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ABSTRACT  

Unpacking the Role of Early Learning in Student Learning Outcomes:  

Evidence from National Reform of Pre-Primary Education in Ethiopia 

 

Janice Heejin Kim 

 

Ensuring that young children benefit from their early learning experiences is essential to 

building a productive and equitable society. Bolstered by accumulated evidence on the high 

value of investing in the early years, the expansion of early childhood education (ECE) has 

emerged as a prominent policy agenda in low- and middle-income countries. Nevertheless, 

substantial gaps remain in our understanding of the conditions that support the scale-up of ECE, 

particularly in low-resource settings. Responding to this gap, the present dissertation critically 

examines the role ECE plays in shaping children’s educational trajectories by focusing on one 

country that is experiencing the most rapid and massive expansion of preschool access in sub-

Saharan Africa: Ethiopia.  

This thesis consists of three distinctive but interconnected papers which assess the relationship 

between increased access to preschool and student outcomes during the early learning reform 

initiative in Ethiopia (Chapter 2); the variation in this relationship across a variety of child, 

family, and school characteristics (Chapter 3); and the sustained benefits of preschool during 

adolescence (Chapter 4). This dissertation, which is positioned at the intersection of education, 

economics, and developmental psychology, is theoretically informed by human capital theory 

(Schultz, 1961; Becker, 1962), and its extension to skill formation technology (Cunha & 

Heckman, 2007) and bioecological systems theory (Bronfenbrenner, 1979). It draws from the 

literature on early childhood development and school effectiveness studies.  

Chapter 2 examines changes in the relationship between preschool attendance and students’ 

early grade reading achievement during the large-scale expansion of public preschool (O-

Class) in Ethiopia. It leverages two Early Grade Reading Assessment datasets that straddle the 

reform period from 2010 to 2016, during which pre-primary enrolment rates soared by nearly 

ten times. The results, which are based on ordinary least square/logit regression and school 

fixed effects, suggest that the large-scale preschool expansion strengthened the role of 

preschool attendance in predicting second- and third-grade students’ reading performance. 

Overall, patterns before the expansion were overturned by the wider access to preschool. The 
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reform effort brought significant gains in learning that were substantiated by improved reading 

test scores, a lower chance of becoming non-readers, and a higher chance of becoming 

proficient readers. Meanwhile, because each region forged its own expansion plan, the results 

indicate that there was a huge regional imbalance in the benefits of preschool during the reform 

period.  

Building on the relationships established in Chapter 2, Chapter 3 explores the differential 

influence of preschool by various child, family, and school characteristics. The results show 

that, after the ECE expansion, girls benefited more from preschool than boys on their early 

grade reading achievement. However, preschool benefits were not particularly significant for 

students from disadvantaged backgrounds, those living in rural areas, or those with illiterate 

fathers, whereas their advantaged peers obtained greater gains from attending preschool. This 

is contrary to prior evidence showing that ECE has the ability to reduce learning inequalities. 

I also found that the relationships between preschool and student outcomes are partially 

mediated by subsequent school environments. The findings have important policy 

implications, as the large-scale expansion of preschool may come at the expense of equitable 

gains between advantaged and disadvantaged children, which could amplify existing learning 

inequality rather than reduce them. They also call for more attention to ensuring a smooth 

transition between pre-primary and primary education, as it could affect the sustained benefits 

of preschool.  

Using longitudinal data from the Young Lives Study in Ethiopia, Chapter 4 investigates how 

the relation between preschool attendance and student outcomes evolves from early childhood 

to adolescence. The results, which are based on the propensity score matching approach, 

suggest that preschool attendance led to significant improvement in academic achievement in 

receptive vocabulary and language and increased educational attainment by age 15, the age at 

which most students are transitioning to secondary school. However, students from wealthy 

families likely benefited the most from preschool attendance, while mixed patterns were 

observed by student gender, parents’ education level, and child’s prior achievement. Moreover, 

the results highlight the importance of quality of preschool, as well as subsequent school 

experiences. These quality dimensions have the potential not only to determine the preservation 

of preschool benefits but to facilitate students’ positive academic trajectories from early 
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childhood through adolescence. Directions for future research and policy implications related 

to ECE in Ethiopia are discussed. 
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1 CHAPTER 1 – Introduction  

1.1 Context and Motivation  

The expansion of early childhood education (ECE) is currently the focus of a prominent policy 

agenda in low- and middle-income countries (LMICs). The burgeoning evidence accumulated 

over decades of ECE research has resulted in a global consensus on the value of investing in 

early childhood development (for reviews, see Black et al., 2017; Engle et al., 2011). Empirical 

evidence from the fields of neuroscience, developmental psychology, and economics have 

collectively drawn attention to a child’s early years as the most critical and sensitive period in 

which to establish the foundations of brain architecture (Knudsen, Heckman, Cameron, & 

Shonkoff, 2006; Shonkoff & Phillips, 2000), and to shape subsequent lifelong developmental 

potential (Cunha, Heckman, Lochner, & Masterov, 2006; Heckman, 2011). The evidence 

suggests that investment in ECE is a cost-effective strategy for reducing inequalities 

perpetuated by poverty and that the benefits are greatest for the most vulnerable children (Engle 

et al., 2011; Heckman & Masterov, 2007; Magnuson & Duncan, 2017). Bolstered by 

accumulated evidence, nearly 70 countries currently have national ECE policies, and more 

countries are in the process of developing them (Richter et al., 2017; Vargas-Barón, 2015). The 

UN Sustainable Development Goals’ explicit target of providing ‘quality early childhood 

development and education’ for all (SDG, Target 4.2, UNESCO, 2015) is a momentous step 

forward in global policy on the development of young children.  

Despite increased pressure to invest in ECE, evidence on the role of preschool education in 

promoting learning outcomes remains relatively weak in the LMIC context. This is particularly 

true in three areas: (1) the effectiveness of a large-scale expansion of pre-primary education, 

(2) variation in the effectiveness of such initiatives, and (3) the persistent effectiveness of ECE 

as children progress through formal schooling. The first of these gaps is due to a lack of 

empirical evidence on the effects of scaled-up ECE programmes or nationwide reforms in pre-

primary education, especially in low-income countries (Aguilar & Tansini, 2012; Bastos, 

Bottan, & Cristia, 2017; Berlinski, Galiani, & Manacorda, 2008; Martinez, Naudeau, & Pereira, 

2012; van der Berg et al., 2013). Substantial evidence in the literature of success is largely from 

small, contextually limited evaluations of early interventions that may not be replicated in ECE 

programmes operating at scale (Engle et al., 2011; Rao et al., 2014).  
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There are at least two reasons to recommend caution in extrapolating these findings to large-

scale ECE programmes. First, targeted interventions are usually more structured and closely 

monitored than a universal access programme and often are led by dedicated implementers 

(Bold et al., 2018; Bouguen et al., 2014). Second, model interventions usually target sub-

populations whose responsiveness to the programme may be non-representative (Dumas & 

Lefranc, 2010). This could be a threat to the external validity of the research. Moreover, as 

most evidence is from high-income countries, the dramatic difference in resources between 

rich and poor countries manifests in differences in infrastructure and other education quality 

indicators, such as adult-child ratio, class size, and teacher qualifications (Engle et al., 2011; 

Woodhead, 2009).  

Understanding the effect of large-scale ECE programmes is also an ‘extremely complicated 

endeavour’ (Crouch & Destefano, 2017; Phillips et al., 2017), as reflected in the scant number 

of such studies. Researchers have encountered many challenges in evaluating the average 

effects of large-scale initiatives, due to numerous factors which are highly contextual and 

depend on the details of the policies implemented and of the institutional environment 

(Alderman & Vegas, 2011; Berlinski, Galiani, & Gertler, 2009). The major challenges in 

isolating the impact of large-scale programmes arise from potential omitted variable biases and 

endogenous enactment of policies (Ruhm & Waldfogel, 2012). For example, benefits of 

policies to expand public preschool may be upwardly biased if they are enacted by communities 

that are already relatively rich in resources for children’s health and development. This 

challenge is often compounded by the difficulty of obtaining data that are appropriate and 

sufficiently detailed for this type of evaluation. The empirical evidence in this area is thus 

limited, and substantial gaps remain in our understanding of the conditions that support the 

scaling-up of quality programmes.  

In the second of these gaps, despite a sudden influx of children from diverse backgrounds into 

the education system, little is known about variations in the effectiveness of large-scale ECE 

programmes observed across individual child, family, and school characteristics (Bouguen et 

al., 2014; Brinkman, Hasan, Jung, Kinnell, & Pradhan, 2017). Given the heterogeneity of the 

communities in which large-scale ECE programmes are serving young children, understanding 

the specific contextual sources of differential effects is critically important to education policy 

(McCoy, Morris, Connors, Gomez, & Yoshikawa, 2016). This is particularly applicable in 
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LMICs looking to scale-up ECE, as it helps them target their approach to addressing children’s 

needs and to (re)allocate resources to optimise equity.  

The third gap in ECE research is that, while there is growing evidence in high-income countries 

of whether preschool benefits to child outcomes persist in later years (see Ruhm & Waldfogel, 

2012, for a review), we know relatively little about the long-term contributions of preschool 

education in LMICs (Bastos et al., 2017; Woldehanna & Araya, 2017). Prior studies often point 

to a ‘fadeout’ of the initial academic benefits of preschool (for reviews, see Claessens, Engel, 

& Curran, 2014; Gibbs, Ludwig, & Miller, 2011; Bailey et al., 2017), which remains a major 

puzzle in the literature. This calls for studies that assess the consequences of ECE investment 

over an extended time span, particularly to determine whether preschool benefits can be 

sustained in low-resource settings from school entry through adolescence, and into adulthood.  

1.2 Purpose, Rationale, and Structure of the Study 

This dissertation aims to address these gaps in knowledge of the influence of ECE by focusing 

on one target country: Ethiopia. Over the past decade, Ethiopia has been experiencing the most 

rapid and extensive policy reform in pre-primary education in Sub-Saharan Africa. Driven by 

a large-scale expansion of public preschool initiated in 2010, the ECE landscape in Ethiopia 

has been transformed from an elite system reserved for a few hundred thousand children with 

affluent backgrounds into the mass system that now serves nearly four million young children 

from all backgrounds. Although impressive progress has been made in preschool access, due 

to the scarcity of rigorous empirical evidence, it is not clear whether this scale-up initiative 

actually contributes to achieving the intended policy goals—boosting student outcomes and 

reducing learning inequalities (MoE, 2015). This dissertation responds to the need for evidence 

on the early learning reform in Ethiopia; it also has the potential to inform early childhood 

policies in similar contexts.  

This dissertation is driven by the following overarching research question: What role does early 

childhood education play in shaping children’s educational trajectories? I focus in particular 

on the relation between preschool attendance and learning outcomes, and its interaction with 

children’s multi-layered environments that include family, school, community, and policy 

settings. This dissertation consists of three stand-alone but interlinked essays; each addresses 

three questions arising from the previous literature. In Chapter 2 (Essay 1), the focus is the 
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patterns of the relationship between preschool attendance and students’ academic achievement 

during the massive expansion of pre-primary education in Ethiopia. I examine the extent to 

which the initial role preschool plays in determining learning outcomes has strengthened or 

weakened over the reform period. By focusing on the initial period of the reform, I leverage 

two large, representative datasets of the Early Grade Reading Assessment, which was 

administered before and after the reform to assess this relationship. In Sub-Saharan Africa, 

almost no prior research exists on the patterns of how preschool attendance is associated with 

learning outcomes during a nationwide expansion. This study adds the evidence policymakers, 

practitioners, and researchers need to consider when deciding whether and how to move 

forward with such initiatives. Chapter 2 is the most comprehensive chapter of the present 

dissertation, as it contains the theoretical framework and the context of Ethiopia’s education 

system that are applied to Chapters 3 and 4.  

Chapter 3 (Essay 2) focuses on variations in the contribution of preschool for children from 

various backgrounds. By the extended use of data presented in Chapter 2, I examine whether 

patterns of the relationship between preschool and students’ learning outcomes differ across 

child and family characteristics, including gender, rural/urban location, parental literacy, and 

home reading resources. In addition, motivated by prior studies showing that preschool benefits 

often persist as a function of children attending schools of sufficient quality and support (Bailey 

et al., 2017; Currie & Thomas, 2000; Magnuson, Ruhm, & Waldfogel, 2007; Puma et al., 

2010), I explore the mediating role of subsequent school experiences in the link between 

preschool and students’ learning outcomes. There is little research that illuminates the factors 

related to promoting equitable gains from attending preschool, thus the present study aims to 

highlight this important area by exploring whether ECE reforms in Ethiopia helped to reduce 

inequalities in educational outcomes.  

The focus of Chapter 4 (Essay 3) extends to children’s outcomes in adolescence, as associated 

with preschool participation in early childhood. Using a longitudinal dataset drawn from the 

Young Lives Study in Ethiopia, I examine whether the preschool influence persists in 

determining children’s educational outcomes at age 15. I also further investigate two 

dimensions explored in Chapter 3—variations across child and family characteristics, and the 

mediating role of subsequent school experience. Provided that early and later learning prove to 

be complementary (Cunha & Heckman, 2007), this essay will extend our understanding of the 
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contribution early learning makes to improving learning outcomes and to reducing educational 

inequalities at a later age.  

The present dissertation contributes to the early childhood education research by adding 

evidence on the reform process and patterns of students’ learning associated with investment 

in early learning in Ethiopia. Consequently, each of the three essays can help to deepen 

understanding of the scalability and sustainability of early childhood education in the LMIC 

context. The empirical insights that emerge from this dissertation can facilitate a policy 

dialogue on how quality early childhood education can reach the most vulnerable children and 

realise its full potential. 

1.3 Definition of Early Childhood Education 

Throughout the dissertation, the terms ‘early childhood education (ECE)’, ‘pre-primary 

education’, ‘preschool education’, and ‘early learning’ are used interchangeably. These terms 

refer to formalised early learning provided by centre-based early intervention programmes that 

foster the physical, cognitive, social, and emotional development of children before they 

transition to primary school (UNESCO, 2007). The number of years pre-primary education 

lasts can vary by country, but it usually lasts for two or three years and includes children ages 

three to seven. In Ethiopia, children can join preschool between the ages of four and six; 

compulsory education starts at age seven.  

While these terms specifically focus on aspects of early learning and education, early childhood 

care and education (ECCE) and early childhood development (ECD) are broader terms that 

refer to a comprehensive range of programmes and services provided by multiple sectors. This 

includes support for early learning (pre-primary schooling and other forms of formal and 

informal early childhood programmes), stimulation, health, nutrition, water, sanitation and 

hygiene, and social protection, and covers children from birth until they enter primary school 

(Naudeau et al., 2011). In the present paper, these broad terms are used when indicating a 

specific policy document or policy initiative.   
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1.4 Selection Bias (Endogeneity) of Preschool Attendance   

A major challenge in identifying the effects of preschool attendance on students’ later 

outcomes is that selection into pre-primary education is likely not random. Positive selection, 

whereby parents whose children attend preschool have characteristics that stimulate their 

child’s development and learning, would yield estimates that are biased upward. In Ethiopia, 

for instance, the key determinants of preschool attendance were belonging to a household with 

greater wealth, having a more educated caregiver and living in an urban area (Vandemoortele, 

2018; Woldehanna, 2016). In the present thesis, to mitigate differences in the demographic, 

socioeconomic and geographic characteristics of children who selected into preschool versus 

those who did not, I compare the results of ordinary least square regression analysis to those 

that hold constant all determinants of preschool attendance and outcomes that do not vary 

among peers in same school (school fixed effects), or to those that have been matched on 

observed characteristics (propensity score matching). Although not fully causal, these 

approaches provide a more rigorous estimate of the associations between preschool attendance 

and student learning outcomes than a simple comparison of two groups, which fails to adjust 

for potential sources of confounding bias. In the meantime, I often use conventional terms that 

include ‘effect’ for specific empirical approaches–such as marginal effects in a logit regression 

model and direct and indirect effects in a structural equation modeling–and estimates from 

these models could be interpreted as association, not as causal inferences.   
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2 CHAPTER 2 – Preschool and Students’ Early Grade Reading Achievement: 

Have Patterns Changed between 2010 and 2016 during a Large-Scale Expansion 

of Public Preschool?  

2.1 Introduction  

In recent years, there has been a notable increase in investment in early childhood education 

(ECE) in low- and middle-income countries (LMICs). Governments, multinational 

organisations, and NGOs across the globe are expanding access to ECE, aiming to promote 

children’s holistic development and school readiness, and to use ECE as a strategy to reduce 

growing inequality (Black, Walker, Fernald, et al., 2017; Engle et al., 2011). These movements 

have been bolstered by accumulated evidence from neuroscience, developmental psychology, 

and economics that sheds light on the critical role of early childhood development in enhancing 

the long-term skill development and health of individuals, and in creating greater benefit for 

society (e.g., Britto, Yoshikawa, & Boller, 2011; Cunha & Heckman, 2007; Shonkoff & 

Phillips, 2000). More recently, ECE has been elevated to a prime focus of the UN Sustainable 

Development Goals, which aim to ensure that all girls and boys have access to quality early 

childhood development, care, and pre-primary education (UNESCO, 2015).  

As ECE in LMICs expands, this work needs to be considered in the context of scaling-up early 

learning. Ethiopia is in the process of a rapid and extensive policy reform in ECE. In the six 

years after the National Policy Framework for Early Childhood Care and Education was 

ratified in 2010, the country’s gross enrolment rate in pre-primary education surged from 4.8 

percent to 50 percent (MoE, 2010; 2016). The Government of Ethiopia’s rationale for 

investment in ECE is to offer a cost-effective model for promoting student learning and grade 

progression, and to reach the most marginalised communities as an instrument to improve 

effectiveness, efficiency, and equity in the education system (MoE, 2015). Notably, the 

provision of public preschool (known as O-Class, a reception year for 6-year-olds that is 

attached to primary schools) has contributed significantly to achieving greater coverage. With 

unprecedented public interest in the early years of childhood, the landscape of ECE in Ethiopia 

has changed substantially, from the private services provided for a few hundred thousand 

children with affluent backgrounds to the mass system currently serving almost four million 

young children nationwide. 



