that this assemblage was most likely polythetic, i.e. while there is a typical 

combination of material culture traits defining the Neolithic package in the region, no single 

artefact type alone is sufficient to define group membership and not all types occur at all sites 

(Spriggs, 2011). 

 

Figure 1.8: This map displays the approximate dates for the Austronesian colonisation events throughout 
ISEA and the more remote islands of the Pacific and the Indian Ocean. Putative dispersal routes are marked 
in red (adapted from Bellwood, 2006). 
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While the modality of this expansion is complex and still debated (Bulbeck, 2008), the current 

majority view holds that it began in Taiwan and spread into the Philippines from ca. 5 kya 

onwards. From there it proceeded west into present-day Indonesia and east to Near Oceania 

before extending to Far Oceania (Figure 1.8) (Bellwood, 2006). The latter movement has been 

associated archaeologically with the Lapita Cultural Complex and its distinct ceramics tradition 

(Gray et al., 2009; Kirch, 2000; Pawley and Ross, 1993). It first appeared in the Bismarck 

Archipelago ca. 3.4 kya and then rapidly expanded into the previously uninhabited islands of 

the Pacific, reaching Tonga and Samoa by ca. 2.9 kya and spreading as far as Madagascar and 

the Easter Islands between 1-2 kya. 

The Austronesian expansion encompasses a period of dramatic increase in the movement of 

artefacts, peoples, ideas and languages across islands over vast geographical distances (Spriggs, 

2011). Even before genetic evidence was available based on the integration of artefacts and 

practices from already resident groups in ISEA and Near Oceania it seemed plausible that the 

Austronesians admixed with locals. 

One method to study these dynamics is the commensal approach where phylogeographic 

patterns observed for culturally and economically important animals and plants are used as 

proxies for reconstructing the pathways of the colonising canoes throughout the region 

(Matisoo-Smith, 2015). For example, domestic pigs in ISEA and Polynesia are thought to 

originally derive from MSEA stock (Larson et al., 2007) while many domestic plants in the 

region originated in New Guinea (Denham, 2011). Finally, recent research by Chang et al. 

(2015) on chloroplast DNA of the paper mulberry plant (an important resource of bark cloth 

for clothing and other purposes) indicates a Taiwanese origin of the lineages dominant in 

Polynesia. Taken together the archaeological evidence supports the notion of a complex history 

for the various components of Austronesian and Lapita cultures. 

Wollstein et al. (2010) analysed the genetic make-up of the Malayo-Polynesians (speakers of 

Austronesian languages outside of Taiwan) from Near and Remote Oceania and they reported 

them as containing genetic contributions from people currently inhabiting Borneo (used as a 

proxy for Asian influence) and Papua New Guinea. These admixture events were dated to 

approximately 3 kya, consistent with similar population movements involving people of Asian 

ancestry eastwards through ISEA dated around 4-3 kya (Xu et al., 2012). More recent studies 

(Lipson et al., 2014; Pierron et al., 2014) have distinguished at least three major ancestral 
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components in MSEA and ISEA in association with Papuan-, Austro-Asiatic- and 

Austronesian-speaking populations. 

aDNA analyses of samples from Remote Oceania suggest that, not dissimilar to what has 

become apparent for Europe (see section 1.4.2), the real settlement history of the region is more 

complex than the simplest possible scenario consistent with modern DNA and included 

probably at least three dispersals. Skoglund et al. (2016) presented aDNA from three individuals 

associated with the Lapita culture from Vanuatu, dated to ca. 3.1-2.7 kya, and one from Tonga, 

dated to ca. 2.7-2.3 kya. Comparative analyses indicated that these First Remote Oceanians 

were exclusively of East Asian-Austronesian ancestry and did not have any Papuan affinities. 

Two subsequent studies (Lipson et al., 2018; Posth et al., 2018) extended the aDNA record 

from Vanuatu and other Pacific islands considerably and revealed that only a few hundred years 

later the original Lapita people in Vanuatu had apparently been replaced by individuals of 

Papuan ancestry. This replacement was probably specific to Vanuatu, as the Papuan-like 

component in Tongans probably originates from a different source.  

Analyses aiming to identify the precise source regions of these dispersals are still confounded 

by recent admixture in most modern ISEA populations with groups originating from other 

regions including MSEA (HUGO Pan-Asian SNP Consortium et al., 2009; Trejaut et al., 2014) 

(more details on the included candidate populations can be found in Appendix B.1). 

In addition to the migratory events involving South East Asian sources, more recent South 

Asian influences in forms of cultural and trading networks, starting more than 2 kya, in ISEA 

and MSEA have been well established from historical and archaeological data (Ardika et al., 

1997; Ardika and Bellwood, 1991; Lawler, 2014; Manguin et al., 2011). Exemplary for these 

developments are the sites of Khao Sam Kaeo and Phu Khao Thong from Peninsular Thailand 

yielding archaeological evidence dating to 2.3-1.2 kya. They confirm the earliest trade networks 

with India, which include rouletted ware, semi-precious stone beads and artefacts, and Indian 

crops (Castillo, 2013).  In ISEA, one finds evidence of Indian trade either directly or via 

peninsular Thailand. Coastal sites located in Northern Bali dating to 2.1 kya yielded pottery of 

East Indian or Sri Lankan production, gold and carnelian objects from North India and mung 

bean (Calo et al., 2015). Furthermore epigraphy, i.e. evidence from ancient inscriptions 

indicates a strong Indian impact on the nascent political structures of the region (Mabbett, 1977) 

and provides records of Brahmanic rituals and animal sacrifices (Guy, 2011). 
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Linguistic evidence also supports early interethnic contact between Indian and Southeast Asian 

populations. Apart from the ubiquitous influence of Sanskrit (Gonda, 1973) where it is difficult 

to distinguish ancient from more recent borrowings, analyses of the earliest Maritime Southeast 

Asian literature demonstrate that it already exhibits signs of Tamil influence from South India, 

much of which most likely spread across the region through pre-existing local networks 

(Hoogervorst, 2015).  

Traces of paternal (Y chromosomes) and maternal (mtDNA) Indian ancestry have been detected 

across several Indonesian islands at low frequency (<5%) (Chaubey and Endicott, 2013; Karafet 

et al., 2005, 2010; Kusuma et al., 2015). The influx of Indian ancestry is detectable in some 

genome-wide analyses of low density autosomal SNP data (HUGO Pan-Asian SNP Consortium 

et al., 2009) while being restricted to just a few populations from western Indonesia (Sumatra). 

Contrary to that, a more recent study (Pugach et al., 2013) using medium density SNP data 

could not find a South Asian genetic signature in South East Asia. The same authors, however, 

inferred gene flow from the Indian sub-continent to Aboriginal Australian populations and 

dated it at around 4 kya. In the absence of a similar South Asian component in SEA this finding 

was interpreted to require a direct sea route bypassing Southeast Asia. 

 

1.6. Functional and deleterious variation 

 

1.6.1 Missense variants: worldwide patterns and functional implications 

Recent high-coverage exome and WGS projects detected 12.2–13.6k non-synonymous variants 

in each African genome compared to 10.2–12.4k in non-African groups (Table 1.1). This 

difference is thought to be another feature attributable to the generally higher genomic diversity 

in African populations. The vast majority of non-synonymous mutations (>99%) belong to the 

missense category (see section 1.1.1). Therefore, each human carries more than 10,000 

missense mutations. To understand their biological importance, it is crucial to estimate the 

effects they have on phenotypic fitness. On average, missense mutations are thought to be 

slightly deleterious. This notion is supported by interspecies comparisons. The dN/dS ratio of 

sites which are different between humans and chimpanzees (0.24) is considerably lower than 

the one observed for intraspecies polymorphisms (0.38) (Bustamante et al., 2005). 
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Table 1.1: Per individual counts of non-synonymous sites for different world regions based on two recent 
large-scale sequencing projects. Data from the 1000 Genomes Project Consortium, (2015) and Lek et al. 
(2016). Abbreviations: ns…non-synonymous. 

Source Statistic Africa East Asia Europe Americas 
(admixed 
groups) 

South 
Asia 

1000 Genomes 
Project 

Median 
autosomal ns 
variants 

~12,200 ~10,200 ~10,200 ~10,400 ~10,300 

ExAC project Mean number 
of ns variants 

13586.4 12426.3 11927.8 12211.1 12203.1 

This indicates that most novel missense variants do not reach high enough frequencies to 

become fixed interspecies differences, likely due to purifying selection acting on them. 

Furthermore, it has been demonstrated that they are overrepresented in the rare frequency 

classes compared to synonymous alleles in empirical data. 

After the first human and chimpanzee genomes had been sequenced comparative studies aimed 

to identify missense mutations uniquely shared by all modern humans. The first large scale 

systematic studies of this kind used the dN/dS and related statistics to identify genomic regions 

with an excess of species-specific missense mutations. Classes of genes which were 

overrepresented included those related to the immune response, chemosensory perception and 

gametogenesis (Bustamante et al., 2005; Nielsen et al., 2005). Nielsen et al. (2005) also 

categorised them according to the tissue where their expression levels are highest. Genes 

expressed in testes appeared to be the most differentiated with regards to non-synonymous 

mutations. In contrast those primarily transcribed in the brain appeared to be among the most 

conserved gene classes. 

Subsequent analyses have corroborated this picture: Prüfer et al (2013) found that for regions 

of the human genome mappable to those of the great apes and archaic hominins there were only 

96 fixed Homo sapiens-specific missense variants. Therefore, it seems plausible that non-

coding changes playing a regulatory role, e.g. influencing gene expression are also an important 

source of phenotypic differences between humans and great apes (King and Wilson, 1975). 

It has been suggested that some of the noncoding regions which show accelerated sequence 

evolution on the human lineage have an important role as enhancers (Franchini and Pollard, 

2015). For example Boyd et al. (2015) demonstrated that such a region overlaps with the 

enhancer HARE5. This enhancer is physically associated with the promoters of genes important 
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for brain development and transgenic mice with the human variant of HARE5 exhibited 

increased neocortical size compared to those with the chimpanzee variant and wild types.  

This would indicate that when analysing the results from selection tests in an inter- as well as 

intraspecies context the overlap of the output with databases describing regulatory variation 

should be considered. An example for the latter is the Genotype-Tissue Expression (GTEx) 

(Lonsdale et al., 2013) project which contains information on expression quantitative trait loci 

(eQTL), i.e. sites whose polymorphisms influence the expression of nearby genes. 

This also has implications for the diversity at missense sites between different populations of 

Homo sapiens. When extreme frequency differences between groups sampled for the 1000 

Genomes Project were considered, relatively few population-specific fixed sites were found  

(The 1000 Genomes Project Consortium, 2012). For continental groups, in this case Africa, 

Europe and East Asia, loci with a DAF difference of ≥ 0.9 included missense mutations in genes 

which had previously been detected as targets of geographically localised selection. These 

included SNPs in such well-known genes as DARC/ARCKR1 (malaria infection resistance in 

Sub-Saharan Africans, Oliveira et al., 2012, see section 1.4.4), SLC24A5 (light skin 

pigmentation in Europeans, Voight et al., 2006) and EDAR (influences multiple phenotypes 

among them scalp hair thickness and the number of eccrine sweat glands, the exact trait under 

selection is still contested, Kamberov et al., 2013; Sabeti et al., 2007).  Within different 

populations from the same continental group there was a small fraction of loci exhibiting DAF 

differences of ≥0.25. The group which was most distinct from other Europeans were the Finns.  

This highlights another important factor explaining differentiation in missense variants in 

modern human populations. In groups such as Ashkenazi Jews or the aforementioned Finns 

population-specific missense variants are among the causes for the elevated incidence of 

autosomal recessive disorders, e.g. Tay-Sachs disease (Kaback and Desnick, 2011). In both 

groups genetic drift, which has had more impact due to documented bottlenecks (Carmi et al., 

2014; Liu and Fu, 2015; Palo et al., 2009) and the subsequent small Ne, is likely the underlying 

cause. A detailed discussion on the differences in the overall number of missense mutations and 

those classified as deleterious is presented in section 1.6.4. 

Irrespective of the specific histories of modern human populations which can modulate them, 

the debate about the distribution of fitness effects (DFE) of de novo missense mutations is still 

ongoing. For example Zuk et al. (2014), who aimed at establishing an analytical framework for 
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rare variant association studies, assumed the respective impacts of missense mutations (based 

on the literature) to be as follows: 25% were thought to be strongly deleterious and 25% to be 

truly neutral, while the other half were classified as weakly deleterious.  

Further modelling work also suggests that this distribution is dynamic. Changes in Ne and the 

strength of environmental fluctuations were shown to be important factors (Razeto-Barry et al., 

2012). Empirical work investigating the DFE of missense (and other) mutations in well-studied 

genes in model organisms also indicates a strong dependence on the respective gene and stresses 

the role of complex phenomena such as epistasis which depend on the interaction of multiple 

mutations (Firnberg et al., 2014; Sarkisyan et al., 2016). 

It is still technically challenging to determine the fitness effects for all possible human missense 

mutations in an experimental setting. Therefore, bioinformatic classification approaches to 

estimate them (reviewed in section 1.6.3) are required. 

 

1.6.2 Nonsense variants: worldwide patterns and functional implications 

Nonsense mutations, while considerably rarer than missense mutations, are nevertheless of 

great evolutionary and medical importance as the most prominent cause for the loss of gene 

function. In a strict sense, these are mutations that result in the introduction of a premature stop 

codon into the genetic code. Recent genome-wide studies have adopted a broader definition of 

protein-truncating variants (PTV) or loss-of-function (LoF) variants (both terms are treated as 

interchangeable in the literature, LoF shall be used in this thesis).  

Besides nonsense variants, these also include short indels leading to a shift of the genetic 

reading frame and splice-site mutations where an exon with a count of nucleotides not divisible 

by three is skipped (Figure 1.9). While some studies (Narasimhan et al., 2016) focussed on 

these single position or only on small-scale changes, others also included larger deletions (>50 

bp) removing either the first exon or more than 50% of the protein-coding portion of the 

transcript (MacArthur et al., 2012). The truncated polypeptides resulting from these changes 

are often either non-functional or have phenotypically harmful properties. An important 

mechanism to prevent their accumulation is nonsense mediated mRNA decay (NMD) (Maquat, 

2004). Its typical targets contain termination codons positioned >50-55 nucleotides upstream 

of the last exon-exon boundary which has led to the formulation a somewhat heuristic 50/55 bp 

rule (Nagy and Maquat, 1998). 
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Figure 1.9: Overview of the genomic changes which can cause a loss of gene function. SNPs (A) or small 
frameshift indels (B) resulting from de-novo mutations can result in a codon which leads to the termination 
of translation. Large deletions (C) and SNPs affecting splicing patterns (D) can have similarly severe effects 
(adapted from Rivas et al., 2015). 

The master regulator of the molecular machinery underlying this process is thought to be UPF1, 

a protein with ATPase and helicase activities. However, UPF1 binding to the mRNA alone is 

not sufficient to initiate the decay of the molecule. Other specific factors, including UPF2 and 

UPF3 are required for the formation of an NMD-activating complex (reviewed by Lykke-

Andersen and Jensen, 2015 and Hug et al., 2016 ).  

Furthermore, there is increasing evidence that NMD also operates on mRNAs encoding full-

length proteins. It has been shown to play a role in the regulation of genes related to cellular 

stress (Karam et al., 2015) and the generation of mature T cells as part of the immune response 

(Weischenfeldt et al., 2008). These pathways require a tight regulation of NMD activity by 

buffering mechanisms dependent on the genetic and environmental context, which are only 

partly understood. 

This is underlined by the observation that not all transcripts containing LoFs that fulfil the 

50/55-bp rule are measurably affected by NMD. This has been demonstrated by two studies 

analysing tissue-specific RNA sequence data collected as part of the Geuvadis RNA-seq and 

GTEx projects together with high quality exomes for 421 and 173 individuals respectively. 

Rivas et al. (2015) found that 69.5% of rare nonsense variants for which NMD is expected 

exhibit allele-specific expression, i.e. lower mRNA levels compared to the haplotype 

Figure removed for copyright reasons. Copyright holder is the American Association for 
the Advancement of Science.  
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surrounding the respective locus without the nonsense mutation. Following up on this finding 

the GTEx Consortium (2015) showed that only 38.4% of all high quality LoF variants cause 

lower expression across all transcripts which include them. It was also highlighted that certain 

LoF sites only affect gene expression in a specific tissue. 

There are two more variant consequences that can lead to a loss of gene function and that shall 

be mentioned briefly here. Note that these are not included in most published surveys of LoF 

variants and will also not be further analysed in this thesis. The first are stop-lost variants where 

a mutation occurs in a triplet for a stop codon that is the ancestral type resulting in an elongated 

transcript. The second includes non-coding or synonymous variants that may affect mRNA 

stability. 

Many de novo LoF mutations are associated with disease in humans, e.g. cystic fibrosis, an 

autosomal recessive Mendelian disease characterised by multiple organ system dysfunction and 

severely reduced life expectancy.  

There is also some evidence that the total amount of rare LoF variants per genome might be a 

contributing risk factor for complex disease.  Bellenguez et al. (2017) analysed whole exomes 

from 3,052 individuals of French ancestry. The cohort contained cases of late onset Alzheimer’s 

disease (LOAD), early-onset Alzheimer’s disease (EOAD) and controls. They found that the 

combined loads of rare (<1% MAF) LoF and strictly deleterious (all applied prediction 

algorithms agreed on the deleterious status) variants in the TREM2, SORL1 and ABCA7 genes 

were significantly associated with EOAD. Each gene explains ca. 1.1-1.5% of the heritability 

for this form of Alzheimer’s. 

The most extreme instances of these mutations lead to embryonal lethality, which has been 

studied as a recessive phenotype in consanguineous families (Shamseldin et al., 2015). LoF 

mutations leading to total gene inactivation, which is the case for at least a part of all LoF 

variants in humans, should cause lethal phenotypes for a considerable fraction of human genes. 

This is supported by evidence from animal models: 30% of all mouse genes lead to a lethal 

phenotype if both copies are knocked out (Ayadi et al., 2012). 

However, there are also cases in which these mutations are neutral or evolutionarily 

advantageous. Olson (1999) proposed the “less-is-more“ hypothesis according to which gene 

loss can act as a plausible mechanism of adaptive change. For example, a truncated version of 

the CASP12 gene has been associated with higher resistance against severe sepsis (Xue et al., 
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2006; Yeretssian et al., 2009). This variant is almost fixed in non-Africans, which is thought to 

be the result of natural selection. Examples of much rarer beneficial LoF variation are two 

nonsense mutations in PCSK9 associated with lower LDL cholesterol plasma levels. They 

exhibit a combined heterozygote frequency of up to 6.9% in West Africans and are almost 

totally absent from all other worldwide populations (Cohen et al., 2005). Subsequently, drugs 

consisting of antibodies against the PCSK9 protein that mimic the physiological effect of these 

LoF variants have been developed. They are effective in reducing LDL cholesterol levels and 

cardiovascular mortality (Navarese et al., 2015). It is unclear if the inactivation of PCSK9 was 

evolutionarily beneficial because of some other effect, e.g. it might interfere with the lifecycle 

of the malaria parasite (Horton et al., 2007), or if these frequency patterns result from genetic 

drift.  

Before large-scale WGS datasets became available the most extensive survey of nonsense 

mutations comprised 805 SNPs genotyped in 1,151 individuals representing 56 worldwide 

populations (Yngvadottir et al., 2009). The main findings were that nonsense SNPs are on 

average under slightly purifying selection, while some cases of potentially advantageous 

variants were highlighted. Yngvadottir et al. furthermore observed 99 genes of which both 

copies were inactivated in at least one presumably phenotypically healthy individual, i.e. the 

LoF mutation was homozygous. 

MacArthur et al. (2012) conducted perhaps the most influential study in the field. They analysed 

185 low coverage genomes from four well-studied reference groups (CHB, CEU, JPT, YRI) 

generated in phase 1 of the 1000 Genomes Project. Using a broad definition of LoF (see above), 

which has since been widely adopted, the authors established a bioinformatic filtering pipeline 

and provided verification for every candidate site through additional genotyping assays. This 

resulted in a catalogue of 1,285 high-confidence LoF variants. The authors estimated that each 

human genome contains about ~100-120 genuine LoF-type variants, of which ~20 occur in a 

homozygous state (for a comparison to other studies see Table 1.2). In terms of the underlying 

frequency distribution MacArthur et al.'s (2012) results suggest that the majority of LoF 

variants found in an individual genome are common variants in nonessential genes. However, 

there are likely many LoF alleles with large fitness effects segregating at low frequencies in the 

human population, for which their study was underpowered due to the relatively low sample 

sizes. 
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Recently, large samples from individual populations have considerably extended the catalogue 

of genes that appear to be LoF-tolerant. Lim et al. (2014) extracted LoF information from ca.  

Table 1.2: Statistics on the average number of LoF variants overall and in homozygous state per genome 
compiled from a range of genome-wide studies. Unless explicitly stated otherwise, the term knockout gene 
is defined as a gene containing a LoF variant for which at least one phenotypically healthy individual from 
the respective dataset is homozygous. 

Source Count of LoF 
sites per 
individual  

Count of 
homozygous LoF 
per individual 

Total number of 
genes 
inactivated 
without severe 
effects  

1151 individuals genotyped for 805 
SNPs (Yngvadottir et al., 2009) 

32 (only 
nonsense in 
strict sense)  

14 99 

185 low coverage genomes from 
three major worldwide groups 
(MacArthur et al., 2012) 

CHB + JPT: 
103.5  
CEU: 103.9 
YRI: 121.5 

CHB + JPT: 24.3  
CEU: 22.5 
YRI: 21.7 

253 

2,636 whole genomes of Icelanders 
and imputation of sequence variants 
from 101,584 chip-genotyped 
individuals (Sulem et al., 2015) 

151.1 21.1 1,171 

3,222 exomes of Pakistanis living in 
Britain (Narasimhan et al., 2016) 

140.3 40.9 781 

2,504 individuals of diverse 
ancestries, mixture of exome and low 
coverage WGS data (The 1000 
Genomes Project Consortium, 2015) 
 
 

Africa: 182 
Americas 
(admixed): 
152 
East Asia: 153 
Europe: 149 
South Asia: 151 
(median values) 

NA NA 

300 individuals of diverse ancestries, 
high (43´ on average) coverage 
WGS data (Mallick et al., 2016) 
(only stop-gain and frameshift SNPs) 

136.9 NA NA 

60,706 exomes from different groups 
worldwide,  down sampled to 3000 
individuals per population  (Lek et 
al., 2016) 

Africa/African 
American: 
140.7 
Latino: 118.8 
East Asian: 124 
Finnish: 113.9 
European  
(non-Finnish): 
116.5 
South Asian: 
121.75 

Africa/African 
American: 
38.5 
Latino: 43.2 
East Asian: 42.9 
Finnish: 39.7 
European  
(non-Finnish): 39.8 
South Asian: 40.15 

10,374 (LoF-
tolerant based on 
a maximum-
likelihood 
classifier; the 
observed amount 
of truncating 
variation equals 
neutral 
expectations) 

3,000 Finnish exomes and compared these to the same number of non-Finnish European 

controls. They demonstrated that Finns have a relative excess of rare and low frequency 
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deleterious variants as well as more complete gene knockouts, which was interpreted as 

resulting from a population-specific bottleneck. With a similar design Sulem et al. (2015) 

analysed WGS data from 2,636 Icelanders while imputing more information into >100,000 

genotyped Icelandic individuals. Their most important finding was an expansion of the known 

rare variant spectrum, which showed that there are 1,171 genes which can contain homozygous 

LoF variants/“knockouts” in different individuals and still result in a generally healthy adult 

phenotype. Finally, Narasimhan et al. (2016) focussed on the exomes of 3222 British Pakistani 

individuals with high parental relatedness. Based on the observed deficit of homozygous 

knockouts they estimated an average load of 1.6 heterozygous recessive-lethal-equivalent LoF 

variants per adult. Where full health records were available, no correlation between the presence 

of a homozygous rare LoF variant and health status was found. The authors attributed this to a 

combination of reduced penetrance/mild phenotypes and technical issues such as alternative 

splicing or faulty genotype-phenotype associations. 

On a global scale, the presence of LoF-causing variation was assessed in phase 3 of the 1000 

Genomes Project (The 1000 Genomes Project Consortium, 2015). The excess of LoF sites in 

African genomes compared to non-African genomes was attributed to the generally higher 

African diversity, while non-Africans appeared to show very little differentiation. The ExAC 

project comprising > 60,000 exomes (see section 1.3.2) is the most extensive survey of protein-

coding variation in the human genome currently available. The authors classified genes 

according to the observed number of rare (MAF < 0.1%) LoF variants compared to a number 

expected from a sequence-context based mutational model. A total of 3,230 genes were 

classified as LoF-intolerant, of which 72% lacked any association with disease phenotypes, 

whereas 10,374 were identified as LoF-tolerant. Using a reduced subset consisting of 3,000 

individuals per subgroup the conclusions from earlier studies on differences in LoF burden 

across populations were replicated, which were however less pronounced for LoF-intolerant 

genes. 

Two aspects are worth highlighting from the review of the literature on this subject. Firstly, 

some regions of the world, such as Southeast Asia, Siberia and Oceania remain 

underrepresented in studies assessing LoF variation. Secondly, LoF variants alone are not 

sufficient to study potential interpopulation differences regarding the total load of potentially 

damaging variation and its phenotypic effects. Approaches assessing other exonic and ideally 



  

-71- 

 

also non-coding variation are needed to provide a more comprehensive picture of deleterious 

variation. 

 

1.6.3 The genetic load and methods predicting variant deleteriousness 

The theoretical concept of “genetic load” was defined by early genetic studies as the reduction 

of the evolutionary fitness of a population compared to a hypothetical comparative group with 

only the fittest genotypes (Haldane, 1937; Crow, 1958). One of the first empirical approaches 

to capture a fraction of this load by Morton et al. (1956) compared the mortality of the offspring 

of consanguineous marriages to those of non-related parents. From this the authors inferred the 

average number of mutations that would be lethal or lead to complete sterility if they occurred 

in a homozygous state as 3-5 per zygote, even though this particular number has been recently 

revised downwards to as low as 0.29 (Gao et al., 2015). 

Potentially deleterious variation is continually introduced into the gene pool due to de novo 

mutations. Their persistence depends on the intensity of drift and purifying selection. Both are 

related to Ne, generally speaking with higher Ne drift becomes less important to the spectrum of 

deleterious variants and the impact of selective forces increases as empirically shown, e.g. for 

different Drosophila species by Petit and Barbadilla (2009). Kimura et al. (1963) suggested that 

in the long term mildly deleterious alleles might have the strongest impact on the genetic load 

of a population. Compared to very deleterious alleles they remain in the population for much 

longer and can rise to high frequencies. 

To generate empirical estimates of the genetic load it is important to describe and analyse the 

phenomena contributing to it. In a recent review on the subject Henn et al. (2015) defined four 

components of the genetic load.   

Firstly, the mutation load which is the fraction of the genetic load due the reduction in fitness 

because of recent deleterious mutations. Secondly, the inbreeding load occurring when 

homozygous recessive deleterious alleles are present more frequently in the population than 

would be expected if the loci were in Hardy-Weinberg equilibrium. The final two components 

are the segregation and the transitory load. These concepts respectively refer to scenarios where 

both homozygotes for a specific genotype exhibit a lower fitness than the heterozygote or when 

environmental changes cause previously optimal allelic configurations to become suboptimal. 

The focus of the following paragraphs will be on the mutation and the inbreeding loads. Before 
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describing the analyses comparing the global distribution and properties of potentially 

deleterious site classes contributing to the genetic load it is important to consider which 

classification approaches are used to determine the fitness impact of a novel mutation. 

The latter are not only relevant for evolutionary analyses but have recently been shown to be 

potentially important in clinical practice. For one statistic, the CADD score (Kircher et al., 

2014), it was demonstrated that its scoring scale correlated very well with the pathogenicity 

classification made by experts for variants underlying a hereditary type of colorectal cancer 

(van der Velde et al., 2015). However, it should be cautioned that functional deleteriousness 

does not necessarily result in a clinical phenotype. This reduces the practical predictive value 

of these approaches that might also vary by genomic regions and disease mechanisms (Mather 

et al., 2016).  

Approaches to estimate variant deleteriousness can be subdivided into three categories. Firstly, 

there are methods using evolutionary conservation on the nucleotide level as a metric to identify 

regions where de novo mutations are most likely to have a disruptive impact such as GERP 

(Cooper, 2005) and PhyloP (Siepel et al., 2006). Another group of algorithms works on the 

protein level and assesses evolutionary conservation of amino acid sequences and/or the impact 

a particular missense mutation will have on protein conformation based on the properties of the 

amino acids involved. The widely used tools PolyPhen-2 (Adzhubei et al., 2010) and SIFT (Hu 

and Ng, 2012, 2013; Kumar et al., 2009; Ng and Henikoff, 2001) belong to this category. 

More recently, machine-learning approaches have been developed. They integrate a wide range 

of predictions from other tools and annotations from functional databases to generate a score 

for each SNP or small scale indel in the genome. The most prominent of these is the CADD 

score mentioned above. A more detailed, although far from exhaustive, list of variant 

annotations algorithms and their underlying methodologies can be found in Appendix A.1. 

Miosge et al. (2015) tested the accuracy of these inferences by a mutagenesis approach. They 

induced de novo mutations in 23 essential immunity genes in mice. Approximately 20% and 

15% of these de novo mutations inferred to be deleterious by the predictive tools PolyPhen-2 

and CADD respectively led to a measurable loss-of-function phenotype in homozygote 

individuals. A more detailed analysis of the protein encoded by the tumour suppressor gene 

TP53 revealed that ca. 50% of all deleterious mutations caused a clear reduction of its 

transcription-enhancing activity. The other deleterious mutations while having no impact on 
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this measurable phenotype were, however, still depleted in empirical data and therefore 

presumably under purifying selection. This study underlines that more experimental data from 

high-throughput mutagenesis approaches and specific human phenotyping are crucial to 

improve our ability to interpret the consequences of deleterious variation. This information then 

would be fed back into the training datasets used by machine-learning algorithms to improve 

their prediction accuracy. 

However, the in silico methods will always have limitations as demonstrated by the HGMD 

database which contains information on genetic variants related to human disease. Cooper et 

al. (2013) described the widely observed phenomenon of “reduced penetrance” where 

individuals with a disease-causing genotype do not exhibit any or only a few symptoms. Among 

the factors causing it are interindividual variation in gene expression patterns, copy number 

variations, the impact of adjacent sites and sex- or age-specific effects.  

Many of the novel annotation tools are reliant on training datasets which are necessarily 

imperfect for the reasons already mentioned. There is also some evidence for negative epistatic 

effects from model organisms, i.e. the viability decline with the accumulation of deleterious 

variation appears to be non-linear (Fry, 2004). Additionally, some methods have shown a 

reference bias meaning that polymorphisms at sites where the reference is derived are more 

likely to be called as benign (Simons et al., 2014). Finally, if we assume that classic selective 

sweeps took place at least at a small fraction of loci in recent human evolution some high-

frequency missense variants will be erroneously annotated as deleterious. 

 

1.6.4 Potential population differentiation in the genetic load 

The first systematic genome-wide study on the potential differences in the patterns of 

deleterious variation between human populations was conducted by Lohmueller et al. (2008). 

They presented exome data from 15 African and 20 European Americans and compared the 

ratios of heterozygous non-synonymous and homozygous non-synonymous genotypes between 

these groups. The main outcome was an excess of homozygous derived alleles at non-

synonymous sites and of damaging homozygous alleles at sites classified as probably damaging 

by PolyPhen in European Americans. Furthermore, the authors ran forward simulations of the 

population histories of the respective groups with a severe bottleneck for non-Africans and 

subsequent growth for both populations. A comparison between empirical and simulated 
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genetic data demonstrated that differences in population history can have a considerable effect 

on the patterns of deleterious variation observed. The authors hypothesised that this could be 

indicative of the lowered efficacy of purifying selection in non-Africans in the past. 

Peischl et al. (2013) explored the effect of particular demographic scenarios on deleterious 

variation, primarily of extreme drift at the front of the wave of population expansion occurring 

during serial founder events. They inferred an accumulation of deleterious variants and 

decreased mean fitness in groups at the periphery of an expansion wave vs those at the 

geographical centre using spatially explicit forward simulations. 

Fu et al. (2014b) replicated Lohmueller et al.'s (2008) results regarding the discrepancies of 

patterns of deleterious mutation between European Americans and African Americans on a 

sample of >6,500 individuals from the ESP (Exome Sequencing Project) (Tennessen et al., 

2012). Furthermore, they observed a significantly higher total number of derived deleterious 

(as indicated by PhyloP) alleles in the former. The alleles contributing to this excess were 

inferred by simulations to be mildly deleterious and often fixed in the population of European 

ancestry.  

Recently, Henn et al. (2016) generated high-coverage exome and medium-coverage WGS data 

from 54 individuals belonging to seven worldwide populations of the HGDP representing a 

more even coverage of worldwide genetic diversity compared to previous work. Using the 

GERP score they detected an increase in the number of putatively deleterious alleles in non-

African populations which was positively correlated with distance from Sub-Saharan Africa. 

This observation was much more pronounced for homozygous derived genotypes. However, 

the separation between populations was less clear for variants inferred to be highly deleterious, 

possibly indicating uniformly strong purifying selection. The authors observed a shift towards 

common variants in the deleterious spectrum in non-African populations and no excess of rare 

variants in the latter as reported by Casals et al. (2013) for the recently bottlenecked and 

expanded Quebecois vs French from France.  

The most likely reasons for this discrepancy (besides different time scales) are that the sample 

sizes in Henn et al.'s study from each population are very small (n = 7-8) so that the excess of 

rare and intermediate frequency variants cannot be distinguished and some of the groups 

sampled by them (Yakuts) have not undergone a recent expansion like many other Eurasians. 

They demonstrated that a simple 2D range expansion model to simulate genomic outcomes 
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represents a better fit to the empirical data than the output generated from a single bottleneck 

and subsequent population growth model. 

The above studies all found disparities in the number and/or frequency of deleterious mutations 

implying differences in the strength of selection and the resulting genetic loads. However, other 

studies arrived at fundamentally different conclusions. 

Simons et al., (2014) analysed the same dataset as Fu et al.(2014b) and demonstrated that if 

PolyPhen-2 was used to measure the deleteriousness of variants the number of deleterious 

derived alleles per individual was the same in African Americans and European Americans. 

They also ran simulations indicating that for additive mutations and sufficiently strong selection 

coefficients the load of deleterious alleles is not affected by bottleneck or population growth 

scenarios. This led the authors to conclude that an individual’s mutational burden is largely 

unaffected by demography. Do et al. (2015) reached similar outcomes mainly working on 

exomes from phase 1 of the 1000 Genomes Project and the ESP. They designed the new statistic 

RX/Y, which compares the sums of DAFs over a particular site class between different 

populations while using neutral variants as reference (see section 3.1.4). Using this approach, 

they found no measurable differences in the load of derived non-synonymous or putatively 

deleterious (measured by a reference-independent version of PolyPhen-2) alleles between a 

range of diverse African as well as non-African populations. Applying this method to simulated 

data generated from fitted West African and European demographic models supported this 

observation and confirmed Simons et al.'s (2014) statement that under an additive model there 

are no appreciable differences in the number of potentially deleterious derived alleles between 

different “superpopulations”. Their simulations also indicated that paradoxically selection 

might even be more effective in non-Africans insofar as it is measured as the rate at which non-

synonymous mutations are removed from the population. However, the effects of prior drift 

due to the bottleneck and novel mutations because of recent explosive population growth 

counteract this. 

Several authors have attempted to synthesise the apparently contradictory evidence presented 

above and to highlight the current gaps in our understanding of the subject  (Gravel, 2016; Henn 

et al., 2015; Lohmueller, 2014a). 

The first is how the genetic load should be calculated, as it cannot be directly measured but 

rather depends on parameters and assumptions in a population genetic model. These include 
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the underlying DFE for each mutation, which is currently unknown for humans and at least 

partly population-specific due to its relationship with environmental factors. Crucially, the 

genetic load also depends on the distribution of dominance coefficients h. Studies stating that 

the genetic load is not significantly different between modern human populations 

acknowledged that this only held true if all deleterious mutations were assumed to be additive, 

i.e. h = 0.5. Given that all studies using empirical data agreed that homozygous and 

heterozygous deleterious genotypes had population-specific distributions this assumption is 

crucial.  

When the genetic load was calculated assuming total (h = 0) or partial (h = 0.25) recessiveness 

there were significant differences between populations (Henn et al., 2015, 2016).  It is also 

important to keep in mind that a considerable fraction of loci are recessive. Antonarakis (2019) 

recently estimated that 9,000-10,000 protein-coding genes might be autosomal recessive for 

recognisable deleterious phenotypes extrapolating from known disease-associated genes and 

empirically observed patterns of mutation tolerance in the ExAC data (see sections 1.6.2 and 

1.6.3). This would imply that roughly half of all protein-coding genes could be considered 

recessive loci. Experimental approaches where mutations were induced and their potential 

phenotypic consequences measured indicated an inverse relationship between dominance and 

severity of novel mutations (Agrawal and Whitlock, 2011) and that the average dominance of 

mildly deleterious mutations across a panel of non-human species is ca. h = 0.25 (Manna et al., 

2011). Further evidence for this comes from mouse phenotyping efforts, e.g. Ayadi et al. (2012) 

found that a third of the mouse genes they surveyed were lethal if both copies were knocked 

out. Finally, many severe recessive genetic diseases, defined by their inclusion in new-born 

screening panels, are frequent enough that approximately half of all healthy individuals from 

the ESP dataset carried at least one risk allele in their exome (Tabor et al., 2014). 

Secondly, it matters how the “efficacy of selection” is described. This is a contentious point 

because there is currently no generally accepted definition of the term and it is debated how the 

non-equilibrium setting in which human populations evolve impacts the statistics used to 

measure it (Brandvain and Wright, 2016; Gravel, 2016). 

In conclusion, theoretical quantitative predictions about differential genetic load and the 

efficacy of selection require more reliable models of demographic history and the distributions 

of dominance and selection coefficients to improve their accuracy. From surveying empirical 

work on the subject it becomes clear that most analyses have focussed on some well-studied 
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reference populations (Henn et al., 2015) which has only very recently begun to change. 

Furthermore, most of these studies have used exome-sequencing data, which while containing 

the majority of all currently known disease-related and deleterious variants, is not a 

representative picture of full genetic diversity. 

 

1.7 Rare variants and their application to problems of past demography 

 

One of the main results of the first analyses of large-scale exome and WGS data, which were 

almost exclusively based on populations of European ancestry, was an excess of rare variants 

relative to older empirical studies and predictions derived from earlier models of population 

history (Coventry et al., 2010; Nelson et al., 2012; Tennessen et al., 2012). It has been 

demonstrated that this observation best fits a population history involving recent, exponential 

(Keinan and Clark, 2012), potentially even super-exponential (Reppell et al., 2014) growth 

starting < 5-10 kya (reviewed by Gao and Keinan, 2016). 

Similar patterns have been observed for the (West) African component of African American 

genomes (Chen et al., 2015; Tennessen et al., 2012). Originally, estimates for East Asian 

populations pointed towards more mild growth (Gravel et al., 2011), however these earlier 

studies predicted a similar trajectory for Europeans. Most likely this is because the low sample 

sizes previously available did not allow for the observation of very rare variants. Also, 

population estimates for China based on historical census data, while containing considerable 

uncertainties, indicate population sizes of ca. 40-70 million as early as 2 kya (Durand, 1960).  

The non-parametric PSMC and MSMC methods have recently been applied to a wide range of 

populations. By their nature they do not yield explicit estimates for growth rates, as opposed to 

the studies cited above that fitted models to summary statistics of population history, and their 

accuracy decreases for recent time frames. However, they can still indicate general trends, 

which mostly point towards recent growth for African and non-African groups with 

considerable intergroup variation ( Mallick et al., 2016; Romero-Hidalgo et al., 2017; Schiffels 

and Durbin, 2014). However, irrespective of population-specific histories, even in groups that 

experienced only moderate or no recent growth the majority of the SFS consists of rare variants. 

While there is no universally accepted definition of the term “rare” when applied to genetic 

variation, a commonly used threshold is a MAF of <1% or <0.1% in the total sample (Gao and 
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Keinan, 2016). Theoretical considerations imply that on average rare variants are younger than 

common variants (Kimura and Ohta, 1973) and in consequence particularly informative about 

recent population history. Therefore, rare variants should both improve the accuracy of existing 

approaches as well as allow for the development of new methodologies. 

O’Connor et al (2015) demonstrated that for population clusters that split recently rare variants 

have a higher cumulative information content than common variants. They supported this by 

simulations where the former had a higher accuracy for assigning individuals to FRAPPE 

clusters corresponding to their true ancestries based on population splits. Empirically, a PCA 

limited to rare variants highlighted a previously undetected sub-cluster in European American 

individuals from the ESP dataset, which likely reflects individuals of Ashkenazi Jewish 

ancestry. More generally, methods that rely on the accurate inference of local ancestry such as 

ChromoPainter/fineSTRUCTURE and approaches detecting genomic runs that are IBD 

(Browning and Browning, 2013) should benefit greatly from incorporating rare variation as the 

sharing of one or multiple such variants provides strong support for locally shared ancestry 

(Gao and Keinan, 2016). 

The 1000 Genomes Project Consortium (2012) defined variants present only twice in a 

heterozygous state in the whole dataset as f2 sites and analysed their sharing patterns across all 

populations assembled for phase 1 of the project. The main outcomes of this study and 

subsequent applications of this statistic (e.g. Genome of the Netherlands Consortium, 2014) 

confirmed theoretical expectation. The majority of all f2 variants were shared between 

individuals from the same population and elevated between-group sharing highlighted recent 

links consistent with hypotheses based on non-genetic evidence. 

Mathieson and McVean (2014) utilised the 1000 Genomes Project phase 1 dataset to develop 

an approach to estimate the lower age boundary of f2 variants from the age of f2 haplotypes. 

They defined the latter as a region where two chromosomes from different individuals in a 

dataset are each other’s closest genetic relative. To achieve this, they detected f2 haplotypes 

based on unphased genotypes from high coverage SNP arrays and WGS data using relatively 

permissive criteria. The ages of these were then estimated using a maximum likelihood 

approach formalising the intuition that older haplotypes should be shorter and carry more 

singletons. Simulations showed that while there was great uncertainty concerning the age 

estimate for each individual run collectively, they can be informative about demographic 

history, e.g. the median f2 haplotype age within Eurasian populations (50-160 generations) was 



  

-79- 

 

systematically lower than for internally shared runs in Africans (170-320 generations). In turn 

haplotypes shared across continents were much older than within. 

Another independent analysis of the same dataset (Al-Khudhair et al., 2015) introduced the 

related concept of very rare genetic variants (vrGVs) with a MAF threshold of 0.2% in the total 

dataset. Al-Khudhair et al. (2015) in concordance with earlier works found considerable 

variation in the per-individual vrGV counts between different populations. Furthermore, they 

showed that known close relatives from the 1000 Genomes Project share thousands of vrGVs 

and that in principle even a very simple counting method of vrGVs should be informative about 

more distant genetic relationships. A subsequent paper by the same group (Fedorova et al., 

2016) defined the concept of rare variant clusters (RVCs) consisting of five or more adjacent 

vrGVs. Sharing of RVCs between two or more individuals is very unlikely to result from 

coincidence and therefore indicative of IBD. The authors furthermore presented evidence that 

if rare variants were present in a region of the genome, they were able to detect at least a fraction 

of true very old short IBD segments.  

 
1.8 Aims and Objectives 

 

The main motivation for this thesis stems from the observation that the early studies on WGS 

datasets focussed on a limited subset of reference populations. To gain a more complete and 

granular understanding of the genomic history of our species, there is a need to better 

characterise genetic diversity in understudied regions, such as Island Southeast Asia and 

Siberia. This thesis contributes towards this goal in form of three studies. The first focusses on 

the population history of Southeast Asia, the second and third explore patterns of functional 

and rare variation in a worldwide genomic dataset. The literature on these subject areas has 

been reviewed in sections 1.5, 1.6 and 1.7 respectively and motivates the specific questions 

addressed in this work, which will be described in more detail in the following. 

For the first project, in order to refine the current understanding on the source of the 

Austronesian expansion and to further explore potential South Asian genetic contributions in 

MSEA and ISEA, high density (730K) SNP Chip data were generated for 196 individuals from 

10 populations. Of these, 50 from the Bajo and Lebbo populations are published already 

(Pierron et al., 2014) and 146 new (Burmese and Vietnamese from MSEA, Ilocano, Tagalog 

and Kankanaey from the Philippines, Murut, Malay and Dusun from ISEA plus four Australian 
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Aborigines). The newly generated dataset was merged with data from the literature and 

analysed with an emphasis on the following aspects. Firstly, the current knowledge on the 

putative source of the Austronesian expansion was re-examined. Secondly, the existence of 

signs of South Asian admixture in the newly available SEA populations was investigated. 

Finally, the extent to which signs of local adaptation are shared across local populations, as 

function of their common demographic history was determined. These results are presented in 

chapter 2. 

As part of an ongoing effort to improve our understanding of the patterns of genomic diversity 

in non-reference populations a set of 483 whole genomes, of which 379 were novel, known as 

the Estonian Biocentre Human Genome Diversity Panel (EGDP) was generated (data published 

in Clemente et al., 2014 and Pagani et al., 2016). The author of this thesis was a member of the 

consortium providing the first comprehensive analysis of this dataset.  

The second project is an investigation of the patterns of functional variation as well some 

measures of positive selection on a subset of the EGDP (n = 382) (see Appendix C.1 for 

samples, for details on the dataset see section 3.1.1). Particular attention will be given to the 

following aspects. Firstly, both the distribution of different classes of functional variants in non-

reference populations and the extent of sharing across regions will be examined. Secondly, 

using this more complete picture of genomic diversity, it will be investigated whether 

statements made about purifying selection based on reference data must be reassessed. In this 

context, the potential differential impact of purifying selection on various gene classes will also 

be examined. Finally, improvements to the present understanding of potential target loci of 

positive selection based on unbiased WGS data using variant-based approaches and integration 

with information from functional databases will be explored. 

The third project focusses on rare variant-based approaches, the EGDP dataset again represents 

an interest target as it consists of high-coverage full sequences and exhibits a broad 

geographical spread encompassing previously understudied regions of the world. Its main 

disadvantage for this type of analysis is the comparatively low number of individuals from any 

specific subpopulation. Therefore, the sharing of f2 variants in a subset of the EGDP designated 

as the Diversity Set (n = 447) (Appendix C.1, for more details on the dataset see section 3.1.1) 

will be analysed in chapter 4 with a focus on describing potential cryptic interpopulation-

relationships. 
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2. Insights into Southeast Asian population history from high coverage 

SNP data 

 

This chapter describes analyses of high-coverage genotype data from 196 individuals 

representing a variety of populations spread across Southeast Asia (SEA). This chapter’s 

content is based on a collaborative paper of which I was the first author. The text has been 

revised and expanded. 

 

Mörseburg A, Pagani L, Ricaut F-X, Yngvadottir B, Harney E, Castillo C...Metspalu M, 

Kivisild T. 2016. Multi-layered population structure in Island Southeast Asians. European 

Journal of Human Genetics 24:1605–1611. 

 

My contribution to this work builds on exploratory analyses by Dr Bryndis Yngvadottir 

(University of Cambridge) and Eadaoin Harney (University of Cambridge, present affiliation: 

Harvard University) who together with my supervisor Dr Toomas Kivisild first introduced me 

to the then unpublished dataset. I ran all analyses reported in this chapter unless explicitly stated 

otherwise and wrote the manuscript integrating comments and suggestions from my co-authors. 

The history of human settlement in SEA has been complex and involved several distinct 

dispersal events. Previous genetic studies of the region have distinguished at least three major 

ancestral components roughly corresponding to the predominant ancestries in the genomes of 

present-day Papuan-, Austro-Asiatic- and Austronesian-speaking populations (HUGO Pan-

Asian SNP Consortium et al., 2009; Lipson et al., 2014; Xu et al., 2012).  

The chapter is mainly motivated by three questions, the background of which is described 

below. They will be addressed under consideration of the novel data together with previously 

published datasets. 

1) A demographic event of great importance for Island SEA (ISEA) is the dispersal known as 

the Austronesian expansion. The current majority view in the field is that it began in Taiwan 

and spread across the ISEA region extending as far as Far Oceania and Madagascar. It is thought 

to be associated with the spread of the Austronesian languages and the Neolithic cultural 

complex (Bellwood, 2007; Spriggs, 2011). Therefore, Taiwanese aboriginals have been seen as 
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the best extant proxy for the source population giving rise to the Austronesian expansion. 

However, it is known that they have been subject to recent admixture from the Chinese 

mainland (HUGO Pan-Asian SNP Consortium et al., 2009). Several population groups in the 

Philippines and Indonesia are considered either to be direct descendants of the early 

Austronesian settlers or to derive the great majority of their ancestry from them. Some of these 

have been relatively isolated at least in historic times (for more details see Appendix B.1). 

Could these groups be the best living representatives for the Austronesian colonists and help us 

refine our knowledge of the early stages of the Austronesian expansion? 

2) There are multiple lines of evidence for South Asian influences in ISEA and Mainland SEA 

(MSEA) starting more than 2 kya. These manifest in the form of cultural and trading networks, 

which have been inferred from historical records as well as archaeological excavations (Ardika 

et al., 1997; Ardika and Bellwood, 1991; Lawler, 2014; Manguin et al., 2011) and are reinforced 

by linguistic data (Gonda, 1973; Hoogervorst, 2015).  Corresponding to the cultural exchange 

there is some indication of gene flow coming mainly from uniparental markers suggesting low 

but detectable levels of Indian ancestry throughout Indonesia (Chaubey and Endicott, 2013; 

Karafet et al., 2005, 2010; Kusuma et al., 2015) Do autosomal data support these findings of 

genomic signatures from South Asia in the region? 

3) A wide range of methods has been developed to scan genomes for traces of positive selection. 

The features examined can be allelic differentiation, the SFS or LD patterns. The measures 

themselves vary from simple summary statistics to more complex approaches based on 

maximum likelihood or machine-learning frameworks. There is an ongoing debate about the 

power of these tests to a) detect patterns resulting from true selective events and b) distinguish 

these from neutral processes, especially under non-equilibrium demographies (Pavlidis et al., 

2012; Jacobs et al., 2016; Xiang-Yu et al., 2016). Therefore, hypotheses concerning specific 

causal loci and populations should be formulated with great caution. These problems are 

exacerbated with SNP array data and when phenotypic information from the genotyped 

individuals is lacking, as is the case for the data presented here. In consequence, only the general 

sharing of outlier regions detected by selection statistics across SEA is examined. To what 

extent are the top signals from selection statistics common across Southeast Asia and how well 

does their similarity correlate with genetic distance measures? 
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2.1 Material and Methods 

 

2.1.1 Newly generated data and quality control 

The dataset this chapter focusses on consists of 196 individuals from 12 SEA (Figure 2.1 and 

Appendix B.2) and four individuals from one Australian population. DNA was extracted from 

saliva samples collected from healthy adult donors who signed an informed consent form. The 

field research to collect the samples was led by Dr Syafiq Abdullah (RIPAS Hospital, Brunei) 

(for the Dusun and Murut populations), Dr Francois-Xavier Ricaut (University of Toulouse) 

(Bajo, Lebbo) and Dr Toomas Kivisild together with Dr Joseph Wee (National Cancer Centre, 

Singapore) (Burmese, Kankanaey, Ilocano, Malay, Pangasinense, Tagalog, Vietnamese, 

Visayan). The study was approved by local Research Ethics Committees (SingHealth 

Centralised Institutional Review Board and the Medical and Health Research Ethics Committee 

of the National Cancer Centre, Brunei Darussalam), the Cambridge Ethics Committee 

(HBREC.2011.01) and the ERC Ethics Panel. All SEA samples were genotyped at Cambridge 

Genomic Services using Illumina OmniExpress Bead Chips for 730,525 SNPs. The data are 

accessible under the GEO accession number GSE77508. For the three Australian samples the 

Illumina Human 660K Quad Bead Chip yielded 655,215 SNPs, while for one Australian the 

610K version of the latter chip gave 616,795 variants. These four samples are available under 

the accession number EGAS00001001738 in the European Genome-phenome Archive. 

Data filtering and quality checks were performed using PLINK 1.07 (Purcell et al., 2007). 

Firstly, only autosomal SNPs with a genotyping success rate greater than 98% were included. 

PLINK was also utilised to detect all individuals from the same population more closely related 

than first cousins. This was done by estimating IBD iteratively within populations; individuals 

with an IBD > 0.125 were excluded from all analyses except the initial FST and Refined IBD 

approaches. Following these quality controls haplotypes were inferred from genotype data with 

SHAPEIT (Delaneau et al., 2013b). For all analyses presented in this chapter, unless explicitly 

stated otherwise, the four non-Kankanaey groups (Ilocano, Pangasinense, Tagalog, Visayan) 

from the Philippines are pooled as “Filipino” due to their low sample sizes and them all 

representing genetically similar urbanised lowland groups. 

All pre-processing was done by Dr Tiago Antão (University of Cambridge, present affiliation: 

Embark Veterinary). Furthermore, eight full mitochondrial Kankanaey genomes were  
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Figure 2.1: A map of Asia, highlighting the populations assessed in this chapter and showing all other sampling locations which were included in the ADMIXTURE analysis 
displayed in Figures 2.2-2.3. It is based on the HUGO Pan-Asian SNP Consortium (2009) population map. The population abbreviations for the Pan-Asia panel data are as 
follows:  AX-AM = Ami, AX-AT = Atayal, ID-AL = Alorese, ID-DY = Dayak, ID-JA = Javanese I, ID-JV =  Javanese II, ID-KR = Batak Karo, ID-LA = Lamaholot, ID-LE 
= Lembata, ID-ML = Malay (Indonesia), ID-MT = Mentawai, ID-RA = Manggarai I, ID-SB = Kambera, ID-SO = Manggarai II, ID-SU = Sundanese, ID-TB = Batak Toba, 
ID-TR = Toraja, IN-DR = Telugu, IN-EL = Bengali, IN-IL = Hindi (Upper Caste) I, IN-NL = Hindi (Upper Caste) II, IN-SP = Hindi (Upper Caste) III, IN-WI = Bhil, PI-AE 
= Aeta, PI-AG = Agta, PI-AT = Ati, PI-IR = Iraya, PI-MW = Mamanwa, SG-ID =  Tamil (Singapore). 
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sequenced by Complete Genomics (Mountain View, California, USA) using CG software 

version 2.4. Access to the sequences is provided under the GenBank accession numbers 

KU752558 to KU752565. 

 

2.1.2 Computational methodology 

To get a first overview of the data, the SEA 730k SNP dataset was merged with four reference 

populations from the HapMap 3 panel (Frazer et al., 2007) , the HGDP Papuans (Li et al., 2008) 

and individuals from diverse South Indian populations (Metspalu et al., 2011) to obtain a set of 

307,625 common SNPs. Runs of homozygosity (rOH) and average observed heterozygosity 

were obtained using PLINK default parameters. Pairwise FST was calculated using an ad hoc  

Perl script implementing an estimator for Wright’s formula (Wright, 1931).  

Furthermore, IBD scores were computed for all 22 autosomes (nSNP = 306,198) with the Refined 

IBD algorithm (Browning and Browning, 2013) after they had been separately phased using 

SHAPEIT2 (Delaneau et al., 2013b). For details on IBD calculation using Refined IBD (see 

Appendix B.3), note that for the published paper IBD had been calculated using PLINK (results 

can be found in Appendix B.6). All these analyses except the Refined IBD were run by Dr Luca 

Pagani (University of Cambridge, present affiliations: University of Padua and University of 

Tartu). 

ADMIXTURE analyses 

To address more specific questions regarding the ancestries of the SEA populations, two distinct 

ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011) analyses were run. A more 

detailed description of all samples can be found in Appendix B2. It lists the ethnic origins of 

the individuals, the number of genotyped markers, the literature source (if applicable) and 

whether the sample was included in either or both ADMIXTURE runs. 

For comparative purposes publicly available genotype data from the HapMap (International 

HapMap Consortium et al., 2007) , HDGP (Li et al., 2008) and the Pan-Asian Consortium 

(HUGO Pan-Asian SNP Consortium et al., 2009) projects were added to 185 individuals from 

nine SEA populations (the lowered total results from the removal of 11 close relatives). 

Additionally, SNP data from studies focussed on Indian populations were used (Chaubey et al., 

2011; Metspalu et al., 2011). This resulted in a dataset consisting of 1099 individuals. 
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For further verification of the inferences from the first ADMIXTURE analysis a second panel 

of 1010 samples was created, including 187 individuals from the nine SEA population and four 

Australian Aborigines. The minor discrepancies (185 vs 187) in the number of SEA individuals 

between the two ADMIXTURE analyses (see also Appendix B.2) can be explained by subtle 

differences in the pre-analysis filtering schemes. A detailed description of the merging and data 

curation for admixture can be found in Appendix B.4.The analyses on the verification panel 

were conducted by Dr Mait Metspalu (University of Tartu). 

Additional demographic analyses 

Ne for the nine SEA populations was estimated by analysing LD patterns with the NeON R 

package (Mezzavilla and Ghirotto, 2015). To further investigate genetic structure and gene flow 

between populations the TreeMix v1.1 software (Pickrell and Pritchard, 2012) was used. To 

measure how well the trees with different numbers of migration events reflect the relationship 

between population groups the fraction f of explained variance was calculated as described by 

the original authors of the method. MEGA v6.0.6 (Tamura et al., 2013) was used to create a 

graphic representation of the TreeMix output. For specific admixture events of interest 

suggested by the ADMIXTURE plots the respective sets of recipient and source populations 

were tested with the f3 test (Pickrell and Pritchard, 2012). The population trios yielding a z-

score smaller than -2 were considered significantly admixed. ALDER v1.03  was used to 

examine LD patterns potentially resulting from admixture with weighted LD curves and to date 

these putative admixture events (Loh et al., 2013). Furthermore, the f4 ratio test (Moorjani et 

al., 2011) was applied to obtain a quantitative estimate of admixture percentages of interest.  

For the analysis of the mtDNA data the haplogroup affiliation of each sample was assigned 

using HaploGrep 2.0 (Kloss-Brandstätter et al., 2011) and PhyloTree build 16 (as of 

19/02/2014) (http://www.phylotree.org) (van Oven and Kayser, 2009). The variants are 

described relative to the rCRS (GenBank Accession Number NC_012920.10) (Andrews et al., 

1999). 

Selection tests 

To capture haplotype homozygosity based signals the Integrated Haplotype Score (iHS) 

(Voight et al., 2006) and Cross Population Extended Haplotype Homozygosity (XP-EHH) 

(Sabeti et al., 2007) tests were used. Furthermore, the allele frequency-based Population Branch 
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Statistic (PBS) was calculated (Yi et al., 2010). Details on the implementation of selection tests 

can be found in Appendix B.5. 

 

2.2 Results 

 

2.2.1 FST and interpopulation Refined IBD-sharing 

The mean average pairwise FST (Table 2.1) between the SEA groups described in this chapter 

is 0.020 with the lowest differentiation observed between the Bornean Murut and the 

Vietnamese (FST = 0.014) and the greatest difference exhibited by the Kankanaey from the 

Philippines and the Vietnamese (FST = 0.026). In an interregional comparison the East Asian 

groups are about as different from the SEA populations (average FST = 0.021) as the latter are 

from each other. This finding underlines the shared ancestry of the Chinese/Japanese and SEA 

groups. Furthermore, it indicates that the SEA populations exhibit considerable heterogeneity 

and do not form a tight cluster. 

Relative to other macro-groups the SEA populations are somewhat closer to South Indians 

(average FST = 0.042) than to Western Europeans (average FST = 0.057) and less distant from 

Oceanians (Papuans) (average FST = 0.085) than from West Africans (average FST = 0.090). The 

relatively shorter genetic distances to the South Indians and the Papuans indicate either more 

recent population splits and/or subsequent gene flow, e.g. due to admixture events (the latter 

possibility is explored in detail in sections 2.2.2 and 2.2.4). 

On average the mean rate of IBD sharing between any pair of SEA populations is 4.4*10-3 

(Table 2.1).  The highest IBD sharing values were obtained for the composite Filipino group 

and the Lebbo from Borneo at 0.0278 and the Kankanaey and the Dusun at 0.0192. The former 

value is partly driven by four individuals (Luz1, Luz4, lebbo5 and lebbo19) whose average 

cross-population IBD is 0.2791, comparable to second-degree relatives. It cannot be stated 

definitely whether this reflects a real biological relationship or as is more likely, an artefact, 

especially given the relatively low marker densities and confounding background relatedness. 

However, even if these individuals are removed the IBD sharing between the Filipinos and the 

Lebbo remains the highest for all interpopulation comparisons at 0.0210. 

On a more general level, the Austronesian speakers from ISEA exhibit elevated levels of IBD 

sharing with each other and also with the Burmese. Notably, the Vietnamese (average IBD =. 
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Table 2.1: Pairwise Refined IBD and FST values of SEA populations together with a set of reference populations. 
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Bajo   0.016 0.057 0.02 0.017 0.021 0.023 0.023 0.022 0.019 0.019 0.078 0.041 0.022 0.089 

Burmese 0.0088   0.056 0.022 0.018 0.023 0.024 0.025 0.024 0.021 0.021 0.075 0.041 0.024 0.088 

CEU 0 0   0.053 0.055 0.061 0.065 0.055 0.063 0.059 0.048 0.091 0.027 0.052 0.073 

CHB 0.0003 0.0003 0   0.018 0.019 0.023 0.009 0.023 0.019 0.014 0.084 0.038 0.014 0.086 

Dusun 0.0038 0.0034 0.0001 0.0003   0.019 0.015 0.022 0.02 0.017 0.017 0.085 0.039 0.02 0.088 

Filipino 0.0034 0.0026 0 0.0004 0.0032   0.023 0.023 0.015 0.016 0.019 0.091 0.046 0.02 0.094 

Kankanaey 0.0044 0.0041 0 0.0004 0.0192 0.0039   0.026 0.022 0.02 0.024 0.095 0.05 0.026 0.097 

JPT 0.0002 0.0002 0 0.0007 0.0002 0.0002 0.0002   0.027 0.023 0.017 0.086 0.037 0.018 0.088 

Lebbo 0.0048 0.0040 0 0.0003 0.0045 0.0278 0.0056 0.0002   0.019 0.022 0.093 0.048 0.025 0.096 

Malay 0.0043 0.0037 0 0.0003 0.0042 0.0094 0.0054 0.0002 0.0068   0.017 0.088 0.043 0.02 0.092 

Murut 0.0019 0.0014 0.0001 0.0005 0.0022 0.0017 0.0017 0.0003 0.0020 0.0019   0.079 0.032 0.014 0.083 

Papuans 0.0012 0.0014 0 0 0.0002 0.0001 0.0001 0 0.0002 0.0002 0.0001   0.078 0.083 0.118 

South Indian 0.0001 0.0001 0.0006 0 0.0001 0 0 0 0 0.0001 0.0002 0.0001   0.037 0.068 

Vietnamese 0.0009 0.0007 0.0001 0.0006 0.0009 0.0010 0.0005 0.0004 0.0008 0.0009 0.0011 0 0.0002   0.087 

YRI 0 0 0 0 0 0 0 0 0 0 0 0 0 0   



 

-89- 

 

9*10-4) and the Murut (average IBD = 1.7*10-3) are more distant from other groups. For the 

Vietnamese, an MSEA population, this conceivably reflects a lack of recent shared ancestry. 

It is intriguing that the Murut are notably different from the Dusun, a neighbouring population 

from northern Borneo, which is thought to be closely related. The SEA populations have an 

average IBD sharing of 4*10-4 with the Papuans. This is mainly driven by the Bajo (IBD = 

0.0012) and the Burmese (IBD = 0.0014) and could be suggestive of recent gene flow. 

The sharing of the SEA pops with East Asians is on average somewhat lower at ca. 3*10-4 

with the highest values exhibited by the Vietnamese. With regards to the hypothetical South 

Asian genetic impact in the SEA region there is an average IBD-sharing of 1*10-4 between 

South Indians and individuals from SEA groups with slightly elevated values in the Bajo, 

Burmese, Dusun, Murut and Malays and most likely related traces of European affinities in 

the Dusun, Murut and Vietnamese. Using an IBD threshold of 1*10-4 there is no detectable 

sharing of SEA groups with West Africans. Compared to the FST, the IBD values indicate a 

more coherent clustering of SEA groups which is indicative of recent shared ancestry with 

each other, particularly relative to East Asian groups from whom they are not distinguishable 

by the FST. 

Potential relationships between populations that can be hypothesised based on FST and IBD 

will be explored in more detail in the following section. FST is a relatively crude summary 

statistic and can only be interpreted as a very general measure of population differentiation 

resulting from neutral processes over large time scales, mainly drift and gene flow. 

 

2.2.2 ADMIXTURE analyses 

To further investigate general patterns of population structure in the SEA data two distinct 

ADMIXTURE analyses were performed. The first was mainly focussed on populations from 

SEA and South Asia while the second provided the context of a broader, worldwide genetic 

landscape and additional validation for inferences from the first analysis.  

According to the cross-validation scores for both analyses K = 9 admixture fractions provide 

the best fit (for the local plot additional Ks are provided in Figure 2.3, for the global plot Ks 

from 3 to 15 are shown in Figure 2.4). The ADMIXTURE analyses of the newly generated 

data recapitulate the main ancestral components associated with Austronesian (k6), Austro-

Asiatic (k5) and Papuan (k3) populations (Figures 2.2-2.3) described in the area by previous 

studies (Xu et al., 2012; Lipson et al., 2014). At lower K values the component associated with 

the Papuans is highly prevalent in Eastern Indonesia and the Mamanwa (a Negrito group from 
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the Philippines). However, from the groups displayed in Figure 2.2 at higher Ks it continues 

to persist only in the Alorese and Bajo from Indonesia (Figure 2.2B, Figure 2.3). 

Burmese and Vietnamese exhibit significant proportions of the k2 component indicating 

shared ancestry with East Asian populations. The k4 component  associated with South Asian 

ancestry is also consistently visible in Burmese and Malays and some Indonesian populations, 

mainly the Batak of Sumatra (HUGO Pan-Asian SNP Consortium et al., 2009). However, at 

lower Ks this component is also present in the Javanese and the Mamanwa Negritos,  

 
Figure 2.2: (A) A map of Southeast Asia, displaying a subset of populations assessed in this study and the 

distribution of ancestry components based on the local ADMIXTURE  run with the optimal number of 
ancestry components (K = 9). The figure legend on the lower left section shows the list of genetic ancestry 

components whose colour codes correspond to those on the pie charts. Components k8 and k9 are mainly 

present in the Yoruba and Ati Negritos respectively and do not significantly contribute to the genetic 

diversity of the groups displayed in Figure 2.2 and are, therefore, not shown. 

The population abbreviations are as follows: Alo-Alorese, Baj-Bajo, Bat-Batak, Bru-Brunei (Dusun, 

Murut), Bur- Burmese, CHB-Chinese from Beijing, Jav-Javanese, Kan-Kankanaey Igorot, Leb-Lebbo, 

Mal-Malay, Mam-Mamanwa Negritos, Men-Mentawai, Mun-Mundari, NIn-North Indians, Pap-Papuans, 

PhU-Philippine Urban, SIn-South Indians, Taw-Ami and Atayal from Taiwan, Viet-Vietnamese. 

The symbols next to the population names reflect the linguistic affiliations. Austro-Asiatic languages: 

circle, Austronesian languages: asterisk, Indo-European languages: square, Dravidian languages: hash, 

Papuan languages: cross, Tibeto-Burman languages: caret. 
(B) Three graphs showing the proportions of ancestry components k3, k4 and k6 from their emergence as 

independent components in the Papuans (k3, red), Indian populations (k4, green) and the Kankanaey 

Igorot (k6, brown) across multiple higher K values. All populations displayed show a percentage of at least 

5% of the respective ancestry when it is first detected as a distinct component.
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Figure 2.3: ADMIXTURE plot (K = 2-10) based on a panel of regional populations mainly from SEA. For population abbreviations for groups from the Pan-Asia panel data 
see the legend for Figure 2.1. 
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Figure 2.4: ADMIXTURE plot (K = 3-15) including a panel of worldwide populations. Six populations explicitly labelled, these include SEA groups analysed here and 
mentioned in the text, namely Baj, Bur, Kan, Mal – for population abbreviations see the legend of figure 2.1. and the Antemoro (Ant) and Cambodians (Cam). 
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suggesting affinities which, however, decline with higher Ks (Figure 2.2B, Figure 2.3).  

Notably, in the extended worldwide analysis (Figure 2.4) the Papuan-related component (red) 

in the Bajo and the South Asian signal (green) in the Burmese and Malays were also clearly 

detectable. The SEA groups described here exhibit a remarkable diversity from very 

heterogeneous groups such as the Malays to the Kankanaey who appear homogenous in their 

ancestry composition by the ADMIXTURE analyses (Figure 2.2B, Figure 2.3). The Kankanaey 

are an indigenous population of northern Luzon, belonging to the broader “Igorot” group. At K 

= 9, the majority of Kankanaey ancestry is in the k6 component, which they share with the Ami 

(AX-AM) and Atayal (AX-AT) from Taiwan and, hence, is putatively associated with the 

Austronesian expansion (Figure 2.2A, Figure 2.3).  

When it emerges as distinct from the other Asian components, the k6 ancestry is spread 

throughout ISEA and remains stable in all these groups from K = 8-10 (Figure 2.2B, Figure 

2.3). Remarkably in the regional admixture plots the Kankanaey remain unadmixed throughout 

all Ks from 2-10, even though at lower Ks they do not yet have their own distinct component. 

These findings are consistent with the Kankanaey’s geographic location, the Mountain Province 

in the Northern Philippines (Figures 2.1-2.2) close to Taiwan, the likely homeland of the 

Austronesian peoples (Bellwood, 2007; Lipson et al., 2014). 

 

2.2.3 Patterns of homozygosity, LD and reconstruction of Ne 

Table 2.2: Summary statistics for each of the nine SEA populations along with a set of reference populations. 
Given are sample size (N), average amount of genome covered by runs of homozygosity (rOH), average 
number of rOH >1Mbp, average heterozygosity (Het) and average within-population IBD. 

Population N Average genome in 
rOH (Mbp) 

Average N of rOH 
> 1Mbp 

Het Average within- 
population IBD 

Bajo 32 119.53 28 0.291 0.0338 
Burmese 20 97.87 15 0.299 0.0249 
CEU 86 85.18 5 0.325 0.0059 
CHB 80 81.76 5 0.298 0.0010 
Dusun 22 66.17 22 0.296 0.0139 
Filipino 16 93.97 17 0.294 0.0164 
Kankanaey 22 96.54 34 0.284 0.0392 
JPT 86 86.62 7 0.297 0.0042 
Lebbo 18 72.24 23 0.291 0.0383 
Malay 25 113.63 22 0.29 0.0234 
Murut 23 65.92 6 0.308 0.0057 
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Population N Average genome in 
rOH (Mbp) 

Average N of rOH 
> 1Mbp 

Het Average within- 
population IBD 

Papuans 17 97.63 42 0.24 0.0455 
South 
Indian 

40 88.42 19 0.314 0.0049 

Vietnamese 18 48.05 4 0.306 0.0013 
YRI 94 82.78 6 0.307 0.0082 

IBD and related measures can also be used to characterise the general amount of inbreeding 

throughout the SEA populations. The four statistics in Table 2.2 describe related aspects of 

intrapopulation homozygosity. 

 
Figure 2.5: Plot of Ne over time for nine SEA populations estimated from LD. The red line describing the 
Kankanaey is thickened and surrounded by confidence intervals (dotted lines). The latter are the 5th and 
95th percentiles of the distribution of Ne obtained from all bins (the bins contain pairs of markers by 
different recombination distances) across all chromosomes. 

Generally, the Murut and the Vietnamese appear to be the most outbred groups whereas some 

of the Austronesian-speaking ISEA groups, notably the Bajo, Kankanaey and Lebbo exhibit 
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relatively elevated intra-group sharing. However, it should be cautioned that given the small 

sample sizes for the SEA groups (16-32 individuals), relative oversampling of a particular 

subpopulation can skew these measures.  

With regards to the unusually homogeneous ancestry observed for the Kankanaey in the 

ADMIXTURE analyses these results demonstrate that they are comparable to other ISEA 

populations and that this pattern cannot solely have been caused by extreme inbreeding and/or 

genetic drift. 

To further explore the potential effect of demographic history on population structure the Ne of 

the nine SEA populations presented here was estimated based on the development of LD 

patterns over time (Figure 2.5) (Mezzavilla and Ghirotto, 2015). The mainland Burmese and 

Vietnamese groups exhibit comparatively high Ne values and signs of recent expansion. This is 

also in line with their recent history of admixture with neighbouring populations, whereas there 

is more variation in the ISEA populations. Notably, the Kankanaey have one of the lowest 

values oscillating between 2,000 and 3,000 (6,000-27,000 kya). However, they are not an 

extreme outlier and are comparable to the Lebbo from Borneo (Mann–Whitney U test, p = 

0.7938), who instead do not show such a homogeneous ADMIXTURE profile. Under the 

assumption that the brown k6 component reflects ancestry connected to the Austronesian 

expansion, the Kankanaey displayed a higher percentage than even Austronesian Taiwanese 

populations (AX-AT, AX-AM, Figures 2.2-2.3). 

 

2.2.4 Admixture events detected and dated with f3, f4 and ALDER tests 

While the Kankanaey exhibit a homogeneous ancestry profile when ADMIXTURE is applied, 

the method by itself is not a formal test for the absence of admixture. The f3 method (Reich et 

al., 2009) considers the correlations of allele frequencies between groups (see section 1.3.3) to 

yield such a statistic, contingent on the magnitude of admixture fractions and other parameters 

(see section 4.3.2) . It shows that the Kankanaey cannot be modelled as any kind of mixture of 

pairs from 45 populations (Appendix B.8).   

The notion that they are potentially a good proxy for the source group of the Austronesian 

expansion is supported by the ancestry composition of the Bajo, Filipino and Malays according 

to the f3. The statistic describes their ancestry as being consistent with a mixture of the 

Kankanaey with either Papuans and/or an older local Asian substrate. The latter is here called 
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“Austroasiatic” even though populations like the Javanese, where it is the majority component, 

are today culturally and linguistically Austronesian (see section 2.3.3). The attempt to date these 

admixture events using ALDER (Loh et al., 2013) highlighted a clear admixture pattern 

between a “Kankanaey-like” people and earlier substrates, dated to at least 2.2 kya in the Bajo 

(Table 2.3). The emerging picture from f3,ALDER and ADMIXTURE seems to be compatible 

with a scenario of local “Austroasiatic” and Papuan components influenced by the incoming 

Austronesian (brown k6, Figures 2.2-2.3) wave 4-3 kya which originated from a population 

living in Taiwan and, perhaps, in the North Philippines (Lipson et al., 2014). 

f3 together with ALDER was also used to further contextualise the potential South Asian 

connections of some SEA groups. Both statistics (Table 2.3) suggest the presence of variable 

degrees of South Asian-related ancestry in the MSEA and ISEA populations (Bajo, Burmese, 

Filipino and Malay). Assuming a generation time of 30 years (Fenner, 2005) the earliest 

possible midpoint of the South Asian admixture is estimated at 2.4 kya. The overall proportion 

of South Asian ancestry was further estimated by applying the f4 statistic (Moorjani et al., 2011) 

(Table 2.4) according to the tree presented in Figure 2.6. 

The estimated values were 24.9% for the Burmese, 8.3% for the Malays and 5.3% for the Bajo. 