 

 

8 

Despite the rising prominence of ECE in LMICs, and in Ethiopia in particular, little evidence 

exists on the effects of a large-scale expansion of pre-primary education, and what evidence 

there is mostly involves high- and upper-middle-income countries (Bastos et al., 2017; 

Berlinski et al., 2009, 2008; Phillips et al., 2017). The existing large body of research on the 

positive effects of ECE has relied on small, local, and relatively well-resourced ECE 

programmes that may not be representative of the service provision that could be afforded at 

scale (Dumas & Lefranc, 2010; Engle et al., 2011; McCoy, Zuilkowski, Yoshikawa, & Fink, 

2017; Rao et al., 2014). Moreover, understanding the effects of a large-scale ECE programme 

is an ‘extremely complicated endeavour’ (Phillips et al., 2017). As in any non-experimental 

intervention or policy initiative operating at scale, there are multiple challenges in 

measurement, including that average effects may depend on highly contextual factors, such as 

the selection of participants, institutional environment, and political climate, which are not 

easily or readily observable (Alderman & Vegas, 2011; Berlinski et al., 2009; Ruhm & 

Waldfogel, 2012). Substantial gaps thus remain in our understanding of the conditions that 

support the scale-up of quality programmes, particularly in low-resource settings.  

To fill this gap, the present study focuses on the patterns of the relationship between preschool 

attendance and students’ academic achievement during a massive expansion of pre-primary 

education. This study examines the extent to which the initial role of preschool in predicting 

learning outcomes for students in Ethiopia was strengthened or weakened during the period of 

reform, especially their performance in basic literacy. Given that the Government of Ethiopia 

has been embarked on a nationwide O-Class expansion in 2011, I leverage two regionally/ 

linguistically representative datasets of the Early Grade Reading Assessment (EGRA), which 

was administered in 2010 (pre-reform) and 2016 (post-reform) to assess whether the 

relationships have changed over time. This corresponds in particular to the six-year period of 

the reform, during which the participation of Ethiopian children in pre-primary education 

soared to nearly ten times the pre-reform enrolment rates.  

The present study adds to the limited literature on scaling-up early learning in the LMIC 

context. To the best of my knowledge, this study is the first to rigorously examine the 

relationship between preschool attendance and students’ outcomes during a large-scale 

expansion of pre-primary education in Sub-Saharan Africa using the latest representative data. 

My findings not only deepen our understanding of how the role of preschool has evolved 
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through the reform, they also generate policy insights for resource allocation and next steps in 

providing quality ECE for all girls and boys. The rest of this chapter is structured as follows: I 

summarise the relevant literature in Section 2, introduce a theoretical framework in Section 3, 

provide the background of Ethiopia’s education system and recent early learning reform in 

Section 4, before I set out the purpose and research questions of the present study in Section 5. 

I describe the data in Section 6, provide the empirical methods used in this study in Section 7, 

followed by the results in Section 8. I provide more discussion and note the limitations of this 

study in Sections 9 and 10, and conclude in Section 11.  

2.2 Literature Review  

The current research is related to two areas of literature, both of which are relatively limited 

but growing. The first relevant body of empirical literature addresses the effects of early 

childhood education in LMICs. Broadly, I provide general findings from multi-country studies, 

regional studies in Sub-Saharan Africa, and prior studies conducted explicitly in Ethiopia. The 

second relevant body of literature focuses on the effects of scaling-up early childhood 

education, which covers studies from both high-income and LMICs. Finally, I discuss the 

current study’s contribution to the literature by adding evidence on the scale-up of early 

childhood education in LMICs. 

2.2.1 Empirical Evidence on the Effects of Early Childhood Education in LMICs  

Research on ECE in LMICs has generally identified the positive effects formal ECE has on 

individual child development. Recent reviews of studies summarising the estimated effects of 

ECE across highly diverse settings in LMICs include a 2011 article in the Lancet that reviewed 

nine ECE studies (Engle et al., 2011) and a recent meta-analysis of 26 ECE interventions (Rao 

et al., 2014), both of which presented consistent evidence of the benefits of ECE attendance 

for children’s cognitive outcomes. For the purposes of the present study, this review is focused 

on the role of ECE in predicting academic achievement and educational attainment by 

comparing ECE attendees and non-attendees. 1  Academic achievement in this case is 

                                                
1 Thus, the reference category for preschool attendees is preschool non-attendees (otherwise, as indicated).  
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understood as children’s learning outcomes, as measured by achievement tests of academic 

skills such as reading and mathematics.  

First, two studies on the influence of preschool in rural Bangladesh found that first-grade 

students who had attended preschool showed better performance in reading, writing, and oral 

math than those who had not (Aboud & Hossain, 2011; Aboud, Hossain, & O’Gara, 2008). In 

rural Cambodia, children who had any preschool experience—home-based, community-based, 

or state-run preschool—performed significantly better on pre-academic skills and motor skills 

than those who had not participated in any programmes; those attending state-run preschools 

made higher gains than those in home- or community-based preschools (Rao, Sun, Pearson, et 

al., 2012). Relatedly, first-grade students in rural China who attended kindergarten or 

independent pre-primary classes demonstrated higher performance on literacy and math 

assessments than those who had no preschool experience (Rao, Sun, Zhou, & Zhang, 2012).  

Similar to the present study, Gove et al. (2018) examined the link between preschool 

participation and early literacy skills in 16 countries, as measured by the EGRA.2 Data were 

collected between 2008 and 2016 from national and regionally representative EGRA surveys, 

with most of the datasets focusing on students in second and third grade. As a result of linear 

regression, only 5 of the 16 countries showed a positive and statistically significant association 

between preschool and oral reading fluency, from 1.4 to 4.7 more words per minute in Ghana 

and Tanzania (both p < .01) to 12.8 more words per minute in Indonesia (p < .001).3 A simple 

correlation plot using the preschool enrolment rate among the study population in each country 

indicated a positive relationship between overall participation in pre-primary education and 

preschool influence on early grade reading outcomes (Gove et al., 2018). This study included 

the EGRA 2014 dataset collected in Ethiopia; however, this was a pilot survey for only two 

mother tongues in one region (Hadiya and Wolaytta in SNNP) and thus is not comparable with 

the sample in the present study.  

There is limited but growing evidence on ECE from Sub-Saharan Africa. In rural Mozambique, 

a randomised experimental study of a community-based preschool programme found that, two 

                                                
2 These include Ghana, Indonesia, Iraq, Jordan, Kenya, Malawi, Mali, Nicaragua, Nigeria, Philippines, Rwanda, 

Senegal, Tanzania, Uganda, Zambia, and Ethiopia.  
3 Linear regression model includes a set of control variables: gender, urban/rural location, language of instruction, 

and socioeconomic status (based on the average of child-reported articles in the home into wealth index quartiles).  
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years after the start of the programme, children were more likely to be enrolled in primary 

school and had higher cognitive skills in language and early math (Martinez et al., 2012). In a 

Madrasa preschool programme in Kenya, Zanzibar, and Uganda, children who had attended 18 

months of preschool had higher levels of school readiness in verbal, non-verbal, and numeric 

aspects of cognition than children who had not attended preschool (Mwaura, Sylva, & 

Malmberg, 2008). The study in rural Uganda documented the positive and lasting association 

between preschool attendance and academic achievement in math for sixth-grade students 

(Hungi & Ngware, 2018).  

Two fairly recent studies examined the predictive role of ECE on a national sample in Sub-

Saharan Africa. A study in Zambia, which used child development data collected as part of a 

national assessment of 6-year-olds, found that preschool participation resulted in improved 

school readiness across multiple development domains, such as receptive vocabulary, letter 

naming, and nonverbal reasoning (McCoy, Zuilkowski, et al., 2017).4 Using data from the 

UWEZO survey conducted with a nationally representative sample in Kenya and Tanzania,5 

Bietenbeck, Ericsson, & Wamalwa (2017) reported small but statistically significant benefits 

of preschool attendance on children’s academic achievement in literacy and numeracy across 

students  age 7 to 16, benefits their peers with no early learning experience did not show.  

As for empirical evidence from Ethiopia in particular, only a handful of papers have addressed 

the relationship between preschool participation and children’s cognitive development in an 

urban context. The Young Lives Study found that children who attended preschool between 

2006 and 2008 showed better performance in receptive vocabulary and math assessments, 

which was sustained up to age 8 (Woldehanna, 2011, 2016; Woldehanna & Gebremedhin, 

2012); however, the gains from preschool faded out by age 12, as measured by math 

achievement (Vandemoortele, 2018). In a small-scale evaluation of Ethiopian preschool treated 

by the Emergent Literacy and Math programme in the Oromia region, Dowd, Borisova, 

Amente, and Yenew (2016) found that children who attended any preschool of standard or 

                                                
4 Martinez et al. (2012) and McCoy et al. (2017) reported on cognitive, socioemotional, and motor skills using a 

comprehensive child development assessment, such as IDELA.  
5 UWEZO is the nationally representative household survey of school-age children’s education, and their literacy 

and numeracy skills in Kenya, Tanzania, and Uganda.  
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enhanced quality showed significant improvement in early literacy and numeracy skills, which 

did not occur among children who did not attend preschool.  

The studies presented above collectively indicate that there is strong evidence to support the 

claim that ECE in LMICs and Sub-Saharan Africa had a positive influence on children’s 

academic skills in primary school; however, they relied mostly on small-scale and contextually 

limited trials. Although ECE study quality remains variable (Rao et al., 2014), these studies 

applied rigorous experimental (e.g., Martinez et al., 2012) and quasi-experimental designs 

(e.g., Bietenbeck et al., 2017; McCoy et al., 2017) to elucidate the role of preschool attendance 

in improving students’ learning outcomes.  

2.2.2 Empirical Evidence on the Effects of ‘Scaling-Up’ Early Childhood Education  

Evaluation of the effects of scaled-up ECE programmes on students’ learning outcomes is 

highly relevant for policymakers who are considering large-scale, widely accessible early 

learning programmes. However, limited empirical evidence on how these policies affect child 

outcomes remains a concern in both developed and developing countries (Engle et al., 2011; 

Ruhm & Waldfogel, 2012). Taking into account that the present study focuses on a large-scale 

expansion of preschool, this section is of particular relevance to understanding the scope of 

what effects can be expected from scaled-up preschool initiatives on academic achievement 

and educational attainment in both high-income countries and LMICs.  

U.S. and high- or upper-middle-income countries. Recent studies from the U.S. and high- or 

upper-middle-income countries demonstrate that participation in scaled-up preschool 

programmes yields sizable short-term benefits in literacy and math achievement in primary 

school (see Phillips et al., 2017; Ruhm & Waldfogel, 2012; Wong, Cook, Barnett, & Jung, 

2008) The evidence that emerged from the U.S. focuses on statewide universal pre-

kindergarten (pre-K) programmes that serve about 30 percent of the nation’s 4-year-olds 

(Phillips et al., 2017). In a universal pre-K programme in Georgia, Fitzpatrick, (2010) found 

that preschool attendance increased fourth-grade reading and math test scores, especially for 

disadvantaged children residing in rural areas and small towns.6 An evaluation of Oklahoma’s 

                                                
6 Since these are intent-to-treat estimates, many of the results are driven by higher enrolment gains in rural areas 

relative to urban areas (Fitzpatrick, 2010). 
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universal pre-K found substantial gains in children’s pre-reading and pre-writing skills, such 

as spelling and word identification (Gormley, Gayer, Phillips, & Dawson, 2005), and 

significant benefits from preschool attendance were observed among Hispanic students 

(Gormley, 2008). Studies conducted in New Jersey and North Carolina consistently 

documented the positive association between universal pre-K programmes and students’ 

academic achievement in reading (language) and math from Grade 3 to Grade 5 (Barnett, Jung, 

Youn, & Frede, 2013; Ladd, Muschkin, & Dodge, 2014).  

Apart from studies on statewide pre-K policies, Bassok, Gibbs, and Latham (2018) explored 

nationwide patterns in the U.S. between 1998 and 2010 of how preschool participation was 

associated with higher literacy and math scores at school entry and in Grade 3. While the 

magnitude of these associations quickly faded as children progressed through school (e.g., the 

preschool advantage lasted to Grade 1 for literacy and to Grade 3 for math), patterns in 2010 

mirrored those in 1998, despite the fact that this period featured heightened public interest in 

ECE in the U.S. (Bassok et al., 2018). A few studies that examined the long-term patterns of 

preschool expansion showed that these benefits can persist into adolescence and adulthood (for 

the U.S., see Cascio, 2009; Ludwid & Miller, 2007; for France, see Dumas & Lefranc, 2010; 

for Norway, see Havnes & Mogstad, 2011). For example, Cascio (2009) found that, by 

exploiting the state-by-state expansion of kindergarten in public schools in the 1960s and 

1970s, children affected by the pre-K expansion were less likely to drop out of high school or 

to be incarcerated later in life, although these benefits were found only for white students.  

Several papers have documented the impact of preschool expansion in other countries, highly 

concentrated in Latin America. Focusing on a massive, government-led preschool construction 

programme in Argentina, Berlinski et al. (2009) found that increased access to preschool had 

significant effects on children’s academic achievement on language and math tests three years 

after participating in a public preschool. Similarly, Berlinski et al. (2008) explored a rapid 

expansion of public preschool in Uruguay and found significantly positive effects of preschool 

attendance on school attainment by age 15, which was equivalent to 0.8 additional years of 

schooling. More recently, evaluation of a large-scale expansion of pre-primary education in 

rural Guatemala found that preschool attendance moderately improved grade progression at 

the proper age for 12-year-old students (Bastos et al., 2017).   
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In the Sub-Saharan African context, South Africa experienced a massive expansion of the 

Grade R provision, which was similar to the O-Class reform in Ethiopia. Between 2001 and 

2012, preschool enrolment rates in South Africa doubled from 39 percent to 78 percent. Using 

the National Assessment results in 2012, Berg et al. (2013) reported that preschool attendance 

translated into small positive outcomes; for example, 50 additional days in a 200-day school 

year for languages and only 12 days for mathematics in Grade 5. In terms of the differential 

benefits of preschool by school wealth quintiles, Grade R had no measurable benefit for 

students from the poorest three school quintiles, whereas students from the wealthiest quintile 

schools experienced statistically significant positive influence. The evidence from South Africa 

suggests that, without sufficient attention to the quality of teaching and learning during the 

expansion of pre-primary education, the equity gap may be widened and expanded, to the 

advantage of children attending more affluent schools (Berg et al., 2013). 

Taken together, these studies that applied a credible non-experimental evaluation strategy 

suggest that scaled-up preschool initiatives have the potential to deliver important short- and 

long-term benefits in high- and upper-middle-income countries. 7  However, this evidence 

cannot easily be extrapolated to poorer countries, where far fewer children have access to 

preschool; where infrastructure, financial, and human resources are limited; and where the 

quality of pre-primary school may be considerably lower than in developed countries. These 

factors may combine to yield different results than the average formal ECE programme in a 

relatively well-resourced setting.  

Lower-middle-income countries. Some unique empirical evidence from lower-middle-income 

countries drawn from a randomised controlled experiment in Cambodia (Bouguen et al., 2014) 

and a non-experimental evaluation in Indonesia (Brinkman et al., 2017) suggests that the 

effects of increased access to preschool can be highly context specific. Both studies evaluated 

                                                
7 Various non-experimental methodologies were applied to the reviewed studies. (1) Difference-in-difference 

(DID): Fitzpatrick (2008); Ladd, Muschkin, and Dodge (2014); Cascio (2009); Berlinski, Galiani, and Gertler 
(2009); Berlinski, Galiani, and Manacorda (2008); Bastos et al. (2017); Havnes and Mogstad (2012); Brinkman 

et al. (2017); (2) Regression discontinuity design (RDD): Gormley et al. (2005, 2008); Ludwig & Miller, (2007); 

Barnett, Jung, Youn, & Frede, 2013; (3) Instrumental Variables (IV): Dumas and Lefranc (2012); Brinkman et al. 

(2017); (4) Sibling fixed effect: Berlinski, Galiani, and Manacorda (2008); and (5) School fixed effect: Berg et al. 

(2012). Because the focus of the present study is on pre-primary education (school- or centre-based ECE), 

comprehensive early childhood interventions with cross-sectoral elements, such as nutrition, health, parental 

education, and pre-primary education (e.g., Jamaica by Getler et al., 2015, and Columbia by Bernal et al., 2012) 

were not included in the review.  
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a large-scale expansion of preschool coverage in villages situated in especially disadvantaged 

rural areas. The scale of the interventions and the fact that both were implemented by the 

government, instead of by a dedicated NGO, makes this a compelling case for an evaluation 

with potentially high external validity in LMICs (Bouguen et al., 2014).  

First, focusing on an extensive preschool construction programme in rural Cambodia, Bouguen 

et al. (2014) found a negative short-term effect of preschools on the cognitive development of 

children. The most significant negative effects were found among the children of poorer and 

less educated parents. These alarming results are partly attributed to severe implementation 

constraints that led to limited exposure to preschool and poor service quality. Notably, the 

findings highlight the importance of understanding parents’ behavioural responses to new 

preschool initiatives relative to the alternative (existing) options available. To illustrate, for 

some children, mostly those from wealthy backgrounds, parental response led to a choice to 

participate in preschool as a substitute for underage enrolment in primary school. By contrast, 

for those largely from poorer backgrounds, parental response led to withdrawal from any 

formal education, since stricter policies on the minimum age for primary school entry was 

enforced. Cambodia’s case exemplifies that positive results can be hard to replicate for large-

scale programmes led by the government, which require a careful design that accounts for 

implementation conditions and behavioural responses to an intervention in a given context 

(Bouguen et al., 2014).  

Work by Brinkman et al. (2017) in Indonesia presents how a government-sponsored, 

community-based preschool (mostly delivered by playgroups) affected child development in a 

rural context. While the intervention led to broader and longer preschool participation for all, 

the benefits of preschool were conditioned on its duration and the household characteristics of 

the child. Among children exposed to preschool for at least three years, versus those who never 

attended preschool, the authors found a modest and sustained impact on children’s language 

and cognitive development, especially for those from disadvantaged backgrounds. This finding 

suggests that preschool is likely to supplement the limited household resources or poor 

parenting practices of underprivileged children. Similarly to the evidence from Cambodia 

(Bouguen et al., 2014), the results from Indonesia highlight the importance of understanding 

the full context of policy implementation and behavioural responses from parents and 

communities such as substituting existing services (e.g., kindergartens) for new preschool 
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programmes, and communities’ imperfect compliance with the intended interventions 

(Brinkman et al., 2017).  

In sum, results from evaluations of scaled-up programmes were more variable (Engle et al., 

2011) than the results from small-scale model programmes. This implies that the 

implementation capacity, constraints, and policy environments of a particular system are 

significant drivers of success or failure. Empirical evidence also shows that the results from 

ECE programmes that reached large and representative populations were generally smaller 

than those found for small-scale programmes (Duncan & Magnuson, 2013). Even though it is 

not possible to generalise these findings to the Ethiopian ECE programmes, these studies 

provide a comprehensive perspective on what could cause variations in the effects of preschool 

within a country and the scope of effects expected from scaled-up initiatives that could be 

explored by the present study.  

2.2.3 Contribution to the Existing Literature  

The present study contributes to this literature in two significant ways. The first contribution 

is that, to the best of my knowledge, it is the first study of students’ academic achievement 

associated with the large-scale expansion of preschool in Sub-Saharan Africa. Given that the 

composition of preschool attendees likely will be changed considerably by an influx of 

previously excluded children, it is paramount to understand how patterns of the relation 

between preschool attendance and child outcomes have changed over the course of the reform. 

To achieve this, I leveraged two representative datasets that capture the period spanning a major 

shift in the education system from serving primarily the most advantaged children to including 

a wider representation of society.  

The second contribution is that this study presents evidence of the influence of expanded access 

to preschool in a context not studied before. Much of the previous evidence on large-scale 

preschool programmes was from countries where at least half of preschool-aged children 

already had access to preschool, and this may yield different results than the average ECE 

programme in poorer countries with limited access. Moreover, unlike the cases in Cambodia 

and Indonesia which had (donor’s) financial support, a rapid expansion of preschool in Ethiopia 

has been rolled out without a sufficient financial commitment, targeted resourcing, or capacity-

building for regional and local ECE experts. Impressively, the construction of O-Classes, that 
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reach about 75 percent of primary schoolers nationwide, is driven by contributions from 

families, communities, and local governments. This may mirror actual conditions and practical 

challenges that many Sub-Saharan African and other low-income countries are currently facing 

while they consider how to move forward with the large-scale, universal programmes proposed 

by the UN Sustainable Development Goals.  

2.3 Theoretical Framework  

Theories of human development from both economics and developmental psychology offer 

useful lenses for investigating the relation between preschool attendance and children’s skill 

development in the context of policy change. The human capital theory in the field of 

economics highlights that, to the extent that early and later learning are complementary 

(Carneiro & Heckman, 2003; Cunha & Heckman, 2007), a lack of education in the early years 

reduces children’s efficiency in lifelong learning once they enter school. The bioecological 

theory from developmental psychology emphasises that child development is a process that 

unfolds over time through interactions between a child’s individual characteristics and the 

context in which the child belongs (Bronfenbrenner & Morris, 2006; Bronfenbrenner, 1979, 

1986). While human capital theory allows us to justify that early childhood development is the 

most cost-effective form of human capital investment for building a productive and equitable 

society, the bioecological theory allows us to understand contexts that galvanise public interest 

in ECE, rapid changes in the system, and systemic adaptation to change, which are embedded 

in the multi-layered environments.  

In the present section, I start with a brief overview of the main tenets of the two theories and 

introduce a combined framework that serves as a lens for exploring the link between variations 

in the policy environment and variations in individual child developmental trajectories. This 

review is followed by a discussion of how these theories complement each other and enhance 

our understanding of the role preschool attendance plays in determining the academic abilities 

of Ethiopian children, which were potentially strengthened or weakened during the early 

learning reform.  
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2.3.1 Human Capital Theory from Economics 

In human capital theory from the economic literature, human development is the result of 

accumulated investment over one’s life course. Stemming from the work of Becker (1967, 

1975) and Schultz (1961), human capital theory frames education as an investment that 

individuals and families make to increase their stock of knowledge and gain skills that 

ultimately will yield higher future earnings and success. 8 Human capital theory generates 

various forms of the production function for a child’s cognitive skills (e.g., Leibowitz, 1974; 

Todd & Wolpin, 2003). For example, child cognitive development is considered a knowledge-

acquisition process in which current and past inputs are combined with an individual’s 

genetically endowed ability to learn to produce a current cognitive outcome (Todd & Wolpin, 

2003).  

Extended from the traditional theory of human capital, Carneiro and Heckman (2003) and 

Cunha and Heckman (2007) theorise a model of skill formation technology. They view skill 

development as ‘an interactive and multi-stage process of promoting multi-dimensional skills’, 

where children who benefit from early human capital investments may benefit more from later 

investments. Two key insights from skill formation technology are established: that skills are 

self-productive and complement each other, and that skills complement investment.  

First, skill formation technology suggests that human capital accumulation results from the 

‘self-productivity’ of multiple skills—cognitive skills, non-cognitive skills, and health—

developed in earlier stages which bolster the development of these skills at subsequent stages. 

Second, it highlights the ‘dynamic complementarities’ of skills by suggesting that skills formed 

in one life stage raise the productivity of investment at subsequent stages over the life cycle 

(Cunha & Heckman, 2007; Heckman, 2006), and that future skills have intergenerational 

impact (Heckman & Mosso, 2014). These dynamic relationships, jointly called ‘skills beget 

skills’, make early life a critical period, as it is the time when children lay the foundation for 

building skills later in life (Cunha et al., 2006).9 Combined with neurobiological perspectives, 

                                                
8 Earlier literature points out that the returns to investments made in early childhood are likely to be higher than 

returns to investments made later in life, simply because beneficiaries have a longer time to reap the rewards 

(Becker, 1964). 
9 However, some critiques point out that the hypothesis of dynamic complementarity in early childhood rests on 

a thin empirical base (Magnuson & Duncan, 2016). Evidence using more recent data from an experimental 
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it is clear that the returns to human capital investments made in early childhood—the most 

critical and sensitive period of formation of the brain’s architecture for learning and 

development—are much larger than those made in later life (Knudsen et al., 2006).  

The notion of dynamic complementarity, taking on greater importance in the early years, has 

significant implications for the political and financial commitment to ECE in LMICs (Engle et 

al., 2011; Naudeau et al., 2011). From the equity point of view, investing in disadvantaged 

young children is a policy with no ‘equity-efficiency trade-off’, as it convincingly reduces the 

inequality induced by poverty and raises the productivity of society at large (Cunha & 

Heckman, 2007; Heckman & Masterov, 2007). The theoretical and empirical evidence conveys 

a clear message that, if a lack of early stimulation and learning reduces human capital 

investments or adversely affect an individual’s level of human development, the costs of 

missing this critical period may accumulate over time, particularly for at-risk children. 

Remediation of a loss of early learning, while not impossible, is comparatively expensive and 

may impose substantial burdens on society (Knudsen et al., 2006).  

The human capital theory framework provides many strengths that lead to empirically testable 

hypotheses (i.e., education production function) about the effects of early investment on 

children’s outcomes. Economic models in particular emphasise how individuals and families 

make investment decisions to achieve a set of goals, under constraints imposed by the relevant 

budgets, physical environments, network, and policies (Wuermli et al., 2012). To illustrate, the 

expansion of fee-free preschool affects the decision-making process, partly by altering the 

external conditions and constraints (e.g., distance to preschool) under which households 

operate, and partly by changing the resources people need to send their children to preschool.10 

The economic model also provides major criteria for policy evaluation, as well as 

methodological approaches to address several challenges in the empirical estimation (Wuermli 

et al., 2012). For instance, it highlights the importance of accounting for unobserved variables, 

selection bias, and various measurement problems to prevent biased estimates. In the present 

study, the human capital theory offers a structure for mapping the family background and 

                                                
evaluation of Head Start does not find that significantly larger gains accrue to students who enter the programme 

with higher skill at programme entry (Purtell & Gershoff, 2013).  
10 The family’s preferences and beliefs are also important determinants of early investment (Cunha, 2013).  
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current skill level of the individual child, along with investment in the child’s development and 

growth at an early stage.  

2.3.2 Bioecological Theory from Developmental Psychology  

Apart from understanding the potential relationship between investment in early childhood 

education and learning outcomes, the present study is primarily interested in the early learning 

reform in Ethiopia. The conceptual premise for the different ways a major shift in education 

systems can result in benefits for this relationship are complex. To enhance our understanding 

of the child developmental process through interaction with the multi-layered environments 

surrounding them, the current study uses bioecological theory advanced by Bronfenbrenner 

(1979, 1986) and Bronfenbrenner and Morris (2006). 11 

The developmental psychology literature provides comprehensive conceptual and operational 

definitions of human development (see Baltes, Lindenberger, & Staudinger, 1998; Gottlieb, 

Wahlsten, & Lickliter, 2007; Lerner, 1986, 1998; Sameroff, 1983). This approach views child 

development as a set of processes that are inextricably linked to the multiple contexts and 

systems children inhabit. An individual’s growth in character and competence is not achieved 

in isolation but is, rather, shaped by continuity and change in families, schools, peers, 

neighbourhoods, and broader social contexts. As an earlier application of ‘dynamic systems’ 

theory to child development (e.g., Von Bertalanffy, 1968; citing Yoshikawa et al., 2018), 

Bronfenbrenner’s seminal work conceptualises child development that occurs within the 

bioecological systems through dynamic interactions between individuals, their families, and 

their environments. This approach views individual lives as surrounded by a set of nested 

structures and differentiates between the proximal environment that is directly experienced by 

the individual (e.g., the family context) over an extended period and the more distal cultural, 

social, and economic systems that have an indirect effect on the individual, which are often 

mediated by the more proximal context (Bronfenbrenner, 1979, 1986).12 The advantage of the 

                                                
11 Earlier in his work (1979, 1986) it was called the ecological theory, but Bronfenbrenner continues to revisit and 

expand his own theory. In his latest work (Bronfenbrenner, 1995; Bronfenbrenner & Morris, 2006), the term 

‘bio’ecological theory stresses that ‘living organisms whose bio-psychological characteristics, both as a species 

and as individuals, have as much to do with their development as do the environments in which they live their 

lives’ (Bronfenbrenner, 1995, p. 8). 
12 The distinction between proximal and distal factors and their meanings can depend on the context in which they 

are being applied. 
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bioecological approach is that it allows us to focus on the interaction between the interrelated 

instrumental factors rather than on a simple list of influences, and so provides a useful 

framework for understanding systemically how multi-level factors influence individual 

development.  

According to Bronfenbrenner’s bioecological theory, four defining elements affect child 

development: (1) process, (2) person, (3) context, and (4) time. Forces deriving from multiple 

settings (e.g., family, peers, schools, and communities), from the relations among those 

settings, and from the individual’s relation to and interactions with those settings all contribute 

to child development (Bronfenbrenner & Morris, 2006). Centred on the individual child as a 

primary force of development, his or her interactions with and between the surrounding context 

—such as family, school and community environment (micro-systems), the larger society, 

networks and institutions (exo-systems or meso-systems), and culture, economics, and policies 

(macro-systems)—support, sustain, or hinder growth. 13  Within this multi-layered system, 

bioecological theory highlights that changing any one of the four elements (process, person, 

context, time) of interactions with the surrounding systems can change the individual’s 

development trajectory.  

Policies in particular determine an important part of the context in which families make 

decisions about child development, what Bronfenbrenner (1979, 1986) calls the macro-system. 

A central question on how bioecologies influence child development is how macro-system 

contexts and events (e.g., national reform in pre-primary education that prioritises universal 

access to public preschool) influence intermediate contexts (e.g., policy responses from 

decentralised regional and local governments). It, in turn, influences the settings or contexts 

within the developing individual’s microsystem (families, schools, peers, and neighbourhood), 

the settings within which the person has face-to-face interactions or proximal processes. To 

illustrate, the large-scale expansion of preschool, which induces a shift from the elite system 

to the mass system, is thought to affect the bioecology of human development by changing the 

macrosystem, as depicted in Figure 2.1.   

                                                
13  It should be noted that, in bioecological theory, the direction of influence between children and their 

surroundings is not a unidirectional but a bidirectional or reciprocal relationship. Thus, while environment 

influences child development, a child interacts with it and can change the way, for example, how parents treat or 

respond to their needs.  
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Figure 2.1. A Bioecological Model of Human Development 

 

Source: Adaptation of Bronfenbrenner's (1979, 1986) bioecological model of child development 

Drawing from bioecological theory (Bronfenbrenner & Morris, 2006), I hypothesise that, if 

there is a major shift in the education system, the relationships between preschool and an 

individual’s development, which are nested within this macrosystem, will be changed in a way 

that strengthens or weakens the role of preschool in determining a child’s skills. In response to 

policy changes, parents’ decision to send their children to preschool will be made in different 

circumstances that interact with both proximal family factors (e.g., parenting style, educational 

aspirations, and language use) and distal family factors (e.g., parental education, family size, 

income and poverty, and maternal employment), all of which are crucial for directing the 

growth of a child. In the present study, the time component, which usually indicates different 

periods or transitions in the life course, points to the importance of historical times and cross-

sectional events at the macro level.  

Yoshikawa and Hsueh (2001) note that the particular benefits of a bioecological (dynamic 

systems) perspective is that ‘the principles are chosen to highlight change over time in the 

policy environment, child’s development, and systems intervening between the two’ (p. 1,889). 

This approach, which stresses the reciprocity of influence among the components of systems, 

may serve as an interface between policy implementation and the diversity of families. Despite 

its potential role in bridging public policy and child development (Ford & Lerner, 1992; Thelen 
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& Smith, 1994), the knowledge gap in ‘linking policy variation to developmental variation’ 

has not yet been addressed by the comprehensive frame, especially in large-scale policy 

implementations (Yoshikawa & Hsueh, 2001; Yoshikawa et al., 2018).  

Therefore, the present study attempts to underscore the ways in which extrafamilial contexts 

might affect intrafamilial processes and individual variation. In particular, my first research 

question in the present study (Chapter 2) addresses the linkage between policy variation and 

developmental variation through the novel gap metrics using students’ learning distribution. In 

Chapters 3 and 4, this perspective is applied further to address a set of potential moderators 

and mediators that may help to explain the pathways through which ECE participation affects 

child development. Nevertheless, bioecological theory has the limitation that it has a very high 

demand for data; for example, various forces from the multi-layered environments within 

which children grow up for empirical testing of the model (Wuermli et al., 2012); thus, the 

present study used it as a conceptual underpinning that enriches our interpretation of the results 

in a given context. 

2.3.3 Interdisciplinary Framework: Complementing Two Theories 

Both human capital theory and bioecological theory provide theoretical links between early 

learning and child development, pointing out that there are diverse contexts in which early 

educational experiences are converted into gains in skill formation. However, in the meantime, 

each theoretical explanation suggests a slightly different focus. First, with respect to the 

dynamic nature of human development, the human capital model directs attention to 

interaction between investments made in multiple stages of child development (e.g., parental 

investment between initial conditions (t-1) and intervening period (t)), while the bioecological 

model directs attention to the interaction between the individual and his or her multi-layered 

environment over time.  

Second, these two models lead to contrasting predictions regarding the complementary versus 

compensatory role of early investment in child development (Magnuson et al., 2016; Wuermli 

et al., 2012). In human capital theory, the hypothesis of dynamic complementarity (Cunha & 

Heckman, 2007) implies that the benefits of preschool may be amplified if children possess 

high skills upon preschool entry and when followed up by high-quality, enriched environments 
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(Aizer & Cunha, 2012).14 From this point of view, early childhood education plays a significant 

role in preventing equity gaps as early as possible before the disparities widen over the life 

course (Currie & Thomas, 1999; Heckman & Mosso, 2014). In contrast, developmental 

theories focus on a compensatory (or substitute) role of preschool in which the benefits of an 

enriched early learning environment are most pronounced for children with the least prior 

exposure to such environments (Ramey & Ramey, 1998; Watamura et al., 2011). This view 

links the productivity of early investments to the match between the qualities of ECE 

programmes and the specific developmental supports a child needs, especially on the 

programmes’ responsiveness to individual risk, impairment, and adversity (Blair & Raver, 

2012). While complementary and compensatory models lead to different education production 

predictions, both imply that preschool benefits will diverge according to the characteristics of 

the child, family, preschool, subsequent schooling, and broader policy environments.  

Third, in terms of how each theoretical approach has influenced public policy, human capital 

theories emphasise the role of economic efficiency and distribution as guides to policy. Policy 

changes can ‘significantly alter the context in which individuals make human capital 

investments, effectively shifting the marginal benefits and marginal costs for private human 

capital investment decisions, thus changing the optimal level of these investments for 

individuals and families’ (Wuermli et al., 2012, p.44). By comparison, human developmental 

theories stress interacting environments and contexts in guiding policy decisions ‘by 

identifying complex mechanisms of action through which a programme may affect particular 

outcomes (i.e., mediators), and by providing insights as to why a programme may operate 

differently in different settings or for different target sub-groups (i.e., moderators)’ (Wolf, 

Aber, & Morris, 2013, p. 3). Both theoretical approaches have contributed to guiding policy 

decisions—for example, cost-benefit analysis, optimal resource allocation, and targeting a 

marginalised group—related to child development. 

In the present study, an interdisciplinary framework enabled me to delve into the human 

developmental processes in a context of systems change. It provided theoretical and empirical 

support for my argument that a massive expansion of preschool is a pivotal factor in reshaping 

                                                
14  The downside to this complementary is that it is often difficult to recover from early deficiencies. Later 

investments can complement previous ones but likely may not substitute completely for earlier missing 

components.  
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the relationships between early learning and child development, viewed as interactions in 

complex systems. Using this framework yielded a broader understanding and a more 

comprehensive set of analytical tools to link policy variation to human development variation, 

as addressed in the current study.  