One limitation of this approach is its dependence on shared genetic drift. As the Papuans and 

South Indians have a similar position in the phylogenetic tree relative to the other groups, 

Papuan ancestry could be mistaken as South Indian. This has probably no effect in the Burmese 

and Malay, who do not show Papuan admixture as inferred from ADMIXTURE (Figure 2.2A, 

Figure 2.3) but could contribute to the South Indian ancestry detected in the Bajo. 
Table 2.3: ALDER admixture dates of newly typed populations. Admixture dates for combinations of 
Javanese (ID-JA), Kankanaey, South Asians and Papuans were reported only when the f3 statistic yielded 
significant z-scores (Z <= -2). Tests involving ID-JA as source population were run on 12k SNPs, while the 
remaining tests were run on the higher resolution 300k SNPs dataset. Standard errors (SE) estimated from 
a jackknifing procedure over the 22 autosomes are given. “na” denotes combinations of populations where 
a one-reference and/or a two-reference ALDER exponential decay could not be fit to the LD patterns, i.e. 
the latter do not resemble patterns expected under admixture LD. 

Recipient Source1 Source2 f3  z-score ALDER Date 
(generations)+/SE 

years+/SE 

Filipino Kankanaey ID-JA -4.1 35+/-17 1050+/-510 
Malay Kankanaey ID-JA -2.8 Na Na 
Bajo Papuan ID-JA -14.1 61+/-10 1830+/-300 
Malay Papuan ID-JA -7.4 12+/-7 360+/-210 
Burmese South Indian ID-JA -13.1 49+/-5 1470+/-150 
Malay South Indian ID-JA -11.6 36+/-13 1080+/-390 
Bajo Papuan Kankanaey -18.5 62+/-10 1860+/-300 
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Figure 2.6: Proposed phylogenetic relationship between populations analysed with the f4 test. 

True Indian ancestry in this population still seems conceivable given the presence  of South 

Asian lineages in uniparental marker analyses (Kusuma et al., 2015). Taken together, these 

analyses indicate a South-Asian related component in the genetic make-up of at least some SEA 

groups which entered their gene pool as early as 2.4 kya, being supported by ADMIXTURE, f3 

and f4 analyses for the Burmese and the Malay and by f-statistics for the Bajo (f3, f4) and the 

lowland Filipinos (f3). 

Table 2.4: Proportion of South-Indian related ancestry inferred using the f4 ratio statistic. 

Population South-Indian-related ancestry 
Burmese ~24.90% 
Malay ~8.30% 
Bajo ~5.30% 
Vietnamese ~0% (f4 ratio -0.060) 
Lebbo ~0% (f4 ratio of -0.117) 
Filipino ~0% (f4 ratio of -0.143) 
Dusun ~0% (f4 ratio -0.180) 
Murut ~0% (f4 ratio of -0.208) 
Kankanaey ~0% (f4 ratio -0.324) 

 

Recipient Source1 Source2 f3  z-score ALDER Date 
(generations)+/SE 

years+/SE 

Burmese Papuan Kankanaey -2.2 52+/-4 1560+/-120 
Filipino Papuan Kankanaey -6.5 Na Na 
Malay Papuan Kankanaey -6.3 58+/-10 1740+/-300 
Bajo South Indian Kankanaey -4.8 66+/-14 1980+/-420 
Burmese South Indian Kankanaey -14.0 53+/-6 1590+/-180 
Filipino South Indian Kankanaey -10.4 Na Na 
Malay South Indian Kankanaey -10.8 45+/-12 1350+/-360 
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2.2.5 Inference of tree topologies and mixtures with TreeMix 

TreeMix (Pickrell and Pritchard, 2012) was applied to estimate admixture in context of an 

explicitly reconstructed tree of the SEA populations. Four migration events were incorporated 

into the inferred tree as the amount of variation of allele frequency patterns explained reached 

a first local maximum at this stage (Appendix B.7B). The general relationships outlined by the 

TreeMix graph (Figure 2.7) mostly recapitulate the population splits inferred from other global 

datasets (Li et al., 2008; Pickrell and Pritchard, 2012; Mallick et al., 2016).  

 

The nine novel SEA groups form a cluster with the Han Chinese and ISEA groups from the 

Pan-Asia panel. The affinity of the Kankanaey to the Taiwanese aboriginals is supported by 

them forming a distinct subclade in this cluster. Of note are the Philippine Negrito groups whose 

ancestry to varying degrees consists of a very distinct component, which branches off and here 

clusters with the Papuans, and sources closer to other ISEA groups (see also Migliano et al., 

2013). 

Another gene flow event already highlighted by the ADMIXTURE analyses (Figures 2.2-2.4) 

is from a source close to the basal split of East and West Eurasians into the Burmese. As inferred 

with other approaches it is most likely South Asian. Finally, the Papuan component in the Bajo 

could be confirmed. It should be noted that the relatively low marker density (nSNPs = 9,808), 

due to the reduced overlap of several datasets, limits the power of TreeMix. Furthermore, for 

datasets with complex population relationships there are often multiple graphs which are 

equally compatible with the data (Pickrell and Pritchard, 2012).  
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Figure 2.7: TreeMix analysis involving 25 populations. Four migration edges (indicated by arrows) were allowed. The pie charts describe the admixture proportions for 
populations resulting from inferred migration events with the branches who are the closest matches to the putative admixture sources coloured accordingly. The Kankanaey 
cluster most closely with the Taiwanese aboriginals and that there is no detectable gene flow from other populations to them.
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2.2.6 Mitochondrial DNA lineages in the Kankanaey Igorot 

The affinities of the Kankanaey with the Ami and Atayal from Taiwan and their potential role 

as a good proxy for the Austronesian expansion are further highlighted when analysing 

uniparental markers. The eight available Kankanaey mtDNA sequences (Appendix B.9) exhibit 

lineages (B4a1a;M7b1a2a1) which are typical markers of Malayo-Polynesian speaking 

populations (Trejaut et al., 2005; Soares et al., 2011). Taken together, the evidence from this 

approach and ADMIXTURE, f3 and TreeMix on autosomal data suggests that the Kankanaey 

could potentially represent an unadmixed remnant population close to the source that may have 

given rise to the Austronesian expansion. 

 

2.2.7 Selection signal sharing compared to overall genomic distance 

As an additional tool to explore relationships among populations patterns of haplotype 

homozygosity and allelic differentiation were examined using the test statistics IHS (Voight et 

al., 2006),  XP-EHH (Sabeti et al., 2007), and PBS (Yi et al., 2010) (windows with population-  

 

Figure 2.8: Relationship between FST and selection signal sharing. The proportion of 200-kb windows that 
were detected as 1% selection outliers in one population and also found in the 5% of signals in the other 
population is shown for the iHS (red dots) and the XP-EHH (black dots). Linear regression lines were fitted 
to the data, the respective coefficients of determination are shown. 
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specific top hits for all tests can be found in Appendices B.10A-B.10C). The focus here is not 

on specific putative selection signals, but rather on signal sharing, which is defined as follows 

for the haplotype homozygosity statistics iHS and XP-EHH. A shared signal is one that falls in 

the 1% selection outliers of the test for one population and is also found in the top 5% of signals 

in other population(s). For the iHS the amount of signal sharing between two groups is not 

significantly correlated (r = -0.2033, p = 0.2344) to overall genetic similarity as expressed by 

FST (Figure 2.8, underlying data in Appendix B.11). However, the MSEA groups and the Han 

Chinese (included as a reference) who share a considerable proportion of East-Asian ancestry 

(Figure 2.2A, Figure 2.3) also show a great affinity to each other regarding haplotype 

homozygosity patterns (Appendix B.11A). In ISEA, those groups with at least three significant 

ancestry components at K = 9 (Bajo, Filipino, Malay, Figure 2.2A) exhibit more signal sharing. 

In contrast, Kankanaey, Lebbo and Murut show reduced sharing with all other populations, 

which perhaps highlights phenomena of deep population splits and separate demographic 

histories in recent times when the haplotype homozygosities have accumulated. However, these 

inferences are highly dependent upon the approach utilised.  

A different picture presents itself for the XP-EHH, which considers both haplotype 

homozygosity and allelic differentiation, with the Han Chinese used as outgroup. The average 

fraction of signal sharing declines from 0.31 to 0.22, while the correlation with FST becomes 

significant (r = -0.5071, p =0.0016) (Figure 2.8).  

This is probably because signals connected to shared ancestry with East Asians are excluded. 

As a result, the Burmese, who exhibit a large fraction of the k2 East Asian-related component 

(Figure 2.2A, Figure 2.3) become an outlier with respect to the uniqueness of their top 1% XP-

EHH signals, only 15% of which are shared with other groups on average (Appendix B.11B). 
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2.3 Discussion 

 
2.3.1 New insights into the dynamics of the Austronesian expansion 

In this chapter the Kankanaey from the northern Philippines were identified as the population 

harbouring the highest proportion of the Austronesian genomic component, even higher than 

the ones detectable in modern aboriginal Taiwanese (Figure 2.2A, Figure 2.3). This conclusion 

rests on evidence from several independent analyses including ADMIXTURE, f3, rOH, 

reconstructed Ne, TreeMix and uniparental markers.  

The Kankanaey belong to the broader group of populations collectively known as Igorot 

(Appendix B.1). Various studies exist on the Kankanaey language (Allen, 2014) and customs 

(Kohnen, 1986), although works on their prehistory are lacking. Genetic data from 30 

Kankanaey-speakers were included in a study of mtDNA haplotype diversity in the Philippines 

(Delfin et al., 2014). They were shown to share many lineages with two other Igorot groups 

(Ibaloi and Ifugao) from Northern Luzon. These results are broadly consistent with the 

uniparental data presented here (Appendix B.9), where the Kankanaey show haplotypes also 

found in Taiwanese aboriginals (Ko et al., 2014) and generally associated with the Austronesian 

expansion (Trejaut et al., 2005; Soares et al., 2011). Therefore, it can be concluded that the 

Kankanaey are either the best-preserved descendants of the original source population of the 

Austronesian expansion, or a case of total replacement that followed it. The dominant model 

suggests a southward diffusion of Austronesians from Taiwan around 4 kya, which impacted 

the Philippines, the north of Borneo and Sulawesi between 3.8-3.6 kya, and later spread into 

the Pacific (Bellwood, 2007). Even if the modality of this expansion is complex and still 

debated (Bulbeck, 2008), the location of the Kankanaey in the northern Philippines, close to 

Taiwan, suggests that they may be considered as one of the least admixed living groups tracing 

their ancestry from the source populations of the Austronesian expansion. 

This conclusion has been strengthened by independent analyses since the publication of the 

paper this chapter is based on (published online on 15/06/2016). Genomic data from some 

Kankanaey were included in the analyses of aDNA from Lapita individuals by Skoglund et al. 

(2016) (published online on 03/10/2016) (see section 1.5). Using TreeMix and qpGraph 

(Patterson et al., 2012), which assesses the fit of different admixture graphs to allele frequency 

correlation patterns, the Kankanaey were identified as the closest outgroup to the ancient First 

Remote Oceanians among all analysed ISEA populations. 
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As a note of caution, it should be added that while the Kankanaey appear to be a genetic relict 

population this does not imply cultural isolation. Recent archaeological evidence from the 

linguistically and genetically (Delfin et al., 2014) closely related Ifugao indicates economic 

intensification and increases in political complexity coinciding with the start of the Spanish 

presence in the Philippines (Acabado, 2017) (Appendix B.1). It can therefore be speculated that 

the Kankanaey were at least indirectly impacted by colonialism and underwent somewhat 

similar developments to their geographic neighbours. 

 
2.3.2 Indian impact in SEA 

A minor South Asian component was detected by the ADMIXTURE analyses of MSEA and 

ISEA populations (green k4, Figures 2.2A-2.3; green, Figure 2.4). It was further confirmed by 

f3, f4 and ALDER results and dated to have entered SEA from 2.4 kya (Table 2.3). While this 

component is more widespread at lower value of K (Figure 2.2B, Figure 2.3), at the best K = 9 

(Figure 2.2A) the evidence is strongest for the Burmese and the Malay and somewhat weaker 

for Bajo and Filipinos, where it is limited to f3/f4 (Tables 2.3-2.4). The Refined IBD method 

(Browning and Browning, 2013) further supports these outcomes. Each SEA population shares 

about twice as many IBD segments with South Indians (excluding the Austro-Asiatic speakers) 

as with Europeans. This indicates more recent contacts of the SEA groups with the former. 

It is important to explore how these results relate to the linguistic and archaeological evidence, 

attesting a continuous presence of South Asian cultures in SEA since 2.5 kya (Gonda, 1973; 

Manguin et al., 2011; Bellina et al., 2014; Calo, 2014). In most SEA populations analysed here 

the Indian component is absent or below the scale of detectability. Firstly, it is most likely that 

the “carriers” of South Asian culture were traders, artisans (Bellina et al., 2014) and at a later 

date, religious scholars (Brahmins) who were influential as advisers to Southeast Asian rulers. 

Some of these might have been locals educated in India who brought home Sanskrit texts and 

Brahmanic rituals (Bronkhorst, 2011). So, this rather small group would not have left a major 

genetic signature. Secondly, the epigraphic record and evidence from monumental archaeology 

from 1.5-1 kya attest that the Indian presence is biased towards courts and generally higher 

social strata, which can lead us to overestimate the impact on the majority of the population 

(Bronkhorst, 2011). More generally speaking there are a wide range of scenarios relating to the 

spread of cultural elements and gene flow and the patterns of this relationship are highly 

complex to model, e.g. for the Neolithisation in Europe (Fort, 2015). So, except for the 
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Burmese, who are also geographically very close to the Indian subcontinent, the evidence points 

to rather minor Indian gene flow. This is a notable contrast to the documented cultural influence 

which, however, temporally overlaps with the dates obtained for admixture with ALDER (Table 

2.2). A related signal of minor South Asian gene flow was  also detected in some other 

populations across ISEA (Karafet et al., 2005, 2010; HUGO Pan-Asian SNP Consortium et al., 

2009; Chaubey and Endicott, 2013; Kusuma et al., 2015).  

Taken together these findings suggest SEA as a potential waypoint for the South Asian 

migration into Australasia detected by Pugach et al. (2013). However, Pugach et al.  themselves 

disputed a scenario where Indian ancestry would reach Australia indirectly via ISEA. 

Furthermore, the date obtained using ALDER (2.4 kya) is at least 1500 years after the proposed 

South Indian migration into Australasia. A preliminary conclusion would envisage the SEA and 

Australasia migrations as two separate events. Besides the fact that the dating methods differed 

between this work and Pugach et al. (they used a method based on wavelet transform analysis) 

at least two caveats can be brought up to reconcile this fragmented scenario. Given the evidence 

presented here, it seems reasonable to assume a constant gene flow from South Asia into SEA 

via land, with Australasia being only a sporadic endpoint. In this case the 4 kya estimate 

provided by Pugach et al. would be a point estimate of the sparse arrival into Australasia, while 

the ALDER estimate given here should be interpreted as the midpoint (Loh et al., 2013) of such 

a flow between 4 kya and more recent times. Secondly, given the concordance of lines of 

evidence from linguistics and archaeology for a South Asian presence in SEA around 2.5 kya, 

it is possible to imagine a particularly intense corresponding gene flow during that time further 

biasing the ALDER estimate toward this period. It should be noted that a re-analysis of the 

signal reported by Pugach et al. using a larger panel of genomes from Sahul failed to reproduce 

it and concluded that it is most plausibly explained by technical artefacts (Bergström, 2018). 

 

2.3.3 Other general findings 

The comparison of haplotype-based scans of positive selection revealed that as opposed to 

earlier studies on a continental level (Metspalu et al., 2011) the correlation between haplotype 

sharing patterns and genetic distance (FST) is relatively weak in ISEA (Figure 2.8).  

Populations showing more diversity in the admixture plots also exhibit higher levels of shared 

signals with other groups. Additionally, the sharing patterns proved to be dependent on the kind 
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of test utilised. Notably, when the XP-EHH, which uses the Han Chinese as outgroup, is 

applied, all signals shared with East Asians are excluded, causing the Burmese to become an 

outlier (Appendix B.11B). This potentially reflects haplotype homozygosity signals unique to 

their South Asian-related ancestry component (Figure 2.2A, Figure 2.3). 

The finding of an Austro-Asiatic-related component in ISEA populations first reported by 

Lipson et al. in 2014 was confirmed. Support for the potential existence of a pre-Austronesian 

farming culture of Austro-Asiatic origin at least on Borneo, which would have later been 

assimilated by the incoming Austronesian speakers, comes in fact from multiple sources. These 

include the presence of Austro-Asiatic loanwords in Bornean Austronesian languages, the 

transfer of taro cultivation from the mainland and similarities in synchronous archaeological 

assemblages from Vietnam and Borneo (Blench, 2011).  Given its wide spread in linguistically 

diverse groups in MSEA and ISEA, the explicit association of k5 (Figure 2.2A, Figure 2.3) with 

a specific language family should be taken with caution. However, it is worthwhile noting that 

in India this component was specifically found in Munda-speaking populations, whose 

languages belong to the Austro-Asiatic family. The k5 component could represent an ancestral 

substrate, which was once distributed widely throughout SEA and was encountered by the 

Austronesians when they spread from Taiwan. Another possibility is that there was an early 

split into several subgroups during the Austronesian expansion and that this component belongs 

to the ancestral make-up of a subgroup of Malayo-Polynesians who expanded into western 

Indonesia. The latter hypothesis however does not satisfactorily account for the aforementioned 

Indian affinities.  
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3. Functional and deleterious variants in worldwide WGS data 

 

The second results chapter of this thesis consists of a survey of the global distribution of 

functional and/or deleterious variants in a dataset of 382 whole genomes. In this context, 

potential signals of positive and purifying selection are also examined. A considerable portion 

of these results were first reported in a paper by a consortium of more than 90 researchers of 

which I was a member. 

 

        Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A, Mitt M, Clemente F, ...Kivisild T, 

Metspalu M. 2016. Genomic analyses inform on migration events during the peopling of 

Eurasia. Nature 538:238–242. 

 

My main contribution to this work lies in the analyses of exonic variation, purifying selection 

and some tests for positive selection. I ran the respective analyses and wrote the corresponding 

sections of the paper and the supplementary materials with support from my collaborators. All 

analyses described in this chapter were conducted by me unless explicitly stated otherwise. 

In recent years, the amount of WGS data available for studies of neutral and functional variation 

has increased exponentially thanks to large projects focussed on the global patterns of variation 

such as the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015) and exonic 

data from >60,000 samples presented by ExAC (Lek et al., 2016). However, the coverage of the 

world in these datasets is uneven, with regions such as Siberia and ISEA being 

underrepresented. Furthermore, many of these studies either provided just exomes or low-

coverage data, which do not include non-coding and rare variation respectively. 

        These gaps have only started to be addressed very recently. One example is the SGDP (Mallick 

et al., 2016) providing data from 300 individuals spanning a wide geographical range. However, 

the first publications on this dataset concentrated mainly on reconstructing demographic 

history.  

Most of what we know about the global patterns of functional variation and related phenomena 

such as potential differences in purifying selection is still based on a relatively small set of 

reference populations. As these distributions are known to be influenced by demographic 
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history a more even geographic coverage is essential. A range of questions related to this subject 

will be investigated using the new dataset of 382 whole genomes described in this chapter. They 

fall in three broad categories briefly contextualised below. 

1) Each human genome carries more than 10,000 missense mutations and 70-180 variants 

thought to cause a loss of gene function if present in a homozygous state (Lek et al., 2016; The 

1000 Genomes Project Consortium, 2015). On average, the former are thought to be mildly and 

the latter moderately deleterious when appearing de novo. In terms of geography, there is a 

higher number of polymorphic sites from all classes in Africans than in non-Africans; this 

pattern is reversed for derived homozygous genotypes (Fu et al., 2014b; Lohmueller et al., 

2008) However, relatively few fixed differences of missense and nonsense mutations are 

observed between continental groups (The 1000 Genomes Project Consortium, 2012). While 

the differences between Africans and all non-Africans are well established, considerably less is 

known about variation between non-African continental groups. The analyses on this dataset of 

382 individuals aim to explore this subject under particular consideration of the following 

questions. How are different classes of functional variants distributed throughout the genome 

across worldwide populations and to what extent are they shared? Furthermore, which factors 

can explain these differences? Are there any particularly unusual patterns in previously 

understudied groups? 

2) The concept of genetic load, defined as the reduction of the evolutionary fitness of a 

population compared to a hypothetical comparative group with only the fittest genotypes 

(Haldane, 1937; Crow, 1958), predates modern molecular genetics. There is a long-standing 

debate on the extent to which human populations vary with regards to this quantity. Early 

theoretical work demonstrated that the efficiency of selective processes, including purifying 

selection, relative to drift should increase with higher Ne (Kimura et al., 1963) which could be 

an important contributing factor to this potential interpopulation variation. The relevance of this 

is underlined by more recent evidence for deep divergences and long standing differences in Ne 

among modern human populations (Mallick et al., 2016). Support for significant differences in 

the strength of selection and corresponding genetic loads comes from multiple studies. As 

mentioned above, there was a reported excess of homozygous derived deleterious variants in 

non-Africans and in some studies (Fu et al., 2014) also a higher total of derived deleterious 

alleles in them. Often these empirical outcomes were supported by simulations exploring the 

impact of demographic history on the number of deleterious variants carried by an individual. 
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However, other studies using ratio statistics of particular allelic classes and corresponding 

simulations arrived at contradictory results (Simons et al., 2014; Do et al., 2015). They found 

that the mutational burden was unaffected by demography, particularly if it was assumed that 

all mutations are additive. Several authors have recently attempted a synthesis of the growing 

literature on the subject (Lohmueller, 2014a; Henn et al., 2015; Gravel, 2016). They have 

highlighted the two main reasons for these discrepancies: a) conclusions about the genetic load 

are highly sensitive to underlying assumptions about dominance effects and selection 

coefficients and b) how the relevant statistics are calculated. Furthermore, there is considerable 

disagreement about how biologically meaningful these differences in mutational load would be 

on a population level. Notwithstanding this ongoing debate it is important to gather more 

empirical evidence to improve our understanding of the forces affecting genetic load. With 

increasing global population coverage, do earlier statements made about purifying selection 

based on a few reference groups have to be revised? Furthermore, is there evidence for 

differential purifying selection on particular gene classes? 

3)  One possible cause for extreme frequency differences between populations at a particular 

locus is regionally specific positive selection. Strongly supported selection candidates include 

polymorphisms in the DARC/ACKR1, SLC24A5 and EDAR genes. As already mentioned, there 

are concerns about the power of selection tests and their ability to distinguish patterns resulting 

from neutral and adaptive processes. Some of these are less relevant with WGS as opposed to 

the SNP data discussed in the previous chapter, e.g. it is less likely that true causal variants are 

missed. The dataset presented here represents a considerable expansion of geographical 

coverage compared to the 1000 Genomes project for which highly differentiated loci were 

examined for its first phase. It also provides another opportunity to re-examine the “less is 

more” hypothesis (Olson, 1999) according to which a small fraction of nonsense mutations 

should be under positive selection due to their advantageous effects in particular environments 

which could lead to strong allelic differentiation. Keeping the relevant caveats in mind, can we 

improve our understanding of the potential targets of positive selection by applying variant-

based approaches on high coverage WGS data from a diverse panel of worldwide populations? 
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3.1 Material and Methods 

 

3.1.1 The EGDP dataset and demographic analyses 

The dataset analysed in this chapter is a subset (n = 382) of a larger panel of 483 genomes 

sequenced with Complete Genomics technology and analysed by the EGDP consortium Pagani 

et al. (2016). Before the criteria for the selection of this subset and the respective analyses are 

described it is important to outline a) the general pipeline for the creation of VCF files and b) 

some demographic analyses. Outcomes from a) and b) were later used as either a starting point 

or as supporting evidence to investigate patterns of functional variation. 

379 of the 483 genomes were first published by Pagani et al. (2016), whereas the other samples 

were taken from previously published sources (Drmanac et al., 2010; Lachance et al., 2012; 

Clemente et al., 2014). In addition, publicly available Personal Genomes Project (PGP, 

http://www.personalgenomes.org/) data, available at the time of the study, was used, bringing 

the total number of high coverage genomes used to 730. Appendix C.1 is a table containing 

information on all genomes including the collaborator/institution that collected the samples for 

the EGDP consortium. All samples were sequenced, mapped and called by Complete Genomics 

(Mountain View, California, USA) using Complete Genomics software versions 1.5, 2.0, 2.2 

and 2.4. 

Samples for the genomes reported by Pagani et al. (2016)  were collected either from blood or 

saliva with informed consent and sequenced to >40´ and >80´ coverage, respectively. 

Before further describing the initial filtering and phasing of the data it should be noted that, 

primarily to increase the power for phasing, the full set of 730 genomes was used for these 

upstream filtering procedures. Most PGP genomes, however, were discarded for downstream 

analyses due to the lack of specific information on their ethnic affiliation and origin. 

Data filtering and phasing for creation of VCF files 

The starting point for these pre-processing steps were the VAR files provided by Complete 

Genomics (details on the output of the Complete Genomics pipeline can be found in 

www.completegenomics.com/documents/DataFileFormats_Standard_Pipeline_2.2.pdf). 

These files contain all short genomic variants (SNPs in a narrow sense, i.e. single base-pair 
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substitutions see section 1.1.1, multiple base-pair substitutions, small indels) in each genome 

mapped against the human reference genome hg19 build 37. 

For this purpose, the 730 VAR files were combined into chromosome-based variation matrices 

with each row representing a variant and each column representing an individual. This was 

done with the CGA-tools modules listvariants and testvariants with presence, absence and no-

call for each variant being coded as 1, 0 and N. 

These matrices were then further refined by only keeping SNPs of high calling quality using 

the Varfilter module from CGA-tools with the VAF varscore (which is a confidence score 

obtained in the CG pipeline by a maximum likelihood scoring model) of 40 and 20 for 

heterozygous and homozygous variants respectively. The output of this step was transformed 

into PLINK format (Purcell et al., 2007). Three further filters were then applied on these files. 

Firstly, for each polymorphic SNP in the PLINK files for the 730 individuals it was tested 

whether the allele frequencies at this site fulfil the conditions of the Hardy-Weinberg 

Equilibrium (HWE) using the Wigginton et al. (2005) method that controls for type 1 error. 

Furthermore, a one-tailed exact test for the detection of an excess of heterozygotes was 

performed and SNPs showing a phigh < 0.0001, i.e. sites where the count of heterozygotes is so 

high that the probability of observing it under the assumption of HWE is below 0.0001 were 

discarded as likely sequencing artefacts and genotyping errors. In total 19,458 autosomal SNPs 

were excluded reducing the dataset to 46,881,865 variants. Following the test for HWE all SNPs 

which were not biallelic and those that had more than 5% no-call/low quality calls were 

removed. The files were converted from CG format to PLINK as described above by Mario 

Mitt (University of Tartu), Dr Lauri Saag (University of Tartu) and Dr Alexia Cardona 

(University of Cambridge). 

SHAPEIT2 (Delaneau et al., 2013b) was applied to phase the filtered PLINK files. To speed up 

the calculations, singletons were removed before phasing. Subsequently singletons were re-

introduced into the phased data, randomly picking one of the two available haplotypes for 

assigning the derived allele at each singleton position. Chromosome 20 was phased twice to 

estimate phasing accuracy, yielding an average per individual switch error rate of 2-4%. The 

file conversions and the phasing were performed by Mario Mitt and Dr Luca Pagani. 
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Definition of the Diversity Set for demographic analyses 

For different downstream analyses subsets of relevant samples were defined. The first subset 

was designated as the Diversity Set, it was used to reconstruct past demographic events. 

For this Diversity Set only samples with location information and self-reported unmixed 

ethnicity were considered (Appendix C.1). Therefore only 17 of the samples from the Personal 

Genomes Project were kept. Furthermore, close relatives were filtered by removing one sample 

from all pairs which were related to second degree or closer. The degree of relatedness was 

calculated using the KING (Manichaikul et al., 2010) software package. 

To avoid biases in the results the sample sizes of overrepresented populations in the dataset 

were reduced. This had no effect on the newly sequenced data as the overall strategy was to 

include a low number (3-4) of individuals from a wide range of populations. Preferably, samples 

carrying the “Unusual metrics” flag as indicated by the CG analysis pipeline were excluded. 

The final Diversity Set, which also formed the basis for the rare variant analyses presented in 

chapter 4 of this thesis, contained 447 samples (Appendix C.1). For further downstream 

analyses groupings and sub-lists were formed depending on what was required for the particular 

task. 

Relevant demographic analyses 

ChromoPainter (CP) was used (Dr Alexia Cardona, Cambridge, and Dr Daniel Lawson, 

University of Bristol) in combination with fineSTRUCTURE (Lawson and Falush, 2012; 

Lawson et al., 2012)  (see section 1.3.3) to investigate structure among the different populations. 

The CP linked model was applied on all haplotypes extracted from the phased data created for 

the individuals from the Diversity Set.  In the context of this thesis the 

ChromoPainter/fineSTRUCTURE is of importance for two follow-up analyses. Firstly, they 

inform the definition of larger groups for the analyses of functional variation and selection 

scans. Secondly, they provide a useful summary of the coancestry patterns across the whole 

variant spectrum which will be contrasted with the rare variant patterns in chapter 4. 

Temporal dynamics of Ne over population histories were inferred using MSMC (Schiffels and 

Durbin, 2014). This approach was applied to two partially overlapping sets of populations. The 

first consisted of 22 groups chosen as representatives of the sampled human diversity. For these 

Ne over time was reconstructed based one or two phased genomes. To increase resolution at 
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more recent time scales MSMC was furthermore applied to all populations (n = 42) for which 

four genomes were available (detailed information on the composition of these sets can be 

found in Appendix C.2 and the raw data are given in Appendix C.3). The relevant parameters 

were set to a mutation rate of µ = 1.25*10-8 bp-1 per generation and a generation time of 30 

years (these parameter values are identical to those used by Schiffels and Durbin, 2014). The 

MSMC analyses were conducted by Dr Luca Pagani. 

 

3.1.2 Definition of subsets for downstream analyses 

Definition of the Selection Set and the Variant-Based Analysis Set 

The coancestry matrices resulting from the CP approach formed the basis for the larger 

groupings chosen to analyse patterns of natural selection. A minimum sample size > 15 was set  

 

Figure 3.1: A fineSTRUCTURE-based coancestry matrix was used to define twelve groups of populations 
for the downstream selection scans. The quantity used to measure similarity is total length of genomic 
sharing in cM. The respective groups are highlighted in the plot by boxes with broken line edges. The 
number of individuals in each group is reported in Appendix C.4. Please note that the unlabelled cluster 
situated between Central Siberians and Mainland Southeast Asians at the bottom right of the figure consists 
mainly of Native Americans from the Andes. 
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as a threshold because prior research (Pickrell et al., 2009) indicates that the statistical power 

of haplotype homozygosity-based selection tests rapidly decreases with lower sample sizes 

once a threshold of 10-20 individuals (depending on the exact method applied) is reached. A 

very similar set of individuals was chosen for the analyses of functional variation (for the exact 

differences see below) to ensure consistency for publication purposes. The selection analyses 

based on haplotype patterns were run by Dr Tiago Antão, Dr Georgi Hudjashov (Massey 

University), Evelyn Jagoda (University of Cambridge, present affiliation: Harvard University), 

Dr Charlotte Inchley (University of Cambridge, present affiliation: University of Oxford), 

Sarah Kaewert (University of Cambridge, present affiliation: University of Colorado) and Dr 

Florian Clemente (University of Cambridge, present affiliation: University of Lausanne). They 

are not the subject of this thesis; however, the selection groups are described here as they also 

were the groupings chosen for other population-differentiation based selection tests (di, DIND, 

see section 3.1.4) that are included as supporting evidence. 

Although the coancestry matrices produced by CP and the derived trees inferred by 

fineSTRUCTURE capture the population structure expected from previously analysed global 

datasets well (data not shown) they are very sensitive to balanced sample sizes and not based 

on an explicit underlying model of evolutionary history. A matrix containing the total length of 

genomic sequence shared between the pairs of donors and recipients was used to determine the 

groupings for the selection scans (Figure 3.1). For the selection scans in total 12 groups (all 

listed in Table 3.1, excluding Australo-Papuans and South Americans due to sample size 

requirements) consisting of 369 individuals were formed and designated as the Selection Set 

(Appendix C.4, Figure 3.1). While the variant-based analyses are still sensitive to sample size 

as they rely on allele frequency patterns, additional comparisons between global groups can be 

made if this factor is considered as a caveat. Therefore, for the variant based analyses two 

groups with smaller sample sizes from outside (mainland) Eurasia were added. The first was a 

summary group of Oceanians (here used interchangeably with the term “Australo-Papuans”) (n 

= 8) consisting of individuals from Papua New Guinea and Aboriginal Australians. The second 

was a specific subset of Native American diversity, a very regionally distinct cluster of 

populations from the Andes (n = 13). Eight individuals that were part of the Selection Subset 

were removed from the Variant-Based Analysis Subset. These included five African-

Americans, one Hungarian, one Pole and one Mari. The final Variant-Based Analysis Set 

contained 382 individuals from 14 (sub)-continental macro-groups (Table 3.1).  
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Table 3.1: Macro-groups used for i) the Variant Based Analysis Set on which patterns of functional and deleterious variation were investigated and ii) the Diversity Set on 
which patterns of rare variation were investigated Appendix C.1 contains a more detailed description of the samples. Please note that “Assyrians” is a self-designated name 
of Aramaic-speaking Syriac Christians from the Middle East. 

Macro-group Abbreviation N(func- 
tional) 

N(rare) In both datasets Functional 
analyses only 

Rare variant analyses only 

(Central and 
West) Africa 

Afr 21 39 4 Luhya, 8 Pygmies, 9 Yoruba 
 

5 African-Americans, 5 Hadza, 3 Maasai,  
5 Sandawe 

Middle East 
(and Caucasus) 

MiE 26 59 6 Armenians, 7 Arabs, 3 Assyrians,  
3 Druze, 4 Iranians, 2 Jordanians,  
1 Lebanese 

 
3 Abkhazians, 3 Avars, 3 Azerbaijanis, 3 
Balkars, 3 Circassians, 2 Georgians,  
4 Kabardians, 3 Kumyks, 4 Lezgins, 2 North 
Ossetians, 3 Tabasarans 

South and West 
Europe 

WEu 31 36 3 Albanians, 2 British, 9 CEPH 
Europeans, 4 Croats, 1 French,  
4 Germans, 2 Hungarians, 4 Italians,  
2 Moldavians 

 
1 Hungarian,1 Portuguese, 3 Roma 

East and North 
Europe 

EEu 53 63 4 Belarussians, 3 Cossacks,  
6 Estonians, 3 Finns, 3 Ingrians,  
3 Karelians, 3 Latvians,  
3 Lithuanians, 1 Mishar Tatar, 4 
Poles, 7 Russians, 2 Swedes,  
7 Ukrainians, 4 Vepsians 

 
1 Cossack, 2 Komis, 3 Mordvins, 1 Pole,  
3 Saami 

Volga-Uralic Vol 21 22 5 Bashkirs, 3 Chuvashes, 3 Maris,  
6 Tatars, 4 Udmurts 

 
1 Mari 

South Asia SoA 28 29 2 Andhra Pradesh, 3 Bangladeshi,  
1 Bengali,4 Gujarati, 4 Jharkhand,  
1 Kerala (Malayalam), 2 Madhya 
Pradesh, 1 Nepali Brahmin, 1 Orissa, 
1 Punjabi, 1 Rajasthani, 7 Uttar 
Pradesh  

 
1 Tamang 
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Macro-group Abbreviation N(func- 
tional) 

N(rare) In both datasets Functional 
analyses only 

Rare variant analyses only 

Central Asia CeA - 24 not part of Variant-Based Analysis 
Set 

 
2 Ishkashim, 3 Kazakhs, 7 Kyrgyz, 2 Rushan-
Vanch, 1 Shugnan, 1 Tajik, 3 Turkmens,  
1 Uyghur, 3 Uzbeks, 1 Yaghnobi 

West Siberia WSi 17 18 3 Forest Nenets, 3 Kets, 3 Khantys,  
3 Mansis, 3 Selkups, 3 Tundra 
Nenets 

 
1 Mansi 

South Siberia 
and Mongolia 

SSi 34 23 6 Altaians, 6 Buryats, 6 Mongolians, 
2 Shors, 3 Tuvins 

11 Buryats 
 

Central Siberia CSi 31 17 6 Evenks, 3 Evens, 2 Nganasans,  
6 Yakuts 

10 Evenks,  
2 Evens,  
2 Yakuts 

 

Northeast 
Siberia 

NSi 25 14 5 Chukchi, 4 Eskimos, 5 Koryaks 11 Koryaks 
 

Mainland East 
and Southeast 
Asia 

SeM 29 29 8 Burmese, 7 Chinese, 4 Japanese, 
10 Vietnamese 

  

Island Southeast 
Asia 

SeI 45 45 3 Aeta, 3 Agta, 3 Batak (Philippine 
Negritos, Batak mentioned in chapter 
2 are Indonesian Austronesians)  
4 Bajo, 8 Dusun, 8 Igorot, 4 Lebbo, 2 
Luzon, 8 Murut, 2 Visayans  

  

Americas Ame 13 21 5 Calchaquíes, 4 Colla, 4 Wichi 
 

5 Mexicans, 3 Puerto Ricans 

Oceania Oce 8 8 3 Koinanbe, 3 Kosipe, 2 Aboriginal 
Australians 
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3.1.3 Annotation of functional and deleterious variants 

The first step in analysing genomic data for functional variation was to compare the composite 

loads of different classes of functional variants globally. This task was performed using two 

main approaches which complement each other: QIAGEN’s Ingenuity® Variant Analysis™ 

(IVA) (www.qiagen.com/ingenuity) and the web application and Perl scripts provided as part 

of the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016) toolset. 

Unless stated explicitly otherwise, all data analysis steps described in this subchapter and 

section 3.1.4 and 3.1.5 were run using R (R Core Team, 2017)  and UNIX shell scripts custom-

written for the respective purposes by the author. 

Extraction and analysis of functional variation using IVA 

Functional annotations of the exonic sites were explored firstly with IVA version 3.0.20140417 

(as of 19/05/2014) with the masterVarBeta files from the CG pipeline as the starting input. The 

potential translation impacts of a particular variant were inferred from its location relative to 

the set of transcripts provided by the RefSeq (O’Leary et al., 2016) release 63 database. 

All samples were pooled in one analysis to reduce the effect of biases particular to certain 

groups. The first step was a pre-filtering option to narrow down the analysis to exonic regions 

and 20 bp upstream and downstream from those regions. This filter was based on a bed file 

describing exonic boundaries as given in Ensembl release 75 (27/02/2014) which was provided 

by Dr Alexia Cardona. The cut-offs chosen were call quality (this quantity is equivalent to the 

VAF varscore mentioned in section 3.1.1 as the mastervarBeta files are derived from the VAR 

files) of 30 and a read depth of 20´. Furthermore, the 0.2% most exonically variable 100-base 

windows in healthy public genomes were excluded. Also, only biallelic autosomal sites were 

considered for further analyses. 

To ensure consistency with the results of selection scans run by collaborators, additional 

filtering steps were taken. Firstly, a more sophisticated coverage filter was applied. After the 

average coverage for all windows was calculated and the immediate removal of windows with 

a coverage of zero, any windows which had a coverage value above or below two standard 

deviations (SD) from the genome-wide average were also excluded. This left 13,127 200-kb 

windows with a coverage between 32´ and 72´. The windows derived from this filter were 

provided by Dr Florian Clemente. 
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Secondly, only those SNP sites which had passed the general quality filters (see section 3.1.1) 

and were included in the VCF files (for the original larger panel of n = 730 as described above) 

were kept. This reduced the number of sites stepwise from initially 334,857 to 294,399 (Table 

3.2). The final number of exonic variants from IVA was 294,360, as 39 sites that were fixed for 

the reference allele had passed the quality filters (due to an originally larger sample size of 495 

in the IVA analysis). 

Table 3.2: Filtering scheme for variant-based analyses. The abbreviations used are as follows: syn - 
synonymous, mis - missense, non - nonsense. Among the excluded sites missense variants are 
overrepresented relative to their proportion in the overall dataset. 

  Included Excluded 
  all syn mis non all syn mis non 
Autosomal biallelic 334,857 128,789 182,351 2,896 - - - - 

VCF filters 296,407 116,830 158,858 2,381 38,450 11,959 23,493 515 

Coverage filter 294,399 116,096 157,694 2,357 2,008 734 1,164 24 

The functional annotations provided by IVA were complemented by other databases. 

Information on the ancestral states of variants was imported based on an alignment of genomic 

data from six primate species (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/

analysis_results/supporting/ancestral_alignments/). This allowed inferences about the polarity 

of 266,993 exonic variants for which high-confidence ancestral calls were available. Also, the 

most likely calls for Neanderthal (Prüfer et al., 2013) and Denisovan (Meyer et al., 2012) alleles 

were retrieved from online repositories. The bulk data on all exonic variants from IVA 

including the additional annotations described here are presented as Appendix C.5. 

Furthermore, information on NMD for the stop-gain variants was retrieved from Ensembl 

release 87 (08/12/2016) using the Ensembl VEP Perl scripts (McLaren et al., 2016). Before any 

further annotations the total number of stop-gain variants analysed was reduced from 2,357 to 

2,096 as sites without high confidence calls indicating that the reference matches the ancestral 

allele were removed. Out of these 2,096 ca. 30% (n = 628) were part of at least one transcript 

affected by NMD. For the filtering steps described below and the annotation of the data it should 

be stressed that a) a variant can be part of many different transcription contexts and b) multiple 

nonsense variants can be present in an individual in a transcript which will potentially undergo 

NMD. 

However, the focus here was on stop-gain variants potentially causative of NMD, even though 

this relationship cannot be established definitively from the extracted data. Therefore, the set 

of nonsense mutations was further narrowed down to those annotated as 
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“stop_gained&NMD_transcript”. This excludes variants which are part of an NMD transcript 

but not stop-gain in the respective context. 

Applying this criterion led to a reduction to a final set of 229 nonsense mutations affecting a 

total of 345 transcripts. For these the count statistics were generated. The only exceptions were 

two adjacent stop-gain mutations on chromosome 14 (14:93022121, 14:93022130) that were 

both found in a Han Chinese individual (NA18558-200-37-ASM). They lie in the same NMD-

affected transcript (Ensembl Feature ID ENST00000555589.1) resulting from the RIN3 gene. 

As each of those mutations has a 50% chance of being causative for the NMD effect they were 

counted together as one heterozygous variant instead of two. Information on the variants 

potentially causative of NMD in their respective transcripts is reported separately in a VCF file 

as Appendix C.6. 

Downsampling to make population-level summary statistics comparable 

For every statistic whose properties are such that it cannot be directly compared between macro-

groups with different sample sizes, e.g. the DAF spectrum, a multiple random subsampling 

approach similar to that suggested by Leberg (2002) was applied. Let n be the original sample 

size of a macro-group of interest and m the sample size of the smallest group involved in the 

comparison. From each group with n individuals a subset of m was drawn without replacement 

100 times to account for population substructure in the larger sample. The statistic of interest 

was calculated independently for each of the 100 replicates and averaged over all of them. 

Comparison of annotations obtained using IVA and the VEP 

Exonic variants in 382 genomes were extracted from the masterVarBeta files using IVA as 

described above with an exome filter based on the exonic boundaries as defined by Ensembl 75 

and RefSeq annotations to predict translation impacts. 

Further information on variant context was obtained by applying VEP with the Ensembl 

transcript set. These analyses were performed on genomic data in the VCF format, based on 

those originally generated for 730 individuals. To narrow down the VCF records to the subset 

of 382 individuals relevant to this chapter, and accordingly remove variant sites that had 

become invariant due to the reduction in sample size, VCFtools v0.1.12b (Danecek et al., 2011) 

was utilised. All releases after Ensembl 75 (27/02/2014) are based on the human genome 

assembly GRCh38.1 or higher. As the data presented in this chapter were mapped to GRCh37, 

a GRCh37-compatible version of Ensembl release 87 (08/12/2016) was used for variant 
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annotation. While the information on population frequencies and potential pathological 

consequences has been updated since then, the transcript set is still the latest GRCh37-

compatible Ensembl transcript set, i.e. an extension of GENCODE19 (July 2013) (Harrow et 

al., 2012). This also means that the predictions concerning the translation impact are equivalent 

to those in Ensembl 75. 

Matching categories for variant annotation 

In order to meaningfully present and interpret the comparisons of variant annotations obtained 

with different methods, functional consequences were matched as closely as possible. Specifics 

on category matching can be found in Appendix C.7. In case of multiple annotations for a 

specific site from IVA as well as VEP, multiple outcomes were prioritised for each method 

separately using a severity ranking (Appendix C.8) following McCarthy et al (2014) and the 

European Bioinformatics Institute (https://www.ensembl.org/info/genome/variation

/prediction/predicted_data.html). For visualisation purposes the outcomes obtained when 

comparing the annotations assigned by IVA and VEP were z-score transformed. Please note 

that the variant annotation “splice_severe_variant” is the result of merging the Ensembl variant 

consequences „splice_acceptor_variant“ and „splice_donor_variant“ and effectively describes 

a variant that either changes the first two or last two bases of an intron. 

Annotation of deleterious variants in VCF files 

Multiple approaches to infer deleterious and potentially pathogenic variants were applied to the 

VCF files of the 382 individuals forming the Variant-Based Analysis Set. These are 

complementary to the earlier inferences regarding stop-gain variants and those annotated as 

deleterious by SIFT and PolyPhen-2 based on the IVA output. 

To infer deleteriousness of SNPs the CADD score (Kircher et al., 2014) was used. This 

machine-learning-based approach reports a phred-scaled C Score for each variant. It indicates 

how dissimilar the annotations it received from a wide range of approaches are from those 

reported for selectively neutral variants. The pre-computed data assigning scores to all possible 

SNPs of GRCh37/hg19 obtained with CADD v1.3 (11/07/2015) was retrieved from 

http://cadd.gs.washington.edu/download. The scores reported here are phred-like scaled based 

on their rank relative to all n possible SNPs in the human reference genome as follows: -10 * 

log10 (rank/n). 
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LoF variants were annotated using the LOFTEE (version 0.2.2beta) plugin 

(https://github.com/konradjk/loftee) (Karczewski, 2016) for the VEP based on the translation 

consequences inferred by the GRCh37-compatible version of Ensembl release 87 (08/12/2016). 

Its LoF definition is broadly based on the one proposed by MacArthur et al. (2012) and includes 

variants with the following effects: I) stop-gained, II) splice-site disrupting, III) small indels 

leading to a frameshift. The analyses here were limited to I) and II). Complete Genomics 

provides information on small indels of up to 50 bp, however, without extensive further 

curation, these calls appear to be unreliable (demonstrated on a well-studied example in 

Appendix C.9). The LOFTEE plugin considers additional filters to determine putative high 

confidence (HC) LoF variants. These filters exclude variants a) for which the proposed LoF 

allele is ancestral, b) occurring in non-canonical splicing contexts, or c) falling in the last 5% 

of the processed transcript (the latter criterion applies only to stop-gain variants). 

In addition, the inferences of stop-gain mutation annotations by VEP and IVA were compared 

by a repeated measures correlation test using the R package rmcorr (Bakdash and Marusich, 

2017) to detect whether there are any macro-group-specific patterns in the relationship between 

VEP and IVA annotations. 

Subsets of genes containing HC LoF variants were analysed for the enrichment of particular 

biological processes, molecular functions and the cellular locations of particular gene products 

as given by the Gene Ontology (GO) database (The Gene Ontology Consortium, 2015) (Release 

14/08/2017). These analyses were conducted using the PANTHER Overrepresentation Test 

(Release 20170413) with the Bonferroni correction for multiple testing (Mi et al., 2017). 

Information on tandem duplicates observed throughout the genome was extracted from the 

Duplicated Genes Database (last update: 25/02/2015) (Ouedraogo et al., 2012). 

Multiple regression analyses were run to infer how well the number of derived homozygous 

alleles for different putatively deleterious variant classes can be predicted by a) distance from 

Africa and b) long term Ne since the OOA event. The great-circle distance was considered from 

either Eastern Africa (Addis Ababa) or Southwestern Africa (Windhoek) with the Sinai added 

as a waypoint for all non-Africans and Beringia for the Native Americans. The waypoints were 

chosen to reflect the current palaeoanthropological evidence concerning modern human origins 

and possible migrations routes out of Africa (see sections 1.4.1 and 1.4.2) and to be consistent 

with earlier studies investigating the relationship of different genome-wide statistics vs distance 

from Africa (Henn et al., 2012a; Prugnolle et al., 2005; Ramachandran et al., 2005). 
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The MSMC data (see section 3.1.1) provided information on changes in Ne during the timespan 

from 5-65 kya for 215 individuals from the Variant-Based Analysis Set. As the data points were 

unevenly distributed over it, the data were binned into 5,000-year intervals and one data point 

was randomly sampled from each interval. The long-term Ne(5-65 kya) was then calculated as 

the harmonic mean of these 13 data points. This procedure was repeated 1000 times and the 

final value used in the regression analyses for each subpopulation was the average Ne(5-65 kya) 

across all replicates. 

The Human Gene Mutation Database (HGMD) (Stenson et al., 2017) was mined to highlight 

potentially disease-related variants. A VCF file based on the HGMD Professional version 

(HGMD_PRO_2015.3 as of 30/10/2015), was kindly provided by Prof David Cooper’s group 

(University of Cardiff). This version of HGMD covers a total of 153,883 sites. 

These analyses were supplemented by a core allele panel of 674 mutations identified as being 

highly penetrant for severe, mostly autosomal-recessive, childhood Mendelian disorders 

constructed by Chen et al. (2016).  

 

3.1.4 The RX/Y  statistic 

To quantify purifying selection and the distribution of the mutational loads of certain variants 

classes the RX/Y-statistic (Do et al., 2015) was used. This statistic consists of two terms. The 

first indicates the relative load of derived mutations seen in population X but not in population 

Y for the site class of interest A relative to a reference site class B, defined as LX, not Y. 

Analogously, LY, not X describes the sum of the frequencies of derived mutations in class A 

compared to class B observed in Y but not in X. 

The ratio of these two terms is then the RX/Y-statistic: 

Rx/y = LX, not Y / LY, not X                                                                               (3.3) 

It indicates whether one population shows an excess of derived mutations of class A relative to 

class B compared to the other population. If selection on two lineages has been equally effective 

since they split, assuming that mutation rates have been the same, Rx/y should be equal to 1. 

To assess the significance of these scores a bootstrap procedure was performed, where 90% of 

all sites included in the calculation of the original score were resampled. One thousand 

replicates of these analyses provided the basis for the calculation of an empirical p-value against 
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the null hypothesis of Rx/y = 1, a significance threshold of 0.05 was chosen. The original Perl 

scripts for these analyses were kindly provided by Ms Yuan Chen (Wellcome Sanger Institute) 

and then modified by the author. Rx/y was calculated on all missense mutations and on missense 

variants from seven subsets of genes related to phenotypes of interest. Four of these were based 

on GO phenotypic annotations (The Gene Ontology Consortium, 2015) (Release 01/01/2015) 

(Appendix C.10) and these were originally retrieved by Dr Charlotte Inchley and Sarah 

Kaewert. Furthermore, the Top 50 significant genes associated with susceptibility to malaria 

were extracted from the MalaCards database (Rappaport et al., 2013) (as of 18/03/2015). 

Additionally, a list of 810 genes containing at least one SNP whose frequency distribution 

displays a strong correlation with the diversity of helminth species transmitted in different 

geographic areas was used to define genomic elements with a potential role in the immune 

response against these parasitic worms (Fumagalli et al., 2010). Finally, a manually curated list 

of 35 genes significantly associated with any aspect of normal pigmentation variation in humans 

based on a strict choice from GWAS (as of 18/03/2015) was kindly prepared by Dr Mircea 

Iliescu (University of Cambridge) (Appendix C.11). 

 

3.1.5 Tests for positive selection 

The ΔDAF approach was based on a cross matrix of DAFs in 12 macro-groups (n = 361) from 

the Variant-Based Analysis Set (Table 3.1), Native Americans and Oceanians were excluded 

due to small sample sizes. The most differentiated pairs of macro-groups were selected based 

on the maximum allele frequency difference. To account for LD if several highly differentiated 

SNPs were in the same 200-kb window only the most extreme signal was reported. The subsets 

of interest were the top 20 ΔDAF missense and nonsense mutations a) among all macro-groups 

and b) among non-Africans only. 

To visualise the macro-group sharing of highly differentiated mutations in relation to 

demographic history a phylogenetic tree was constructed using the TreeMix v1.1 software 

(Pickrell and Pritchard, 2012). The input data were based on a subset of the VCF files of the 

Diversity Set (see section 3.1.1). All groups were contained in this analysis except Central 

Asians and Native Americans. Singletons and doubletons were removed, and the data were 

polarised based on the ancestral alleles extracted from a six-primate alignment 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ancestral_align
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ments/). TreeMix analyses were conducted by Dr Mait Metspalu. MEGA v7.0.14 (Kumar et 

al., 2016) was used by the author to create a graphic representation of the TreeMix output. 

The DIND (Barreiro et al., 2009) statistic served as an additional measure to explore whether 

variants highlighted by ΔDAF also lie on haplotypes of unusually low diversity. DIND scores 

were generated for the macro-group with the highest DAF respectively for all variants in the 

top 20 of the several ΔDAF analyses. Details on the how the statistical significance of the DIND 

scores was assessed can be found in Appendix C.12 and the R scripts to obtain them were kindly 

provided by Dr Florian Clemente. 

 

3.1.6 Integration of functional databases with selection results 

The outcomes of the ΔDAF, DIND and di were merged with databases providing further 

functional annotations to support their interpretation. This candidate set consisted of the top 20 

ΔDAF for different comparisons and subsets of the top candidates for the other two approaches 

briefly described in the following. The top 12 of the most highly divergent SNPs by the di score 

were chosen in each of the twelve population groups from the Selection Set. If two highly 

differentiated SNPs were above an LD threshold (r2 > 0.05) the one with the higher di score was 

reported. 

The two highest ranking windows in each of the twelve population groups were identified based 

on a composite signal from the empirical p-values of three selection tests (iHS, nSL and 

Tajima’s D) and subjected to further DIND analyses. The results for iHS, nSL and Tajma’s D 

were generated by Evelyn Jagoda, Dr Guy Jacobs (University of Southampton, present 

affiliation: Nanyang University) and Dr Charlotte Inchley, respectively. They are not further 

described here as they were not relevant for any other analyses in this thesis. GWAS results 

were obtained from I) the NHGRI-EBI Catalog of published GWAS studies (MacArthur et al., 

2017) (www.ebi.ac.uk/gwas, bulk data v1.0.1 downloaded on 07/09/2017, data last updated on 

31/08/2017) and II) GWAS Central (Beck et al., 2014) (www.gwascentral.org, data accessed 

using GWAS Mart on 07/09/2017). Where possible the effect allele was inferred either from 

the databases or manually from the source papers. 

The gene expression data used for the analyses described here were taken from the GTEx Portal 

(Lonsdale et al., 2013) (https://www.gtexportal.org/home/, GTEx Analysis V7, bulk data on 

cis-eQTLs downloaded on 14/09/2017). This dataset contains information from 11,688 
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transcriptomes of 714 donors across 53 tissues; because of sample size requirements, eQTLs 

were determined for 620 individuals and 48 tissues. GENCODE 27 (released August 2017) 

(Harrow et al., 2012) was used as an additional resource to infer the strength of support and the 

biotype of transcripts affected by eQTLs. In a similar manner as described for the genes 

containing HC LoF (see section 3.1.3) the protein-coding genes targeted by the eQTL were 

tested for enrichment of functional categories using PANTHER. LD statistics for the region 

surrounding the potential selection target rs11227639 were calculated using PLINK 1.9 (Chang 

et al., 2015a). BED files containing information about DNase hypersensitivity sites, which are 

considered markers of regulatory regions (Tsompana and Buck, 2014), generated by the 

Roadmap Epigenomics consortium (Kundaje et al., 2015) were retrieved 

(ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/by_experiment/DNase_hype

rsensitivity/ downloaded on 28/09/2017). 

 

3.2 Results 

 

3.2.1 Distribution of functional and deleterious variation inferred with Ingenuity Variant 

Analysis 

Firstly, the distribution of functional variation was explored using IVA by considering the 

differences in exonic SNPs among 14 regional pools of populations (Table 3.1). Among the 

382 samples considered 294,360 exonic single nucleotide variants are observed (Table 3.3), of 

these 51.4% are singletons. 

Table 3.3: Total exonic SNP counts by macro-group extracted using Ingenuity Variant Analysis. 
Abbreviations: DAF - derived allele frequency, short codes for the macro-groups taken from Table 3.1. 

  all  synonymous   missense  nonsense 
Afr 96,223 45,723 43,398 413 

MiE 70,293 31,218 33,931 328 

WEu 67,637 29,786 32,969 350 

EEu 80,203 33,944 40,406 488 

Vol 59,601 27,144 28,059 315 

SoA 71,163 31,492 34,510 374 

WSi 51,369 23,404 24,129 230 

SSi 68,109 30,105 33,080 390 

CSi 53,904 24,366 25,567 281 

NSi 47,516 21,978 22,041 253 
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  all  synonymous   missense  nonsense 

SeM 63,658 28,532 30,499 359 
SAm 40,210 18,365 18,867 159 

Oce 39,155 18,666 17,534 163 

Whole dataset 294,360 116,069 157,683 2,357 

average DAF 0.056 0.074 0.041 0.016 

In a subset of 266,993 variants for which the ancestral state was known a significant shift of the 

DAF spectrum for missense and nonsense mutations towards low global frequencies (<10%) 

compared to synonymous variants is observed (Figure 3.3; Table 3.4) (missense vs synonymous 

X2 = 2550.6, p < 10-15; nonsense vs synonymous X2 = 238.66, p < 10-15). 

For each individual genome on average ~9,300 synonymous and ~7,800 missense sites are 

observed compared to only 56 nonsense (here limited to stop-gain) variants (Table 3.5). Of 

these stop-gain variants on average 3.2 are part of at least one transcript affected by NMD. As  

Table 3.4: Proportions of variants in different functional classes by DAF. The first row contains information 
on all samples pooled together. To make the regional patterns comparable the frequency spectrum for each 
macro-group was normalised to the sample size of the smallest group (the Oceanians at n = 8). To account 
for population structure in each regional group this procedure was repeated 100 times for all groups except 
the Oceanians. The proportions given in this table represent the mean fractions obtained from these 100 
runs. Abbreviations: DAF - derived allele frequency, short codes for the macro-groups taken from Table 
3.1. 

  synonymous missense Nonsense 
DAF <10% 10-50% >50% <10% 10-50% >50% <10% 10-50% >50% 
All 0.861 0.079 0.059 0.923 0.046 0.030 0.977 0.019 0.003 

Afr 0.397 0.432 0.170 0.472 0.389 0.138 0.561 0.379 0.060 

MiE 0.288 0.416 0.296 0.400 0.375 0.225 0.523 0.382 0.095 

WEu 0.266 0.421 0.313 0.370 0.387 0.242 0.519 0.380 0.101 

EEu 0.259 0.426 0.315 0.369 0.387 0.244 0.534 0.370 0.096 

Vol 0.269 0.427 0.304 0.370 0.392 0.238 0.568 0.337 0.095 

SoA 0.282 0.424 0.294 0.394 0.378 0.228 0.550 0.358 0.091 

WSi 0.282 0.424 0.294 0.341 0.405 0.254 0.505 0.379 0.116 

SSi 0.262 0.415 0.323 0.363 0.382 0.255 0.541 0.352 0.107 

CSi 0.216 0.427 0.358 0.303 0.408 0.289 0.501 0.376 0.123 

NSi 0.198 0.432 0.370 0.279 0.419 0.302 0.466 0.405 0.128 

SeM 0.261 0.407 0.332 0.359 0.375 0.266 0.542 0.346 0.112 

SeI 0.247 0.417 0.335 0.345 0.390 0.265 0.492 0.384 0.124 

SAm 0.196 0.397 0.407 0.306 0.386 0.308 0.403 0.395 0.202 

Oce 0.243 0.403 0.354 0.330 0.391 0.280 0.511 0.364 0.126 

they are almost always the only stop-gain variants detected in their respective transcript in the 

individuals carrying them it they are likely causative for the NMD. In Africans on average 5.2  
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Table 3.5: Per individual exonic SNP and/or allele counts for different functional variant classes for each of the 14 macro-groups used in the variant-based analyses. 
Abbreviations: del - deleterious (SIFT and PolyPhen-2 combined), der – derived, mis- missense, NMD -  stop gain variants which are part of transcripts predicted to be 
affected by nonsense-mediated mRNA decay as inferred from Ensembl Release 87, non – nonsense, syn – synonymous,  hom – homozygous genotypes, het - heterozygous 
genotypes, short codes for the macro-groups taken from Table 3.1. The divergences between the “hom” column and the subsequent columns giving the number of derived 
homozygous missense and synonymous variants occur because for a subset of alleles the reference allele was derived and therefore the allelic states were reversed before 
counting the variant. 

  All syn mis del non NMD hom Het hom syn 
der 

hom mis 
der 

hom non 
der 

hom del 
der 

Afr 22855.9 11622.9 9487.2 647.6 67.2 5.3 7454.2 15401.7 4236.5 3017.3 5.2 70 
MiE 18663.2 9360.1 7876.2 566.3 54.1 3.3 6746.2 11917 5098.8 3626.5 6.9 89.1 
WEu 18346 9200.6 7739.1 548 54.7 3.5 6663.4 11682.6 5150 3679.1 6.7 91.8 
EEu 18361.4 9206.4 7748.1 559.2 53.8 3.3 6688.6 11672.8 5163.4 3698.8 5.8 90.4 
Vol 18529.2 9299.1 7800.5 546 54.7 2.8 6736.5 11792.7 5144.4 3650.9 7.1 88.6 
SoA 18816.5 9457.6 7919.6 567.7 57.1 2.2 6842.3 11974.2 5071.6 3613 7.4 88.6 
WSi 18357.8 9189.1 7748.6 558.2 53.9 2.1 7200.9 11156.9 5313.9 3778.8 7.2 97.2 
SSi 18459.4 9254.8 7772 544.4 56.5 2.8 7109.5 11349.9 5237.9 3726.1 6.6 91.8 
CSi 18055.3 9071.2 7593.3 523.3 53 3.1 7561.7 10493.6 5421.6 3857 6.1 103.2 
NSi 17995.3 9048.8 7541.3 514 54.6 2.9 7676.6 10318.8 5484.8 3899 7.8 102.3 
SeM 18323.6 9217.6 7683 516.6 57 3 7297.5 11026.1 5284.7 3764.9 7.3 91.5 
SeI 18326.2 9200.9 7718.7 536.5 58.3 3 7631.8 10694.4 5391.4 3845.6 8.9 106.7 
SAm 17677.4 8837.5 7482.4 563.8 54.1 3.3 8207.5 9469.9 5763.4 4106.4 11.2 122.9 
Oce 18559.5 9312.5 7826.8 534.3 59.6 3.2 8265.6 10293.9 5478.9 3917.6 8.4 113.3 
Whole 
dataset 18604 9344.9 7827.4 550 56.1 3.2 7184.3 11419.7 5217.6 3718.6 7.1 94.9 
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Table 3.6: Average per individual ratios of different types of non-synonymous variants compared to synonymous variants for each of the 14 macro-groups used in the 
variant-based analyses. Outcomes of Tukey’s HSD for each pairwise comparisons are given in a matrix, significant p-values are bolded. The upper half contains the values 
for the ratio of missense to synonymous variants, the lower half for nonsense to synonymous. Abbreviations: mis- missense, non – nonsense, ns – non-significant syn – 
synonymous. Short codes for the macro-groups taken from Table 3.1. 

 
mis/syn non/syn Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 

Afr 0.8163 0.0058  < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 < 10-15 
MiE 0.8415 0.0058 ns  ns ns ns ns ns ns ns ns ns ns ns ns 
WEu 0.8412 0.0059 ns ns  ns ns ns ns ns ns ns ns ns ns ns 
EEu 0.8416 0.0058 ns ns ns  ns ns ns ns ns ns ns ns ns ns 
Vol 0.8388 0.0059 ns ns ns ns  ns ns ns ns ns ns ns ns ns 
SoA 0.8374 0.0060 ns ns ns ns ns  ns ns ns ns ns ns ns ns 
WSi 0.8432 0.0059 ns ns ns ns ns ns  ns ns ns ns ns ns ns 
SSi 0.8398 0.0061 ns ns ns ns ns ns ns  ns ns ns ns ns ns 
CSi 0.8371 0.0058 ns ns ns ns ns ns ns ns  ns ns ns ns ns 
NSi 0.8334 0.0060 ns ns ns ns ns ns ns ns ns  ns ns 0.028 ns 
SeM 0.8335 0.0062 ns ns ns ns ns ns ns ns ns ns  ns 0.022 ns 
SeI 0.8389 0.0063 0.018 0.006 ns 0.002 ns ns ns ns 0.013 ns ns  ns ns 

SAm 0.8467 0.0061 ns ns ns ns ns ns ns ns ns ns ns ns  ns 
Oce 0.8405 0.0064 ns ns ns ns ns ns ns ns ns ns ns ns ns  

Whole 
data 

0.8376 0.0060 
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of these variants were detected, whereas only 3.1 were found in non-Africans. It is unclear 

whether the excess observed in Africans with regards to these variants is of functional 

importance because a) the absolute numbers involved are relatively small and b) experimental 

verification of variants predicted to be causative for NMD in silico indicates that only ca. 40-

70% of them actually lead to a measurable decrease in gene expression (GTEx Consortium et 

al., 2015; Rivas et al., 2015, see section 1.6.2). When the ratio of total missense vs synonymous 

variants per individual was compared by population groups an ANOVA showed that there are 

significant differences between the population means regarding this statistic (p < 10-15). To 

further investigate the pairwise comparisons Tukey’s HSD test, which corrects for multiple 

comparisons, was applied. It indicates that all non-African population groups have a 

significantly higher number of missense variants relative to (almost) neutral synonymous 

variants compared to the Africans (p < 10-4 for all tests) (Table 3.6).  Furthermore, the Native 

American group exhibits the highest missense/synonymous ratio of all macro-groups. However, 

this excess of missense variants is only significant in comparison to two of the other non-

African groups: North Siberians and mainland East/Southeast Asians (p < 0.03 for both tests). 

When applying the same framework to the number of nonsense variants relative to synonymous 

variants the ANOVA is again significant (p < 2*10-4). Among all macro-groups the Oceanians 

and the ISEA group have the highest value for this statistic. Only the latter exhibit a significant 

excess of nonsense variants compared to the Africans and three other non-African groups (p < 

0.012 for all tests). The higher fraction of non-synonymous variation in non-Africans could 

have been caused by multiple mechanisms. Simulation studies suggest that recent population 

growth leads to an increase in the proportion of non-synonymous (i.e. mainly missense) SNPs 

relative to that expected in non-expanded populations (Lohmueller, 2014b). 

To empirically test this idea the harmonic mean of the subpopulation-specific Ne for the last 

5,000 years was correlated with the per-individual missense/synonymous ratio for all non-

Africans. For the 186 individuals for whom such data were available there is no significant 

linear relationship between recent Ne and this ratio (r = -0.0595, p = 0.4171).  
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Figure 3.2: Scatter plot of the fraction of non-synonymous SNPs in non-African macro-groups relative to 
the harmonic mean of Ne obtained with MSMC over the last 5,000 years. The dashed horizontal line 
indicates the proportion of non-synonymous SNPs in Africans. For all groups except the South Americans 
fractions were calculated from the mean (rounded to full numbers) counts obtained from repeated 
downsampling to n = 13. This graph only includes continental groups containing at least one population for 
which 4 genomes were sequenced so that MSMC could be run with good resolution. If there were multiple 
such populations, Ne values were averaged. Short codes for the macro-groups taken from Table 3.1. 

Germans and Burmese constitute extreme outliers, their population sizes are beyond the “upper 

fence” of Ne = 775,888, defined as the upper quartile plus three times the interquartile range, 

following the standards suggested by the US National Institute of Standards and Technology 

(NIST, 2013). If they are removed the results remain essentially unchanged (r = -0.0704, p = 

0.353). 

Additional support for this result comes from analysing the data in exactly the same manner as 

proposed by Lohmueller (2014b). There the fraction of non-synonymous variants was 

calculated relative to all exonic sites and on a per-macro-group basis (above it was done per-

individual). Given the unequal sample sizes involved this was achieved by using a strategy 

described in section 3.1.3 to downsample all groups except the South Americans (Oceanians 

were excluded due to their small sample size) to n = 13 and to obtain the fraction of non-

synonymous SNPs. The main outcomes are very similar: all non-Africans have a higher fraction 

of non-synonymous variants compared to Africans and for non-Africans this fraction does not 

correlate (r = 0.0217, p = 0.9525) with the harmonic mean of Ne for the macro-groups over the 

last 5,000 years (Figure 3.2, Appendix C.13). This also holds true if the statistic correlated to 

the non-synonymous proportion is Ne5,000_harmonic_mean/ Ne20,000, i.e. the relative increase in Ne 
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over the last 20,000 years (r = 0.0269, p = 0.9412). Notably, the Native Americans exhibit the 

highest fraction of non-synonymous SNPs of all non-Africans, whereas the Northeast Siberians 

have the lowest while the other non-Africans cannot be distinguished by this metric. 

 
Figure 3.3: Bar plot comparing the binned DAF distributions of different classes of exonic variants in 
Africans and non-Africans. As Africans have a pooled sample size of n = 21, non-Africans (n = 361) were 
downsampled. In the right plot the bolded bars indicate the respective mean of the SNP proportions 
obtained from all sampling replicates, the dotted lines mark 2 SD below and above this mean. For 
synonymous and missense variants Africans show a significant excess of low frequency sites based on the 
underlying count data (African synonymous vs non-African synonymous X2 = 159.3, p < 10-15; African 
missense vs non-African missense X2 = 836.59, p < 10-15). 

Additional complexity emerges when DAFs are considered. Non-Africans were downsampled 

to n = 21 to make them directly comparable to Africans. There is a significant (p < 10-15 for 

both chi-square tests) shift towards the rare end of the frequency spectrum for synonymous and 

missense variants in the latter (Figure 3.3). While there is a similar trend for nonsense variants 

it did not reach the thresholds required for statistical significance. The downsampling approach 

described above was applied to compare the 14 macro-groups to each other. For synonymous 

and missense variants, the majority of the DAF spectra are significantly different between 

macro-groups (for these 91 comparisons the Bonferroni correction was applied, leading to a 

more stringent significance threshold of p = 5.495*10-4) (Figure 3.4, raw data in Appendix 

C.14). Groups for which the DAF spectra are not differentiated are either phylogenetically close 

and/or would have experienced similar population histories. The former applies to two clusters, 

a West Eurasian one comprising the two European groups and the Volga-Uralic group and an  
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Figure 3.4: Heatmap displaying the outcomes of pairwise chi-square tests comparing the binned (see Table 
3.4) DAF spectra between each of the 14 macro-groups. For all groups except the Oceanians these spectra 
represent the mean (rounded to full numbers) counts obtained from repeated downsampling to n = 8. The 
lower half contains the values for the DAF spectra of synonymous, the upper half for those of missense 
variants. Cells containing the p-values for comparisons that are not significant according to the Bonferroni-
corrected threshold (p = 10-3.26, as there are 91 comparisons each) are white. 

East Eurasian macro-grouping consisting of the island and the mainland groups from East and 

Southeast Asia plus the South Siberians. The latter group’s DAF spectra are also similar to 

those of West Eurasian groups, most likely indicating higher Ne resulting from a recent 

expansion compared to the other Siberians. 

The picture for nonsense variants is very different. For most of the macro-group comparisons 

there are no significant differences (Appendix C.15). The only notable exception are Native 

Americans (Andeans) who show a significant excess of high frequency nonsense variants 

compared to the Africans (p = 1*10-4) and a similar trend compared to seven other non-African 

groups (p < 0.05 for all these comparisons, however they were not significant according to more 

strict criteria). The non-Africans to which Native Americans are similar are Siberian groups 

and island Southeast Asians. 
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Finally, the patterns of regional sharing of exonic variants were examined. When the focus is 

on variants from across the whole frequency spectrum in general the more severe the functional 

consequence of a variant the less likely it is to be shared across regions (Table 3.7).  

Table 3.7: Average relative sharing of exonic SNPs from each macro-group with all others. Singletons on a 
global level were excluded for the calculation of these ratios. Furthermore, the results of the “all sites” 
column and those based on DAF filters are not directly comparable as the ancestral state could only be 
inferred for a subset of sites and the polarity for the synonymous and missense variants was changed in 
some cases (see section 3.1.2). Abbreviations: DAF- derived allele frequency, mis- missense, non – nonsense, 
syn – synonymous Short codes for the macro-groups taken from Table 3.1. 

 

all sites (shared non-
reference alleles) >50% DAF <10% DAF 

  syn mis non syn mis non syn mis non 
Afr 0.55 0.48 0.41 0.46 0.45 0.44 0.14 0.13 0.12 
MiE 0.70 0.62 0.54 0.66 0.66 0.58 0.29 0.28 0.26 
WEu 0.71 0.62 0.53 0.67 0.67 0.59 0.30 0.29 0.26 
EEu 0.70 0.61 0.52 0.69 0.68 0.59 0.32 0.31 0.29 
Vol 0.73 0.65 0.54 0.70 0.70 0.63 0.33 0.30 0.27 
SoA 0.72 0.64 0.54 0.68 0.68 0.63 0.30 0.29 0.26 
WSi 0.73 0.64 0.55 0.68 0.68 0.65 0.29 0.27 0.26 
SSi 0.72 0.64 0.54 0.71 0.71 0.66 0.33 0.31 0.29 
CSi 0.71 0.63 0.52 0.67 0.66 0.65 0.28 0.26 0.28 
NSi 0.71 0.62 0.53 0.64 0.65 0.60 0.24 0.22 0.23 
SeM 0.71 0.63 0.53 0.68 0.68 0.61 0.27 0.24 0.22 
SeI 0.68 0.59 0.49 0.67 0.66 0.62 0.25 0.23 0.21 
SAm 0.66 0.57 0.50 0.55 0.54 0.42 0.16 0.16 0.13 
Oce 0.64 0.55 0.44 0.50 0.50 0.44 0.13 0.12 0.11 

It seems plausible that this is a consequence of the differences in the global allele frequency 

spectra for different site classes, i.e. the variants which are more often deleterious appear to be 

more constrained and shifted towards lower frequencies. 

As an additional criterion, variants were stratified by their DAF in such a manner that a variant 

was counted as shared if it was above or below a certain threshold in both populations of 

interest. Unsurprisingly, in all three classes of exonic variants, including missense and nonsense 

mutations, those with a higher DAF (>50%) show considerably more sharing among macro-

groups than those at a low (<10%) frequency. These analyses also confirm that the lower 

sharing of nonsense variants is mostly a function of their lower global frequency as the relative 

differences in sharing between different functional classes are less pronounced if allele 

frequency is adjusted for. 
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Across the different filtering categories generally macro-groups from mainland Eurasia who 

have multiple geographical borders with other clusters such as the Volga-Uralic and the South 

Siberian regional groups exhibit the highest sharing. Africans share the least functional variants 

with the others reflecting their greater genetic diversity and the depth of the African/non-

African split. Other groups exhibiting relatively little overlap in exonic variation are Oceanians 

and Southern Americans from the Andes. The latter two groups have been genetically mostly 

isolated from the other non-Africans examined here since at least ca. 15 kya (Raghavan et al., 

2015; Malaspinas et al., 2016). They share as few rare variants, which are generally of recent 

origin, with other macro-groups as Africans. Rare variant sharing patterns will be explored in 

more detail in chapter 4. 
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3.2.2 Ingenuity Variant Analysis compared to Ensembl’s Variant Effect Predictor 

In total, 354,396 SNPs were assigned exonic and splice site-related annotations by either IVA 

or VEP (Table 3.8). 276,388 variants are either exonic or splice-site altering according to the 

RefSeq release 63 transcript set which was the basis for the annotations by IVA. A larger total  

 

Figure 3.5: Filtering scheme displaying the steps of the comparison between IVA and VEP and the amount 
of overlap between sites called as exonic from both approaches. The absence of 2,622 sites in the VCF 
containing 382 individuals occurred because the IVA data were filtered based on sites being variable in a 
larger initial VCF of 730 individuals. For this subset of variant sites, mostly consisting of singletons, the 
calls reported in the IVA output and the 382-individual VCF were inconsistent due to a slightly more 
permissive call quality filter (threshold of 30 for IVA and 40 for VCF files) applied to heterozygous variants 
for IVA. 
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of 294,360 sites passed the exome filter applied to the IVA output, however this filter was based 

on Ensembl 75. The VEP annotated a total of 349,650 sites to either be exonic or to influence 

splicing patterns in at least one transcription context. Overall, 271,642 variants are categorised 

as exonic by both tools, of which 265,511 (74.9%) are exact matches, while the other 6,131 are 

assigned divergent exonic annotations. If splice region variants are excluded, the total match 

rate improves to 83.8%. For the other sites (n = 82,754), only one tool yields an exonic 

annotation, the majority of these are exclusively called by the VEP (Figure 3.5).  