2.4 Background and Context: The Case of Ethiopia 

2.4.1 General Context of Ethiopia and the Education System  

Ethiopia is a country in the Horn of Africa with a population close to 100 million. As a region, 

Sub-Saharan Africa has the largest proportion of young children experiencing malnutrition and 

poverty (Black et al., 2017) and not reaching basic developmental milestones (McCoy, Peet, et 

al., 2016). On the Human Development Index, a composite statistic of life expectancy, 

education, and income per capita indicators conducted by the UNDP, Ethiopia ranks near the 

bottom, number 173 out of 189 countries (UNDP, 2018). According to the prevalence of 

stunted growth, the indicator used to assess a child’s physical and cognitive development 

potential, 38 percent of Ethiopian children under five are stunted in size, with widespread 

variation in the degree of stunting between and within regions (CSA, 2016).15  

Since the 1990s, Ethiopia has made remarkable progress toward achieving the Education For 

All goal of universal primary education. In 1992, almost four out of five children were out of 

school. Two decades later, in academic year 2015-2016, net enrolment rates reached 100 

percent (MOE, 2016).16 The rapid expansion of access to primary school has been driven by 

strong leadership and a commitment from the Government of Ethiopia, in collaboration with 

international development partners. Abolishing school fees, constructing new schools closer to 

where children live, training new teachers, promoting parental and community involvement, 

and embracing previously marginalised groups have all contributed to the success of universal 

primary education (Engel, 2011). Over the past decade, the proportion of the education budget 

out of the total government budget has remained a steady 20 percent (Khan et al., 2014).  

                                                
15 Stunting is measured by a height-for-age z-score of more than 2 standard deviations below the World Health 

Organization Child Growth Standards median (WHO, 2009), which show a restriction of a child’s potential 

growth (Black et al., 2008).  
16 The net enrolment rates by gender were 104 percent for boys, 95 percent for girls. 
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In 2009, the General Education Quality Improvement Programme (GEQIP), a multi-donor-

supported programme to improve the learning environment in schools, commenced, which was 

a key objective under the country’s third and fourth Education Sector Development Plan 

(ESDP). GEQIP I (2009-2013) and GEQIP II (2014-2018) have addressed the essential 

elements for improving students’ outcomes by improving the supply and deployment of 

qualified teachers; providing textbooks, learning materials, and teacher training; distributing 

capitation school grants; and establishing an inspection system of school quality (World Bank, 

2017). Although learning outcomes have shown some improvement during this period, internal 

inefficiency, inequity, and poor education quality remain persistent challenges in Ethiopia’s 

education sector. Completion rates in primary education have stagnated at 50 percent for a 

decade (MoE, 2016); particular groups, including girls, students with special needs, and those 

from pastoralist communities, are still excluded from access to quality education; and student 

learning outcomes have remained very low—about 44 percent of Grade 4 students tested 

nationally were at or below the basic level in reading (World Bank, 2016, 2017). Importantly, 

the entrenched problem of the dropout rate in Grade 1 reaching 18 percent (MOE, 2016), as 

well as the lack of basic academic skills, calls for more attention to the ‘foundational grades’, 

including pre-primary and primary, which can equip children adequately for future schooling 

and learning.  

2.4.2 Historical Review of Ethiopian Early Childhood Education: Reform Process 

Formal compulsory primary education in Ethiopia starts at the age of seven. Hence, pre-

primary education targets children four to six years old. Historically, ECE in Ethiopia has been 

provided on a small scale by private, non-governmental, and faith-based organizations. 

Ethiopia’s 1994 Education and Training Policy document initially acknowledged the provision 

of ECE for the ‘all-round development of the child in preparation for formal schooling’ (MoE, 

1994). Nevertheless, in the last two decades, ECE has not been integrated into the public 

education and health sectors. This is partly due to the government’s decision on resource 

allocation to selected areas, which directed significant resources to basic primary and 

secondary education (MoE, 2002). 17  The government encouraged the private-sector and 

                                                
17 In 2002, the Ethiopian Ministry of Education explicitly stated that it did not have the resources to focus on 

preschool education, preferring rather to consolidate the primary school system: ‘[…] from the perspective of 

Ethiopia’s economic capacity, the opening of kindergartens involving massive expenditure cannot be a top 
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longstanding faith-based suppliers to provide ECE services (Hoot, Szente, & Mebratu, 2004). 

As a result, the supply of ECE services remained saturated in towns and cities where it served 

less than 5 percent of 4- to 6-year-old children, and those it served were from relatively wealthy 

backgrounds and lived predominantly in urban areas. 

Creating the will: Political change and emerging actors. Since 2007, a national constituency 

advocating for the expansion of accessible and affordable ECE has emerged. There were 

several key drivers for this initial movement. First, as a result of global pressure to achieve 

Education For All, concern about unequal early learning opportunities was raised among 

government officials in Ethiopia (Rossiter, Hagos, Rose, Teferra, and Woldehanna, 2018). The 

Education For All goals encouraged achieving equitable service provision by ‘expanding and 

improving comprehensive early childhood care and education, especially for the most 

vulnerable and disadvantaged children’ (UNESCO, 2000). Second, with longstanding support 

from UNICEF, the political leadership of the state minister for general education was 

instrumental in seeking a multi-sectoral early childhood care and education (ECCE) strategy. 

Without clear sectoral guidelines for ECCE, service provision for young children was 

‘inadequate, but also fragmentary and lacking in coordination’ (MoE, 2010b, p. 18). A policy 

network was created by forming the ECCE Task Force that included government officials from 

three ministries (Ministry of Education, Ministry of Health, and Ministry of Women’s and 

Children’s Affairs), UNICEF, NGOs, civil society organizations, and academic partners 

(Addis Ababa University and Kotebe University), which contributed to the coordination of 

sectors to achieve an integrated approach to ECCE.  

In 2007, the first diagnostic study of the pre-primary education sector was conducted to identify 

major challenges and opportunities in the delivery of ECCE. These challenges included high 

fees; a lack of training and poor working conditions for teachers; lack of an adequate, culturally 

sensitive curriculum; and a lack of awareness of the importance of early learning among 

families and communities (Orkin, Yadete, & Woodhead, 2012). The analysis also identified a 

number of existing opportunities, including private investors, NGOs, and religious 

                                                
priority, as regular universal primary education has not yet been achieved. Thus, the opening of kindergartens is 

an area that has been left for private investors and religious organisations, and for parents who can afford to pay 

the fees’ (MoE, 2002). 
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organizations with an interest in ECCE; and local rural institutions, such as women’s and 

farmers’ associations that could support the implementation of ECCE services.  

In 2008 and 2009, new early learning initiatives emerged, including a pilot of the Getting Ready 

for School Child-to-Child (CtoC) approach and the first signs of a reception class, which was 

acknowledged as ‘an interesting initiative [that] has been launched with success: it consists of 

organizing a pre-primary class within an existing primary school. This has helped spreading 

ECCE into rural areas’ (MoE, 2010a). These initiatives helped to demonstrate the potential of 

early learning to improve school readiness and revealed a strong demand for early learning 

services, especially among communities in rural areas (AIR, 2013; Rossiter et al., 2018). This 

encouraged policymakers and international actors to work closely on issues related to early 

childhood development.  

Policy reform for early learning: Transition to the new mass system. New momentum for 

ECE was formalised in 2010 when the Government of Ethiopia developed a National Policy 

Framework for ECCE. The National Policy Framework is to provide a holistic and 

comprehensive approach to the development of children from the prenatal period to seven years 

of age (MoE, 2010b). The framework was developed through a participatory and multi-sectoral 

process spearheaded by the Ministry of Education, in coordination with the Ministry of Health 

and Ministry of Women’s Affairs (now Women’s and Children’s Affairs), and with support 

from UNICEF and the ECCE Taskforce. The Government of Ethiopia formulated the 

framework with four main pillars, which entail (1) parental education, (2) health and early 

stimulation programmes (prenatal to 3+ years), (3) preschools with community-based 

kindergartens (4 to 6+ years), and (4) community-based non-formal school readiness 

programmes.18 The third pillar calls for the establishment of a variety of preschools: in addition 

to private schools (kindergartens), it includes preschools in community centres, religious 

institutions, alternative basic education centres, and primary school compounds, which are the 

low-cost models of service delivery supported by a flexible arrangement between communities 

and governments (MoE, 2010b; Orkin et al., 2012).  

                                                
18 The first two pillars on parental education and a programme of early child health and stimulation (from the 

prenatal period to age three) fall under the Ministry of Health; the latter two pillars on preschools and a programme 

of non-formal school readiness fall under the Ministry of Education.  
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Guided by new ECCE Policy Framework and ESDP IV (2010-2011 to 2014-2015), the MOE 

has promoted the expansion of new programme type called a ‘pre-primary class’ or ‘O-Class’, 

a reception year for 6-year-olds before they enter Grade 1. The O-Class is attractive because it 

can be implemented by expanding a public primary school, which requires limited 

infrastructure investment and can easily be accommodated within existing government 

structures. In the first year of introduction, O-Class provided one million children with 

immediate access to early learning, nearly three times as many children as were enrolled in 

kindergarten centres the year before (Woodhead, Rossiter, Dawes, & Pankhurst, 2017). The 

increase in O-Classes has also shifted access in ways that strengthen equity, given the rural 

location of the majority of O-Classes. Over the six years from 2010-2011 to 2016-2017, the 

gross enrolment ratio (GER) for all 4- to 6-year-olds increased from 5 percent to 46 percent. 

As the main driver of the rapid expansion of pre-primary coverage, O-Class is currently serving 

more than 2.6 million children in Ethiopia (Figure 2.2).  

Figure 2.2. Enrolment Shares by Modality, Pre-Primary, 2008-2009 to 2016-2017 

 
Note: Kindergarten (blue)—a three-year programme for 4- to 6-year olds, generally delivered in a stand-alone institution and 

mostly run by the private or NGO sectors; O-Class (yellow)—a one-year reception class for 6-year-olds provided in the public 
primary school compound; and Child-to-Child (green)—an informal programme to facilitate learning between young children 
with their older siblings or peers.  
Source: Ministry of Education, EMIS, 2008-2009 to 2016-2017 

With successes in pre-primary expansion since 2011-2012, the MoE set an ambitious vision 

for early learning during the planning of ESDP V (2015-2016 to 2019-2020). ESDP V, which 

first stated that the direct involvement of the government in ECE is a policy priority, outlined 

clear targets for achieving 80 percent enrolment for 4- to 6-year olds and universal pre-primary 

education for 6-year-olds by 2020 (MoE, 2015). It also stressed equitable access to early 

learning that ‘quality, targeted, ECCE provision will be used as a tool to increase equity in the 
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education system. (…) By focusing ECCE expansion first in the areas with lower educational 

attainment (…), the government will seek to improve the performance of children who can 

benefit the most from the support to transition more successfully into Grade 1’ (p. 77). It 

signalled a significant policy shift from a limited government role in oversight of ECCE 

services delivered by non-state actors to the government taking a leading position in the full 

provision of accessible and affordable pre-primary education.  

Nevertheless, with a massive influx of young children into the education system, it is inevitable 

that substantial challenges will arise to providing equitable access to ‘quality’ services in 

Ethiopia (Teferra & Hagos, 2016; Rossiter et al., 2018; Woodhead et al., 2017). In the next 

section, the landscape of early childhood education before and after the reform is illustrated, 

focusing on the access, programme type, equity, and quality aspects of preschool service 

delivery. With respect to the main interest of the present study, it helps to understand the ECE 

settings ‘before 2010’, when the EGRA 2010 cohort attended preschool, and ‘after 2010’, when 

the EGRA 2016 cohort attended preschool. 

2.4.3 Landscape of Ethiopian Early Childhood Education: Before and after Reform 

Early childhood education before the reform in 2010: Access, programme type, and quality. 

Before the early learning reform in 2010, preschool services were delivered through 

kindergartens operated by private institutions, NGOs, communities, and faith-based 

organizations. Orkin et al. (2012) identified four types of ECE providers in Ethiopia, which 

catered to only about 5 percent of young children over two decades. First, private preschools 

required a fee and were mostly located in urban areas. Second, public preschools were fee-

paying but also funded by the government and were located largely in urban areas. Since 

private preschools and public preschools are very similar in terms of quality and both serve 

upper- to middle-class families, these two can be grouped into one category (Orkin et al., 2012). 

The third type consists of government preschools, established and operated by the kebele (the 

smallest administrative unit, similar to the neighbourhood), with teachers’ salaries usually paid 

for by fees from parents or community contributions. These schools were located mostly in 

urban areas, with a few classes in rural areas.  

The fourth type was the community preschool run by an NGO or religious organization. NGO 

schools tended to be located in urban areas, to be of relatively high quality, and to be offered 
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to poor communities with low or no fees. Religion- or faith-based schools provided relatively 

low-fee education, were attached to formal religious primary schools, and served the needs of 

poorer parents in urban areas (Orkin et al., 2012). The religion-based preschool aimed to teach 

children basic literacy so they could read the Bible or Koran and instructed them in aspects of 

religious faith. Although there is no systematic documentation of the quality of religion-based 

provision, Woodhead et al. (2009) observed that, in informal faith-based preschools, children 

were typically taught by a single teacher, who hosted them in his own home or in the open 

air. 19  Many instructors had no formal training except for religious education, and the 

preschools did not have a set curriculum in most of the cases observed (Woodhead et al., 2009). 

Currently, there are few statistics and little documentation of religion-based preschools. During 

my interview, university-based education experts expressed that many of these institutions had 

declined over the years as part of an overall decline in religious primary and high schools in 

Ethiopia.  

Early childhood education after the reform, from 2010 to 2015: Access and programme type. 

The Government of Ethiopia’s rationale for involvement in the pre-primary sector is to offer a 

cost-effective model for improving children’s school readiness, which can be used as a tool to 

increase equity in the education system. The government focuses in particular on areas with 

lower educational attainment and children who can benefit most from support to transition 

more successfully into Grade 1 (MoE, 2015). Since 2010, preschool programme types 

(modalities) have been diversified into two formal kindergarten programmes, KG and O-Class, 

and two informal programmes, CtoC and the Accelerated School Readiness (ASR) programme. 

Table 2.1 summarises the characteristics of the four modalities available to deliver pre-primary 

education in Ethiopia.  

The O-Class modality currently covers about three-quarters of pre-primary service provision. 

O-Class is perceived as a low-cost model that is feasible to implement consistently across 

regions and is supported by communities and local governments (Rossiter et al., 2018). 

Meanwhile, scaled-up O-Class efforts did not undermine the existing systems of private 

kindergarten, which still play a leading role in urban centres. Kindergartens had taken up about 

                                                
19 Hoot et al. (2004) reported that mission or church pre-primary schools are generally perceived as providing 

good-quality education.  
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5 percent to 7 percent of the pre-primary enrolment in the previous two decades, although its 

significance faded in the overall pre-primary sector. 20  The supply of informal CtoC 

programmes decreased from 7 percent in 2014-2015 to 3 percent in 2017-2018. In the Tigray 

region, where CtoC was provided to more than half of 4- to 6-year-olds, schools had difficulty 

managing the informal programme regularly. The quality of instruction had been diluted during 

the scaled-up process due to insufficient training and supervision for older students (personal 

interview).21  

Table 2.1. Four Programme Types (modalities) of Pre-Primary Education in Ethiopia 
 

Formal Program Informal Program 

 
Kindergarten O-Class Child-to-Child 

Accelerated 

School Readiness 

Target age group 4-6 years 6 years 4-6 years 6-7 years 

Duration Up to three years 
One year 

(9 months) 

Up to three years 

(part-time) 

Two months 

(school breaks) 

Main implementer  Private sector Government 
UNICEF & 

Government 

UNICEF & 

Government 

Main funding source  Private fees 

Government & 

community 

contribution 

UNICEF & 

Government 

UNICEF & 

Government 

Workforce Private teachers 
O-Class teachers 

or facilitators 

Older children 

and CtoC trainers 

O-Class or Grade 

1 teachers 
Source: Adapted from Journeys to Scale (UNICEF, 2016) 

The government sectoral plan ESDP V (2015-2016 to 2019-2020) permitted a mix of 

modalities to be used to reach access targets (Table 2.2), stating that ‘in the first years of ESDP 

V different approaches will be piloted and lessons learned will be used to inform expansion 

choice’ (MoE, 2015). As an example, in 2015-2016, the MoE and UNICEF piloted the 

Accelerated School Readiness programmes for 6- or 7-year-old children entering Grade 1 who 

had not yet attended preschool. This programme provided two-month sessions (150 hours), 

with a focus on imparting pre-literacy, pre-numeracy, and social skills. This interim 

programme was expected to bridge the transition period to universal pre-primary education, 

given that formal ECE programmes had not yet been extended to the poorest areas (UNICEF, 

2016).  

                                                
20 Nationally, kindergarten now accounts for 16 percent of pre-primary education provision in 2016-2017, down 

from 100 percent in 2009-2010, and its portion continues to decrease among the four modalities. 
21 Based on a personal interview with school principals in Tigray and UNICEF ECCE experts.  
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Table 2.2. Government’s Target for Pre-Primary Education (2015-2016 to 2019-2020) 
Strategies Indicators 

Access Expand O-Class and kindergarten provision so that all children have access to at least one 

year of classroom-based pre-primary education  

Access Expand access to CtoC and Accelerated School Readiness programmes  

Quality Improved teaching and leadership skills in all institutions, matched with greater motivation 

and job satisfaction  

Quality Providing services and resources to schools to improve the physical facilities and foster a 

safe and healthy environment 

Targets Indicators 

Access Percentage of students that receive at least one year of pre-primary education will reach 

100%  

Access GER for pre-primary (age 4-6 years) will rise from 34% to 80%  

Access National strategy for non-formal Accelerated School Readiness and CtoC programmes 

exists  

Quality  Percentage of pre-primary teachers who are qualified with ECCE multi-year diploma  

Quality  Percentage of pre-primary schools with qualified leader (diploma) will reach 100%  

Quality  Percentage of pre-primary schools met and well above the [inspection] standards will reach 

60%  
Source: Compiled from ESDP V (MoE, 2015) 

Equity. Despite the rapid and consistent growth of preschool access, ‘equity’ concerns 

emerged. Analysis of national aggregate statistics revealed that substantial equity gaps existed 

in various dimensions related to location, gender, and age (Rossiter et al., 2018). First, O-Class 

coverage was greater in better-resourced regions. Nine established regions (including two city 

administrations) reached more than 50 percent of GER by 2015-2016, whereas three 

‘emerging’ regions (Afar, Somali, and Benishangul-Gumuz) experienced slower progress, 

reaching 10 percent to 30 percent of GER during the same period.  