Table 3.8: Summary of the number of annotations matching between IVA and VEP for each category of 
exonic or splice-site altering annotations. The first column contains “IVA+VEP”, i.e. it represents the union 
of all sites assigned to each consequence type based on IVA and VEP. The exonic and splice sites total for 
the “IVA+VEP” column is smaller than the sum of the rows giving the numbers for each annotation 
separately. This is because there are 6,131 sites categorised as belonging to different exonic categories by 
the two approaches and therefore counted twice when adding them up. The columns “IVA” and “VEP” 
hold the number of variants categorised by each approach separately. The match column is the logical 
intersection, i.e. the number of sites that receive the same annotation from both tools. The match rates in 
columns five to seven are reported as the proportion of these matches relative to the total number of 
annotations in the category either from IVA, VEP or both.  
106 sites belonging to the “stop_retained_variant” category for IVA were manually re-annotated. The 
original IVA annotation for these variants was “synonymous”. However, when considering additional 
information (Appendix C.5) given by IVA in the “Protein Variant” column it became apparent that in these 
cases the respective mutation caused a stop codon to be replaced by another stop codon. 

  IVA 
+VEP 

IVA VEP Match IVA 
match 
rate 
(%) 

VEP 
match 
rate 
(%) 

Total 
match 
rate 

stop_gained 3,479 2,354 3,406 2,281 96.9 66.97 65.56 

stop_lost 549 233 522 206 88.41 39.46 37.52 

splice_severe_variant 4,920 553 4,899 532 96.2 10.86 10.81 

start_lost 630 328 607 305 92.99 50.25 48.41 

missense 185,152 157,492 181,353 153,693 97.59 84.75 83.01 

splice_region_variant 37,790 - 37,790 - - - - 

stop_retained_variant 182 106 178 102 96.23 57.3 56.04 

synonymous 127,825 115,322 120,895 108,392 93.99 89.66 84.80 

LoF_equivalent 8,948 3,140 8,827 3,019 96.15 34.20 33.74 

all_exonic_and_splice_site 354,396 276,388 349,650 265,511 96.06 75.94 74.92 

While this excess of exonic annotations by the VEP is consistently observed across all 

categories of exonic/split-site altering variants match rates vary considerably. Synonymous 

variants show the best concordance, as 84.8% of them are called consistently by IVA and VEP. 
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On the other end of the spectrum, severe splice variants are only assigned the same status in 

10.8% of all cases. Recall that splice sites are the genomic regions which correspond to exon-

intron boundaries and where the primary RNA transcript is cleaved before the excised introns 

are degraded and the exon sequences are rejoined. Therefore, even small differences in the 

genomic coordinates of the exon-intron boundaries between the Ensembl and RefSeq transcript 

sets should contribute to these marked differences in annotations. Furthermore, putative LoF 

variants that have a potentially more severe effect than missense and synonymous variants, 

show only a relatively low concordance of 33.7%. 

In order to further study these patterns, the data can be visualised as a heatmap (raw data in 

Appendix C.16). It gives a detailed breakdown for each annotation with one method displaying 

to which categories assigned by the complementary approach this annotation corresponds. 

 

Figure 3.6: This heatmap contains the number of variants for all different combinations of annotations 
derived from VEP (rows) and IVA (columns). Z-scores from <-1 to >4 are indicated by a colour bar with 
increasing intensity from white to yellow to red for higher values. High z-scores indicate that a particular 
IVA annotation is over-represented across all other IVA annotations inferred for sites with a particular 
VEP annotation. 
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In general, many variants assigned to a specific exonic category by the VEP are either given a 

different exonic annotation by IVA or are called as non-exonic (Figure 3.6). These non-exonic 

calls are spread across several categories reflecting different factors contributing to this 

divergence. A significant fraction is explicable by the additional filters applied to IVA data, 

namely the exome filter derived from Ensembl version 75. It led to the exclusion of 25,529 sites 

(Figure 3.5). All of these are either categorised by VEP as being located in a splice region or as 

severe splicing variants. From manually investigating a few examples (data not shown) it 

became apparent that these sites are intronic but located very close to an exon/intron boundary 

where splicing takes place. Another large (n = 46,129) (Figure 3.5) fraction of these sites is 

removed either because a) they are not part of the RefSeq transcript set or b) while they are part 

of the RefSeq set the IVA annotation algorithm does not report them as exonic.  

 

Figure 3.7: This heatmap contains the number of variants for all different combinations of annotations 
derived from VEP (rows) and IVA (columns). Z-scores from <-2 to 4 are indicated by a colour bar with 
increasing intensity from white to yellow to red for higher values. High z-scores show that a specific VEP 
annotation is over-represented across all other VEP annotations inferred for sites with a particular IVA 
annotation. The clearly visible diagonal of high z-scores for exonic annotations indicates a very high 
concordance of variants called as exonic by IVA with the corresponding VEP calls. 
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One way to learn more about the contributions of a) and b) is to use the RefSeq and Ensembl 

transcripts sets with the same annotation algorithm. Therefore, chromosome 22 was analysed 

using the GRCh37-compatible version of VEP with the curated RefSeq transcripts as source. 

The overall number of matches between RefSeq and Ensembl for this chromosome is 

7,046/8,675 equalling a total match rate of 81.2%. Even when leaving splice region variants 

aside, that are mostly not recorded by IVA even if their impact is estimated to be severe (Table 

3.8), the Ensembl transcript set recognises 7,686 variants as exonic, of which 6,531 receive the 

exact same annotation when using the RefSeq transcript set from VEP (84.9%). This match rate 

is similar to that observed for the whole genome with IVA when splice-related sites are 

excluded. Therefore, the use of the RefSeq transcript set probably is responsible for most of the 

divergences regarding the calling of exonic variants in the strict sense whereas the algorithm 

applied by IVA significantly contributes to the particularly low number of matches for splice-

related variants. 

On the other hand, the chance of a variant in IVA exactly matching to VEP is very high for all 

categories, particularly synonymous variants and missense mutations (Table 3.8 and Figure 

3.7). This underlines a general asymmetry between VEP and IVA with regards to the number 

of variants annotated as exonic. As described above, even excluding splicing related variants, 

for which the divergences are particularly large, there is an excess of more than 1,000 stop-gain 

and more than 23,000 missense variants when using VEP as opposed to IVA for annotating the 

genomic data. 

  

3.2.3 Patterns of deleterious variation 

The CADD score was chosen as a measure of deleteriousness for every SNP recorded in the 

VCF files. The cut-offs for the analyses presented here were set strictly to reduce the number 

of miscategorised variants, at ≥ 20 and ≥ 30, respectively representing the most deleterious 1% 

and 0.1% of the genome. One of the advantages of the CADD is its ability to assign scores to 

protein coding and non-coding variants.  

Using a CADD cut-off of ≥ 20 (hereafter referred to as CADD20) a total of 178,893 potentially 

deleterious variants were identified in the 382 individuals analysed. Of these CADD20 sites 

88,389 (49.4%) lie in exonic regions as defined by Ensembl Release 75 and 90,504 (50.6%) are 

non-exonic.  
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Figure 3.8: This graph shows the distance of non-exonic variants annotated with a CADD score of ≥20 to 
the next exon. The majority (71.4%) of these sites are within 40 kb or less of the next exon. The intervals up 
to 200 kb exclude their lower and include their upper boundary. 

The variants that are annotated as non-exonic are in relative proximity to the next exon, with a 

median distance of 15,782 bp (Figure 3.8). This is consistent with theoretical expectations as 

they are likely to be a) splice site affecting variants on the intron side of an exon-intron boundary 

and b) different classes of regulatory sites. The former are by definition located nearby exons 

while important types of the latter such as regulatory eQTLs have been shown to cluster near 

exonic regions in general and transcription start points in particular (Bryois et al., 2014). For 

the strictest criterion, CADD30, all 12,747 highlighted variants are exonic. This is not 

unexpected, as it has been demonstrated previously (Kircher et al., 2014) that the variant types 

with the highest mean CADD score, such as stop-gain mutations, belong to this class.  

Table 3.9: Per individual SNP counts for different classes of putatively deleterious derived variants for each 
of the 14 macro-groups in the Variant-Based Analysis Set. Abbreviations: CADD20 – variants with a CADD 
score of ≥ 20, CADD30 – variants with a CADD score of ≥ 30, hom – homozygous genotypes, LoF – variants 
classified as high confidence loss-of-function variants by the LOFTEE plugin to Ensembl’s VEP, Short 
codes for the macro-groups taken from Table 3.1. 

Macro-group CADD20 CADD20_hom CADD30 CADD30_hom LoF LoF_hom 
Afr 7228.3 1116.4 185.2 18.4 116.6 15.5 
MiE 5841.7 1340.5 159.5 22.3 97.4 21.7 
WEu 5749.3 1337.0 151.6 20.9 95.5 21.6 
EEu 5720.4 1339.7 151.0 21.6 96.6 20.5 
Vol 5784.7 1333.4 153.2 22.2 97.4 22.3 
SoA 5892.0 1349.0 156.4 20.4 98.0 22.6 
WSi 5686.3 1447.1 150.0 23.6 96.2 24.0 
SSi 5759.4 1441.6 155.8 23.0 98.6 22.6 
CSi 5575.5 1587.4 145.4 24.4 95.2 24.3 
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Macro-group CADD20 CADD20_hom CADD30 CADD30_hom LoF LoF_hom 
NSi 5521.3 1599.4 145.0 24.4 95.6 26.6 
SeM 5735.1 1481.8 148.0 23.9 95.6 23.8 
SeI 5693.0 1609.8 149.7 26.7 93.6 25.4 

SAm 5382.2 1804.2 150.7 36.2 85.5 29.7 
Oce 5765.9 1786.1 149.1 30.6 94.5 27.6 

whole dataset 5794.5 1446.3 153.1 23.4 97.0 23.0 

Only sites where the deleterious allele is derived were considered for further analyses. This 

reduced the dataset of CADD20 variants to 172,867 (96.6%) and of CADD30 variants to 12,561 

(98.5%). Table 3.9 reports the average total and homozygous SNP counts for these two different 

thresholds. 

For the total number of variable sites with a CADD20 annotation most comparisons between 

the macro-groups yielded statistically significant differences (Figure 3.9, raw data in Appendix 

C.17). The macro-groups which are not differentiated among each other belong to five clusters  

 

Figure 3.9: Heatmap displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group 
comparison of the per individual derived SNP counts for CADD20 variants. The lower half contains the 
values for the total number of SNPs, the upper half for homozygous genotypes only. Cells containing the p-
values for comparisons that are not significant are white. 
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from the highest to the lowest total number of variants as follows: i) Africans, ii) Middle 

Easterners /South Asians, iii) Western Eurasians and some Eastern Eurasian groups iv) Central 

and Northeast Siberians v) South Americans. The Oceanians fall in between clusters ii) and iii). 

If the two Australians, who were shown to be admixed (Pagani et al., 2016), are excluded the 

remaining Papuans are somewhat less diverse (CADD20	Papua = 5658.2) but are still located 

within the range of most Eurasian groups. 

This order of macro-groups seems to reflect the distance from Africa as well as population 

history after the OOA event. The relationship between these variables will be examined 

quantitatively below. For the stricter CADD30 cut-off these differences become much less 

pronounced with only the African group exhibiting a constant excess of CADD30 variants 

(Figure 3.10, Table 3.9).  

 

Figure 3.10: Heatmap displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group 
comparison of the per individual derived SNP counts for CADD30 variants. The lower half contains the 
values for the total number of SNPs, the upper half for homozygous genotypes only. Cells containing the p-
values for comparisons that are not significant are white. 
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Concerning the number of homozygous CADD20 sites most macro-groups are statistically 

distinct. Compared to the total CADD20 derived SNP counts the order of macro-groups is 

reversed, with the Oceanians (if the Papuans are treated separately, this rises to 

CADD20	Papua_Hom = 1942) and South Americans exhibiting the highest average totals and the 

Africans the lowest (Figure 3.9, Table 3.9). Furthermore, Western Eurasians and South Asians 

form a homogeneous cluster. Again, for the putatively more severely deleterious CADD30 

variants groups show less differentiation.  

However, the Africans have particularly low numbers of homozygous variants whereas the 

Native Americans are an extreme outlier with a total about twice as high as that observed for 

the former (Figure 3.10 [raw data in Appendix C.18], Table 3.9). Oceanian and ISEA groups 

have an excess of CADD30 homozygous variants relative to the other Eurasians (effect still 

significant for the latter if the Philippine Negrito populations are excluded, data not shown).  

Another approach to quantify deleterious variation in the human genome is to focus on variants 

predicted to lead to a loss of function of the respective gene they are located in. According to 

the LOFTEE plugin for the VEP an average human genome in the dataset described here 

contains 97 high confidence (HC) LoF SNPs, of which 23 occur in a homozygous state (Table 

19, Appendix C.19 reports the numbers of for different LoF types).  

Like the patterns observed for the stricter CADD30 cut-off the total counts of HC LoF SNPs 

are much less differentiated between macro-groups compared to CADD20 sites (Table 3.9, 

Figure 3.11 [raw data in Appendix C.20]). Only the African group has a significantly higher 

number of HC LoF sites than all other non-Africans whereas the Andeans have a significantly 

lower number. Consistent with the patterns described for the homozygous CADD variants the 

Africans have a lower number of homozygous LoF sites compared to all other groups. The 

South Americans exhibit a significant excess of these sites compared to all other groups except 

the Northeast Siberians, who are also phylogenetically closest to them. 

Furthermore, Eastern Eurasian groups that have comparatively low Ne values, such as the 

Northeast Siberians and ISEA groups, together with the Oceanians, also appear to carry 

significantly more homozygous HC LoF variants relative to the West Eurasian cluster. As 

described above, the match rates between VEP and IVA are comparatively poor for LoF 

variants. However, when only the overlap of HC LoF variants with IVA is considered these 

numbers improve. 2,073 (75.3%) stop gained and 490 (32.2%) severe splice site disrupting  
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Figure 3.11: Heatmap displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group 
comparison of the per individual derived SNP counts for HC LoF variants. The lower half contains the 
values for the total number of SNPs, the upper half for homozygous genotypes only. Cells containing the p-
values for comparisons that are not significant are white. 

variants from the HC LoF category received the same annotation with IVA. This leads to a 

higher total match rate of 59.9% relative to only 33.7% for the unfiltered VEP LoF variants. 

This can be interpreted as evidence that the additional filtering steps applied by the LOFTEE 

plugin cause an enrichment of LoF inferences that are more robust to differences in transcript 

sets and annotation algorithms and accordingly more likely to represent a true LoF event. 

To further investigate how sensitive these results are to the applied methodology, correlation 

coefficients between the number of stop-gain variants detected by IVA and those classified as 

HC stop-gain by LOFTEE/VEP were calculated. The approaches were as follows: i) 

aggregate/pooled correlation across all individuals, ii) correlation based on macro-group 

averages, and iii) correlation on an intra-macro group level. The latter statistic is an adaptation 

of a repeated measures correlation approach (Bakdash and Marusich, 2017). Originally, it was 

used to compare multiple measurements taken from one individual, here it was utilised to assess 
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whether the relationship between the stop-gain variant counts inferred by both approaches is 

consistent in each macro-group. 

Generally, there is a good individual-level correlation (r/ρ = 0.68-0.75, P< 2.2*10-16) between 

the stop-gain variant counts obtained for SNPs and homozygous derived sites obtained from 

IVA and LOFTEE/VEP, regardless of whether a simple linear correlation or Spearman’s ranked 

correlation were applied (Appendix C.21). There is little intra-macro-group deviation from this 

general pattern (Appendix C.22), even though the repeated measures correlation coefficients 

are somewhat lower (rstop-gain SNP = 0.72, rstop-gain homozygous derived = 0.64).  

Notably, the correlation coefficients improve when average values for each macro-group are 

compared (r/ρ = 0.84-0.93). One exception is the ranked correlation coefficient for stop-gain 

SNP counts that was only reported as 0.53 and furthermore non-significant at α = 0.05. 

However, this low correlation of the ranks should not have a strong impact on the relevant 

results as most macro-groups are not distinguishable by this metric (Figure 3.11). The only 

effect that is lost using the IVA vs the VEP approach is the significant depletion of the total 

number of stop-gain SNPs in the South Americans. 

In the above paragraphs, differences between the numbers of putatively deleterious variants 

observed in different macro-groups have been contextualised in terms of geographical 

proximity, population history and/or distance from Africa. A simple linear regression approach 

was applied to quantitatively examine how well the distance from I) East Africa (Addis Ababa) 

and II) Southwest Africa (Windhoek) predicts the number of derived homozygous deleterious 

alleles with synonymous variants included as control group (Figure 3.12). 

For moderately deleterious variants the distance from both African reference points is a good 

linear predictor (r2
CADD20_Addis_Ababa ~0.65 and r2

CADD20_Windhoek ~0.69) of the total number of 

derived homozygous genotypes an individual carries. However, if the more rigorous CADD30 

score and HC LoF variant subsets are analysed the relationship becomes much weaker (r2 ~0.27-

0.32 for all four regressions). 
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Figure 3.12: Number of derived homozygous sites per individual for different functional variant categories 
in relationship to the distance from East (Addis Ababa) and Southwest (Windhoek) Africa. For the 
deleterious variant classes, the coefficient of determination decreases with increasing severity of the variant 
type. The grey shaded areas surrounding the regression lines indicate the 95% confidence interval for 
predictions of the number of homozygous derived loci from this linear model. 
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A seemingly counterintuitive observation is that the correlation of the number of derived 

homozygotes with distance from Africa is worse for synonymous (annotations based on IVA) 

variants than for CADD20 variants. Several factors could be contributing to it. Firstly, for the 

synonymous subset the relationship appears to be partially non-linear. In particular, the Africans 

have a lower homozygote genotype count than would be expected based on the regression line 

inferred from the non-Africans, and therefore cannot be adequately captured by a simple linear 

regression (Figure 3.12). 

Secondly, the synonymous variants were treated differently with regards to the inferences of 

derived homozygous genotypes. For the deleterious variant classes only sites at which the 

reference allele is equivalent to the ancestral state were recorded, as the focus here was on the 

accumulation of deleterious variants on the human lineage. However, at synonymous sites for 

which the ancestral allele was non-reference the genotype calls were adjusted accordingly, i.e. 

flipped such that the reference derived homozygotes were counted. In this context, it is 

important that the non-Africans have an overall higher DAF at such sites (0.58) than the 

Africans (0.5). Briefly, this is because non-Africans are on average more closely related to the 

human reference sequence and therefore more likely to share derived alleles with it (see also 

Appendix C.45). Therefore, the per-individual counts of derived reference homozygous loci are 

also lower in Africans which increases the observed differences between the two groups. This 

is supported by an additional linear regression with only synonymous variants for which the 

ancestral allele is the same as the reference were considered, it yielded coefficients of 

determination closer to those observed for CADD20 sites (r2
SYN_Addis_Ababa ~0.68 and 

r2
SYN_Windhoek ~0.71). 

Finally, all regressions using the distance from Windhoek instead of from Addis Ababa yielded 

consistently higher coefficients of determination. Using the distance of the sampling location 

from Africa as the only explanatory variable for the linear regression reflects the approximate 

impact of the OOA bottleneck and the subsequent initial range expansions; however, it does 

not incorporate subsequent differences in population history. Therefore, the long-term Ne based 

on the inferences of this parameter by MSMC across time was included as a predictor (which 

had been computed for 215 individuals in the Variant-Based Analysis Set). An ANOVA based 

on the chi-square statistic was used to compare whether the addition of Ne significantly 

improved the fit of the respective regression models. This is the case for 6/8 models with the 

exception of CADD30 variants (Table 3.10). Notably, most of the differences in derived  
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Table 3.10: Determination coefficients obtained from multiple regression analyses aiming to predict the 
number of homozygous derived sites for different functional classes based on the distance from Africa and 
the long-term Ne since the OAA event. The addition of Ne was evaluated by an ANOVA using the chi-square 
statistic; the respective p-value for the comparison of the model pairs is recorded. Note that Ne was only 
available for a subset of populations. Abbreviations: D_AA – distance from Addis Ababa, D_WH – distance 
from Windhoek. 

  r2 

(D_AA) 
r2  

(D_AA +Ne) 

P  r2 

(D_WH) 
r2  

(D_WH +Ne) 

P 

Full dataset 

synonymous 
(total) 

0.4750   0.6108   

synonymous 
(ancestral is 
reference) 

0.6771   0.7074   

CADD ≥20 0.6469 
 

  0.6923 
 

  

CADD ≥30 0.3193 
 

  0.3211 
 

  

LoF HC 0.2701   0.3059 
 

  

Reduced dataset (individuals for which Ne is available) 

Synonymous 0.5444 0.9009 7.36*10-168 0.6754 0.9077 5.42*10-118 

CADD ≥20 0.6953 0.7667 7.96*10-16 0.7489 0.7699 1.10*10-5 

CADD ≥30 0.4013 0.4027 0.4855 0.4029 0.4059 0.3006 

LoF HC 0.3363 0.4062 5.89*10-7 0.3786 0.4099 7.95*10-4 

synonymous homozygotes can be explained by the distance from Africa and the long-term Ne 

(r2 ~0.90 for East and r2 ~0.91 for Southwest Africa as reference points). 

While the differences in the number of homozygous derived moderately (CADD20) deleterious 

variants are relatively well accounted for (r2 ~0.77) by these two factors used as proxies for 

neutral processes in population history, the fit is considerably worse than for synonymous 

variants. Furthermore, the distance from the African reference points and long-term Ne  are 

themselves moderately negatively correlated (rNe_Addis_Ababa = -0.4194, rNe_Windhoek = -0.5440) , 
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as expected under a serial founder model (Deshpande et al., 2009). However, since the long-

term Ne is calculated as the harmonic mean it is less influenced by recent expansions compared 

to the arithmetic mean and as shown above, considering Ne yields additional value for the 

explanation of the observed patterns of genomic diversity.   

Finally, when derived homozygous genotypes at LoF sites (stop-gain + splice donor/acceptor 

disrupting) inferred using IVA are considered, the amount of variation explained by the 

regression analyses is lower than for the HC LoF sites inferred with VEP. The coefficient of 

determination for the best model (distance from Windhoek + Ne) is only ~0.28 (details reported 

in Appendix C.23), lower than the maximum r2 ~0.41 observed for the HC LoF. Most likely 

this occurs because the RefSeq transcript set on which the IVA annotations are based is more  

 

Figure 3.13: Proportions of variants in different putatively deleterious classes by DAF compared to 
synonymous variants as inferred by IVA. 

conservative, whereas as VEP LoF results even in the filtered format that leads to a higher 

matching rate (see above) contain considerably more variants, of which only a fraction likely 

has a small or no impact on fitness. Similarly to the analyses of functional variants inferred by 

IVA by their DAF spectra, the binned spectra for the types of deleterious variation inferred in 

this subchapter were compared to those observed for synonymous variants (Figure 3.13). 

As theoretically expected, all three deleterious variant classes exhibit a significant depletion of 

high frequency derived variants due to purifying selection. This pattern is most pronounced for 

the CADD30 variants, while LoF HC variants are in turn more shifted towards rare variation 
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than CADD20 sites (all differences are significant using the chi-square-test with a Bonferroni-

corrected significance threshold of 0.01, p < 10-13 for all comparisons). 

To further explore inter-macro-group differences with regards to the DAF for deleterious 

variants the same downsampling approach as described for the outcomes of IVA (see section 

3.2.1) was applied. CADD20 variants exhibit patterns that are similar to those observed for 

synonymous and missense variants inferred with IVA.  

Table 3.11: Proportions of variants in different putatively deleterious classes. To make the regional patterns 
comparable the frequency spectrum for each macro-group was normalised to the sample size of the smallest 
group (the Oceanians at n=8) by downsampling. Abbreviations: DAF - derived allele frequency, Short codes 
for the macro-groups taken from Table 3.1 

  CADD ≥20 CADD ≥30 LoF HC 

DAF <10% 10-50% >50% <10% 10-50% >50% <10% 10-50% >50% 

Afr 0.553 0.409 0.038 0.714 0.268 0.018 0.580 0.389 0.031 

MiE 0.480 0.433 0.087 0.691 0.276 0.032 0.526 0.395 0.079 

WEu 0.453 0.452 0.096 0.687 0.273 0.040 0.527 0.391 0.082 

EEu 0.444 0.459 0.096 0.674 0.284 0.042 0.512 0.407 0.082 

Vol 0.450 0.458 0.092 0.678 0.282 0.040 0.536 0.381 0.084 

SoA 0.477 0.435 0.088 0.699 0.268 0.033 0.555 0.367 0.079 

WSi 0.409 0.485 0.106 0.625 0.332 0.043 0.482 0.419 0.099 

SSi 0.445 0.448 0.107 0.673 0.284 0.043 0.515 0.395 0.090 

CSi 0.375 0.490 0.135 0.591 0.355 0.054 0.444 0.437 0.119 

NSi 0.346 0.512 0.142 0.572 0.379 0.049 0.425 0.447 0.128 

SeM 0.444 0.442 0.115 0.689 0.266 0.045 0.532 0.373 0.095 

SeI 0.417 0.466 0.117 0.646 0.306 0.048 0.484 0.410 0.106 

SAm 0.360 0.472 0.168 0.582 0.328 0.090 0.446 0.395 0.159 

Oce 0.403 0.454 0.143 0.581 0.353 0.066 0.518 0.357 0.125 

Nearly all comparisons yield evidence of significant differences (chi-square tests with a 

Bonferroni-corrected significance threshold of 5.495*10-4 adjusted for 91 comparisons, the 

same threshold was applied for CADD30 and HC LoF sites) (Table 3.11, Figure 3.14 [raw data 

in Appendix C.24]).Some West Eurasian groups, e.g. the two European macro-groups are not 

significantly differentiated, possibly because of their shared population histories. Interestingly, 

the South Siberians also appear similar to the Europeans, even though they belong to the East 

Eurasian macro-clade.  
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Figure 3.14: Heatmap displaying the outcomes of pairwise chi-square tests comparing the binned (see Table 
3.11) DAF spectra between each of the 14 macro-groups. For all groups except the Oceanians these spectra 
represent the mean (rounded to full numbers) counts obtained from repeated downsampling to n = 8. The 
upper half contains the values for the DAF spectra of CADD30, the lower half for those of CAD20 variants. 
Cells containing the p-values for comparisons that are not significant according to the Bonferroni-corrected 
threshold (p = 10-3.26, as there are 91 comparisons each) are white. 

These comparisons are based on a relatively low number of bins; therefore, the more fine-

grained full DAF spectra were calculated and for a subset of eight macro-groups are plotted in 

Figure 3.15. Generally, these are consistent with the patterns observed for the binned data. The 

higher resolution indicates an approximately tenfold increase (1.6% vs 0.16%) in the proportion 

of the derived fixed moderately deleterious CADD20 variants in the South American group 

compared to the Africans. 

For the more severely deleterious CADD30 variants the binned allele count spectra appear to 

be more uniform across macro-groups (Table 3.11, Figure 3.14). Macro-groups that exhibit a 

noticeable shift towards more common derived CADD30 variants are South Americans (chi-

square test significant for 8/13 comparisons), North Siberians and Oceanians (for each chi-

square test significant for 5/13 comparisons).  
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Figure 3.15: DAF spectra of CADD20 variants for eight global macro-groups. Note the shift towards more 
common deleterious variants in non-Africans. Short codes for the macro-groups taken from Table 3.1. 
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The frequency patterns for the HC LoF sites (Table 3.11, Appendix C.25) also appear to be 

relatively similar when compared between macro-groups. Africans display a trend towards 

more rare variants that is significant relative to all groups from East Eurasia (except South 

Siberians), the Americas and Oceania. 

 

3.2.4 Application of the RX/Y  statistic to infer purifying selection 

The RX/Y statistic tests for the accumulation of derived mutations from a particular class of 

interest in a population compared to another population while using a reference site class as a 

control (note that the functional annotations for this subchapter were inferred using IVA). 

Table 3.12: RX/Y scores of 13 non-African groups relative to Africans They were calculated for missense 
variants across the genome and from seven different phenotype-based subsets of genes relative to all 
synonymous variants. Unless indicated otherwise, the phenotype-based subsets of genes are based on GO 
annotations. A value below 1 indicates a relative excess of missense variants in the non-Africans, while a 
value above 1 shows a depletion of these. Results for which a bootstrapping procedure gives a p-value below 
0.05 are highlighted with an asterisk; two asterisks indicate a p-value below 0.01.  
Abbreviations: bact – [immune response against] bacteria, helminth –[immune response against] helminths, 
genes listed contain at least one SNP whose geographic distribution is strongly correlated with the diversity 
of helminth species, malaria - Top 50 most significant genes associated with susceptibility to malaria from 
the MalaCards database, olfac – olfaction, pigment – strict manually curated list of pigmentation genes 
from GWAS, thermo – thermoregulation, virus – [immune response against] viruses. Short codes for the 
macro-groups taken from Table 3.1. 

Macro-group all bact helminth virus malaria Pigment thermo olfac 
MiE 0.992 0.976 1.007 0.900* 1.083 0.678** 0.972 1.083 
WEu 0.988 1.040 1.003 0.901* 0.926 0.719* 1.001 1.092 
EEu 0.986 1.000 1.012 0.902* 0.988 0.682* 0.949 1.076 
Vol 1.000 1.002 1.034 0.922 0.922 0.712* 1.012 1.122 
SoA 0.993 1.035 1.033 0.895* 0.953 0.713* 1.014 1.130 
WSi 0.990 1.034 1.030 0.908 0.878 0.696* 1.017 1.101 
SSi 0.995 1.054 1.033 0.926 0.921 0.723* 1.019 1.106 
CSi 1.007 1.055 1.040 0.918 0.935 0.713* 0.975 1.108 
NSi 1.016 1.050 1.035 0.911 0.878 0.737* 1.093 1.137* 
SeM 1.004 1.077 1.045 0.916 0.985 0.729* 1.051 1.134* 
SeI 0.997 1.045 1.013 0.874* 1.086 0.722* 0.992 1.171** 

SAm 0.998 0.996 1.012 0.879* 0.794 0.757* 1.060 1.134* 
Oce 0.994 1.103 1.017 0.904 1.085 0.792 0.991 1.097 

Statistically, loads of missense mutations (using synonymous variants as a reference) are 

indistinguishable across the whole genome in non-African macro-groups compared to Africans 

(Table 3.12). To test whether genes involved in the response to environmental factors, such as 
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Figure 3.16: Results of 1,000 bootstrap replicates of the RX/Y test for a subset of pigmentation genes highlighted by GWAS (n = 35). The horizontal line provides the African 
reference (x = 1) against which all other groups are compared. The blue and red marks show the 95th and the 5th percentile of the bootstrap distributions respectively. If 
the 95th percentile is below 1, then the population shows a significant excess of missense variants in the pigmentation subset relative to the Africans. This is the case for all 
non-Africans except the Oceanians. Short codes for the macro-groups taken from Table 3.1. 
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variation in temperature and pathogen exposure, showed signals of purifying selection as a class 

phenotype-related gene lists were created (Appendices C.9-10). 

For three of these classes there are significant differences between the Africans and non-African 

groups (Table 3.12). The former exhibit a signal of purifying selection in pigmentation genes; 

this observation is significant compared to all non-Africans except the Papuans (Figure 3.16). 

There is a quantitatively weaker signal of a similar nature with regards to viral immunity genes 

where six non-African groups have a significant excess of derived missense variants. In 

contrast, three East Eurasian groups and Native Americans have a significant depletion of 

derived missense variants in genes related to olfactory reception.  Given that these genes are 

thought not to be strictly constrained in general the biological significance of this is unclear and 

it could also be a by-product of genetic drift in these groups that would cause a reduction in the 

overall diversity of derived missense mutations. 

 

3.2.5 Homozygous LoF variants 

LoF sites, particularly when occurring in a homozygous state, can add considerably to our 

knowledge about gene function. This applies even in the absence of detailed phenotypic 

information, as the donors were selected based on criteria that make it unlikely that they 

suffered from severe Mendelian diseases when the samples were taken. 

Overall, 4,281 sites in the genome for which at least one individual in the dataset is 

heterozygous were annotated as HC LoF (reported in a VCF file as Appendix C.26). These LoF 

sites were found in 3,395 genes. Only sites for which at least one individual carries a 

homozygous LoF variant were selected for further analysis (n = 369 in 352 genes). According 

to theoretical expectations this subset should be enriched for redundant genomic elements. This 

is because if there exist multiple genes which are duplicates of each other, in many cases one 

intact copy of the duplicated gene would be enough to ensure the presence of the relevant gene 

product. Then, LoF mutations in the other copies could rise to detectable frequencies as they 

would not have a negative fitness impact (e.g. Wagner, 1998). To test this prediction 

information on duplicated genes was retrieved from the Duplicated Genes Database. A total of 

102 genes with homozygous LoF variants have at least one tandem duplicate, with a median 

value of four tandem duplicates. Compared to all genomic elements (including pseudogenes 
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and non-coding RNAs) catalogued in Ensembl Release 71 that the Duplicated Genes Database 

is based on this represents a significant enrichment (X2 = 93.904, p < 10-15). 

When the PANTHER overrepresentation test using annotations from the GO database is applied 

these genes containing homozygous LoF variants exhibit a significant depletion of genic 

elements contributing to developmental processes of any kind (p = 0.0093) and for the 

development of anatomical structures in particular (p = 0.024) (Appendix C.27 gives the full 

table of outcomes). The same also applies for genes coding for any type of protein that binds to 

other proteins (p = 0.0276). However, more of these genes than expected are involved in 

interactions with cations (p = 0.0177), especially metal ions (p = 0.00664).  

One limitation of this overrepresentation approach is that it does not explicitly consider 

differences in length of the coding sequence (CDS) of each gene. However, there is little 

evidence that in this dataset CDS length is the main factor explaining whether a gene carries a 

homozygous LoF detected (for details see Appendix C.28). Recent large exome sequencing 

studies have focussed on creating a catalogue of rare homozygous LoF (rhLoF) variants in 

human populations. As naturally occurring knockouts they are important to understand which 

genes are tolerant for homozygous LoF variants and to assess the impact of rare variants on the 

phenotype more generally. The focus of the following paragraphs is on novel variants of this 

type in the data analysed here, as the latter comprises regions only sparsely covered by other 

major sequencing projects, ISEA and Siberia in particular. 

To assess the occurrence of these variants in the 382 genomes of interest all sites with a DAF 

≥2% were removed, which left 116 sites, each located in a different gene. In the next step 

variants in genes previously described as containing rhLoF were excluded. The set of genes 

was compared to an aggregated list reporting such genomic elements derived from four large 

scale exome sequencing studies comprising >170,000 individuals (Sulem et al., 2015; Lek et 

al., 2016; Narasimhan et al., 2016; Saleheen et al., 2017). This filtering step reduced the dataset 

to 56 variants. Subsequently, the remaining variants were compared to the global WGS data 

generated by the 1000 Genomes Project (n = 2,504) (The 1000 Genomes Project Consortium, 

2015) and the SGDP (n = 279, publicly available subset) (Mallick et al., 2016). Variants were 

discarded if they were already reported as occurring in a homozygous state in either of these 

datasets.  In a final step all  these variants were manually checked against the ExAC Browser 

(Karczewski et al., 2017)  that also records variants that were not used for the LoF-analyses in 

the main ExAC paper (Lek et al., 2016) as they are covered in less than 80% of all individuals 
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in this dataset. This led to the exclusion of three further variants (overlaps resulting from all 

filtering steps described here are displayed in Appendix C.29). 

The resulting set of previously unreported rhLoF variants consists of 34 variants (Appendix 

C.30). If the two variants detected in African Pygmy samples first published by Lachance et al. 

(2012)  and three variants in Papuans that would potentially have been reported if the data from 

Malaspinas et al. (2016) on the genomic diversity of Oceanians are included in the filters, this 

leaves 29 variants, 28 of which were detected in populations from Eurasia.  

With regards to the distribution of variation between continental groups, almost two thirds (n = 

18) of these Eurasian rhLoF variants are observed in the Central Siberian, Northeast Siberian 

and ISEA groups. Compared to all other Eurasians (n = 239) these continental populations taken 

together (n = 101) exhibit a significant excess of rhLoF carrying individuals (Fisher’s exact 

test, p = 5.251*10-4). The subpopulations within these clusters accounting for most of the novel 

homozygotes are the Kankanaey (see section 2.3.1) and the Evenks.  

To evaluate the functional importance of these variants the LoF-tolerance of the genes they are 

located in was assessed based on scores derived from an algorithm comparing the gene-wise 

theoretically expected LoF counts to those observed in the >60,000 exomes from the ExAC 

project. These rhLoF-containing genes are neither enriched for LoF-tolerance (X2 = 0.54484, p 

= 0.4604) nor depleted for LoF-intolerance (X2 = 1.2937, p = 0.2554), even though these non- 

significant results are at least partially caused by the small sample size of the rhLoF subset. The 

CADD scores retrieved for the novel rhLoF variants have a median of 23.75 indicating that 

they belong to the ~0.42% most deleterious variants in the genome. This is considerably lower 

than the median CADD of 37 observed for nonsense variants in disease-causing genes (Kircher 

et al., 2014). The only variant in this subset reaching the latter threshold is located on 

chromosome 19 in the ZNF568 gene encoding a ZNF protein. The severity of the resulting 

phenotypic effect is difficult to estimate, given that the carrier was healthy enough to serve as 

an adult donor of genetic information and that this gene is theoretically predicted to be LoF-

tolerant and belongs to a family of functionally very similar genes (Appendix C.31). 

Only one of the variants highlighted here has an entry in HGMD (CS982369). It is observed in 

a Dusun individual from Brunei and is situated in SLC14A1. The resulting protein product is 

known as the Kidd glycoprotein and is located on the erythrocyte membrane, where it plays a 

role in urea transport across the former and in the collecting duct system of the kidney that 

increases the concentration of urea in urine. However, its absence does not lead to a severe 
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disease phenotype, as another homozygous splice site mutation in SLC14A1 leading to its loss 

on a protein level has been seen in Polynesians (Irshaid et al., 2000), which was not recorded 

in the LoF catalogue derived from existing exome sequencing projects. The affected individuals 

are unable to maximally concentrate urine but their erythrocytes have a normal morphology 

and lifespan (Dean, 2005). 

 

3.2.6 Variants related to Mendelian disease 

The final class of deleterious mutations that will be examined here are those documented in the 

HGMD. Mutations from this database are only reported if they were thought to be disease-

causing by the HGMD authors, i.e. they received the DM flag and the deleterious allele was 

derived.  These steps reduced the dataset to a total of 1,596 mutations (~21.1% of originally 

7,851 variants). The DAF spectrum of these mutations is similar to that obtained for CADD30 

variants (Table 3.12) (X2 = 4.818, p = 0.090). 

Each individual in the global dataset carries on average ca. 16.3 HGMD variants, of which 1.8 

are present in a homozygous state (Table 3.13). Africans exhibit the highest number of SNPs 

of this type, likely driven by their higher genome-wide diversity compared to non-Africans. 

The total of homozygous site counts is very low as expected for disease-causing variants and 

has therefore to be interpreted with caution. However, generally West Eurasian groups exhibit 

the lowest number of HGMD homozygotes, elevated numbers are found in Eastern Eurasians 

and Native Americans. 

Table 3.13: Per individual SNP counts of derived mutations that are thought to be causally related to a 
disease phenotype as indicated by the HGMD for the 14 macro-groups used in the variant-based analyses. 
This also includes polygenic diseases. Short codes for the macro-groups taken from Table 3.1. 

Macro-group HGMD HGMD_hom HGMD_allele_count 
Afr 20.2 2 22.1 

MiE 17.5 1 18.5 
WEu 17.1 1 18 

EEu 16.1 0.9 17 
Vol 17.3 1.2 18.5 

SoA 17.8 1 18.8 

WSi 15.2 1.2 16.5 
SSi 16.4 2.4 18.8 

CSi 15.3 2.5 17.7 
NSi 14.2 2.4 16.6 

SeM 16.4 2.6 19 
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Macro-group HGMD HGMD_hom HGMD_allele_count 
SeI 15.5 2.7 18.2 
Sam 13.8 2.6 16.4 

Oce 13.8 2.9 16.6 

whole dataset 16.3 1.8 18.1 

It is difficult to evaluate the potential clinical significance of the HGMD-variants in absence of 

phenotypical data from the individuals analysed here as these include many loci putatively 

involved in complex polygenic diseases. 

Therefore, a panel of 513 autosomal SNPs that have high penetrance and underlie dominant or 

recessive Mendelian childhood disorders was retrieved from Chen et al. (2016). A subset (n = 

20) of these sites was detected in the Variant-Based Analysis Set. However, they almost 

exclusively occur heterozygously and as the relevant (mostly metabolic) diseases caused by 

mutations at these 20 sites are recessive the latter are very unlikely to lead to a disease 

phenotype (Appendix C.31). A total of 31 individuals are heterozygous for at least one of these 

sites: there is one homozygote finding described in more detail below. The resulting total carrier 

burden for such mutations in the Variant-Based Analysis Dataset is 0.086 alleles per individual. 

Half (n = 16) of the individuals carrying Mendelian disease alleles are of European ancestry, 

indicating that the carrier burden reported for the total dataset is most likely an underestimate. 

The roughly estimated prevalences (Appendix C.31) are generally lower than those previously 

reported. This is to be expected, as the panel of populations in the Variant-Based Analysis 

Dataset is in its composition very different from the datasets analysed in the medical literature. 

However, there is good agreement with regards to the general trends: recessive Mendelian 

diseases that are more common according to previous studies tend to have more heterozygous 

carriers in the dataset presented here.  

The most relevant single finding occurred in a Murut individual (Murut13) who carries a 

homozygous G to A transition on chromosome 7 at position 117,199,683 

(NM_000492.3:c.1558G>A) resulting in a change from valine to isoleucine. This variant lies 

in the CFTR gene, mutations in which are causative for cystic fibrosis. Given the severity of 

the expected phenotype and the recruitment of randomly chosen healthy donors, it seems 

unlikely that this individual suffered from overt genetic disease when the sampling was done. 
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3.2.7 Variant findings by maximum allelic differentiation and other positive selection tests 

While the previous sections of this chapter were concerned with exploring interpopulation 

differences across classes of functional and deleterious sites these final paragraphs will focus 

on common variants showing strong allelic differentiation between ancestry groups. 

For the ΔDAF and the other site-specific selection tests only samples overlapping the Selection 

Subset (Appendix C.4) were considered, i.e. Oceanians and South Americans were excluded. 

The rationale was twofold, a) these groups have low sample sizes, and b) to ensure consistency 

when the analyses are compared to selection results obtained by colleagues who only worked 

on the Selection Subset. It was ascertained that there were no fixed missense or nonsense allele 

frequency differences between those two groups and the other 12 macro-groups (data not 

shown).  

When applying the ΔDAF on missense variants (functional annotations in sections 3.2.7 and 

3.2.8 based on IVA unless explicitly stated otherwise) for all top 20 most differentiated sites 

the lowest DAF is observed in Africans (Table 3.14). Besides the known variants in 

pigmentation, ear wax and hair morphology genes, the sites showing high differentiation 

between Africans and non-African groups lie in genes involved in immunity (ACKR1, 

DUOX2), obesity and diabetes (ALMS1), ciliogenesis (TMEM216) and motor activity 

(MYO18B). Those that are most differentiated among non-African groups again included genes 

involved in ciliogenesis (PCDH15, B9D1), the formation of muscular tissue (TTN, FLNB) and  

Table 3.14: Most differentiated missense variants by population groups sorted in descending order by 
maximum ΔDAF, a) top 20 sites for all comparisons, b) top 20 sites for all comparisons between non-African 
populations. To account for LD if two or more “most differentiated” SNPs were located in the same 200-kb 
window only one of the signals is reported here. * = The asterisk indicates that this site was highlighted as 
an outlier (>5 SD) by the DIND analyses. Short codes for the macro-groups taken from Table 3.1. Chr - 
Chromosome 

Chr Position dbSNP ID Max 
ΔDAF 

Pair Gene Gene function 

All populations 
16 48258198 rs17822931 1.00 Afr-CSi ABCC11 ear wax type 

15 48426484 rs1426654 0.98 Afr-EEu SLC24A5 pigmentation 

14 77843814 rs11844594 0.98 Afr-SeM SAMD15 - 
2 109513601 rs3827760 0.97 Afr-CSi EDAR hair thickness 

2 73651967 rs3813227 0.96 Afr-CSi ALMS1 insulin, obesity 
5 33951693 rs16891982 0.95 Afr-EEu SLC45A2 pigmentation 

1 159175354 rs12075 0.94 Afr-SeI ACKR1 malaria resistance 

17 73565171 rs1671021 0.94 Afr-NSi LLGL2 cell division 
22 26422980 rs2236005 0.93 Afr-SeI MYO18B motor activity 
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Chr Position dbSNP ID Max 
ΔDAF 

Pair Gene Gene function 

10 15145855 rs15772 0.93 Afr-CSi RPP38 RNase 
11 61165741 rs10897158 0.93 Afr-WSi TMEM216 ciliogenesis 

17 39659913 rs9891361 0.93 Afr-Vol KRT13 cytokeratin 

16 48122582 rs7193955 0.92 Afr-CSi ABCC12 multi-drug resistance 
16* 31099011* rs11150606* 0.92 Afr-CSi PRSS53 endopeptidase 

1 16042766 rs12091750 0.90 Afr-SeM PLEKHM2 lysosome localisation; 
salmonella pathogenesis 

9 14722477 rs3747532 0.90 Afr-CSi CER1 morphogen activity 

9 127262802 rs1110061 0.90 Afr-rest NR5A1 transcriptional activator 
(sexual development) 

12 65269047 rs939875 0.90 Afr-rest TBC1D30 GTPase activating 
protein 

7 99081730 rs6962772 0.89 Afr-NSi ZNF789 potential transcription 
factor 

15 45392075 rs269868 0.89 Afr-MiE DUOX2 oxidase (thyroid 
hormone synthesis and 
antimicrobial defence) 

Non-African populations 
15 48426484 rs1426654 0.98 SeI-MiE SLC24A5 pigmentation 

2 109513601 rs3827760 0.97 WEu-CSi EDAR hair thickness 
16 48258198 rs17822931 0.96 MiE-CSi ABCC11 ear wax type 

5 33951693 rs16891982 0.95 SeM-EEu SLC45A2 pigmentation 
16 31099011 rs11150606 0.92 MiE-CSi PRSS53 Endopeptidase, hair 

morphology 
4 38798648 rs5743618 0.87 SeM-EEu TLR1 immunity 
3 10302056 rs2241314 0.82 CSi-WEu TATDN2 Putative DNase 

10 55955444 rs4935502 0.82 WEu-CSi PCDH15 stereocilia, cell adhesion 

19 1003172 rs2240154 0.82 MiE-NSi GRIN3B glutamate receptor 
16* 89986154* rs885479* 0.82 MiE-NSi MC1R pigmentation 

11 120107411 rs882856 0.81 SeI-WEu POU2F3 keratinocyte 
differentiation 

15 63937209 rs2229749 0.80 MiE-CSi HERC1 membrane transport 
15 40581543 rs936212 0.80 WEu-NSi PLCB2 taste perception, 

ciliogenesis 
3 58118555 rs12632456 0.80 Vol-SeI FLNB actin binding 
17 19247075 rs4924987 0.79 SeI-EEu B9D1 ciliogenesis, hedgehog 

signalling pathway 
3 44692564 rs2272044 0.79 MiE-SeM ZNF35 cell differentiation, 

spermatogenesis 
3 130368069 rs7614116 0.79 NSi-EEu COL6A6 collagen, cell binding 

2 179644855 rs10497520 0.78 NSi-MiE TTN muscle assembly 

3 133941320 rs1131262 0.78 NSi-WEu RYK transmembrane 
signalling 
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Chr Position dbSNP ID Max 
ΔDAF 

Pair Gene Gene function 

16* 31088625* rs749670* 0.78 CSi-SoA ZNF646 lipid metabolism, 
bile synthesis 

(transcription factor, 
influences the expression 
of HSD3B7 according 

to GTEx) 

immunity (TLR1). Among the ciliogenesis genes, the rs4935502 variant in PCDH15 has been 

previously detected as a selection candidate gene in East Asians (Sabeti et al., 2007). The gene 

is necessary for normal cochlear and vestibular functions in humans and mice and has also been 

associated with animal echolocation (Shen et al., 2012). 

Notably, for the majority (18/20) of the most highly differentiated genes among non-Africans 

the variation in frequency patterns is consistent with the clustering of macro-groups by their 

reconstructed demographic history (Figure 3.17), one exception being the SNP rs7614116 in 

COL6A6 that has low and high frequency populations both among East and West Eurasian 

regional groups (Appendix C.32). The placement of a gene on the branch preceding the 

population split of groups sharing a similar DAF does not imply that a putative selective sweep 

occurred in this common ancestral population, even though it provides an estimate for the upper 

boundary for such a hypothetical event. 

However, the phylogeny displayed in Figure 3.17 does not contain information on intra-group 

diversity and underestimates the complexity of gene flow events as the number of migrations 

was limited to two for the sake of clarity. The former especially affects South Asians, whose 

different subgroups are known to exhibit varying proportions of deeply diverged ancestries 

(Reich et al., 2009) and the Australasians, whose relationship to the other Eurasians is still 

debated (see section 1.4.2). 

Accordingly, the known selection target rs1426654 in SLC24A5, where the derived allele 

strongly correlates with a lighter skin tone (Basu Mallick et al., 2013), is shared between West 

Eurasians and South Asians. With a finer resolution it becomes clear that in individuals from 

Northern and Western India (known to carry more West Eurasian ancestry) the derived allele 

is almost fixed (93%), whereas in South Indians and Austro-Asiatic speakers its frequency is 

only 33% (Appendix C.33). 
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Figure 3.17: TreeMix analysis involving 14 macro-groups with two migration edges; 19 genes containing highly differentiated missense SNPs are highlighted. The branch 
labelled with a specific gene name is the one preceding the split of all the macro-groups sharing a particular ΔDAF signal due to a SNP in the respective gene. The colours 
chosen for the gene names reflect their putative function: blue – miscellaneous, green – immunity, pink – morphology and pigmentation, red – nervous system. Downward 
arrows indicate a high DAF in Africans and a DAF decrease characteristic for the respective non-African cluster. The Native Americans are not included and the ISEA 
group is separated into Negrito and non-Negrito groups. Short codes for the macro-groups taken from Table 3.1. 
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In the case of ten out of the twenty most differentiated missense mutations in non-Africans the 

derived allele is absent in the African group suggesting they are de novo mutations among non-

Africans, as opposed to the other ten variants, the high ΔDAF of which can be interpreted as 

potentially resulting from selection on standing variation. 

A further subcategory of functional variants that was investigated using the ΔDAF approach 

were stop-gain mutations. More than half (12/21) of the most differentiated stop-gain mutations 

segregate between Africans and any other non-African groups. In contrast to the missense 

mutations the majority of highly differentiated nonsense variants do not show allele frequency 

patterns consistent with the phylogenetic clustering of populations (Figure 3.17) regardless of 

whether Africans are excluded (Appendix C.34). Three of the nonsense variants are absent in 

the African samples analysed here (rs5758511, rs2270002 and rs16930998) and very rare in the 

African populations from phase 3 of the 1000 Genomes Project, their frequency increase 

therefore postdates the OOA event. 

The results also include a well-documented (Balasubramanian et al., 2011) East Asian variant 

in the ZAN gene that codes for a protein known to play a role in the specificity of the sperm 

adhesion to the egg’s zona pellucida (Tardif et al., 2010). Three out of the top 20 highly 

differentiated nonsense variants are in olfactory receptor genes, confirming the results of some 

earlier studies (MacArthur et al., 2012; Gudbjartsson et al., 2015), which reported an excess of 

common nonsense variants in this gene class.  

Table 3.15: Most differentiated stop-gain variants by population groups sorted in descending order by 
maximum ΔDAF, a) top 20 sites for all comparisons, b) top 20 sites for all comparisons between non-African 
populations, these only include 4 sites, as all other sites have already been highlighted in a). To account for 
LD if two or more “most differentiated” SNPs were located in the same 200-kb window only one of the 
signals is reported here. * = The asterisk indicates that this site was highlighted as an outlier (>5 SD) by the 
DIND analyses. Short codes for the macro-groups taken from Table 3.1. Chr – Chromosome, NMD- 
variants are expected to lead to nonsense-mediated mRNA in at least one transcript they are part of. 

Chr Position dbSNP ID NMD Max 
ΔDAF 

Pair Gene Gene function 

All populations 
11 56431216 rs11228710 No 0.62 Afr-NSi OR5AR1 olfaction 
7 100371358 rs2293766 No 0.61 Afr-SeI ZAN sperm binding  

to egg 
9 125391241 rs1476860 No 0.60 Afr-NSi OR1B1 olfaction 
5 1240757 rs7447815 No 0.58 NSi-SeI SLC6A18 neurotransmitter  

transport 
17 4803711 rs35400274 No 0.54 Afr-WSi C17orf107 -  
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Chr Position dbSNP ID NMD Max 
ΔDAF 

Pair Gene Gene function 

12 40834955 rs10784618 No 0.54 NSi-SeM MUC19 ocular mucus  
homeostasis (?) 

22 42336172 rs5758511 No 0.53 Afr-SeM CENPM cell division 
19 35719020 rs541169 No 0.50 CSi-Vol FAM187B - 
17 4461748 rs7215121 No 0.49 SeI-WEu GGT6 glutathione (anti- 

oxidant) synthesis 
11 5444136 rs2647574 No 0.48 SeI-WEu OR51Q1 olfaction 
11 63057925 rs1790218 Yes 0.46 CSi-Vol SLC22A10 membrane 

transport 
1 152323132 rs12568784 No 0.45 SeM-WSi FLG2 epithelial 

cornification 
17 72588806 rs545652 No 0.45 Afr-rest C17orf77 - 
1 55251314 rs2270002 No 0.44 Afr-NSi TTC22 protein binding 

11 5462702 rs16930998 No 0.41 Afr-SeM OR51I1 olfaction 
21 35334566 rs766425 No 0.41 Afr-WEu LOC400863 - 

5* 74965122* rs34358* No 0.40 NSi-SoA ANKDD1B protein binding/ 
signal 
transduction 

17 74077797 rs1043149 Yes 0.39 Afr-NSi ZACN membrane 
transport 

17 33772658 rs8072510 Yes 0.39 CSi-SoA SLFN13 ATP-binding 
1 20501582 rs12139100 No 0.38 Afr-NSi PLA2G2C inactive phospho- 

lipase (probable) 
15 55722882 rs57809907 Yes 0.38 Afr-rest DNAAF4 neuronal 

migration 
Non-African populations 

11 62848487 rs11231341 No 0.38 Vol-WSi SLC22A24 membrane 
transport 

16 81183325 rs59980974 No 0.34 NSi-WEu PKD1L2 membrane 
transport 

4 15482360 rs1861050 No 0.33 MiE-SeM CC2D2A ciliogenesis, 
morphogenesis (?) 

3 53899276 rs1043261 No 0.32 SeI-WEu IL17RB Immunity 

Other prominent categories of genes highlighted in the non-African comparisons by the top 20 

ΔDAF nonsense mutations are membrane transport (SLC22A10, SLC22A24, ZACN and 

PKD1L2), immunity (IL17RB) and the formation of ectodermal tissues, e.g. neuronal migration 

(DNAAF4) and epidermal cornification (FLG2). The nonsense variants in the two latter genes 

have been previously associated with disorders. The polymorphism rs57809907 in DNAAF4 

was shown to be correlated with the occurrence of dyslexia in a Finnish cohort (Taipale et al., 

2003), however follow-up studies were unable to replicate this finding (Tran et al., 2013), while 

rs12568784 in FLG2 was associated with more persistent atopic dermatitis in a cohort of 

African-American children suffering from the condition (Margolis et al., 2014). Furthermore, 
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the highly differentiated nonsense-variant containing genes are significantly enriched for 

having one or more tandem duplicates from the Duplicated Genes Database compared to all 

genomic elements (9/25, X2 = 11.87, p = 5.7*10-4). 

DIND scores for all top 20 variants in the ΔDAF analyses were generated to test for cases of 

significantly lower diversity of the derived haplotype. Four loci were found in >5 SD range for 

the DIND. The first is a well-known missense variant (rs885479) in the MC1R gene associated 

with light skin pigmentation in East Asians (Pneuman et al., 2012) and found at a high DAF in 

all East Eurasian groups (Appendix C.32). It has been highlighted as a potential target of 

positive selection in previous studies (Coop et al., 2009). Variation at this site has also been 

linked to the diagnosis of depression (Wu et al., 2011). A similar pattern can be observed at 

rs749670, a missense SNP in the ZNF646 gene that is most likely a transcription factor. This 

locus was previously reported as a selection target in East Asian populations (Xue et al., 2009), 

the data presented here indicate that this signal is shared with Siberians (Appendix C.32B). 

However, the potential selective pressure is currently unknown; the variant could be of 

regulatory importance (see section 3.2.8).     

The other loci where the DIND and ΔDAF overlap are the nonsense variant rs34358 in 

ANKDD1B and the missense variant rs11150606 in the serine protease PRSS53. The derived 

allele (A) at the former was found to be associated with a lowered value of total blood 

cholesterol (Teslovich et al., 2010)  and exhibited the highest observed DAF in the Northeast 

Siberians (Appendix C.34A). The latter signal is shared between all Eastern Eurasian groups. 

A recent GWAS has shown that the derived state (C) is correlated with straight hair in an 

admixed Latin American population, where the site was also highlighted as a selection target 

(Adhikari et al., 2016a). The authors also demonstrated that PRSS53 is expressed in the hair 

follicle during active hair growth and that the rs11150606 polymorphism affects the processing 

and secretion of the resulting protein. 
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3.2.8 Overlap of selected variants and functional association databases 

To further investigate the functional relevance of the variants highlighted by selection tests the 

annotations for the top 215 SNPs highlighted by ΔDAF (Tables 3.14-3.15), di (Appendix 

C.35A) and/or DIND (Appendix C.35B) were retrieved from databases containing information 

from GWAS and concerning gene expression across a range of tissues. 

When querying the GWAS Catalog (MacArthur et al., 2017) and GWAS Central (Beck et al., 

2014) for SNPs associated with variation in phenotypic traits (p < 5*10-8) 11 loci overlapping 

with the top selection signals were found (Appendix C.36). Many of these have been 

highlighted by previous selection scans (e.g. rs3827760 in EDAR, rs4988235 in MCM6) while 

for others the functional relationship between the potential selection target and the GWAS 

signal is unclear. Interestingly, there are loci known to be under positive selection and well-

supported on a mechanistic level where the selected derived allele is correlated with phenotypes 

that are either diseases or predispose to them. A good example is rs4988235; it resides in an 

enhancer region of the LCT gene and thereby confers lactase persistence. The derived state (A) 

at this SNP is associated with obesity indicators. Similarly, the derived G allele at rs16891982 

in SLC45A2 resulting in lighter pigmentation of the skin, hair and eyes correlates with higher 

risks of melanoma and squamous cell carcinoma. Both relationships are likely enhanced by 

very recent environmental changes. For the lactase persistence allele, it has been suggested that 

this relationship is modulated by higher dairy consumption (Manco et al. 2017), as these high 

energy density foods are abundantly available to many populations in the modern world. 

Similarly, behavioural changes are thought to have increased the exposure to UV radiation in 

light-skinned European populations over the last century (Parkin et al., 2011).  

Subsequently, the GTEx database (V7) (Lonsdale et al., 2013) was mined for overlaps using a 

similar approach. For the most recent release of this resource only cis-eQTL data were 

available. This term was defined as an association between local genetic variation and gene 

expression within ≤ 1 Mb from the transcription start site (tss). The significance of this 

relationship was determined by the GTEx Consortium (Aguet et al., 2017) using a multi-step 

procedure. It accounts for a) multiple genetic variants in the 1-Mb cis-association window 

surrounding the tss of the genomic element whose expression levels were quantified and b) the 

high number of such gene expression phenotypes measured throughout the genome. Trans-

eQTLs and longer range intra-chromosomal eQTLs were retrieved for the previous release (V6) 

of GTEx, none overlapped with the 215 SNPs from the selection scans. 
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However, this approach highlights a total of 1,458 cis-regulatory relationships (i.e. variant-

gene-tissue trios) across a total of 47 tissues involving 97 unique SNPs and the expression levels 

of 283 genomic elements (Appendix C.37). A total of 210 (74.2%) of the genomic elements are 

classified as protein-coding genes. The median distance of each eQTL from the tss is 58.6 kb. 

The ubiquity of these associations is not surprising given that in a study on the previous version 

of the GTEx dataset (V6) 48.5% of all common SNPs included were shown to be associated 

significantly with at least one gene in at least one tissue (Aguet et al., 2017).  

Given these conditions it was important to estimate whether the observed overlap of cis-

expression data and highly differentiated sites represents an enrichment over neutral 

expectations. For the latter purpose 100 randomly sampled sets of 215 variants matched to the 

original potentially selected loci for frequency and chromosome were generated. Each of these 

sets was overlapped with the GTEx (V7) cis-eQTL dataset. On average, 1093.5 cis-regulatory 

relationships mapping to 84.1 unique SNPs were found. The empirical p-values resulting from 

the comparison of the observed data to the distribution of these neutral replicates are 0.02 for 

cis-regulatory trios and 0.04 for the total SNP count. While these are significant at α = 0.05, the 

pattern observed for highly differentiated sites is not an extreme outlier relative to frequency-

matched controls. 

To explore whether particular biological terms from the GO database were enriched in the 

protein-coding genes affected by the eQTLs overlapping highly differentiated sites the 

PANTHER overrepresentation test was applied. 

The resulting terms are clustered by two main categories. Firstly, there is a general enrichment 

of genes involved in the activation of the immune response (p = 0.034) (all results are listed in 

Appendix C.38). The subclass driving this outcome are genes coding for HLA class II 

molecules (p-values ranging from 5.2*10-10 to 0.0081 for various related functional and 

structural GO terms). These have long been known to be expressed primarily on antigen-

presenting cells of the immune system thereby initiating the CD4+-T cell-immune responses. 

Secondly, there are many results from the “cellular component” category, that are mainly 

related to the Endoplasmic Reticulum and the Golgi apparatus (all p-values < 0.046), indicating 

that this subset of genes encodes more proteins involved in the processing and the intracellular 

transport of proteins and lipids than expected. Given that the genomic architecture of the HLA 

region is characterised by high gene density and extreme sequence variation as well as extended 

runs of LD (Horton et al., 2004) the first result should be interpreted with caution. There are 
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only two out of 97 polymorphisms regulating at least one HLA gene and the overrepresentation 

signal is mainly caused by rs3135371, a polymorphism that is an eQTL for eight genes in the 

region. For this eQTL the directionality of the expression change correlating with the derived 

allelic state is variable between genes but constant for one gene across tissues. 

One possible confounder for these analyses is that the allele frequency patterns detected by the 

di statistic (Appendix C.35A) can be biased as short-read WGS approaches are known to have 

an elevated error rate for SNPs in the HLA region. This bias leads to an overestimation of the 

reference allele frequency (Brandt et al., 2015). As both alleles observed at rs3135371 and 

rs60438747 at an unusually high population-specific frequency are non-reference it seems 

likely that the highly differentiated loci are genuine. Recent work has shown that clusters of 

eQTLs are part of HLA haplotypes influencing HLA-wide gene expression (Lam et al., 2017). 

It can be speculated that the non-reference alleles at rs3135371 and rs60438747 belong to HLA 

haplotypes that are much more common in the relatively understudied Southeast Asians and 

Siberians than in other parts of the world. The resulting differences in the expression of multiple 

HLA class II genes could represent the original selection target leading to the observed patterns. 

A way to prioritise regulatory relationships from the large overlap found is to consider those 

eQTLs affecting genes that are highly expressed in the particular tissue where the correlation 

between the allelic state of the SNP and mRNA expression was detected. Therefore, a subset 

of eQTL-gene pairs was selected as follows: the gene had to be among the top 5% genes a) in 

terms of total expression in this tissue, and b) in relative terms of how much it is overexpressed 

in it relative to all other tissues using a z-score approach. These analyses were limited to protein-

coding genes. 

This led to a reduction of the dataset to seven variant-gene-tissue combinations (Table 3.16). 

They represent at least five independent underlying signals. This is because rs882856 and 

rs1941406 that both upregulate the expression of POU2F3 are in moderately strong LD in the 

Variant-Based Analysis Set (r2 ~0.58 when all populations were pooled). Furthermore, 

rs269868 influences both DUOX1 and DUOXA1 that are arranged head-to-head, i.e. on opposite 

DNA strands. These two genes are part of a system that is crucial for thyroid hormone synthesis  

and  only functional if both are expressed (Grasberger and Refetoff, 2006). Therefore, they are 

best considered as a transcriptional unit.
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Table 3.16: Overlap of variant-based selection tests and cis-eQTL from GTEx V7. For this subset of variants, the gene is strongly and specifically expressed in the tissue the 
gene-variant relationship was highlighted in (top 5% of protein coding genes in that tissue in absolute as well as relative terms). Furthermore, the raw p-value for a t-test 
between the respective variant and the expression of the target gene (nominal P) and the normalised regression coefficient (slope) for a simple linear regression of the 
genotype at a respective site and the expression of the target gene are given. For the latter a positive value indicates an increase in gene expression with the number of derived 
alleles an individual carries, a negative value designates a decrease respectively. Abbreviations: anc – ancestral, Chr – chromosome, der – derived, dist – distance, Pop – 
Population, Pos – Position, Tss – transcription start site. Translation impacts were inferred from Ensembl v75 and are abbreviated as follows: DOWN- downstream gene 
variant, IN – intronic, INTER- intergenic, MIS – missense, NC – non-coding transcript variant, NC.EX – non-coding transcript exon variant, STG – stop gained, UP – 
upstream variant. Short codes for the macro-groups taken from Table 3.1. 

Chr:Pos Anc/ 
der 

rs_ID Tests Pop Translation 
impact 

Gene Gene function Tissue Tss 
(dist 
from) 

P (nomi-
nal) 

Slope 
(der) 

1:152323132 

 

G/T rs12568784 ΔDAF SeM, SeI MIS, STG, 

IN, NC 

CRNN mucosal/epithelial im-

mune response (tumour 

suppressor for oeso-

phageal cancer); epi-

dermal differentiation 

oesophagus 

mucosa 

-63607 3.06*10
-13 

-0.22 

9:33469427 G/A rs10813983 Di WSi NC.EX, IN, 

UP, DOWN 

AQP3 water channel protein oesophagus 

mucosa 

21818 9.67*10
-12 

-0.33 

11:66753650 

 

G/A rs11227639 Di NSi, WSi INTER ACTN3 part of sarcomeric Z 

line; affects athletic 

performance 

skeletal  

muscle 

439784 3.61*10
-10

 0.40 

11:120107411 

 

G/A rs882856 ΔDAF diffused MIS, UP POU2F3 keratinocyte 

differentiation 

skin (supra-

pubic, not 

sun-exposed) 

62 4.12*10
-6 

0.15 

11:120141165 

 

A/G rs1941406 Di WEu IN, UP POU2F3 keratinocyte 

differentiation 

skin (supra-

pubic, not 

sun-exposed) 

33816 5.84*10
-11 

0.22 

15:45392075 G/A rs269868 ΔDAF all non-

Africans 

MIS, NC.EX, 

DOWN 

DUOXA1 activator of DUOX1 thyroid -30055 5.31*10
-6

 -0.29 

15:45392075 

 

G/A rs269868 ΔDAF all non-

Africans 

MIS, NC.EX, 

DOWN 

DUOX1 oxidase (thyroid 

hormone synthesis and 

antimicrobial defence) 

thyroid -30062 2.58*10
-8 

-0.37 
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Perhaps the most remarkable finding is rs11227639, an intergenic variant affecting the 

expression of ACTN3 in skeletal muscle. It is located 440 kb downstream from the transcription 

start. The derived (A) allele at this site causes a higher expression of ACTN3 in the GTEx 

samples (Figure 3.18). DAFs of more than 70% were observed in Northeast and West Siberians 

relative to a global DAF of 18% in non-Siberians (Appendix C.39A). 

To understand the role of rs11227639 as a potential selection target it is necessary to consider 

the biological context. ACTN3 encodes actinin-3, a structural muscle protein linking actin 

filaments that is only expressed in type II fast twitch muscle fibres. The role of this gene has 

been well characterised as it contains the wide-spread LoF mutation rs1815739 for which ca. 

18% of the world population are homozygous (MacArthur et al., 2007). The functional ancestral 

allele at this site has been associated with increased explosive power performance in the general 

population as well as elite athletes (Moran et al., 2007; Eynon et al., 2013). 

Studies on animal models and human muscle biopsies have linked this SNP to a variety of 

changes in muscles (Lee et al., 2016). These include differences in cross-sectional area, which 

is increased when the functional allele is present (Broos et al., 2016) and several metabolic  

 

Figure 3.18: Normalised gene expression levels in GTEx V7 for all three possible genotypes at rs11227639. 
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properties such as the relative importance of anaerobic vs aerobic energy generation 

(MacArthur et al., 2007, 2008). Appendix C.40 gives an overview of the consequences of higher 

ACTN3 expression, i.e. when the gene is functional and potentially influenced by additional up-

regulatory variants such as rs11227639. 

The LoF variant rs1815739 has in the past been highlighted as target of natural selection in non-

Africans in general (MacArthur et al., 2007; Amorim et al., 2015) and in groups like the Kalash 

from Pakistan (Ayub et al., 2015) in particular with the main suggested pressures being scarcity 

of food resources and cold climate (Friedlander et al., 2013). 

There should be an epistatic relationship between rs1815739 and rs11227639, i.e. the effects of 

the upregulating mutation can only manifest when at least one functional copy of ACTN3 is 

present. The rs1815739 mutation was not highlighted in section 3.2.7 as it was excluded from 

the IVA analyses, however it was included in the VCF files. Intriguingly, the Northeast and 

West Siberian macro-groups have the highest non-African frequency of the functional allele at  

 

Figure 3.19: LD for Northeast Siberians between 66.3 and 66.8 Mb on chromosome 11. The upper half of 

the triangle shows D´, the lower half r2. The upper dot marks rs1815739 and the lower rs11227639. Values 

of the LD metrics from 0 to 1 are indicated by a colour bar with increasing intensity from white to yellow 

to red for higher values. 
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rs1815739 (Appendix C.39A). For Siberians and South Americans, the frequency of the 

functional allele at rs1815739 at the macro-group level correlates well with the presence of the 

upregulating allele at rs11227639 (r = 0.94). This relationship is also detectable among Siberian 

subgroups (r = 0.8, groups with n<5 were excluded) (Appendix C.39B). To further examine 

this potential epistatic relationship LD patterns between rs1815739 and rs11227639 for 

Northeast and West Siberians were analysed in WGS data. LD is almost non-existent for West 

Siberians (r2 = 0.03, D´ = 0.24) but high (r2 = 0.63, D´ = 0.79) for Northeast Siberians (Figure 

3.19). 

To test whether this amount of LD is unusually strong for two SNPs with the respective 

frequencies of rs1815739 and rs11227639 that are ~426 kb apart in Northeast Siberians LD was 

calculated for this population across the whole genome binned into 1-Mb windows. From each 

window one pair of SNPs fulfilling these conditions was drawn randomly, yielding a total of 

2,682 SNP pairs. 

Compared to this distribution the r2 between rs1815739 and rs11227639 had an empirical p-

value of 0.016, i.e. the vast majority of SNP pairs from randomly chosen windows exhibit lower 

LD (Figure 3.20). The potential case for selection in Northeast Siberians is further supported 

by the iHS statistic, where the window rs11227639 lies in (chr11:66.6-8 Mb) also reaches 

genome-wide significance (p = 0.012) (Appendix C.41). Without further functional analyses 

and/or fine-mapping of the signal the evidence presented here is suggestive of positive selection 

on the cis-eQTL rs11227639 in Northeast Siberians but not conclusive. The main reason is the  

 

Figure 3.20: Genome-wide distribution of r2 values for randomly drawn SNP pairs of the same frequency 

and distance as rs1815739 and rs11227639 in Northeast Siberians. A dotted red line shows the r2 between 

these two variants. 
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regulatory signal as well as the pattern of population differentiation are shared across tightly 

linked loci (Appendices C.42-C.43). In consequence, seven SNPs have an r2 ≥ 0.5 in GTEx 

genotype data with the potential selection candidate rs11227639; these loci are also tightly 

linked in the Northeast Siberians (Appendix C.44). 

One approach to make this signal more precise is incorporating information on regulatory 

epigenomic markers. Regulatory DNA sequences are known to be co-located with open 

chromatin regions where nucleosomes are removed and/or destabilised (Tsompana and Buck, 

2014). Therefore, these regions are accessible to DNase I. Information on such DNase I 

hypersensitive sites was obtained for psoas muscle based on data from 111 reference genomes 

assembled by the Roadmap Epigenomics Consortium. These were overlapped with rs11227639 

and the surrounding candidate sites as intuitively the true causal locus should lie in an open-

chromatin region. Evidence from fine-mapping analyses suggests that causal loci are more 

likely to be located in these regions (Aguet et al., 2017). This filter reduces the number of 

candidate loci to three including the original candidate rs11227639, the others being 

rs58462309 and rs6591228.
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3.3 Discussion 

 

3.3.1 Effect of methodology on functional variation annotation 

Before the new empirical data presented in this chapter will be contextualised within the current 

understanding concerning the load of deleterious mutations and signals of positive selection it 

is important to consider how sensitive functional annotations, which are crucial for these 

inferences, are to the choice of software and transcript set. 

A comparison of the IVA and VEP approaches applied to 382 worldwide WGS yielded two 

major results. Firstly, VEP classifies an excess of more than 73,000 variants as either exonic or 

splice-site altering that are not reported by IVA. This contributes to an asymmetry in functional 

annotations; most elements in IVA are given the same annotation by VEP but not vice versa. 

The analyses point to three causative factors. The IVA results were filtered more strictly, as the 

remaining sites effectively represent the overlap of Ensembl 75 and RefSeq release 63. 

Furthermore, the RefSeq transcript set, used as reference by IVA, is generally less likely to 

describe a particular variant as exonic or splice-site altering than Ensembl. The reason for the 

latter is that the Ensembl transcript set describes a larger fraction of the genome as protein-

coding and therefore any randomly chosen position is more likely to have a more severe 

functional consequence (Wu et al., 2013). This effect was also observed controlling for the 

choice of annotation software when the VEP inferences using Ensembl and RefSeq were 

compared for chromosome 22. Finally, the IVA algorithm does not report most splice site 

variants, even if they are contained in the source transcript set. Secondly, the overall match rate 

between the two methodologies for exonic and splice-site altering variants is 74.9%. Underlying 

this figure is considerable variation between different variant classes, with the highest 

agreement rate observed for synonymous variants compared to a much lower concordance for 

LoF variants (Table 3.8).  

Both outcomes reported here are mostly consistent with published studies of a similar nature. 

McCarthy et al. (2014) functionally annotated 276 25´ coverage genomes and tested for the 

effect of either transcript set or software tool by fixing the other element. For both analyses they 

obtained exonic match rates of >80%, somewhat higher than reported here where both factors 

varied simultaneously. Furthermore, they note that the transcript set appears to have a larger 

impact on the match rates than the choice of software and that the VEP outperforms other 
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software tools in detecting splicing variants. One limitation of the comparative approach used 

here is that for simplicity only the most severe variant was reported (precedence ranking in 

Appendix C.8). This underrepresents the true biological complexity as many variants can be 

part of multiple transcripts. 

There are also more general issues related to variant annotation, e.g. not all software tools use 

the same definitions for reporting particular variant classes and considerable gaps remain in our 

knowledge concerning the roles of many transcripts. As the terminology becomes more 

standardised due to such efforts as the Sequence Ontology Project (Eilbeck et al., 2005) and 

our representations of the true underlying genomic structure are continually improving, in the 

future the annotations might converge increasingly. This is supported by recent exploratory 

analyses on all possible SNPs and short indels up to a length of 3 bp in the exons and exon-

flanking regions of the CTFR gene. The mutations were generated in silico and different 

variation annotation tools were used on the output. Even before normalisation of effect 

nomenclature the concordance exceeded 95% (Jesaitis, 2017). 

Based on the outcomes described above, if a relatively low number of variants is of interest and 

false positives are potentially costly, a higher level of certainty can be reached if multiple tools 

assign the same annotation to these sites. However, for most of the analyses presented here the 

focus is on more general patterns, i.e. the relative abundance of different variant classes in 

various populations. For this case, as demonstrated for stop-gain variants, the results based on 

annotations obtained from different methods appear to be mostly consistent, especially if 

category definitions match and interpopulation differences are sufficiently strong.  

 

3.3.2 Patterns of deleterious variation and purifying selection 

A significant part of this chapter consists of analyses of the patterns of deleterious variation in 

382 whole genomes from a world-wide sample. It provides a broader geographic coverage than 

most previous empirical explorations of the subject (see, however, Henn et al., 2016). This is 

especially important as following the initial non-African bottleneck changes in Ne (Figure 3.21) 

and various levels of gene flow have interacted to create unique population histories which 

impact the patterns of deleterious variation. 

One of the disadvantages of the dataset analysed here are the sample sizes. Even if summarised 

on a continental level, they are comparatively low, which has been shown to impact the 
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behaviour of population-level summary statistics (Koch and Novembre, 2017) as a considerable 

fraction of rare variation is not captured.  

 

Figure 3.21: Plot of Ne over time for different groups in the Variant-Based Analysis Set estimated from 4 

diploid genomes with MSMC. Both axes are logarithmic. This graph only includes continental groups 

containing at least one population for which 4 genomes were sequenced. If there were multiple such 

populations, the values were averaged for the continental group. The time scale was obtained assuming a 

generation time of 30 years and a mutation rate of μ = 1.25*10-8 bp−1 generation−1.  Short codes for the 

macro-groups taken from Table 3.1. 

Here, many findings concerning the differences in patterns of genomic diversity between 

different variant classes and/or population groups are recapitulated. On a global level a 

significant shift towards rare variation compared to synonymous variants is observed for a wide 

range of putatively functional/deleterious mutations, including missense, nonsense, broader 
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LoF, different CADD score cut-offs and those contained in the HGMD database. This is 

consistent with previous studies (Hughes et al., 2003; The 1000 Genomes Project Consortium, 

2010) and the predicted effect of purifying selection. 

One key observation from previous studies on the subject is the higher proportion of non-

synonymous and/or deleterious mutations among all exonic sites in non-Africans (Lohmueller 

et al., 2008; Peischl et al., 2013; Lohmueller, 2014b). This finding is reproduced here with two 

slightly different summary statistics (per-individual ratios averaged over a macro-group vs per-

macro-group ratios calculated on total site counts) and is found to be mainly driven by missense 

variants (Table 3.6). Three non-exclusive explanatory mechanisms have been proposed. The 

first is exponential population growth in recent times causing an influx of new mutations. As 

there are more possibilities for non-synonymous changes compared to synonymous changes in 

coding regions the majority of these changes are non-synonymous and selection would not have  

enough time to purge these, despite its power increasing with higher Ne (Lohmueller, 2014b). 

In other scenarios, this increase is a consequence of the range expansions out of Africa. The 

extreme strength of drift on the wave front would allow either standing or novel deleterious 

mutations to behave approximately like neutral variants and therefore reach higher frequencies 

(Peischl et al., 2013; Peischl and Excoffier, 2015). A bottleneck could cause a similar outcome 

(Lohmueller et al., 2008). In the first case the differences would be mainly driven by rare 

variation, whereas in other models common variation would also contribute. 

The summary statistics for the proportion of missense/non-synonymous mutations are not 

correlated with the harmonic mean of Ne over the last 5,000 years obtained with MSMC (Figure 

3.2) or population growth over the last 20,000 years. This appears to contradict the simulation 

studies (Lohmueller, 2014b) that suggested recent population growth as the main cause for the 

relative excess of non-synonymous mutations in non-Africans. However, it is possible to 

reconcile these results. Firstly, as mentioned above the dataset analysed here is underpowered 

to fully assess the contribution of rare variants. Secondly, the accuracy of MSMC has been 

shown to decline for very recent population history. By the retrieval of Ne using MSMC on 

simulated data it was verified that when (as is the case here) eight haploid genomes are used 

the method is reliable until ca. 2 kya (Schiffels and Durbin, 2014). 

Furthermore, the relationship between recent growth in Ne and the proportion of non-

synonymous variants might follow a logarithmic model. This is supported by Lohmueller 
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(2014b) who found that this statistic is vastly different for simulated non-expansion vs 10-fold 

expansion scenarios but plateaus quickly when higher magnitudes of growth are assumed. In 

addition, Northeast Siberians, the only non-African group that did not experience rapid 

population growth in the timeframe that can be reliably reconstructed by MSMC (Figure 3.21) 

have a non-synonymous proportion that is essentially indistinguishable from that of Africans 

(Figure 3.2, Appendix C.13). 

Overall, the analyses presented here indicate that the proportion of non-synonymous variants is 

not linearly related to recent population growth and that the latter is unlikely to be the only 

factor underlying global variation of this statistic. At least part of the effect appears to be driven 

by common variation which is further supported by simulations confirming that even for very 

small sample sizes non-Africans have a higher non-synonymous proportion (Koch and 

Novembre, 2017). 

Another summary statistic for allele frequency patterns, the DAF spectrum, was generated for 

six different variants classes (synonymous, missense, stop-gain, CADD20, CADD30 and HC 

LoF from LOFTEE) and for all 14 macro-groups normalised to the sample size of the smallest 

group. The CADD score allows for stratification of variants by approximate mutational effect 

sizes. This is supported by the negative correlation of a variant’s CADD score and its DAF 

(Kircher et al., 2014, also Table 3.11). Furthermore, assuming a CADD score of 0 represents 

neutrality a range of demographic models can be fit to the SFS for each subsequent CADD 

score bin using an ML approach. The best-fitting models for increasingly severe CADD scores 

include monotonically increasing negative selection coefficients (Racimo and Schraiber, 2014). 

Here, different CADD thresholds are uniformly applied across all genes. This is a 

simplification, as “true” biological deleteriousness thresholds likely vary considerably between 

genes as recently demonstrated by Itan et al. (2016) based on CADD scores assigned to disease-

associated mutations in different HGMD-listed genes. 

Two limitations of CADD should be briefly touched upon here. Firstly, as a general problem, 

also associated with selection detection methods, reduced diversity that correlates with high 

CADD scores can result from neutral forces, e.g. variation in local mutation rates and GC-

biased gene conversion. However, it has been shown that the negative correlation of CADD 

with DAF holds when stratifying for related genomic features such as GC and CpG content 

(Kircher et al., 2014). Secondly, CADD exhibits a reference-bias, i.e. a site where the reference 
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is derived is more rarely called as deleterious compared to a site where the reference is ancestral. 

While for the CADD this bias is less severe than for SIFT and PolyPhen-2 it still results in an 

underestimation of the total number of deleterious variants in non-Africans, as they have a 

higher DAF at sites where the reference is derived (explored in more detail in Appendix C.45). 

For missense and CADD20 variants, the majority of which are likely mildly to moderately 

deleterious, there is a significant rightward shift of the DAF spectra for non-Africans relative 

to Africans across all possible comparisons (Tables 3.4, 3.11, Figure 3.15). Among non-

Africans most pairs exhibit significant differences in the spectra for both variant categories 

unless their population split occurred recently. However, it should again be stressed that 

phylogenetic relatedness as such is not causative but rather a similar Ne trajectory. The reported 

shift towards more common moderately deleterious variation in non-Africans confirms earlier 

studies (Lohmueller et al., 2008; Fu et al., 2014b; Henn et al., 2016). In the literature, this 

pattern has most often been explained as resulting from (serial) bottlenecks (Lohmueller, 

2014a) and/or spatial range expansions (Peischl et al., 2013). This observation was also 

replicated when pooling all non-African macro-groups together (Figure 3.3), consistent with 

theoretical expectations there is still more population structure in the African than in the non-

African sample. 

Other variant classes, such as stop-gain (IVA), HC LoF and CADD30, exhibit considerably less 

differentiation with regards to the regional DAF spectra (Appendices C.24-C.25, Figure 3.14). 

Consistent to what is observed for more weakly deleterious variants there is a shift of Africans 

towards rare variation compared to most East Eurasian groups and an excess of high frequency 

derived deleterious variants in Andeans (Northeast Siberians exhibit a similar but quantitatively 

weaker pattern), especially relative to West Eurasians and Africans. 

The most plausible explanation for this observation is that according to theoretical expectations 

the fate of new deleterious mutations in an idealised population of constant size depends on Ne 

and s: if |4*Ne.*s| >> 1 then selection primarily determines the observed alleles frequencies, if 

the product |4*Ne*s| becomes smaller genetic drift increases in importance (Kimura, 1994). 

Many mutations in the CADD30, HC LoF and stop-gain classes are expected to have high 

negative selection coefficients. They should intuitively be disruptive as they often lead to a loss 

of function (see section 3.3.3) and exhibit low global frequencies (Racimo and Schraiber, 2014). 

Therefore, most variants of this type should be uniformly purged in all populations leading to 
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the much more homogeneous patterns observed. A potential criticism of this argument is that 

this approximation only holds under equilibrium conditions. However, recent simulation work 

on non-equilibrium demographies demonstrates that for variants with high selection 

coefficients the associated genetic loads should become comparable for OOA- and non-OOA-

like populations 2000-3000 generations after their split (Gravel, 2016). 

The number of CADD20 variants observed in non-Africans, which declines with distance from 

Africa (Figure 3.9, Table 3.9), reflects the decreasing diversity when moving away from Africa 

also observed for neutral variation (Prugnolle et al., 2005; Henn et al., 2012a) and agrees with 

patterns reported previously for deleterious variants (Lohmueller et al., 2008; Fu et al., 2014b). 

The generally accepted interpretation of this pattern is that it results from the OOA bottleneck 

(Lohmueller, 2014a). However, the observed differences between East Eurasian groups 

approximately equidistant from Africa hint at the role of subsequent population history, most 

plausibly different trajectories of Ne. It should be noted that different processes can generate 

comparable values of Ne, i.e. the clustering of Middle Easterners and South Asians and their 

high genetic diversity relative to other Eurasians, as previously shown by Melé et al. (2012), 

does not necessarily indicate shared population history.  

For homozygous derived CADD20 sites the sequence of macro-groups can broadly be 

described as reversed compared to that observed for the total number of sites (Table 3.9). Apart 

from the Papuans all-non-Africans show increasing numbers of homozygous derived CADD20 

genotypes with distance from Sub-Saharan Africa (Figure 25), confirming previously reported 

observations (Lohmueller et al., 2008; Fu et al., 2014b; Henn et al., 2016). Most macro-groups 

appear to be significantly differentiated except for a West Eurasian/South Asian cluster and 

some East Eurasian groups respectively (Figure 3.10).  

Intriguingly, Oceanians are very similar to other Eurasians concerning the total amount of 

variants in this class but for homozygous derived loci constitute a distinct group together with 

the South Americans. When the Australians, who are known to be recently admixed, are 

removed the Papuans (n = 6) retain this somewhat counterintuitive pattern. These remaining 

individuals have the highest fraction of homozygous CADD20 loci relative to the total number 

of sites (~0.343). However, they exhibit a higher total site count relative than South Americans 

and Central/Northeast Siberians (this pattern was also observed for all exonic sites, Table 3.5). 
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One possibility is that the well-attested additional pulse of Denisovan admixture into Papuans 

caused their higher diversity accompanied by more homozygous derived sites. The Denisovan 

alleles are estimated to have entered the genome of the ancestors of the Australo-Papuans ~44 

kya (Malaspinas et al., 2016). As Denisovans had a higher baseline homozygosity than human 

modern populations (Meyer et al., 2012) these alleles could be reflected as additional 

homozygous derived variants unique to Papuans. However, observations from the Kosipe and 

Koinanbe might not be generalisable, as recent large-scale genomics papers (Malaspinas et al., 

2016; Bergström et al., 2017) have found a high amount of diversity within Papua New Guinea. 

The main focus in the following will be on homozygote CADD counts as there is a negative 

relationship between s and the dominance coefficient h and therefore on average deleterious 

mutations are likely to be at least partially recessive. Support for these statements comes from 

a) experimental studies examining the phenotypic consequences of deleterious mutations in 

model organisms (Agrawal and Whitlock, 2011; Manna et al., 2011; Ayadi et al., 2012), b) the 

observation that ~58% of known Mendelian diseases in humans are recessive (3,077 out of 

5,317 listed in the online database OMIM as of April 2019, see Lee et al., 2019), and c) recent 

work using the SFS of mutations observed in outcrossing and selfing species of Arabidopsis to 

estimate h and s jointly (Huber et al., 2017). 

Under a simple linear model, distance from different African locations explains ca. 2/3 of the 

global variance in per-individual derived homozygote counts for the moderately deleterious 

CADD20 variants (Table 3.10). This value is slightly lower than that reported here for 

synonymous variants (if only ancestral = reference sites are considered). This also applies when 

it is compared to broadly similar analyses that regressed quantities related to neutral genome-

wide heterozygosity/homozygosity against geographic distance from Africa where r2 was 0.75-

0.85 (Prugnolle et al., 2005; Li et al., 2008; Pemberton et al., 2012). To provide a proxy for 

potential differences in post-OOA population history estimates of Ne (harmonic mean between 

5 and 65 kya) from MSMC were included in the regression model. For 6/8 scenarios 

(synonymous, CADD20 and HC LoF variants) the inclusion of this parameter results in a 

significant improvement of the amount of explained variation. For the best fit (Ne + distance 

from Windhoek) 91% of all variation in synonymous homozygous derived genotypes could be 

explained. 
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For CADD30 as well as for HC LoF variants most macro-groups are not significantly 

differentiated from the others concerning derived homozygotes. Exceptions are the Africans 

and the Native Americans (to a lesser extent also the Oceanians, island Southeast Asians and 

North Siberians) with the directionality of effects as expected based on their distance from Sub-

Saharan Africa (Figures 3.10-3.11, Table 3.9). Correspondingly, the fit of the regression models 

is worse and for both variant classes the best models explain ca. 40% of the global variation 

(Table 3.10).  

One likely cause for this observation is again that on average the selection coefficients for 

CADD30 and HC LoF variants are considerably more negative than for CADD20 variants, 

reducing the importance of neutral forces. In contrast, the latter determine most of the diversity 

observed for CADD20 variants. Simulation studies suggest that in addition to the serial 

bottlenecks occurring during the OOA migrations explicitly incorporating range expansions 

(Peischl et al., 2013) helps to explain how moderately deleterious mutations behave 

approximately neutrally and therefore reach higher frequencies which contribute to the 

observed increase in homozygote counts away from Africa. 

The lower degree of geographical stratification for CADD30 and HC LoF variants has here 

been interpreted in terms of purifying selection. However, it could also result from the lack of 

power to find differences between macro-groups due to lower total variant counts in these 

categories. A resampling procedure was applied to correct for this confounding effect 

(Appendix C.46). Its outcomes show that for CADD30 the slope of the increase in derived 

deleterious homozygotes with distance from Africa is considerably flatter than for CADD20, 

i.e. at least part of the effect is caused by uniformly strong purifying selection. Intriguingly, for 

HC LoF geographical differentiation is almost as marked as for CADD20 when differences in 

the size of variant classes are corrected for. However, the low per-genome totals still suggest 

that HC LoF variation is constrained by natural selection. 

The RX/Y statistic, which quantifies differences in the number of derived alleles between 

populations under the hypothesis that genetic variation acts additively, was examined to provide 

additional insights. There are no detectable differences with regards to this statistic in any of 

the non-African groups analysed relative to the Africans if missense mutations were assumed 

as a proxy for deleterious variants (Table 3.12) consistent with previous studies (Simons et al., 

2014; Do et al., 2015).  
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One caveat for this interpretation is that synonymous sites are postulated to be neutral which 

might not hold for all variants in this class. Firstly, theoretical approaches attempting to infer 

the DFE based on the SFS have found that synonymous variants have higher average values of 

s than intergenic sites (Racimo and Schraiber, 2014). Secondly, case studies from model 

organisms as well as humans suggest that some synonymous variants can have considerable 

fitness costs and are causally associated with diseases (Brest et al., 2011) . Mechanisms that 

have been proposed relate to the stability of secondary mRNA structure and the regulation of 

translation (Knöppel et al., 2016). However, synonymous variants as a class should still be a 

reasonable proxy for neutrality in practice. The regression analyses in Table 3.10 also support 

this as synonymous variant counts can almost perfectly be predicted by “neutral” explanatory 

variables. This is probably because of the low Ne of our species for most of its recent history 

compared to many other taxa. 

In conclusion, it was confirmed that the number of deleterious homozygotes is sensitive to 

recent population history as suggested by Simons et al. (2014) as explicitly incorporating post-

OOA Ne based on MSMC inferences improved the amount of explained variance of multiple 

regression approaches for most deleterious variant classes (Table 3.10).  

The relationship between another parameter of interest, the fraction of non-synonymous sites 

on a macro-group level, and recent Ne does not appear to be linear (Figure 3.2). In this context, 

it is tempting to speculate that the high value for this statistic in Andean Native Americans 

results from additional range expansions their ancestors underwent which could be tested with 

more empirical data and spatially explicit modelling (Peischl et al., 2013). The latter 

observation highlights a more general point. Genomic data from non-Africans with 

demographic histories that are very different from those experienced by well-studied 

references, especially if these include extreme bottlenecks and/or range expansions, are of great 

importance for examining theoretical predictions about the impact of population history on 

deleterious mutation load. 

The analyses presented and discussed here confirm that if most deleterious variants act 

additively the differences in population histories between extant modern human groups are not 

extreme enough to cause robustly detectable differences in genetic load (Simons and Sella, 

2016). However, if a considerable fraction of these loci is recessive, as recent research suggests, 

populations with low long-term Ne exhibit a moderate increase in genetic load. Most of this 



 

-184- 

 

 

 

excess derives from moderately, not extremely, deleterious variants. Geographical stratification 

is less pronounced for the latter (Appendix C.46) indicating that analogous results from Henn 

et al. (2016) obtained using the GERP score are robust if the CADD is applied.  

A much-debated concept is this context is the “efficacy of [purifying] selection” (Fisher, 1930), 

which is difficult to separate from the role of drift for multiple reasons. Firstly, if the per-

generation change in the frequency of deleterious alleles is considered then drift, selection and 

mutational forces always act jointly on this quantity. Secondly, population genetic theory and 

simulations suggest that selection and drift modulate each other through their past effects on 

the allele frequency spectrum (Gravel, 2016; Koch and Novembre, 2017). Therefore, in 

agreement with Lohmueller (2014b), here only their joint effect was considered, most directly 

through the RX/Y statistic. More practically, studies which have formally analysed the 

contribution of selection to genetic load note that for the relevant time frames it is often 

“overwhelmed” by genetic drift except for extremely deleterious mutations (Do et al., 2015; 

Gravel, 2016). 

The impact of potential mutation load differences on the disease burden of an individual or a 

population is currently unclear. While generally the deleteriousness and pathogenicity of a 

variant should be correlated (Kircher et al., 2014; Shendure and Akey, 2015) this relationship 

is not straightforward. Firstly, there is experimental evidence suggesting that mutations under 

purifying selection over long-term periods can have no detectable adverse effects on the 

phenotype, especially for moderate to small selection coefficients (Miosge et al., 2015). Their 

effects on evolutionary fitness might be very subtle or only manifest under certain 

environmental conditions. Secondly, even if a variant is pathogenic in some individuals there 

is a wide range of factors modulating the relationship between genotype and phenotype known 

as “modifier genes” (see section 3.3.4). Besides some well-studied Mendelian disease examples 

that can have highly population-specific incidence rates there is some evidence that the burden 

of (rare) predicted deleterious variants can explain a fraction of intrapopulation variance in 

complex pathologies (see the Alzheimer’s example in section 1.6.2). 
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3.3.3 Phenotype-specific effects of purifying selection 

Here, the patterns of (deleterious) variation have mostly been discussed in the context of how 

they relate to drift and purifying selection as genome-wide forces without a phenotype-related 

biological context. The RX/Y was however also calculated for different groups of genes 

associated with variation in particular traits. The most pervasive signal is observed for genes 

related to pigmentation. The Africans exhibit a significant reduction of derived missense 

diversity in these genes relative to all non-Africans except Australo-Papuans (Table 3.12). This 

is consistent with earlier studies demonstrating strong functional constraint of these genes in 

Sub-Saharan Africans, e.g. MC1R where the allelic combination dominant in these groups 

ensures very effective melanisation (Harding et al., 2000). The main reason for this observation 

is thought to be selection for dark skin pigmentation at low latitudes (high UV radiation) due 

to a range of selection pressures such as folate loss resulting from photolysis (Jablonski and 

Chaplin, 2000) and skin cancer (Greaves, 2014). Recent efforts to generate large-scale genotype 

and skin pigmentation data from a wide range of Sub-Saharan African populations have hinted 

that the pattern of reduced diversity observed here is not necessarily generalisable to all 

Africans (Crawford et al., 2017). Furthermore, the same study found that many variants 

associated with dark pigmentation in Australo-Papuans are IBD with Africans. While this is not 

further explored here, it seems plausible that this contributes to them being not significantly 

differentiated from the West/Central African group according to RX/Y. 

The signal of reduced derived diversity in Africans relative to all non-Africans (reaching the 

significance threshold for ca. 50% of all comparisons) concerning genes related to the viral 

immune response is more difficult to interpret. The most likely and parsimonious explanation 

would be stronger purifying selection acting across this gene class in Africans. This seems 

plausible given that this mode of selection has been demonstrated for many immunity genes 

(Quintana-Murci and Clark, 2013) and that tropical environments are rich in viral pathogens. 

The theoretical alternative would be balancing selection, which has been demonstrated for some 

immunity genes, most prominently those located in the HLA region (DeGiorgio et al., 2014), 

causing an excess of derived missense polymorphisms in non-Africans. As balancing selection 

is thought to mostly act in longer evolutionary timeframes (Siewert and Voight, 2017) it seems 

likely that this signal would have been originally caused by factors affecting the common 

ancestral group from which all non-Africans descend. This could be tested by computing local 

TMRCAs across the whole genome for all individuals and checking whether the observed 



 

-186- 

 

 

 

excess of non-African diversity in these genes is primarily caused by regions with old TMRCAs 

which would indicate balancing selection. 

 

3.3.4 LoF and Mendelian disease-related variation 

Each individual in the Variant-Based Analysis Set carries on average 97 variants classified as 

HC LoF SNPs comprising 23 homozygotes (Table 3.9). Compared to other studies accessing 

LoF variation based on high coverage exome or WGS data this value is somewhat below the 

usually reported range of 100-150 LoF variants (Table 1.2). The main cause of this difference 

is likely that small frameshift indels were not considered here. This becomes apparent when 

different types of LoF variants are assessed separately, e.g. the SGDP (Mallick et al. (2016) 

reported an individual mean of 55.2 stop-gain variants which is similar to the value of 62.3 

(Appendix C.19) obtained here with the VEP+LOFTEE plugin, if stop-gain variants inferred 

from IVA are considered the total of 56.1 (Table 3.5) is almost identical to the SGDP data. 

Other underlying factors for differences between studies are the choice of transcript sets and 

the effect-predicting software, where the concordance is particularly low for splice-site-

disrupting mutations (see section 3.2.2). Furthermore, there is variation in the strictness of the 

downstream filtering after the initial annotation as LoF, e.g. the LOFTEE pipeline used here 

accounts for the position of LoF in the CDS and whether a splice-site affecting variant occurs 

in a canonical splicing context. 

Genes containing at least one homozygous LoF variant (n = 352) were enriched for having one 

or more tandem duplicates and depleted for genomic elements contributing to the development 

of anatomical structures (Appendix C.27). This reflects theoretical expectations and confirms 

prior work (MacArthur et al., 2012) according to which many genes affected by homozygous 

LoFs in viable adults should be (partially) redundant and functionally non-essential. 

The finding that genes coding for metal ion-binding proteins are overrepresented among 

genomic elements carrying homozygous LoF is, however, unexpected given the key role that 

the former play in many physiological processes (reviewed by Finney and O’Halloran, 2003). 

One possible confounder could be CDS length. However, this subset of genes is not 

significantly longer than all other genes carrying homozygous LoF (Lhomozygous_lof_metal ~2038 

bp vs. Lhomozygous_lof_rest ~2022 bp, two-sample-t-test, t = -0.07814, p = 0.9378).  
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The largest functional subgroup among this category are zinc finger (ZNF) proteins, 20/107 of 

the corresponding genes code for molecules containing this motif. A study of WGS data from 

Danish individuals found that 4.1% of all LoF variants detected were located in ZNF genes 

(Besenbacher et al., 2015). This and the results presented in this chapter could partly be driven 

by the abundance of ZNFs: they are found in 3% of all human genes (Klug, 2010). Therefore, 

an effect of comparable size is more easily observed than for a very small group. Functionally, 

ZNF proteins are the most abundant type of eukaryotic transcription factors due their DNA-

binding properties, even though they also interact with RNA and proteins (Gamsjaeger et al., 

2007).  

Work on yeast has shown that ZNF proteins encoded by genes which are paralogs within a 

species’ genome often share a common core set of binding sites besides more specialised 

functions (Siggers et al., 2014). This has been interpreted as support for a “modular” model of 

transcription factor evolution where these specialised sites evolve while the core sites ensure 

redundancy for essential functions in gene transcription. There is currently no evidence for this 

mechanism in humans, however it has been shown that ZNF proteins have undergone 

accelerated evolution on different human and non-human primate lineages (Nowick et al., 

2011). It is tempting to speculate that the excess of LoF variation observed in ZNF proteins is 

a by-product of redundancies allowing for variation that adaptive evolution can act on and is 

also buffering against purifying selection. This is furthermore supported by the observation that 

11/20 of these ZNF proteins are part of (often large) groups of duplicated genes according to 

the Duplicated Genes Database. In conclusion, it seems possible that ZNF proteins exhibit 

redundancies that at least partially explain the overrepresentation of metal ion-binding proteins 

among genes carrying homozygous LoF. 

These homozygote HC LoF genotypes were then filtered by frequency and their presence in 

published datasets. The resulting set consists of 29 rhLoF variants each located in a different 

gene (Appendix C.30). These genes have not previously been described as knockouts in healthy 

adults. Most of them are found in Central Siberians, Northeast Siberians and the ISEA group. 

This result is in line with predictions that besides populations practicing endogamy (Saleheen 

et al., 2017) isolated small Ne groups that are geographically distant from Africa should be the 

best source for detecting previously undescribed rhLoF variants due their elevated 

homozygosity (Kaiser et al., 2015). 
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A general caveat concerning the reported rhLoF variants is whether they truly lead to a 

functional knockout. The first confounders are problems related to the correct mapping of reads 

and the subsequent functional annotations. Assuming that the quality criteria and the high 

coverage of the data analysed minimise the first issue the impact of adjacent polymorphisms 

that could “rescue” the LoF has not been accounted for here. Saleheen et al. (2017) found that 

this confounder affects ca. 4% of all rhLoF sites. Secondly, experimental validation is necessary 

to prove the absence/strong reduction in the level of the relevant mRNA and the protein. Here, 

it was attempted to cross-check mRNA expression levels of potential heterozygotes for the 29 

rhLoF SNPs in the GTEx dataset. However, unsurprisingly none of these variants was present 

in a heterozygous state in GTEx. Prior work on rare LoF variation in individuals for whom 

expression data were generated suggests that more than 2/3 of rare LoFs result in measurably 

lower mRNA levels compared to the reference allele (Rivas et al., 2015). Therefore, it seems 

plausible that at least a fraction of the rhLoFs reported here represent true LoF cases. 

The mean number of 16.3 HGMD-DM sites per individual (Table 3.13) is lower than the count 

of variants of this kind observed in phase 3 of the 1000 Genomes Project, where on average 19 

were observed (two-sample-t-test, t = -12.316, p < 10-15, data retrieved from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/functional_annotation

/filtered/functional_categories_summary_per_individual.20150208.txt). While this outcome is 

statistically significant, given the discrepancies in sample composition and sequencing 

technologies (Illumina vs Complete Genomics) the relatively small magnitude of the difference 

indicates that the general patterns are replicable across WGS datasets. 

The total HGMD SNP count correlates very well with whole-genome heterozygosity, however 

there is a remarkable depletion of homozygous genotypes in Europeans and closely related 

populations. To contextualise this finding, it is important to recall that HGMD contains variants 

inferred from GWAS on highly polygenic traits. A systematic survey of all studies published 

in the GWAS Catalog found that as of 08/2016 81% of all participants were of European descent 

(Popejoy and Fullerton, 2016). Recently, Manrai et al. (2016) and Martin et al. (2017) 

demonstrated the consequences of this for inferring the heritable risk component of traits with 

monogenic and more complex genomic architectures respectively. Predictions of height, 

diabetes type II risk and other phenotypes for non-European populations using a polygenic 

score approach showed marked directional inconsistencies with anthropological and 

epidemiological data.  
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As disease-related variation is much better characterised in Europeans than in other global 

superpopulations, the excess HGMD homozygotes in non-Europeans reflects most likely false 

positives and any genuine biological differences are confounded by this effect. Besides the false 

positives, the HGMD totals are likely also lowered due to false negatives as they miss many 

rare and therefore often population-specific deleterious variants. Several factors contribute to 

this, firstly GWAS studies until very recently lacked the power to detect the effect of rare 

variants and secondly, as already described, many non-European populations remain 

underrepresented in medical genomics. 

Many traits listed in HGMD are polygenic and/or of limited penetrance. Therefore, the 

individuals analysed in this chapter were scanned for a more restrictive panel of SNPs causative 

for recessive Mendelian childhood disorders (Chen et al., 2016). Almost all the 32 individuals 

exhibiting such variants carry them in a heterozygous state and the total carrier burden of 

Mendelian disease equals 0.086 alleles per individual which is much lower than previously 

reported (Bell et al., 2011). The divergence can mostly be explained by the filtering for 

clinically verified high penetrance variants by Chen et al. and the already discussed European 

study bias. If only Europeans are considered the carrier burden rises to 0.193 alleles per 

individual which is similar to the value of 0.17 reported for 4,313 exomes of European 

Americans under similarly strict filtering criteria (Tabor et al., 2014). In conclusion, based on 

HGMD homozygotes the relative disease burden in non-Europeans is likely overestimated 

while using a stricter Mendelian disease panel has the opposite effect. 

 

3.3.5 A homozygous LoF mutation in the CFTR gene  

The homozygous genotype found in the individual Murut13 has been recorded previously in a 

heterozygous state as rs77646904 in healthy individuals (frequency of 0.08% in ExAC East 

Asians). While HGMD describes the variant as disease-causing ClinVar (Landrum et al., 2016) 

currently lists it as of uncertain significance (Accession RCV000046339.3 as of 02/09/2017). 

According to the latter, the current evidence is conflicting. In support of its pathogenic status 

are studies where it was recorded in a homozygous state in some affected individuals without 

other known cystic fibrosis-related mutations being present, notably for a less severe 

“nonclassic” cystic fibrosis phenotype (Groman et al., 2002). Furthermore, a different missense 

mutation at the same position, a G to T transversion has been determined to be pathogenic, 
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which is also why this site was highlighted by Chen et al. (2016) . Against this it can be argued 

that on the protein level the G>A mutation causes a change from valine to isoleucine that is 

conservative and also found in other mammals for the CFTR protein at a homologous position. 

Without further phenotypic data from the Murut individual in question and/or functional 

evidence regarding the impact of this mutation on the CFTR protein, two scenarios seem 

plausible: i) the mutation does not cause a cystic fibrosis phenotype or a mild atypical version 

or ii) it causes a full cystic fibrosis phenotype in other homozygote carriers, however the Murut 

individual either exhibits somatic mosaicism or other unknown secondary genetic or epigenetic 

modifiers that protect against the disease. The second possibility points to a more general 

problem in the interpretation of deleterious and putatively disease-causing mutations.  

Leaving the absence of phenotypic data aside the predictions based on genetic data are 

necessarily incomplete as all variants were considered in isolation. Differences in the genetic 

background surrounding a causal variant can have a strong impact on how it manifests 

phenotypically. Mostly these background effects are thought to result from modifier genes, 

many of which are hypothesised to be part of interaction networks that evolved to coordinate 

gene activity in space and time (Riordan and Nadeau, 2017). Intriguingly, one prominent 

example for this gene class are expressivity modifiers of the severity of cystic fibrosis (Emond 

et al., 2012; Corvol et al., 2015). 

 

3.3.6 Signals of positive selection 

The primary signature of natural selection explored in this chapter is population differentiation. 

Through the DIND statistic, changes in nucleotide diversity surrounding the putative selected 

sites are also considered.  

The main criticism of the empirical outlier approach applied here is that demographic history 

and heterogeneity in local genomic architectures can generate patterns mimicking those created 

by positive selection (Teshima et al., 2006). Simulations of neutral demographic history have 

been proposed as an approach to correct for this. The details vary depending on the statistic of 

interest, but the general concept is to quantify the fraction of simulation replicates that produce 

outcomes equal to or more extreme than those in the empirical data. False positive rates were 

not explicitly estimated here, however previous studies can provide helpful intuition. 
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Colonna et al. (2014) analysed a subset of empirical outliers with high ΔDAF values among 

911 individuals from the 1000 Genomes Project. They simulated sequence data based on 

established demographic models and obtained high ΔDAF sites defined by the same criteria 

applied to the empirical data. The numbers of high ΔDAF sites were very sensitive to 

underlying assumptions about long-term intercontinental migration rates. As this parameter is 

difficult to estimate Colonna et al. concluded that currently such simulations are not a practical 

tool to estimate the false positive fraction of high ΔDAF sites. Instead they compared the genes 

these highly differentiated sites were located in with a list of previously identified putative 

selection targets. They found that 65% of all protein coding genes containing extremely high 

ΔDAF loci between continents and 30% of such genes that were highly differentiated within 

continents had been reported previously. The first figure can with some caution be taken as the 

approximate lower boundary of true positives for the high ΔDAF missense sites inferred here, 

as most of them cluster by continental groups (Figure 3.17). It is uncertain how relevant these 

estimates are for stop-gain variants given that their geographical differentiation is less clear, 

and the DAF differences are less marked. 

A further demographic factor that can create strong allele frequency differences is population 

substructure. Excoffier et al. (2009) demonstrated by modelling that the FST variance under 

neutrality, which unsurprisingly is almost perfectly correlated with ΔDAF (Colonna et al., 

2014), is considerably higher when strong substructure between the demes of populations is 

present. In addition to variance in between- and within-in population migration rates the already 

discussed effect of range expansions could also increase population differentiation through 

drift. Taken together, this also implies that using a uniform cut-off, i.e. the top 20 ΔDAF sites 

should lead to an enrichment of drifted groups.  

Given the results from previous subchapters, the Northeast Siberians, Central Siberians and the 

ISEA group are good candidates for this and consistent with expectations, they are part of 44/65 

top ΔDAF pairs (Tables 3.14-3.15).  

The ΔDAF approach reproduced well-known examples of natural selection such as missense 

variants in ABCC11, EDAR, MC1R, PRSS53, SLC24A5, SLC45A2 and TLR1 (Table 3.14). 

Broad functional categories for the genes these variants are located in comprise pigmentation, 

immunity, ciliogenesis and motor activity. Whereas the former two can be more easily linked 

to selective pressures (UV radiation and pathogen exposure, Fan et al., 2016) the latter 
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categories are relevant to many phenotypes, e.g. the cilia as organelles are involved in a wide 

range of cellular transport, sensory and signalling processes (Ishikawa and Marshall, 2011). 

Therefore, it would be too speculative to propose underlying selective factors. 

The question whether the nonsense variants highlighted by the ΔDAF represent true instances 

of positive selection cannot be answered conclusively based on the current state of variant 

annotation (Table 3.15). Given that many of the genes they lie in are part of larger gene families 

and that most of them do not lead to NMD it can be speculated that the phenotypic impact of 

the LoF events is likely very limited. This would point towards a scenario where most of these 

variants are selectively neutral and reached population differentiation through drift. In 

concordance with earlier systematic studies on the subject (Yngvadottir, 2008) it can therefore 

be stated that gene loss via stop-gain mutations does not appear to have been a major 

evolutionary force in the recent history of our species.  

However, this does not wholly invalidate Olson’s “less is more hypothesis” as splice-site 

altering mutations, small indels and large deletions were not evaluated. Furthermore, it seems 

possible that gene loss has a macro-evolutionary role in hominids as there many instances of 

lineage-specific gene loss, though its functional consequences are not yet well understood 

(Albalat and Cañestro, 2016). 

In a final step, the outliers obtained from the ΔDAF, di and DIND approaches were 

systematically overlapped with the largest currently publicly available GWAS and eQTL 

datasets to support the interpretation of these signals. A few limitations of the latter 

methodologies and those of the overlap approach used here will be highlighted. Many of them 

apply to both GWAS and eQTL data as the underlying principles of QTL association mapping 

are similar. It should be noted that a considerable fraction of the sites resulting from the overlap 

is non-synonymous which might seem counterintuitive. However, in line with previous studies 

(Ye et al., 2013) these variants were kept as they still can be informative. Firstly, some non-

synonymous mutations might represent genuine eQTLs, the simplest scenario would be a stop-

gain mutation that lowers mRNA levels via NMD. However, there is little empirical evidence 

for this from the high ΔDAF nonsense mutations. The first of the two that are eQTLs for the 

gene they are located in counterintuitively leads to a higher expression (rs34358 in ANKDD1B) 

and while the directionality is consistent for the other (rs1790218 in SLC22A10) it is in LD with 

many other potentially causative loci. A further scenario is strong LD with a genic but non-
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coding regulatory variant, i.e. in a promoter that is the true eQTL and could potentially also 

explain the signal of population differentiation. Finally, the non-synonymous variant could have 

a regulatory function in another transcription context where it falls in a non-coding region. 

The focus of the selection scans on a small number of high frequency SNPs makes it inherently 

more likely that the overlapping GWAS results will be common high effect size variants from 

studies on traits that have a relatively simple architecture.  

A good example for this is rs16891982 in SLC45A2 (Appendix C.36), a major contributing 

factor to eye colour variation (Duffy, 2015), even though there can be interesting secondary 

effects on related traits, e.g. skin cancer risk in case of rs16891982 (see section 3.2.8). However, 

for most complex traits the proportion of variance explained by one single variant is relatively 

small (Visscher et al., 2017). In these cases, methods to detect polygenic selection applied to 

larger sets of variants that explain a significant fraction of heritability (if available) are likely 

more suited as demonstrated for height (Turchin et al., 2012; Mathieson et al., 2015). 

Furthermore, in absence of mechanistic evidence the exact variant highlighted is not necessarily 

the true selection target as the population differentiation signals as well as the relevant trait 

association are often spread across a region due to LD (Appendices C.42-C.43). While the 

signals reported in the GWAS Catalogue are usually lead SNPs, fine-mapping approaches 

suggest that, e.g. for a trait such as autoimmunity only as few as 5% of these variants may 

represent true causal SNPs  (Farh et al., 2014). Furthermore, as already described (see section 

3.3.3) for the GWAS databases currently the majority of individuals included in GTEx are of 

European descent, which is problematic as there likely is considerable interpopulation variation 

in gene expression patterns (Kelly et al., 2017). This also applies for age-dependent patterns, 

the GTEx dataset is biased towards older adult individuals with little data available on earlier 

life history stages (Ardlie and Guigó, 2017).  

A problem specific to gene expression data is the role of trans-eQTLs. Evidence from model 

organisms suggests that they explain a substantial fraction of the genetic contribution to mRNA 

levels (Albert et al., 2017; Osada et al., 2017). Therefore, the 3,946 SNPs that act as trans- and 

long distance intra-chromosomal eQTLs identified from V6 of the GTEx datasets are very 

likely a substantial underestimate relative to the 152,869 cis-eQTLs identified for this stage of 

the project. However, it is difficult to quantify their role on a genome-wide level in humans as 
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the limited size of presently available datasets and the need to account for extreme multiple 

testing both contribute to low statistical power. 

One of the motivations for combining highly differentiated putatively selected loci and cis-

eQTLs was that changes in gene expression have been proposed to play a major role in adaptive 

evolution. Support for the importance of this mechanism comes from studies on model 

organisms such as yeast (Fraser et al., 2010) and also on specific phenotypes in humans, e.g. 

exposure to the pathogen Mycobacterium leprae (Manry et al., 2017). There have, however, 

been relatively few studies examining the systematic overlap of selection signals and eQTL 

data. The two most extensive analyses (Fraser, 2013; Ye et al., 2013) of this nature confirm the 

general pattern of an enrichment of cis-eQTLs among selection targets, however, both of these 

studies report a stronger effect than observed here. 

 

3.3.7 A cis-eQTL upregulating the “speed gene” ACTN3 as potential selection target 

Evidence for positive selection on rs11227639, an upregulating SNP impacting the ACTN3 

gene, in Northeast Siberians was examined based on a different metrics (ΔDAF, iHS, LD with 

the putatively epistatically interacting LoF rs1815739). For this signal to be confirmed in the 

future additional phenotypical evidence will be crucial. Individuals from Northeast Siberian 

groups carrying the upregulating derived allele at rs11227639 (and at least one functional allele 

at rs1815739) should exhibit greater muscularity and improved explosive power performance 

in a dosage-dependent manner mediated by elevated ACTN3 mRNA levels. Should this signal 

be confirmed the causative selective pressures for the greater muscularity could have been 

activity patterns and/or thermoregulation, which both in turn influence many other phenotypes. 

 The biological interpretation of the observed allele frequency patterns at rs11227639 in 

different populations is further complicated by past studies on the common LoF allele for 

ACTN3 at rs1815739. Molecular changes in skeletal muscle cells of Actn3 knockout mice, in 

particular increased cellular leakage and pumping of Ca2+ coupled with the elevated activity of 

mitochondrial oxidative enzymes, could have a possible thermogenic effect as they are similar 

to those of mice exposed to prolonged cold (Bruton et al., 2010). This has been interpreted by 

some authors (Head et al., 2015) as evidence supporting a scenario where the higher frequencies 

of the LoF allele at rs1815739 in Asians and Europeans relative to Africans indicate an adaptive 

benefit of this LoF phenotype in cold environments. The high frequencies of the functional 
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allele and putatively increased expression of ACTN3 in Northeast and West Siberians, who live 

in very cold environments, as observed here (Appendix C.39) contradicts the role of the LoF 

allele at rs1815739 as a cold adaptation, at least in recent evolutionary times. 

A contrasting interpretation of the high frequencies of the functional rs1815739 and the 

upregulating rs11227639 in some Siberian groups would be that these polymorphisms together 

lead to increased muscularity, as has been demonstrated for rs1815739 in isolation (Broos et 

al., 2016). This greater muscularity increases body volume. Following Bergmann’s rule, which 

has been confirmed for modern humans in the northern hemisphere (Foster and Collard, 2013), 

this results in a reduction of the volume to surface ratio that in turn decreases heat loss. Future 

physiological work will be needed to examine whether and how these apparently contradictory 

effects at the cellular and organismal level affect the overall heat balance. 
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4. Analyses of rare variant sharing patterns 

 

This chapter explores the distribution of rare variants in a global dataset of 447 whole genomes. 

Comprehensive surveys of rare variation from large-scale WGS studies have only become 

available in the last few years. They have revealed an excess of such variants below an MAF 

threshold of <1% in the respective samples, in which they constitute the majority of the SFS, 

compared to older empirical data and theoretical expectations. This implies accelerated recent 

growth for many populations (Gao and Keinan, 2016). 

The accuracy of methods relying on local ancestry inference to detect IBD and population 

structure in general, is greatly improved by incorporating low frequency variants (O’Connor et 

al., 2015). Their availability also permits the development of novel approaches detecting 

continuous runs of rare variants indicative of shared ancestry (Mathieson and McVean, 2014; 

Fedorova et al., 2016). How and to what extent are rare variants shared between different 

worldwide populations in the EGDP dataset? Is there evidence for previously undescribed 

cryptic interpopulation relationships? 
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4.1 Material and Methods 

 

4.1.1 Calculation of f2 counts and related metrics 

Dataset 

The Diversity Set is a subset of the EGDP consisting of 447 individuals from 147 distinct local 

populations (Table 3.1, for the sampling strategy see Section 3.1.1). In contrast to the Variant-

Based Analysis Set it additionally contains a heterogeneous collection of samples from Central 

Asia. 

Computational Methodology 

Unless stated explicitly otherwise, all data analysis steps described in this subchapter and 

sections 4.1.2 and 4.1.3 were run using R (R Core Team, 2017)  and UNIX shell scripts custom-

written for the respective purposes by the author. In the following, f2 variants/doubletons are 

defined as variants for which only two individuals in the total dataset share the non-reference 

allele and for which those two individuals are heterozygous (Mathieson and McVean, 2014; 

The 1000 Genomes Project Consortium, 2012). This corresponds to a global allele frequency 

of ~0.22% in the Diversity Set. 

All f2 sites in the dataset were extracted using --maf and –max-maf flags in PLINK 1.9 (Chang 

et al., 2015a). The filtered dataset was then recoded as a VCF file which was transformed into 

a simple text file by custom-written bash and R scripts respectively. In this text file each line 

contained the IDs of the two individuals sharing an f2 variant at a particular position in the 

genome. The f2 counts for individual pairs were summed up using a modified version of a Perl 

script kindly provided by Ms Yuan Chen. 

To adjust for the differences in overall genomic diversity between different individuals the raw 

f2 counts were modified as follows. Let the two individuals of interest be i1 and i2 and designate 

the allele counts of all doubletons (shared with any other individual) recorded in these 

individuals as n(i1) and n(i2). The number of shared doubletons between i1 and i2 in absolute 

terms is n(i1∩i2). In order to convert this output to a relative measure of rare allele sharing 

d(i1∩i2), the following normalisation for differences in genomic diversity was applied: 

d(i1∩i2) = $(%1 ∩ %2) ()(*+),)(*-)
-

).                                        (4.1) 
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To account for the influence of sample size a subset of samples designated as the “model world” 

was created. For this dataset all Africans were kept, however non-Africans were downsampled 

to eight groups of six individuals each. Some clusters of related populations, here Europeans 

and Siberians respectively, were summarised to a single group each. No Africans were removed 

as the original sampling strategy meant that African variation was underrepresented in the 

Diversity Set. To account for the substructure contained in the non-African clusters six 

individuals were drawn 20 times without replacement (see description of general strategy in 

section 3.1.3) and the f2 statistics were calculated for each replicate, i.e. the total set of Africans 

and the respective replicate of non-Africans. 

The relationships between individual pairwise similarity matrices of f2 variant sharing, CP 

sharing (for details on CP analyses see section 3.1.1) and a geographic distance matrix were 

assessed using (partial) Mantel correlations (Mantel, 1967) as implemented in the vegan 

(Oksanen et al., 2017) R package. For each pair of individuals geographic distances in 

kilometres were inferred based on the great circle distance using the haversine formula as 

realised in the fields (Nychka et al., 2017) R package. To make the distance estimates between 

continents more reflective of human migration patterns the following waypoints were 

introduced: a) for all African/non-African pairs the Sinai (29.5N, 34E), b) for all American/non-

American pairs the Beringia region (66.1N, 168.7W).  The insertion of an additional corrective 

waypoint was necessary for a subset of individuals to avoid introducing unrealistic distance 

estimates. This applied to 20 Western Europeans whose sampling locations lie on longitude 

11E or west of it and their distance to Native Americans. In these cases, the distance of the 

Western Europeans to the Beringian waypoint was inferred across the Atlantic and not across 

the Eurasian landmass as the great circle distance approach attempts to minimise the distance 

between coordinates. The corrective waypoint was Mount Narodnaya (60.0N, 65.1E) in the 

Urals. The total distance between two intercontinental points was then the sum of the great 

circle distances between the points and the waypoints connecting them plus the great circle 

distances between (potential) linking waypoints.  

The significance of these matrix correlations was assessed using an approach where the 

respective dependent matrix was randomly permuted 1000 times. Negative values of the Mantel 

statistic occurred because the test was originally designed to assess the relationship between 

two dissimilarity matrices whereas the f2/CP matrices describe similarity. As the permutation 
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approach only evaluates the significance of positive values of the Mantel statistic in these cases 

the dependent (f2/FS) matrices were multiplied by -1. 

For some Mantel tests the rare variant similarity matrices were natural log transformed. There 

is no general agreement on how this approach should be used if the untransformed dataset 

contains zeros, as is the case here, and what offset should be chosen (van den Berg et al., 2006; 

O’Hara and Kotze, 2010). One option is to fix the offset at one-half of the detection limit of the 

method (Zhang et al., 2015), i.e. here the smallest non-zero value for d(ix∩iy). This resulted in 

an offset of ~6.87*10-6 for normalised f2 sharing. 

To further investigate the relationship between genetic similarity and geographical distance 

across space Mantel correlograms (Oden and Sokal, 1986) for the f2/CP matrices and the great 

circle distance divided into 500-km bins (ranging from 0-500 km to 26,500-27,000 km) were 

generated using the mantel.correlog function in the vegan R package. For each of the distance 

classes the significance of the correlation between presence/absence (coded as 1/0) of an 

individual pair in this bin and its genetic similarity was assessed using a similar permutation 

approach as for the overall Mantel test. Due to the high number of bins a modified version of 

the Bonferroni correction following Holm (1979) was applied to adjust for multiple 

comparisons. 

The goal of the next step in the analyses was to detect pairs of outlier individuals that share 

more f2 variants than would theoretically be expected given their geographical distance. The 

plot of the raw data (Appendices D.1A-D.1B) is consistent with the hypothesis that there is a 

negative exponential relationship between geographical distance and normalised f2 sharing. 

This can be related to historical concepts in population genetics such as the Malécot-Morton 

equation (Malécot, 1973; Morton, 1973a; b) expressing genetic similarity through common 

descent as a function of geographical distance under a one-dimensional isolation by distance 

model. 

/0 = (1 − 2) ∗ 4 ∗ 5670 + 2                                             (4.2) 

In the above equation, d is the geographical distance between individuals/populations and /0 a 

kinship coefficient. The parameter a can be interpreted as a measure of local kinship, b as the 

rate of exponential kinship decline and L as a scalar correction factor to eliminate negative 

kinship over large distances (the biological and mathematical validity of the latter has been 

debated, see Harpending, 1971).  
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The geographical distance data and normalised f2 sharing were therefore fitted to a negative 

exponential model as given in Eq. (4.3) using a nonlinear least squares regression approach 

implemented in the R function nls (R Core Team, 2017). Note that the variable d and the 

parameters a and b are the same as in equation 4.2, whereas the scalar correction factor L has 

been summarised to a single constant c. More details on model fitting can be found in Appendix 

D.1C.  

9- = 	4 ∗ 5670 + ;	                                                    (4.3) 

 

4.1.2 Detection of rare variant clusters 

The rare variant cluster (RVC) detection method proposed by Fedorova et al. (2016) applied 

here infers nearest-neighbour type IBD segments by exploiting the observation that rare variants 

shared between two individuals are often located in close proximity on the genome. 

 

Figure 4.1: Example of RVC detection algorithm. 31 rows of an individual-specific vrGV (here singletons 

and doubletons) database are displayed. A core RVC is defined based on a scanning window (blue arrow) 

representing 20 consecutive rows of this database within which at least five f2 variants have to be shared 

between individuals X and Y (bolded rows). The RVC is expanded if there is another uniquely shared vrGV 

between the two individuals of interest within 40 rows of the last vrGV of the core RVC (green arrow). This 

extension step is iterated as long as there is another uniquely shared vrGV within 40 rows of the previous 

one (red dotted arrow shows potential further extension which is not realised due to lack of shared 

doubletons). The length of this total segment was counted from the first vrGV of the initial core RVC to the 

last shared rare variant (black line). Abbreviations: IND – individual, rv – rare variant. 
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The frequency class of interest was denoted as very rare genetic variants (vrGVs) by the authors 

of the method and the frequency threshold was defined at a MAF of 0.2% in the respective 

dataset. For the Diversity Set, this approximately corresponds to singletons and doubletons. 

Firstly, individual-level databases of vrGVs were generated from a VCF file containing all 

individuals in the Diversity Set. 

In the second step core regions of RVCs were defined in these databases according to the 

following rules: 

i) A group of five or more vrGVs should be shared between two individuals and these 

variants should be adjacent to each other. 

ii) There should be no more than 15 other non-shared vrGVs between these five shared 

rare variants detected in the individual which is eponymous for the database (this 

includes singletons). 

These clusters were identified using a scanning window representing 20 consecutive rows of 

an individual-specific database of vrGVs and a stretching window representing 40 such rows 

respectively (for details see Figure 4.1). Fedorova et al. (2016) obtained the scanning and 

stretching window parameters by calibration on close relatives from the 1000 Genomes Project. 

They were adjusted in such a manner that the number and length of the resulting RVCs shared 

was consistent with the characteristics of IBD segments between close relatives predicted by 

population genetic theory. 

The probability of random sharing of a run of five or more vrGVs with a frequency p of 0.0022 

between two individuals in a window of n = 20 could be approximated as 

Pr[binom(20,0.0022)≥5] ~7.74*10-10 (see also Hochreiter, 2013), i.e. it seems exceedingly 

unlikely to occur as IBS without any underlying IBD. 

If the numbers and lengths of RVC chunks are calculated from individual-level vrGV databases 

as described above the resulting sharing matrices are non-symmetric, mainly because of 

variation in rare variant density between populations (see also 4.2.1). This additional 

information has been retained to describe the length distributions of RVCs and patterns 

(putatively) resulting from admixture events. However, for some general descriptions of the 

data the subtotals derived from the individual-level vrGV databases were averaged for each pair 

to create symmetric matrices. The individual-level vrGV and RVC databases were created using 

the Perl scripts provided by Fedorova et al. (2016).  
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The physical lengths of the inferred RVCs were converted to genetic lengths with 

base2genetic.jar (https://faculty.washington.edu/browning/beagle_utilities/ utilities.html) and a 

genetic map based on HapMap phase 2 data 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20110106_recombination_hotsp

ots/). RVC statistics on the macro-group and population level were summarised in a manner 

similar to Beagle Refined IBD (see section 2.1.2). 

The gnomAD database (Lek et al., 2016), which contains 15,496 genomes from a range of 

ancestries, was used as a reference to assess the continental frequencies of f2 variants from the 

Diversity Set. 

A plot of long-term Ne (0-30 kya, weighting as described in section 3.1.3) vs median RVC 

length 2<  (Appendix D.16A) is consistent with the hypothesis that there is a negative exponential 

relationship between these two quantities (a power law model would also be consistent with the 

data, this is briefly explored in Appendix D.18) This particular analysis was limited to a subset 

of 218 individuals from the Diversity Set for whom Ne could be inferred based on four 

individuals (Appendix C.2). 

The exponential model was formulated as follows: 

2< = 	4 ∗ 567∗=>                                                    (4.4) 

It was fitted as described for Eq. (4.3) (see Appendix D.1C). Fisher’s Z transformation (Fisher, 

1915) as realised in the r.test function from the R package psych (Revelle, 2018) was applied 

to the Spearman’s correlation coefficients for  Ne  over specific time intervals with 2< to assess 

whether they differ significantly from each other. Vuong tests (Vuong, 1989) using the function 

vuongtest from the nonnest2 R package (Merkle et al., 2018) were conducted to compare model 

fits for Ne values representing the harmonic means for different time slices. Distributions of 

RVCs shared between different pairs of populations were compared using the k-sample 

Anderson-Darling test (Scholz and Stephens, 1987) implemented by the R package kSamples 

(Scholz and Zhu, 2018). 

Furthermore, RVCs were assessed for consistency with the underlying complete genotype and 

haplotype data based on two main criteria. Firstly, it was investigated whether inside the 

boundaries of the RVCs there were any positions where the two individuals sharing the RVC 

exhibit incompatible homozygote genotypes. This was also the main criterion for the f2 

haplotype definition by Mathieson and McVean (2014) and IBD detection from unphased data 
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by Henn et al. (2012b). Secondly, potential inconsistencies with the haplotypes inferred using 

SHAPEIT2 (see section 3.1.1) were described. These RVC consistency analyses were run using 

a pipeline written by the author (described in detail in Appendix D.2). 

 

4.1.3 f3 and ALDER analyses 

Pickrell's and Pritchard's (2012) implementation of the three population (f3) test was used to 

investigate the detectability of a putative African admixture event in the Andean Calchaquíes. 

Four populations of interest (Calchaquíes, Siberian Eskimos, Yoruba and Wichi, ntotal = 22) 

were considered. Following the recommendations of the authors of the method (Reich et al., 

2009) the chosen approximate size for jackknife blocks to determine the significance of the f3 

statistic was ~5 cM which equals 708 windows each containing 15,005 SNPs. Population trios 

yielding a z-score smaller than -2 were considered significantly admixed. To assess the impact 

of two additional procedures for f3 estimation the same dataset was analysed using 

ADMIXTOOLS (version 4.1) (Patterson et al., 2012) These modifications were: a) a 

normalisation for an abundance of SNPs shifted towards low frequencies, like in the case of 

WGS data analysed here, and b) a correction for inbreeding in the potentially admixed target 

population, analogous to what was proposed for the FST by Reich et al. (2009). ALDER v1.03, 

(Loh et al., 2013) was used to date the putative admixture event. 

 

4.1.4 Demographic simulations using cosi2 

Simulations were run to better understand rare variant sharing under a range of demographic 

scenarios. The first set of analyses (scenario A) consists of 20 independent replicates of a dataset 

designed to encapsulate the general features of the Diversity Set without any recent admixture 

between a Calchaquíes-like group and West Africans. The goal was to generate a null 

distribution for the RVC sharing statistics to which the empirical results can be compared. The 

second set of analyses (scenarios B-F) mostly assume that such a recent gene flow occurred, 

however admixture dates and fractions were set to vary between different runs. 

The simulated data were generated using the coalescent simulation software cosi2 (Shlyakhter 

et al., 2014) in exact mode. The simulations encompassed five populations labelled Pop1 to 

Pop5 (Table 4.1) with group sizes corresponding to the sample distribution of the Diversity Set. 
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Table 4.1: Real groups whose demographic histories the simulated populations depicted in Figure 4.2 were 

designed to approximate and relevant sample sizes. 

Simulated population Real population represented Number of sampled 

individuals 

Pop1 Yoruba/West Africans 9 
Pop2 Sandawe/East Africans 30 
Pop3 Northwest Europeans/West 

Eurasians 
209 

Pop4 Han Chinese/East Eurasians 194 
Pop5 Calchaquíes 5 

The starting point for describing human population history was a simple demographic model 

for three well-studied reference groups (YRI, CEU, CHB) representing West Africans, West 

and East Eurasians respectively. It was estimated by Gravel et al. (2011) based on low-coverage 

data from phase 1 of the 1000 Genomes Project. 

 
Figure 4.2: Five populations simulated to replicate general features of major continental groups from the 

Diversity Set. In some scenarios a recent admixture pulse of magnitude a from Pop1 (West-Africans) into 

Pop5 (Native Americans) that occurred t generations ago was added. Low-level intercontinental migration 

was included in the model; it is not depicted here for reasons of clarity. 
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Only two important modifications were made (Figure 4.2). The split time of Africans and non-

Africans was increased to 2,400 generations ago based on the means of MSMC split times 

estimated for YRI vs CEU and YRI vs CHB respectively (generation time 30 years, Appendix 

D.3, see section 3.1.1). Again, using the MSMC results as reference, the split of East and West 

Eurasians was estimated as having occurred 1,080 generations ago. To mimic the populations 

in the Diversity Set two additional groups were introduced. The first (Pop2) is meant to 

represent a branch of East Africans. Its present-day Ne was the mean of the values obtained 

using MSMC for the Hadza and the Sandawe (Appendix C.3) and the split date from Pop1 was 

derived in a similar manner.  

The values for the continuous low-level background migration between Pop2 and all non-

African groups were assumed to be the same as for Pop1 and the non-Africans. This migration 

parameter between Pop1 and Pop2, i.e. within Africa was set to the same value proposed by 

Gravel et al. (2011) for Pop1 and Pop3. The second group (Pop5) was designed to mimic the 

Calchaquíes. It split from Pop4 880 generations ago, which is in the range of MSMC split dates 

calculated for the three Andean populations and the Han. The background migration rate of 

Pop5 with Pops1-3 was estimated as a tenth of the migration rate between the latter and the 

East-Asian like Pop4. Finally, between Pop4 and Pop5 this parameter was set to the same value 

as between Pop3 and Pop4. 

The first of the added hypothetical scenarios considers a case where the intercontinental 

migration rate between Pop5 and Pops1/2 equals that between Pop4 and Pops1/2, i.e. it assumes 

higher background migration rates between Native Americans and Africans. The other four 

scenarios include a recent gene flow with admixture fraction of a ∊ {0.005,0.01} from Pop1 

into Pop5 t ∊	{15,18,20} generations ago (combinations of a = 0.01 and t = 15, a = 0.01 and t = 

20 were not run). 

Each simulation run produced 22 chromosomes (lengths identical to autosomes in hg19, 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes). The mutation 

rate was assumed to be µ = 1.25*10-8 bp-1 per generation and the rate of gene conversion 

(relative to crossover recombination rate at the same locus) was kept at the default value of 

0.45. The chromosome-specific recombination map for the cosi2 simulations was the one used 

for the MSMC analyses presented in Pagani et al. (2016) (see section 3.1.1) and derived from 

HapMap phase 2 recombination rates. The only significant change was that recombination rates 



 

-206- 

 

given as 0 in the original files were recoded as 10-15 as cosi2 cannot process recombination rates 

of 0. 

After the simulations were run (an example parameter file can be found in Appendix D.4) the 

outputs were converted to VCF-like files using a customised pipeline consisting of bash and R 

scripts written by the author. To test whether the simulations can reproduce empirical patterns 

of global genetic diversity chromosome 22 from one randomly chosen replicate of scenario A 

was compared to chromosome 22 from the Diversity Set using the R/Bioconductor package 

SNPRelate (Zheng et al., 2012) implementation of PCA. First, both chromosomes were pruned 

for LD by recursively removing one SNP from each pair with an r2 value greater than 0.2 within 

a 1000-SNP window. Then the SNPRelate implementation of PCA was run on the LD pruned 

sets of SNPs. Only markers with a MAF >1% were included in this analysis. 

RVCs were extracted from the simulated sequence data and converted to genetic lengths for all 

scenarios as described for the real data in section 4.1.2. 

 

4.2 Results 

 

4.2.1 Global sharing patterns of f2 variants 

In the whole Diversity Set (n = 447) 4,206,999 f2 variants were found, which translates to 

~9,412 variants per haploid genome (Table 4.2). In this sample the African subgroup exhibits 

by far the highest number of f2 variants with an average of ~44,400. The Oceanians are the next 

most diverse group with a per-individual count of ~16,800 f2 variants, followed by the South 

Asian and ISEA macro-groups whereas most other Eurasians fall in a range of 5,000-6,000 

doubletons per haploid genome copy. However, these counts depend both of the sample sizes 

of the populations, which vary considerably, and population history. 

Table 4.2: Average counts of f2 variants per haploid genome displayed a) for the unadjusted sample sizes, 

b) for 20 replicates of a subset of 87 individuals designated as the “model world”. The latter was designed 

to reduce the relative overrepresentation of non-African populations and to control for the effect of sample 

size. The population-wise mean and SD across 20 replicates are given. Even though the set of Africans was 

fixed their sharing with non-Africans varies depending on the exact composition of the rest of the replicate. 

Abbreviations taken from Table 3.1. 

 

 f2 counts Diversity Set f2 counts “model world” 

Afr 44386.1 47314.5+/-116.6 
MiE 5768.8 13381.2+/-430.4 
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  f2 counts Diversity Set f2 counts “model world” 
WEu 5036.8 13720.9+/-223.7 (European 

supergroup)  EEu 4849.2 
Vol 5100.1 - 
SoA 7841.9 11330.2+/-371.9 
CeA 5613.6 - 
WSi 4909.1 11681.8+/-392.0 (Siberian 

supergroup) 
 

SSi 5696.6 
CSi 5149.0 
NSi 4793.8 
SeM 5858.5 10077.9+/-197.3 
SeI 8626.4 11938.4+/-595.2 
Ame 5151.0 11276.7+/-1255.7 
Oce 16765.4 20191.1+/-2344.6 
Whole dataset 9411.6 28354.6+/-453.0 

When the overrepresentation of non-Africans is reduced and the effect of sample size among 

them is normalised for in the “model world” sampling scheme both the f2 numbers for each 

haploid genome as well as the order of macro-groups change considerably. The increase in the 

average non-African f2 counts (approximate doubling from 6,068.5 to 12,949.8) is a 

consequence of variants that occurred in three or more individuals before the reduction of the 

dataset now being counted as doubletons. This compensates for the loss of doubletons that 

became either singletons or were lost in downsampling. In terms of f2 totals among non-African 

macro-groups. Oceanians remain the most diverse group. However, now Western Eurasians 

carry more doubletons than East Eurasians. Furthermore, Americans exhibit a high variance 

compared to other Eurasian groups, most likely because of the different f2 sharing properties of 

admixed and unadmixed subgroups forming this cluster.   

An additional analysis was run to rule out that the particularly f2 low diversity in the East 

Asian/mainland SEA group is primarily the result of a relative overrepresentation of East 

Eurasians in the “model world”. The latter would cause what would otherwise be doubletons to 

be recorded as more frequent variants. In a single dataset with the same sample size as the 

model world but less Eastern and more Western Eurasians (Appendix D.5) a merged group of 

East Asians and island/mainland SEA populations still only has an average of 11,124.4 f2 

variants per individual. Figure 4.3 (raw data in Appendix D.6) displays the proportion of 

doubletons a given population shares with any other group in the dataset. Overall, almost two 

thirds (65.4%) of f2 variants are found in two individuals from the same macro-group. However, 

in continental Eurasia the majority of doubletons (~59.6%) represent sharing between two  
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Figure 4.3: Average f2 sharing between macro-groups. Each row represents how frequently f2 variants are 

shared between individuals from the target macro-group (indicated on the left) and all other macro-groups 

(given on top) relative to the f2 variant total in the target macro-group. Abbreviations taken from Table 3.1. 
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distinct macro-groups, meaning that only individuals from African, Oceanian, Island Southeast 

Asian and Northeast Siberian groups share the majority of doubletons with themselves. For 

example, Western Europeans share more of their f2 variants with Eastern Europeans (31.2%) 

than with individuals from their own group (13.1%). This pattern of diverse inter-group 

ancestry is most visible in Central Asians, who share considerable amounts of f2 variants with 

populations from the Middle East and the Caucasus (16.8%), Eastern/Northern Europe (10.6%), 

South Asia (11.9%), South Siberia (12.7%) and East Asia/MSEA (9.2%). As suggested by the 

variance of f2 counts among the resampling replicates for the “model world” (Table 4.2) these 

macro-population labels contain considerable substructure which here is explored in form of 

individual-level doubleton coancestry matrices. 

 

Figure 4.4: Raw sharing totals of f2 variants between all individuals from 15 macro-groups belonging to the 

Diversity Set. Abbreviations taken from Table 3.1. 
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When the raw individual-level numbers (Appendix D.7A) are plotted in form of a heatmap 

(Figure 4.4) multiple clusters of high f2 sharing (>1000 variants per pair) emerge. Consistent 

with the highest genetic diversity in Africa, African individuals, regardless of their population 

affinity, exhibit the highest f2 sharing. Outside Africa, uniformly high doubleton sharing (~300 

per average pair) is observed in the Indian subcontinent. 

Most East Eurasian macro-groups appear to be more stratified than West Eurasians according 

to this metric, especially Northeast Siberians and ISEA groups. Among Americans the three 

Andean populations form very distinct clusters and the two Australians exhibit the highest raw 

sharing of any pair of individuals (nf2_Aus1∩Aus2 = 36,123). Finally, Papuans display strongly 

elevated sharing among each other while the Koinanbe and Kosipe subpopulations in turn share 

considerably more doubletons with members of their own group (not visible in Figure 4.4 due 

to scale).  

The observed differences between African and non-African groups primarily reflect how 

strongly f2 variant diversity is driven by overall genomic heterozygosity (even though this 

relationship is dependent on sample size and composition, see also section 4.3.1). Therefore, an 

f2 statistic that normalises for differences in overall f2 diversity was defined (Eq. 4.1). 

On a general level, this diversity-normalised metric paints a similar picture to the macro-group 

and raw individual-level similarity statistics. The quantitatively strongest sharing can be 

observed within macro-groups, however there are a multitude of distinct out-sharing events 

away from the matrix diagonal (Figure 4.5, raw data in Appendix D.7B). The median 

normalised individual-level f2 sharing within macro-groups is ~0.0070, ca. 12 times higher than 

the median for the normalised sharing between macro-groups (~5.9*10-3). While this cut-off is 

necessarily subjective, doubleton sharing of groups from different macro-populations with a 

pairwise dix∩iy (Eq. 4.1) > 0.005 can therefore be potentially informative about recent gene flow. 

Here, the aim is not to provide an exhaustive descriptive analysis of all such links, but to 

highlight a few of interest.  

The outcomes of a quantitative outlier approach of out-sharing given geographical distance will 

be reported at the end of this section. African populations mostly appear to be very distinct from 

non-Africans, however they exhibit elevated sharing with some populations from the Middle 

East (Saudi Arabians and Muslim Arabs from Israel) and the Americas (Mexicans and Puerto 

Ricans).  Similarly, Oceanians show little f2 sharing with other groups apart from clearly visible  



 

-211- 

 

 

Figure 4.5: Sharing of f2 variants between all individuals from 15 populations belonging to the Diversity 

Set. The metric is normalised to account for differences in overall genomic diversity. Abbreviations taken 

from Table 3.1. 

interactions with various ISEA populations of Negrito as well as non-Negrito origins consistent 

with the analyses on SNP chip data in chapter 2. There is a high degree of inter-individual 

sharing across macro-populations within Eurasia (see also Figure 4.5). 

The perhaps most striking example, which also demonstrates the amount of substructure in 

some macro-groups, occurs among Central Asians. A subgroup of Indo-Iranian speakers 

(Ishkashim, Rushan-Vanch, Shugnan, Tajiks and Yaghnobi) exhibits a three times higher 

average rare variant sharing with South Asians (dCeA_IndoIranian∩SoA = 5.4*10-3 ± 1.8 *10-3, here  
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Figure 4.6: Mean sharing of f2 variants derived from 20 replicates of a reduced subset of individuals (n=87) 

(“model world”) belonging to the Diversity Set. The set of Africans was fixed and the non-Africans were 

subsampled 20 times. The metric is normalised to account for differences in overall genomic diversity. 

Abbreviations taken from Table 3.1., except: Eur – Europeans, Sib – Siberians. 

and in the following “± x” denotes the standard deviation) than a subgroup of Turkic speakers 

(Kazakhs and Kyrgyz) (dCeA_Turkic∩SoA = 1.8*10-3 ± 1.1 *10-3). For affinities to South 

Siberian/Mongolian populations the ratios are reversed (dCeA_Turkic∩SSi = 7.5*10-3 ± 2.1 *10-3, 

dCeA_IndoIranian∩SSi = 2.0*10-3 ± 1.0 *10-3). Three other Turkic-speaking populations (Turkmens, 

Uighurs and Uzbeks) fall somewhere between the two former clusters (dCeA_Turkic_mixed∩SoA = 

2.8*10-3 ± 1.2 *10-3, dCeA_Turkic_mixed∩SSi = 4.7*10-3 ± 1.5 *10-3). 
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The major sharing patterns of f2 variants remain consistent in the “model world” (Figure 4.6, 

raw data in Appendix D.8) compared to the full dataset. The clustering of all non-Africans as 

one group becomes more visible with the Oceanians on average being less similar to the 

Eurasians and Americans than the latter are to each other. The mean rare variant sharing in this 

Eurasian-American cluster is however still slightly below that of all Africans (dAfrican∩African = 

0.025 ± 0.025, dnonAfrican∩nonAfrican = 0.021 ± 0.022).  
 

 

Figure 4.7: Normalised f2 sharing between individuals from the Diversity Set plotted against a) the total 

number of shared chunks inferred by CP and b) the total length of all these chunks for any particular pair 

of individuals. The colours indicate which macro-groups the two individuals forming the respective pair 

belong to. The CP sharing is slightly asymmetric, i.e. there are cases where the chunks individual x receives 

from individual y are not fully identical to the ones received by y from x in turn. Therefore, each x value (f2 

sharing) from a pair is matched to two y values. Regression lines and coefficients of determination are 

displayed on the plot. Abbreviations: Afr – African, nAfr – non-African. 
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In this non-African group the divergence between West Eurasians (Europeans and Middle 

Easterners) and East Eurasians (East and Southeast Asians) is apparent while the (mixed) 

Siberian and South Asian groups exhibit affinities to both subclusters. 

To assess the information content provided by the normalised f2 metric more systematically it 

was here compared to the output of CP (raw data in Appendix D.9), a widely used method to 

infer recent shared ancestry on a haplotype level. Normalised f2 sharing is moderately correlated 

to the number of haplotype segments two individuals have in common (r ~0.584). Compared to 

non-Africans, pairs of individuals from African populations share an excess of CP chunks 

relative to their f2 sharing (Figure 4.7a). This effect is even more pronounced for Pygmies. The 

opposite can be observed for some non-African pairs, who fall below the regression line, where 

there is a high amount of f2 sharing (>0.2) corresponding to >2000 shared CP segments for 

Oceanians and >1000 shared segments for some intrapopulation pairs of Philippine Negritos 

and Andeans. Using the total length of all shared CP chunks, however, results in a much 

stronger linear correlation (r ~0.938) (Figure 4.7b). 

When normalised f2 sharing is used as a linear predictor for total CP sharing, which a mean 

value of 15.69 cM across all pairs of the Diversity Set, the resulting mean absolute error is 

~5.34 cM. Rank correlation tests yield somewhat lower correlation coefficients (Spearman’s ρ 

= 0.865, Kendall’s τ = 0.681). The most notable outlier pair remaining consists of two 

Aboriginal Australians, who share the vast majority of their doubletons (dAus1∩Au2 = 0.815) in 

contrast to being closest matches for 30% of the whole genome as indicated by CP. The likely 

underlying reasons for this excess f2 sharing are that a) the two individuals were identified as 

second-degree relatives with the KING method (see section 3.1.1 and column “Comments” in 

Appendix C.1, they were originally retained despite being more closely related than the 

threshold to maximise geographical spread) and b) they are the only representatives for the 

populations of a whole continent. If the two Australians are removed, the correlations for both 

outcomes of CP and the normalised f2 sharing improve further (rchunkcount_f2 = 0.613, rtotallength_f2 

= 0.946). 