Second, the equity gap appeared not only between but within regions. With the government’s 

vision of having an O-Class in each government school, the share of primary schools with an 

O-Class had risen to 74 percent of schools by 2014-2015—up from 60 percent in 2011-2012 

(Rossiter et al., 2018). Nevertheless, only one-third of schools had an O-Class in the three 

emerging regions (Afar, Gambella, and Somali), whereas in 2016-2017, 80 percent of schools 

were offering O-Class in all other regions. There was also a positive correlation between the 

‘Grade 2 to Grade 1 enrolment ratio’ and O-Class coverage, which implied an unequal pattern 

of O-Class expansion; better managed and more affluent schools may have introduced O-Class 

earlier (Rossiter et al., 2018).22 Despite the policy goal of reaching the most disadvantaged 

                                                
22 GEQIP-E has chosen to use the ‘Grade 2 to Grade 1 enrolment ratio’ as a key performance indicator which is a 

‘holistic indicator that can capture dropout, repetition, and readmission by estimating those who are lost in 

transition between Grade 1 and Grade 2’ (World Bank, 2017). This indicator reflects aspects of educational 
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groups—children at risk of exclusion, dropout, and under-achievement who tend to need the 

service the most—had the lowest rates of preschool participation. There also was a notable gap 

between coverage and enrolment rates by region: 80 percent of primary schools had O-Class, 

but only 30 percent of preschool-age children were enrolled in O-Class. This suggested the 

limited capacity of the existing O-Classes, which were provided mainly in a single classroom 

within the school compound, and limited awareness of early learning that hindered local 

demands.  

Third, there was a gender gap in preschool access that favoured boys over girls, although it was 

less severe than the regional variation. The Gender Parity Index widened slightly from 0.98 to 

0.95 on average between 2010-2011 and 2015-2016, yet it should be noted that the gender gaps 

were more pronounced in the three ‘emerging’ regions: Somali (0.84), Gambella (0.89), and 

Benishangul-Gumuz (0.90) (Rossiter et al., 2018). The fourth dimension looked at the age 

distribution of O-Class enrolees. The average share of 6-year-old children who enrolled O-

Class (a target age group for O-Class) was merely 42 percent, with huge regional variation, 

from 20 percent in Somali to 90 percent in Tigray (Rossiter et al., 2018). While many 6-year-

olds still were missing out on the pre-primary education opportunity before entering Grade 1, 

the multi-age composition raised concerns about the supply constraints (e.g., ‘churning’ in O-

Class more than a year) and deterioration of quality due to the absence of age-appropriate 

curriculum and pedagogy.23  

These huge regional disparities were closely linked to the Regional Education Bureaus’ (REBs) 

varied response to the reform initiatives directed by the central government. Since the 

Ethiopian education system is highly decentralised and features the transfer of financial 

management and decision-making authority from the upper to lower levels of government 

(MOE, 2002), REBs carry the primary responsibility for operationalising the policy targets 

stipulated in the national sectoral plans. Nevertheless, there was ‘incoherence between 

delegated national objectives and local preferences and capacities, such that O-Class access 

                                                
attainment, advantage, and efficiency for each woreda. A lower ‘Grade 2 to Grade 1 enrolment ratio’ suggests 

that schools and woredas have lower levels of educational attainment and efficiency which would classify them 

as priority areas for services (Rossiter et al., 2018). 
23 The notion of ‘churning’ is from the early grade inefficiencies identified in emergent primary education systems 

(Crouch, 2015). It indicates that Grade 1 or Grade 2 enrolees tend to stay in the early grades for multiple years 

without any mark of grade repetition or readmission (usually marked ‘new entrants’ several times). Anecdotally, 

a similar tendency has been observed in O-Class.  



 

 

35 

[wa]s provided unequally, for a subset of the target population’ (Rossiter et al., 2018, p. 19). 

The implementation processes of the early learning reform were far from uniform and were 

highly dependent on the human and financial resources of local governments within each state.  

While the inherited regional historical differences have been mirrored in the different pathways 

to the scale-up of early learning, this often led to innovative service delivery tailored to the 

needs of local communities. For example, in SNNP, to minimise the travel distance to primary 

schools for children in remote areas, O-Classes were established not only in the regular 

government primary schools but in the non-formal community-based organizations within 

religious institutions (churches, mosques), farmer’s training centres, and established kebele 

(community centres).24 The various forms of O-Class (‘satellite’) were grouped into a single 

school (‘cluster’) for better management purpose. This approach led to the rapid growth of O-

Class participation in SNNP, which reached 65 percent in 2016, nearly double the national 

average of 33 percent (MOE, 2016). In Afar, one of the ‘emerging’ regions with few resources, 

informal preschool programmes (CtoC and ASR) were further adapted to a mobile education 

system (Rossiter et al., 2018) in order to accommodate the needs of pastoralist communities.  

Finance. Critically, the policy directive was not accompanied by any form of financial support 

to deliver the national-scale increase in preschool access. Even after the government target was 

set to reach all 6-year-olds (MoE, 2015), the national plans allocated no more than 3 percent 

of the education budget to pre-primary education (Rossiter et al., 2018).25 Rolling out an 

ambitious plan of early learning reform without any financial commitment had the potential to 

place an additional burden on an already overextended primary education system (Orkin et al., 

2012). This could have turned promising ECE initiatives into a mere downward expansion of 

primary education, which would have replicated many problems raised by the earlier reform in 

universal primary education.  

                                                
24  According to the interview with SNNP REB staff, out of 13,938 O-Class institutions, 6,013 (or 43.8%) 

institutions are in-school O-Classes, 5,521(or 39.6%) are O-Classes in religious institutions or farmers’ training 

centres, 1281 (or 9.2%) are O-Classes in established community centres. The rest is child-to-child (205, or 1.5%) 

and kindergarten (828, or 5.9%). 
25 ESDP V (2015/16-2019/20) allocated 3 percent of its total budget to early learning, in addition to any resources 

supporting oversight via the ‘Admin’ budget line (Rossiter et al., 2018, p. 11). Most recently, in 2018-2019, it 

was reported that about 7 percent of the education budget was allocated to pre-primary education. 
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With a lack of sufficient financial support, the provision of O-Classes was heavily dependent 

on community contributions. Regions reported that communities were involved in financing, 

managing (through a school committee), and taking ownership of O-Classes, and more recently 

in supplementing teachers’ salaries and the cost of materials (Rossiter et al., 2018). This implies 

that the rapid expansion of pre-primary education could not be detached from the community’s 

perception and preference for early learning, but it also favoured resource-rich areas where the 

communities could afford to set up new O-Classes. In 2016-2017, the government introduced 

school grants for O-Class (a capitation grant for 6-year-olds enrolees), which represented the 

first explicit financial source provided to schools for pre-primary. Although REBs perceived 

school grants to be the major source of financing for O-Classes, they in fact had limited 

capacity to reach the schools least able to establish O-Classes, which could further exacerbate 

access inequality (Rossiter et al., 2018).  

Quality. With an unsystematic approach to the preschool reform in Ethiopia, substantial 

challenges to providing ‘quality’ ECE services occurred. Several studies conducted in Ethiopia 

attest to the actual lack of quality and the lack of a system to yield quality outcomes. Regarding 

the former, Teferra and Hagos (2016) and Dowd et al., (2016) pointed out the pervasive lack 

of quality services in pre-primary education. Preschool, especially O-Class, suffers from many 

challenges, such as the shortage of trained and qualified teachers/facilitators; the lack of 

developmentally appropriate curriculum and learning materials; the lack of adequate 

infrastructure and safe school facilities; and a lack of incentives for teachers assigned to O-

Class.  

Regarding the latter, Woodhead et al. (2017) and a recent diagnostic report by Rossiter et al. 

(2018) have noted the lack of a system to deliver quality services and the lack of coherence 

across multi-tiered systems. The research has found that ‘downwards delegation from federal 

and regional levels to woredas and schools suffers coordination and communication 

weaknesses’ (Rossiter et al., 2018, p. 29). Without attending to the system’s readiness to 

promote early learning (e.g., a shortage of ECE specialised administrators at all levels of 

government), coherent and quality services are unlikely to become a reality. Collectively, 

previous research on the status of O-Class warned that low-quality, unequal preschool service 

provision will not deliver on the potential of ECE and could even have some detrimental 

consequences for child development (Teferra & Hagos, 2016; Woodhead et al., 2017). As 
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Kagan et al. (2015) noted, this is consistent with the global understanding of the scale-up 

process that ‘programmatic expansions that simply build on a dysfunctional structure are 

unlikely to produce significant gains for quality, much less for the equitable distribution of 

services or for their sustainability’ (p. 9).  

New initiative for quality improvement of O-Class: 2016 to present. As the early learning 

system in Ethiopia is constantly evolving, the government’s focus is gradually shifting to 

improving quality. Figure 2.3 summarises a timeline of key developments in the establishment 

and rollout of pre-primary education in Ethiopia. With respect to the latest initiatives, from 

2016-2017 to 2017-2018, a region-wide programme of in-service teacher training for O-Class 

teachers was implemented in two historically disadvantaged regions in Ethiopia—

Benishangul-Gumuz and Gambella (World Bank, 2017). This entailed the development of 

child-friendly, play-based curriculum and teacher guides in local languages, as well as an 

intensive one-month teacher training for all O-Class teachers in two regions. 

In 2018, the General Education Quality Improvement Programme for Equity (GEQIP-E)—a 

third-phase of the government’s education reform package—formally introduced a Quality 

Enhancement and Assurance Programme (QEAP) for O-Class (World Bank, 2017). This 

comprised two key components—quality enhancement (QE) and quality assurance (QA). The 

QE component, which aims to improve pedagogical practices in the classroom, includes 

teacher preparation and professional development, curriculum and teaching and learning 

materials for O-Class, training for management and supervision, and an orientation programme 

on early learning for parents and communities. The QA component, which aims to create a 

quality assurance mechanism, entails the establishment of national standards, school inspection 

for O-Class, and quality EMIS data collection for pre-primary. Overall, QEAP is expected to 

provide a comprehensive package of interventions to systemically improve the quality of O-

Class within a coherent framework of support. Interrelated activities of the QEAP are currently 

being implemented across regions in Ethiopia.   
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Figure 2.3. Timeline of Key Developments of Pre-Primary Education in Ethiopia 
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2.5 The Present Study 

In the present study, I aim to build knowledge of the influence of early learning reform in Sub-

Saharan Africa by focusing on the country experiencing the most rapid expansion of preschool 

access: Ethiopia. Specifically, I aim to examine the change in the patterns of association 

between preschool attendance and students’ learning outcomes before and after a large-scale 

expansion of public preschool (O-Class). Using the EGRA, which was administered in 2010 

and 2016 to a regionally representative sample of Ethiopian students, this study addresses two 

primary research questions, as follows:  

1. What is the difference in the test score distribution of second- and third-grade students’ 

reading achievement, as measured by oral reading fluency (ORF), between preschool 

attendees and non-attendees before and after the early learning reform?  

2. Does the early learning reform (i.e., large-scale expansion of preschool) strengthen or 

weaken the role of preschool attendance in predicting second- and third-grade students’ 

reading achievement, as measured by (1) EGRA test scores, and (2) the probability of 

being a non-reader or a proficient reader?  

This study first illustrates the trends in preschool participation between 2010 and 2016 and 

examines the determinants of preschool attendance in each period. The aim is to capture how 

pre-primary education in Ethiopia shifted from the elite to the mass system, and to what extent 

this induced compositional changes between children who attended preschool and those who 

did not. Using the novel approach of estimating the achievement gap over time, I address my 

first research question on the difference in test score distribution between preschool attendees 

and non-attendees during the early learning reform.  

My second research question aims to determine whether preschool attendance is predictive of 

students’ early grade reading achievement and how this predictive role has evolved during the 

large-scale expansion of preschool. The following outcome indicators are used to address this 

question: (1) EGRA test scores from six sub-tasks, such as ORF and reading comprehension, 

and (2) the probability of being a non-reader or a proficient reader. While the test scores provide 

useful information on students’ average performance, the latter two outcome indicators on the 

probability have certain advantages. First, they are less sensitive to language characteristics 

that vary by region. This is particularly relevant to the multilingual culture in Ethiopia, where 
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the most progressive, longstanding mother tongue instruction policy was adopted in 1994 

(Seid, 2016). The Government of Ethiopia currently uses 51 official mother tongues for 

teaching and textbooks in Grade 1 to Grade 4. Second, these measures can provide more 

comparable metrics to analyse the trends over time than average test scores, which is the main 

interest of the current study. Third, these measures have better interpretability. Initially, the 

reading proficiency levels were developed for better communication with government officials 

(Gove & Wetterberg, 2011). The results based on reading proficiency levels could more 

explicitly articulate incremental expectations for student performance in early grade reading 

and were comparable to the Minimum Learning Competencies in the national curriculum 

(Piper, 2010; RTI, 2015).  

A strength of the current study is the ability to track the relation between preschool attendance 

and students’ academic achievement over the reform period. The study also focuses on the 

early grades in primary schooling, from a reception year through Grade 3. Early grades are 

focal years in which policymakers and practitioners pay special attention to equipping children 

with fundamental skills for lifelong learning. In LMICs in particular, intervention in the early 

grades is instrumental in preventing the high dropout rate and grade repetition that have 

burdened the efficiency and effectiveness of the education system (Bashir, Lockheed, Ninan, 

& Tan, 2018; Crouch & Merseth, 2017).  

2.6 Data and Sample  

Data used for this study come from the Early Grade Reading Assessment, an influential tool 

used to assess students’ early academic ability in reading acquisition. The EGRA is primarily 

designed to collect information on individual-level early literacy skills, as measured by a 

variety of sub-tasks from letter recognition to reading comprehension. EGRA was introduced 

in Ethiopia in 2010, with the aim of providing a national-level diagnostic of students’ reading 

levels within the rapidly changing primary school environment (Piper, 2010). As a school-

based assessment, EGRA is administered one-on-one to students currently enrolled in Grades 

2 and 3.26 The EGRA dataset contains basic information on individual-, family-, and school-

                                                
26 Grade 2 and Grade 3 were selected instead of Grade 1, as they represent students’ abilities after some years of 

schooling (AIR, 2016). 
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level characteristics and, crucially for my purpose, it asks students whether they ever attended 

preschool before entering primary school.  

Broadly speaking, the motivation for creating the EGRA was to ensure timely access to 

information that could inform learning improvement efforts in low-income countries (Dubeck 

& Gove, 2015). Drawing from an extensive body of research on early reading acquisition, 

including a U.S.-based instrument, the Dynamic Indicators of Basic Early Literacy Skills 

(Good & Kaminski, 2002), two main principles underpin the EGRA (Gove & Wetterberg, 

2011). First, provided that ‘acquiring reading skills is a multi-phased process’, EGRA breaks 

down each assessment into sub-tasks that correspond to the building blocks of reading 

acquisition. Second, with the knowledge that ‘learning to read is likely to vary by language and 

context’, EGRA uses a method-independent approach focused on core foundation skills. In 

other words, the EGRA instrument does not reflect any particular method of reading instruction, 

but instead allows the assessment design to be flexible, based on the linguistic context.27  

EGRA, which was developed in 2006 by multiple international agencies, including USAID, 

the World Bank, and RTI International, has been adapted for use in more than 70 countries and 

more than 120 languages.28 The EGRA has served multiple purposes: as a baseline measure of 

early reading acquisition (UNESCO, 2014); as a guide for the content included in an 

instructional programme (Gove & Cvelich, 2011); and as an impact evaluation tool for a 

literacy or educational intervention to inform the transition from pilot to country-wide scale-

up (Piper et al., 2018; Piper et al., 2014). Despite some limitations of the instrument itself, such 

as containing a limited construct for measuring early literacy or not being intended for use as 

a high-stakes accountability measure (see Bartlett, Dowd, & Jonason, 2015), the EGRA’s clear 

theoretical framework and consistent application procedures provide valid and reliable 

information for each of the purposes listed above (Dubeck & Gove, 2015).  

An important advantage of using the EGRA for the present study, in addition to demonstrating 

a link between preschool attendance and early literacy skills, is that the two assessments 

straddle the period of early learning reform in Ethiopia. In particular, this study leveraged data 

                                                
27 In Ethiopia, the instrument has been adapted locally. In order to test the reliability and validity of the various 

sub-tasks in six languages, all assessments were piloted extensively in each region prior to use (Piper, 2010). 
28 For updated figures (international), see the EGRA tracker at www.eddataglobal.org. 
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from two regionally/linguistically representative samples of Grade 2 and Grade 3 students that 

were collected in 2010 (pre-reform) and 2016 (post-reform). These datasets provide a unique 

opportunity to measure changes in the contribution of attending preschool during the transition 

to the mass system, concomitant with a sudden influx of children previously excluded from 

early childhood education. Figure 2.4 presents the enrolment trends in pre-primary education 

and the EGRA administration in Ethiopia. The survey instrument and data collection 

procedures for EGRA 2016 were modelled after the 2010 EGRA administration in a 

comparable manner, and thus were selected for this study.29 Three additional rounds of the 

EGRA were administered in 2013 and 2014; however, these were not included in the present 

study, either because no full dataset was available from the agencies, or because it was 

conducted as a pilot only for newly introduced languages.30   

Figure 2.4. EGRA Administration before and after the Reform in Ethiopia 

 
Source: MOE Education Annual Abstract Statistics 2010-2011 to 2016-2017 G.C., MoE, Ethiopia 
 
 

 

                                                
29 EGRA provides cross-sectional information as a new sample of schools and students were drawn in each round. 

The EGRA Ethiopia 2010 and 2016 datasets were obtained through the USAID Reading Network and USAID 

Ethiopia, respectively.  
30 In total, three agencies have been involved in Ethiopia’s EGRA administration: 2010 and 2014b EGRA by 

Research Triangle Institute (RTI); 2013 and 2014a EGRA by fhi360 as part of Improving the Quality of Primary 

Education Programme (IQPEP); and 2016 and 2018 EGRA by American Institute of Research (AIR) as part of 

USAID Reading for Ethiopia’s Achievement Developed Monitoring and Evaluation (READ M&E). It is 

inevitable to drop 2013 and 2014a EGRA, since only partial information from students’ responses is available, 

due to miscoded items. I’ve contacted the agency (fhi360), but due to the absence of the experts who were involved, 

full information is not available. Administration of EGRA 2018 was completed by AIR in June 2018 and data 

were to be released in early 2019.  
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2.6.1 Constructing a Comparable Dataset between EGRA 2010 and EGRA 2016  

1) The scope of the sample  

Regions and languages. The original EGRA 2010 and EGRA 2016 samples consisted of 

13,079 students (from 8 regions, speaking 6 languages) and 12,124 students (from 5 regions, 

speaking 7 languages), respectively. Approximately 90 percent of the population in Ethiopia 

speaks at least one of the languages spoken by the students who were assessed (AIR, 2016). 