To more systematically analyse outlier pairs standardised residuals from the linear regression 

of CP and f2 sharing were used. For a total of 1,741 combinations of two individuals the absolute 

value of the standardised residual is greater than 3 (Appendix D.10). There is a moderate excess 

of pairs with less CP sharing than would be predicted based on f2 relative to pairs with more CP 

affinities than expected (989 vs 752). Both groups mostly consist of pairs from the same macro-
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group with a substantial fraction belonging to the same local population (84.8%/31.8% for CP 

depletion and 88.9%/24.4% for CP excess respectively). The group with less than expected CP 

sharing given their shared doubletons contains five pairs of known relatives.  

Another interesting observation is that among the CP-sharing depleted group there is a 

significant enrichment of pairs of individuals previously identified as exhibiting unusual 

metrics in the files provided by Complete Genomics (77/989 observed vs 2/989 expected based 

on the fraction of unusual metrics pairs among all possible pairs, X2 = 72.2, p < 10-15). Finally, 

the macro-groups which most pairs in this class belong to are Africans, South Asians and ISEA 

groups (primarily Philippine Negritos). On the other hand, in the excess CP group there are no 

pairs where both samples have unusual metrics and the respective dominant macro-groups are 

Native Americans, ISEA groups (most prominently the Kankanaey Igorot), all Siberians and 

one cross-population set of pairs (n = 27), North Americans and Siberian Eskimos. 

To analyse spatial structure in rare variant sharing a Mantel test was applied. It investigates 

whether there is a linear relationship between the f2 similarity matrix and a geographic (great 

circle) distance matrix. The resulting negative Mantel correlation coefficient (rM_f2_D = -0.229, 

p < 0.001) is significant. However, its magnitude implies that given these assumptions 

geographical distance would only explain ca. 5.2% of the overall variance in the rare variant 

similarity matrix. This low explanatory power for a simple linear model is not unexpected given 

that the relationship between great circle distance and f2 sharing appears to be primarily non-

linear (Appendix D.1). The latter observation is supported by the considerable increase of the 

correlation when the normalised f2 sharing matrix is log transformed (rM_logf2_D = -0.499, p < 

0.001). Furthermore, Spearman’s rank correlation (ρ = -0.721, p < 2.2*10-16) and Kendall’s tau 

(τ = -0.531, p < 2.2*10-16) support a robust monotonic negative relationship between 

geographical distance and pairwise doubleton sharing. 

To visualise the autocorrelation of rare variant sharing in relationship to the great circle distance 

between the pairs of individuals a Mantel correlogram was generated (Appendix D.11A). 

Individuals whose sampling locations are very close to each other (midpoint of first distance 

class: 250 km) tend to share more rare variants than all other pairs on average (rM_f2_250kmbin = 

0.419, p < 0.001). The Mantel correlation already decreases sharply for the second closest 

distance class and then progresses to decline gradually in an approximately linear manner. From 

3000 km onwards, the Mantel correlation becomes statistically indistinguishable from zero and 

beyond 4000 km it turns negative, i.e. now individuals located at the respective distances are 
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less similar than the average across all pairs. The values reach a minimum at ~7000-7500 km 

(rM_f2_7250kmbin = -0.058, p = 0.015). This is followed by a stabilisation and a subsequent slight 

increase accompanied by fluctuations. 

The Mantel test results for a matrix containing the total shared genetic length according to CP 

and the great circle distance matrix are broadly comparable to those obtained for rare variant 

sharing. However, the correlations of the raw CP sharing matrix (rM_CP_D = -0.293, p < 0.001) 

as well as that of its log transform (rM_logf2_D = -0.558, p < 0.001) with geographical distance are 

slightly higher. Furthermore, the Mantel correlogram of CP sharing exhibits a very similar 

shape to the one obtained with f2 sharing as the response variable (Appendix D.11B). The only 

notable difference is that the distance-class-specific Mantel correlation coefficient for the total 

shared CP length remains significantly greater than zero until ~4000 km, i.e. over a somewhat 

greater distance than for the f2 sharing. 

Finally, the goal was to detect outliers that exhibit more sharing of rare variants than would be 

expected given their geographical distance. Prior theoretical work as well as examination of the 

plotted raw data suggests that a possible approximation would be a three-parameter exponential 

model as described in Eq. (4.3). The best fitting model (plotted in Appendix D.1) with all 

coefficients rounded to the third decimal to predict f2 sharing from great circle distance d is: 

9- = 	0.058 ∗ 56D.D+E0 + 0.002	                                                    (4.5) 

Outliers were defined based on the empirical top 1% of a normalised residual metric given in 

Eq. (4.4) for four broad distance bins: 1,000-4,999 km,>5,000-9999 km,>10,000-19,999 km, 

>20,000 km. In the following a few inter macro-group pairs exhibiting such excess sharing 

are highlighted (all top 1% outlier pairs given in Appendix D.12, the full dataset of predicted 

f2 sharing and the normalised residuals in Appendix D.13).  

The most frequently detected outliers in the first distance bin comprise among others Central 

Asians (Kazakhs, Kyrgyz) sharing with Siberians/Mongolians and the Vietnamese showing 

affinities to ISEA groups from Northern Borneo (Dusun, Murut). Furthermore, the Bajo and 

the Papuans as well as the Tamang and the Burmese share more rare variation than other 

similarly geographically distant population pairs.  

In the following distance class the Japanese display elevated sharing with some Central Asians 

(Kazakhs, Kyrgyz). Some individuals from Middle Eastern groups (Saudi Arabians, Iranians) 

exhibit an excess of rare variant similarity with a broad range of Sub-Saharan African groups. 
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Across the same distance the Roma share a high number of doubletons with many South Asian 

populations. The excess sharing of a British individual (UK1) with two Chinese (Chn2, Chn3) 

likely represents a methodological artefact (see section 4.3.1). 

The two distance classes beyond 10,000 km are dominated by sharing of known admixed 

groups from the Americas (Mexicans, Puerto Ricans) with a range of Old-World populations 

of Western European as well as Sub-Saharan African ancestry. An intriguing exception to this 

pattern is the finding that some individuals from the Andean Calchaquíes population, who in 

common-variant-based analyses (Pagani et al. 2016) did not show signs of admixture from 

outside the Americas, exhibit elevated sharing with the Yoruba as well as some West Eurasian 

groups (Druze, Lezgins, North West Europeans). The possibility that this unexpected sharing 

is the result of recent admixture is examined more rigorously in section 4.2.3. 
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4.2.2 Global sharing patterns of rare variant clusters 

A total of 301,920 RVCs were detected based on the f2 variants in the Diversity Set (all runs 

given in Appendix D.14). These span an extent of ~262 Gb in physical length and 2,359 M in 

genetic length reflecting approximately 20.4% and 16.0% of the autosomes for each individual 

on average, respectively. The corresponding median values for these two different measures of 

run length are ~308 kb and ~0.20 cM (Figure 4.8) while the median number of doubletons 

contained in each cluster is 8.  

 
Figure 4.8: Histograms of RVC numbers as a function of physical and genetic length. 

Of the RVCs 61,601 (20.4%) are shared within the same local population and 225,403 (74.7%) 

within the same macro-group. To understand the relationship between CP sharing and the rare-

variant related metrics calculated in this chapter, a matrix displaying all possible correlations 

was generated (Table 4.3). 
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Table 4.3: Matrix displaying Pearson’s correlation coefficient for different genomic sharing metrics 

between pairs of individuals from the Diversity Set. All correlations are significant (p < 2.2*10-16). 

Abbreviations: norm - normalised. 

 
CP 

total 

length 

f2 

sharing 

norm 

RVCs 

shared 

RVCs 

shared 

averaged 

RVCs 

total 

length 

RVCs 

total 

length 

averaged 

Fraction of 

total f2 in 

RVCs 

CP 

chunk 

count 

0.617 0.585 0.932 0.932 0.437 0.437 0.342 

CP total 

length 

 
0.938 0.604 0.604 0.859 0.859 0.364 

f2 

sharing 

norm 

  
0.62 0.62 0.91 0.911 0.362 

RVCs 

shared 

   
1 0.521 0.521 0.328 

RVCs 

shared 

averaged 

    
0.521 0.521 0.328 

RVCs 

total 

length 

     
0.999 0.206 

RVCs 

total 

length 

averaged 

      
0.206 

The first important insight from these analyses is that the correlation between total CP sharing 

and the total length of all RVCs is worse than that between the former and a normalised f2 

sharing metric. Furthermore, under the assumption of linearity adding the genomic length 

covered by shared RVCs between two individuals to a simple model of f2 sharing as the only 

predictor for CP does not lead to increased explanatory power. This is supported by both the 

coefficient of determination which remains at ~0.879, and the mean absolute error, which even 

slightly increases to 5.43 cM (the regression approach attempts to minimise the mean squared 

error, the latter decreases marginally from 127.97 cM2 to 127.81 cM2). Secondly, the number 

of RVCs shared between pairs of individuals correlates tightly with CP chunk counts. This 

implies that the different distributions of RVC lengths between pairs contain additional 

information about population history beyond what is captured by a genome-wide summary 

statistic describing normalised f2 sharing. Finally, the fraction of shared f2 variants located in 

RVCs is not strongly correlated with any other metric considered. 

Table 4.4 gives an overview of the patterns of intra-macro-group RVC sharing. The number of 

pairwise shared RVCs is highest for Africans and Oceanians. Among Eurasians the Northeast  
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Table 4.4: Different metrics describing the properties of RVCs shared within macro-groups in the 

Diversity Set. Abbreviations taken from Table 3.1. 

Macro-group Number 

of RVCs 

per pair 

Total length of 

RVCs per pair 

[cM] 

Mean 

lengths of 

RVCs [cM] 

Median 

length of 

RVCs [cM] 

Afr 92.33 33.83 0.37 0.07 
MiE 2.46 2.17 0.88 0.34 
WEu 2.08 4.62 2.22 0.52 
EEu 2.65 3.56 1.34 0.65 
Vol 4.38 10.40 2.37 1.36 
SoA 11.84 5.15 0.44 0.21 
CeA 2.61 3.58 1.37 0.61 
WSi 10.58 43.87 4.15 1.77 
SSi 6.27 13.21 2.11 0.97 
CSi 12.03 40.73 3.39 1.92 
NSi 26.46 114.81 4.34 1.99 
SeM 5.89 3.88 0.66 0.31 
SeI 13.20 24.42 1.85 0.66 
Ame 7.27 31.99 4.40 2.29 
Oce 100.36 245.63 2.45 0.86 

Siberians represent an outlier with a particularly strong excess of region-specific rare variant 

chunks while the within-macro-group RVC number is generally higher for East Eurasians and 

lower for West Eurasians. The cumulative pairwise length covered by RVCs as well as the 

mean/median lengths of RVCs shared within macro-groups present a less easily generalisable 

picture with notable differentiation between geographically adjacent macro-groups and even 

neighbouring local populations (Appendix D.15). The median length of RVCs is highest in 

Native Americans and Siberians (except South Siberians) and lowest in the African macro-

group. The sharing properties of intra-macro-group RVCs like raw f2 metrics are affected by 

sample size and composition as well as parameters from demographic history in a complex 

manner (see section 4.3.1). 

To explore the latter relationship further the weighted harmonic mean of Ne inferred by MSMC 

over the last 30 kya was compared to the median intra-macro-group RVC length. The scatter 

plot of the raw data hints at a negative exponential relationship (see Eq. 4.5). The best-fitting 

model (Appendix D.16A) resulting from nonlinear least squares approximation is: 

2< = 	4.345 ∗ 56+.HIJ∗+DKL=>                                                    (4.6) 

From Appendix D.16A it is apparent that in the range between a long-term Ne of 5,000 and 

10,000 the fit of an exponential model is worse than for the rest of the dataset. There are at least 
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two potential underlying causes: a) factors which are not captured by Ne influence median RVC 

length, b) the harmonic mean weighs smaller and therefore generally more ancient values of Ne 

too heavily for this type of analysis. The second statement would imply that there are 

differences in goodness of fit for different slices of this period. Therefore, the harmonic means 

of Ne for 5,000-year intervals were analysed separately. Spearman’s rank correlation 

coefficients suggest that the relationship between Ne and median intrapopulation RVC length 

is strongest for the three most recent time intervals, i.e. 0-5 kya, 5-10 kya, 10-15 kya (ρ between 

-0.670 and -0.812, Appendix D.17A) whereas the correlations for earlier time intervals are 

significantly lower (Appendix D.17B). 

To distinguish between the recent time intervals three separate exponential regression models 

were constructed (Appendix D.16B, Appendix D.16C). The Vuong test indicates that using Ne 

from the period 5-10 kya results in a significantly better fit than with Ne from the most recent 

time interval (Z = 2.652, p = 0.004), whereas the fits for 5-10 kya and 10-15 kya cannot be 

distinguished by this test statistic (Z = 0.573, p = 0.283). 

Each pair of macro-groups shares at least one RVC if the latter are summed across all 

individuals in the respective macro-groups (Appendices D.19-D.22). The absence of recent 

gene flow and a sufficiently deep split between two macro-groups should cause a pattern where 

there are no or only very short RVCs present. Northeast Siberians and Africans should provide 

an example for such a scenario. These two macro-groups share 6.5 RVCs (this value is a non-

integer due to the asymmetry described in section 4.1.2, Appendix D.23) with each other. While 

the majority of these are short, one Chukchi individual (Chuk8) has two long RVCs (2.81 cM, 

6.42 cM) in common with the East-African Maasai. One plausible explanation for this 

observation would be that these runs represent more recently shared West Eurasian ancestry. 

Common variant-based analyses suggest that some sampled individuals from both populations 

have a West Eurasian-like ancestry component (Pagani et al., 2016). West Eurasians and 

Africans are also known to share more recent gene flow (Moorjani et al., 2011). The individual 

in question, Chuk8 exhibits an almost sixfold excess of CP sharing with Europeans relative to 

the other analysed Chukchi (CP_LChuk8∩Eur ~1,665 cM vs CP_LChuk_other∩Eur ~288 cM). 

To further test this hypothesis, it is important to know in which other populations the rare 

variants in these two RVCs occur (Appendix D.24). The gnomAD database, a public repository 

of more than 15,000 genomes, provides a resource to address this question. Two of the five f2 

variants which make up the first (10:47,100,598-48,653,790) of these RVCs can be found in  
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Figure 4.9: Pairwise number of shared RVCs. The average over the counts based on the two individual-

level vrGV databases was taken. Abbreviations taken from Table 3.1.  

gnomAD and these are most common in Europeans indicating a West Eurasian origin of this 

chunk (Appendix D.25). The second run (17:1,963,596-5,052,505) presents a more complex 

case where the first five f2 variants, which are clustered in a short stretch with a genetic length 

of 0.03 cM, suggest an African origin whereas the last SNP reaches its highest frequency in 

Europeans. 

A possible explanation for this pattern would be failure of the RVC method to distinguish two 

distinct runs. The lengths of the other runs (< 0.23 cM) are not inconsistent with ancient sharing 

predating the OOA event as runs with a length of 0.23 cM are still located within 2 SDs of the 

mean length of Neanderthal chunks detected in West Eurasians (Sankararaman et al., 2014),  
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Figure 4.10: Pairwise total sharing across all RVCs in cM. The average over the RVCs based on the two 

individual-level vrGV databases was taken. Abbreviations taken from Table 3.1. 

reflecting an event that occurred putatively 47-65 kya (Sankararaman et al., 2012). For the 

above interpretation of RVC lengths in Chuk8 it is relevant whether these can be directly 

understood as representing unbroken haplotypes, i.e. regions without internal recombination. 

The latter assumption will be examined in more detail in section 4.2.3. 

As the total length of RVCs between two individuals (Figures 4.9-4.10, respective raw data in 

Appendices D.26-D.27) is tightly correlated with normalised f2 sharing (Table 4.3), the pairwise 

interpopulation sharing of RVCs will not be described in detail here. However, it will be briefly 

highlighted that RVC sharing captures aspects of expected demographic history well, i.e. it 
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appears to be a meaningful measure of genetic similarity as population genetic theory would 

suggest.  

Firstly, the average total shared RVC length (in a balanced sample) between groups should 

correlate to the intensity of recent gene flow between them. An instructive example is that 

African populations (excluding African Americans) exhibit considerable variation with regards 

to the total genetic length of RVCs shared with non-Africans (Appendix D.28A). All pairwise 

comparisons except for those inside a cluster consisting of Luhya, Sandawe and Yoruba are 

significant (two sample t-tests, p < 0.05, Appendix D.28B). In particular, the Hadza exhibit the 

least amount of sharing with non-African groups which is consistent with previous research 

indicating their genetic isolation as well as a recent bottleneck (Lachance et al., 2012). On the 

other hand, the Maasai share the highest fraction of their genome with non-Africans. This is 

expected due to their known substantial West Eurasian affinities, even though the exact 

modalities of the underlying admixture events are still debated (Wang et al., 2013). 

Secondly, the timeframe over which this gene flow occurred should be reflected in the length 

distribution of RVCs. Generally, there should be an inverse relationship between shared RVC 

length and the last interpopulation contact. More precisely, for a given MRCA between two 

individuals equal to a separation of m meioses, IBD segment lengths should be exponentially 

distributed with a mean of 100*m-1 cM (Browning and Browning, 2012).  However, the 

inference of the underlying age distributions of f2 haplotypes and IBD segments from their 

lengths in general is a complex problem (Ralph and Coop, 2013; Mathieson and McVean, 

2014). The relationship between admixture dates, which should be correlated to MRCAs, and 

RVC length will be explored using simulations in section 4.2.3. 

Nevertheless, the general pattern can be demonstrated using three groups that exhibit elevated 

sharing with Africans (again excluding African-Americans). These are populations with known 

African admixture from the Americas (n̅RVC_Afr_admixed_Ame = 4.787), Middle Easterners 

excluding Armenians (n̅RVC_Afr_MiE = 4.269) and Philippine Negritos (n̅RVC_Afr_Negrito = 0.428 

which represents approximately 8-fold increase relative to non-Negrito ISEA groups). As 

theoretically expected, the length of RVCs shared between Africans and admixed Americans is 

of a comparable magnitude but still somewhat greater than that of RVCs shared by Africans 

and Middle Easterners (L̅RVC_Afr_admixed_Ame = 0.192 cM, L̃RVC_Afr_admixed_Ame = 0.057 cM vs 

L̅RVC_Afr_MiE = 0.153 cM, L̃RVC_Afr_MiE = 0.045 cM) (Figure 4.11). The RVCs with African  
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Figure 4.11: a) Relative frequency histogram of the length of RVCs shared between Africans (without 

African-Americans) (AFR) and i) admixed American populations (AME), iii) Middle Easterners (Arabs 

and Iranians) (MIE), iii) Philippine Negritos. b) Histogram of raw counts underlying a). 

affinities in Negritos are by far the shortest (L̅RVC_Afr_Negrito = 0.012 cM, L̃RVC_Afr_Negrito = 0.005 

cM). The Anderson-Darling Criterion (ADC), a metric based on the average weighted distance 

between empirical cumulative distribution functions (Appendix D.29), further supports this and 

indicates that all three RVC length distributions are significantly different from each other 

(ADCRVC_Ame_MiE = 16.2, pRVC_Ame_MiE = 4.018*10-9; ADCRVC_Ame_Negrito = 227.6, pRVC_Ame_Negrito 

= 2.854*10-125; ADCRVC_MiE_Negrito = 217.6, pRVC_MiE_Negrito = 9.833*10-120). 

 

4.2.3 The Andean Calchaquíes - a case of “cryptic” low level admixture? 

The West African Yoruba represent one potential proxy for recent non-American gene flow 

into the Calchaquíes (see section 4.2.1, the possibility of European admixture will be briefly 

examined below). When the whole genome sequences from these samples were first published 

(Pagani et al., 2016) common-variant-based approaches did not suggest any admixture from 

non-American sources. To re-examine this result f3 statistics were calculated to formally test for 

such an event. Potential African admixture into the Calchaquíes cannot be reliably inferred on 

a genome-wide level using this allele-frequency-based method as none of the obtained f3 

statistics are significantly negative (Table 4.5). 
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However, genomic segments originating from African admixture are likely to be unequally 

distributed across the genomes of the analysed Calchaquíes. This is plausible if the admixture 

event is relatively recent and is supported by differences in the density of Calchaquíes-African 

shared RVCs between different chromosomes (Appendix D.30). Therefore, f3 statistics were 

calculated separately for each chromosome (Appendix D.31). The obtained statistics reach 

significance only for chromosome 13. Also, for some runs (Table 4.5) different methodologies 

to calculate the f3 were applied. While normalising for an abundance of low frequency SNPs 

has little effect, correcting for inbreeding in the target population (Calchaquíes) results in a 

detectable shift of the f3 towards more negative values. Lastly, while the Eskimos have the same 

position in a tree with the Yoruba and the Calchaquíes when they instead of the Wichi are used 

as a source population representative of Native-American ancestry all resulting f3 statistics 

remain positive. 

Table 4.5: f3(C;A,B) statistics to investigate whether the Calchaquíes (C) can be modelled as a mixture of a 

Native-American-related source (A) and the Yoruba (B). Abbreviations: CAC – Calchaquíes, chr - 

chromosome, ESK – Eskimo, inbreed_correct – correction for inbreeding in admixed target population, 

lowfreq_norm - normalisation for abundance of low frequency SNPs, wg - whole genome, WIC- Wichi, 

YOR -Yoruba 

Dataset Software Corrections A B C f3(C;A,B) Z 

wg threepop none ESK YOR CAC 0.008164 36.88 
wg threepop none WIC YOR CAC 0.000213 1.24 
wg ADMIXTOOLS lowfreq_norm ESK YOR CAC 0.059261 32.55 
wg ADMIXTOOLS lowfreq_norm WIC YOR CAC 0.001545 1.14 
wg ADMIXTOOLS lowfreq_norm, 

inbreed_correct 
ESK YOR CAC 0.055729 30.88 

wg ADMIXTOOLS lowfreq_norm, 
inbreed_correct 

WIC YOR CAC -0.001623 -1.21 

chr13 threepop none ESK YOR CAC 0.03784 5.80 
chr13 threepop none WIC YOR CAC -0.003460 -4.35 
chr13 ADMIXTOOLS lowfreq_norm ESK YOR CAC 0.024878 4.81 
chr13 ADMIXTOOLS lowfreq_norm WIC YOR CAC -0.022794 -4.42 
chr13 ADMIXTOOLS lowfreq_norm, 

inbreed_correct 
ESK YOR CAC 0.019336 3.86 

chr13 ADMIXTOOLS lowfreq_norm, 
inbreed_correct 

WIC YOR CAC -0.027835 -5.35 

To test whether statistics exploiting other signals generated by admixture can provide more 

unequivocal support for recent African gene flow into the Calchaquíes the ALDER method, 

which relies on admixture LD, was applied. A significant (p = 6.6*10-4) result is obtained when 

the Calchaquíes are modelled as a mixture of Eskimos and Yoruba with the admixture event 

dated to 13.4+/-3.9 generations ago (Figure 4.12A).  
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Figure 4.12: Weighted LD plots for Calchaquíes with Eskimo and Yoruba as reference populations 

including an exponential curve fit to the data (a) and (b) using Calchaquíes itself as reference in combination 

with the two different source populations. 

The method can also be used with the admixed population itself as one of the references, then 

the weights for the LD curve reflect allele frequencies differences between one source and the 

target (Figure 4.12B). Accordingly, with the Yoruba as the other reference the putative African 

admixture in the Calchaquíes is inferred to have occurred 8.9+/-2.0 generations ago while the 

initial African mixture fraction is estimated at 2.2+/-0.5% (for the historical context of these 

admixture events see section 4.3.1). 

These different admixture dates occur because the LD decay rates obtained for this scenario are 

inconsistent. This means that the exponential model which ALDER fits to the decrease in 
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admixture LD as a function of genetic distance infers significantly different exponential decay 

constants (which equal admixture dates) for all scenarios tested when ALDER is run for this 

population trio, i.e. a) Calchaquíes a mixture of Eskimo and Yoruba, b) Calchaquíes with 

Eskimo as single reference, c) Calchaquíes with Yoruba as single reference.  

One way to assess the evidence for recent African gene flow into the Calchaquíes is to compare 

the characteristics of RVCs shared between these groups to empirical rare variant sharing 

patterns of non-Africans who are known to be African-admixed. Beforehand, it is however 

necessary to ascertain that the genomic runs of rare variants shared by Calchaquíes and Africans 

do not represent ancestry from a third source that mixed with both groups. Continental 

frequencies of 3,290 doubletons that form the 241 RVCs detected in Calchaquíes with African 

populations (Appendix D.32) were retrieved from gnomAD. Of the doubletons that could be 

matched unambiguously to the database 97.9% (3,191/3,261) reach their highest global 

frequencies in Africans. This together with the fact that the average African allele frequency at 

these sites is at least one hundred-fold higher than that observed in East Asians and Europeans, 

is consistent with an African origin of these mutations (Table 4.6). 

Table 4.6: Mean allele frequencies of doubletons forming RVCs shared between Africans and Calchaquíes 

in continental groups from the gnomAD dataset. Sample sizes given in the table header. Run length 

intervals exclude their lower and include their upper boundary. 

RVC physical 

length 

Number of 

RVCs 

Africans (includes 

African Americans) 

(n = 4,368) 

East Asians 

(n = 811) 

Europeans (Non-

Finnish) 

(n = 7,509) 

0-200 kb 143 0.025 2.27*10-5 1.14*10-4 

200-1,000 kb 88 0.024 4.39*10-5 1.40*10-4 
>1,000 kb 10 0.019 6.08*10-5 1.85*10-4 

Only three of these genomic runs are suspect as many sites in them show a pattern where either 

a) Europeans are polymorphic and no Africans exhibit the variant or b) European and African 

allele frequencies are comparable (Appendix D.33). The longest of these runs (3:157,703,340-

159,568,153 between Cachi5 and ASW_3) likely indicates recent European admixture whereas 

the shorter two, which have lengths of ~0.023 cM and ~0.165 cM, could also be interpreted as 

originating from residual pre-OOA sharing. Regardless, only a very small fraction (maximum 

of 1.39 cM/59.55 cM) of all RVCs between Calchaquíes and Africans is consistent with being 

the result of introgression from a non-African source. 

When the vrGV databases of the Calchaquíes individuals are used to define their sharing with 

other populations, the average Calchaquí-African pair has a total of ~1.23 RVCs in common 



 

-229- 

 

which span a mean cumulative length of ~0.305 cM. Both metrics are significantly elevated 

relative to the geographically adjacent Wichi in whom African-shared runs are almost totally 

absent (n̅RVC_Wic_Afr = 0.115, L̅RVC_cumulative_Wic_Afr = 0.016 cM; two-sample t-tests: tRVC = 11.477, 

p < 10-15, tL_RVC_cumulative = 6.727, p = 1.729*10-10).  

However, when compared to known African-admixed groups from the Americas 

(n̅RVC_Afr_admixed_Ame = 5.105, L̅RVC_cumulative_Afr_admixed_Ame = 1.182 cM; two-sample t-tests: tRVC = 

-12.174, p < 10-15, tL_RVC_cumulative = -7.646, p = 1.541*10-13) and the Middle East (n̅RVC_Afr_MiE 

= 4.243, L̅RVC_cumulative_Afr_MiE = 0.728 cM; two-sample t-tests: tRVC = -19.103, p < 10-15, 

tL_RVC_cumulative = -7.174,  p = 2.269*10-12) the signal in the Calchaquíes is approximately 3-4 

times weaker.  

Analysing the RVC length distributions (Figure 4.13) with the ADC supports broadly similar 

dates for the African gene flow into the Calchaquíes compared to Mexicans and Puerto Ricans 

as they cannot be distinguished by this metric (ADCRVC_Cac_Ame_admixed = 1.402, 

pRVC_Cac_Ame_admixed = 0.2014). 

 

Figure 4.13: a) Relative frequency histogram of the length of RVCs shared between Africans (AFR) and i) 

known admixed American populations (AME_ADMIXED), ii) Calchaquíes (CAC), iii) Middle Easterners 

(Arabs and Iranians) (MIE), iv) Wichi (WIC), b) Histogram of raw counts analogous to a), however 

Mexicans and Druze were chosen as representatives for their larger clusters to make absolute histogram 

interpretable. RVCs were defined based on non-African vrGV databases. 

Consistent with this, RVCs shared between Calchaquíes and Africans are shifted towards 

greater lengths relative to those the latter and Middle Easterners (ADCRVC_Cac_MiE = 7.521, 

pRVC_Cac_MiE = 1.88*10-4) have in common. Finally, the ADC does not indicate a significant 



 

-230- 

 

shift in the lengths of African-Wichi vs African-Calchaquíes runs (ADCRVC_Cac_MiE = 0.583, 

pRVC_Cac_MiE = 0.6646).  

One factor contributing to this outcome is likely that only 18 runs fall into the African-Wichi 

category, which reduces the statistical power of the Anderson–Darling test. Low frequency 

European admixture could contribute to the observed excess f2 affinities between the 

Calchaquíes and some West Eurasian groups. The 99 RVCs shared between Calchaquíes and 

Europeans from the Diversity Set were again compared to the gnomAD dataset (Appendix 

D.34). Out of 22 such RVCs, which encompass a total length of 7.11 cM, two exhibit a pattern 

where the doubletons constituting them have their highest recorded frequencies in Africans. For 

the other 20 RVCs the mean European frequency of the f2 variants is ca. 3.7-fold higher than in 

Africans. The latter runs are mostly short enough that they could reflect ancient background 

sharing; however, five runs have a length greater than 0.5 cM. These could represent potential 

traces of European ancestry. While this possibility is not further investigated here it underlines 

that any small-scale European contribution does not appear to be a plausible confounder of the 

African admixture signal in the Calchaquíes. 

The African admixture fraction can be estimated from nearest neighbour sharing segments as 

the average cumulative CP length a Calchaquí individual shares with all Africans minus the 

same average quantity for a Wichi genome. This results in an estimated average length of ~57 

cM corresponding to 0.81% of the Calchaquí genomes. 

To test whether a signal of rare variant sharing of that magnitude can result from background 

sharing rather than a recent admixture, plausible demographic scenarios (Figure 4.2) were run 

in simulations. PCA suggests that the expected continental genetic clustering of extant human 

populations can be reproduced well from the baseline scenario (Figure 4.2) simulated here 

(Appendix D.35). Additional simulated demographic histories explore the nature of a 

hypothetical recent admixture event from Pop1 (Yoruba-like) into Pop5 (Calchaquíes-like). 

None of the 20 replicates of a null model without recent admixture from Pop1 into Pop5 

(scenario A) yielded a total RVC count or cumulative RVC tract length exceeding the amount 

of empirically observed sharing between the Calchaquíes and all Africans (Figure 4.14, relevant 

RVCs from simulations listed in Appendix D.36). This implies a simulation-based p-value < 

0.05.  
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Figure 4.14: Histograms of different measures of abundance of rare variant sharing between Pop5 

(Calchaquíes-like) and Pops1/2 (African-like) in twenty simulation replicates without recent excess gene 

flow. The metrics used are a) the total number of RVCs and b) the cumulative genetic length of RVCs. 

Vertical lines indicate outcomes from empirical data and from scenarios for which only one set of simulated 

genomes was created. The latter differ from the null-model/scenario A as follows: scenario B- 10 times 

elevated background migration rate between Pop5 and Pops1/2, scenario C- a single admixture pulse from 

Pop1 into Pop5 with an admixture fraction of 0.5% occurred 15 generations ago, scenario D- identical to 

scenario C with admixture event 18 generations ago, scenario E- identical to scenario C with admixture 

event 20 generations ago, scenario F: identical to scenario D with admixture fraction of 1%. 

This estimate is likely too conservative, as depending on the abundance metric used, the 

observed sharing signal in the real data (LRVC_cumulative_Cac_Afr = 59.546 cM, nRVC = 241) is 10-

19 times greater than the highest value obtained from any simulation replicate 

(LRVC_cumulative_scenarioA_Pop5_Pops1/2 = 6.192 cM, nRVC_ scenarioA_Pop5_Pops1/2 = 13). 



 

-232- 

 

Scenario B that includes a higher background migration rate between Pops1/2 and Pop5 

produces an increased signal with a cumulative length of 8.201 cM spread across 62 runs. 

Interestingly, the outputs from scenarios C-E assuming a very low admixture fraction of 0.5% 

have a lower total of RVCs even though the genetic length these cover is 2-3 times greater than 

for scenario B. Within the very low-level admixture scenarios the RVC signal is stronger the 

more recent the simulated admixture date is. The final scenario F with an admixture fraction of 

1% yields RVC output totals that are closest to those observed in the real Diversity Set, though 

still somewhat lower (nRVC_ scenarioF_Pop5_Pops1/2 = 110, LRVC_cumulative_scenarioF_Pop5_Pops1/2 = 47.252 

cM). 

Another aspect of RVC sharing for which empirical and simulated datasets can be compared is 

how the genomic runs the Calchaquíes have in common with Africans are apportioned between 

populations. Across all scenarios that include recent admixture from Pop1 into Pop5 86.2% 

(255/296) of all RVCs and 97.0% of the cumulative length of the runs Pop5 shares with African-

like groups are accounted for by Pop1. 

In contrast, only a third of all RVCs and less than half of the total cumulative RVC length 

shared between Calchaquíes and Africans are contributed by the Yoruba, though the overall 

sharing profile matches that of the Yoruba themselves very well (Table 4.7). In a larger 

geographical context more than 80% of the cumulative total for both abundance metrics derives 

from pairs which involve either groups whose predominant ancestry has been linked a cluster 

corresponding to the present-day distribution of the Niger-Congo language family (Tishkoff et 

al., 2009) or Pygmies from the region who are known to have received gene flow from the 

former (Patin et al., 2014). 

Table 4.7: Percentages of total RVC sharing a) between Calchaquíes and all Africans, b) between Yoruba 

and all Africans that is accounted for by each African population from the Diversity Set. 

Population N African-shared RVCs in the 

Calchaquíes 

Yoruba 

  Cumulative RVC 

genetic length 

Number of 

RVCs 

Cumulative RVC 

genetic length 

Number of RVCs 

African-Americans 5 14.27% 15.35% 18.20% 16.55% 
Hadza 5 0.83% 3.32% 1.69% 3.41% 
Luhya 4 8.7% 13.69% 11.26% 12.26% 
Maasai 3 2.98% 3.73% 3.78% 5.25% 
Pygmies (Western 
Central Africa) 

8 19.37% 19.92% 13.96% 19.74% 

Sandawe 5 9.01% 9.96% 4.36% 6.8% 
Yoruba 9 44.85% 34.02% 46.76% 35.99% 
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The RVC length distributions resulting from most of the simulated scenarios and the empirical 

Calchaquíes-African sharing (Figure 4.15) cannot be distinguished using the Anderson Darling 

test (Appendix D.37A). Even for cases of known African admixture (Mexicans, Puerto-Ricans), 

the length distributions of runs they share with Africans are not significantly different from the 

two simulated non-admixture scenarios (Appendix D.37B). The only detectable pattern is that 

the RVCs shared between Pop1 and Pop5 under scenario F are significantly shifted towards 

longer runs relative to the empirical data and simulations without gene flow. 

 

Figure 4.15: Relative frequency histogram of the length of RVCs shared between all Africans from the 

Diversity Set and the Calchaquíes (empirical) compared to sharing between Pop5 (Calchaquíes-like) and 

Pops1/2 (African-like) from six different simulated scenarios. The distribution for scenario A is based on 20 

replicates and on a single replicate for all other scenarios. RVCs were defined based on Calchaquíes/Pop5 

databases. 

 

4.2.4 Consistency of RVCs with computationally phased haplotypes 

Lastly, it will be examined how consistent the detected RVCs shared between Calchaquíes and 

Africans are with the complete genotypes and computationally phased haplotypes under the 

assumption that RVCs represent genomic segments uninterrupted by recombination events. 

Around three quarters of them (180/241) do not contain any sites where the two individuals 

sharing the run exhibit inconsistent homozygote genotypes. The remaining “broken” runs were 

fixed by splitting them at the homozygous inconsistent sites and retaining the resulting sub-runs 

if they contained five or more shared doubletons (see Appendix D.2 for scripts).  
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Figure 4.16: Subsection of the RVC 1:183,212,668-184,089,833 spanning a total of 16 kb. Only some 

segregating sites from this subregion are displayed; dots represent variants which are not recorded here. 

Green background shading indicates that for this position the inferred haplotypes YRI_12.HAP1 and 

Cachi4.HAP1 are consistent with the assumption that this RVC represents a continuous long shared 

haplotype. Red shading indicates sites which are inconsistent with it and polymorphic in other individuals, 

which are not displayed here, whereas yellow shading represents inconsistent doubletons. Under the 

assumption that YRI_12.HAP1 represents a correctly phased haplotype there would have to be eight switch 

errors in Cachi4.HAP1 alone. If to the contrary the hypothesis is that the computational phasing of this 

region is correct it would require four short independent haplotypes carrying at least one shared doubleton 

with YRI_12 within 16 kb in the genome of Cachi4. 

These 65 fixed runs (Appendix D.30C) together with original RVCs without inconsistent 

homozygotes span a cumulative genetic length of 36.94 cM. A less unambiguous criterion is 

that all heterozygous positions within the RVC boundaries are correctly phased. Switch error 

rate, which is formally defined as the proportion of heterozygous sites whose phase 1s wrongly 

deduced relative to the previous heterozygote (Stephens and Donnelly, 2003) was not estimated. 

This is because it cannot be determined which of the two computationally inferred haplotypes 

that share the first doubleton of an RVC is closest to the unknown true haplotype. 

If RVC consistency is just assessed by a simple count of (non-singleton) heterozygous sites 

which differ between the two inferred haplotypes underlying the RVC 91.4% (224/245) of all 

RVCs contain at least one such site. However, in turn 84.3% (189/224) of these RVCs contain 

at least one doubleton shared by the two respective individuals which is inferred to switch 

haplotypes within an individual relative to the previous uniquely shared doubleton. The latter 

could be suggestive of phasing errors. 

An illustrative example for this is the RVC 1:183,212,668-184,089,833 (Figure 4.16): if the 

statistical phasing using SHAPEIT2 is assumed to be entirely correct there would have to be 

four independent very short haplotypes each carrying one doubleton uniquely shared between 
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the same two individuals within 16 kb. If, on the other hand, the RVC is interpreted as a 

continuous shared haplotype eight switch errors would have to occur in this short genomic 

segment. While these probabilities are not formally assessed here, a qualitative argument can 

be made that the latter is biologically more plausible, especially given that statistical phasing is 

known to have difficulties with correctly inferring rare haplotypes (see section 4.3.1). 

 

4.3 Discussion 

 

4.3.1 General insights 

As with any method it is important to know whether the obtained rare variant patterns are 

broadly consistent with theoretical expectations and whether errors are nonrandomly 

distributed. Human populations are known to exhibit a considerable degree of structure in 

common variant allele frequency distributions. If the rare variants mainly reflect recent history 

there should be a strong excess of individual-level f2 sharing within macro-groups vs out-

sharing, which is exactly what is observed (Figures 4.3-4.5). 

Furthermore, inferences about interpopulation relationships from rare variants rely on the 

assumption that if two individuals share f2 at a site they are likely to share a recent common 

ancestor at that locus. This is plausible because the average per-site mutation rate across the 

human genome per generation is on the order of 10-8 (see section 1.2.1) and therefore the 

probability of the same mutation occurring independently at the same site multiple times 

throughout recent human evolutionary history is very low. In the large ExAC dataset (Lek et 

al., 2016) such events, also known as recurrent mutations, have been reported at high mutability 

sites, e.g. CpG transitions. This means that doubleton sharing does not necessarily reflect IBD 

but can occur also due to homoplasy. In the ExAC dataset mutability at doubletons is correlated 

with the genetic distance between the individuals sharing the f2 variant. While there is strong 

evidence that in the Diversity Set the window-specific de novo mutation rate is the primary 

determining factor for rare variant density, there is no detectable excess of between-population 

doubletons in high mutability windows (Appendix D.38). This implies that for datasets of this 

size (two orders of magnitude smaller than ExAC) doubletons do with very high probability 

indicate IBD.  
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Wall et al. (2014) estimated a lower boundary for genotype errors of rare variants (MAF < 1% 

in Western Europeans) from Complete Genomics data at 6.3%, mostly due to false positives. 

While this is non-negligible, as long as it can be assumed that these errors are randomly 

distributed across the genome, it seems unlikely that two individuals would share a high number 

of doubletons due to genotype errors. Only one such case could be confidently inferred from 

the dataset; it was originally detected from excess-sharing relative to what can be expected 

based on geographical distance (Appendix D.10). In this case a British individual (UK1) shares 

a total of 352 f2 variants with two Chinese (Chn2 and Chn3) (Appendix D.39). The nature of 

this finding as a methodological artefact is supported by multiple lines of evidence. Firstly, 

UK1 has almost no doubletons in common with the other five Chinese in dataset. Furthermore, 

ca. 20% of the doubletons UK1 shares with Chn2/Chn3 are clustered within one read length 

(35 bp) indicating potential alignment errors. Most importantly, the three samples in question 

were the only ones from the whole Diversity Set for which version 2.0.3.x of the Complete 

Genomics pipeline was used for mapping and variant calling, suggesting a batch effect. This 

trio of individuals was flagged but not removed, as their aberrant pattern seems limited to their 

sharing with each other and does not measurably influence how they relate to other samples in 

the dataset. 

The excess of doubletons in African relative to non-African genomes (Table 4.2) suggests that 

the f2 totals still mostly reflect the consequences of OOA, as observed for synonymous variants 

when all frequencies were considered (Table 3.5). This is due to the sampling strategy for the 

Diversity Set. While many populations are covered, only a few individuals were sampled from 

each and no more than 63 from any macro-group. A considerable amount of private variation 

is not captured and some of the variants designated as f2 here are likely at intermediate 

frequencies in subgroups.  

Interpreting the order of non-Africans genomes by f2 numbers in terms of underlying processes 

is not straightforward due to the complexities hinted at above. For instance, the Middle Eastern 

group is more diverse than other West Eurasians which most plausibly reflects higher Ne before 

very recent times and/or admixture with the more diverse Africans. On the other hand, elevated 

doubleton counts in Oceanians vs other non-Africans most likely result from lack of gene flow 

between them leading to very distinct population-specific branches in the former. The different 

underlying forces become clearer if f2 sharing is considered (Figures 4.4-4.5) but very dissimilar 

population histories can produce effects of the same directionality in terms of total f2 counts. 
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Therefore, the finding that the East Asian/mainland SEA group is the least diverse according to 

the sample-size normalised f2 totals only indicates that these f2 sites are at intermediate 

frequency on a population-level (~16.7% for downsampled groups if population-specific) and 

in consequence mainly reflect older demographic history. Some models have suggested that the 

post-OOA bottleneck was more severe for East Asians than for Europeans (Gravel et al., 2011), 

which could have caused the observed pattern, even though MSMC data (Figure 3.21) 

seemingly contradict this. 

In a comparative perspective, these results at a first glance appear very different from those 

compiled in the final stage of the 1000 Genomes Project (The 1000 Genomes Project 

Consortium, 2015). There, a total of 8,769,658 f2 variants in 2,504 individuals was reported, 

which equals ~3,502 variants per haploid genome. However, when sample sizes are comparable 

most of the 2.7-fold increase in f2 variant counts in the Diversity Set disappears (see Appendix 

D.40 for analyses based on 1000 Genomes genotypes, and Appendix D.41 for raw f2 sharing 

matrices). Even if sample sizes are comparable, for each macro-group except East Asians the 

Diversity Set still exhibits a moderate excess of f2 variants relative to the 1000 Genomes data. 

This could conceivably reflect either that the macro-groups in the Diversity Set contain more 

diverse subpopulations or potentially the higher average coverage in the Diversity Set vs the 

final 1000 Genome data (for the latter estimated at ~7.8´). Finally, it could also indicate 

platform-specific differences between the Illumina and Complete Genomics technologies. 

When the non-normalised datasets are compared, the distinction in diversity between Africans 

and non-Africans is much less clear in the 1000 Genomes data. The latter is perhaps not 

surprising as the samples from single populations are much larger and therefore the f2 variants 

often have an MAF of ~1% in the specific subpopulations. For the higher and relatively 

balanced sample sizes in the 1000 Genomes data East Asians/SEA groups and South Asians 

exhibit higher f2 totals than West Eurasians, which is also observable in the full Diversity Set 

(Table 4.2).  

An interesting property of the normalised f2 counts as well as the total length of RVC sharing 

between two individuals is that these metrics strongly correlate with the total genetic length of 

pairwise shared CP chunks (Figure 4.7, Table 4.3). This is not an unexpected outcome as the f2 

methodology has conceptual similarities to the most widely used IBD detection approaches, the 

key idea being the identification of low frequency haplotypes. When these are shared between 
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individuals they are most likely derived from a particular MRCA (Browning and Browning, 

2012).  

However, IBD sharing as detected by these approaches does not in all cases measure the same 

quantity as f2 sharing which can be illustrated by considering the underlying genealogies. The 

amount of f2 sharing between two individuals i and j can be interpreted as proportional to the 

probability that the first coalescence of both the lineages of i and j is with each other. On the 

other hand, the amount of IBD sharing between i and j is directly related to the probability that 

these two lineages have coalesced by a specified time. This time depth is approximately 

determined by the minimum candidate segment length that can be inferred reliably by the IBD 

detection method. Therefore, f2 sharing can highlight older coalescent events than those 

detectable by IBD. However, f2 by definition misses IBD chunks without doubletons, i.e. IBD 

segments where three or more individuals share a common ancestor within the proposed 

timeframe.  

Intriguingly, Mathieson (2013), who proposed this genealogical interpretation of IBD and f2, 

also remarked on the close relationship between f2 and the haplotype copying model from Li 

and Stephens (2003); the latter underlies the CP method (see section 1.3.3). Mathieson (2013) 

also compared a log-transformed and z-scored f2 metric with similarly treated IBD sharing; the 

resulting correlation was moderate (r = 0.58). To ensure that the high correlation obtained in 

this thesis is robust to transformations (i.e. not driven by just a few outliers, even though the 

high rank correlation coefficients suggest that this is not the case) f2 and CP sharing were 

analysed as proposed by Mathieson. While the correlation coefficient is somewhat reduced (r 

= 0.83) (Appendix D.42), it is still much higher than for Mathieson’s f2 metric and IBD. This 

can be partly attributed to CP sharing being more closely related to f2 than other IBD detection 

approaches as described above. Furthermore, using the mean of the total f2 diversities of the 

individuals forming the pair for normalisation (Eq. 4.1) yields a metric that is less biased by 

individual-level f2 diversity (when Mathieson’s metric is calculated from the Diversity Set the 

correlation with CP decreases to r = 0.71). 

The pairs with large standardised residuals from the regression between CP and f2 (Appendix 

D.7) demonstrate two major patterns. Firstly, even if f2 sharing is normalised by baseline 

diversity, its ability to detect potential pairwise coalescences is directly related to the density of 

f2 variants. Therefore, groups with low Ne might share nearest-neighbour segments identifiable 

for CP, e.g. through particular combinations of more frequent alleles which are not picked up 
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by f2 due to lack of shared doubletons. Similar outcomes should occur for populations without 

closely related groups in the dataset as CP assigns every chromosome segment to a best match 

even if those matches are remote. Conversely, as a linear predictor variable f2 sharing will 

overestimate CP sharing for groups with higher nucleotide diversity as the true underlying CP 

chunks will have higher SNP density and therefore carry proportionally more f2 variants. 
Secondly, excess f2 sharing relative to CP affinities could indicate underlying non-random 

sequencing or variant calling errors as a measurable fraction of these pairs consists of 

individuals flagged as having unusual metrics by Complete Genomics. 

Overall, normalised f2 sharing represents a computationally efficient and simple heuristic 

method to describe recent shared ancestry as demonstrated by its very strong correlation with 

the results of the powerful state-of-the-art method CP. Like other non-parametric approaches, 

it requires balanced sampling and should correlate best with CP if the overall nucleotide 

diversities of included individuals are comparable. 

Many of the statements made above about normalised f2 counts also apply to the RVC approach. 

Again, the 1000 Genomes Project phase 3 dataset and an f2 haplotype metric according to 

Mathieson and McVean (2014) are used as a reference. The median physical run length of the 

RVCs appears very similar to the value of ~336 kb obtained for f2 haplotypes from the 1000 

Genomes data. However, the latter have a median genetic length of ~0.41 cM, about twice that 

of the RVCs (medians obtained from raw data kindly provided by Dr Iain Mathieson). This 

difference is unlikely to be explained by variation in the assumed recombination rates, as both 

maps used are derived from HapMap phase 2 data. The most plausible reason is that the criterion 

which defines the core region of an RVC is more restrictive than for the f2 haplotype metric, 

therefore the regions covered by RVCs should mostly be a subset of f2 haplotypes. 

Regarding the potential and broader applications of the RVC method two aspects deserve closer 

attention. First, it is important to reconsider how RVCs are defined and second, what inferences 

can be made based on how they are shared. One important difference between the RVC and the 

f2 haplotype metrics is how the endpoints of the shared haplotype segments are determined. 

Recall that the definition of RVCs relies on individual-level rare variant databases and that an 

RVC is extended beyond the core region of five shared doubletons if there is another doubleton 

within 40 rows (i.e. variants). At least one empirical example suggests that multiple independent 

rare variant segments can thereby be conflated into one (Appendix D.25). 
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One method to account for this is to apply additional stringency criteria, i.e. assume a break of 

RVC segment continuity in case of homozygote inconsistency, as was done here for 

Calchaquíes-African RVCs. An alternative criterion was suggested by Hochreiter (2013), 

whose HapFABIA method has conceptual similarities to the RVC approach. A HapFABIA IBD 

segment ends when the next shared SNP between the individuals in question has a distance to 

the previous shared SNP that has a very low probability of occurrence assuming an exponential 

distribution with the median distance between the other SNPs constituting the IBD segment as 

parameter. 

A more comprehensive approach would be to use simulations to generate ground-truth IBD 

segments derived from a software which produces ancestral recombination graphs (e.g. the 

MaCS program by Chen et al., 2008). A potential framework to compare RVCs inferred on 

these simulated datasets to ground-truth IBD was provided by Chiang et al. (2016). They 

demonstrated that at least for high coverage SNP data state-of-the-art IBD detection algorithms 

conflate independently inherited segments and therefore overestimate the length of a 

considerable fraction (~22%) of shorter (1-2 cM) fragments. Ideally, such simulations would 

also include diverse demographic histories as these influence the abundance of rare variants 

available for inference and in the vrGV databases affect which physical/genetic distance one 

row on average represents. This would allow testing whether a uniform threshold for the 

stretching window across very diverse populations may be a problematic assumption. 

Simultaneously, there should be cases where the length of true IBD segments is underestimated 

when they extend beyond the last shared doubleton. 

Simulations could also help to contextualise the finding that many heterozygote inconsistencies 

occur between the RVCs and the computational phasing using SHAPEIT2 (Appendix D.30, 

Figure 4.16). The two most plausible non-exclusive explanations are that either many 

statistically phased haplotypes carrying doubletons exhibit an excess of phasing errors or that 

many RVC segments do not represent regions of contiguous IBD.  

There is some circumstantial evidence that at least for the core regions of the RVCs the former 

factor is likely more relevant. Firstly, switch error rates of 8.7% have been reported for 

doubletons phased using SHAPEIT2 based on simulations, even though the simulated dataset 

(n = 262) was somewhat smaller than the empirical sample used here (Delaneau et al., 2013a). 

Secondly, it should be considered that SHAPEIT2 models the haplotypes in each individual as 

an imperfect mosaic of the haplotypes estimated from the unphased genotypes for all other 
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individuals. Intuitively, the RVCs that contain many uniquely shared doubletons between two 

individuals should indicate long genealogical branches which would imply that for these 

specific regions the haplotypes of other sampled individuals might not represent suitable 

proxies. Interestingly, the authors of SHAPEIT2 themselves recently published a method 

(SHAPEITR) incorporating this idea. They modified the SHAPEIT2 algorithm to give greater 

weight to rare variant sharing patterns and demonstrated that this improves phasing accuracy 

(Sharp et al., 2016). 

At least theoretically, the biggest advantage of the RVC compared to many other IBD detection 

algorithms should be its lower false positive rates for short IBD segments (Durand et al., 2014; 

Ralph and Coop, 2013). However, the RVC method should also suffer from generally reduced 

power as IBD segments lacking a cluster of uniquely shared doubletons will be missed. Another 

relevant aspect of the RVC/f2 approaches are their fast running times and that they should scale 

well with increasing sample sizes. The RVCs based on empirical data were generated from the 

chromosome-specific VCF files (nsites = 42,971,058) using the respective Perl scripts (section 

4.1.2) in ~242 minutes on one core of a server with an Intel(R) Xeon(R) CPU E5-2650 0 @ 

2.00GHz and 24 GB RAM. Finally, for very large samples when a substantial fraction of 

doubletons will reflect recurrent mutations the RVC should be more robust than the standard f2 

haplotype approach due to its minimum requirement of five adjacent doubletons. 

IBD segments can be used to infer demographic history, to estimate relatedness, either as a 

general kinship coefficient or a specific pedigree (Sun et al., 2016) and to perform IBD mapping 

comparing cases vs controls in medical genetics. Here, RVC segments generated from a range 

of simulated scenarios describing a hypothesised admixture event of interest were compared to 

empirical observations (for a more in-depth discussion see section 4.3.2). A potential follow-

up would be to use the maximum likelihood age estimation method described by Mathieson 

and McVean (2014) for f2 haplotypes on the detected RVCs. This method falls into the broader 

context of recently developed approaches which use the information contained in IBD segment 

distributions to infer a range of quantities describing demographic history. The latter include 

recent Ne (Browning and Browning, 2015; Palamara et al., 2012), the number of MRCAs 

between individuals from different populations in a particular time period (Ralph and Coop, 

2013) and spatial parameters such as dispersal rates and population densities (Ringbauer et al., 

2017). 
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In practice, one could envision that for future analyses, the f2/RVC methodology will be 

combined with an approach that detects longer IBD segments reliably, i.e. Refined IBD. 

Combining well-performing haplotype-based IBD detection methods yields only modest 

improvements in accuracy as measured by relatedness inference relative to known pedigrees 

(Ramstetter et al., 2017). However, the underlying genealogical interpretations as well as 

empirical evidence (Lawson and Falush, 2012)  suggest that the two types of algorithms 

emphasise different historical signals, i.e. additional information could be gained by combining 

them.  

The challenge would lie in designing the actual framework for such a composite approach. A 

starting point could be to use both the distributions of long IBD as well as shorter RVC segments 

to compute (approximate) maximum likelihood estimates for demographic parameters of 

interest and then evaluate based on simulations or “ground-truth” from independent methods 

whether there is a significant improvement in accuracy compared to the methods that only rely 

on the distributions of long IBD segments. A further advantage of the RVC approach for 

parameter inference from demographic models is that it detects IBS segments that are very 

likely to be IBD but does not require many assumptions about demographic history. The latter 

is the case for many other IBD detection approaches (Spence et al., 2018). Applying the RVC 

method should at least partly address the underlying problem of circularity when demographic 

parameters are then inferred from the IBD segment distribution.  

Assuming an exponential regression model, the median lengths of intra-macro-group RVCs are 

best explained by the harmonic means of Ne values from 5-10 kya relative to Ne over other time 

periods. For this time interval, a power law model of the following form outperforms an 

exponential model using the Vuong test statistic as criterion (Appendix D.18A): 

2< = 	 HI.MHJ
=>N.LLO

                                                            (4.7) 

Eq. (4.7) is of interest as a more complex expression that has been derived to describe the 

expected lengths of IBD segments shared within a population as a function of population size 

N is also a power law distribution (Palamara et al., 2012). The mean of this distribution of 

(uniformly sampled) IBD segment lengths is 1/(4*N) (Wakeley and Wilton, 2016). The 

differences between the latter expression and Eq. (4.7) are due to multiple reasons. Firstly, the 

mean of a power law distribution is self-evidently different from its median and secondly the 

RVCs represent a very specific subset of all IBD segments within each population. Finally, the 
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theoretical derivation is based on a Wright-Fisher population whereas real population histories 

are much more dynamic and complex. Taking this into account it can still be stated that Ne for 

different macro-groups between 5-10 kya has a relationship to median RVC segment length 

that is of a similar nature to that of Wright-Fisher populations of different sizes and their 

respective mean IBD segment lengths. 

A potential criticism of this analysis is its redundancy, as Ne inferred from MSMC is obtained 

from rates of first pairwise coalescences between sequences along the genome whereas the 

RVC method focusses on a subset of first pairwise coalescences. However, this type of analysis 

can still be informative about the approximate time frame of the processes generating the RVCs 

and it should provide a lower bound of the ages of the doubletons the RVCs carry. 

The observed decline of rare variant sharing with geographical distance (Appendix D.1, 

Appendix D.11) is not an unexpected result and consistent with previous analyses of allele 

frequency (Ramachandran et al., 2005) as well as haplotype sharing (Martin et al., 2018). It 

occurs in an approximately exponential manner consistent with predictions about genetic 

similarity in space made as early as the 1940s, e.g. by Wright and Malécot (see section 4.1.1). 

While it would go beyond the scope of this thesis to discuss the vast amount of scholarship on 

this subject since these early investigations, it should be noted that Eq. (4.2) by Malécot and its 

extension to two dimensions have been criticised because the theoretical foundations they were 

derived from contained inconsistent assumptions (Felsenstein, 1975). Furthermore, there are 

patterns observed in biological data, e.g. long-range correlations of allele frequencies which 

cannot be explained by “classical” theory (Sokal and Thomson, 1998). However, as described 

above f2 sharing correlates very well with haplotype-based IBD detection methods. The latter 

should mostly be robust for the confounding effect of ancestral structure (Barton et al., 2013; 

Ringbauer et al., 2017). Therefore, the rare variant sharing patterns by geographical distance 

observed here are best interpreted as primarily resulting from recent isolation-by-distance. 

A few more aspects of the Mantel correlograms (Appendix D.11) are worth highlighting briefly. 

Firstly, the slightly higher values of the Mantel statistic for CP vs f2 sharing likely reflect that 

the former is less affected by differences in rare variant densities as mentioned above. Secondly, 

for both sharing matrices the Mantel correlations becomes non-significant at ca. 3,000-4,000 

km, this distance indicates a quantity defined as “patch size” by (Sokal and Wartenberg, 1983). 

While in theory it can be used to gain insights about migration rates and other aspects of 

population dynamics this is not further pursued here. Finally, the slight increase in the Mantel 
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statistic in the distance bins >7,500 km is most plausibly interpreted as reflecting the impact of 

Post-Columbian long-distance gene flow between the Old World and the Americas. 

 

4.3.2 Detecting low level admixtures using rare variant approaches 

Overall, the analyses presented here provide strong support for a previously undetected low-

level African admixture in the Andean Calchaquíes. This conclusion rests on rare allele sharing, 

relative to both known African-admixed groups and sequence data simulated under realistic 

scenarios, as well as a signal of admixture LD. The magnitude of this gene flow is estimated at 

0.8-2.2% and it is dated to 8.9-13.6 generations ago. In a supra-regional context this finding is 

plausible, given that post-Columbian South American population history has been characterised 

by widespread admixture of Native Americans with Europeans and Africans. The upper 

boundary of this signal is comparable to the mean value of 2.5% African ancestry reported for 

Peruvians from Lima (Martin et al., 2017).  The date obtained using ALDER also is consistent 

with the range of 9-14 generations which has been reported as the (starting) date of 

African/European admixture into Native Americans in continental South America (Adhikari et 

al., 2016b). 

The Calchaquí samples were collected in the town of Cachi, located in the Salta Province of 

Northwest Argentina (Eichstaedt et al., 2015). Generally, urban Argentinians exhibit high 

European ancestry proportions compared to the populations of most neighbouring Latin 

American countries. A study using multiple genetic systems detected autosomal averages of 

78.6% European, 17.3% Native American and 4.2% West African ancestry with a relative 

overrepresentation of European Y-chromosomal and Native American mtDNA lineages 

(Corach et al., 2010). Recent work has shown that for the Northwest of Argentina these patterns 

are almost exactly reversed with a genomic make-up of only 13.7% autosomal European 

ancestry and >80% Native American ancestry (Muzzio et al., 2018). These populations cluster 

closely genetically with indigenous Central Andeans such as the Quechua and Aymara 

(Chacon-Duque et al., 2018). The latter is consistent with historical evidence that before 

European contact Northwest Argentina was more densely populated than other regions of 

present-day Argentina (Martínez Sarasola, 2005) and that it was less affected by the massive 

influx of European immigrants into the country from 1870-1950 (Motti et al., 2012). 

There are two previous studies that have analysed genetic data from the Calchaquíes. Pagani et 

al. (2016) presented the five Calchaquí WGS which are the focus of this chapter. These in turn 
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were a subset of a larger group of 24 individuals. 730k SNP data from these was published by 

Eichstaedt et al. (2015). Both studies applied the allele-frequency-based ADMIXUTRE method 

to analyse population structure and were unable to detect the African admixture into the 

Calchaquíes inferred here from rare variant sharing patterns.  

Very low-level European admixture into the five Calchaquíes analysed here cannot be ruled 

out, even though the total cumulative genetic length (7.11 cM) covered by the respective RVCs 

is less than an eighth of that covered by Calchaquíes-African RVCs (59.55 cM). These numbers 

can however not be compared directly, as Europeans and Native Americans are not as deeply 

diverged and Europeans exhibit a lower rare variant density than Africans which decreases the 

power of the RVC approach. An interesting contrast between the genotyping SNP assay and 

WGS studies is that the former estimated a mean 8.6% fraction of European ancestry in the 

Calchaquíes whereas the latter, in closer agreement with the RVC method, did not detect such 

a signal. At least two factors can explain this apparent contradiction. Firstly, the SNP data from 

the subset of the five Calchaquíes for whom WGS was later generated had an average European 

ancestry proportion of 5.8%, i.e. somewhat below the mean of all samples and all of the three 

sampled males carried the Y chromosome haplogroup Q1a, which is most prevalent in Native 

Americans (Dr Christina Eichstaedt, personal communication, 28/10/2018). Secondly, it has 

been demonstrated that even for a moderately high number of markers (10k) the unsupervised 

standard ADMIXTURE algorithm can erroneously introduce patterns resembling low-level 

admixture (Lange et al. 2011). This bias can be reduced by increasing the number of analysed 

SNPs further (>100k). Such a tenfold difference corresponds approximately to the sizes of the 

sets of markers the respective ADMIXTURE analyses by Eichstaedt et al. (2015) vs. Pagani et 

al. (2016) were run on. 

The low African ancestry proportion in the Calchaquíes described here most likely reflects 

forced migration due to the transatlantic slave trade. African slaves were first introduced to the 

region in the late 16th century and a substantial inflow continued until 1812. The latter is 

estimated at ca. 70,000 slave arrivals for the whole Viceroyalty of the Río de la Plata (mostly 

comprising modern Argentina) from 1777-1812 alone (Borucki, 2011). Correspondingly, 

historical records suggest that during the late 18th century as much as one third of the population 

of Buenos Aires was of African origin (Andrews, 1980). According to the current Argentine 

census, however, < 0.5% of the country’s population identifies as Afro-Argentines 

(http://www.indec.gov.ar/definitivos_bajarArchivoNacionales.asp?idc=58&arch=x&c=2010). 
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The ongoing debate about the causes of the subsequent decline in their numbers can only be 

hinted at here. Most likely it reflects a combination of demographic pressures against 

individuals with a large African ancestry proportion as they were overrepresented among the 

victims of epidemics and wars, the already mentioned large-scale European immigration and 

the categorisation of individuals of partial African ancestry as “white” by the authorities 

(Cottrol, 2007). 

So perhaps the African ancestry detected here in the Calchaquíes can be interpreted as a 

population genetic remnant of this earlier period of Argentinian history. It can be speculated 

that the contributing ancestors were slaves or freed Africans who had been brought to the 

interior of the country to work in agriculture or mining. It is also interesting to note that 

compared to the communities of the other Andean populations studied (Colla, Wichi) the town 

of Cachi, where also almost all the grandparents of the Calchaquíes analysed here originated 

from, is geographically somewhat more accessible from Salta, the provincial capital (Dr 

Christina Eichstaedt, personal communication, 16/06/2016). 

Beyond the anthropological and historical context there are several methodological aspects 

worth highlighting. They concern the sensitivity of different approaches for detecting 

admixture, the reliability of the estimates of admixture fractions and date and finally what can 

be learned about the power of rare variant approaches from simulations. 

The possibility of admixture events between two sources that do not result in a significantly 

negative f3 statistic with the respective target population was already considered by the authors 

of the method (Patterson et al., 2012). Based on the equations underlying the f3 introduced by 

Reich et al. (2009) there are several aspects of population history to consider. 

The value of the f3 statistic for a trio of populations C (target population for admixture test) A 

and B for a single polymorphism is defined as follows: 

P[9M(C;A,B)]	= E[(C-A)(C-B)] = (c’-a’)(c’-b’)                                                      (4.8) 

Note that a’, b’ and c’ are the population alleles frequencies at the respective marker in A, B 

and C. In their paper Reich et al. (2009) also demonstrated that it is valid to calculate expected 

values for the f3 by tracing drift paths through a tree and decomposing an admixture tree relating 

A,B and C. Figure 4.17 illustrates that in such a tree under the hypothesis of admixture there 

are two possible paths each from C to A and C to B (two are “short” and two are “long”, i.e. go 
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through the root of the tree). Note that here A’ and B’ are defined as the (unknown) true 

admixing populations who are related to A and B. 

 

Figure 4.17: Visual interpretation of the f3 statistic between a putatively admixed group C and source 

proxies A and B. A’ and B’ represent the actual groups who admixed to form C’ and who might be unknown. 

The arrows in a) indicate the four possible ways C can be connected to either A or B. The shorter paths are 

highlighted in red and blue, whereas pink and turquoise are used for the longer paths. P and 1-p denote the 

putative admixture fractions A’ and B’ contributed to C’. The green letters in b) label the segments which 

are shared by both the paths from C to A as well as the paths from C to B and therefore contribute to the 

expected f3 statistic (see Eq.4.9) (Modified from Reich et al., 2009). 

To explore the product of the shared drift between C and A vs C and B visually in a tree four 

possible combinations of two drift paths need to be considered. They are: CA(short) + 

CB(short); CA(short) + CB(long); CA(long) + CB(long); CA(long) + CB(short). These subtrees 

can be added up linearly and are weighted by the admixture fraction p contributed by A’ if a 

path goes through A’ and/or (1-p), the complementary fraction contributed by B’, if a path goes 

through B’. This results in the following expression (for the exact tree segments represented by 

f-k see Figure 4.17): 

P[9M(C; A, B)] = 	p(1 − p)k + p-(k + i) + p(1 − p)(k − f − g) + (1 − p)-(k + j)	         (4.9) 

This can be simplified to: 

P[9M(C; A, B)] = 	k + p-i − p(1 − p)(f + g) + (1 − p)-j	                                                 (4.10) 

From Eq. (4.10) it can be seen that 9M(C; A, B) is likely to be highly negative if a) p is close to 

0.5, i.e. both admixing groups A’ and B’ contributed comparable amounts of ancestry, b) 

population-specific drift k from C’ to C, i.e. since the population was formed, has been small, 
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c) the common ancestors of A/A’ and B/B’ respectively were deeply diverged, i.e. f and g are 

large, d) A’ and B’ were not drifted far from their common ancestors with A and B, i.e. i and j 

are small.  

Therefore, likely the primary reason that the African admixture in the Calchaquíes is not 

detectable with the f3 on a genome-wide level is its small magnitude. In addition, the effect of 

the application of the inbreeding correction (Table 4.5), which gives a greater weight to 

homozygous sites for contributing negatively to the f3 statistic, suggests that drift in the 

Calchaquíes, even in the very brief period since the admixture, has reduced the likelihood of 

the signal being identified. 

It is interesting to note that when the f3 test was run with the Siberian Eskimos as surrogate 

population for the Native American ancestors of the present-day Calchaquíes condition d) 

becomes relevant as the population split between these two groups has been estimated at ~14 

kya (Appendix D.4). The strong drift the ancestors of the Andeans have experienced since this 

divergence results in a considerably more positive value for f3(Calchaquíes;Yoruba,Eskimo) 

than f3(Calchaquíes;Yoruba,Wichi). Peter (2016) who explored the power of admixture f3 

statistics in the context of population genetic theory and simulations also derived conditions a)-

c), he however did not consider d) as it involves “internal” populations which cannot be 

observed empirically.  

The example of the substitution of the Wichi by the Eskimos and the subsequent change in the 

f3 statistic however demonstrates that for certain cases the choice of good surrogate populations 

is crucial even if the underlying topologies of the target and source populations are identical, as 

for f3(Calchaquíes;Yoruba,Eskimo/Wichi). Taken in isolation, the significant result of the f3 

statistic obtained for chromosome 13 should be treated with some caution. The significance of 

the z-score depends on the accuracy of the jackknife standard error, which for this chromosome 

only reflects 20 independent outcomes (i.e. 5 cM blocks). Although in the literature (Moorjani 

et al., 2011) standard errors for population genetic statistics have been calculated from a 

comparable number of blocks.  

The inconsistent exponential decay rates observed for the ALDER method when the 

Calchaquíes are fit as a mixture of Siberian Eskimos and Yoruba raise the question whether 

these results should be treated with low confidence. However, the authors of ALDER 

demonstrated that when one group, as Native Americans here, contributes the vast majority (≥ 

90%) of ancestry to a two-way mixture the amplitude of the one-reference weighted LD curve 
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between the target population and the reference representing this majority ancestry becomes 

very small (Figure 4.12B) or the signal vanishes completely. Therefore, the estimate of the 

exponential decay rate from fitting a one-pulse admixture model to the weighted LD 

Calchaquíes-Eskimo curve becomes very imprecise and the inconsistency with the 

Calchaquíes-Yoruba decay rate occurs. 

The signal is further weakened by the complex demographic history of the Siberian Eskimos. 

Recent aDNA studies suggest that they are best modelled as deriving one third of their ancestry 

from a Native-American-like group and two thirds from a source represented by a 9.8 kya old 

individual from Northeast Siberia (“Ancient Palaeosiberians”), the latter being an outgroup to 

all Native Americans (Sikora et al., 2018).  

Colla and Wichi could not be fit as a references for ALDER (data not shown). They are also 

affected by the fact that the Native American contribution to the Calchaquí genome is much 

larger than the African. Additionally, the z-scores obtained for the Calchaquíes-

Wichi/Calchaquíes-Colla weighted LD curves estimated from jackknifing over chromosomes 

do not reach significance. This perhaps reflects effects resulting from strong locally specific 

bottlenecks these Andean populations experienced after they diverged which overshadow the 

already weak real signal. The bottleneck-related explanation gains further plausibility as the 

much more distantly related Han Chinese could be fit as a reference (data not shown).  

Regardless of these issues, a theoretical framework (Loh et al., 2013; Pickrell et al., 2012) exists 

which also allows reliable parameter inference from one-reference weighted LD curves. As 

already mentioned, the admixture date from the Calchaquíes-Yoruba one-reference curve is 

consistent with expectations based on historical records and genetic studies of other admixed 

groups from the Americas. The ALDER estimated admixture fraction of 2.2% African ancestry 

in the Calchaquíes represents a lower bound. However, it seems unlikely that the true African 

contribution is much higher, as in that case the f3 signal would have been less ambivalent and 

the other approaches used here suggest a lower mixture proportion. Furthermore, the rare 

variant sharing profile of the African-like chunks in the Calchaquíes matches that of the Yoruba 

well (Table 4.7) suggesting that the latter represent a reasonably good proxy for the true 

admixing source. 

A final caveat concerning the ALDER results is that it has been argued that with small sample 

sizes ALDER inferences become noisy (Ayub et al., 2015). Simulations suggest that with larger 

sample sizes both the allele frequencies as well as the LD estimates underlying the weighted 
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LD inference method should become more accurate (Loh et al., 2013). There is, however, little 

evidence that low sample sizes produce spurious signals, instead the uncertainty manifests in 

form of larger standard errors, as observed for the Calchaquíes and the respective reference 

populations here. 

The approximate estimate of the African admixture fraction in the Calchaquíes (0.81%) using 

the output of CP should likewise be interpreted with caution. It could represent an underestimate 

of the true African proportion in the Calchaquíes as only haplotypes found in sampled Africans 

are considered as donors. Therefore, some haplotypes the Calchaquíes “receive” from other 

non-Africans which could represent shared African gene flow into both groups are excluded. 

On the other hand, the Wichi, whose African CP sharing is used a proxy for a non-admixture 

scenario, appear to have an even smaller long-term Ne than the Calchaquíes (Appendix C.3). 

Therefore, their amount of old short CP haplotypes shared with any other population would be 

reduced as has been demonstrated for other severely bottlenecked groups (van Dorp et al., 

2015). A potential follow-up analysis would be to use more statistically rigorous approaches 

that model the CP sharing/”painting” profile of a particular group as a mixture of sharing 

profiles from other groups and use either non-linear least squares (Leslie et al., 2015) or 

Bayesian (Chacon-Duque et al., 2018) methodologies to infer the respective mixture 

coefficients. 

When the total number/genetic lengths and RVC length distributions are combined the African-

Calchaquíes shared tracks fall in-between populations with known larger fractions of African 

admixture and groups that are thought not to have received such gene flow (Figure 4.13). One 

weakness of this approach is that RVC length distributions for groups which received African 

gene flow and those that did not were indistinguishable in certain cases, e.g. Calchaquíes vs 

Wichi. To some extent larger sample sizes could improve this situation as the Anderson-Darling 

test should become more powerful with more RVCs. However, for very low admixture 

proportions the randomness of the underlying true IBD sharing reflected by the RVCs would 

make the detection of the signal difficult in any case.  

The observed African-Calchaquíes RVCs are clearly much more abundant in terms of numbers 

as well as cumulative genetic length compared to the RVCs from all 20 simulation runs between 

groups with a broadly similar demography but lacking a recent admixture pulse. Therefore, 

such an extreme outcome in terms of rare variant sharing is very unlikely to occur without 

recent excess gene flow. 
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Between scenarios including a very small admixture pulse of 0.5% at different recent time 

points there is a decline of total RVC sharing as a function of the admixture date (Figure 4.14). 

While this is in line with theoretical expectations of the breakdown of IBD segments due to 

recombination over time, there is not enough data to infer the exact shape of this decay curve. 

It is worth highlighting again that an admixture pulse of 0.5% which lies further back than 15 

generations starts to become indistinguishable from a scenario with relatively modest (African-

East Asian) background migration rates under the given sampling scheme (Figure 4.14). While 

the cumulative genetic lengths of the RVCs still appear to be differentiated between admixture 

and non-admixture scenarios, this summary statistic also seems to be more prone to statistical 

noise than the raw RVC numbers due to the overestimation of the length of putatively 

underlying true IBD segments (see section 4.2.3).  

When background migration rates are high enough, they will introduce more interpopulation 

RVCs which might either reflect continuous IBD segments due to very distant relatedness or 

conflation of smaller very old segments that are picked up as one RVC. It can be speculated 

that for introgression from a group that is less deeply diverged from Native Americans and/or 

has a lower rare variant diversity than Sub-Saharan Africans the detectability threshold would 

lie at higher admixture fractions. 

Scenario F with an admixture fraction of 1% dated to 18 generations ago seems to be a good fit 

to the empirical cumulative genetic length of RVCs. However, the total number of RVCs and 

the raw numbers of doubletons forming these clusters, which is ca. threefold higher for the 

empirical data (3,290) relative to this specific scenario (1,092), suggest that simulations with 

either more recent admixture dates or higher admixture fractions would provide a better fit to 

the observed patterns.  

Despite the simulated admixture date already being older than the most plausible range for the 

real date, the RVC length distribution obtained from scenario F is shifted towards longer runs 

compared to the empirical distributions for Africans vs each of the admixed American groups 

respectively (Figure 4.15, Appendix D.37). Several factors likely contribute to this difference. 

Firstly, the simulations most likely overestimate the recent relatedness of the Yoruba to the 

individuals who introgressed into the ancestors of the Calchaquíes. Secondly, the simplification 

of African demographic history for the simulations could reduce the amount of very old lineages 

represented by very short RVCs; underestimating the Yoruba’s long-term Ne would have a 

similar effect. Finally, this pattern could be interpreted as representing an excess of short RVCs 
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in the empirical data, a phenomenon also observed by Harris and Nielsen (2013) for IBS 

segments. Besides complex demography, these could also reflect the non-uniformity of 

mutation rates across the genome (Appendix D.38) not incorporated into simulations here. 

There are several aspects which were not considered explicitly or simplified for the simulations. 

One such factor was hypothetical selection against African alleles after admixture. There is 

some limited evidence that variants representing adaptations to moderate hypoxia (as a 

consequence of intermediate altitude) have potentially been selected for in the Calchaquíes 

(Eichstaedt et al., 2015). A large-scale study on Peruvian WGS found support for asymmetric 

migration from the Andes towards coastal regions and the Amazon basin (Harris et al., 2018). 

This could suggest a disadvantage to migrants from the latter two into the Andean region who 

would have lacked genetic adaptations to high altitude but could also reflect settlement policies 

of the Inca and Spanish empires. However, even in much larger and well-studied recently 

admixed populations such as African-Americans the extent of ancestry-specific selection is 

debated (Bhatia et al., 2014; Jin et al., 2012). Therefore, it is unclear whether this phenomenon 

has measurably impacted genome-wide ancestry proportions in the Calchaquíes. 

Furthermore, all simulated genomes are effectively (i.e. in terms of SNP-containing regions) 

longer than real genomes as a substantial fraction of the reference genome (GRCh37/hg19) is 

inaccessible. This portion consists of ~200 Mbp representing centromeres, telomeres and the 

short arms of the acrocentric chromosomes as well as a further ~30 Mbp of interstitial gaps, the 

latter mostly regions that could not be cloned or assembled with confidence (Genovese et al., 

2013). For the genetic lengths of the RVCs this does not impact the comparisons of empirical 

to simulated data as the relevant genetic map is also limited by the accessible regions. 

Therefore, simulated RVCs that fall completely into the inaccessible portion are assigned a 

genetic length of 0 cM. However, assuming uniformity of mutation rates and considering that 

each simulated genome effectively has a length of 2881 Mbp (see section 4.1.4), the simulations 

would yield an 8.6% higher total number of doubletons compared to a real genome that has 

undergone the same demographic history. 

The baseline demographic history simulated using cosi2 contains several simplifications which 

could partly explain differences in RVC sharing patterns compared to the empirical data (see 

also Appendix D.35C). Firstly, Native American population history is more complex than 

modelled here. The most important large-scale event is gene flow from another East Eurasian 

group labelled ancient North Eurasians after the Native American ancestors diverged from East 
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Asians (Raghavan et al., 2014).  The downstream impact of this is that the recent population 

growth of the Calchaquíes could have been overstated as the MSMC estimates of present-day 

Ne are known to be inflated for admixed populations (Li and Durbin, 2011). It is uncertain 

though for how long after the admixture event this would measurably bias MSMC inferences. 

If this was the case this overestimation of recent growth would lead to a higher population 

mutation rate which in turn would increase the rare variant density in simulated data which can 

impact the detectability of RVCs.  

Indeed, the number of singletons and doubletons private to the Calchaquíes (n̅ = 32,234) relative 

to similar variants in Pop5 (n̅ = 49,290) is considerably lower. This effect is also partly due to 

the other Native Americans and Northeast Siberians not being explicitly modelled in the 

simulations. Therefore, doubletons of the Calchaquíes with these groups are recorded as 

variants private to Pop5. However, the practical impact of these differences in rare variant 

density is likely only modest given that the average individual-level vrGV database for an 

African contains 5-6 times more rare variants than for a Calchaquí. Even under these extreme 

circumstances, African-Calchaquí RVCs detected with the Native American group as reference 

mostly overlap with those detected using Africans as reference and the former cover only a 1.4 

times greater genomic length than the latter (Appendix D.30).  

The perhaps most important aspect is the considerable uncertainty surrounding long-term 

background migration rates between (South) American Indians and other continental 

populations. Raghavan et al. (2015) estimated the background migration rate between the 

Amazonian Karitiana and the Han at 9.5*10-5 migrants per generation using diCal2.0 

(Steinrücken et al., 2015), a composite likelihood approach applied to haplotype data. This is 

about three times higher than the rate assumed here (3.11*10-5) between Pop4 and Pop5, but of 

a similar order of magnitude.  

While it seems intuitive that the pre-Columbian continental migration rates between Native 

Americans and Africans/West Eurasians were lower than the analogous rates for East Asians 

there is no consensus about the magnitude of this difference. Some authors (Browning et al., 

2018) have circumvented this issue by approximating Native Americans in simulations by 

Gravel et al.'s (2011) parameter estimates for East Asians. However, the cosi2 simulations 

conducted here demonstrate that even assuming East-Asian-like background migration rates 

with Africans a signal of rare variant sharing as strong as that between Calchaquíes and Sub-

Saharan Africans cannot be generated without a recent admixture event (Figure 4.14). 
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5. Conclusions and future directions 

 

This thesis consists of three projects connected by an overarching aim to improve our 

understanding of human genetic diversity in understudied regions. It addresses a broad range 

of questions from population-specific patterns of functional and deleterious mutations to the 

application of rare variant approaches to detect cryptic relatedness in population history. 

The first subproject described population structure in 196 individuals from nine Southeast 

Asian populations genotyped using an Illumina OmniExpress 730k SNP array and placed them 

in a global as well as regional context. Allele frequency-based methods suggested that the 

Kankanaey from the Northern Philippines could represent either the best extant genetic proxy 

or a closely related sister group to the original Austronesian settlers. Their homozygosity 

metrics were comparable to other ISEA groups suggesting that their ancestry profile is unlikely 

to result solely from genetic drift. Minor contributions from South Asian sources to the ancestral 

make-up of the Malay, Bajo and lowland Filipinos, dating to the last two millennia, were 

detected. This represented a contrast to the documented strong cultural and linguistic impact 

from the Indian subcontinent on the region, indicating that these connections likely did not 

involve large-scale population movements. 

Since the publication of the paper that chapter 2 is based on the amount of genomic data from 

ISEA and Oceania has greatly increased. One potential follow-up could be a comparison of the 

populations studied here to these new samples. This would greatly increase marker density and 

especially the power of haplotype-based approaches relative to using the Pan-Asia panel as 

reference. One interesting aspect would be re-evaluating the status of the Kankanaey. In a recent 

study of the Eastern Polynesian Leeward Society Islanders (Hudjashov et al., 2018) allele 

frequency-based tests were consistent with the Kankanaey being the best extant match to the 

early Austronesian colonists. However, GLOBETROTTER analyses by the same authors 

indicated that lowland Filipinos (though recently admixed from other sources) are more 

representative of the haplotypic variation in those ancestors. Another task would be fine-

mapping the precise Indian sources which introgressed into various ISEA populations. The 

range of ALDER dates (Table 2.3) and subsequent analyses of other Bajo groups by Kusuma 

et al. (2017) suggest that the “Indian signal” reflects multiple admixture events.  
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The two following chapters presented analyses on a global dataset of 483 high coverage whole 

genomes. Chapter 3 investigated the distribution of functional and deleterious variants in a 

subset of 382 genomes. It was demonstrated that when the latter dataset was annotated using 

the two different software packages Ingenuity Variant Analysis and Ensembl’s Variant Effect 

Predictor the overall rate of matching exonic annotations was 74.9%. The two main reasons for 

this outcome were differences in the underlying transcript sets, with RefSeq generally being 

more conservative than Ensembl, and that IVA did not detect most splice site variants. 

However, the major patterns reported in the following were consistent between both 

methodologies. 

Across all populations there was a shift of missense and nonsense variants towards lower 

frequencies relative to synonymous variants consistent with the predicted effect of purifying 

selection. An interesting novel result was that Andean Native Americans exhibited the highest 

ratio of non-synonymous to synonymous mutations of all populations. Almost all DAF spectra 

for weakly deleterious variants (missense and CADD score >20) were significantly 

differentiated between macro-groups whereas the amount of geographic structure was reduced 

for strongly deleterious mutations (LoF and CADD score >30) suggesting more uniformly 

acting purifying selection on the latter. In agreement with this, long-term Ne obtained using 

MSMC in addition to distance from Africa improved the explanatory power of a simple linear 

model for predicting the count of weakly but not strongly deleterious variants. 

The RX/Y-statistic, which assesses the per-genome accumulation of non-synonymous mutations 

between different macro-groups, provided support for purifying selection on pigmentation 

genes in West/Central Africans. Per-individual counts of putative LoF as well as potentially 

disease-causing variants from the HGMD database were consistent with other large-scale 

sequencing efforts such as the 1000 Genomes and Simons Genome Diversity Project. This is 

important given the differences in sample composition, sequencing technologies and annotation 

methods. Furthermore, 29 previously unreported homozygous rare LoF were detected, mostly 

in isolated Siberian and ISEA groups with low Ne. 

Applying the ΔDAF statistic to missense variants to detect sites under positive selection 

confirmed many known signals and suggested potential new targets, though uncertainties 

regarding false positive rates remain. The current evidence concerning nonsense variants highly 

differentiated between populations was not sufficient to reject a scenario where the majority of 

these are selectively neutral. Lastly, integrating selection scans with functional databases 
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highlighted rs11227639 in Northeast Siberians. This SNP upregulates the expression of ACTN3 

which encodes the structural muscle protein actinin-3. Evidence from rs1815739, a well-studied 

LoF mutation affecting this gene, suggests that ACNT3 mRNA and protein levels impact 

muscularity and explosive power performance in a dosage-dependent manner. Future work 

should focus on these Northeast Siberian populations to investigate whether individuals 

carrying one or two copies of the upregulating allele at rs11227639 exhibit a) more lean muscle 

mass and b) elevated grip strength. 

Additional follow-ups to chapter 3 should again benefit from the progress of the field during 

last few years. Firstly, it could be tested whether the convergence of annotations increases with 

newer versions of the transcript sets, though this requires lifting over genomic coordinates 

which would result in minor information loss. Secondly, the efficacy of purifying selection 

could be quantified using model-based approaches. One example would be the recently 

developed Fit∂a∂I (Kim et al., 2017) which approximates the DFE of new non-synonymous 

mutations from fitted model parameters. From these estimates the fixation probability of new 

deleterious mutations over neutral mutations can in turn be derived (Lopez et al., 2018). 

However, to be robust these approaches would require larger samples from homogeneous 

populations. 

In chapter 4 global sharing patterns of rare variants were analysed in a subset of 447 genomes 

from the EGDP designed to maximise coverage of ethnic and linguistic diversity. The results 

obtained for per-individual rare variant totals and interpopulation sharing patterns were 

consistent with the vast majority of f2 variants being of recent origin and reflecting sharing due 

to common descent. The f2 as well as the related rare variant cluster (RVC) methodologies 

appear to be fast and powerful heuristic approaches to describe recent shared ancestry. 

Normalised f2 sharing correlated very strongly (r = 0.938) with total ChromoPainter sharing, a 

state-of-the-art method describing pairwise haplotype sharing. This normalised f2 metric 

generally declined exponentially with geographical distance. Furthermore, it was demonstrated 

that the lengths of shared RVCs contain information about population history beyond what a 

single genome-wide summary statistic can provide. 

Strong evidence was presented that excess rare variant sharing of the Andean Calchaquíes with 

West Africans represents a “cryptic” post-Columbian admixture event which was not detectable 

on a genome-wide level using allele frequency-based methods. Realistic demographic scenarios 

were not able to produce rare variant sharing patterns as extreme as those observed between 
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these two groups without incorporating such a recent admixture. The simulations also suggested 

that admixtures as low as 1% between deeply diverged groups can be confidently discriminated 

from non-admixture scenarios using the RVC methodology if the gene flow is relatively recent 

(≤20 generations ago). Finally, if RVCs were interpreted as continuous haplotypes 

inconsistencies with statistical phasing obtained using SHAPEIT2 occurred, either reflecting 

phasing errors or the conflation of short adjacent haplotypes marked by doubletons into longer 

RVCs. 

Follow-ups to the rare variant analyses were already outlined in chapter 4, the most important 

being more extensive simulations including ground-truth IBD segments to better characterise 

the statistical power of the methodology. A complementary approach to the cosi2 simulations 

conducted here would be the rarecoal (Flegontov et al., 2017; Schiffels et al., 2016) framework. 

This method maximises the likelihood of the observed joint distribution of rare alleles to 

estimate demographic model parameters. However, like Fit∂a∂I the ideal sample sizes for local 

populations to exploit the power of this method need to be 10-100 times larger than those 

comprising the EGDP. 

A second future avenue would be to explicitly connect rare variant analyses to functional 

annotations to explore how f2 sharing patterns differ across classes of deleterious mutations. 

Another possibility, which might appear counterintuitive given that on average they are of 

recent mutational origin, is that long SNP-dense RVCs could be informative about archaic 

introgression. This idea is motivated by a method conceptually related to the detection of RVCs, 

the S* statistic (Plagnol and Wall, 2006), which highlights population-specific SNPs that are in 

(almost) complete LD, that been shown to detect regions enriched for archaic introgression 

(Browning et al., 2018; Vernot and Akey, 2014). 

While the work presented in this thesis was conducted the field of human evolutionary genetics 

has continued to develop at a rapid pace. Projecting into the future is inherently challenging, 

however a few trends as well topics which in the author’s opinion require further research will 

be briefly touched upon here. 

A trend which is certain to continue is the increase in data volume. In the very near future in 

principle hundreds to thousands of high-coverage whole genomes from a specific local 

population could be generated relatively cost-efficiently. Approaches relying on shared genetic 

drift/allele frequency patterns to reconstruct demography reach saturation at relatively modest 

(n = 20 from a local population) sample sizes and are unlikely to offer any radically new 



 

-258- 

 

conclusions. However, methods exploiting different features of the data, e.g. haplotype 

information or the rare site frequency spectrum should become more powerful, especially for 

recent population history and analyses involving deleterious variants which are shifted towards 

lower frequencies. An example for the potential of haplotype-based approaches to provide new 

insights into fine-scale population history from large samples would be a recently described 

signal of wide-spread Eastern Mediterranean/North Africans ancestry in Latin Americans 

(Chacon-Duque et al., 2018). Some methods widely used in the field do not scale well with the 

vast increases in sample size which requires innovative new approaches. An example is the 

recently published tsinfer method (Kelleher et al., 2018). It infers the so-called tree sequences, 

which can be thought of as a summary encoding of the genealogies of a sample and can process 

ca. four orders of magnitude more sequences than previous methods while generating 

genealogies with comparable information content. 

Functional and mechanistic inferences from genomic data should greatly benefit from increased 

sample sizes, e.g. there is increasing evidence for population-specific mutation rates in 

particular genomic contexts (e.g. Mathieson and Reich, 2017). This in turn leads to new 

questions concerning the biological drivers of these processes and their relevance for the 

inference of population history. Another idea which should be pursued further is a “human 

knockout project”. A crucial component for it is the availability of large exome datasets, 

preferably from populations enriched for homozygous LoF variants resulting in gene loss. 

Pioneering studies by the ExAC (Lek et al., 2016) and PROMIS (Saleheen et al., 2017) suggest 

a great potential to improve our understanding of gene function, especially in combination with 

data from medical records and targeted experimental follow-ups.  

There are other ongoing concerns which have started being addressed. Non-Europeans and Sub-

Saharan Africans in particular, are still underrepresented in genomic studies. More data from 

these groups will not only be crucial for understanding population-specific components of ge-

netic disease risk but also to make more reliable inferences about the deep history of our species.  

The relative increase in available aDNA data has even outstripped the growth of the field at 

large. There is a need for methods which better incorporate the uncertainty associated with 

genotypes inferred from aDNA when analysing ancient samples. To contextualise these results, 

it will be crucial to intensify collaborations with archaeologists, linguists, historians and 

palaeontologists. 
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Overall, the coming years still hold great promise for a richer, more fine-grained understanding 

of our species’ history as well as new perspectives into the relationship between genomic 

variation and human health and disease. 
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Appendix A  

 

Appendix A.1 A selection of available variant annotation algorithms 

Machine learning approaches, score SNPs (all methods) and short indels (CADD and 

DANN) 

Name Principle and short description Source 

CADD A training dataset was constructed from observed high 
(>95%) frequency derived sites, which are depleted in 
deleterious variation, and simulated variants. A linear 
support vector machine (SVM) was then trained to 
discriminate between observed and simulated variants 
based on a set of 63 features (including the results 
from other variant annotation algorithms). The 
resulting SVM model can be used to assign a 
combined annotation score to every SNP or (small 
scale) indel in the human genome. The scores are then 
scaled in a phred-like manner, the higher the score the 
more dissimilar the respective variant is from the high 
DAF observed data and therefore more likely to be 
deleterious. 

(Kircher et al., 
2014) 

DANN The authors used the same training data and 
annotation features as for CADD. However, the 
algorithm was a neural network type learning 
approach which also incorporates nonlinear 
relationships between the annotation features. The 
resulting score is interpreted similarly to CADD. 

(Quang et al., 
2015) 

FATHMM-
MKL 

This approach is conceptually similar to CADD, with 
some differences in the training data and annotations. 
The training data consisted of heritable germline 
mutations from HGMD as pathogenic and SNPs with 
a MAF > 1% in the 1000 Genomes dataset. The 
authors applied a linear kernel-based classifier and 
came up with two different models to categorise 
coding and non-coding variation with features mainly 
consisting of phylogenetic conservation scores and 
data from the ENCODE project, i.e. regulatory 
information. The former reaches optimal prediction 
accuracy for 10 groups of features (ntotal = 1181), the 
latter for 4 groups of features (ntotal = 663). Scores 
resulting from these models can be assigned to each 
SNP in the genome on a 0-1 scale with >0.5 being an 
indication of inferred deleteriousness. 

  

(Shihab et al., 
2013, 2015) 
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Evolutionary conservation approaches, score small- and large-scale variation (inferences 

for the latter are more challenging) 

Name Principle and short description Source 

GERP GERP identifies elements that have been conserved 
across multiple alignments consisting of different 
species. This is achieved by quantifying substitution 
deficits compared to what would be expected under a 
neutral scenario. The underlying assumption is that 
novel variation in these conserved regions is most 
likely to be deleterious as they are functionally 
constrained. 

(Cooper et al., 
2005) 

PhyloP PhyloP is conceptually very similar to GERP. A 
phylogenetic HMM is used to assign conservation 
scores to regions of alignments based on different 
evolutionary models. The inferences are assigned a p-
value based on a comparison with the number of 
substitutions expected under a neutral 0-model, i.e. 
given a particular underlying tree it is assessed how 
likely the resulting alignments and a particular 
prediction for a region are under neutrality. 

(Siepel et al., 
2006) 

Protein sequence and structure approaches, PolyPhen-2 scores missense SNPs, 

PROVEAN and SIFT also assess multiple substitution and small in-frame indels affecting 

the amino acid sequence, MutationTaster2 assesses all SNPs and short indels in genic 

regions (i.e. also synonymous and intronic variation) 

Name Principle and short description Source 

PolyPhen-2 Two training datasets were constructed based on 
different sets of disease-related variants from the 
UniProt database with putatively neutral intra- and 
interspecies polymorphisms affecting protein 
structure as a control. The impact of a missense 
mutation on protein structure is assessed based on a 
functional comparison to the “wild-type” (i.e. mostly 
reference) human allele and the evolutionary 
conservation of the protein based on a multiple 
alignment with other mammalian species. 

Eleven features describing these properties were used 
as input for a machine learning algorithm (Naïve 
Bayes classifier). The probability that a particular 
mutation is damaging is calculated and the true and 
false positive rates are estimated; then qualitative 
labels are applied based on the scores. 

(Adzhubei et al., 
2010) 
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PROVEAN PROVEAN compares a target sequence with 
homologous sequences from other species and clusters 
them based on similarity. The clusters most related to 
the human sequence are used as a supporting sequence 
set to compute an average delta alignment score. It 
describes the increase in dissimilarity in the alignment 
of the mutant allele relative to the non-human 
sequences compared to the human wildtype sequence. 
The more negative this alignment score the more 
likely the respective change is to be deleterious. A 
threshold of the delta score to separate putatively 
deleterious and non-deleterious variation was derived 
based on the application of PROVEAN to known 
deleterious vs neutral variation derived from 
UniProt/SwissProt so that their separation was 
maximised. 

(Choi et al., 2012) 

SIFT Similarly to PROVEAN, SIFT compares a target 
protein containing the site of interest to a set of 
homologous mammalian sequences and builds an 
alignment. Then, based on this alignment the 
probabilities for all 20 amino acids potentially 
appearing at that particular site are calculated. For this 
the type of amino acid change is also considered, i.e. 
if in the original alignment only various amino acids 
with hydrophobic side chains occur, then it is assumed 
that this position can only contains this kind of amino 
acid. This probability is normalised by comparison to 
the most frequently observed amino acid and if it is 
below a certain threshold (which usually means that 
the position is highly conserved) then the observed 
change is thought to be deleterious. 

Later versions of SIFT which are not described in 
detail here use sequence homology data as features 
based on which the deleteriousness of indels in 
protein-coding regions can be assessed using machine 
learning algorithms (Hu and Ng, 2012, 2013). 

(Kumar et al., 
2009; Ng and 
Henikoff, 2001) 

MutationTaster2 The general framework of MutationTester2 is similar 
to PolyPhen-2. Known disease mutations were 
extracted from the HGMD database and variants for 
which at least 20 homozygote individuals were found 
in the 1000 Genomes data were taken as control. The 
features used as input for the machine learning 
approach came from a broad range of databases. This 
input was processed by a Naïve Bayesian classifier 
resulting in three different classification models for 
changes a) leading to amino acid substitutions, b) 
involving more than one amino acid or which were c) 
non-coding or synonymous. It should be noted that the 

(Schwarz et al., 
2014) 
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approach is designed to pick up rare large effect 
variants and that variants which are found >4 times in 
a homozygous state in the 1000 Genomes or HapMap 
datasets are automatically regarded as neutral. 
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Appendix B 

 
Appendix B.1 Ethnology of the Lebbo and the Kankanaey-Igorot 

In order to identify a better representative of the original Austronesian genomic diversity some 

populations, in particular the Lebbo and the Kankanaey-Igorot, that are thought to have been 

comparatively isolated in recent history, were sampled. The Lebbo are indigenous hunter 

gatherers that lived for centuries in higher caves and rock faces in the karst Sangkulirang-

Mangkalihat Karstic Range of East Kalimantan (Borneo Island) (Guerreiro, 2015). They are 

Austronesian speakers and have a matrilocal kinship structure, which is predominant in the 

Austronesians societies (Jordan et al., 2009). 

Perhaps the most interesting of the groups sampled are the Kankanaey-Igorot from the 

Philippines. The term Igorot is a collective term for the peoples of the Gran Cordillera Central 

(a mountain range in the northern part of Luzon island) of which the Kankanaey form one ethno-

linguistic subgroup (Scott, 1970). The archaeological and historical sources tell us very little 

about their prehistory. The ancestors of the Igorot are known to have resisted assimilation into 

the Spanish colonial empire since their first contact with the conquistadores in the 1570s (Scott, 

1974). Early anthropological work (Jenks, 1905; Antolin, 1971) describes them as rice-farmers 

and also mentions mining activities. Furthermore, they were thought to lack a centralised 

political structure.  

More recently, detailed archaeological work has been done on the Ifugao, a (geographically) 

neighbouring group, usually categorised as belonging to the Igorot. They share many 

characteristics with the Kankanaey. Both groups’ languages belong to the South-Central 

Cordilleran subgroup of the Malayo-Polynesian languages (Hammarström et al., 2018) 

and they exhibit a very similar spectrum of maternal genetic lineages (Delfin et al., 2014). They 

are also known to share subsistence patterns and to have similar traditional religious beliefs 

(Acabado, 2017). The Ifugao Archaeological Project (IAP) carried out excavations focussed on 

sites with a long settlement history and multiple occupational layers with corresponding 

radiocarbon dates. Acabado (2017) found evidence for the cultivation of starchy food sources 

such as taro, the main crop before rice, yam and breadfruit dating to at least 1000 years BP. The 

findings in the layers from 1600 onwards indicate intensified wet-rice-cultivation on terraces, 

which is labour-intensive and requires a considerable amount of social coordination within the 
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community practising this style of farming. This is accompanied by increased counts of 

earthenware ceramics and of bones of larger domesticated animals such as pigs and water 

buffalos. At same time more material suggesting stronger trade links to the Philippine lowlands 

appears, mainly elaborate foreign Ming style Chinese ceramics. These changes coincided with 

the establishment of a Spanish colonial presence on northern Luzon Island.  

Acabado (2017) interpreted these observations as signs of economic intensification and 

increasing population sizes accompanied by higher organisational and political complexity.  

These developments can be contextualised in the framework of “pericolonialism” (Paredes, 

2013). It describes cultural changes in groups which were not themselves subjugated politically 

by a colonial power, but still influenced by the colonisation of neighbouring peoples. It has 

been argued that they are indicative of an active strategy by the indigenous people to resist 

absorption into a colonial empire (Dillehay, 2014). Due to their similarities to the Ifugao it can 

be speculated that comparable developments would have taken place among the Kankanaey. 

This would mean that from the late 16th century onward they would have been impacted by 

Spanish colonialism at least indirectly and have been involved more in long distance trade. 

While this is inconsistent with total isolation, the Kankanaey were most likely still less directly 

affected by foreign influences than most other groups on Luzon Island.  

This makes them intriguing given that according to the current models the last known major 

migration into the area was the Austronesian expansion (Bellwood, 2007) from Taiwan. Given 

that the Taiwanese aboriginals are known to have undergone recent admixture from mainland 

Chinese groups (HUGO Pan-Asian SNP Consortium et al., 2009) it opens the possibility that 

these mountain people could be better representatives of the original Austronesian stock. 
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Appendix B.2 Samples for analyses of Southeast Asian populations 

This file can be found attached to the electronic version of this thesis and contains information 

on all novel and published genotyped samples included in any analysis in chapter 2. 
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Appendix B.3 Methodological details on IBD calculations 

For the paper published on the genomics of SEA PLINK’s IBD algorithm had been applied. In 

this thesis the Refined IBD was used, mainly because the former approach assumes a 

homogeneous randomly mating population which can lead to overestimation of IBD as 

described below. 

The PLINK method yielded very high average cross-population IBD values such as 0.1299 

between lowland Filipinos and Lebbo (see Appendix B.6). While this value does not represent 

a precise genealogical kinship coefficient, it is above the approximate threshold for second 

degree relatedness proposed for this particular method (Thornton et al., 2012). This effect was 

partly mitigated when the dataset was LD-pruned before the IBD calculations as recommended 

by the authors of the method (Purcell et al., 2007). However, for the aforementioned example 

the IBD value still remained at 0.0732. The most plausible explanation for these observations 

is that PLINK overestimated IBD at least for some population pairs.  

A simulation study by Morrison (2013) supports this conjecture and identifies violations of the 

assumption of a homogeneous randomly mating population as the reason for this behaviour. 

Under these conditions, PLINK’s IBD method of moments technique overstates the degree of 

kinship between individuals from ancestrally similar groups (i.e. the similarity in allelic states 

is real but due to older shared ancestors). BEAGLE’s IBD method was chosen as it has been 

shown to outperform PLINK with regards to its power to detect shorter IBD segments and false 

positive rates, among other reasons because it incorporates LD information explicitly 

(Browning and Browning, 2010). 

The genetic map used for the RefinedIBD calculations was the standard recommended for 

BEAGLE (http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/). It was constructed 

based on a recombination map inferred from the HapMap project and lifted to build GRCh37. 

The Refined IBD approach was applied using the standard parameters, except for the following 

changes. The ibdtrim parameter, which species the number of markers trimmed from the end 

of a shared haplotype when testing for IBD, was adjusted downwards from 40 to 12. This was 

done to account for the lower SNP density in the data analysed here compared to the parameter 

values which were originally recommended for a set of ~106 SNPs, i.e. a ca. 3.3 times higher 

coverage. The minimum length of IBD fragments reported was adjusted downwards from 1.5 

cM to 0.5 cM as the Refined IBD algorithm has been shown to add power to detect these short 

segments compared to other methods. Furthermore, here the IBD was used to indicate general 
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population affinities and not to make definite statements about specific individuals and their 

underlying pedigrees, which makes some false positives tolerable.  

Firstly, shared IBD segments were obtained for pairs of individuals. Their physical length was 

converted to genetic length using the genetic map mentioned above and the Java archive 

base2genetic.jar (https://faculty.washington.edu/browning/beagle_utilities/utilities.html).  

For pairwise comparisons between populations the following formula was used: 

^_ *̀,a = 	
∑ ∑ 2c,7

d
7∈fg

h
c∈fi	

$*$a
 

Here, Pi and Pj denote two populations of interest consisting of ni and nj individuals respectively. 

Accordingly, a and b are indices for individuals in populations Pi and Pj. La,b is the total length 

of all IBD segments shared between individuals a and b. 

To calculate the average within-population IBD sharing this expression is modified to yield: 

^_ *̀ = 	
∑ 	∑ 	2j,0

d
0k+

h
jk+	

$*($* 	− 	1)/2
 

The individuals with the indices c and d both belong to population Pi, with a total of ni 

individuals; also note that c ≠ d, as sharing between the two copies of each chromosome within 

an individual is not measured here. As above Lc,d describes the total shared IBD length between 

c and d. 

Finally, to obtain IBDi,j and IBDi as rates they were divided by twice the total genetic length (as 

the data were diploid) of all autosomes in the GRCh37 build (~7092 cM). These values can be 

interpreted as estimates of the relatedness coefficient. 
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Appendix B.4 Methodological details on ADMIXTURE analyses 

Dataset I 

As recommended by the ADMIXTURE manual the data were pruned for LD using PLINK to 

remove one SNP from each pair with an r2 value greater than 0.1 within a 50-SNP window, 

moving 10 SNPs forward each time. This yielded a dataset of 8,075 SNPs on which the 

ADMIXTURE 1.23 program was run. This analysis was repeated 100 times at each K = 2 to K 

= 10 and the cross-validation errors and log-likelihood estimates for each value of K were used 

to estimate the optimum number of K clusters (Cardona et al., 2014). Here, the ideal value is 

the one for which the model has the best predicative accuracy. This model is generally indicated 

by the lowest cross-validation error compared to other Ks.  

 

Dataset II 

The genotyping platform for the published and the newly genotyped samples is Illumina, but 

different genotyping arrays (610K, 650K, 660K and 730K) were used for different sample sets. 

Before merging the data all A/T and C/G markers were removed to minimise potential strand 

errors. After filtering for autosomal SNPs with a genotyping success rate of over 97% and a 

MAF of 1% the intersection of SNPs over the different array types was 305,489 SNPs. Then 

the data were pruned to minimise the potential effect of LD on the ADMIXTURE results. 

PLINK was used to remove one SNP from each pair of SNPs in a window of 200 SNPs with 

an r2 above 0.4. The window was advanced by 25 SNPs. This resulted in a dataset of 187,519 

SNPs which was fed into ADMIXTURE 1.07. ADMIXTURE was run 100 times at K = 3-15. 

Based on the cross-validation procedure of ADMIXTURE the genetic structure in the 

verification sample set is best described at K = 9-10 (Appendix B.7A). Furthermore, the 

convergence of individual ADMIXTURE runs at each K was assessed. For this purpose, the 

maximum difference in log-likelihood (LL) scores was monitored. It was assumed that a global 



 

-321- 

 

LL maximum was reached at a given K if the 10% of the runs with the highest LL score had 

minimal (< ~2 LL units) variation in LL scores. According to this reasoning, the global LL 

maximum was reached in runs at K = 2–15.  

 

Differences in pre-filtering of SEA potentially related SEA individuals between Dataset I 

and Dataset II 

In both cases one individual from an intrapopulation pair with a PLINK IBD > 0.125 was 

removed to minimise the confounding effect of recent genealogical relatedness. Before these 

IBD analyses were run the SEA individuals were merged with a different set of reference 

individuals in the two runs (see above). While the marker totals (~ 300k SNPs) were roughly 

comparable there were some non-overlapping markers specific to each merged dataset which 

led to subtle differences in the obtained IBD statistics and therefore also affected which 

individuals were excluded based on IBD cut-offs. Therefore, after filtering for relatives Dataset 

I contained 185 SEA individuals, whereas Dataset II contained 187 individuals. 

 

Appendix B.5 Methodological details on calculation of selection statistics 

Both the iHS and XP-EHH statistics were calculated as in Pickrell et al. (2009), yielding about 

10,000-11,000 genomic windows for his and about 13,700 windows for XP-EHH for each SEA 

population analysed. To pick up only patterns particular to SEA from the top 1% of all iHS 

signals, the top 5% his windows detected for the CHB population from the HapMap panel were 

excluded. However, for the analysis of regional sharing based on the iHS this condition did not 

apply. The use of a reference population is inherent in the XP-EHH method, again CHB was 

chosen, for similar reasons. 

The PBS statistic represents the amount of allele frequency change at a given locus in the history 

of the test population since it diverged from other populations (Yi et al., 2010). The outgroups 

chosen for each tested SEA population were the YRI and CHB populations. Pairwise FST values 

for the populations of interest and the references were calculated following Weir and 

Cockerham (Weir and Cockerham, 1984). PBS scores were estimated from pairwise FST values 

(Yi et al., 2010). Based on the approach of Pickrell et al. (2009) the genome was divided into 

windows of a modified size of 100kb sand the maximum PBS score in each window was used 
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as the test statistic. This resulted in between 26,000 and 27,000 windows for each analysed 

group. 
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Appendix B.6 Pairwise PLINK IBD values of SEA populations together with a set of reference populations.  

Mean between-population IBD calculated with PLINK is reported. The data in the upper triangle of the matrix were pruned for LD using PLINK to 

remove one SNP from each pair with an r2 value greater than 0.1 within a 50-SNP window, moving 10 SNPs forward each time. 
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Bajo  0.0317 0 0 0.0051 0 0.0017 0 0 0 0 0 0 0 0 

Burmese 0.0490  0 0 0.0289 0.0023 0.0126 0 0.0057 0.0001 0 0 0 0 0 

CEU 0 0  0 0 0 0 0 0 0 0 0 0 0 0 

CHB 0.0072 0.0109 0  0 0 0 0 0 0 0 0 0 0 0 

Dusun 0.0312 0.0498 0 0.0199  0.0033 0.0488 0 0.0099 0.0001 0 0 0 0 0 

Filipino 0.0350 0.0581 0 0.0613 0.0730  0.0253 0 0.0732 0.0592 0.0241 0 0 0.0237 0 

Kankanaey 0.0225 0.0377 0 0.0337 0.0770 0.0686  0 0.0421 0.0143 0.0009 0 0 0 0 

JPT 0.0024 0.0026 0 0.1072 0.0022 0.0301 0.0086  0 0 0 0 0 0 0 

Lebbo 0.0331 0.0627 0 0.0161 0.0746 0.1299 0.0788 0.0001  0.0373 0.0017 0 0 0 0 

Malay 0.0233 0.0404 0 0.0298 0.0519 0.1032 0.0582 0.0029 0.0981  0.0273 0 0 0.0133 0 

Murut 0.0164 0.0328 0 0.0658 0.0486 0.0754 0.0320 0.0275 0.0563 0.0557  0 0 0.0571 0 

Papuans 0 0 0 0 0 0 0 0 0 0 0  0 0 0 

South Indian 0 0 0 0 0 0 0 0 0 0 0 0  0 0 

Vietnamese 0.0181 0.0298 0 0.0918 0.0518 0.0831 0.0322 0.0636 0.0626 0.0586 0.0847 0 0  0 

YRI 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Appendix B.7 Supporting statistics for ADMIXTURE and TreeMix runs 

A) Cross validation errors for ADMIXTURE run performed on the verification/validation dataset 

(Figure 2.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) Plot of the explained variance statistic for TreeMix over the number of migration edges N. 
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Appendix B.8 f3 statistics for all possible combinations from a panel of 45 worldwide 

populations with the Kankanaey as target 

This file can be found attached to the electronic version of this thesis, note that there are no 

significant (z-score <-2) outcomes. 

 

Appendix B.9 mtDNA Haplotypes observed in a subset of eight Kankanaey individuals. 

Individual ID Haplogroup Private Mutations 

Igorot10 M7b1a2a1 152C 

Igorot13 M7b1a2a1 5821A, 13145A 

Igorot17 D5b1c1a 4216C, 6260A, 10548C, 16182G, 16183C, 16519C 

Igorot23 B4b1a2 1313C, 16182G, 16183C, 16519C 

Igorot3 B4a1a6 15784C, 16182G, 16183C, 16519C 

Igorot4 B4a1a6 16182G, 16183C, 16213A, 16519C 

Igorot5 B4a1a6 11377A, 16182G, 16183C, 16519C 

Igorot6 B5b1c1a 9455G, 14757C, 16183C, 16519C 

 
 

Appendix B.10 Most significant population-specific windows for iHS, XP-EHH and PBS 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix B.10A) contains the Top 10 iHS windows for each population according 

to the empirical p-value. The second sheet of the excel file (Appendix B.10B) reports the Top 

10 XP-EHH windows for each population according to the empirical p-value. The third sheet 

of the excel file (Appendix B.10C) contains the Top 20 PBS windows for each population 

according to the score of the PBS statistic. In all these appendices windows which appear for 

multiple populations are bolded.
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Appendix B.11 Signal sharing between Southeast Asian populations for iHS and XP-EHH 

Appendix B.11A The proportion of 200-kb windows that were detected as 1% selection outliers in the iHS test in one population (indicated in the first 

column) and also found in the 5% of signals in other populations (in columns 3-12).  The order is non-alphabetical to better illustrate the clustering of 

the Chinese and MSEA groups. 

top 1%/top 5% average signal-
sharing CHB Vietnamese Burmese Filipino Bajo Malay Dusun Murut Kankanaey Lebbo 

CHB 0.38   0.53 0.61 0.49 0.52 0.49 0.19 0.29 0.13 0.16 
Vietnamese 0.37 0.62   0.44 0.48 0.48 0.57 0.18 0.26 0.13 0.15 
Burmese 0.35 0.63 0.52   0.39 0.39 0.54 0.18 0.23 0.14 0.13 
Filipino 0.39 0.50 0.46 0.39   0.50 0.53 0.31 0.32 0.19 0.29 
Bajo 0.36 0.46 0.46 0.46 0.47   0.55 0.22 0.28 0.17 0.20 
Malay 0.36 0.54 0.44 0.52 0.47 0.52   0.17 0.24 0.14 0.20 
Dusun 0.30 0.35 0.34 0.32 0.42 0.37 0.32   0.24 0.19 0.14 
Murut 0.22 0.31 0.18 0.21 0.24 0.26 0.26 0.24   0.15 0.14 
Kankanaey 0.19 0.25 0.16 0.18 0.23 0.21 0.20 0.18 0.13   0.13 
Lebbo 0.16 0.16 0.14 0.16 0.24 0.18 0.21 0.08 0.15 0.12   

 
 
 
 
 
 



 

-327- 

 

Appendix B.11B The proportion of 200-kb windows that were detected as 1% selection outliers in the XP-EHH test in one population (indicated in the 

first column) and also found in the 5% of signals in the other populations (in columns 3-12). The order is by the average amount of signal sharing with 

all other groups. 

top 1%/top 5% average signal-
sharing Dusun Bajo Filipino Kankanaey Malay Murut Lebbo Vietnamese Burmese 

Dusun 0.27   0.32 0.35 0.24 0.27 0.37 0.20 0.23 0.17 
Bajo 0.26 0.30   0.31 0.19 0.36 0.27 0.24 0.19 0.19 
Filipino 0.26 0.29 0.35   0.24 0.27 0.32 0.25 0.21 0.14 
Kankanaey 0.24 0.32 0.29 0.27   0.28 0.26 0.23 0.15 0.12 
Malay 0.24 0.28 0.29 0.30 0.16   0.26 0.19 0.22 0.23 
Murut 0.21 0.27 0.21 0.29 0.17 0.22   0.22 0.22 0.12 
Lebbo 0.20 0.24 0.22 0.23 0.21 0.22 0.17   0.16 0.15 
Vietnamese 0.18 0.25 0.19 0.17 0.14 0.18 0.17 0.15   0.18 
Burmese 0.15 0.16 0.15 0.14 0.11 0.18 0.17 0.17 0.12   
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Appendix C 

Appendix C.1 WGS samples for analyses of global patterns of functional and rare 
variants. 
This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file is a table containing all samples from the EGDP panel for which whole genome 

sequence data were generated (analysed in chapters 3 and 4). It contains information on the 

origin, processing and affiliation of these genomes (modified from Pagani et al. 2016). The 

second sheet lists the abbreviations used in the samples table. 

Appendix C.2 Populations included in MSMC and multiple regression analyses. 
Populations included (coded as 1) in MSMC reconstruction on different samples sizes and in 

multiple regression analyses predicting the load of different classes of deleterious mutations. 
Population MSMC reconstruction 

for n = 1/2 
MSMC reconstruction 
for n = 4 

Inclusion in multiple 
regression analyses 

African – Americans 0 1 0 
Altaians 1 1 1 
Armenians 0 1 1 
Avars 1 0 0 
Bajo 0 1 1 
Baka – Pygmies 1 0 1 
Bashkirs 0 1 1 
Belarusians 0 1 1 
Brahmin 1 0 1 
Burmese 1 1 1 
Buryats 0 1 1 
Calchaquíes 0 1 1 
Chukchi 1 1 1 
Colla 1 1 1 
Croats 0 1 1 
Druze 1 0 1 
Dusun 0 1 1 
Eskimo 1 1 1 
Estonians 1 1 1 
Georgians 1 0 0 
Germans 1 1 1 
Gujaratis 0 1 1 
Hadza 0 1 0 
Han 1 1 1 
Igorot 0 1 1 
Iranians 1 1 1 
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Population MSMC reconstruction 
for n = 1/2 

MSMC reconstruction 
for n = 4 

Inclusion in multiple 
regression analyses 

Italians 1 1 1 
Japanese 0 1 1 
Kabardians 0 1 0 
Koinanbe 1 0 1 
Koryaks 1 1 1 
Kyrgyz 0 1 1 
Lebbo 1 1 1 
Lezgins 0 1 0 
Luhya 0 1 0 
Malayan 1 0 1 
Maris 0 1 1 
Mexicans 0 1 0 
Mongolians 0 1 1 
Murut 0 1 1 
Northwest Europeans 1 1 1 
Poles 0 1 1 
Sandawe 0 1 0 
Udmurts 0 1 1 
Vepsians 0 1 1 
Vietnamese (North) 0 1 1 
Vietnamese (South) 0 1 1 
Wichi 0 1 1 
Yakuts 1 0 1 
Yoruba 1 1 1 

 

 

Appendix C.3 Effective population size over time inferred using MSMC 

This file can be found attached to the electronic version of this thesis. It contains the raw data 

on effective population size (Ne) over time inferred with MSMC. The first sheet of the excel 

file contains this statistic calculated based on one or two genomes per each of the 22 populations 

chosen to represent the Diversity Set. The second sheet expands on this and consists of the 

effective population size (Ne) over time inferred with MSMC using four genomes each from 

any population with sufficient sample size. These data were generated by Dr Luca Pagani. 
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Appendix C.4 Population groups used to form the Selection Set (n = 369). 

Population group Abbreviation Sample size Population affiliation of samples 
Central and West Africa Afr 26 9 Yoruba, 8 Pygmy, 4 Luhya, 5 African Americans 
Middle East MiE 26 4 Iranians, 7 Arab, 3 Assyrian, 3 Druze, 2 Jordanians, 1 Lebanese, 6 Armenians 
South and West Europe WEu 32 4 Italians, 9 CEPH Europeans, 4 Croats, 4 Germans, 3 Hungarians, 2 Moldavians,  

3 Albanians, 2 UK, 1 French 
East and North Europe EEu 53 6 Estonians, 3 Finns, 4 Vepsians, 3 Ingrians, 3 Karelians, 2 Swedes, 3 Latvians,  

3 Lithuanians, 5 Poles, 4 Belarussians, 7 Russians, 7 Ukrainians, 3 Cossacks,  
1 Mishar Tatar 

Volga – Uralic Vol 23 5 Bashkirs, 3 Chuvashes, 4 Maris, 7 Tatars, 4 Udmurts 
South Asia SoA 28 4 Gujarati, 1 Punjabi, 1 Rajasthani, 2 Madhya Pradesh, 7 Uttar Pradesh,  

1 Kerala (Malayalam), 2 Andhra Pradesh, 1 Orissa, 4 Jharkhand, 1 Bengali,  
3 Bangladeshi, 1 Nepali Brahmin 

West Siberia WSi 17 3 Forest Nenets, 3 Tundra Nenets, 3 Kets, 3 Khantys, 2 Mansis, 3 Selkups,  
South Siberia and 
Mongolia 

SSi 34 6 Altaians, 3 Buryats, 6 Mongolians, 3 Tuvins, 14 Buryats, 2 Shors 

Central Siberia CSi 31 8 Evens, 13 Evenks, 2 Nganasans, 8 Yakuts 
Northeast Siberia NSi 25 5 Chukchi, 4 Eskimos, 16 Koryaks 
Mainland East and 
Southeast Asia 

SeM 29 7 Chinese, 4 Japanese, 8 Burmese, 10 Vietnamese 

Island Southeast Asia SeI 45 4 Lebbo, 4 Bajo, 8 Dusun, 8 Murut, 8 Igorot, 2 Luzon, 2 Visayans, 3 Agta, 3 Aeta, 3 
Batak 
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Appendix C.5 Bulk data of variants annotated using Ingenuity Variant Analysis 

This file can be found attached to the electronic version of this thesis. It contains a text-

formatted repository of 294,360 variants in 382 individuals from 14 worldwide macro-groups 

with annotations as inferred using Ingenuity Variant Analysis. Additional annotations are 

described in section 3.1.2. For convenience the global non – reference and derived allele 

frequencies for all loci have been provided in columns 17 and 18. Columns 19 to 32 contain 

information on the derived allele frequency in each of the macro-groups. Abbreviations: AN – 

ancient (hominin) Neanderthal, AD – ancient (hominin) Denisovan. 

 

Appendix C.6 Variants potentially causing nonsense-mediated mRNA decay 

This file can be found attached to the electronic version of this thesis. It is a VCF file containing 

229 stop – gain variants in 382 individuals from 14 worldwide macro-groups that are annotated 

as “stop_gained&NMD_transcript” based on information from the GRCh37-compatible 

version of Ensembl Release 87. The INFO column contains the following abbreviations: AA – 

ancestral allele inferred from six primate species, AN – ancient (hominin) Neanderthal, AD – 

ancient (hominin) Denisovan, SING – singleton site, VAR – variant site (i.e. at least two 

individuals carry at least one non – reference allele). The order of entries in the next subfield 

CSQ (consequences) is described in the second row of the VCF header. 
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Appendix C.7 Methodological details on matching of variant annotation categories 

The approach that was used to make the variant annotations obtained from different methods 

as comparable as possible is described in the following. Please note that for two exonic 

categories highlighted by VEP, “splice region variant” and “stop retained” variant there are no 

exact equivalents in IVA. Furthermore, IVA only included RefSeq transcripts with the 

accession prefix “NM_” designating (mostly curated) protein-coding transcripts to determine 

the relevant translation consequence. 

The first high level summary category considered consists of putative LoF variants. Besides 

sites where stop codons are introduced by the respective single bp mutation it also includes stop 

loss and severe splicing variants. The “missense equivalent” category contains start loss, 

missense and general splice region variants. The final category “synonymous equivalent” is 

comprised of variants changing the base pair sequence but not affecting the translated protein 

directly that either occur in amino-acid encoding triplets or stop codons. These categories 

follow the definitions suggested by McCarthy et al.(2014). As many sites can be part of multiple 

transcripts both IVA and VEP return all possible annotations for a variant. These multiple 

outcomes were prioritised using a severity ranking (Appendix C.8) following McCarthy et al. 

and the European Bioinformatics Institute (http://www.ensembl.org/info/ 

genome/variation/predicted_data.html#consequences). For visualisation purposes the 

outcomes obtained when comparing the annotations assigned by IVA and VEP were normalised 

as follows. The cells of a 14 x 16 matrix containing the shared counts between IVA and VEP 

for all annotations VEP1…14 and IVA1…16 were denoted as CA,B. A constant of one was added 

to the count, which was then log10-transformed. Z-scores were calculated row-wise, denoted as 

ZRA,B, and column-wise, denoted as ZCA,B, as follows: 

!"#,% = 	
(#,%	 −	*#

+,#
 

µA is the mean value of all entries in row A, i.e. of the counts of sites with different IVA 

annotations corresponding to one particular annotation in VEP. SDA denotes the row-wise 

standard deviation. 

!(#,% = 	
(#,%	 −	*.%
+,.%
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µ.B is the mean value of all entries in column B, i.e. of the counts of sites with different VEP 

annotations corresponding to one particular annotation in IVA. SD.B denotes the column-wise 

standard deviation. 

Appendix C.8 Severity ranking of variant annotations 

Matching and assignment into higher level categories of annotations obtained from IVA and 

VEP that were reported at least once for the dataset presented in this chapter. As both 

approaches present multiple annotations for some sites, precedence values used to prioritise 

these are given. Higher values indicate a higher precedence as the reported consequence is 

thought to be more severe. 

Macro 
category 

VEP consequence IVA 
consequence 

Precedence  

LoF 
equivalent 

stop_gained stop gain  99 

stop_lost stop loss  95 

splice_acceptor_variant + 
splice_donor_variant  

Splice Site Loss  splice_acceptor_variant 86,  
splice_donor_variant 87,   
Splice Site Loss 86.5 

Missense 
equivalent 

start_lost start lost 75 

missense_variant missense  65 

splice_region_variant - 63 

Synonymous 
equivalent 

stop_retained_variant - 45 

synonymous_variant synonymous  40 

Not exonic mature_miRNA_variant microRNA  30 

5_prime_UTR_variant 5’UTR  26 

3_prime_UTR_variant 3’UTR  25 

intron_variant Intronic  24 

non_coding_transcript_exon_variant  - 20 

regulatory_region_variant Promoter 
region 

11 

 

Appendix C.9 The lack of reliability of small indel calls from Complete Genomics data 

The unreliability of uncurated small indels called from Complete Genomics sequencing data 

can be demonstrated using a well characterised 32bp deletion in CCR5. It is known to confer 

partial resistance to HIV in heterozygotes and full resistance in homozygotes (Samson et al., 

1996) reaching the highest frequencies worldwide at ~15%  in Northeast European Finno-Ugric 

populations such as the Estonians (Kalev et al., 2000). The larger dataset (n = 730), of which a 

subset was analysed for this thesis, contains 27 Estonians. CCR5-Δ32 was reported for none of 

these in the MasterVar files provided by Complete Genomics. The probability of this occurring 
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if these files represent the true genotypes can be approximated by the value of the binomial 

distribution with p = 0.15 and n = 54 (due to diploidy). This results in Pr[binom(54,0.15) = 0] 

~ 1.5*10-4, i.e. the event in question is very unlikely. It seems more plausible that the absence 

of CCR5-Δ32 in the analysed Estonians results from erroneous inferences from the algorithm 

used by Complete Genomics for calling indels from raw read data. 
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Appendix C.10 Gene lists for purifying selection analyses based on GO-term phenotype 

associations. 

Phenotype Term used in GO search Number of genes 

Olfactory *olfact* 435 

Virus *defense response to virus* 858 

Bacteria *bacteria* or *bacterium* 226 

Thermoregulation *thermo* 144 

 

Appendix C.11 Genes reported to be associated with any aspect of normal human 

pigmentation variation in GWAS studies 

Gene References 
APBA2 Beleza et al. 2013 

ASIP Bonilla et al. 2005, Jacobs et al. 2013, Sulem et al. 2008 

BNC2 Jacobs et al. 2013 

CALCOCO1 Nan et al. 2009 

DLGAP1 Nan et al. 2009 

DNAH9 Nan et al. 2009 

EDNRB Zhang et al. 2013 

EGFR Quillen et al. 2012 

EXOC2 Nan et al. 2009 

GRM5 Beleza et al. 2013, Nan et al. 2009  
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Gene References 

HERC2 Beleza et al. 2013, Eiberg et al. 2008, Jacobs et al. 2013, Han et al. 2008, Nan et al. 
2009, Sturm et al. 2008 

IRF4 Han et al. 2008, Jacobs et al. 2013, Nan et al. 2009, Sulem et al. 2007 

KIF26A Han et al. 2008 

KITLG Miller et al. 2007, Sulem et al. 2007 

KLRG1 Nan et al. 2009 

LYST Liu et al. 2010 

M6PR Nan et al. 2009 

MC1R Cook et al. 2009, Duffy et al. 2004, Han et al. 2008, Jacobs et al. 2013, Nan et al. 
2009, Sulem et al. 2007, Valverde et al. 1995 

OBSCN Han et al. 2008 

OCA2 Beleza et al. 2013, Cook et al. 2009, Duffy et al. 2004, Eiberg et al. 2008, Han et al. 
2008, Jacobs et al. 2013, Nan et al. 2009, Shriver et al. 2003, Sturm et al. 2008, 
Sulem et al. 2007 

OPRM1 Quillen et al. 2012 

PLEKHA5 Nan et al. 2009 

PPARGC1B Nan et al. 2009 

PRDM15 Nan et al. 2009 

RABGGTA Eiberg et al. 2008 

RBP1 Nan et al. 2009 

SLC24A4 Han et al. 2008, Sulem et al. 2007 

SLC24A5 Beleza et al. 2013, Lamason et al. 2005, Stokowski et al. 2007 

SLC45A2 Beleza et al. 2013, Cook et al. 2009, Graf et al. 2005, Han et al. 2008, Nan et al. 
2009, Norton et al. 2007, Stokowski et al. 2007 

TPCN2 Sulem et al. 2008 

TYR Beleza et al. 2013, Han et al. 2008, Jacobs et al. 2013, Nan et al. 2009, Shriver et al. 
2003, Stokowski et al. 2007, Sulem et al. 2007 

TYRP1 Kenny et al. 2012, Sulem et al. 2008 

VASH2 Zhang et al. 2013 

YPEL5 Nan et al. 2009 

ZNF18 Nan et al. 2009 

 

Appendix C.12 DIND score assessment of significance 

The DIND statistic was calculated in a 100-kb window surrounding each SNP of interest. An 

empirical significance threshold for comparison to these DIND scores interest was defined by 

extracting non-genic SNPs for each of the 12 macro-groups from the Selection Set.  

Batches (n = 100) of such SNPs were randomly selected from each DAF class in each macro-

group. DIND scores were obtained for these subsets and 5 SDs of the resulting DIND score for 

each DAF class and macro-group were calculated and defined as neutral threshold.  
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Appendix C.13 Downsampled total exonic SNP counts by macro-group extracted using 

Ingenuity Variant Analysis 

For all groups except the South Americans these represent the mean (rounded to full numbers) 

counts obtained from repeated downsampling to n = 13 as described in section 3.1.3. 

 synonymous  missense  nonsense Fraction of non-synonymous variants  
Afr 35247 31642 283 0.4753 
MiE 23828 23148 203 0.4949 

WEu 22445 21628 201 0.4930 

EEu 22259 21578 198 0.4945 

Vol 22920 21729 218 0.4892 

SoA 23658 22890 221 0.4941 

WSi 21316 20553 176 0.4930 

SSi 22039 20975 195 0.4899 

CSi 19813 18337 165 0.4829 

NSi 19233 17372 163 0.4769 

SeM 21597 20303 196 0.4870 

SeI 21370 20149 187 0.4876 

SAm 18365 18867 159 0.5088 
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Appendix C.14 Matrix displaying the outcomes of pairwise chi-square tests comparing binned missense and synonymous DAF spectra  

Comparisons between each of the 14 macro-groups, given in the form of the negative common logarithm of the p-values. For all groups except the 

Oceanians these spectra represent the mean (rounded to full numbers) counts obtained from repeated downsampling to n = 8. The upper half contains the 

values for the DAF spectra of missense the lower half for those of synonymous variants. Cells containing the p-values for comparisons that are significant 

according to the Bonferroni-corrected threshold (p = 5.495*10-4 as there are 91 comparisons each, equal to a logged p of ~3.26) are bolded. Cells 

containing a value of 323.31 are equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics 

software used for these calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the 

macro-groups taken from Table 3.1. 

 
Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 

Afr   131.4 192.01 197.26 185.11 141.65 257.12 227.82 323.31 323.31 257.95 271.54 323.31 323.31 
MiE 279.12   7.82 8.83 7.93 0.34 30.12 14.58 84.86 128.39 21.84 28.88 94.91 49.72 
WEu 323.31 5.98   0.03 0.24 4.92 7.41 1.65 41.77 73.92 5.66 7.06 50.94 19.01 
EEu 323.31 9.72 0.56   0.33 5.73 6.58 1.28 39.59 71.09 5 6.15 48.53 17.52 
Vol 323.31 3.74 0.85 1.74   4.99 7.23 2.81 43.06 75.2 7.75 8.25 54.22 20.82 
SoA 282.31 0.6 4.7 7.45 2.04   24.04 10.74 74.75 115.91 17.46 23.19 84.89 42.26 
WSi 323.31 26.44 7.32 4.21 11.3 22.81   5.14 16.02 36.92 6.99 2 26.63 6 
SSi 323.31 10.23 0.99 1.22 3.66 9.43 5.02   30.26 58.76 1.24 2.54 35.5 10.54 
CSi 323.31 67.34 33.57 27.14 42.49 62.53 10.17 25.98   4.8 25.08 15.35 4.08 5.71 
NSi 323.31 102.4 59.53 50.54 70.64 95.95 25.78 49.63 3.86   51.19 37.14 8.71 20.7 
SeM 323.31 14.65 3.48 3.76 7.71 14.61 5.69 0.79 22.9 45.27   1.95 26.34 6.97 
SeI 323.31 23.31 6.04 4.2 10.93 21.37 1.24 2.71 12.03 29.45 2.04   20.3 2.91 

SAm 323.31 140.8 92.44 84.47 109.48 138 54.09 76.07 19.64 12.48 65.45 51.6   7.95 
Oce 323.31 38.07 16.09 14.07 24.17 37.37 6.68 9.3 9.05 23.19 5.51 3.12 33.23   
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Appendix C.15 Matrix displaying the outcomes of pairwise chi-square tests comparing binned nonsense DAF spectra  

Comparisons between each of the 14 macro-groups, for all groups except the Oceanians these spectra represent the mean (rounded to full numbers) 

counts obtained from repeated downsampling to n = 8. Cells containing the p-values for comparisons that are significant according to the Bonferroni-

corrected threshold (p = 5.495*10-4 as there are 91 comparisons each, equal to a logged p of ~3.26) are bolded. Cells containing a value of 323.31 are 

equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics software used for these 

calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the macro-groups taken 

from Table 3.1. 

 
Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 

Afr  0.432 0.383 0.412 0.367 0.547 0.163 0.262 0.121 0.047 0.181 0.098 1.4*10-4 
0.095 

MiE   0.996 0.984 0.694 0.899 0.836 0.833 0.754 0.494 0.735 0.717 0.022 0.691 

WEu    0.985 0.690 0.878 0.881 0.855 0.807 0.545 0.768 0.772 0.029 0.747 

EEu     0.790 0.939 0.847 0.912 0.774 0.470 0.826 0.713 0.023 0.734 

Vol      0.897 0.552 0.888 0.506 0.200 0.838 0.393 0.007 0.523 

SoA       0.657 0.870 0.581 0.283 0.767 0.497 0.008 0.554 

WSi        0.827 0.988 0.788 0.810 0.970 0.102 0.955 

SSi         0.793 0.426 0.980 0.684 0.030 0.815 

CSi          0.825 0.800 0.981 0.141 0.983 

NSi           0.426 0.899 0.281 0.745 

SeM            0.679 0.038 0.848 

SeI             0.144 0.931 

SAm              0.128 

Oce               
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Appendix C.16 Sharing matrix displaying the count of each combination of annotations by VEP (rows) and IVA (columns) for all 354,396 sites 

annotated as exonic or splice site altering by at least one of the two approaches.  

The abbreviations for the annotations are as follows: 3UTR – 3_prime_UTR_variant, 5UTR – 5_prime_UTR_variant, COV – removed from IVA because 

of coverage filter, IN – intron_variant, mmiRNA – mature microRNA variant, MIS – missense_variant, NC.EX – non_coding_transcript_exon_variant, 

PRO – promoter_region, SAL – start_lost, SP – splice_region_variant, SP_SEV – splice_severe_variant, SR – stop_retained_variant, STG – stop_gained, 

STL – stop_lost, SYN – synonymous_variant, UN – unknown. 

  STG STL SP_SEV SAL MIS SR SYN mmiRNA 5UTR 3UTR IN PRO COV NOT_REFSEQ UN 
STG 2281 0 0 1 97 0 120 0 2 3 21 0 39 842 0 

STL 7 206 3 1 64 0 25 0 1 3 13 0 6 193 0 

SP_SEV 0 0 532 0 110 0 57 0 14 7 32 0 42 4105 0 

SAL 0 0 0 305 119 0 6 0 0 0 4 0 4 169 0 

MIS 3 0 10 12 153693 1 2301 0 98 86 664 6 1403 23067 9 

SP 1 0 3 2 69 1 3032 6 139 91 2506 2 340 31597 1 

SR 0 0 0 0 1 102 9 0 0 0 0 0 0 66 0 

SYN 3 0 1 1 71 0 108392 0 36 20 197 0 775 11393 6 

mmiRNA 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

5UTR 0 0 0 0 126 0 30 0 0 0 0 0 0 0 0 

3UTR 5 0 0 0 94 0 26 0 0 0 0 0 0 0 0 

IN 7 0 0 0 380 1 179 0 0 0 0 0 0 0 0 

NC.EX 30 4 1 2 692 0 546 0 0 0 0 0 0 0 0 

NOT_VCF 17 23 3 4 1975 1 599 0 0 0 0 0 0 0 0 
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Appendix C.17 Matrix displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group comparison of the per individual derived 

SNP counts for CADD20 variants 

The results are reported in the form of the negative common logarithm of the p-values. The lower half contains the values for the total number of SNPs, 

the upper half for homozygous genotypes only. Cells containing the p-values for comparisons that are significant are bolded. Cells containing a value of 

323.31 are equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics software used for 

these calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the macro-groups 

taken from Table 3.1. 

 

Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 
Afr  323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 
MiE 323.31  1.2*10

-11 0 3.7*10
-10

 5.5*10
-9

 3.2 4.44 323.31 323.31 8.94 323.31 323.31 323.31 

WEu 323.31 1.33  8.6*10
-12 

0
 

3.1*10
-6 3.92 5.59 323.31 323.31 10.67 323.31 323.31 323.31 

EEu 323.31 3.83 1.2*10
-3

  3.9*10
-10

 1.3*10
-7 4.37 6.77 323.31 323.31 323.31 323.31 323.31 323.31 

Vol 323.31 0.09
 

2.2*10
-3

 0.28
  5.8*10

-6 3.37 4.49 323.31 323.31 8.75 323.31 323.31 323.31 

SoA 323.31 0.04 4.68 8.94 1.57  2.67 3.78 323.31 323.31 8.2 323.31 323.31 323.31 

WSi 323.31 3.88 0.14 3.9*10
-3 0.79 7.59  1.1*10

-11
 6.92 7.65 0.02 11.38 323.31 323.31 

SSi 323.31 0.98 2.0*10
-9 0.02 1.1*10

-4 4.16 0.31  323.31 323.31 0.18
 323.31 323.31 323.31 

CSi 323.31 323.31 7.89 7.03 9.37 323.31 1.47 9.29  1.5*10
-6

 5.06 0.01 323.31 7.95 
NSi 323.31 323.31 323.31 323.31 323.31 323.31 4.07 323.31 0.08

  5.81 7.8*10
-7 323.31 6.5 

SeM 323.31 2.08 6.2*10
-7 4.7*10

-8 0.04 5.78 0.02 1.9*10
-4

 6.15 10.28  9.6 323.31 323.31 

SeI 323.31 5.96 0.24 0.01 1.22 323.31 2.1*10
-10 0.59 3.91 7.95 

0.02  323.31 6.42 

SAm 323.31 323.31 323.31 323.31 323.31 323.31 323.31 323.31 5.52 2.18 323.31 323.31  1.2*10
-6 

Oce 323.31 0.07 6.0*10
-9 8.6*10

-4 2.1*10
-8 0.88 0.06 0 3.37 5.82 1.8*10

-5 0.06 323.31  
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Appendix C.18 Matrix displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group comparison of the per individual derived 

SNP counts for CADD30 variants 

The results are reported in the form of the negative common logarithm of the p-values. The lower half contains the values for the total number of SNPs, 

the upper half for homozygous genotypes only. Cells containing the p-values for comparisons that are significant are bolded. Cells containing a value of 

323.31 are equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics software used for 

these calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the macro-groups 

taken from Table 3.1. 

 
Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 

Afr  0.80 0.07 0.61 0.93 0.02 1.64 2.18 4.09 2.88 2.73 9.61 323.31 7.29 
MiE 323.31  0.00 0.00 0.00 0.02 0.00 0.00 0.13 0.02 0.01 2.63 323.31 2.93 
WEu 323.31 0.46  0.00 0.02 0.00 0.20 0.28 1.48 0.72 0.58 6.28 323.31 4.89 
EEu 323.31 0.96 0.00  0.00 0.00 0.04 0.05 0.94 0.31 0.22 6.16 323.31 4.32 
Vol 323.31 0.10 0.00 0.00  0.05 0.00 0.00 0.03 0.00 0.00 1.67 323.31 2.38 
SoA 323.31 0.00 0.02 0.09 0.00  0.31 0.44 1.76 0.94 0.80 6.60 323.31 5.18 
WSi 323.31 0.44 0.00 0.00 0.00 0.03  0.00 0.00 0.00 0.00 0.44 9.96 1.36 
SSi 323.31 0.00 0.06 0.24 0.00 0.00 0.08  0.00 0.00 0.00 1.57 323.31 2.13 
CSi 323.31 3.09 0.11 0.11 0.20 1.41 0.00 1.94  0.00 0.00 0.18 10.44 0.98 

NSi 323.31 3.23 0.19 0.20 0.30 1.58 0.02 2.10 0.00  0.00 0.37 10.76 1.24 

SeM 323.31 1.98 0.01 0.00 0.03 0.66 0.00 1.00 0.00 0.00  0.71 323.31 1.54 
SeI 323.31 1.26 0.00 0.00 0.00 0.21 0.00 0.43 0.02 0.06 0.00  7.07 0.09 

SAm 323.31 0.68 0.00 0.00 0.00 0.12 0.00 0.21 0.00 0.00 0.00 0.00  0.61 

Oce 323.31 0.48 0.00 0.00 0.00 0.09 0.00 0.15 0.00 0.00 0.00 0.00 0.00  
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Appendix C.19 Macro-group-level per individual SNP counts for different groups of 

derived high confidence LoF variants from LOFTEE 

Given for each of the 14 macro-groups in the Variant-Based Analysis Set and all classified as 

high confidence loss-of-function by the LOFTEE plugin to Ensembl’s VEP. For variants with 

multiple consequences only the most severe (Appendix C.8) is reported here. Abbreviations: 

hom – homozygote genotypes. 

Macro-group Stop 
gain 

Stop gain hom Splice site loss Splice site loss hom 

Afr 79.1 10.5 37.5 5.0 

MiE 63.4 13.7 34.0 8.0 

WEu 62.1 13.8 33.4 7.8 

EEu 62.4 13.1 34.2 7.4 

Vol 61.4 13.7 36.0 8.6 

SoA 65.2 14.6 32.8 8.0 

WSi 61.6 14.3 34.6 9.7 

SSi 62.8 13.9 35.8 8.7 

CSi 59.4 13.6 35.8 10.7 

NSi 60.4 15.5 35.2 11.1 

SeM 61.8 15.2 33.8 8.6 

SeI 60.7 16.4 32.9 9.0 

SAm 53.9 17.8 31.6 11.9 

Oce 63.3 18.9 31.3 8.7 

whole dataset 62.3 
 

14.3 34.7 8.7 
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Appendix C.20 Matrix displaying the outcomes of Tukey’s HSD for each pairwise inter-macro-group comparison of the per individual derived 

SNP counts for high confidence LoF variants from LOFTEE 

The results are reported in the form of the negative common logarithm of the p-values. The lower half contains the values for the total number of SNPs, 

the upper half for homozygous genotypes only. Cells containing the p-values for comparisons that are significant are bolded. Cells containing a value of 

323.31 are equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics software used for 

these calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the macro-groups 

taken from Table 3.1. 
 

Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 
Afr   5.76 6.01 4.54 6.34 8.03 9.07 8.77 323.31 323.31 323.31 323.31 323.31 323.31 
MiE 323.31   0.00 0.01 0.00 0.00 0.10 0.00 0.46 3.40 0.12 2.22 7.15 2.12 
WEu 323.31 0.00   0.01 0.00 0.00 0.17 0.00 0.68 4.03 0.22 2.84 7.85 2.38 
EEu 323.31 0.00 0.00   0.10 0.37 1.37 0.51 3.26 8.37 2.00 7.74 323.31 4.31 
Vol 323.31 0.00 0.00 0.00   0.00 0.01 0.00 0.07 1.99 0.01 0.96 5.47 1.38 
SoA 323.31 0.00 0.01 0.00 0.00   0.00 0.00 0.05 2.02 0.00 0.96 5.63 1.30 
WSi 323.31 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.20 0.00 0.00 2.51 0.24 
SSi 323.31 0.00 0.04 0.00 0.00 0.00 0.00   0.06 2.29 0.00 1.17 6.00 1.38 
CSi 323.31 0.00 0.00 0.00 0.00 0.01 0.00 0.07   0.24 0.00 0.00 2.94 0.24 
NSi 323.31 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00   0.61 0.00 0.36 0.00 
SeM 323.31 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00   0.07 3.68 0.47 
SeI 323.31 0.15 0.00 0.12 0.10 0.36 0.00 0.81 0.00 0.00 0.00   1.75 0.02 

SAm 323.31 3.72 2.45 3.95 3.37 4.32 2.22 5.19 2.29 2.31 2.50 1.54   0.00 
Oce 9.71 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.59   
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Appendix C.21 Correlation coefficients for the comparisons of stop-gain site counts 

annotated with IVA and VEP 

Different methodologies were used to analyse the relationship between the number of stop-gain 

SNPs and homozygous derived sites detected by the VEP LOFTEE plugin (high confidence) 

and IVA. 

Sites  Treatment of 

Data 

Method Correlation 

coefficient and 95% 

CI 

P-value 

stop-gain SNPs pooled Pearson 0.75 [0.70,0.79] < 2.2*10-16 

stop-gain SNPs pooled Spearman 0.68 [0.61,0.74] < 2.2*10-16 

stop-gain SNPs averaged by 

macro-group 

Pearson 0.84 [0.57,0.95] 1.4*10-4 

stop-gain SNPs averaged by 

macro-group 

Spearman 0.53 [-0.07,0.88] 0.052 (ns) 

stop-gain SNPs intra-macro-

group 

Repeated 

measures 

correlation 

0.72 [0.67,0.77] 5.7*10-60 

stop-gain homozygous 

derived 

pooled Pearson 0.70 [0.65,0.75] < 2.2*10-16 

stop-gain homozygous 

derived 

pooled Spearman 0.68 [0.62,0.74] < 2.2*10-16 

stop-gain homozygous 

derived 

averaged by 

macro-group 

Pearson 0.85 [0.58,0.95] 1.2*10-4 

stop-gain homozygous 

derived 

averaged by 

macro-group 

Spearman 0.93 [0.71,1.00] < 2.2*10-16 

stop-gain homozygous 

derived 

intra-macro-

group 

Repeated 

measures 

correlation 

0.64 [0.57,0.69] 3.8*10-43 
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Appendix C.22 Repeated measures correlations between stop-gain site counts annotated 

with IVA and VEP 

A) Number of stop-gain SNPs detected by the LOFTEE VEP plugin (high confidence variants) 

compared to IVA. Regression lines show the fit of a common (i.e. identical regression slope for 

each macro-group) repeated-measures correlation design. Short codes for the macro-groups 

taken from Table 3.1. 

 
B) Number of homozygous derived stop-gain SNPs detected by the LOFTEE VEP plugin (high 

confidence variants) compared to IVA. Regression lines show the fit of a common (i.e. identical 

regression slope for each macro-group) repeated-measures correlation design. Short codes for 

the macro-groups taken from Table 3.1. 
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Appendix C.23 Multiple regression analyses of the number of homozygous derived LoF 

sites inferred from IVA 

Determination coefficients obtained from multiple regression analyses aiming to predict the 

number of derived homozygous genotypes for stop gained and splice donor/acceptor disrupting 

sites inferred by IVA (n = 2590 when only sites for which the reference is ancestral are 

considered) by the distance from Africa and the long term Ne since the OAA event. The addition 

of Ne was evaluated by an ANOVA using the chi-square statistic; the respective p-value for the 

comparison of the model pairs is recorded. Abbreviations: D_AA – distance from Addis Ababa, 

D_WH – distance from Windhoek 

  r2 

(D_AA) 
r2  

(D_AA +Ne) 
P  r2 

(D_WH) 
r2  

(D_WH +Ne) 
P 

LoF IVA 
(n = 382) 

0.1994 - - 0.2177 - - 

LoF IVA 
(n = 215) 

0.2448 0.277 0.002122 0.2695 0.2805 0.07181 
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Appendix C.24 Matrix displaying the outcomes of pairwise chi-square tests comparing binned CADD DAF spectra  

Comparisons between each of the 14 macro-groups, given in the form of the negative common logarithm of the p-values. For all groups except the 

Oceanians these spectra represent the mean (rounded to full numbers) counts obtained from repeated downsampling to n = 8. The upper half contains the 

values for the DAF spectra of CADD30 the lower half for those of CADD20 variants. Cells containing the p-values for comparisons that are significant 

according to the Bonferroni-corrected threshold (p = 5.495*10-4 as there are 91 comparisons each, equal to a logged p of ~3.26) are bolded. Cells 

containing a value of 323.31 are equivalent to a p-value of ~5*10-324. The latter is the smallest number that can reliably be represented by the R statistics 

software used for these calculations (https://stat.ethz.ch/R-manual/R-devel/library/base/html/zMachine.html) (R Core Team, 2017b). Short codes for the 

macro-groups taken from Table 3.1. 

 
Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 

Afr   0.79 1.5 1.9 1.72 0.76 3.89 2.03 6.6 7.63 2.13 3.33 11.44 8.6 
MiE 127.48   0.11 0.23 0.16 0.02 1.48 0.27 3.17 4.2 0.35 0.9 5.75 4.23 
WEu 183.65 6.2   0.05 0.03 0.13 1.2 0.07 2.61 3.71 0.07 0.54 4.4 3.37 
EEu 197.12 9.98 0.51   0.01 0.3 0.77 0 1.94 2.91 0.13 0.25 3.63 2.6 

Vol 176.89 6.78 0.42 0.54   0.23 0.89 0.01 2.16 3.17 0.12 0.34 3.97 2.88 

SoA 133.89 0.08 4.91 8.34 5.5   1.81 0.35 3.62 4.76 0.32 1.1 6.07 4.68 
WSi 286.42 39.18 14.27 9.55 13.79 35.91   0.73 0.34 0.72 1.44 0.21 2.23 0.85 

SSi 231.78 14.41 2.83 2.66 4.9 12.46 10.71   1.87 2.85 0.14 0.22 3.53 2.52 

CSi 323.31 94.35 52.79 44.87 55.09 89.26 16.16 36.56   0.15 2.76 0.82 1.25 0.16 

NSi 323.31 142.02 89.42 78.37 91.23 135.84 35.71 69.52 5.55   4.01 1.56 1.85 0.4 

SeM 256.31 20.07 6.83 6.7 10.06 17.9 13.26 0.94 32.88 64.95   0.6 3.96 3.33 
SeI 306.59 37.72 13.86 10.44 15.8 34.46 3.5 5.94 13.31 35.44 5.31   2.18 1.24 

SAm 323.31 151.16 100.82 92.28 107.21 145.13 54.81 72.97 12.93 12.09 62.41 41.63   0.57 

Oce 323.31 76.88 43.41 38.97 48.79 72.53 22.49 24.73 8.69 24.78 18.04 10.15 14.56   
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Appendix C.25 Matrix displaying the outcomes of pairwise chi-square tests comparing binned DAF spectra for high confidence LoF variants 

from LOFTEE  

Matrix displaying the outcomes of the pairwise chi-square tests comparing the binned HC LoF variant spectra between each of the 14 macro-groups. For 

all groups except the Oceanians these spectra represent the mean (rounded to full numbers) counts obtained from repeated downsampling to n = 8. Cells 

containing the p-values for comparisons that are significant according to the Bonferroni-corrected threshold (p = 5.495*10-4 as there are 91 comparisons 

each) are bolded. Short codes for the macro-groups taken from Table 3.1. 