For comparability between the two cohorts, the present study used final samples of 9,121 and 

8,332 students from each round, which were limited to five regions: Tigray, Amhara, Oromia, 

Somali, and the Southern Nations, Nationalities, and Peoples’ region (SNNP), as shown in 

Table 2.3. This was a crucial step to ensure that differences in patterns across early literacy 

achievement were not driven by regional differences in terms of who participated in the EGRA 

administration.  

Table 2.3. Comparable Sample between EGRA 2010 and EGRA 2016 

Region Language EGRA 2010 

 

EGRA 2016 

 

Number of 

students 

Number of 

students 

Tigray Tigrigna 1,537 1,709 

Amhara Amharic 2,259 1,748 

Oromia Afan Oromo 2,442 1,749 

Somali Aff Somali 1,163 1,352 

SNNP  Sidamu Afoo 1,720 1,774 

Total 9,121 8,332 

Source: EGRA Dataset 2010, 2016, USAID 

Importantly, as shown in the map in Figure 2.5, these five selected regions are where 94 percent 

of Ethiopia’s 4- to 6-year-old children live (Rossiter et al., 2018).31 These regions reflect a 

significant amount of linguistic and cultural diversity. The sample in four regions—Tigray, 

Amhara, Oromia, and Somali—are regionally representative, whereas the sample in SNNP is 

considered to be language representative, for the population speaks Sidamu languages. In 

SNNP, out of the 32 mother tongues officially adopted as a medium for textbooks and 

instruction, Sidamu is the most predominantly spoken and was included in both EGRA 2010 

                                                
31 All population statistics are estimates, projected from a national census conducted in 2007. The distribution of 

the 4- to 6-year-old population represents the distribution of total population (any age) across regions (Rossiter et 

al., 2018, p. 8).   
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and EGRA 2016.32 The final sample excluded two urban city centres (Addis Ababa, Harari),  

where private kindergartens are more prevalent, one small region (Benishangul-Gumuz), and 

two local languages (Hadiyya and Wolayitta), all of which were administered only once in 

either EGRA 2010 or EGRA 2016.33   

Figure 2.5. Map of Ethiopia: Five Sample Regions  

 

Sampling frame and weights. To ensure regional/language representativeness, all analyses in 

this study were estimated using survey weights provided by each round (AIR, 2016; Piper, 

2010). In the sampling frame of EGRA 2010 and EGRA 2016, once the regions, woredas, and 

schools were randomly selected, the stratified sample by gender and grades from each school 

participated in the assessment. EGRA 2010 specifically applied a three-stage stratified 

sampling framework by using a proportional population sampling at the regional and school 

levels, and systematic sampling at the classroom level (Piper, 2010). EGRA 2016 focused on 

ensuring that a certain number of schools and students (sample size) were randomly selected 

in each region to obtain the desired statistical power for regional/language representativeness 

(AIR, 2016).34 In both rounds, about 40 students were randomly selected from each school, 

                                                
32 The 2007 census reported that the predominantly spoken mother tongues in SNNP include Sidama (19.59%), 
Welayta (10.48%), Hadiyya (8%), Gurage (7.13%), Gamo (6.9%), Kafa (5.36%), and Amharic (4.10%). EGRA 

2014 (pilot) and EGRA 2016 included two additional languages (Hadiyya and Wolayitta) from the SNNP region.   
33 For example, the gross enrolment ratio of kindergarten in Addis Ababa was 87.5 percent in 2010-2011 and 90.8 

percent in 2016-2017, according to the National Education statistics.  
34 For the analysis of EGRA 2010, the Stata ‘svy’ command was used to establish the parameters for each level 

of selection; for EGRA 2016, proportional survey weights were used to adjust a fixed number of students from 

each school to actual school-level enrolment in a particular grade. With respect to the relation of sampling with 

other reading project, EGRA 2010 provides a baseline for the IQPEP and sampled the IQPEP schools purposively, 
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with equal proportions of girls and boys, and students from Grade 2 and Grade 3. The sample 

sizes in both EGRA 2010 and EGRA 2016 were larger than expected to test statistically 

significant differences (AIR, 2016; Piper, 2010).  

It should be noted that no EGRA administration achieved a complete random sampling, due to 

security reasons such as conflicts among ethnic groups, internal migration, and natural disasters 

(e.g., droughts, floods). In EGRA 2010, due to the political instability of the Somali region 

during the election period, convenience sampling was done in that region at the woreda level 

and random sampling at the school level. Similarly, EGRA 2016 avoided areas listed as the top 

priority zones by UNICEF’s Emergency Education Cluster report, which were in all five 

regions. To avoid any loss of sample, replacement schools were randomly selected from the 

initial sampling stage. About one-fifth of the initial sample schools were replaced during the 

data collection, due to security or other logistic issues (e.g., school closure). The largest 

replacement in 2016 was made in Oromia, followed by Amhara, Somali, Tigray, and SNNP 

(Sidamu).  

Lastly, from the selected regions and language groups, non-response rates were very low in 

both EGRA administrations. In EGRA 2010, item non-response was almost none for outcome 

variables and preschool attendance (less than 0.05% for both) and for a set of control variables 

(less than 0.01%). Similarly, in EGRA 2016 there were no missing values in outcome variables 

and preschool attendance. For the control variables collected by the self-reported survey, the 

non-response rate was very low, from 0.003 percent in language of instruction to 0.02 percent 

in father’s literacy. Considering the very low item non-response, I used listwise deletion (also 

known as complete case analysis), which is less likely to introduce bias if the data are ‘missing 

at random’ and provide accurate estimates of true standard errors (Allison, 2002).  

2) EGRA instruments and administration methods 

Since the EGRA created a locally adapted instrument in 2010, subsequent EGRA 

administration in 2013, 2014, and 2016 consistently applied test items comparable to the initial 

                                                
along with RTI schools, yet it doesn’t affect the representativeness of the sample (Piper, 2010). Although EGRA 

2016 was administered in support with the READ M&E project, this project was delivered at a national scale 

without phasing to allow for a control group (AIR, 2016; Gove et al., 2017). Thus, EGRA 2016 cannot be taken 

as a measurement of impact, nor can it be directly tied to implementation.  
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EGRA instrument. While retaining international comparability, the EGRA instrument appears 

to fit well with the expected learning competencies set by the Ethiopian curriculum for Grade 

2 and Grade 3 students (Piper, 2010). Of the seven EGRA sub-tasks, the one on phonological 

awareness was excluded from the present study, due to comparability issues between the two 

tests. While EGRA 2010 used three different phonological awareness tests—initial letter 

sounds, final letter sounds, and the number of sounds—differentiated by language 

characteristics, EGRA 2016 administered only an initial letter sounds test, regardless of 

language or region.35  

There was a partial revision of the original instrument in 2016, based on the newly developed 

mother tongue curriculum in Ethiopia. To establish item comparability between the 2010-

201436 and 2016 ORF sub-tasks, the survey was conducted with an additional sample of 1,400 

students during the EGRA data collection (AIR, 2016).37 By employing the common-person 

research design, the same students took part in more than one version of the assessment to 

detect any differences that could be attributed to the instrument characteristics, rather than to 

student characteristics. Based on the findings of this survey, the test items from the 2010-2014 

and 2016 EGRA instruments were equated, and it verified the comparable use of two different 

administration methods—paper-based versus tablet-based (tangerine) EGRA.  

2.6.2 Model Variables  

1) Key explanatory variable  

Preschool attendance. Preschool attendance was measured retrospectively through the student 

questionnaire. The following question was asked on the 2010 EGRA: ‘Did you go to pre-

primary or kindergarten?’ and the following on the 2016 EGRA: ‘Did you go to a nursery or 

preschool (zero-class) before Grade 1?’38 I categorised students as having attended ‘preschool’ 

                                                
35 Initial letter sounds for SNNP and Harari; final letter sounds for Tigray, Oromia, Somali, and Harari; and 

number of sounds for Amhara, Benishangul-Gumuz, Harari, and Addis Ababa (multiple tests administered in one 
region). 
36 The same test items were used between 2010 and 2014.  
37 Besides the 12,124 original EGRA 2016 sample, an additional 1,400 students (200 students in five schools per 

language) were sampled and participated in the pilot survey using common-person approach.  
38 ‘Nursery’ in Ethiopia is informal childcare provision by the private sector. Qualitative field research by Orkin 

et al. (2012) describes that nursery could be either 1- or 2-month childcare service or a half-semester programme 

that combined childcare and education. Nevertheless, provided that EGRA was implemented exclusively in public 

primary school, there was little chance that EGRA sample children attended nursery attached to private school. 
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if they attended any of these programmes, regardless of service provider or institution. 

‘Preschool attendance’ is thus defined as including a broad set of centre-based or classroom-

based ECE experience in formal and informal, public and private institutions.39 This is one of 

the major limitations of the present study, given that information collected by these questions 

cannot provide any details on the pre-primary service provision they received, such as 

preschool type, length or duration, and quality of instruction. There also is a possibility for 

biased recall of programme participation, as students were asked about preschool attendance 

retrospectively. The EGRA dataset, however, did not allow researchers to conduct any critical 

assessment of whether children in Grade 2 and Grade 3 reported correctly.  

Instead, to check the reliability of self-reported ‘preschool attendance’ in the EGRA, I looked 

at the trends of enrolment in pre-primary education reported by the official education statistics 

in Ethiopia (referred as the Education Management and Information System, EMIS hereafter). 

Table 2.4 displays the trends over academic years 2007-2008, 2008-2009, 2013-2014, and 

2014-2015, when the EGRA 2010 and EGRA 2016 cohorts belonged to the preschool-eligible 

group. On average, between 2007 and 2014, the gross enrolment rate soared from 4 percent to 

41.3 percent in the national statistics, while pre-primary participation of the EGRA sample 

increased from 14.2 percent to 38 percent.40 Some discrepancy in earlier years (e.g., 4% in 

EMIS and 14% in EGRA) may stem from underreporting issues in the kindergarten 

programmes run by the private sector, NGOs, and faith-based organizations (MoE, 2010, 

2012). In terms of trends by different ECE programme types, the enrolment rate in O-Class 

increased rapidly, from none to 24.4 percent between 2007 and 2014, which has continuously 

provided more than a half share of the ECE programmes. In contrast, the enrolment rate in 

kindergarten was starkly stable at 4 percent over this period. Two major data sources captured 

similar trends in pre-primary enrolment. This sheds light the unprecedented public attention to 

pre-primary education in recent years, mainly through a massive expansion of O-Class rather 

than an increase in private kindergartens or informal programmes. 

                                                
To my knowledge, there are no official statistics for nursery. Since the inclusion of nursery in the 2016 

questionnaire was inappropriate, I asked the administration agency to exclude this choice. For future EGRA 

administration, one additional question will be asked if a student responds to ‘yes’ to preschool attendance: which 

type of preschool they attended. 
39 A broad preschool category has been used in studies in Sub-Saharan Africa (Bietenbeck et al., 2017, for Kenya, 

Tanzania; Hungi & Ngware, 2018, for Uganda).  
40 The figure from the national statistics is the average between 2007-2008 and 2008-2009, and between 2013-

2014 and 2014-2015; the figure from EGRA is weighted value. 
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Table 2.4. Participation in Pre-Primary Education, EMIS and EGRA (5 regions) 

 

EMIS 

2007/08 

EMIS 

2008/09 

EGRA 

2010 

EMIS 

2013/14 

EMIS 

2014/15 

EGRA 

2016 

 KG KG  O-Class KG CtoC Total O-Class KG CtoC Total  

Tigray 1 10 12.6 9.6 6.2 64 79.8 28 7 64 99 50.0 

Amhara 2.0 2.2 6.1 31.3 2.6 8 41.9 31 2 8 41 22.0 

Oromia 3.0 3.4 21.9 12.4 5.4 2 19.8 17 6 2 24 23.6 

Somali 0.6 0.6 10.0 0.6 3.5 0 4.1 0.6 4.7 0.1 5.4 27.2 

SNNP  3.0 3.5 18.2 35.5 5.1 6 46.6 46 5 6 57 64.4 

Total 3.9 4.2 14.2 17.9 4.56 16 38.4 24.4 4 16 44.2 37.9 

Note: (1) for EGRA, weighted values are presented; (2) EGRA 2010 sample students were of preschool age (4- to 6-year-olds) 
between 2007-2008 and 2008-2009; (3) EGRA 2016 sample students were of preschool age between 2013-2014 and 2014-
2015, after the early learning reform was initiated in 2010; (4) EMIS stands for Education Management and Information 
System; (5) KG and CtoC stands for Kindergarten and Child-to-Child Program, respectively; (6) for Somali, data on EMIS 
2014-2015 is replaced by data from EMIS 2015-2016, considering the data availability; (7) SNNP in EGRA includes only the 
Sidamu language.  
Source: MoE Education Statistics Annual Abstract, 2007-2008, 2008-2009, 2013-2014, 2014-2015 E.C.; EGRA Dataset 2010, 

2016, USAID. 

Although the national figure helps us grasp the overall trends, the direct comparison between 

EMIS and EGRA data calls for some caution, for the following reasons. First, the gross 

enrolment ratio was calculated based on the age 4-6 population, yet O-Class explicitly targets 

6-year-old children. Moreover, this population estimate was drawn from the 2007 census, with 

a possible error in population estimation. Second, the EGRA represents one language group 

(Sidamu) from the SNNP region, which is about one-fifth of the entire region’s population, 

whereas EMIS represents the average pre-primary enrolment in the SNNP region. Third, data 

from the Somali region have not been properly reported in the annual statistics, due to the 

frequent school closures because of political instability and natural disasters, as well as weak 

data management capacity in the region. Fourth, the inclusion of the CtoC modality in the 

national statistics adds complexity in analysing the trends. For example, CtoC, which is 

dominantly provided in Tigray, is a rather informal programme for 4- to 6-years-old, where 

older children (Grade 5/6 students) teach younger children under the guidance of adults. Due 

to the ambiguity of the question being asked in EGRA 2016, it is not clear whether respondents 

count CtoC as their early learning experience before primary schooling, or they attended both 

CtoC and O-Class.  

2) Outcomes of interest  

Test scores from the EGRA sub-tasks. Academic outcomes were drawn from a direct 

assessment of students’ early literacy skills using the EGRA, which was conducted at the end 

of the academic year in 2010 and in 2016. The first set of outcome variables came from test 

scores measured by six EGRA sub-tasks, including (1) ORF; (2) letter name recognition; (3) 
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familiar words recognition; (4) invented words recognition; (5) reading comprehension; and 

(6) listening comprehension. ORF is the indicator from the EGRA most frequently used as a 

valid proxy for literacy skills (Piper et al., 2014).41 I also used other EGRA sub-tasks to 

consider the interconnectivity among all measures in the development of reading skills (Bartlett 

et al., 2015), as illustrated in Figure 2.6. To achieve ORF and reading comprehension, the 

ultimate goals of reading skills development, students started with the foundational cognitive 

skills (e.g., working memory, inhibitory control, etc.), and the emergent literacy and languages 

skills (e.g., phonological awareness, vocabulary, etc.) evolved through word recognition and 

listening comprehension.  

Figure 2.6. Skills and Abilities of Literacy and Reading Development 

 

Source: Kim, Boyle, Zulkowski, & Nakamura (2016, pg. 9) 

Table 2.5 summarizes the property of each EGRA sub-task. During a 15-minute, one-on-one 

oral assessment, primary grade students were asked by a trained enumerator to identify letter 

names or letter sounds and to read aloud common words and a brief grade-level passage (AIR, 

2016; Piper, 2010). The first four tasks were timed, with a one-minute limit. Students read from 

a printed paper sheet while the enumerator recorded their answers on a digital tablet. For the 

latter two tasks, students first read a passage and answered questions about the passage just 

read to determine reading comprehension; students then listened to a brief passage read aloud 

                                                
41 Researchers in the U.S. have found correlations between .49 and .83 for ORF scores and achievement tests 

(Barger, 2003; Shaw & Shaw, 2002; Silberglitt et al., 2006; Vander Meer et al., 2005; Wilson, 2005, cited from 

Piper et al., 2014). 
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by an assessor and answered the assessor’s five questions to determine listening 

comprehension.  

To ease the interpretation of the coefficients, I used both raw test scores and standardised scores 

(z-scores). The raw test scores are expressed as ‘correct letters/words per minute’ or 

‘percentage of correct answer’. A student’s standardised score was based on the mean and 

standard deviation of the raw scores of the corresponding test. For a particular outcome 

measure (e.g., ORF), this represents how much higher or lower an individual’s score was 

compared to other reading fluency test takers, as expressed in standard deviation units. 

Meanwhile, consistent with the global EGRA application (Gove & Wetterberg, 2011), each 

score from the six sub-tasks was used separately, instead of calculating the composite score. 

Table 2.5. Property of EGRA Sub-Tasks 

Sub-Tasks Property, Assessment Method 

Oral reading fluency 

(ORF) 

Assess the ability to read with speed, accuracy, and proper expression. This task 

examines whether students in Grades 2 and 3 were able to read aloud a passage 

with speed and accuracy with grade-appropriate words, as presented in the 

student workbook. ORF has a strong correlation with reading comprehension 

(Fuchs, Fuchs, Hosp, & Jenkins, 2001)  

Letter name recognition 

(or fidel identification) 

Assess knowledge of the alphabetic principle, the foundation of learning to read. 