  Afr MiE WEu EEu Vol SoA WSi SSi CSi NSi SeM SeI SAm Oce 
Afr   0.006 0.005 0.003 0.003 0.007 9.0*10-5 0.001 5.2*10-7 3.6*10-8 5.2*10-4 2.3*10-5 1.2*10-9 2.2*10-6 
MiE    0.993 0.928 0.922 0.756 0.492 0.880 0.080 0.024 0.739 0.390 0.009 0.164 

WEu     0.903 0.961 0.804 0.489 0.901 0.082 0.025 0.803 0.406 0.011 0.201 

EEu      0.784 0.535 0.695 0.907 0.160 0.057 0.660 0.542 0.017 0.167 

Vol       0.887 0.417 0.878 0.066 0.019 0.901 0.381 0.012 0.267 

SoA        0.194 0.607 0.019 0.004 0.724 0.175 0.004 0.168 

WSi         0.717 0.559 0.298 0.480 0.922 0.104 0.259 

SSi          0.186 0.068 0.878 0.665 0.036 0.337 

CSi           0.893 0.111 0.627 0.376 0.152 

NSi            0.037 0.354 0.414 0.071 

SeM             0.520 0.037 0.508 

SeI              0.204 0.433 

SAm               0.227 

Oce                
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Appendix C.26 Bulk data of high confidence LoF variants from LOFTEE 

This file can be found attached to the electronic version of this thesis. It is a VCF file containing 

4,282 high confidence LoF variants in 382 individuals from 14 worldwide macro-groups 

detected by the LOFTEE Plugin based on information from the GRCh37-compatible version of 

Ensembl Release 87. The INFO column contains the following abbreviations: AA – ancestral 

allele inferred from six primate species, AN – ancient (hominin) Neanderthal, AD – ancient 

(hominin) Denisovan, MOST_SEVERE_CSQ – most severe consequence inferred by VEP 

based on the precedence criteria given in Table X+7 ,SING – singleton site, VAR – variant site 

(i.e. at least two individuals carry at least one non – reference allele). The order of entries in the 

next subfield CSQ (consequences) is described in the second row of the VCF header. 

Please note that for five loci (4:663,836; 5:147,207,583; 16:456,363; 16:67,195,842; 

17:78,396,004) the most severe consequence provided by VEP was “stop_lost”, however these 

were also called as “splice_acceptor”/”splice_donor” respectively. The latter annotation was 

reported here as LOFTEE does not evaluate the confidence status of “stop_lost” variants. 

 

Appendix C.27 Gene Ontology categories significantly enriched or depleted in 

homozygous LoF-containing genes compared to the genome as a whole 

The Bonferroni-corrected p-values were obtained using the PANTHER overrepresentation test. 

Abbreviations: BP – biological process, GO - Gene Ontology, MF – molecular function. 

GO category Type Homozygous 
LoF genes 

All genes Enrichment/ 
Depletion 

Corrected P 

developmental process 

(GO:0032502) 

BP 55/355 5487/21002 0.59 0.0093 

anatomical structure 

development 
(GO:0048856) 

BP 51/355 5122/21002 0.59 0.0204 

metal ion binding 

(GO:0046872) 

MF 107/355 4152/21002 1.52 0.0066 

cation binding 
(GO:0043169) 

MF 107/355 4240/21002 1.49 0.0177 

protein binding 

(GO:0005515) 

MF 148/355 11174/21002 0.78 0.0276 
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Appendix C.28 CDS length of a gene in relation to the probability of carrying a 

homozygous LoF variant 

Long genes should be more likely to carry any observable kind of LoF variation assuming that 

mutation rates and selective constraints are comparable (Lek et al., 2016). To explore this, the 

CDS for all protein-coding autosomal genes in Ensembl version 75 were extracted (nEnsembl_Genes 

= 19,270). On average, the CDS of genes containing at least one homozygous LoF is 2027 bp 

long, significantly greater than for genes without such a variant at 1755 bp (two-sample-t-test, 

t = -2.3652, p = 0.01855). One further way to test if gene length is the main determinant for 

having at least one homozygous LoF is to examine whether it is sufficient as a predictor in a 

simple logistic regression model. Such a model can be considered a significant improvement 

over the null model (ANOVA using the chi-square statistic, p = 0.04390). However, the amount 

of explained variance as given by a form of “pseudo r2”, the Nagelkerke index (Nagelkerke, 

1991), is only 1.26*10-3. While there is still considerable debate over the exact interpretation 

of this metric (Smith and McKenna, 2013) and how it relates to the r2 obtained from a 

“standard” ordinary least squares regression between continuous variables this outcome 

indicates that CDS length is not the main factor explaining whether a genes carries a 

homozygous LoF. 
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Appendix C.29 Filtering scheme and overlaps with other large genomic datasets for rare 

homozygous LoF variants 

This file can be found attached to the electronic version of this thesis. The excel table displays 

the pruning of the rhLoF variants initially detected at less than 2% DAF (n = 116) in the Variant-

Based Analysis Dataset by a multi-stage filtering process. Firstly, the rhLoF-containing genes 

were compared to such sets of genes derived from four large scale exome sequencing projects, 

the overlaps are given in the first sheet of the file. The second sheet provides information on 

the variants that were already present in a homozygous state in the 1000 Genomes, the Simons 

Genome Diversity Project or the ExAC browser. 
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Appendix C.30 Detailed information on 34 LoF variants that have not previously been described as homozygotes 

This table contains information on the population they occur in, the type of LoF variant and their co-location with previously described variants. 

Furthermore, it is recorded whether the genes the rhLoF variants are located in are predicted to be LoF-tolerant based on empirical data from the >60,000 

exomes in the ExAC project and how many functionally related tandem duplicated genes described by the Duplicated Genes Database exist. The asterisks 

mark samples that were first reported in previous studies other than Pagani et al., (2016), i.e. the Pygmies presented by Lachance et al., (2012) or would 

potentially have been recorded as already existing if the recent projects on Oceanian genomics were included in the filtering scheme (Malaspinas et al., 

2016). The abbreviations used are as follows: COSM – IDs from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, CS – HGMD 

accession ID (splice variant), CSQ – most severe reported consequence, SP_SEV – severe splice site variant, STG – stop gain variant. Short codes for 

the macro-groups taken from Table 3.1. 

CHR POS Macro- 
group 

Population Gene 
Symbol 

CSQ Known Variant CADD Predicted 
LoF 
(gene 
level) 

N(tandem 
duplicates) 

Additional 
information 

1 2121850 Afr Baka Pygmies* AL590822.2 STG rs145881709 31  0 
 

1 157772422 EEu Karelians FCRL1 STG rs144206423 34 tolerant 2 
 

1 173567165 MiE Lebanese SLC9C2 STG rs773250925 32 tolerant 0 
 

1 248005039 SeI Igorot OR11L1 STG rs376918027, 
COSM534395 

34 tolerant 42 somatic mutation in 
lung, oesophageal and 
stomach cancers 
(1 sample each) 

2 11606248 MiE Jordanians AC099344.1 SP_SEV rs181333014 1.403  0 
 

2 98949903 EEu Vepsas AC092675.3 SP_SEV rs774391598 0.171  0 
 

2 231193547 Afr Congo Pygmies* SP140L SP_SEV rs187842782 0.275 tolerant 1 
 

3 46599404 CSi Yakuts LUZPP1 STG rs144667915 23.3  0 
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CHR POS Macro- 
group 

Population Gene 
Symbol 

CSQ Known Variant CADD Predicted 
LoF 
(gene 
level) 

N(tandem 
duplicates) 

Additional 
information 

3 123699212 CSi Yakuts ROPN1 SP_SEV - 23.5 tolerant 1  
5 2752747 SeI Aeta C5orf38 STG COSM738175 28.4  0 somatic mutation in 

lung cancer (1 sample) 
5 180661930 WSi Kets TRIM41 SP_SEV rs777713854 10.06 intolerant 0 

 

6 123122552 SeI Lebbo SMPDL3A SP_SEV rs192842064 24.1 tolerant 0 
 

6 131974033 CSi Evenks ENPP3 SP_SEV rs781663942 23.5 tolerant 1 
 

7 1590620 Oce Koinanbe* TMEM184A SP_SEV rs369699223 22.5 tolerant 0 
 

7 141954912 SoA Kapu PRSS58 STG - 31 tolerant 2  
7 157318751 NSi Chukchi AC006372.1 STG rs148144246 32  0  
           
9 399261 Oce Koinanbe* DOCK8 SP_SEV rs756871628 25.6 tolerant 0  
9 36276924 SeI Bajo GNE STG rs200763627 34 tolerant 0  
9 71155642 CSi Evenks TMEM252 STG rs199544319 26.9 tolerant 0  
9 137777213 SAm Calchaquíes FCN2 SP_SEV rs145512341 22.9 tolerant 1  
11 7694023 NSi Koryaks CYB5R2 STG COSM1188159 32 tolerant 0 somatic mutation in 

lung cancer (1 sample) 
 

11 64858002 NSi Koryaks (2 
individuals) 

VPS51 STG rs185287594 29.7 tolerant 0  

12 56308146 SeI Igorot (2 
individuals) 

PYM1 STG rs373671473 10.67  0 
 

12 117484627 MiE Iranians TESC STG rs376764770 7.573  0 
 

12 120961706 EEu Vepsas COQ5 STG rs117192040 0.038 tolerant 0 
 

14 22133972 SeI Igorot OR4E2 STG rs368987419 36 tolerant 23 
 

14 105849581 CSi Evenks PACS2 STG rs782499636 4.704 intolerant 0 
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CHR POS Macro- 
group 

Population Gene 
Symbol 

CSQ Known Variant CADD Predicted 
LoF 
(gene 
level) 

N(tandem 
duplicates) 

Additional 
information 

16 3447343 SeI Dusun ZSCAN32 STG rs367962404 9.721 tolerant 0  
16 84801966 SeI Igorot USP10 SP_SEV rs189466547 23.1 intolerant 0  
17 7945810 Oce Koinanbe* 

(2 individuals) 
ALOX15B SP_SEV rs139363547 23.2 tolerant 4 

 

17 47284137 SoA Low-caste  
[Madhya 
Pradesh] 

GNGT2 SP_SEV rs534482384 10.49  0 
 

18 43314238 SeI Dusun SLC14A1 SP_SEV rs78937798, 
CS982369 

24 tolerant 0 HGMD predicts that 
this mutation leads to a 
urea transport 
defect. 

19 37488331 NSi Eskimo ZNF568 STG rs574434686, 
COSM5636898 

37 tolerant 30 somatic mutation in 
oesophageal cancer (1 
sample) 

20 31196370 Vol Udmurts RP11-
410N8.4 

STG - 31  0  
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Appendix C.31 Loci from a panel of high penetrance mutations underlying Mendelian childhood disorders detected in the Variant-Based 

Analysis Set 

Note that half of the individuals carrying such variants are of European ancestry. The cystic fibrosis-related mutation marked with an asterisk for which 

one Murut individual is homozygous has received conflicting pathogenicity annotations in different databases (see main text). Abbreviations employed 

are as follows: AO-age of onset, CHR-Chromosome, CM- missense variant from HGMD,  can be assumed for site ID unless stated otherwise, CON- 

Congenital or < 2 years, CS-splicing-related variant from HGMD, CT-disease category, H- highly severe with some variation, HGMD-Human Genome 

Mutation Database, M- most severe with significantly reduced mobility or increased mortality in early life, MB-metabolic, NU-neurological, OC-ocular, 

RP-respiratory, PNT-penetrance, PRV (est)- prevalence estimated based on number of all alleles in Variant-Based Analysis Set related to a particular 

disease, PRA- pre-adult, i.e. mostly < 18 years, PRV (lit)- prevalence based on literature mined by Chen et al. (2016), SEV-severity, VAR- < 18 years 

but more variable. Short codes for the macro-groups taken from Table 3.1. 

CHR POS HGMD-
ID [CM] 

Gene 
Symbol 

Indivi-
dual ID 

Population details Phenotype CT PRV (lit) PRV 
(est) 

PNT 
(>) 

SEV AO 

1 45974647 060075 MMACHC CHB_4 SeM_Han Methylmalonic 
Acidaemia 

MB 1:50,000-
100,000 

1:583,700 90% H PRA 

1 76198337 042915 ACADM TSI_2; 
UkrnW2 

WEu_Italians; 
EEu_Ukrainians_west 

Medium Chain 
Acyl-CoA 
Dehydrogenase 
Deficiency 

MB 1:4,900-
170,000 

1:64,900 90% H PRA 

1 76215194 910003 ACADM Kapu1 SoA_Kapu Medium Chain 
Acyl-CoA 
Dehydrogenase 
Deficiency 

MB 1:4,900-
170,000 

1:64,900 90% H PRA 

2 38298394 - CYP1B1 Assyr4,  
Armen4 

MiE_Assyrians; 
MiE_Armenians 

Primary 
Congenital 
Glaucoma 

OC 1:5,000- 
22,000 

1:145,900 95% H CON 
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CHR POS HGMD-
ID [rest 
CM] 

Gene 
Symbol 

Indivi-
dual ID 

Population details Phenotype CT PRV (lit) PRV 
(est) 

PNT 
(>) 

SEV AO 

3 15686975 970191 BTD Chuk13 NSi_Chukchi Biotindidase 
Deficiency 

MB 1:61,067 1:583,700 95% H CON 

5 138386706 093177 SIL1 MPlc1; 
GIH_4; 
Khsat1 

SoA_Low.caste; 
SoA_Gujaratis; 
SoA_Kshatriya 
 

Marinesco-Sjogren 
syndrome 

NU unknown 1:64,900 90% M CON 

7 117171029 - CFTR UkrN1 EEu_ 
Ukrainians_north 

Cystic Fibrosis RP 1:3,200 in 
European 
Americans 

1:16,200 95% H PRA 

7* 117199683
* 

941976* CFTR Murut13 
(HOM); 
Igrt1; 
Vizyn3 

SeI_Murut (HOM); 
SeI_Igorot; 
SeI_Vizayan 

Cystic Fibrosis 
 

RP 1:3,200 in 
European 
Americans 

1:16,200 95% H PRA 

7 117227792 CS900233 CFTR CEPH_13 WEu_NW.Europeans Cystic Fibrosis RP 1:3,200 in 
European 
Americans 

1:16,200 95% H PRA 

9 34648167 910169 GALT croat16 WEu_Croats Galactosaemia MB 1:10,000-
30,000 

1:145,900 99% H PRA 

9 34649029 920296 GALT YakS4 CSi_Yakuts_Sakha Galactosaemia MB 1:10,000-
30,000 

1:145,900 99% H PRA 

9 104189856 880004 ALDOB Selkp1; 
BelaR2; 
Lat1; 
Altai5; 
CEU_2 

WSi_Selkups; 
EEu_Belarusians; 
EEu_Latvians; 
SSi_Altaians; 
WEu_NW.Europeans 

Hereditary 
Fructose 
Intolerance 

MB 1:20,000-
30,000 

1:23,300 90% H PRA 

11 6638385 CS991344 TPP1 CEPH_15 WEu_NW.Europeans Neuronal Ceroid 
Lipofuscinosis 
  

NU 1.5-9: 
1,000,000 

1:583,700 90% H CON 
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CHR POS HGMD-
ID [rest 
CM] 

Gene 
Symbol 

Indivi-
dual ID 

Population details Phenotype CT PRV (lit) PRV 
(est) 

PNT 
(>) 

SEV AO 

12 103234271 870016 PAH Est1 EEu_Estonians Phenylketonuria MB 1:2,600-
200,000 in 
Europeans 
 

1:583,700 90% H PRA 

15 80472572 CS930802 FAH Mari1 Vol_Maris Tyrosinaemia  
Type I 

MB 1:100,000-
200,000 

1:583,700 90% M CON 

16 8905010 971228 PMM2 Ger3; 
Ingr3; 
CEPH_14 

WEu_Germans; 
EEu_Ingrians; 
WEu_NW.Europeans 

Congenital Dis-
orders of Glyco-
sylation Type Ia 

MB 1:20,000 1:64,900 90% H CON 

17 78190860 971355 SGSH Est4 EEu_Estonians Mucopolysaccha-
ridosis Type IIIA 

MB 1:100,000-
400,000 

1:583,700 90% M PRA 

19 13008638 960719 GCDH Chuv1 Vol_Chuvashes Glutaryl-CoA De-
hydrogenase De-
ficiency / Glutaric 
Acidaemia Type 1  

MB 1:30,000-
40,000 

1:583,700 90% H PRA 

21 45709656 970074 AIRE Veps2 EEu_Vepsas Polyglandular 
Autoimmune 
Syndrome 

IM common 
in Iranian 
Jews, Sar-
dinians, 
Finns 

1:583,700 90% H PRA 

22 51065404 910051 ARSA Swe1 EEu_Swedes Arylsulfatase A 
Deficiency 

NU 1:40,000-
160,000 

1:583,700 90% H VAR 
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Appendix C.32 DAF data for most differentiated missense variants 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix C.32A) contains the DAFs of the top 20 most differentiated (ΔDAF) 

missense variants by macro-groups. The second sheet (Appendix C.32B) reports these variants 

excluding all comparisons with Africans, as the 20 most extreme missense DAF differences are 

exclusively observed between the Africans and non-Africans. Because of the small sample sizes 

the Southern Americans and the Oceanians were not considered in the ΔDAF calculations; their 

frequencies are reported for comparative purposes only. * = The asterisk indicates that this site 

was highlighted as an outlier (>5 SD) by the DIND analyses. 

To account for LD if more than two most differentiated SNPs were located in the same 200-kb 

window only one of the signals is reported here. Note that the maximum difference reported 

here was calculated from non-rounded values. This accounts for slight discrepancies to the 

rounded values of the population allele frequencies. Short codes for the macro-groups taken 

from Table 3.1. 

 

Appendix C.33 DAF data for most differentiated non-African missense variants in five 

South Asian subclusters 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file contains the DAFs of the top 20 most differentiated (ΔDAF) missense variants 

observed between all non-African groups for five subclusters of populations from South Asia. 

The second sheet provides details on the composition of these clusters. Note that there are three 

polymorphisms (rs1426654 in SLC24A5, rs885479 in MC1R and rs10497520 in TTN) for which 

ΔDAF > 0.5. Abbreviations employed: SoA – South Asia 

 

Appendix C.34 DAF data for most differentiated nonsense variants 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix C.34A) contains the DAFs of the top 20 most differentiated (ΔDAF) 

nonsense variants by macro-groups. The second sheet (Appendix C.34B) reports these variants 

excluding all comparisons with Africans. However, many sites are reported in both tables, so 

that the total of unique variants is only n = 24. Sites that are unique to Appendix C.32B are 
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bolded. Because of the small sample sizes the Southern Americans and the Oceanians were not 

considered in the ΔDAF calculations; their frequencies are reported for comparative purposes 

only. * = The asterisks indicate that this site was highlighted as an outlier (>5 SD) by the DIND 

analyses. To account for LD if more than two most differentiated SNPs were located in the 

same 200-kb window only one of the signals is reported here. Note that the maximum difference 

reported here was calculated from non-rounded values. This accounts for slight discrepancies 

to the rounded values of the population allele frequencies. Short codes for the macro-groups 

taken from Table 3.1. 

Appendix C.35 Results of di and DIND analyses 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix C.35A) contains the Top 12 of the most highly divergent SNPs by the di 

score and their DAFs in each of the twelve population groups from the Selection Set. Reported 

are those most highly differentiated SNPs that are not in high linkage disequilibrium (r2 < 0.05) 

with any SNP with higher di score. Data were annotated using GRCh37/hg19 Ensembl Genes 

track from UCSC table browser. In case of SNPs within protein coding genes, all but 

'protein_coding' annotations were discarded. Closest 5' and 3' genes are reported within 200 kb 

distance. If the ancestral allele status is unknown, human reference/alternative (REF/ALT) 

alleles are shown in the “ancestral/derived allele” column (marked with *).  

The second sheet (Appendix C.35B) reports the variant findings by DIND analysis in the two 

highest ranking positive selection signals in each population group. Note for each of the twelve 

population groups a composite signal based on the empirical p-values of three selection tests 

was calculated and the two highest ranking windows were subjected to further DIND analyses. 

These tests were iHS, nSL and Tajima’s D, the results were calculated by colleagues as part of 

the collaboration leading to the Pagani et al. (2016) paper, however they are not further 

described here as they are not utilised in any other analysis in this thesis. The content of the 

other columns is as follows: DINDs - number of significant SNPs from the DIND analysis 

above a threshold of + 5SD in each of the frequency classes of the SNPs, based on a distribution 

created from regions without protein or RNA coding genes. Genes - genes with significant 

DIND SNPs, the gene with the most significant SNP is highlighted in bold  SNPs - Build 37 

Ensembl Release 75 positions of the most significant SNPs by their DIND score. Short codes 

for the macro-groups taken from Table 3.1. for both sheets.      
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Appendix C.36 Overlap of potential positive selection signals with GWAS results 

 This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file contains the overlap of SNPs highlighted either by ΔDAF, di or DIND with results of 

GWAS (p < 10-6) from the GWAS Catalog (MacArthur et al., 2017) and GWAS  Central (Beck 

et al., 2014) databases.  The entries in the “Tests” column can be interpreted as follows: di 

indicates that the variant was highlighted in Appendix C.35A, DIND in Appendix C.35B and 

ΔDAF in Appendices C.32 and C.34. Abbreviations employed: ANC – ancestral allele, CHR- 

Chromosome, DER – derived allele, POS- Position. Short codes for the macro-groups taken 

from Table 3.1. The second sheet contains the references for the additional notes given for some 

loci. 

 

Appendix C.37 Overlap of potential positive selection signals with significant single 

tissue cis-eQTLs from the GTEx database 

This file can be found attached to the electronic version of this thesis. The excel file contains 

the overlap of SNPs highlighted either by ΔDAF, di or DIND with significant single tissue cis-

eQTLs (≤ 1Mb from the transcription start site) across 48 tissues from the GTEx database 

(Lonsdale et al., 2013).   

The significance of the latter was determined by the GTEx Consortium (Aguet et al., 2016) 

using a multi-step procedure accounting for a) that there are multiple genetic variants in the 1-

Mb cis-association window from the transcription start of the genomic element whose mRNA 

expression levels were quantified and b) that there is a high number of such gene expression 

phenotypes measured throughout the genome.  

The entries in the “Tests” column can be interpreted as follows: di indicates that the variant was 

highlighted in Appendix C.35A, DIND in Appendix C.35B and ΔDAF in Appendices C.32 and 

C.34. The type of transcript was retrieved from release 27 of the GENCODE database (released 

August 2017). The IDs used for the original mapping of cis-eQTL were from GENCODE 19 

are given as well as their corresponding IDs in GENCODE 27. 

Abbreviations employed:  

Abs_rank – absolute rank of a particular gene in a tissue among all protein-coding genes (n = 

19,822) by total expression,  
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ANC – ancestral allele, CHR- Chromosome, DER – derived allele, 

High_tissue_specific_expression – indicates whether a gene highlighted by a particular variant-

gene expression level association is among the top 5% protein-coding genes both in terms of a) 

total mRNA quantified b) relative overexpression in the respective tissue where the relationship 

was highlighted, 

POS- Position, Pval_nominal-Raw p-value from a t-test between the respective variant and the 

expression of the target gene,  

Slope_der – normalised regression coefficient for a simple linear regression of the genotype at 

a respective site and the expression of the target gene, a positive value indicates an increase in 

gene expression with the number of derived alleles an individual carries, a negative value 

designates a decrease respectively,  

Pval_beta –permutation-based p-value for the variant-gene pair with the strongest association 

between genotype and expression levels for each gene (in each tissue), additional FDR 

adjustment for repeating this procedure across all genes with eQTLs in that tissue, after this 

adjustment a gene had to have at least one significant eQTL at α = 0.05, otherwise it was 

removed from further analyses, 

Tss_dist – distance of the eQTL from the transcription start of the genomic element whose 

expression levels it influences, 

Zscore_rank – z-scores were calculated for each gene across all 48 tissues to detect tissue-

specific overexpression, this column indicates the rank of a particular gene among all protein-

coding genes (n = 19,822) by this measure of overexpression in the tissue the respective variant-

gene pair was detected in. Short codes for the macro-groups taken from Table 3.1. 
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Appendix C.38 Gene Ontology categories significantly enriched in protein-coding genes 

regulated by eQTLs that were highlighted as positive selection signals 

This table lists genes that in at least one tissue are regulated by eQTLs that were also highlighted 

as top hits by either the DIND (Appendix C.35A), the di (Appendix C.35B) or the ΔDAF 

(Appendices C.32 and C.34). The Bonferroni-corrected p-values were obtained using the 

PANTHER overrepresentation test. Abbreviations: BP – biological process, GO - Gene 

Ontology, MF – molecular function. 

GO category Type Genes 
with 
putatively 
selected 
eQTL 

All genes Enrichment/ 
Depletion 

Corrected 
P 

antigen processing and 
presentation of exogenous 
peptide antigen via MHC class 
II (GO:0019886) 

BP 9/209 98/21002 9.23 0.00687 

antigen processing and 
presentation of peptide antigen 
via MHC class II 
(GO:0002495) 

BP 9/209 99/21002 9.14 0.00746 

antigen processing and 
presentation of peptide or 
polysaccharide antigen via 
MHC class II (GO:0002504) 

BP 9/209 100/21002 9.04 0.0081 

activation of immune response 
(GO:0002253) 

BP 19/209 557/21002 3.43 0.034 

MHC class II protein complex 
(GO:0042613) 

CC 9/209 18/21002 50.24 5.2*10-10 

MHC protein complex 
(GO:0042611) 

CC 9/209 27/21002 33.5 1.79*10-8 

integral component of lumenal 
side of endoplasmic reticulum 
membrane (GO:0071556) 

CC 7/209 29/21002 24.26 3.12*10-5 

lumenal side of endoplasmic 
reticulum membrane 
(GO:0098553) 

CC 7/209 29/21002 24.26 3.12*10-5 

clathrin-coated endocytic 
vesicle membrane 
(GO:0030669) 

CC 8/209 51/21002 15.76 8.23*10-5 

clathrin-coated endocytic 
vesicle (GO:0045334) 

CC 8/209 67/21002 12 6.38*10-4 

ER to Golgi transport vesicle 
membrane (GO:0012507) 

CC 7/209 60/21002 11.72 0.0039 

COPII-coated ER to Golgi 
transport vesicle 
(GO:0030134) 

CC 7/209 80/21002 8.79 0.0247 
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GO category Type Genes 
with 
putatively 
selected 
eQTL 

All genes Enrichment/ 
Depletion 

Corrected 
P 

clathrin-coated vesicle 
membrane (GO:0030665) 

CC 8/209 107/21002 7.51 0.0192 

Golgi-associated vesicle 
membrane (GO:0030660) 

CC 8/209 108/21002 7.44 0.0206 

endocytic vesicle membrane 
(GO:0030666) 

CC 12/209 168/21002 7.18 2.25*10-4 

integral component of 
endoplasmic reticulum 
membrane (GO:0030176) 

CC 10/209 148/21002 6.79 0.00397 

intrinsic component of 
endoplasmic reticulum 
membrane (GO:0031227) 

CC 10/209 154/21002 6.53 0.00561 

clathrin-coated vesicle 
(GO:0030136) 

CC 10/209 179/21002 5.61 0.0204 

endocytic vesicle 
(GO:0030139) 

CC 13/209 276/21002 4.73 0.00678 

lytic vacuole membrane 
(GO:0098852) 

CC 14/209 343/21002 4.1 0.0146 

lysosomal membrane 
(GO:0005765) 

CC 14/209 343/21002 4.1 0.0146 

vacuolar membrane 
(GO:0005774) 

CC 16/209 393/21002 4.09 0.00351 

endosome membrane 
(GO:0010008) 

CC 15/209 430/21002 3.51 0.0433 

endoplasmic reticulum 
membrane (GO:0005789) 

CC 29/209 1016/21002 2.87 5.14*10-4 

cytoplasmic vesicle membrane 
(GO:0030659) 

CC 21/209 737/21002 2.86 0.0239 

endoplasmic reticulum 
subcompartment 
(GO:0098827) 

CC 29/209 1021/21002 2.85 5.67*10-4 

nuclear outer membrane-
endoplasmic reticulum 
membrane network 
(GO:0042175) 

CC 29/209 1038/21002 2.81 7.91*10-4 

vesicle membrane 
(GO:0012506) 

CC 21/209 755/21002 2.8 0.0339 

endoplasmic reticulum part 
(GO:0044432) 

CC 31/209 1288/21002 2.42 0.00681 

cytoplasmic vesicle part 
(GO:0044433) 

CC 31/209 1422/21002 2.19 0.0463 

vesicle (GO:0031982) CC 69/209 4241/21002 1.63 0.0128 
cytoplasmic part 
(GO:0044444) 

CC 123/209 9373/21002 1.32 0.0336 

MHC class II receptor activity 
(GO:0032395) 

MF 6/209 11/21002 54.81 6.33*10-6 

MHC protein complex binding 
(GO:0023023) 

MF 5/209 20/21002 25.12 0.00658 
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Appendix C.39 Allele frequencies of relevant ACTN3 polymorphisms 

This table (Appendix C.39A) contains the allele frequencies for rs1815739 (ACTN3 function 

retained, note that this is the ancestral allele) and rs11227639 (ACTN3 upregulated, note that 

this is the derived allele) for 14 macro-groups The East Eurasian clade (including Native 

Americans) for whom there is a strong correlation between the macro-group allele frequencies 

at these two loci (r ~0.76) is bolded. Short codes for the macro-groups taken from Table 3.1. 

Population ACTN3 function retained ACTN3 upregulated 

Afr 0.905 0.167 
MiE 0.558 0.154 
WEu 0.565 0.161 
EEu 0.651 0.17 
Vol 0.595 0.19 
SoA 0.429 0.054 
WSi 0.676 0.794 
CSi 0.452 0.435 

NSi 0.72 0.72 
SSi 0.515 0.382 

SeM 0.552 0.207 
SeI 0.489 0.222 

SAm 0.077 0.115 

Oce 0.438 0.125 

 

This table (Appendix C.39B) contains the allele frequencies for rs1815739 (ACTN3 function 

retained, note that this is the ancestral allele) and rs11227639 (ACTN3 upregulated, note that 

this is the derived allele) for 21 subpopulations from different parts of Siberia. Short codes for 

the macro-groups taken from Table 3.1. 

Macro-
group 

Population Sample 
size 

ACTN3 
function 
retained 

ACTN3 
upregulated 

CSi Nganasans 2 0.75 0.75 
CSi Evenks 13 0.538 0.5 
CSi Yakuts (Magadan) 1 0.5 0.5 
CSi Yakuts (Krasnoyarsk Krai) 4 0.625 0.5 
CSi Evens (Magadan) 4 0.2 0.4 
CSi Yakuts (Sakha) 3 0.5 0.333 
CSi Even (Sakha) 3 0 0 
NSi Eskimo 4 0.75 0.75 
NSi Koryaks 16 0.688 0.75 
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Macro-
group 

Population Sample 
size 

ACTN3 
function 
retained 

ACTN3 
upregulated 

NSi Chukchi 5 0.8 0.6 
SSi Shor 2 1 0.5 
SSi Mongolians 6 0.417 0.417 
SSi Buryats 17 0.529 0.382 
SSi Altaians 6 0.417 0.333 
SSi Tuvinians 3 0.5 0.333 
WSi Forest Nenets 3 0.833 1 
WSi Khanty 3 0.667 0.833 
WSi Selkups 3 0.833 0.833 
WSi Tundra Nenets 3 0.333 0.833 
WSi Kets 3 1 0.667 
WSi Mansis 2 0.25 0.5 
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Appendix C.40 Summary of the consequences of higher ACTN3 mRNA levels 

Mainly based on a recent review of the relevant literature by Lee et al. (2016). The red question 

mark indicates that it is currently unclear whether the changes in calcium handling and the 

higher activity of SERCA Ca2+-ATPase inferred a on a cellular level are sufficient to 

meaningfully impact basal heat generation in humans. 
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Appendix C.41 Empirical p-values of iHS, nSL and Tajima’s D selection tests in 200-kb 

windows 

This file can be found attached to the electronic version of this thesis. It contains empirical p-

values of three positive selection tests (iHS, nSL, Tajima’s D) in 200-kb windows by the twelve 

macro-groups from the Selection Set (modified from Pagani et al. 2016). These data were 

generated by Evelyn Jagoda, Dr Guy Jacobs and Dr Charlotte Inchley. 
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Appendix C.42 Screenshot of the Gene eQTL Visualizer for ACTN3  

The size of the dots correlates with their nominal p-value, the colour indicates the directionality of the effect of the non-reference allele (red-higher 

expression, blue-lower expression). Filter settings for cis-eQTLs were pnominal ≤ 10-9 and a normalised absolute effect size of ≥ 0.3. The sites which are 

marked with red squares in the LD plot exhibit r2 ≥ 0.5 with rs11227639 in the GTEx dense genotype data, all but one of them are significant eQTLs at 

the specified cut-offs. Underlying data as of 03/01/2018. 
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Appendix C.43 Manhattan plots of SNP-wise ΔDAF for the 1-Mb window surrounding 

rs11227639 

Appendix C.43A: Manhattan plot of SNP-wise ΔDAF for the 1 Mb window surrounding the 

potential selection target rs11227639. Sites for which the Northeast Siberians have a MAF 

>0.5 are highlighted in green. Africans were not included in this ΔDAF calculation. 

 

Appendix C.43B: Manhattan plot of SNP-wise ΔDAF for the 1-Mb window surrounding the 

potential selection target rs11227639. Sites for which the Northeast and West Siberians both 

have a MAF >0.5 are highlighted in red. Africans were not included in this ΔDAF calculation. 
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Appendix C.44 Cis-eQTLs from GTEx in tight LD with the potential selection candidate 

rs11227639 

These Cis-eQTLs have an r2 ≥ 0.5 in the GTEx genotype data with the potential selection 

candidate rs11227639. LD values for the Northeast and West Siberian groups from this thesis 

are also displayed. The raw p-value for a t-test between the respective variant and the expression 

of the target gene (nominal P) and the normalised regression coefficient (slope) for a simple 

linear regression of the genotype at a respective site and the expression of the target gene are 

given. For the latter a positive value indicates an increase in gene expression with the number 

of derived alleles an individual carries, a negative value designates a decrease respectively. 

Abbreviations: Chr – chromosome, der – derived, DNase I hypersensitive site- DHS, Pos – 

Position. Short codes for the macro-groups taken from Table 3.1. 

Chr:Pos rs_ID P (nomi-

nal) 

Slope 

(der) 

DAF 

(NSi) 

DAF 

(WSi) 

r
2

 

(NSi) 

r
2

 

(WSi) 

ΔDAF DHS 

11:66690486 rs79351784 7.5*10-12 0.44 0.740 0.735 0.713 0.447 0.704 no 
11:66695701 rs60520320 6.8*10-12 0.45 0.738 0.654 0.627 0.447 0.702 no 
11:66695721 rs57535372 1.7*10-11 0.43 0.739 0.700 0.713 0.447 0.703 no 
11:66721028 rs2278844 8.5*10-12 0.44 0.729 0.735 0.713 0.447 0.700 no 
11:66722703 rs58462309 2.4*10-12 0.44 0.740 0.735 0.713 0.447 0.704 yes 
11:66724371 rs6591228 6.2*10-12 0.43 0.740 0.735 0.713 0.447 0.703 yes 
11:66730596 rs76756200 3.8*10-11 0.44 0.667 0.735 0.826 0.447 0.700 no 
11:66753650 rs11227639 3.6*10-10 0.4 0.720 0.794 - - 0.741 yes 

 

Appendix C.45 Reference bias in methods for the classification of deleterious variants 

Both the SIFT and PolyPhen2 methods that were combined to indicate whether a variant has 

deleterious consequences for the IVA output (note that these scores are integrated in the IVA 

interactive interface) have previously been shown to exhibit a reference-bias (Simons et al., 

2014). This effect could be replicated in the Variant-Based Analysis Set. A site where the 

reference (ref) is derived (der) is much more rarely called as (potentially) deleterious than a site 

where the reference is ancestral (anc). Where the anc allele is known with certainty (ntotal = 

266,993) the overall percentage of ref = der sites is ca. 5.3%, whereas among the SIFT+ 

PolyPhen2 sites the fraction is only 0.02%. This also affects the comparisons of the average 

frequency of deleterious variants between populations. The average DAF for ref = anc is 0.0281 

for Africans and 0.0240 for non-Africans respectively, whereas the average DAF when ref ≠ 

anc is 0.5422 for Africans and 0.6201 for non-Africans. This likely leads to an underestimation 
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of the average number of deleterious variants in non-Africans as they have a higher DAF at 

sites where ref = der that are almost never called as deleterious. Among the Africans, this effect 

is most strongly pronounced for the Pygmies (n = 8, DAF ref = anc = 0.0290, DAFref≠anc0.5286). 

This implies that the latter are most divergent from the reference sequence which is also 

consistent with their known population history of deep splits. Due to this reference bias for 

SIFT and PolyPhen2 the CADD score was used as an alternative method to describe differences 

with regards to deleterious variants. This approach represents a considerable improvement, but 

still exhibits a somewhat less extreme bias. Out of the 176,426 CADD20 sites where the 

ancestral allele could be inferred with high confidence there are 3,659 cases where the reference 

is derived, i.e. a total fraction of ca. 2.1%. This is still considerably lower than for all exonic 

variants, even though it should be noted that these CADD20 sites also consist of ca. 50% non-

exonic variants. Furthermore, the average CADD score for this subgroup is 21.22 when ref ≠ 

anc and 23.42 for ref = anc. 

The underlying reasons for these observations are most likely related to the nature of the 

predictive variables used to build the CADD machine learning model. These are annotations 

drawn from a) PolyPhen2/SIFT, see above and b) nucleotide-sequence-based conservation-

based scores. For the latter a site might appear to be less conserved than it really is when the 

human reference is derived while other mammals in the alignment carry the ancestral state. 

Other ways to address the problem of the reference bias are also discussed by Simons et al. 

(2014). One simple approach is to assume that the fraction of reference ancestral variants in a 

particular frequency bin that are classified as deleterious is a valid estimate of the fraction of 

reference derived sites that are deleterious assuming they fall in the same allele frequency class.  

A second method uses a modified version of the position-specific independent count (PSIC) 

that is part of the PolyPhen-2 algorithm. The approach itself is based on comparing amino acid 

sequences from multiple species in an alignment. In the modified version the chimpanzee 

reference genome is used instead of the human reference. However, the results from this 

approach are currently only publicly available in pre-computed form for sites that were covered 

in phase 1 of the 1000 Genomes Project (http://genetics.bwh.harvard.edu/shaila/) and no 

distributable version of a software tool implementing this modified approach is available (Prof 

Shamil Sunyaev, personal communication, 07/03/2015, to the author’s best knowledge this was 

still true as of 04/11/2017). This means a considerable amount of variation that is private to 

groups covered exclusively in the EGDP project would not be available for annotation. 
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Appendix C.46 Effect of the number of variants per category on differences in the mean 

number of derived homozygotes 

For the CADD20 variant class most macro-groups appear to be significantly differentiated 

(Figure 3.9) and there is a continuous increase in derived homozygote genotypes per individual 

with distance from Africa (Figure 3.12). For CADD30 as well as HC LoF variants both patterns 

are much less pronounced (Figures 3.10-3.12). One explanation is purifying selection to due to 

highly negative selection coefficients for the latter categories. However, these results could also 

be caused by a lack of power to find differences between groups due to the small variant counts 

in these categories. In terms of total variant counts CADD20 sites are observed ~14 times more 

frequently than CADD30 sites and ~42 times more often than HC LoF variants, however 

CADD30 variants are shifted more strongly towards rare DAFs than HC LoF (Figure 3.13).One 

possible way to address this is by choosing the number of derived homozygotes for one of the 

categories for which little differentiation was observed,  followed by drawing the same number 

of sites randomly from the other categories and testing whether there are detectable differences. 

This was done using a two-step bootstrap procedure for all three relevant categories of 

deleterious variants. 

I) Eight individuals were randomly drawn from all macro-groups except the Oceanians who 

represent the smallest group, this procedure was repeated 100 times. 

II) The total number of homozygous derived CADD30 sites was counted for a randomly chosen 

African individual (CongPy_6/GS000035247-ASM) who carried 19 such variants.  

From each of the 100 replicates created in i) 19 sites were drawn 1000 times and the macro-

group averages were calculated. This yielded a total of 100,000 data points for each group (for 

the Oceanians 100,000 samples of size 19 were drawn directly without step I). The outcomes 

of this approach are plotted below. They demonstrate that even for a small number of sites there 

is a measurable increase of derived homozygote counts with distance from Africa. However, 

the slope of the cline for CADD30 variants is flatter than for CADD20 and HC LoF. This can 

also be demonstrated by running linear regressions of the mean homozygous derived counts for 
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each group versus the mean per-group distance from Windhoek. Regression coefficients for 

CADD20 and HCLOF are ~6.79*10-5 and 6.60*10-5 respectively, almost twice as high as for 

CADD30, where this value is only 3.85*10-5. This supports the hypothesis that the relative 

uniformity with regards to CADD30 derived homozygotes results from purifying selection as 

opposed to low power due to small sample sizes. Interestingly, for the HC LoF category the 

geographical differentiation is clearer than for the CADD30 which indicates that in this case 

these differences would be more easily detectable if there were more HC LoF sites in the 

genome. While this indicates that a substantial fraction of the HC LoF variants has selection 

coefficients that are closer to neutrality than for the CADD30 the low totals per each genome 

for the former class still suggest that the HC LoF variation is constrained by natural selection. 
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100,000 bootstrap replicas of size n = 19 variants were sub-sampled from different variant 

classes using a two-step procedure and displayed in a boxplot. The red lines indicate regressions 

of the macro-group means over all bootstraps versus an integer variable increasing in steps of 

1 with distance from Africa. The order of macro-groups is based on mean distance from 

Windhoek and the short codes for the macro-groups are taken from Table X+5. 
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Appendix D 

Appendix D.1 Normalised f2 sharing as of a function of pairwise great circle distance 

Appendix D.1A A normalised measure of the sharing of f2 variants between all individuals 

from the Diversity Set (n = 447) as a function of the great circle distance (via plausible 

waypoints) between each pairs of individuals. Two exponential models were fit to this dataset 

using nonlinear least squares regression. The red line indicates a model fit on the raw data, the 

green line a simplified fit based on median f2 sharing in 500 km bins.

 

Appendix D.1B This graph displays the same data as Appendix D.1A, however the f2 sharing 

beyond 0.06 is not shown to better illustrate the fits for lower values of the normalised f2 sharing 

metric. 
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Appendix D.1C  

The geographical distance data and normalised f2 sharing were fitted to the following negative 

exponential model using a nonlinear least squares regression approach implemented in the R 

function nls (R Core Team, 2017). 

!" = 	% ∗ '()* + , 

To facilitate the finding of plausible starting parameter estimates for model fitting the f2 sharing 

data were summarised by 500-km bins. The means of these bins were then plotted against the 

bin-wise median f2 and first starting values were inferred using the trendline feature in Microsoft 

Excel 2013 (a = 0.0011, b = 6*10-5, L was not estimated at this stage). These initial values were 

then utilised as starting parameters for the nls function in R (the scalar L, in the following 

denominated as c, was set to a starting value of 0, see Eq. 4.3). This fitting was done for a) a 

simplified exponential model of distance bin means and bin-wise median f2 and b) the parameter 

estimates from a) were in turn used for a nonlinear regression on the raw distance and f2 data. 

The final exponential model was formulated as follows: 

The independent variable d and the parameters a and b are the same as in equation 4.2, whereas 

the scalar correction factor L has been summarised to a single constant c (if the original formula 

is used for parameter inference L differs from c only by 10-4 which is less than 1/500th of the 

total parameter value and the residual standard errors are identical). The solution to the outlier 

detection problem outlined above proposed here is a normalised residual metric based on the 

best fitting model obtained using equation (4.3). 

-'./01%2(45-6) = 89 −	8;9
max	(8;9) − min	(8;9	)

 

Here, yB designates the observed f2 sharing for the ith pair of individuals whereas y;B represents 

the predicted f2 sharing between this individual pair given its geographical distance based on 

the exponential model. The difference of observed and expected doubleton sharing is divided 

by the range of predicted values. The latter divisor is introduced to take the error of the 

prediction into account. The maxima and minima were inferred with the propagate  (Spiess, 

2017) package in R which uses a Monte Carlo simulation approach to estimate the error of 

predictions derived from nonlinear models.  
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Appendix D.2 Testing whether RVCs represent continuous haplotypes 

The overarching goal of this pipeline was to test whether regions in VCFs corresponding to 

RVCs shared by two individuals exhibit inconsistencies under the assumption that an RVC 

should represent a continuous haplotype unbroken by recombination events. 

It consists of bash and R scripts, commented versions of which together with most input/output 

files can be found in the folder AppendixD2_RVC_consistency_pipeline attached to the 

electronic version of this thesis. The main exception are the files containing every variable 

position belonging to each of the 241 RVC runs, however one set of example files for the RVC 

with the genomic coordinates chr1:183,212,668-184,089,833 has been included. 

Steps 1-4 were run in a UNIX server environment using R (version 3.4.0) with the additional 

package stringr (version 1.2.0) (Wickham, 2017). Step 5 was run locally on a Windows 8 

machine with R (version 3.4.1) and includes functions from the packages data.table (version 

1.11.2) (Dowle and Srinivasan, 2018), plyr (version 1.8.4) (Wickham, 2011) and stringr 

(version 1.2.0). 

1. create_vcf_multiple_chr.sh: this script takes chromosome-specific text files 

(chrXsites_cac_afr.txt, groups here Africans and Calchaquíes) describing each RVC as 

CHR:START(BP)-END(BP) as input. It calls tabix 0.2.6 (Li, 2011) to extract region-

specific VCF files spanning each RVC region from phased VCFs for the Diversity Set. 

2. vcf_name_content_change.sh: this script edits the name and the content of the VCF 

files generated in step 1 so that they can be read into R. 

3. vcf_format_haplotype.sh: this script is a wrapper that reads a tab-separated file 

list_vcf_cac_afr_unix line by line. This tab-separated file contains in its first column all 

VCF names generated in step 2 and in its second column the name of the target VCF 

for the output of this step.  The contents of each line of this file are arguments for the 
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script VCF_to_haplotype_unix_cac_afr.R which splits the columns in the VCF 

containing phased genotype information into two haplotypes for each individual. 

4. vcf_haplotype_score.sh: this script is a wrapper that reads a tab-separated file 

list_for_hap_score_cac_afr line by line. The tab-separated file consists of six columns 

and beginning from the first column contains the following entries: a) the names of 

VCF-like files with haplotypes, b)-e) assembly IDs of the two individuals sharing the 

RVC with V.1/V.2 added to distinguish the two haplotypes each individual carries, f) 

the names of files the output is recorded to. 

The contents of each line of this file are arguments for the script 

VCF_hap_consistency_score_unix.R. The latter compares the four haplotypes of the 

two individuals sharing this RVC region and assigns different states describing the 

consistency of each site with the hypothesis that the RVCs represent segments unbroken 

by recombination.  

5. process_report_data.R: this script consists of three parts. In the first part all reports 

describing whether the sites forming the RVCs fulfil the consistency criteria from step 

4 are summarised in one table (output: afr_cac_runs_annotated.txt). The second part 

filters out RVCs with at least one inconsistent homozygote, which indicates a run break 

regardless of phasing accuracy. These inconsistent homozygotes are used as break-

points. Then it is tested whether any genomic chunks between these boundaries fulfil 

the original RVC definition, i.e. whether they contain at least five doubletons. In the 

final part of the script the genetic positions for the boundaries of these RVCs are 

imported (retrieved by applying base2genetic.jar) and the consistency information 

across these shortened runs is again summarised (output: 

afr_cac_fixedruns_annotated.txt). 
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Appendix D.3 Example parameter files for cosi2 demographic simulations  

Command to run coalescent simulations with cosi2 in UNIX environment: 

mmg/alexmo/cosi-2.0/coalescent -p  
/mmg/alexmo/cosi-2.0/examples/1000_genomes/params_scenarioX_chrN  
-n 20 -m -P 15 > F2_scenarioX_chrN_n20.txt 

Commented example of cosi2 parameter file for scenario A and chromosome 22 

# in bp 

length 51304566 

 

# per bp per generation 

mutation_rate 1.25e-8 

 

gene_conversion_relative_rate 0.45 

 

# the recombination model is based on HapMap2 data 

recomb_file /mmg/alexmo/cosi-
2.0/examples/1000_genomes/recom/Pagani2016_recomrates_reduced_chr22.txt 

 

pop_define 1 YRI 

pop_define 2 EAF 

pop_define 3 CEU 

pop_define 4 EEU 

pop_define 5 SAM 

 

# YRI (W Africa) 

#number of diploid individuals in population 
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#number of sampled haploid chromosomes 

 

pop_size 1 14474  

sample_size 1 18 

  

# EAF (East African, Hadza/Sandawe like) 

pop_size 2 12229 

sample_size 2 60 

 

# CEU (NW Europe) (also OoA population before West/East Eurasian split) 

pop_size 3 338000 

sample_size 3 418  

 

#  EEU (East Eurasian, Han Chinese like, also encompasses Andeans before they split off) 

pop_size 4 454000 

sample_size 4 388 

 

# SAM (Andeans) 

pop_size 5 25000 

sample_size 5 10 

 

#interpretation as follows, e.g. for first line European expansion from bottlenecked Ne of 
1,032 #to 338,000 starting 1,080 generations ago and continuing through the present 

 

pop_event exp_change_size "eur expansion" 3 0 1080 338000 1032 

pop_event exp_change_size "as expansion" 4 0 880 454000 554 

pop_event exp_change_size "Native American expansion" 5 0 880 25000 554 
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#for these low-level migrations the third number indicates the endpoint from which the 
#migration rate is specified pastward  

pop_event migration_rate "Wafr->Eafr migration" 1 2 0. .000025 

pop_event migration_rate "Eafr->Wafr migration" 2 1 0. .000025 

 

pop_event migration_rate "Wafr->eur migration" 1 3 0. .000025 

pop_event migration_rate "eur->Wafr migration" 3 1 0. .000025 

 

pop_event migration_rate "Wafr->as migration" 1 4 0. .0000078 

pop_event migration_rate "as->Wafr migration" 4 1 0. .0000078 

 

pop_event migration_rate "Wafr->SAM migration" 1 5 0. .00000078 

pop_event migration_rate "SAM->Wafr migration" 5 1 0. .00000078 

 

pop_event migration_rate "Eafr->eur migration" 2 3 0. .000025 

pop_event migration_rate "eur->Eafr migration" 2 3 0. .000025 

 

pop_event migration_rate "Eafr->as migration" 2 4 0. .0000078 

pop_event migration_rate "as->Eafr migration" 4 2 0. .0000078 

 

pop_event migration_rate "Eafr->SAM migration" 2 5 0. .00000078 

pop_event migration_rate "as->Eafr migration" 5 2 0. .00000078 

 

pop_event migration_rate "eur->as migration" 3 4 0. .0000311 

pop_event migration_rate "as->eur migration" 4 3 0. .0000311 
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pop_event migration_rate "eur->SAM migration" 3 5 0. .00000311 

pop_event migration_rate "SAM->eur migration" 5 3 0. .00000311 

 

pop_event migration_rate "as->SAM migration" 4 5 0. .0000311 

pop_event migration_rate "SAM->as migration" 5 4 0. .0000311 

 

pop_event split "EEU/Native American split" 4 5 880 

 

pop_event split "as/eur split" 3 4 1080 

 

pop_event change_size "set OoA size" 3 1080 1861 

 

pop_event migration_rate "Wafr->OoA migration" 1 3 1080 .00015 

pop_event migration_rate "OoA->Wafr migration" 3 1 1080 .00015 

pop_event migration_rate "Eafr->OoA migration" 2 3 1080 .00015 

pop_event migration_rate "OoA->Eafr migration" 3 2 1080 .00015 

 

pop_event split "West East Africa split" 1 2 1160 

 

pop_event migration_rate "Afr->OoA migration" 1 3 1160 .00015 

pop_event migration_rate "OoA->Afr migration" 3 1 1160 .00015 

 

pop_event split "out of Africa" 1 3 2400 

 

pop_event change_size "african expansion" 1 5920 7310 
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For scenario B the parameters chosen were identical to those above except adjustments to 

"Wafr<->SAM migration"/”Eafr<->SAM migration". The following line was added for 

scenarios C-F to simulate a single pulse admixture event: 

pop_event admix "transatlantic_slave_trade" 5 1 18 0.005 

The fields after the label designate a) the admixed target population (Pop5); b) the source 

population (Pop1) followed by c) the admixture date t and d) the admixture fraction a. The latter 

two vary between runs. 

 

 

Appendix D.4 MSMC split time estimates 

This file can be found attached to the electronic version of this thesis. The excel files contains 

MSMC split time estimates in kya, inferred when the relative cross coalescence rate equals 0.5, 

for all pairs of populations. 
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Appendix D.5 Average counts of f2 variants per haploid genome for a “model world” 

depleted for Eastern Eurasians 

Data displayed for a subset of individuals (n = 87) similar in sample size to the “model world” 

but with fewer individuals from East Asia/SEA and more Western Eurasians. Abbreviations 

except the following taken from Table 34: Eas- East Asians and SEA populations, Eur- 

Europeans. 

Whole 

dataset 

f2 counts 

Afr 47257.0 
MiE 13087.1 
Vol 13169.1 
Eur 12952.9 
SoA 11439.8 
Sib 11480.1 
Eas 11124.4 
Ame 10599.9 
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Appendix D.6 Macro-group level summary of f2 variant sharing between all individuals from the Diversity Set 

Population abbreviations are taken from Table 34.  
 

Afr MiE WEu EEu Vol SoA CeA WSi SSi CSi NSi SeM SeI Ame Oce 
Afr 1618485 80006 19463 15842 5702 13318 8499 2794 5330 2476 1753 9400 14985 40412 5167 
MiE 80006 129255 63523 76846 30805 45670 42286 12108 18978 7938 2987 10965 9373 17501 3223 
WEu 19463 63523 44423 88560 20983 19592 16248 8037 7827 2623 1556 4341 4506 14095 2446 
EEu 15842 76846 88560 125257 49530 20470 26422 18434 15550 7692 4838 6222 8615 17893 3576 
Vol 5702 30805 20983 49530 22090 9201 13522 13423 11959 6764 2715 6387 3575 4597 1063 
SoA 13318 45670 19592 20470 9201 121268 30030 4720 10419 3188 1264 29738 16615 5303 2767 
CeA 8499 42286 16248 26422 13522 30030 18185 9166 31903 13021 2829 23190 9362 5480 1126 
WSi 2794 12108 8037 18434 13423 4720 9166 34300 13258 13874 3098 2927 2546 3149 592 
SSi 5330 18978 7827 15550 11959 10419 31903 13258 35005 26418 4477 30287 10685 3881 1060 
CSi 2476 7938 2623 7692 6764 3188 13021 13874 26418 33686 9690 8175 3313 2089 434 
NSi 1753 2987 1556 4838 2715 1264 2829 3098 4477 9690 46192 2261 1245 2819 310 
SeM 9400 10965 4341 6222 6387 29738 23190 2927 30287 8175 2261 67034 67494 2317 2023 
SeI 14985 9373 4506 8615 3575 16615 9362 2546 10685 3313 1245 67494 296887 3999 26288 
Ame 40412 17501 14095 17893 4597 5303 5480 3149 3881 2089 2819 2317 3999 45918 973 
Oce 5167 3223 2446 3576 1063 2767 1126 592 1060 434 310 2023 26288 973 108599 
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Appendix D.7 Matrices containing f2 totals and normalised f2 sharing statistics for the 

Diversity Set 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix D.7A) is a raw sharing matrix of f2 variant counts between all individuals 

from the Diversity Set (n = 447). The row and column names are formatted as 

“macrogroupID_individualID”, the individual IDs are identical to those listed in the “ID” 

column of the master samples table Appendix C.1. The second sheet of the excel file contains 

the same sharing patterns (Appendix D.7B) for a normalised f2 metric (rounded to the fifth 

decimal) that corrects for differences in overall genomic diversity. The third sheet reiterates the 

abbreviations for the macro-groups. 

 

Appendix D.8 Matrices containing f2 totals and normalised f2 sharing statistics for the 

“model world” sampling scheme 

This file can be found attached to the electronic version of this thesis. Note that these matrices 

represent the mean of 20 randomly sampled subsets of the Diversity Set to reduce the 

overrepresentation of non-African populations (n = 87). All Africans were retained and the 

remaining 48 non-Africans were randomly drawn from eight macro-groups (see Table 4.2). 

The first sheet of the excel file (Appendix D.8A) is the mean of raw sharing matrices of f2 

variant counts The row and column names are formatted as “macrogroupID_individualID”, the 

individual IDs are identical to those listed in the “ID” column of the master samples table 

Appendix C.1. The second sheet of the excel file contains the same sharing patterns (Appendix 

D.8B) for a normalised f2 metric that corrects for differences in overall genomic diversity.  

 

Appendix D.9 Matrices containing chunk numbers and total genetic length shared 

detected by ChromoPainter 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix D.9A) is a matrix containing the number of 

ChromoPainter/fineSTRUCTURE chunks shared between all individuals from the Diversity 

Set (n = 447). The row and column names are formatted as “macrogroupID_individualID”, the 
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individual IDs are identical to those listed in the “ID” column of the master samples table 

Appendix C.1. The second sheet of the excel file (Appendix D.9B) contains the sharing of total 

genetic length of DNA in cM according to ChromoPainter/fineSTRUCTURE. Note that both 

matrices are not symmetrical and columns represent donor individuals and rows receptors 

respectively. 

Appendix D.10 Outliers from a linear regression of f2 and CP sharing 

This file can be found attached to the electronic version of this thesis. It contains 1,741 pairs of 

individuals with a standardised residual with an absolute value greater than 3 obtained from the 

linear regression of f2 and CP sharing respectively. Information on whether the individual has 

a known relative in the dataset and whether unusual metrics were reported by Complete 

Genomics (both taken from Appendix C.1) is also given. Note that the order of individuals 

inside each pair follows the matrices in Appendices D.7 and D.9. Abbreviations: ind-individual. 
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Appendix D.11 Mantel correlograms of great circle distance and i) f2 sharing / ii) CP 

sharing 

Appendix D.11A) Mantel correlogram of the great circle distance in km (in 500km bins) and 

a normalised f2 sharing metric. Each point represents the Mantel correlation between the f2 

similarity matrix and a matrix denoting the absence/presence (0/1) of an individual pair in the 

respective distance class. Unfilled points correspond to a non-significant (p > 0.05) correlation 

after 1000 permutations and an additional correction for multiple testing (due to the high 

number of bins). The gap in the plot indicates distance classes without any pairs of individuals. 

 

Appendix D.11B) Mantel correlogram of the great circle distance in km (in 500km bins) and 

total length of ChromoPainter sharing. Each point represents the Mantel correlation between 

the ChromoPainter similarity matrix and a matrix denoting the absence/presence (0/1) of an 

individual pair in the respective distance class. Unfilled points correspond to a non-significant 

(p > 0.05) correlation after 1000 permutations and an additional correction for multiple testing 

(due to the high number of bins). The gap in the plot indicates distance classes without any pairs 

of individuals. 
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Appendix D.12 Inter-population pairs that represent outliers (empirical top 1%) of a 

normalised residual metric of excess f2 sharing relative to an exponential fit 

Results are ordered by different categories of great circle distances between individual pairs. 

Abbreviations employed are as follows: dist_cat: great circle distance between relevant pairs of 

individuals, given in thousand km, N: number of individuals pairs from respective populations 

that are outliers, pop: population. The short codes for the macro-groups are the same as in Table 

3.1. 

Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

1000-4999 Kyrgyz Mongolians CeA SSi 18 
1000-4999 Buryats Yakuts SSi CSi 18 
1000-4999 Kyrgyz Buryats CeA SSi 12 
1000-4999 Vietnamese Dusun SeM SeI 11 
1000-4999 Bajo Koinanbe SeI Oce 11 
1000-4999 Mongolians Han SSi SeM 10 
1000-4999 Kazakhs Buryats CeA SSi 9 
1000-4999 Kazakhs Evens CeA CSi 9 
1000-4999 Vietnamese Murut SeM SeI 9 
1000-4999 Kyrgyz Altaians CeA SSi 8 
1000-4999 Tamang Burmese SoA SeM 7 
1000-4999 Mongolians Yakuts SSi CSi 7 
1000-4999 Bajo Kosipe SeI Oce 7 
1000-4999 Kazakhs Mongolians CeA SSi 6 
1000-4999 Mongolians Japanese SSi SeM 5 
1000-4999 NW-Europeans Tatars WEu Vol 5 
1000-4999 Tamang Han SoA SeM 4 
1000-4999 Evens Koryaks CSi NSi 4 
1000-4999 Buryats Evens SSi CSi 4 
1000-4999 Vietnamese Lebbo SeM SeI 4 
1000-4999 Selkups Evens WSi CSi 3 
1000-4999 Tundra-Nenets Yakuts WSi CSi 3 
1000-4999 Altaians Yakuts SSi CSi 3 
1000-4999 Kazakhs Altaians CeA SSi 3 
1000-4999 Ho Burmese SoA SeM 3 
1000-4999 Tuvinians Yakuts SSi CSi 3 
1000-4999 Mongolians Chinese_PGP SSi SeM 3 
1000-4999 Kazakhs Tuvinians CeA SSi 3 
1000-4999 Kyrgyz Tuvinians CeA SSi 3 
1000-4999 Burmese Lebbo SeM SeI 3 
1000-4999 Shor Yakuts SSi CSi 3 
1000-4999 Yakuts Koryaks CSi NSi 3 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

1000-4999 NW-Europeans Russians WEu EEu 3 
1000-4999 Tamang Chinese_PGP SoA SeM 2 
1000-4999 Santhal Burmese SoA SeM 2 
1000-4999 Selkups Yakuts WSi CSi 2 
1000-4999 Dhaka-mixed-population Burmese SoA SeM 2 
1000-4999 Kol Burmese SoA SeM 2 
1000-4999 Kapu Burmese SoA SeM 2 
1000-4999 Udmurts Khantys Vol WSi 2 
1000-4999 Croats Belarusians WEu EEu 2 
1000-4999 Tuvinians Nganasans SSi CSi 2 
1000-4999 Buryats Han SSi SeM 2 
1000-4999 Uyghurs Buryats CeA SSi 2 
1000-4999 Kyrgyz Han CeA SeM 2 
1000-4999 Kets Shor WSi SSi 2 
1000-4999 Selkups Shor WSi SSi 2 
1000-4999 Kyrgyz Yakuts CeA CSi 2 
1000-4999 Germans Cossacks WEu EEu 2 
1000-4999 Chinese_PGP Murut SeM SeI 2 
1000-4999 Belarusians Bashkirs EEu Vol 2 
1000-4999 Saudi-Arabians Belarusians MiE EEu 2 
1000-4999 Iranians Bashkirs MiE Vol 2 
1000-4999 Lebanese Bashkirs MiE Vol 2 
1000-4999 Saudi-Arabians Udmurts MiE Vol 2 
1000-4999 Iranians Udmurts MiE Vol 2 
1000-4999 Saudi-Arabians Bashkirs MiE Vol 2 
1000-4999 Iranians Belarusians MiE EEu 1 
1000-4999 Iranians Komis MiE EEu 1 
1000-4999 Karelians Maris EEu Vol 1 
1000-4999 Komis Bashkirs EEu Vol 1 
1000-4999 Evenks Chukchi CSi NSi 1 
1000-4999 Mongolians Vietnamese SSi SeM 1 
1000-4999 Marwadi-Middle-caste Burmese SoA SeM 1 
1000-4999 Kabardians NW-Europeans MiE WEu 1 
1000-4999 Assyrians Italians MiE WEu 1 
1000-4999 Armenians Italians MiE WEu 1 
1000-4999 Udmurts Selkups Vol WSi 1 
1000-4999 Udmurts Yakuts Vol CSi 1 
1000-4999 Balija-Middle-caste Shugnan SoA CeA 1 
1000-4999 Balija-Middle-caste Ishkashim SoA CeA 1 
1000-4999 Tamang Turkmens SoA CeA 1 
1000-4999 Balija-Middle-caste Burmese SoA SeM 1 
1000-4999 Asur Burmese SoA SeM 1 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

1000-4999 Low-caste (Madhya 
Pradesh) 

Burmese SoA SeM 1 

1000-4999 Ukrainians Baptised-Tatars EEu Vol 1 
1000-4999 Cossacks Mansis EEu WSi 1 
1000-4999 Russians Udmurts EEu Vol 1 
1000-4999 Latvians Maris EEu Vol 1 
1000-4999 Saami Chuvashes EEu Vol 1 
1000-4999 Belarusians Khantys EEu WSi 1 
1000-4999 Belarusians Mansis EEu WSi 1 
1000-4999 Cossacks Tajiks EEu CeA 1 
1000-4999 Russians Bashkirs EEu Vol 1 
1000-4999 Thakur Ishkashim SoA CeA 1 
1000-4999 Saudi-Arabians Khantys MiE WSi 1 
1000-4999 Armenians Altaians MiE SSi 1 
1000-4999 Lezgins Mongolians MiE SSi 1 
1000-4999 Albanians Belarusians WEu EEu 1 
1000-4999 Selkups Evenks WSi CSi 1 
1000-4999 Jordanians Altaians MiE SSi 1 
1000-4999 Albanians Poles WEu EEu 1 
1000-4999 Bashkirs Tundra-Nenets Vol WSi 1 
1000-4999 Mansis Evens WSi CSi 1 
1000-4999 Kumyks Ishkashim MiE CeA 1 
1000-4999 Iranians Khantys MiE WSi 1 
1000-4999 Iranians Ishkashim MiE CeA 1 
1000-4999 Iranians Gond MiE SoA 1 
1000-4999 Iranians Gujaratis MiE SoA 1 
1000-4999 Gujaratis Burmese SoA SeM 1 
1000-4999 Vietnamese Bajo SeM SeI 1 
1000-4999 Iranians Poles MiE EEu 1 
1000-4999 Iranians Dhaka-mixed-population MiE SoA 1 
1000-4999 Jordanians Asur MiE SoA 1 
1000-4999 Lebanese Gujaratis MiE SoA 1 
1000-4999 Gond Burmese SoA SeM 1 
1000-4999 Kshatriya Aeta SoA SeI 1 
1000-4999 Kurmi Dusun SoA SeI 1 
1000-4999 Shor Evens SSi CSi 1 
1000-4999 Buryats Burmese SSi SeM 1 
1000-4999 Mongolians Burmese SSi SeM 1 
1000-4999 Uzbek Han CeA SeM 1 
1000-4999 Kets Mongolians WSi SSi 1 
1000-4999 Turkmens Mongolians CeA SSi 1 
1000-4999 Kyrgyz Burmese CeA SeM 1 
1000-4999 Yaghnobi Buryats CeA SSi 1 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

1000-4999 Kyrgyz Vietnamese CeA SeM 1 
1000-4999 Forest-Nenets Evens WSi CSi 1 
1000-4999 Forest-Nenets Yakuts WSi CSi 1 
1000-4999 Kets Nganasans WSi CSi 1 
1000-4999 Kets Yakuts WSi CSi 1 
1000-4999 Bajo Wongatha SeI Oce 1 
1000-4999 Vietnamese Luzon SeM SeI 1 
1000-4999 Burmese Luzon SeM SeI 1 
1000-4999 Burmese Dusun SeM SeI 1 
1000-4999 Tuvinians Evens SSi CSi 1 
1000-4999 Christian-Arabs-Israel Albanians MiE WEu 1 
1000-4999 Christian-Arabs-Israel Roma MiE WEu 1 
1000-4999 Druze Albanians MiE WEu 1 
1000-4999 Germans Estonians WEu EEu 1 
1000-4999 Hungarians Finnish WEu EEu 1 
1000-4999 NW-Europeans Mordvins WEu EEu 1 
1000-4999 Croats Latvians WEu EEu 1 
1000-4999 Croats Lithuanians WEu EEu 1 
1000-4999 Germans Karelians WEu EEu 1 
1000-4999 Hungarians Ingrians WEu EEu 1 
1000-4999 Hungarians Russians WEu EEu 1 
1000-4999 NW-Europeans Belarusians WEu EEu 1 
1000-4999 NW-Europeans Estonians WEu EEu 1 
1000-4999 NW-Europeans Karelians WEu EEu 1 
1000-4999 Roma Komis WEu EEu 1 
1000-4999 United-Kingdom Swedes WEu EEu 1 
1000-4999 NW-Europeans Maris WEu Vol 1 
1000-4999 Roma Udmurts WEu Vol 1 
1000-4999 Germans Mansis WEu WSi 1 
1000-4999 Mongolians Evenks SSi CSi 1 
1000-4999 Chinese_PGP Visayan SeM SeI 1 
1000-4999 Han Murut SeM SeI 1 
1000-4999 Germans Russians WEu EEu 1 
1000-4999 Hungarians Swedes WEu EEu 1 
1000-4999 Mongolians Nganasans SSi CSi 1 
1000-4999 Marwadi-Middle-caste Rushan-Vanch SoA CeA 1 
1000-4999 Bengali Rushan-Vanch SoA CeA 1 
1000-4999 Brahmin (Central India 

and Nepal) 
Ishkashim SoA CeA 1 

1000-4999 Gujaratis Ishkashim SoA CeA 1 
1000-4999 Kshatriya Rushan-Vanch SoA CeA 1 
1000-4999 Batak Koinanbe SeI Oce 1 
1000-4999 Batak Wongatha SeI Oce 1 



 

-393- 

 

Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

1000-4999 Visayan Koinanbe SeI Oce 1 
1000-4999 Belarusians Maris EEu Vol 1 
1000-4999 Belarusians Udmurts EEu Vol 1 
1000-4999 Cossacks Udmurts EEu Vol 1 
1000-4999 Russians Mansis EEu WSi 1 
1000-4999 Bashkirs Selkups Vol WSi 1 
1000-4999 Bashkirs Khantys Vol WSi 1 
1000-4999 Latvians Mansis EEu WSi 1 
1000-4999 Vietnamese Visayan SeM SeI 1 
1000-4999 Lebanese Belarusians MiE EEu 1 
1000-4999 Lebanese Komis MiE EEu 1 
1000-4999 Lezgins Belarusians MiE EEu 1 
1000-4999 Lebanese Udmurts MiE Vol 1 
1000-4999 Lezgins Komis MiE EEu 1 
1000-4999 Lezgins Udmurts MiE Vol 1 
1000-4999 Kumyks Baptised-Tatars MiE Vol 1 
1000-4999 Lebanese Forest-Nenets MiE WSi 1 
1000-4999 Lebanese Khantys MiE WSi 1 
5000-9999 Kyrgyz Japanese CeA SeM 28 
5000-9999 Kyrgyz Evens CeA CSi 17 
5000-9999 Kazakhs Japanese CeA SeM 12 
5000-9999 Kazakhs Evens CeA CSi 9 
5000-9999 Buryats Vietnamese SSi SeM 9 
5000-9999 Sandawe Saudi-Arabians Afr MiE 9 
5000-9999 Roma Dhaka-mixed-population WEu SoA 9 
5000-9999 Roma Gujaratis WEu SoA 9 
5000-9999 Roma Brahmin (Central India 

and Nepal) 
WEu SoA 7 

5000-9999 Yoruba Iranians Afr MiE 6 
5000-9999 Kazakhs Vietnamese CeA SeM 6 
5000-9999 Bashkirs Evens Vol CSi 6 
5000-9999 Roma Middle-caste (Odisha) WEu SoA 6 
5000-9999 Roma Bengali WEu SoA 5 
5000-9999 Russians Chukchi EEu NSi 5 
5000-9999 Uzbek Japanese CeA SeM 5 
5000-9999 Turkmens Japanese CeA SeM 5 
5000-9999 NW-Europeans Tatars WEu Vol 5 
5000-9999 NW-Europeans Rushan-Vanch WEu CeA 5 
5000-9999 Uyghurs Japanese CeA SeM 4 
5000-9999 Tamang Japanese SoA SeM 4 
5000-9999 Uzbek Evens CeA CSi 4 
5000-9999 African-Americans Saudi-Arabians Afr MiE 3 
5000-9999 Maasai Iranians Afr MiE 3 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

5000-9999 Yakuts Burmese CSi SeM 3 
5000-9999 Sandawe Iranians Afr MiE 3 
5000-9999 African-Americans Iranians Afr MiE 3 
5000-9999 Lebanese Yakuts MiE CSi 3 
5000-9999 Estonians Chukchi EEu NSi 3 
5000-9999 Saudi-Arabians Yakuts MiE CSi 3 
5000-9999 Roma Kapu WEu SoA 3 
5000-9999 Karelians Chukchi EEu NSi 3 
5000-9999 Mordvins Chukchi EEu NSi 3 
5000-9999 Roma Low-caste (Madhya 

Pradesh) 
WEu SoA 3 

5000-9999 Roma Malayali WEu SoA 3 
5000-9999 Roma Santhal WEu SoA 3 
5000-9999 Turkmens Chinese_PGP CeA SeM 3 
5000-9999 Roma Gond WEu SoA 3 
5000-9999 Roma Gupta WEu SoA 3 
5000-9999 Roma Ho WEu SoA 3 
5000-9999 Roma Marwadi-Middle-caste WEu SoA 3 
5000-9999 Yoruba Saudi-Arabians Afr MiE 3 
5000-9999 Azerbaijanis Burmese MiE SeM 2 
5000-9999 United-Kingdom Chinese_PGP WEu SeM 2 
5000-9999 Ukrainians Chukchi EEu NSi 2 
5000-9999 Balkars Evens MiE CSi 2 
5000-9999 Udmurts Chukchi Vol NSi 2 
5000-9999 Bashkirs Vietnamese Vol SeM 2 
5000-9999 Vepsas Chukchi EEu NSi 2 
5000-9999 Bashkirs Chinese_PGP Vol SeM 2 
5000-9999 Turkmens Evens CeA CSi 2 
5000-9999 Chuvashes Chukchi Vol NSi 2 
5000-9999 Turkmens Yakuts CeA CSi 2 
5000-9999 Roma Balija-Middle-caste WEu SoA 2 
5000-9999 Kazakhs Chinese_PGP CeA SeM 2 
5000-9999 Roma Kol WEu SoA 2 
5000-9999 Roma Asur WEu SoA 2 
5000-9999 Roma Kshatriya WEu SoA 2 
5000-9999 NW-Europeans Ishkashim WEu CeA 2 
5000-9999 Roma Kurmi WEu SoA 2 
5000-9999 Roma Thakur WEu SoA 2 
5000-9999 Italians Shugnan WEu CeA 2 
5000-9999 United-Kingdom Uzbek WEu CeA 2 
5000-9999 Iranians Portuguese MiE WEu 2 
5000-9999 Luhya Iranians Afr MiE 1 
5000-9999 Bedzan-Pygmies Iranians Afr MiE 1 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

5000-9999 Italians Vietnamese WEu SeM 1 
5000-9999 Ukrainians Middle-caste (Odisha) EEu SoA 1 
5000-9999 Belarusians Evens EEu CSi 1 
5000-9999 Mishar-Tatars Evens EEu CSi 1 
5000-9999 Altaians Visayan SSi SeI 1 
5000-9999 Mongolians Visayan SSi SeI 1 
5000-9999 Chukchi Vietnamese NSi SeM 1 
5000-9999 Chukchi Mexicans NSi Ame 1 
5000-9999 Burmese Wongatha SeM Oce 1 
5000-9999 Buryats Lebbo SSi SeI 1 
5000-9999 Mongolians Murut SSi SeI 1 
5000-9999 Cossacks Buryats EEu SSi 1 
5000-9999 Eskimo Mexicans NSi Ame 1 
5000-9999 Croats Buryats WEu SSi 1 
5000-9999 Circassians Chinese_PGP MiE SeM 1 
5000-9999 Moldavians Brahmin (Central India 

and Nepal) 
WEu SoA 1 

5000-9999 United-Kingdom Mongolians WEu SSi 1 
5000-9999 Croats Chukchi WEu NSi 1 
5000-9999 Italians Chinese_PGP WEu SeM 1 
5000-9999 United-Kingdom Tatars WEu Vol 1 
5000-9999 Druze Middle-caste (Odisha) MiE SoA 1 
5000-9999 Lebanese Bengali MiE SoA 1 
5000-9999 Muslim-Arabs-Israel Luzon MiE SeI 1 
5000-9999 Croats Gond WEu SoA 1 
5000-9999 Iranians Yakuts MiE CSi 1 
5000-9999 Saudi-Arabians Evens MiE CSi 1 
5000-9999 Udmurts Koryaks Vol NSi 1 
5000-9999 Saami Mexicans EEu Ame 1 
5000-9999 Bashkirs Japanese Vol SeM 1 
5000-9999 Udmurts Evens Vol CSi 1 
5000-9999 Maris Japanese Vol SeM 1 
5000-9999 Santhal Koinanbe SoA Oce 1 
5000-9999 Estonians Murut EEu SeI 1 
5000-9999 Komis Mexicans EEu Ame 1 
5000-9999 Bashkirs Burmese Vol SeM 1 
5000-9999 Tatars Dusun Vol SeI 1 
5000-9999 Tamang Evens SoA CSi 1 
5000-9999 Gujaratis Japanese SoA SeM 1 
5000-9999 Gond Bajo SoA SeI 1 
5000-9999 Low-caste (Madhya 

Pradesh) 
Bajo SoA SeI 1 

5000-9999 Ho Bajo SoA SeI 1 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

5000-9999 Malayali Visayan SoA SeI 1 
5000-9999 Tatars Evens Vol CSi 1 
5000-9999 Dhaka-mixed-population Koinanbe SoA Oce 1 
5000-9999 Maris Evens Vol CSi 1 
5000-9999 Middle-caste (Odisha) Bajo SoA SeI 1 
5000-9999 Maris Chukchi Vol NSi 1 
5000-9999 Tamang Kosipe SoA Oce 1 
5000-9999 Ishkashim Evens CeA CSi 1 
5000-9999 Rushan-Vanch Evens CeA CSi 1 
5000-9999 
 

Portuguese Maris WEu Vol 1 

5000-9999 French Brahmin (Central India 
and Nepal) 

WEu SoA 1 

5000-9999 NW-Europeans Dhaka-mixed-population WEu SoA 1 
5000-9999 Moldavians Kurmi WEu SoA 1 
5000-9999 NW-Europeans Malayali WEu SoA 1 
5000-9999 Circassians Dhaka-mixed-population MiE SoA 1 
5000-9999 Muslim-Arabs-Israel Bengali MiE SoA 1 
5000-9999 Circassians Mongolians MiE SSi 1 
5000-9999 Druze Bengali MiE SoA 1 
5000-9999 Georgians Buryats MiE SSi 1 
5000-9999 Druze Kapu MiE SoA 1 
5000-9999 Portuguese Russians WEu EEu 1 
5000-9999 French Baptised-Tatars WEu Vol 1 
5000-9999 Tatars Japanese Vol SeM 1 
5000-9999 Druze Vietnamese MiE SeM 1 
5000-9999 Portuguese Chuvashes WEu Vol 1 
5000-9999 Albanians Buryats WEu SSi 1 
5000-9999 Ingrians Chukchi EEu NSi 1 
5000-9999 Uyghurs Evens CeA CSi 1 
5000-9999 Poles Gujaratis EEu SoA 1 
5000-9999 Armenians Chukchi MiE NSi 1 
5000-9999 Saudi-Arabians Koryaks MiE NSi 1 
5000-9999 Komis Middle-caste (Odisha) EEu SoA 1 
5000-9999 Russians Middle-caste (Odisha) EEu SoA 1 
5000-9999 Latvians Chukchi EEu NSi 1 
5000-9999 Poles Chukchi EEu NSi 1 
5000-9999 Roma Burmese WEu SeM 1 
5000-9999 Germans Kyrgyz WEu CeA 1 
5000-9999 Germans Shugnan WEu CeA 1 
5000-9999 Germans Uyghurs WEu CeA 1 
5000-9999 NW-Europeans Kazakhs WEu CeA 1 
5000-9999 NW-Europeans Shugnan WEu CeA 1 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

5000-9999 NW-Europeans Uyghurs WEu CeA 1 
5000-9999 United-Kingdom Rushan-Vanch WEu CeA 1 
5000-9999 Kyrgyz Bajo CeA SeI 1 
5000-9999 Kyrgyz Dusun CeA SeI 1 
5000-9999 Kyrgyz Visayan CeA SeI 1 
5000-9999 French Ishkashim WEu CeA 1 
5000-9999 Italians Rushan-Vanch WEu CeA 1 
5000-9999 United-Kingdom Yaghnobi WEu CeA 1 
5000-9999 Portuguese Mansis WEu WSi 1 
5000-9999 Kyrgyz Igorot CeA SeI 1 
5000-9999 Tundra-Nenets Burmese WSi SeM 1 
5000-9999 French Yaghnobi WEu CeA 1 
5000-9999 United-Kingdom Shugnan WEu CeA 1 
5000-9999 Komis Chukchi EEu NSi 1 
5000-9999 Maasai Portuguese Afr WEu 1 
5000-9999 Yoruba French Afr WEu 1 
5000-9999 Yoruba Moldavians Afr WEu 1 
5000-9999 Iranians United-Kingdom MiE WEu 1 
5000-9999 Finnish Chukchi EEu NSi 1 
5000-9999 Italians Tatars WEu Vol 1 
5000-9999 Saudi-Arabians Portuguese MiE WEu 1 
10000-19999 NW-Europeans Mexicans WEu Ame 15 
10000-19999 NW-Europeans Puerto-Ricans WEu Ame 11 
10000-19999 Italians Mexicans WEu Ame 11 
10000-19999 Italians Puerto-Ricans WEu Ame 7 
10000-19999 United-Kingdom Mexicans WEu Ame 5 
10000-19999 French Mexicans WEu Ame 4 
10000-19999 Germans Mexicans WEu Ame 4 
10000-19999 Germans Puerto-Ricans WEu Ame 4 
10000-19999 Muslim-Arabs-Israel Puerto-Ricans MiE Ame 3 
10000-19999 Portuguese Mexicans WEu Ame 3 
10000-19999 Hungarians Puerto-Ricans WEu Ame 3 
10000-19999 Swedes Mexicans EEu Ame 3 
10000-19999 Albanians Puerto-Ricans WEu Ame 3 
10000-19999 Portuguese Puerto-Ricans WEu Ame 3 
10000-19999 Assyrians Mexicans MiE Ame 2 
10000-19999 Christian-Arabs-Israel Mexicans MiE Ame 2 
10000-19999 African-Americans Mexicans Afr Ame 2 
10000-19999 United-Kingdom Puerto-Ricans WEu Ame 2 
10000-19999 Belarusians Mexicans EEu Ame 2 
10000-19999 Latvians Mexicans EEu Ame 2 
10000-19999 Saudi-Arabians Mexicans MiE Ame 2 
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Dist_cat Pop long 1 Pop long 2 Macro-
group 1 

Macro-
group 2 

N 

10000-19999 Croats Mexicans WEu Ame 2 
10000-19999 Hungarians Mexicans WEu Ame 2 
10000-19999 Swedes Puerto-Ricans EEu Ame 2 
10000-19999 Ukrainians Mexicans EEu Ame 2 
10000-19999 Muslim-Arabs-Israel Mexicans MiE Ame 2 
10000-19999 Druze Mexicans MiE Ame 1 
10000-19999 Jordanians Puerto-Ricans MiE Ame 1 
10000-19999 Eskimo Colla NSi Ame 1 
10000-19999 Assyrians Puerto-Ricans MiE Ame 1 
10000-19999 Yoruba Mexicans Afr Ame 1 
10000-19999 Armenians Mexicans MiE Ame 1 
10000-19999 Moldavians Mexicans WEu Ame 1 
10000-19999 Moldavians Puerto-Ricans WEu Ame 1 
10000-19999 Roma Puerto-Ricans WEu Ame 1 
10000-19999 Belarusians Puerto-Ricans EEu Ame 1 
10000-19999 Estonians Calchaquíes EEu Ame 1 
10000-19999 Estonians Puerto-Ricans EEu Ame 1 
10000-19999 Latvians Puerto-Ricans EEu Ame 1 
10000-19999 Mordvins Mexicans EEu Ame 1 
10000-19999 NW-Europeans Luzon WEu SeI 1 
10000-19999 Albanians Mexicans WEu Ame 1 
10000-19999 Saudi-Arabians Puerto-Ricans MiE Ame 1 
10000-19999 French Puerto-Ricans WEu Ame 1 
10000-19999 Kets Colla WSi Ame 1 
10000-19999 Kumyks Puerto-Ricans MiE Ame 1 
10000-19999 Altaians Calchaquíes SSi Ame 1 
10000-19999 Mongolians Mexicans SSi Ame 1 
10000-19999 Armenians Puerto-Ricans MiE Ame 1 
>20000 Yoruba Puerto-Ricans Afr Ame 9 
>20000 African-Americans Puerto-Ricans Afr Ame 8 
>20000 Luhya Puerto-Ricans Afr Ame 4 
>20000 Baka/Bakola Pygmies Puerto-Ricans Afr Ame 3 
>20000 Maasai Puerto-Ricans Afr Ame 3 
>20000 Sandawe Puerto-Ricans Afr Ame 2 
>20000 Lezgins Calchaquíes MiE Ame 2 
>20000 Yoruba Calchaquíes Afr Ame 1 
>20000 Druze Calchaquíes MiE Ame 1 
>20000 NW-Europeans Calchaquíes WEu Ame 1 
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Appendix D.13 Evaluation of the fit of an exponential model relating pairwise great 

circle distance and normalised f2 sharing 

This file can be found attached to the electronic version of this thesis. It contains a table of pairs 

of individuals (ordered as in the matrices giving similarity/dissimilarity statistics presented, e.g. 

in Appendices D.7 and D.9). For these pairs the great circle distances (via plausible waypoints) 

and the normalised f2 sharing are given. It also contains the predicted normalised f2 sharing 

based on geographical distance according to an exponential fit. Plausible upper and lower 

boundaries for these predictions based on a Monte Carlo simulation approach are also given. 

The final metric, the normalised residual, characterises the deviation of observed and predicted 

normalised f2 sharing. Its directionality is intuitive, a positive value indicates a greater observed 

similarity of rare variants than expected based on geography and a negative value implies the 

opposite. Abbreviations employed are as follows: ind-individual, min-minimum, max-

maximum, pop-population. The short codes for the macro-groups are the same as in Table 3.1. 

Appendix D.14 List of all rare variant clusters (RVCs) detected in the Diversity Set 

This file can be found attached to the electronic version of this thesis. RVCs were defined based 

on individual-level rare variant databases. Therefore, there can be an asymmetry in the length 

of a particular run shared between pairs of individuals depending on which individual-level 

database was used for run detection (“Individual 1” denotes this individual). Short codes for the 

macro-groups taken from Table 3.1. 

Appendix D.15 Different metrics describing the properties of RVCs shared within 

populations with three or more individuals in the Diversity Set 

The short codes for the macro-groups are the same as in Table 3.1. 

Macro-
group 

Population  Number of 
RVCs per 
pair 

Total length 
of RVCs 
per pair 
[cM] 

Mean 
lengths of 
RVCs 
[cM] 

Median 
length of 
RVCs 
[cM] 

Afr African-
Americans 

206.5 95.59 0.46 0.1 

Afr Baka/Bakola 
Pygmies 

643 465.85 0.72 0.18 

Afr Congo-
Pygmies 

786 513.82 0.65 0.19 

Afr Hadza 341.9 924.32 2.7 0.82 
Afr Luhya 305.67 163.42 0.53 0.18 
Afr Maasai 261.67 93.14 0.36 0.13 
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Macro-
group 

Population 
 

Number of 
RVCs per 

pair 

Total length 
of RVCs 
per pair 

[cM] 

Mean 
lengths of 

RVCs 
[cM] 

Median 
length of 

RVCs 
[cM] 

Afr Sandawe 374.9 480.69 1.28 0.32 
Afr Yoruba 348.97 122.16 0.35 0.12 
MiE Abkhazians 31.67 83.23 2.63 1.37 
MiE Armenians 5.93 4.42 0.75 0.32 
MiE Assyrians 25.67 87.92 3.43 2.24 
MiE Avars 28 41.31 1.48 1.02 
MiE Azerbaijanis 3.33 0.99 0.3 0.27 
MiE Balkars 18.33 60.91 3.32 1.52 
MiE Christian-

Arabs-Israel 
18.33 39.01 2.13 1.29 

MiE Circassians 10.67 16.84 1.58 1.04 
MiE Druze 30 72.14 2.4 1.56 
MiE Iranians 5 1.52 0.3 0.2 
MiE Kabardians 11.33 27.65 2.44 0.71 
MiE Kumyks 13 24.01 1.85 1.02 
MiE Lezgins 19.67 77 3.92 1.24 
MiE Tabasarans 27 40.58 1.5 0.86 
WEu Albanians 31 73.26 2.36 1.9 
WEu Croats 10.67 35.23 3.3 1.47 
WEu Germans 5.33 7.24 1.36 0.51 
WEu Hungarians 1.33 1.05 0.79 0.79 
WEu Italians 7.83 12.26 1.57 1.01 
WEu NW-

Europeans 
7.58 15.32 2.02 0.42 

WEu Roma 141.33 1225.35 8.67 2.92 
EEu Belarusians 6 6.54 1.09 0.96 
EEu Cossacks 6 8.35 1.39 0.48 
EEu Estonians 8.67 16.19 1.87 0.9 
EEu Finnish 21.33 48.01 2.25 1.3 
EEu Ingrians 20 29.12 1.46 1.21 
EEu Karelians 26.67 64.61 2.42 1.55 
EEu Latvians 16.67 27.54 1.65 0.74 
EEu Lithuanians 9 6.38 0.71 0.43 
EEu Mordvins 11.67 29.95 2.57 1.01 
EEu Poles 6.2 5.65 0.91 0.62 
EEu Russians 7.19 9.76 1.36 0.76 
EEu Saami 120.67 839.27 6.96 4.14 
EEu Ukrainians 5.43 6.17 1.14 0.58 
EEu Vepsas 28.67 104.55 3.65 2.35 
Vol Baptised 

Tatars 
3 4.3 1.43 0.99 
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Macro-
group 

Population 
 

Number of 
RVCs per 

pair 

Total length 
of RVCs 
per pair 

[cM] 

Mean 
lengths of 

RVCs 
[cM] 

Median 
length of 

RVCs 
[cM] 

Vol Bashkirs 17.6 50.11 2.85 2.06 
Vol Chuvashes 22.33 86.57 3.88 3.38 
Vol Maris 39 139.78 3.58 2.13 
Vol Tatars 4.33 11.57 2.67 2.19 
Vol Udmurts 61.17 186.46 3.05 2.07 
SoA Brahmin 

(Central India 
and Nepal) 

16.67 6.17 0.37 0.15 

SoA Dhaka-mixed-
population 

23.67 10.57 0.45 0.36 

SoA Gujaratis 26.83 14.48 0.54 0.23 
CeA Kazakhs 8 5.11 0.64 0.56 
CeA Kyrgyz 10.29 18.66 1.81 1.06 
CeA Turkmens 33.33 114.54 3.44 2.45 
CeA Uzbek 6.67 1.52 0.23 0.11 
WSi Forest-Nenets 88.67 1140.96 12.87 7.1 
WSi Kets 94.67 806.09 8.51 4.91 
WSi Khantys 54.67 171.63 3.14 1.86 
WSi Mansis 26 221.15 8.51 4.74 
WSi Selkups 41.33 158.95 3.85 2.43 
WSi Tundra-Nenets 39.33 150.07 3.82 1.8 
SSi Altaians 26.67 106.32 3.99 2.39 
SSi Buryats 27.27 74.34 2.73 1.72 
SSi Mongolians 11.67 12.23 1.05 0.54 
      
SSi Tuvinians 41.67 113.17 2.72 1.79 
CSi Evenks 28.33 97.24 3.43 2.47 
CSi Evens 46.27 227.16 4.91 2.76 
CSi Yakuts 39.27 138.76 3.53 2.28 
NSi Chukchi 69.5 389.17 5.6 2.28 
NSi Eskimo 119 874.68 7.35 3.88 
NSi Koryaks 85.6 469.9 5.49 2.92 
SeM Burmese 21.54 15.17 0.7 0.39 
SeM Chinese_PGP 9.67 6.78 0.7 0.14 
SeM Han 14.17 6.15 0.43 0.26 
SeM Japanese 74.17 79.06 1.07 0.79 
SeM Vietnamese 24.64 24.51 0.99 0.45 
SeI Aeta 348.33 836.43 2.4 1.29 
SeI Agta 364 1249.16 3.43 1.49 
SeI Bajo 49 150.46 3.07 0.88 
SeI Batak 295.67 910.62 3.08 1.49 
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Macro-
group 

Population 
 

Number of 
RVCs per 

pair 

Total length 
of RVCs 
per pair 

[cM] 

Mean 
lengths of 

RVCs 
[cM] 

Median 
length of 

RVCs 
[cM] 

SeI Dusun 78.04 258.94 3.32 1.89 
SeI Igorot 113.79 395 3.47 1.99 
SeI Lebbo 163.17 588.23 3.61 2.04 
SeI Murut 90.18 268.05 2.97 1.69 
Ame Calchaquíes 31.1 120.11 3.86 1.75 
Ame Colla 56 306.65 5.48 3.13 
Ame Mexicans 10.2 32.97 3.23 0.95 
Ame Puerto-Ricans 29 155.14 5.35 4.96 
Ame Wichi 204.33 1275.04 6.24 4.06 
Oce Koinanbe 498.67 1201.25 2.41 1.37 
Oce Kosipe 526.67 1644.54 3.12 1.66 
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Appendix D.16 Different model fits for median RVC length as a function of Ne 

Appendix D.16A) Median RVC length within populations as a function of the weighted 

harmonic mean of Ne over the last 30 kya. The red line indicates the fit of an exponential 

model using nonlinear least squares regression.

 

Appendix D.16B) Median RVC length within populations as a function of the weighted 

harmonic mean of Ne between 10-15 kya. The green line indicates the fit of an exponential 

model using nonlinear least squares regression. The equation for this model is also given. 

!" = 	3.397 ∗ *+,.--.∗-/0123(-/+-5678)	 
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Appendix D.16C) Median RVC length within populations as a function of the weighted 

harmonic mean of Ne between 5-10 kya. The blue line indicates the fit of an exponential model 

using nonlinear least squares regression. The equation for this model is also given. 

!" = 	2.892 ∗ *+<.5=,∗-/0123(5+-/678) 

 

Appendix D.17 Rank correlation coefficients for median RVC length and Ne within 

different intervals 

Appendix D.17A) Spearman’s rank correlation coefficients for Ne inferred by MSMC within 

5,000-year right closed intervals during the last 30,000 years vs median length of RVCs by 

population 

Ne Spearman’s ρ 
0-5k -0.670 
5-10k -0.812 
10-15k -0.750 
15-20k -0.561 
20-25k -0.478 
25-30k -0.372 
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Appendix D.17B) P-values for comparisons of Fisher Z transformed rank correlation 

coefficients between Ne and median RVC length for different time slices. Significant values 

bolded. 
 

5-10k 10-15k 15-20k 20-25k 25-30k 
0-5k 0.156 0.474 0.444 0.207 0.068 
5-10k 

 
0.481 0.029 0.007 0.001 

10-15k 
  

0.139 0.048 0.011 
15-20k 

   
0.619 0.288 

20-25k 
    

0.572 
 

Appendix D.18 Power law model for the relationship between Ne and median RVC 

length 

Appendix D.18A) 

When a power law is fitted to long-term population-level Ne (0-30 kya, weighing as described 

in section 3.1.3) vs median RVC length !"  the resulting model equation is: 

!" = 	1674.108BC/.,D=
 

The Vuong test suggests that this model provides an approximately equally good fit to the 

observed data compared to the exponential model (Eq.4.6) (Z = 0.685, p = 0.247). The power 

law using Ne from 5-10 kya in turn represents a significant improvement over Ne from both the 

0-5 kya (Z = 3.067, p = 0.001) and 10-15 kya intervals (Z = 2.767, p = 0.003). Furthermore, it 

even seems to be a better fit than an exponential model for the 5-10 kya interval (Z = 2.157, p 

= 0.015). 

This outcome can be linked to theoretical work on the relationship between IBD segment 

lengths and demographic history. More complex expressions which have been derived to 

describe the expected length distribution of IBD segments as a function of Ne also take the form 

of power laws (Palamara et al., 2012). Therefore, it is perhaps not surprising that the medians 

of the population-specific empirical distributions of a metric (RVC) that is related to IBD can 

be expressed as a function of Ne using a power law equation. 
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In biological terms, the decline in median segment length for very high recent Ne according to 

the power law fit to this particular dataset (Appendix D.18B) is less steep than would be 

expected. However, the lack of populations with Ne > 2.5*105 does not allow for good inference 

of fit for this range of Ne. 

References 

Palamara PF, Lencz T, Darvasi A, Pe’er I. 2012. Length Distributions of Identity by Descent 
Reveal Fine-Scale Demographic History. The American Journal of Human Genetics 91:809–
822. 

 

Appendix D.18B) Median RVC length within populations as a function of the weighted 

harmonic mean of Ne between 5-10 kya. The blue line indicates the fit of an exponential model 

(see Appendix D.14C) using nonlinear least squares regression whereas the red line represents 

a power law model. The equation for the latter is given below. 

!" = 	86.385BC/.<<5
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Appendix D.19 Summary of the average number of RVCs shared between macro-groups across all individuals from the Diversity Set 

The short codes for the macro-groups are the same as in Table 3.1. 
 

 Afr MiE WEu EEu Vol SoA CeA WSi SSi CSi NSi SeM SeI Ame Oce 
Afr  1.39 0.38 0.09 0.09 0.14 0.16 0.02 0.03 0.01 0.01 0.04 0.13 2.30 0.25 
MiE 1.39  0.73 0.43 0.45 0.63 0.76 0.19 0.33 0.13 0.04 0.10 0.02 0.28 0.08 
WEu 0.38 0.73  1.27 0.76 0.47 0.43 0.30 0.21 0.04 0.07 0.05 0.02 0.42 0.16 
EEu 0.09 0.43 1.27  1.22 0.18 0.40 0.42 0.22 0.12 0.16 0.04 0.01 0.22 0.11 
Vol 0.09 0.45 0.76 1.22  0.35 0.79 1.21 0.74 0.46 0.17 0.20 0.02 0.16 0.09 
SoA 0.14 0.63 0.47 0.18 0.35  1.32 0.14 0.38 0.08 0.02 1.23 0.38 0.09 0.33 
CeA 0.16 0.76 0.43 0.40 0.79 1.32  0.58 2.31 1.19 0.16 0.88 0.12 0.12 0.07 
WSi 0.02 0.19 0.30 0.42 1.21 0.14 0.58  1.14 1.86 0.29 0.07 0.02 0.07 0.02 
SSi 0.03 0.33 0.21 0.22 0.74 0.38 2.31 1.14  2.81 0.24 1.14 0.16 0.07 0.05 
CSi 0.01 0.13 0.04 0.12 0.46 0.08 1.19 1.86 2.81  1.59 0.40 0.04 0.03 0.01 
NSi 0.01 0.04 0.07 0.16 0.17 0.02 0.16 0.29 0.24 1.59  0.08 0.00 0.13 0.02 
SeM 0.04 0.10 0.05 0.04 0.20 1.23 0.88 0.07 1.14 0.40 0.08  1.54 0.02 0.22 
SeI 0.13 0.02 0.02 0.01 0.02 0.38 0.12 0.02 0.16 0.04 0.00 1.54  0.01 2.85 

Ame 2.30 0.28 0.42 0.22 0.16 0.09 0.12 0.07 0.07 0.03 0.13 0.02 0.01  0.04 
Oce 0.25 0.08 0.16 0.11 0.09 0.33 0.07 0.02 0.05 0.01 0.02 0.22 2.85 0.04  
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Appendix D.20 Summary of the average total length [cM] of RVCs shared between macro-groups across all individuals from the Diversity Set  

The short codes for the macro-groups are the same as in Table 3.1. 
 

Afr MiE WEu EEu Vol SoA CeA WSi SSi CSi NSi SeM SeI Ame Oce 
Afr  0.20 0.06 0.02 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.45 0.00 
MiE 0.20  0.24 0.17 0.19 0.18 0.31 0.07 0.16 0.05 0.02 0.03 0.00 0.07 0.02 
WEu 0.06 0.24  0.77 0.38 0.17 0.16 0.14 0.08 0.02 0.03 0.01 0.00 0.16 0.07 
EEu 0.02 0.17 0.77  1.00 0.05 0.19 0.30 0.11 0.06 0.15 0.01 0.00 0.08 0.04 
Vol 0.01 0.19 0.38 1.00  0.12 0.52 1.03 0.57 0.30 0.10 0.06 0.00 0.05 0.03 
SoA 0.01 0.18 0.17 0.05 0.12  0.43 0.05 0.14 0.02 0.01 0.44 0.09 0.02 0.02 
CeA 0.02 0.31 0.16 0.19 0.52 0.43  0.35 2.16 0.95 0.04 0.33 0.02 0.03 0.02 
WSi 0.00 0.07 0.14 0.30 1.03 0.05 0.35  1.01 2.31 0.16 0.02 0.00 0.02 0.01 
SSi 0.00 0.16 0.08 0.11 0.57 0.14 2.16 1.01  2.97 0.08 0.44 0.03 0.02 0.01 
CSi 0.00 0.05 0.02 0.06 0.30 0.02 0.95 2.31 2.97  2.03 0.13 0.01 0.00 0.00 
NSi 0.01 0.02 0.03 0.15 0.10 0.01 0.04 0.16 0.08 2.03  0.02 0.00 0.03 0.00 
SeM 0.00 0.03 0.01 0.01 0.06 0.44 0.33 0.02 0.44 0.13 0.02  0.54 0.00 0.01 
SeI 0.01 0.00 0.00 0.00 0.00 0.09 0.02 0.00 0.03 0.01 0.00 0.54  0.00 0.70 

Ame 0.45 0.07 0.16 0.08 0.05 0.02 0.03 0.02 0.02 0.00 0.03 0.00 0.00  0.02 
Oce 0.00 0.02 0.07 0.04 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0.01 0.70 0.02  
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Appendix D.21 Summary of the mean segment length [cM] of RVCs shared between macro-groups across all individuals from the Diversity 

Set  

The short codes for the macro-groups are the same as in Table 3.1. 
 

Afr MiE WEu EEu Vol SoA CeA WSi SSi CSi NSi SeM SeI Ame Oce 
Afr  0.15 0.15 0.18 0.11 0.06 0.14 0.10 0.11 0.07 0.79 0.05 0.04 0.20 0.02 
MiE 0.15  0.34 0.39 0.42 0.29 0.40 0.34 0.50 0.43 0.49 0.27 0.11 0.26 0.21 
WEu 0.15 0.34  0.61 0.50 0.35 0.36 0.46 0.36 0.49 0.49 0.24 0.17 0.38 0.45 
EEu 0.18 0.39 0.61  0.82 0.27 0.47 0.71 0.50 0.54 0.93 0.30 0.10 0.39 0.40 
Vol 0.11 0.42 0.50 0.82  0.35 0.65 0.86 0.77 0.64 0.59 0.32 0.15 0.31 0.33 
SoA 0.06 0.29 0.35 0.27 0.35  0.33 0.34 0.36 0.32 0.26 0.36 0.23 0.17 0.05 
CeA 0.14 0.40 0.36 0.47 0.65 0.33  0.61 0.94 0.80 0.26 0.38 0.19 0.28 0.29 
WSi 0.10 0.34 0.46 0.71 0.86 0.34 0.61  0.89 1.24 0.56 0.21 0.22 0.25 0.33 
SSi 0.11 0.50 0.36 0.50 0.77 0.36 0.94 0.89  1.06 0.34 0.39 0.18 0.32 0.14 
CSi 0.07 0.43 0.49 0.54 0.64 0.32 0.80 1.24 1.06  1.28 0.31 0.15 0.11 0.23 
NSi 0.79 0.49 0.49 0.93 0.59 0.26 0.26 0.56 0.34 1.28  0.23 0.01 0.22 0.04 
SeM 0.05 0.27 0.24 0.30 0.32 0.36 0.38 0.21 0.39 0.31 0.23  0.35 0.13 0.05 
SeI 0.04 0.11 0.17 0.10 0.15 0.23 0.19 0.22 0.18 0.15 0.01 0.35  0.04 0.25 

Ame 0.20 0.26 0.38 0.39 0.31 0.17 0.28 0.25 0.32 0.11 0.22 0.13 0.04  0.49 
Oce 0.02 0.21 0.45 0.40 0.33 0.05 0.29 0.33 0.14 0.23 0.04 0.05 0.25 0.49  
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Appendix D.22 Summary of the median segment length [cM] of RVCs shared between macro-groups across all individuals from the Diversity 

Set  

The short codes for the macro-groups are the same as in Table 3.1. 
 

Afr MiE WEu EEu Vol SoA CeA WSi SSi CSi NSi SeM SeI Ame Oce 
Afr 

 
0.04 0.05 0.05 0.04 0.01 0.04 0.01 0.02 0.04 0.06 0.01 0.01 0.06 0.00 

MiE 0.04 
 

0.17 0.21 0.22 0.15 0.20 0.20 0.23 0.27 0.19 0.13 0.03 0.14 0.05 
WEu 0.05 0.17 

 
0.35 0.30 0.19 0.19 0.23 0.21 0.23 0.23 0.17 0.05 0.22 0.26 

EEu 0.05 0.21 0.35 
 

0.46 0.16 0.28 0.41 0.29 0.37 0.54 0.14 0.05 0.21 0.24 
Vol 0.04 0.22 0.30 0.46 

 
0.23 0.39 0.53 0.42 0.40 0.37 0.18 0.07 0.16 0.32 

SoA 0.01 0.15 0.19 0.16 0.23 
 

0.18 0.22 0.19 0.25 0.16 0.20 0.08 0.09 0.03 
CeA 0.04 0.20 0.19 0.28 0.39 0.18 

 
0.43 0.55 0.44 0.15 0.21 0.09 0.12 0.05 

WSi 0.01 0.20 0.23 0.41 0.53 0.22 0.43 
 

0.51 0.67 0.29 0.17 0.05 0.20 0.13 
SSi 0.02 0.23 0.21 0.29 0.42 0.19 0.55 0.51 

 
0.60 0.17 0.20 0.10 0.13 0.06 

CSi 0.04 0.27 0.23 0.37 0.40 0.25 0.44 0.67 0.60 
 

0.65 0.19 0.09 0.05 0.23 
NSi 0.06 0.19 0.23 0.54 0.37 0.16 0.15 0.29 0.17 0.65 

 
0.09 0.01 0.10 0.04 

SeM 0.01 0.13 0.17 0.14 0.18 0.20 0.21 0.17 0.20 0.19 0.09 
 

0.19 0.07 0.03 
SeI 0.01 0.03 0.05 0.05 0.07 0.08 0.09 0.05 0.10 0.09 0.01 0.19 

 
0.02 0.06 

Ame 0.06 0.14 0.22 0.21 0.16 0.09 0.12 0.20 0.13 0.05 0.10 0.07 0.02 
 

0.12 
Oce 0.00 0.05 0.26 0.24 0.32 0.03 0.05 0.13 0.06 0.23 0.04 0.03 0.06 0.12 
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Appendix D.23 RVCs shared between Northeast Siberians and Africans from the 

Diversity Set 

Note that the RVCs were defined based on individual-level rare variant databases. Therefore, 

there can be an asymmetry in the length of a particular run shared between pairs of individuals 

depending on which individual-level database was used for run detection (“Individual 1” 

denotes this individual). Abbreviations: Chr-Chromosome, Ind-Individual, Macro-Macro-

group, No-Number. Population abbreviations are taken from Table 34. 

Chr Start 
(bp)  

Length  
(bp) 

Start 
(cM) 

Length 
(cM) 

No 
f2 

Ind1 Macro1 Ind2 Macro2 

1 65017047 125034 95.07824 0.2299 17 YRI_3 Afr Chuk8 NSi 
1 65017047 125034 95.07824 0.2299 17 Chuk8 NSi YRI_3 Afr 
3 33306876 9325 57.4759 0.01294 19 BedzPy1 Afr Chuk2 NSi 
3 33306876 9325 57.4759 0.01294 19 Chuk2 NSi BedzPy1 Afr 
6 107535376 14338 113.1142 0.0064 6 YRI_11 Afr Chuk2 NSi 
6 107535376 14338 113.1142 0.0064 6 Chuk2 NSi YRI_11 Afr 
10 47100598 1553192 65.31547 2.81011 5 Chuk8 NSi MKK_2 Afr 
13 102708747 239653 98.19849 0.21125 21 BakaPy2 Afr Chuk8 NSi 
13 102708747 239653 98.19849 0.21125 21 Chuk8 NSi BakaPy2 Afr 
13 103438093 117489 99.08057 0.06491 7 ASW_1 Afr Chuk8 NSi 
13 103438093 117489 99.08057 0.06491 7 Chuk8 NSi ASW_1 Afr 
17 1963596 3088909 6.424974 6.355056 6 Chuk8 NSi MKK_4 Afr 
17 1963596 167945 6.424974 0.035928 5 MKK_4 Afr Chuk8 NSi 
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Appendix D.24 Schematic illustrating how large reference datasets can be informative 

about the directionality of gene flow underlying RVC sharing 

 Example of an idealised tree underlying an RVC. Two individuals from the Diversity Set (a 

and b) share ≥5 f2 variants (green dots) forming a unique branch (blue). If they do not belong 

to the same population this segment could either result from gene flow from either of their 

populations of origin into the other or from a third source which admixed with both ancestries 

in the past. Integration of information from the large gnomAD dataset can make additional 

branches of this phylogeny visible (red) where other individuals share at least one of these f2 

variants. If the vast majority of these individuals c1…cn belong to a particular population this 

can support inferences about the directionality of gene flow. 
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Appendix D.25: gnomAD allele frequencies from selected populations for f2 variants from 

the Diversity Set which constitute the two longest RVCs shared between Chukchi and 

Maasai 

The genomic coordinates of the runs are 10:47,100,598-48,653,790 and 17:1,963,596-

5,052,505 respectively. Abbreviations: Alt-Alternative Allele, Chr-Chromosome, Pos- 

Position, Ref-Reference Allele 

Chr Pos dbSNP ID Ref Alt African 
(includes 
African-
Americans) 

East 
Asian 

European 
(Non-
Finnish) 

Finnish 

10 47100598 - A G - - - - 
10 47117234 - T C - - - - 
10 47142516 - A G - - - - 
10 47667655 rs530704389 G A 0.0003 0 0.0009 0 
10 48653790 rs536497458 T C 0.0001 0 0.0005 0 

         
17 1963596 rs149527790 A G 0.0052 0 0 0 
17 1964247 rs141530811 G C 0.0050 0 0 0 
17 2036391 rs146985355 T C 0.0055 0 0 0 
17 2085752 rs147655211 G A 0.0056 0 0 0 
17 2131541 rs146521642 C T 0.0052 0 0 0.0001 
17 5052505 rs543891949 C T 0.0009 0 0.0038 0.0258 

 

Appendix D.26 Symmetric matrix of the number of RVCs shared between individuals 

from the Diversity Set 

This file can be found attached to the electronic version of this thesis. 

 

Appendix D.27 Symmetric matrix of total length [cM] of RVCs shared between 

individuals from the Diversity Set 

This file can be found attached to the electronic version of this thesis. 
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Appendix D.28 RVC sharing of African populations with non-Africans 

Appendix D.28A) Kernel density estimates of the distributions of RVC sharing with all non-

Africans for different African populations from the Diversity Set. Abbreviations: HAD-

Hadza, LUH-Luhya, MAA-Maasai, PYG-Pygmy, SAN-Sandawe, YOR-Yoruba. 

 

Appendix D.28B) P-values for t-tests comparing the total amount of RVC sharing with non-

Africans for different African populations. Significant values are bolded. 

 
Hadza Luhya Maasai Pygmies Sandawe Yoruba 

Hadza 
 

<0.001 <0.001 <0.001 <0.001 <0.001 
Luhya 

  
0.023 0.016 0.651 0.595 

Maasai 
   

<0.001 0.014 <0.001 
Pygmies 

    
0.034 <0.001 

Sandawe 
     

0.946 
Yoruba 
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Appendix D.29 Empirical cumulative distribution functions of the length of RVCs 

shared between Africans and various non-African groups 

Note that African-Americans were excluded. Sharing is plotted between Africans (AFR) and 

a) admixed American populations (AME), b) Middle Easterners (Arabs and Iranians) (MIE) 

and c) Philippine Negritos. Inset: Empirical cumulative distribution functions for RVCs 

between 0-1 cM above the 0.5 quantile. 

 

Appendix D.30 Sharing of RVCs between Africans and Calchaquíes 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix D.30A) lists all RVCs detected in the Diversity Set shared between the 

Calchaquíes and any African population. Here, the vrGV databases for Calchaquíes individuals 

were used to define the RVCs. The last three columns contain information on the consistency 

of the assumption that the RVC regions correspond to continuous haplotypes based on 

comparison to the phased VCF files. RVCs that are potentially derived from European 

introgression into both Africans and Native Americans are marked with an asterisk. The second 

sheet (Appendix D.30B) contains RVCs between the same interpopulation pairs, however the 

vrGV databases of the African individuals were utilised as the reference. The third sheet 

(Appendix D.30C) lists RVCs (with the Calchaquíes vrGV databases as reference) that result 
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when inconsistent homozygotes are used as breakpoints and RVCs are defined based on the 

resulting subruns. 

Appendix D.31 Chromosome-wise f3(C;A,B) statistics to investigate whether the 

Calchaquíes (C) can be modelled as a mixture of the Wichi (A) and the Yoruba (B) 

All statistics calculated using the threepop program which is part of the TreeMix software. 

Significant results are bolded. 

Chromosome f3(C;A,B) Standard error Z 
1 -0.000644 0.000495 -1.30 
2 0.000638 0.000699 0.91 
3 0.000416 0.000604 0.69 
4 -0.000473 0.000618 -0.77 
5 0.001184 0.000690 1.71 
6 -0.001268 0.000774 -1.64 
7 0.002668 0.000667 4.00 
8 -0.000180 0.000749 -0.24 
9 -0.000459 0.000752 -0.61 
10 0.000271 0.000727 0.37 
11 0.000161 0.000631 0.26 
12 0.000287 0.000783 0.37 
13 -0.003460 0.000795 -4.35 
14 0.000483 0.001322 0.37 
15 -0.001048 0.000886 -1.18 
16 0.001084 0.000969 1.12 
17 0.002653 0.001089 2.44 
18 0.000666 0.000721 0.92 
19 0.000743 0.000797 0.93 
20 0.003112 0.000739 4.21 
21 -0.000059 0.001022 -0.06 
22 -0.001132 0.001218 -0.93 

Appendix D.32 gnomAD continental frequencies of 3,290 doubletons that form the 241 

RVCs detected in Calchaquíes with African populations 

This file can be found attached to the electronic version of this thesis. gnomAD allele frequen-

cies were retrieved for all f2 variants constituting RVCs shared between Calchaquíes and 

Africans. Abbreviations: AF-allele frequency, AFA-African Americans, AFR-Africans, Alt-

Alternative Allele, ASJ-Ashkenazi Jewish, AMR-admixed Americans, BAK-Baka/Bakola 

Pygmies, BED-Bedzan Pygmies, CAC-Calchaquíes, Chr-Chromosome, CON-Congo Pygmies, 

EAS-East Asian, FIN-Finnish, HAD-Hadza, Ind-Individual, LUH-Luhya, MAA-Maasai, 
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MNFE-Non-Finnish Europeans, OTH-“Other”, here individuals that did not unambiguously 

cluster with any of the other major groups in gnomAD, Pop-Population, POPMAX-Population 

with highest allele frequency (at a particular f2 site), Ref-Reference Allele, SAN-Sandawe, 

YOR-Yoruba. 

Appendix D.33 gnomAD continental frequencies for the three RVCs shared between 

Calchaquíes and Africans consistent with West Eurasian gene flow into both. 

The genomic coordinates of these runs are as follows: 1:39,561,117-39,910,651 (Cachi1-

MKK_1), 3:157,703,340-159,568,153 (Cachi5-ASW_3) and 13:56,396,163-57,098,291 

(Cachi2-MKK_2). Abbreviations: AFR-Africans, Alt-Alternative Allele, Chr-Chromosome, 

NFE-Non-Finnish Europeans, Pos- Position, Ref-Reference Allele 

Chr Pos dbSNP ID Ref Alt African 
(includes 
African-
Americans) 

European 
(Non-
Finnish) 

AFR/NFE 
ratio 

1 39561117 rs564890372 C T 0 0.0003 absent 
AFR 

1 39597888 rs143670217 G A 0 0.0003 absent 
AFR 

1 39774975 rs140746926 G T 0 0.0003 absent 
AFR 

1 39872363 rs548984889 C T 0 0.0003 absent 
AFR 

1 39910651 rs538087937 A G 0 0.0003 absent 
AFR 

        
3 157703340 rs141705264 A T 0 0.0011 absent 

AFR 
3 158536301 rs143747506 A G 0.0008 0.0061 0.13 

3 158738061 rs191498197 A G 0.0001 0.0018 0.06 

3 158885333 rs563413390 A T 0.0001 0.0015 0.07 

3 158950510 rs148677849 G A 0 0.0004 absent 
AFR 

3 158978685 rs142679158 C T 0.0002 0.0023 0.1 

3 159271261 rs573182905 T C 0 0.0007 absent 
AFR 

3 159327873 rs749008938 G A 0 0.0009 absent 
AFR 

3 159370951 rs562725561 T C 0 0.0007 absent 
AFR 

3 159503758 rs189025521 A G 0.0003 0.0007 0.52 

3 159568153 rs183074864 G A 0.001 0.0038 0.27 
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Chr Pos dbSNP ID Ref Alt African 
(includes 
African-
Americans) 

European 
(Non-
Finnish) 

AFR/NFE 
ratio 

13 56396163 rs145067755 G A 0.0011 0.0004 2.85 
13 56396652 rs150148519 T A 0.0011 0.0004 2.86 
13 56399040 rs139389896 C G 0.0011 0.0004 2.86 
13 56403346 rs140197586 A G 0.0011 0.0004 2.87 
13 56439088 rs148720765 G T 0.0001 0.0004 0.29 
13 56447236 rs146654046 T G 0.0017 0.0004 4.3 
13 56457191 rs142669527 T G 0.0007 0.0004 1.71 
13 56470315 rs117154680 A G 0.0007 0.0005 1.47 
13 56487048 rs144349306 G A 0.0007 0.0005 1.47 
13 56487662 rs143385065 G T 0.0007 0.0005 1.47 
13 56502316 rs144856974 C T 0.0001 0.0005 0.24 
13 56508281 rs141440049 G A 0.0007 0.0005 1.47 
13 56521267 rs140917381 G A 0.0007 0.0005 1.47 
13 56524220 rs116869588 A T 0.0007 0.0005 1.47 
13 56525765 rs139055259 C T 0.0001 0.0005 0.25 
13 56533265 rs138779141 A G 0.0007 0.0005 1.47 
13 56534516 rs147954492 T C 0.0007 0.0005 1.47 
13 56536157 rs140995812 C T 0.0007 0.0005 1.47 
13 56540982 rs146729977 G A 0.0007 0.0005 1.47 
13 56546891 rs143341931 G C 0.0007 0.0005 1.47 
13 56550107 rs186986045 T C 0.0007 0.0005 1.48 
13 56551150 rs138499391 C G 0.0007 0.0005 1.47 
13 56561142 rs561328841 G A 0.0007 0.0005 1.46 
13 56573625 rs151303820 A C 0.0007 0.0005 1.47 
13 56594852 rs117650089 C A 0.0008 0.0005 1.72 
13 56598270 rs181410931 G A 0.0007 0.0005 1.47 
13 56603574 rs147776426 A G 0.0103 0.0005 22.13 
13 56609453 rs115448965 T C 0.0103 0.0005 22.08 
13 56623766 rs117647948 G A 0.0008 0.0005 1.71 
13 56626034 rs144083545 G A 0.0008 0.0005 1.71 
13 56628994 rs148991207 A G 0.0008 0.0005 1.72 
13 56646504 rs116893948 C A 0.0001 0.0005 0.24 
13 56707432 rs144932424 A G 0.0001 0.0005 0.25 
13 56746556 rs146760953 C T 0.0001 0.0005 0.25 
13 56746878 rs117636048 C T 0.0001 0.0005 0.25 
13 56869120 rs188121655 G T 0.0001 0.0005 0.24 
13 56891028 rs141721579 T A 0.0015 0.0005 3.19 
13 56922177 rs117053304 A G 0.0001 0.0005 0.25 
13 56953860 rs552101655 A G 0.0001 0.0005 0.24 
13 57098291 rs142771263 A T 0.0001 0.0005 0.25 
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Appendix D.34 gnomAD continental frequencies of all doubletons constituting RVCs 

shared between Calchaquíes and Europeans 

This file can be found attached to the electronic version of this thesis. gnomAD allele 

frequencies were retrieved for all f2 variants constituting RVCs shared between Calchaquíes 

and Europeans. Abbreviations: AFR-Africans, AF-allele frequency, Alt-Alternative Allele, 

ASJ-Ashkenazi Jewish, AMR-admixed Americans, Chr-Chromosome, EAS-East Asian, FIN-

Finnish, Ind-Individual, NFE-Non-Finnish Europeans, OTH-“Other”, here individuals that did 

not unambiguously cluster with any of the other major groups in gnomAD, Pop-Population, 

POPMAX-Population with highest allele frequency (at a particular f2 site), Ref-Reference 

Allele. The second sheet of the excel file explains the short codes used for the European 

populations (“pop2”-column). 
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Appendix D.35 PCA plots for chromosome 22 based on real and simulated data 

Appendix D.35A PCA of the Diversity Set based on chromosome 22 (nSNPs = 5,937, filtered as 

described in section 4.1.4). 

 

Appendix D.35B PCA of genomic data simulated under scenario A based on chromosome 22 

(nSNPs = 7,401). Note that the number of SNPs is higher than in the real data as the short arm of 

the acrocentric chromosome 22 is treated like accessible sequence in the simulations. 

 

Appendix D.35C 

The PCA plots above demonstrate that known continental clusters based on genomic diversity 

in extant human populations can be reproduced very well with the data generated using cosi2 

under the baseline scenario (Figure 4.1) proposed here. 
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The main differences between the empirical and the simulated datasets are briefly described in 

the following. Firstly, in the simulations Pop3 and Pop4 mimicking Northwest Europeans and 

Han Chinese respectively appear as discrete clusters whereas in real genomic data represent the 

geographical ends of a continuum across Eurasia. Secondly, the empirical data suggest a shift 

in some Africans towards West Eurasians which most plausibly indicates previously described 

gene flow back into Africa (e.g. Pickrell et al., 2014). Furthermore, in the simulated data the 

Native American-like Pop5 falls very narrowly within the range of Pop4 whereas in the real 

data this clustering is less tight. Besides post-Columbian admixture this hints at a more complex 

ancient history of Native Americans with an earlier split from their common ancestor with East 

Asians than previously thought and gene flow 25-20 kya from a group labelled “ancient North 

Eurasians” which has been revealed by aDNA studies (Moreno-Mayar et al., 2018; Raghavan 

et al., 2014).  

Including these aspects of population history would require increasing the number of 

parameters as additional populations and events would need to be incorporated which increases 

the probability of model misspecification. Furthermore, none of these events are crucial to 

understanding whether and how low-level admixture from and into populations which are as 

deeply diverged as West Africans and the Calchaquíes is detectable from rare variant sharing 

patterns. 
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Appendix D.36 Sharing of RVCs between Pop5 (Calchaquíes-like) and Pops1/2 (African-

like) in simulated data. 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file lists all RVCs shared between Pop5 (Calchaquíes-like) and Pops1/2 (African-like) 

detected in simulated whole genome data based on 25 scenarios describing different 

demographic histories. Here, the vrGV databases for Pop5 individuals were used to define the 

RVCs. The second sheet contains RVCs between the same interpopulation pairs, however the 

vrGV databases of Pops1/2 were utilised as the reference. Abbreviations (in individual IDs): 

EAF – East African-like, SAM – South American-like, YOR – Yoruba-like. 

Appendix D.37 Anderson Darling Tests comparing RVC length distributions between 

empirical and simulated data 

Appendix D.37A P-values for the Anderson Darling Tests comparing the distributions of RVC 

lengths based on the empirical sharing of Calchaquíes and Africans and of the analogous Pop5 

vs Pops1/2 from several different simulated demographic histories. Significant values are 

bolded. 
 

Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F 
Empirical 0.673 0.103 0.272 0.613 0.163 0.003 
Scenario A 

 
0.343 0.338 0.725 0.223 0.010 

Scenario B 
  

0.071 0.199 0.030 0.003 
Scenario C 

   
0.908 0.329 0.116 

Scenario D 
    

0.438 0.082 
Scenario E 

     
0.624 

 

Appendix D.37B P-values for the Anderson Darling Tests comparing the distributions of RVC 

lengths based on the empirical sharing of Mexicans/Puerto-Ricans and Africans and of the 

analogous Pop5 vs Pops1/2 from several different simulated demographic histories. Significant 

values are bolded. 

 

 

 
Mexican-African RVCs Puerto Rican-African RVCs 

Scenario A 0.128 0.541 
Scenario B 0.160 0.171 
Scenario C 0.012 0.040 
Scenario D 0.143 0.267 
Scenario E 0.013 0.045 
Scenario F 1.38*10-6 5.04*10-5 
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Appendix D.38 Effect of mutability on f2 variant and run densities 

Appendix D.38A 

Fedorova et al. (2016) used the following formula to argue that the RVCs identified by them 

indicate true IBD instead of only IBS.  

!(#$%&'(	($*+ℎ) = /01 ∗ 30 ∗ (1 − 3)160 

In the above equation the length and undisrupted nature of the RVC depend on the number of 

shared rare variants k and the scanning window size n which both then determine the total 

number of non-shared variants (singletons and doubletons shared with different individuals) 

allowed in each window (see Section 4.3.1). However, it also assumes that the null hypothesis, 

i.e. the sharing of one particular rare variant between two individuals by chance has the same 

probability across the whole genome and that the chance of observing recurrent mutations is 

practically zero. While the assumptions of the infinite site model support this view, it is still 

worth exploring much f2 variation is influenced by genome-wide variability in mutation rates 

and whether there is any evidence for the occurrence of recurrent mutations. 

A genome wide map of de novo mutations (DNMs) based on WGS data from 1,548 Icelandic 

parent-child trios was downloaded on 29/05/2018 from the supplementary information given 

by Jónsson et al. (2017). After excluding non-autosomal variants and mapping the positions 

originally given in hg38 to hg19 using the implementation of the UCSC liftover tool provided 

in the R/Bioconductor package rtracklayer (Lawrence et al., 2009) 105,443 of originally 

108,778 DNMs were retained. To investigate the relationship of f2 variants and statistics derived 

from them to mutability the autosomes were binned into 2,897 non-overlapping 1-Mb windows. 

Of these 2,732 contained at least one doubleton. To reduce the impact of potential confounders 

windows with < 100 f2 variants were excluded so that 2,703 1-Mb windows were kept. 

A linear regression approach was used to determine how well the 1-Mb window-specific 

densities of f2 variants and related properties are correlated with DNM density.  For the 

4,206,155 f2 variants contained in the relevant windows this correlation of their density with 

DNM density is only moderate (rf2_DNM = 0.536) (Appendix D.38B). However, Smith et al. 

(2018) demonstrated that in simulations of genetic diversity data with a priori known mutation 

rates a DNM map of the same resolution as provided by Jónsson et al. (2017)  has an expected 

correlation of 0.58 with SNP density. Assuming that overall SNP density and f2 density are 
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closely related the observed correlation therefore implies that the vast majority of variation in 

f2 numbers at the 1 Mb scale can be explained by variation in mutation rates.  

In their analysis of the ExAC samples Lek et al. (2016) showed that in this large dataset f2 

variants resulting from CpG transitions are 3-4 times more likely than other substitution types 

to be shared between two populations. Under a null hypothesis of structured populations with 

negligible recent long-distance gene flow this implies that the high mutability CpG transitions 

are much more likely to occur independently and therefore create doubletons which are in IBS 

but not indicative of IBD. In the Diversity Set there exists a weak negative correlation between 

DNM density and the fraction of f2 variants in a window that are shared between different 

macro-groups (rf2inter_DNM = -0.133). This argues against the notion that high mutability 

windows contain an excess of doubletons representing independent mutation events at the given 

sample size (894 haploid genomes). 

The general picture based on RVCs is comparable. Only RVCs with a length between 30kb and 

2 Mb were included as fragments of these lengths are used in the main text to argue for inter-

macro-group gene flow. This led to a reduction of the set of RVCs to 237,393 (81.3% of the 

original total). There is a positive, though somewhat weaker, correlation between DNM and 

RVC densities (rRVC_DNM = 0.331). On the other hand, there is almost no measurable correlation 

between DNM density and the proportion of inter-macro-group RVCs (rRVCinter_DNM = -0.043). 

In conclusion, while mutability drives rare variant density, there is no evidence for an excess 

of doubletons that are in IBS for high mutation rate windows in the Diversity Set. This is in 

agreement with theoretical expectations and suggests that almost all doubletons that are part of 

RVCs with high certainty represent true IBD and that the formula for estimating the probability 

of RVCs occurring due to chance can be applied in a similar manner across the whole genome. 
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Appendix D.38B 

Plots of various statistics describing the properties of rare variation in 1-Mb windows vs. DNM 

density as a proxy for general mutability. Grey shaded areas around regression lines indicate 

the 95% confidence interval for linear predictions of the different statistics from a linear model.  
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Appendix D.39 Investigation of excess rare variant sharing between a British and two 

Chinese individuals 

 

Appendix D.39A 

One of the outcomes of the analyses aiming to detect outlier pairs who exhibit higher f2 variant 

affinities than expected based on geographical distance is that UK1 shares at total of 352 

doubletons with Chn2 (nf2_ UK1∩Chn2 = 202) and Chn3(nf2_ UK1∩Chn2 = 150). In terms of magnitude 

this is comparable to the Vietnamese individual VietN3 who shares 353 doubletons with these 

two Chinese. 

The purpose of this note is to examine whether this result indicates true relatedness or can 

plausibly be explained as a methodological artefact. A strong argument for the latter possibility 

is that UK1 only has a total of 26 f2 variants in common with the other five Han Chinese in the 

dataset. Intuitively, all individuals from a population which shares rare variation with a target 

sample should exhibit a signal of a similar magnitude. This is because the target individual 

should be related approximately equally close to all of them. The empirical data support this, 

there is a very good correlation (r~0.94) between the number of f2 variants shared with 

Chn2/Chn3 and similarity with regards to rare variants with the other five Chinese individuals 

(Appendix D.39B). UK1 represents an extreme outlier with a standardised residual of 13.99. 

While there are twelve more outliers for which the absolute value of the standardised residual 

exceeds two these are more biologically plausible (Appendix D.39C). In particular, Chn2 and 

Chn3 were sampled from a location close to Shanghai whereas all but one of the other Chinese 

are from Beijing. In consequence, individuals from the SEA region are more similar than 

expected to the first cluster and Northeast Asians less similar.  

An apparently contradictory observation is that at least some of the shared f2 variants occur in 

close proximity as part of RVCs that should indicate true IBD. The total length of all RVCs 

shared by UK1 with Chn2 and Chn3 is 1.55 Mb, almost all of it due to the pair UK1-Chn2 

(Appendix D.39D). The latter value in turn represents the mean length of RVCs detected 

separately based on the individual-level f2 databases for UK1 and Chn2. As the RVCs are 

defined based on a minimum cut-off of shared rare variants in a subset of consecutive rows 

(each row represents one singleton or doubleton in the reference individual for the respective 

database) the method can result in an asymmetry. This pattern is very distinct for this particular 
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case. There are genomic segments with a total length of ~2420 kb that only belong to RVCs if 

the UK1-f2 database is used as reference. 

The main biological explanation for such a pattern would be a very deep distinct lineage 

(perhaps introgressed from an archaic species) that is only shared by these three individuals. 

This would explain why some of the f2 variant clusters comprise only very short SNP-dense 

segments (Appendix D.39D), as over time, recombination would have broken down almost all 

of the continuous IBD segments these f2 variants were originally located on. Given that these 

three individuals are from well-studied populations and not from (understudied) isolated groups 

it does, however, not seem intuitively plausible that such a lineage would not have been detected 

already. Given these RVCs, either a fraction of the shared f2 variants mark true common 

ancestry or the processes underlying the error are at least partly non-random. There are three 

main steps of NGS data generation which could have caused errors a) the sequencing itself, b) 

the alignment of the reads to the human reference genome, c) the variant calling from the 

mapped reads.  

In absence of the read data for the PGP free genomes the main aspect that can be examined is 

how the doubletons shared with Chn2 and Chn3 are distributed across the genome of UK1. One 

important confounder that could be revealed are alignment artefacts caused by reads from 

duplicated sequences that only differ by a single or a few bases. If one copy of this repetitive 

element is misaligned it could appear to support substitutions at the respective differing 

positions in another copy (Koboldt et al., 2010). 

The raw output from Complete Genomics sequencing has a complex structure consisting of two 

paired-end reads typically representing the ends of fragment a few hundred bp long. Each of 

these reads has a length of 35 bp and in turn consists of four read sections with a tightly defined 

relative spacing (Carnevali et al., 2012). An unusual clustering of doubletons in the genome of 

UK1 shared with Chn2/Chn3 within this read length could therefore potentially indicate such 

alignment errors.  

This condition applies to 72/352 f2 variants, i.e. the closest doubleton adjacent to them is located 

within 35 bp (these variants consist of 34 pairs and one four site cluster). To contextualise how 

unusual this spacing of doubletons is trios of individuals similar to UK1-Chn2/Chn3 were 

extracted from the whole Diversity Set. The conditions were as follows: 

a) Target individual AI shares >300 and <400 f2 variants with two other individuals AJ and AK 
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b) Both nf2_ AI∩AJ and nf2_ AI∩AK are >100 and <300  

c) AJ and AK are located in adjacent rows/columns in the raw f2 sharing matrix (Appendix 

D.7A). 

A total of 966 trios fulfil these requirements encompassing a total of 312,341 f2 variants 

(representing 179,674 unique sites, duplicates occur because doubletons can be part of multiple 

three individual combinations). Of all these f2 variants only 3477 (~1.1%) are located within 35 

bp of another doubleton, i.e. there is an 18-fold increase of such closely clustered f2 variants for 

UK1-Chn2/Chn3 compared to the genome-wide average for similar trios of individuals. This 

excess is still more than 7-fold even if only variants within 1 kb of each other are considered, 

ca. 2/3 of these are within 35 bp for UK1-Chn2/Chn3 whereas they are almost uniformly 

distributed if the data from all comparable trios are considered (Appendix D.11E). This suggests 

that most of the 72 f2 variants located within one read length of each other should be considered 

potentially suspect. If they were all removed, only one RVC with a mean length of ~347 kb 

would remain (Appendix D.39D). 

The most plausible technical reason for an artefact lies in how the samples were processed. 

After the sequencing as such Complete Genomics employs a proprietary pipeline to map and 

call variants from the read data (Drmanac et al., 2010). The samples in the Diversity Set were 

analysed with different versions of this pipeline and only the three individuals of interest were 

processed with version 2.0.3.x of this software (see column “CG-software version” in Appendix 

C1). This suggests that the majority of the rare variants shared between UK1 and Chn2/Chn3 

are erroneous findings resulting from a batch effect. Interestingly, this unusual pattern is limited 

to how the samples relate to each other. This is further supported by 63 tripletons shared 

between them (data not shown). Otherwise, the common variant-based analyses that were 

conducted for the Pagani et al. (2016) paper would have revealed them as problematic. 

Furthermore, their f2 totals per haploid genome fall within the range that is expected for their 

respective macro-groups (nf2_WEu_without_Roma = 4,742±375, nf2_UK1∩x = 5,138; nf2_SeM = 

5,858±469, nf2_Chn2∩x = 5,726, nf2_Chn3∩x = 5,804). 

 

 

 



 

-430- 

 

References 

        Carnevali P, Baccash J, Halpern AL, Nazarenko I, Nilsen GB et al. 2012. Computational 
Techniques for Human Genome Resequencing Using Mated Gapped Reads. Journal of 
Computational Biology 19:279–292. 

Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL et al. 2010. Human Genome 
Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science 
327:78–81. 

Koboldt DC, Ding L, Mardis ER, Wilson RK. 2010. Challenges of sequencing human genomes. 
Briefings in Bioinformatics 11:484–498. 

Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A et al. 2016. Genomic analyses 
inform on migration events during the peopling of Eurasia. Nature 538:238–242. 

 

        Appendix D.39B: Plot of f2 sharing with Chn2/Chn3 relative to affinities with other Chinese 

individuals including a linear regression line. UK1 is highlighted in red.  

 

Appendix D.39C: Standardised residuals with an absolute value >2 representing the difference 

between observed sharing of an individual with Chn2 and Chn3 and a prediction of this sharing 

based on affinities to the other five Chinese individuals in the dataset. 

Macro-group Individual ID Standardised 
residual 

WEu UK1 13.99 
SeM VietS4 6.96 
SeM VietS3 3.22 
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Macro-group Individual ID Standardised 
residual 

SeI Agta3 3.02 
SeM VietS5 2.90 
SeM VietC2 2.38 
SeI Murut6 2.34 
SeM Burm15 2.01 
SSi Mong5 -2.23 
SeM JPT_3 -2.28 
CeA Kaz3 -2.57 
SSi Altai2 -3.02 
SeM JPT_4 -3.12 

 

Appendix D.39D: Table describing the composition of RVCs shared between UK1 and 

Chn2/Chn3. Bolded f2 variants are located within 35 bp of each other and potentially suspect. 

Due to the methodology used to define RVCs based on individual-level f2 databases there is an 

asymmetry in the “detected in” column. Abbreviations: Chr – chromosome, Ind - Individual 

Chr RVC start RVC end RVC 
length 

f2 site Detected  
in 

Ind1 Ind2 Distance to 
previous f2 

2 96416501 98253679 1837179 96416501 UK1 Chn2 UK1 - 
2 96416501 98253679 1837179 96468072 UK1 Chn2 UK1 51571 
2 96416501 98253679 1837179 96496578 UK1 Chn2 UK1 28506 
2 96416501 98253679 1837179 96496594 UK1 Chn2 UK1 16 
2 96416501 98253679 1837179 96650960 UK1 Chn2 UK1 154366 
2 96416501 98253679 1837179 97726160 UK1 Chn2 UK1 9035 
2 96416501 98253679 1837179 98253671 UK1 Chn2 UK1 527511 
2 96416501 98253679 1837179 98253679 UK1 Chn2 UK1 8          

2 112062161 112607041 544881 112062161 UK1 Chn2 UK1 - 
2 112062161 112607041 544881 112555968 UK1 Chn3 UK1 493807 
2 112062161 112607041 544881 112596922 UK1 Chn2 UK1 40954 
2 112062161 112607041 544881 112596929 UK1 Chn2 UK1 7 
2 112062161 112607041 544881 112596941 UK1 Chn2 UK1 12 
2 112062161 112607041 544881 112596955 UK1 Chn2 UK1 14 
2 112062161 112607041 544881 112607041 UK1 Chn2 UK1 10086 
2 112596922 112607041 10120 112596922 Chn2 Chn2 UK1 40954 
2 112596922 112607041 10120 112596929 Chn2 Chn2 UK1 7 
2 112596922 112607041 10120 112596941 Chn2 Chn2 UK1 12 
2 112596922 112607041 10120 112596955 Chn2 Chn2 UK1 14 
2 112596922 112607041 10120 112607041 Chn2 Chn2 UK1 10086          
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Chr RVC start RVC end RVC 
length 

f2 site Detected  
in 

Ind1 Ind2 Distance to 
previous f2 

4 9790586 9795624 5039 9790586 Chn3, UK1 Chn3 UK1 - 
4 9790586 9795624 5039 9790596 Chn3, UK1 Chn3 UK1 10 
4 9790586 9795624 5039 9791718 Chn3, UK1 Chn3 UK1 1122 

4 9790586 9795624 5039 9791730 Chn3, UK1 Chn3 UK1 12 

4 9790586 9795624 5039 9795624 Chn3, UK1 Chn3 UK1 3894          

6 57825835 58197261 371427 57825835 UK1 Chn2 UK1 - 
6 57825835 58197261 371427 57873706 UK1 Chn2 UK1 47871 
6 57825835 58197261 371427 58153180 UK1 Chn2 UK1 1575 
6 57825835 58197261 371427 58153314 UK1 Chn2 UK1 134 
6 57825835 58197261 371427 58158436 UK1 Chn2 UK1 5122 
6 57825835 58197261 371427 58163482 UK1 Chn2 UK1 5046 
6 57825835 58197261 371427 58197261 UK1 Chn2 UK1 33779 
6 57873706 58197261 323556 57873706 Chn2 Chn2 UK1 47871 
6 57873706 58197261 323556 58153180 Chn2 Chn2 UK1 1575 
6 57873706 58197261 323556 58153314 Chn2 Chn2 UK1 134 
6 57873706 58197261 323556 58158436 Chn2 Chn2 UK1 5122 
6 57873706 58197261 323556 58163482 Chn2 Chn2 UK1 5046 
6 57873706 58197261 323556 58197261 Chn2 Chn2 UK1 33779 

Appendix D.39E: Plot of the normalised frequency distribution of pairwise distances between 

shared doubletons that are within 1 kb of each other. The bin size is 35 bp, there is a clear excess 

of inter-f2 distances falling into the closest distance bin for UK1-Chn2/Chn3 compared to 

similar trios of individuals from the whole Diversity Set. For simplicity, this graph does not 

separately highlight cases where more than two doubletons fall within 35 bp. 
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Appendix D.40 Effect of sample composition on per-individual f2 variant counts 

 

Appendix D.40A  

The purpose of this technical note is to explore which factors explain the almost three-fold 

higher per-individual count of f2-variants in the Diversity Set compared to phase 3 of the 1000 

Genomes Project. The two not mutually exclusive main hypotheses are that this divergence is 

due to i) differences in sample sizes and strategies and ii) technical factors, i.e. the higher 

sequencing coverage for the EGDP samples. 

To test hypothesis i) in principle data from one chromosome from the 1000 Genomes Project 

data should be sufficient. Chromosome 2 was chosen, under the simplifying assumption that 

variant density is approximately equal across all chromosomes it represents ca. 8.44 % of all 

autosomal variants. The relevant genotype data was retrieved from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr2.phase3_shapeit2_mvnca

ll_integrated_v5a.20130502.genotypes.vcf.gz (downloaded on 15/03/2018). Doubletons were 

extracted as described in section 4.1.1. To create a sub-dataset comparable to the “model world” 

generated for the Diversity Set six individuals were randomly sampled from 24/26 populations 

that are part of the 1000 Genomes Project phase 3 data. Note that the British and Southern Han 

Chinese were not included in the “model world” as the original analyses of the 1000 Genomes 

data suggest that they are so similar to the Han Chinese from Beijing and the CEPH Northwest 

Europeans respectively that their inclusion would mean an oversampling of very specific 

subpopulations. 

Regardless of whether they were down-sampled or not the general patterns of population 

differences in overall f2-diversity in the 1000 Genomes Project data are largely consistent with 

those observed for the Diversity Set (see section 4.3.1). Furthermore, as theoretically expected 

while the total number of f2-variants on chromosome 2 is higher when all individuals are 

included (n = 758,644) than for the reduced set (n = 232,415) for the per-individual f2 counts 

this relationship is reversed. This is because in the latter case many variants occurring in a 

heterozygous state in three or more individuals in a larger sample become doubletons, this shift 

is strongest in Sub-Saharan Africans.  

Extrapolating the observations from chromosome 2 to the whole genome for the “model world” 

yields an individual mean f2-count of ~39,000 for Sub-Saharan Africans (Appendix D.40B) 
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compared to an average of ~47,300 doubletons in individuals from the same region in the 

Diversity Set. However, the actual populations representing this part of the world are quite 

different in the two analyses. Notably, the Diversity Set contains Pygmy groups with very high 

levels of genome-wide diversity who at least partly drive the observed effect (f2	Pygmy_model_world 

= 65,309.1). However even for the Yoruba, the only group that is part of both datasets, higher 

f2-counts are observed in the Diversity Set (f2	Yoruba_model_Diversity = 44,185.2 vs. 

f2	Yoruba_model_1000Genomes = 39,492.89). The per-individual counts for non-Africans from the 1000 

Genomes dataset under the “model world” sampling scheme are ~10,000-12,000 (Appendices 

D.40B-C). These totals are in a very comparable range to the results from the relevant subset 

of the Diversity Set. For the latter the f2-counts in non-Africans vary between ~10,000 and 

~14,000 which is on average slightly higher than for the 1000 Genomes data, except for the 

East Asians/mainland Southeast Asians. They potentially have a slightly lower average f2-count 

in the Diversity Set (f2	EastandMainlandSoutheastAsians_model_Diversity = 10,077.9).  

In conclusion, most of the divergence in per-individual f2 counts between the Diversity Set and 

the 1000 Genomes phase 3 data can be accounted for by differences in sample size and 

composition.  The remaining more modest trend towards higher f2–numbers for most 

populations in the Diversity Set could perhaps be attributable to the higher average sequencing 

coverage in the samples from the EGDP panel. 

 

Appendix D.40B Average per individual counts of f2 variants on chromosome 2 in global 

superpopulations displayed a) for the unadjusted sample sizes in the 1000 Genomes phase 3 

dataset, b) on a subset of individuals (n = 144) designated as the “model world” which was 

designed to make the data comparable to a similarly treated subset of the Diversity Set analysed 

in this thesis. 

Superpopulation  f2 counts full 
dataset 

f2 counts “model 
world” 

African 397.6 3303.6 
American 247.4 968.7 
East Asian 306.9 864.7 
European 189.7 859.2 
South Asian 326.9 968.0 
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Appendix D.40C: Average per individual counts of f2 variants on chromosome 2 in 26 global 

populations displayed a) for the unadjusted sample sizes in the 1000 Genomes phase 3 dataset, 

b) on a subset of individuals (n = 144) randomly downsampled and designated as the “model 

world”. It was designed to make the data comparable to a similarly treated subset of the 

Diversity Set analysed in this thesis. Note that for the latter British and Southern Han Chinese 

were not analysed as they are so similar to closely related groups (Northern Han, Northwest 

Europeans) that their inclusion would cause an overrepresentation of the respective 

subpopulation. 

 

 

Population  f2 counts  
full dataset 

f2 counts 
“model world” 

African-Caribbean 340.0 2852.8 
African-Americans Southwest 376.7 2913.3 
Esan 306.3 3494.3 
Gambian Mandinka 413.7 3188.8 
Luhya 623.2 3575.1 
Mende 460.4 3767.9 
Yoruba 271.5 3333.2 
Colombian 266.3 1045.5 
Mexican-American 218.3 931.4 
Peruvian 191.6 798.0 
Puerto Rican 293.9 1099.9 
Dai Chinese 344.4 928.4 
Han Chinese 276.5 835.9 
Southern Han Chinese 266.8  - 
Japanese 311.5 880.8 
Kinh Vietnamese 341.2 813.6 

Utah residents (CEPH) with 
Northern and Western 
European ancestry 

184.4 892.5 

Finnish 153.7 872.0 
British 179.3  - 
Spanish 189.8 850.4 
Tuscan 236.5 822.0 
Bengali 318.4 982.9 
Gujarati 275.2 1018.8 
Indian 338.8 965.7 
Punjabi 327.2 918.3 
Sri Lankan 373.9 954.2 
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Appendix D.41 Matrices containing f2 sharing totals on chromosome 2 for all individuals 

from phase 3 of the 1000 Genomes Project 

This file can be found attached to the electronic version of this thesis. The first sheet of the 

excel file (Appendix D.41A) is a raw sharing matrix of f2 variant counts on chromosome 2 

between all individuals from phase 3 of the 1000 Genomes Project (n = 2,504). The row and 

column names are formatted as “populationID_individualID”. The second sheet of the excel 

file contains the same sharing patterns (Appendix D.41B) for a reduced set of individuals (n = 

144) where a sample of size six was randomly drawn from each group. The third sheet explains 

the population abbreviations. 
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Appendix D.42 Correlation between ChromoPainter and f2 sharing using Mathieson’s 

transformations 

Appendix D.42A 

The purpose of this technical note is to briefly explore whether the high correlation between 

ChromoPainter affinities and rare variant sharing is robust to additional transformations of such 

data that have been applied by other researchers. 

Mathieson (2013) used the following statistic to describe f2 sharing between two individuals i 

and j: 	&789 = log=> ?
@AB
@∗B
C where dij is the number of f2 variants shared by individuals i and j 

whereas d*j is the number of f2 variants individual j shares with any other individual. The metric 

	&789 was then converted into z-scores and the same approach was applied to total IBD sharing 

length inferred with fastIBD. Finally, the correlation between the two normalised metrics 

calculated for all individuals from phase 1 of the 1000 Genomes Project was obtained (r ~0.58). 

Besides the added transformations this approach differs from Eq. (4.1) in that the diversity-

level normalisation is only done with the f2 totals in one individual and not with the mean from 

the totals from both individuals. Therefore,	&789  and 	&879  have different values, i.e. the resulting 

rare variant sharing matrix is non-symmetric whereas the one obtained from Eq. (4.1) is 

symmetric. 

The log transformation should reduce the rightward skew of the pairwise f2 and IBD sharing, 

who both follow long-tailed distributions, but preserve the fundamental underlying relationship 

between the two variables. To test this expectation i) f2 sharing was calculated as proposed by 

Mathieson and ii) the metric d(i1∩i2) resulting from Eq. (4.1) was transformed in the same 

way as Mathieson’s sharing statistic. Finally, the ChromoPainter sharing matrix (Appendix 

D9B) was treated similarly. Consistent with the relationship between the untransformed 

variables (Figure 4.7) both Mathieson’s f2 sharing (r ~0.71) (Appendix D.42B) and the 

transformed d(i1∩i2) (r ~0.83) (Appendix D.42C) exhibit a higher correlation with 

ChromoPainter sharing than originally observed by Mathieson for IBD. 
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Appendix D.42B 

Contour plot displaying the joint empirical cumulative distribution derived from a bivariate 

kernel density estimate of ChromoPainter and f2 sharing in the Diversity Set. Both metrics were 

transformed following Mathieson (2013). This graph was chosen to avoid overplotting given 

the high number of data points (199,362). The concentric contoured areas labelled with “x” 

contain x*100 % of the total dataset, beginning at 25% up to 99%. 

 

Appendix D.42C 

The methodology is the same as in Appendix D.42B. However, d(i1∩i2) was transformed 

instead of Mathieson’s f2 metric and compared to similarly treated ChromoPainter sharing.  

 