The alphabetic principle is the understanding that words are composed of sounds 

(i.e., phonemes) and that letters (i.e., graphemes) are symbols that represent those 
sounds. Research in other languages has suggested that reading skills progress 

only after 80 percent of letters are mastered (Seymour, Aro, & Erskine, 2003) 

Familiar words  

recognition 

Assess the ability to recognise and read high-frequency words (determined by the 

most commonly used words in textbooks). Unlike ORF, this task is not presented 

as a story or complete text. From this task, we can attain a measure of 

decontextualised decoding skills, which is a distinct skill from reading 

comprehension from a text (Gove, 2009).  

Invented words 

recognition 

Assess the ability to decode one- and two-syllable non-words that could plausibly 

exist in the language in question. Compared to familiar word recognition, this 

task allows us to measure whether students can read non-sight-read words (Hirsh, 

2013).  

Reading comprehension Assess understanding of the text in a passage and the ability of pupils to answer 

factual questions and make inferences based on what they read in ORF subtasks. 

Research indicates that the ability to correctly understand and interpret oral 
stimuli (linguistic comprehension) and make meaning from what is heard is a core 

skill related to reading comprehension (Hoover & Gough, 1986; Kamhi & Catts, 

1991). 

Listening comprehension Assess some of the core dimensions of listening related to short-term memory, 

discriminating among distinctive sounds, detecting key ideas, and guessing 

meaning from context. In this task, students will answer several questions from a 

simple story read aloud by the administrator in an interactive situation. 
Source: AIR (2016, pp. 13-15) 

Non-reader and proficient reader based on Ethiopia’s reading proficiency level. In addition 

to the EGRA test scores, two outcome variables, non-reader and proficient reader, were used 
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in the present study. These indicators were widely used, especially for cross-country 

comparison, based on students’ achievement on the ORF assessment (Gove & Wetterberg, 

2011; Kelly & Graham, 2017). Non-reader was measured by the proportion of second- and 

third-grade students who could not read a single word correctly. Proficient reader was 

measured by the proportion of second- and third-grade students who were at the upper levels 

of reading proficiency. In Ethiopia, ‘proficient reader’ is a combined measure of two 

benchmarks drawn from four reading proficiency levels —‘reading with increasing fluency 

and comprehension (Level 3)’ and ‘reading fluently with full comprehension (Level 4)’—

which assesses students exhibiting relatively functional reading proficiency levels (AIR, 2016).  

As shown in Table 2.6, the reading proficiency level is defined distinctively by languages and 

grades in terms of correct words per minute, as measured by ORF. The range of each 

benchmark was developed through intensive data-driven consultation with the MoE, regional 

language experts, and key stakeholders (RTI, 2015). To establish benchmarks corresponding 

to students’ reading performance and the national curriculum, regional language experts 

created language-specific metrics, such as looking at the intervals of ORF scores achieved by 

the students who had 40 percent to 60 percent correct answers on the reading comprehension 

test, as compared to the students who had 80 percent to 100 percent correct answers on the 

same test. Although Level 4, ‘reading fluently with full comprehension’, is an absolute standard 

of performance agreed to by the MoE and language experts, fewer than 9 percent and 6 percent 

of the sample students belonged to Level 4 in 2010 and 2016, respectively. Therefore, the 

present study used the measure of proficient reader, which is equivalent to the functional reader 

and consists of students at Level 3 or above. In both EGRA 2010 and EGRA 2016, about 30 

percent of students were classified as proficient readers.  
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Table 2.6. Reading Proficiency Level by Languages and Grades 

Language Region Grade 

Non-Reader 

 

Reading 

slowly with 

limited comp 

Proficient Reader 

Reading with 

some fluency 

and comp 

Reading 

fluently with 

full comp 

(Level 1) (Level 2) (Level 3) (Level 4) 

Correct Words per Minute (CWPM) Measured by ORF 

Afan Oromo 

 

(Oromia) Grade 2 0 1-19 20-47 48 

 Grade 3 0 1-29 30-57 58 

Af-Somali 

 

(Somali) Grade 2 0 1-24 25-49 50 

 Grade 3 0 1-24 25-54 55 

Amharic 

 

(Amhara) Grade 2 0 1-29 30-49 50 

 Grade 3 0 1-34 35-59 60 

Sidamu-Afoo (SNNP) Grade 2 0 1-19 20-44 45 

  Grade 3 0 1-24 25-52 53 

Tigrinya (Tigray) Grade 2 0 1-20 20-54 55 

  Grade 3 0 1-25 25-61 62 

Source: EdDataII—Results of the Early Grade Reading Benchmarking Workshop in Ethiopia, RTI (2015)  

3) Model controls 

The present study included a set of control variables contained in both EGRA 2010 and EGRA 

2016 to account for non-random sources of selection into preschool. The EGRA is a school-

based assessment, thus background information was collected on students, teachers, and school 

principals by a contextual questionnaire. The questionnaire included a set of questions about 

student, parent, and family characteristics that potentially affected ECE exposure and students’ 

learning outcomes; however, this provided relatively limited information as compared to 

household-based surveys, which included a report from caregivers. Hence, the control variables 

used for the present analysis were initially limited to the few measures available and to its 

comparability between EGRA 2010 and EGRA 2016, before being guided by theory and prior 

research on these factors. 

Specifically, I first included child age and gender as demographic characteristic. Previous 

studies in LMICs and in Ethiopia have suggested that boys and older children are more likely 

to enrol in school and to present better academic performance (Lewin, 2009; Piper, 2010). 

Second, I included family characteristics that prior work has found to be associated with school 

participation and child outcomes in low-resource settings, including father’s and mother’s 

literacy, whether children speak the same language at home as they are taught in at school, and 

whether children have reading materials at home (Banerjee et al., 2008; Black et al., 2017; 

Seid, 2016). Notably, on the EGRA 2010, having reading materials at home was a stronger 
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predictor of better learning outcomes than being wealthy (as measured by higher 

socioeconomic status [SES] index) (Piper, 2010). 42  Third, geographical covariates were 

included in the current analysis to consider the potential overlap with preschool access and 

resource availability (Rossiter et al., 2018; Sun, Rao, & Pearson, 2015; Woldehanna & 

Gebremedhin, 2012). These included schools located in an urban versus rural areas and dummy 

variables of five regions in Ethiopia.  

As a limitation of the present study, the EGRA dataset has few measures for the SES or income 

levels of a family that prior research has found to be associated with school participation and 

child outcomes in LMICs (Black et al., 2017; Grantham-McGregor et al., 2007). EGRA 2010 

collected data on a set of previously validated household asset indicators (e.g., ownership of a 

radio, television, phone, bike, car, or animal, or whether the house has electricity, a roof, and a 

floor), whereas EGRA 2016 stopped collecting any of these indicators because the 

administration agency raised the issue of the reliability of self-reported responses from young 

children in Grade 2 and Grade 3.43  

Two variables collected in EGRA 2010 and EGRA 2016 were excluded from the current 

analysis: whether any family members help students with homework and whether a child was 

absent from school more than a week before the survey. These were excluded because they 

were regarded as post-treatment inputs to preschool attendance that occurred after a child 

entered primary school.44 Moreover, a family’s support for a child’s homework has an issue of 

multicollinearity, a situation in which two or more explanatory variables are highly linearly 

related. For example, family support is highly correlated with other independent variables in 

the regression model, such as mother’s literacy (0.30, p < .01) and father’s literacy (0.34, p 

<0.01). When multiple regressors are imperfectly multicollinear, the coefficients on these 

regressors will be imprecisely estimated, due to a large sampling variance (Stock & Watson, 

2015).  

                                                
42 For example, having other books at home is related with 10.3 more correct words per minute (cwpm) in Oromia, 

much larger than 3.0 cwpm related to higher SES index group (Piper, 2010). Please note that SES index is only 

available for the 2010 cohort, not for the 2016 cohort, thus is not included in the present analysis.  
43 Based on the personal interview with EGRA 2016 administration agency.  
44 In some cases, the type of questions has been changed. In EGRA 2010, six questions were asked to students 

specifically about who provides support doing their homework, including father, mother, siblings, other relatives, 

or tutors. EGRA 2016 asked a single question on whether any household members help with their homework.  
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2.7 Empirical Strategy 

2.7.1 Research Question 1: Probability-Probability Plot 

My first research question offers alternative views on test score metrics that compare 

achievement gaps in a nonparametric framework, as proposed by Livingston (2006), Ho 

(2009), and Ho and Reardon (2012). Using ordinal ‘proficiency categories’, this approach 

focuses in particular on the comparison of test score distribution across different tests, rather 

than on the comparison of mean test scores. This approach is pertinent to the present analysis, 

which examined the link between changes in policies and changes in achievement gaps 

between preschool attendees and non-attendees over time.  

The traditional achievement gap measures were concentrated on a difference between group 

averages or standard deviation units (i.e., effect sizes) and the percentage-above-cut metrics 

(i.e., differences in the share of students above the proficient level).45 Ho and Reardon (2012), 

however, raised the theoretical and practical challenges of these conventional approaches 

which concern their ‘transformation-dependence’ and ‘cut-score-dependence’. 46  First, 

average-based gap metrics, which rely on the assumption of equal-interval scale properties, are 

variable under plausible transformations of the test score scale (Ho & Reardon, 2012). If equal-

interval differences are not supported at all levels of the test score distribution, which is often 

the case in educational measurement, ‘nonlinear transformation becomes permissible and 

distortions of averages and Cohen-type effect sizes will result’ (p. 5). When it comes to the 

estimation of gap trends, traditional approaches further assume that the equal-interval scale 

properties are maintained over time, which leads to bias in the estimates. Second, the 

percentage-based metrics rely on how to define cut score; this could be altered substantially 

under the different cut scores or confound the comparison of test score distributions, depending 

on the density of students adjacent to the cut score (see more in Ho, 2008; Holland, 2002).  

                                                
45 The importance of ‘proficiency categories’ was heightened under the No Child Left Behind policy in the U.S., 

as the federal government sets the cut-off scores for proficiency levels and requires the state to meet this 

categorical threshold.  
46 Given that some states in the U.S. only disclose results in terms of categorical achievement levels (censored 

data), the lack of standard distributional statistics (test score) is one of the challenges listed by Ho and Reardon 

(2012), but this is not the case with the present paper.  



 

 

55 

To overcome these shortcomings, alternative gap metrics were proposed, including graphs and 

statistics that ‘share the property of invariance under monotone transformations of scales, 

thereby providing an attractive basis for comparisons across tests with different scales’ (Ho, 

2009, p. 202). Specifically, the probability-probability plot (PP plot hereafter) was used to 

present a transformation invariant comparison of a pair of test score distributions. The PP plots, 

which were first proposed by Wilk and Gnanadesikan (1968), were applied in the context of 

educational test gaps by Spencer (1983), Livingston (2006), Ho (2009), Ho and Reardon 

(2012). According to Ho (2009), this nonparametric representation of trends, gaps, and gap 

trends (TGGT) holds ‘both theoretical and practical advantages for cross-test comparisons, 

particularly as they may help to encourage a distribution-wide perspective TGGT-based 

inferences’ (p. 202). This provides a stronger basis for achievement gap comparisons over time 

and across different sub-geographical units (e.g., districts, provinces, or villages). The present 

study’s novel approach to capturing gap trends during the policy change offers more 

comparable and comprehensive measures for the achievement gap between preschool attendees 

and non-attendees than any conventional approach.  

2.7.2 Research Question 2(1): Ordinary Least Square and School Fixed Effects  

1) Education production functions and ordinary least squares  

To estimate the relationship between preschool education and student outcomes, the present 

study employed an education production function approach. The education production 

function, which draws from human capital theory (Becker, 1962), is concerned with measuring 

the productivity of the relationship between investments and a return in educational 

outcomes. 47  This approach, largely applied by economists, has focused on testing the 

hypothesis of a causal relationship between resource inputs into the education process—such 

as parental investment, school type, teacher quality, and school resources—and educational 

outcomes via human capital accumulated and improved productivity of the individual (for 

reviews, see Haveman & Wolfe, 1995; Hanushek, 2002). The education production function 

                                                
47  This framework is analogous with the Cobb-Douglas (1928) production function, which is the universal 

functional form of production growth that relates production inputs and output for the U.S. manufacturing sector 

in the early 1990s (Kleyn, Arashi, Bekker, & Millard, 2017). A production function identifies the maximum 

quantities of a particular good (or service) that can be produced per time period with various combinations of 

resources and with a given state of technology. 
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has been used as a framework to uncover child development, such as the determinants of 

children’s cognitive achievement (Todd & Wolpin, 2003) and inequalities in educational 

achievement by socioeconomic background and race (Todd & Wolpin, 2007).  

According to Todd and Wolpin (2003), the production function framework reflects theoretical 

notions that ‘child development is a cumulative process depending on the history of family and 

school inputs and on innate ability’ (p. 53). This approach offers a frame to map the interaction 

of family background and the current skill level of the individual child, along with investment 

at each age into the child’s development and growth. The model requires the specification of a 

particular relationship between a set of inputs and the outputs. This is represented as follows:  

            𝑌𝑖𝑡 = 𝑓(𝑃𝑖𝑡, 𝑋𝑖𝑡 , 𝐹𝑖𝑡 , 𝑆𝑖𝑡 , 𝜖𝑖𝑡)                     (1)   

where 𝑌𝑖𝑡 represents the educational attainment for student i at time t, which is determined by 

a set of early childhood experiences (𝑃𝑖𝑡), such as the quality of stimulation at home or any 

centre-based early learning from birth to before primary school entry; a set of individual 

characteristics (𝑋𝑖𝑡), such as age and gender; a set of cumulative family (parent-chosen) inputs 

(𝐹𝑖𝑡), such as parental education, wealth level, ethnicity, and home language; and school- or 

system-based inputs (𝑆𝑖𝑡 ), such as school resources and management capacity. The key insight 

for the present study is that a child’s learning productivity is partially determined by the 

parents’ investment in sending the child to preschool in early childhood, which is part of 𝑃𝑖𝑡. 

Besides, although the individual characteristic 𝑋𝑖𝑡 was often regarded as the individual’s innate 

ability (Todd & Wolpin, 2003), more recent understanding of genetics (see Shonkoff & 

Phillips, 2000; Rutter, 2006) has revealed that the notion of a fixed genetic component can be 

misleading, given that an individual’s genes interact with their early environment (Britton & 

Vignoles, 2017).   

Using the Cobb-Douglass functional form expressed in equation (1), one can take the log of 

the production functions, which becomes a linear approximation in the parameters of interest. 

This approach is useful because it allows us to identify the degree of influence of each different 

input on child development. Following this framework, I used an ordinary least square (OLS 

hereafter) regression model to estimate the association between preschool attendance and 

students’ academic achievement (test scores) that accounts for the various child- and 

household-level factors. The basis of my estimation strategy can be summarised as follows:  
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𝑌𝑖 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖  +  𝛽2𝑋𝑖 +  𝛽3𝐹𝑖 + 𝜖𝑖        (2) 

where 𝑌𝑖 represents the academic achievement for student i measured by early grade reading 

assessment; 𝑃𝑅𝐸𝑖 represents a binary variable of preschool attendance (a variable of interest in 

this study), an indicator that takes on a value of one if the child ever attended any form of pre-

primary institution or zero if they did not. 𝑋𝑖  and 𝐹𝑖 represent covariates, each denoting 

student- and family-level characteristics, including regional dummies (i.e., region fixed effects 

that address between-region variations). 𝛽1 to 𝛽3 are the respective coefficients for these three 

vectors, and 𝜀𝑖 is an error term (residual) that captures unmeasured variables.48  

In equation (2), the parameter of interest in this paper is 𝛽1, which is supposed to capture the 

association between preschool attendance and students’ academic achievement. To address my 

second research question—whether this association changed during the early learning reform 

in Ethiopia—the present analysis focused in particular on how this parameter 𝛽1  changed 

between 2010 (t-1) and 2016 (t), denoting the pre- and post-reform periods. This can be 

expressed simply by the difference between 𝛽1𝑡−1 and 𝛽1𝑡. Using two cross-sectional EGRA 

datasets with comparable information, I estimated equation (2) for the 2010 and 2016 cohorts 

separately in order to capture trends on whether the role of preschool in predicting early grade 

reading achievement had changed from before to after the reform.49  

Selection bias of preschool attendance. My findings should be interpreted as the association 

between preschool attendance and students’ academic outcomes. In the absence of 

experimental data randomly assigning children to preschool, I was unable to adequately control 

for non-random selection into preschool (e.g., parental motivation or local education policy) 

                                                
48 To account for the possibility of correlated errors across individuals nested in school, all models include robust 

standard errors clustered at the school level. 
49 Provided that Ethiopia’s preschool expansion in 2011 created an exogenous source of variation in cohorts (i.e., 
a 2010 cohort who hadn’t exposed to the reform versus a 2016 cohort who were exposed to the reform) and 

regions (i.e., a different pace of preschool expansion by region), I could have conducted a model using the 

difference-in-difference (DID) framework, which enables researchers to identify the causal inference. However, 

due to the data limitations, I could not meet the conditions of applying DID.  The two EGRA datasets here are 

neither following the same set of children (panel) nor containing the same unit of analysis (e.g., district, village, 

or smaller administrative units like a woreda). Besides, there is a considerable regional difference in the preschool 

expansion and the phase of expansion is irregular between and within region, as it was heavily dependent on the 

capacity of regional/local governments and communities.  
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by the OLS model in equation (2).50 Students who attended preschool tended to be different in 

both observable and unobservable ways from their peers who did not attend preschool.  In 

Ethiopia, for instance, the key predictors of attending preschool were having a more educated 

caregiver, belonging to a household with greater wealth, living in an urban area, and being a 

first-born child (Vandemoortele, 2018), and no single factor explained all the determinants of 

preschool. To the extent that sources of selection into preschool were confounded by 

unobservable characteristics (𝜀𝑖) over and above those included in covariates (𝑋𝑖 and 𝐹𝑖), the 

concern for the unobserved variable bias remains; this is also known as selection bias or 

endogeneity. Therefore, coefficients presented in this study should be interpreted as indicating 

association, not as causal inferences.  

2) School fixed effects versus random effects model  

Another challenge to the straightforward OLS estimates is that children who attended preschool 

may be selected into different schools than other children. Because children with preschool 

experience are more likely to sort into a high-performing school than a low-performing school 

(Magnuson, Meyers, & Ruhm, 2004), a simple comparison to children without any preschool 

experience will be biased upward. This motivates the use of school fixed effects, which 

compares children who attended preschool with children in their schools who did not. Because 

the current analysis focused on the role of preschool in determining student outcomes no matter 

what subsequent school experience they had, the model including a school fixed effect could 

ensure that important school-level variance (e.g., school resources) was adjusted for the 

estimation.  

The estimation of school fixed effects could be best understood in the multi-level (or mixed) 

model. In principle, any analysis including student achievement needs to reflect the hierarchical 

nature of the data, where students are nested within schools. It is well established that students’ 

achievement in the same school is likely to be clustered, due to the influence of unmeasured 

school characteristics such as schoolwide policies and leadership (see Goldstein, 1995; 

Raudenbush & Bryk, 2002; Snijders & Bosker, 1999). Using multi-level models accounts for 

students’ clustering in schools while allowing student- and school-level characteristics to be 

                                                
50 The OLS model holds the assumption that all factors in the unobserved error term (𝜀) are not correlated with 

the explanatory variables, expressed as E ( 𝜀 | PRESCHOOL) = 0. 



 

 

59 

included together (Clarke, Crawford, Steele, & Vignoles, 2015). Because multi-level models 

enable researchers to assess between- and within-school variance in student outcomes, 

estimation of multi-level regression models can be done by treating school effects as either 

random or fixed. In the following section, I review each approach to identify the best model 

for the current study, based on their strengths and weaknesses.  

The following equation (3) represents a random intercept multi-level model that reflects a two-

level nested structure:  

𝑌𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠  + 𝛽2𝑋𝑖𝑠 +  𝛽3𝑆𝑠 + 𝑢𝑠 + 𝜀𝑖𝑠         (3) 

where 𝑌𝑖𝑠  represents academic achievement of student i nested in school s; 𝑃𝑅𝐸𝑖𝑠  denotes 

preschool attendance; 𝑋𝑖𝑠 is covariates representing student- and family-level characteristics; 

and 𝑆𝑠  represents school-level characteristics (that vary between schools). Unlike the OLS 

model (eq. (2)), the multi-level model contains a composite residual that sums two distinct 

error terms: 𝑢𝑠 is the school-level residuals and 𝜀𝑖𝑠 is the student-level residual.51 This also can 

be expressed as:  

𝑌𝑖𝑠 =  (𝛽0 + 𝑢𝑠) +  𝛽1𝑃𝑅𝐸𝑖𝑠  +  𝛽2𝑋𝑖𝑠 + 𝛽3𝑆𝑠 + 𝜀𝑖𝑠       (4)  

By a simple re-ordering of the terms in the model itself, equation (4) can explain why this 

model is referred to as a random intercept multi-level model. Essentially, the inclusion of 

school-level residuals 𝑢𝑠 in the model leads us to provide each school with its own ‘random’ 

intercept, represented by (𝛽0 +  𝑢𝑠). When we fit this random effect model to data, we do not 

estimate each of the school-specific intercepts but the school-level residual variance, which is 

a summary of the variability in the school-mean value of the outcome from school to school 

(Murnane & Willett, 2010). This is often referred to as between-school variance, which 

summarizes the scatter in the outcome among schools. However, in the random-effects models, 

the probability of individuals attending preschool depends only on observed school 

characteristic 𝑆𝑠  (e.g., whether the school has an O-Class or not). In other words, the random 

                                                
51 The school-level residual 𝑢𝑠 is the sum of (a) all effects on academic performance of the school-level factors 

(which are correlated with preschool attendance) in 𝐹𝑠𝑐ℎ𝑜𝑜𝑙, and (b) the effects of all other school-level influences 

on academic performance which are uncorrelated with the preschool attendance. Thus, the random effects 

assumption on ‘𝑢𝑠 should not be correlated with 𝑃𝑟𝑒𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑠 ’ can be failed if 𝐹𝑠𝑐ℎ𝑜𝑜𝑙 is not empty. 
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effect assumption holds only when unobserved school effects are not correlated with the 

probability of attending preschool, expressed as (E (𝑢𝑠| 𝑃𝑅𝐸𝑖𝑠) = 0).  

Nevertheless, in many real settings, the probability of attending preschool also depends on 

unobserved school characteristics. For instance, school principals could try to enrol as many 

children in O-Class as possible if higher enrolment attracts additional financial resources. 

When the random effects assumption is unlikely to hold, the school fixed effect model offers a 

potential solution to account for unobserved school effects by containing an intercept parameter 

for each school. In fitting the school fixed effect model to the data from the EGRA 2016, there 

would be 225 such intercepts, one for each of the 225 schools in the sample. Equation (5) 

exemplifies the theory behind the fixed effect assumption:  

𝑌𝑖𝑠 = (𝛽0 +  𝛽2𝑆2𝑠 + 𝛽3𝑆3𝑠 +  … + 𝛽225𝑆225𝑠) +  𝛽1𝑃𝑅𝐸𝑖𝑠+ 𝛽2𝑋𝑖𝑠 +  𝛽3𝑆𝑠 +  𝜀𝑖𝑠   (5)  

The equation creates a set of dichotomous variables, 𝑆1  through 𝑆225 , to represent the 225 

schools in the sample, setting each of these dummies equal to 1 when the child belongs to that 

school, to 0 otherwise (as the reference category, the first school 𝑆1 has dropped in the model). 

After the school-level variance 𝑢𝑠 has been removed from the outcome variability, the only 

residual remaining in the model is the child-level residual variance 𝜀𝑖𝑠. It often is referred to as 

within-school variance, which describes the scatter in the outcome from student to student 

within each school. Because this child-level residual satisfies OLS assumptions implicitly, we 

do not need any further assumption to fit a fixed effect model (Clarke et al., 2015; Murnane & 

Willett, 2010).52 The identifying assumption is that selection into preschool among students of 

the same school is uncorrelated with the unobserved school-level determinants of outcomes, 

which are stable elements over time.53  

The choice of the appropriate model—random versus fixed—is often driven by discipline 

tradition; however, the decision should be guided by the research context and data-specific 

characteristics (Clarke et al., 2015). In my empirical questions, the primary interest is students’ 

                                                
52 Unlike the random-effects assumption, it does not matter if the fixed effects that present the grouping are 

correlated with other predictors in the model at any level, because regression analysis is designed to permit 

predictors to be correlated (Murnane & Willet, p. 133). 
53 School fixed effects only account for time-invariant unobserved differences, thus the estimate can be biased if 

any time-variant difference occurred to the school or community (e.g., shocks by drought, flood, or political 

clashes).   
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characteristics (i.e., preschool attendance) rather than the characteristics of the schools they 

attended at the primary level. In this regard, the school fixed effect model is appropriate, as it 

allows me to control for unobserved, time-invariant between-school differences which may 

sort preschool attendees and non-attendees during the transition to primary school. This 

approach is useful for the current study where the data were quite limited to adjust for the 

effects of preschool assignment from multiple sources.  

One disadvantage of the fixed effects approach as compared to the random effect approach is 

‘efficiency’. Given that the number of regression parameters will increase vastly by the 

inclusion of a dichotomous predictor of each school, the degrees of freedom are reduced, then 

the standard errors tend to increase.54 Moreover, given that schools are used as their own 

controls, a school fixed effects model requires certain within-school variability in the variable 

of interest (preschool attendance). If there is little variability within schools, the standard errors 

from fixed effects models may be too large to tolerate; thus, this will be discarded from the 

estimation (Allison, 2009).  

Importantly, it should be acknowledged that neither a school fixed effect nor random effect 

model will address the unobserved characteristics of students and parents. All the estimates 

using the multi-level model thus should be recognised as an association, although the fixed 

effect model can provide better estimates than OLS or a random effect model in the present 

study. In fact, prior studies on the effect of preschool attendance used the ‘household’ or 

‘sibling’ fixed effect model to account for the unobserved characteristics of parents and 

household (Berlinski et al., 2008; Bietenbeck et al., 2017; Currie & Thomas, 1995; Deming, 

2009; Garces, Thomas, & Currie, 2002). This approach could be more robust than the school 

fixed effect model; however, EGRA is the school-based assessment and such information at 

the household level is not available for the current study.  

                                                
54  The standard error is a measure of how representative of the population a sample is likely to be (the accuracy 

with which a sample represents a population). Therefore, having a large standard error relative to the mean 

indicates that there is a lot of variability between the means of different samples, and therefore the sample might 

not be representative of the population. 
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2.7.3 Research Question 2(2): Logistic Regression, Predicted Probabilities, and Marginal 

Effects 

The next research question continues to address the relation between preschool attendance and 

early grade reading outcomes by using different outcome variables on the probability of being 

a non-reader or a proficient reader. These outcome variables take only two possible values, that 

is, either non-reader or not, either proficient reader or not; hence, I used a multivariate logistic 

regression model for this analysis. Initially, given that reading proficiency was categorised into 

four levels, the ordered logistic or multi-nominal logistic models were considered but dropped, 

due to concerns about the ordinality of the dependent variable and interpretability. First, the 

assumption of an ordered logistic model is that the interval among the categorical dependent 

variables (more than two) should be of equal distances on a single, underlying dimension (Long 

& Freese, 2014). However, this is not the case for the reading proficiency categories in 

Ethiopia, as shown in Table 2.6. Five mother tongues have their own distinctive metrics, which 

contain varied benchmark ranges for each proficiency category and by grade. For example, on 

reading proficiency levels in Amharic, the benchmark ranges for Levels 2 and 3 are 1-29 and 

30-49 for Grade 2 and 1-34 and 35-59 for Grade 3, respectively.  

Alternatively, a multi-nominal logistic model can be considered where the categories are 

assumed to be unordered. However, the biggest challenges of a multi-nominal logistic model 

are that the model includes many parameters and so it is easy to be overwhelmed by the 

complexity of the results (Long & Freese, 2014). This complexity is compounded by the 

nonlinearity of the model, which adds more complications in interpretation. Provided that the 

multi-nominal logistic model essentially fit separate binary logistics for each pair of outcome 

categories, I decided to use the most meaningful pair of outcome categories in the EGRA 

context (i.e., non-reader: Level 1 vs. Levels 2, 3, 4; proficient reader: Levels 1, 2 vs. Levels 3, 

4) using the multivariate logistic regression model.55 Lastly, one can consider the benchmark 

for the reading comprehension test (80%, or 4 out of 5 correct answers, regardless of language) 

to avoid high dependency on ORF scores. However, student performance on the reading 

comprehension test was generally too low, as only 6 percent of Grade 2 and Grade 3 students 

                                                
55 The proportion of students at Level 4 was less than 9 percent and 6 percent in 2010 and 2016, respectively, thus 

division by Levels 1, 2, 3 vs. Level 4 was excluded.  
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reached this benchmark. About 78 percent and 84 percent of students could reach even a 50 

percent reading comprehension level in 2010 and 2016, respectively.  

When using nonlinear models, the simple interpretations of the estimated parameters that are 

applied to linear models are no longer valid. In nonlinear models, the effect of a change in a 

variable depends on the values of all variables in the model. For instance, the curves are not 

parallel in the probability density function used in the nonlinear model, thus the magnitude of 

the difference in the predicted probability y at a binary independent variable d = 1 compared 

with d = 0 depends on the values of x (a continuous independent variable), where the difference 

is computed (Long & Freese, 2014, p. 136). Because of this nonlinearity, no single method of 

interpretation can fully describe the relationships among independent variables and dependent 

variables. Instead, a series of post-estimation explorations, largely based on predictions, are 

needed to uncover the most important aspects of these relationships. By computing predicted 

or expected values for hypothetical or prototypical cases, researchers can covey more tangible 

and practical significance of the findings (Cameron & Trivedi, 2010; Long & Freese, 2014; 

Williams, 2012). 

Therefore, I documented the results of the logistic regression in terms of odds ratio, marginal 

effects, and predicted probabilities.56 Odds ratio is the multiplicative change in probability for 

a unit increase in explanatory variable, holding other variables constant. For the binary 

measures such as non-reader, odds ratio represents the relative change in the probability of 

being a non-reader when preschool attendance is measured against a reference category—0 (no 

preschool) and 1 (preschool). Generally, odds ratio > 1 indicates increased occurrence of 

outcome variables and odds ratio < 1 indicates decreased occurrence of outcome variables. It 

is helpful to look at how much the odds ratio deviates from 1 (no association), for example, an 

odds ratio of 0.75 (less than 1) means that the outcome is 25 percent less likely to happen in 

one group.57 When interpreting the outcome variables in the present study, odds ratio < 1 is 

positive results for ‘reducing’ the probability of being a non-reader, whereas odds ratio > 1 is 

positive results for ‘increasing’ the probability of being a proficient reader.  

                                                
56  Given that the standard outputs of regression coefficient in nonlinear models do not provide a unique 

interpretation of the relationship of the explanatory variables with the outcomes, I didn’t present the regression 

coefficients in this paper (the result is available upon request). 
57 Likewise, an odds ratio of 1.33 (greater than 1) means that the outcome is 33 percent more likely to occur in 

one group. 
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Nevertheless, the interpretation of the odds ratio is not straightforward. The odds ratio indicates 

the direction of the relationship and its statistical significance; however, this has little value in 

conveying the magnitude of effects (Long & Freese, 2014). Moreover, the odds ratio could 

limit the reflection of nonlinearity in the model, as it assumes to hold other variables constant 

regardless of their levels, and a constant factor change in the odds does not imply a constant 

change in the probability. To facilitate an interpretation of the results in more practical terms, 

I presented marginal effects and predicted probabilities. 

Marginal effect (differences in predicted probabilities) is the additive change in predicted 

probability for a unit increase in explanatory variable, holding other variables at specific values 

(Long & Freese, 2014). The term ‘effect’, however, does not necessarily mean causal inference. 

The ‘marginal effect’ or simply ‘effect’ of a variable ‘preschool (X)’ on ‘learning outcomes 

(Y)’ is, in fact, the marginal variation (partial derivative) of Y associated with a unit change in 

preschool attendance X from 0 to 1.  

Unlike the marginal effects in the linear regression that equal the relevant slope coefficients, 

the calculation of the marginal effects in the nonlinear regression remarkably varies according 

to the value at which the other variables are set (Cameron & Trivedi, 2010). This can be 

calculated as ‘average marginal effects’ or ‘marginal effects at the means’, which are widely 

used approaches across disciplines. In the present study, average marginal effects were used, 

given that theory does not support the selection of specific fixed values used in marginal effects 

at the means. Average marginal effects (AMEs), or average predicted probabilities, are the 

expected probability of a person with average characteristics. In other words, the average 

predicted probability of being a non-reader for those who attended preschool was computed 

for each child, using that child’s actual observed values of all the other explanatory variables 

when preschool was set as equal to attending preschool, and the predicted values from each 

case were then averaged.  

By comparison, marginal effects at the means (MEMs), or predicted probabilities at the means, 

are the expected probability of a person holding all other predictors fixed at their mean values 

when preschool was set as equal to attending preschool. In the current analysis, for example, 

the average individual at their mean values indicated that the student was 9.84 years old, 50 

percent were female, 95 percent used the same language at home, 44 percent had reading 
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materials at home, 72 percent had a father who can read and write, and 47 percent had a mother 

who can read and write, which is an implausible individual. A common criticism of the MEMs 

is that there typically is no actual case in the dataset for which all variables equal the mean.  

Taking into account this limitation of MEMs, some researchers (e.g., Bartus, 2005; Cameron 

& Trivedi, 2010) prefer to use AMEs, which could be the best summary of the effect that 

averages the individual effects across all cases in the sample. Nevertheless, it should be noted 

that researchers are divided as to which model produces superior estimates. No matter how 

‘average’ is defined, two common approaches produce only a single estimate of the marginal 

effects, and this can obscure differences in effects across cases (Williams, 2012). Bear this 

caveat in mind: when interpreting results in the current analysis, it is important to remember 

that these are AMEs and average predicted probabilities that could be interpreted as the average 

size of the effect in the sample.  

2.8 Results  

2.8.1 Descriptive Statistics: Sample Characteristics and ECE Participation  

1) Sample characteristics  

Table 2.7 presents the sample descriptive statistics, including the overall sample characteristics 

and whether the child had ever attended preschool. On average, children were ten years old at 

the time of the assessment. Among the sample evenly stratified by gender and grades, 48 

percent and 51 percent of female students reported that they attended preschool in 2010 and 

2016, respectively.58 On average, about 80 percent of children were living in rural areas; among 

students who attended preschool, the percentage living in rural areas increased from 66 percent 

in 2010 to 71 percent in 2016, while 85 percent of students from both cohorts who didn’t attend 

preschool were living in rural areas.59 In total, students who attended preschool were more 

likely to have a mother tongue textbook, have reading materials at home, and have a father or 

mother who could read and write than those who didn’t attend preschool, while overall gaps 

between the two groups widened from 2010 to 2016. For instance, the differences in mother’s 

                                                
58 These corresponded to the MOE’s education annual statistics reporting no gender disparity in pre-primary. 
59 The urban-rural composition in Table 2.7 is computed by (preschooler in rural)/(total rural population), whereas 

Table 2.9 is computed by (preschooler in rural)/(total preschooler in urban and rural).  
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literacy between preschool attendees and non-attendees increased from 14 percentage points 

(50% vs. 36%) to 22 percentage points (60% vs. 38%) between 2010 and 2016.60 Although 

children who didn’t attend preschool were more likely to use the same language at home as 

that used for instruction than their peers who attended preschool, these differences were not 

statistically significant. Overall, the descriptive picture suggests that families that chose to send 

their child to preschool in 2010 were not necessarily similar to the ones who did so in 2016. 

The substantial change in the composition of attendees versus non-attendees during the massive 

expansion of preschool, as well as differences between the two groups, highlights the need to 

account for baseline differences when estimating the role of preschool attendance in predicting 

child academic outcomes.  

Table 2.7 also reports the average difference in early grade reading achievement based on 

preschool attendance between 2010 and 2016. Across eight outcome variables measured by the 

EGRA sub-tasks and the proportion of non-readers and proficient readers, students who 

attended preschool showed better performance on average than students who did not (except 

the proportion of non-readers in 2010). Notably, these achievement gaps widened between 

2010 and 2016—that is, preschool attendees read 5.8 more correct letter sounds per minute 

(clpm) than non-attendees in 2010, and this gap had grown to 10.5 clpm between preschool 

attendees and non-attendees in 2016. It should be noted that, considering the fundamental 

differences among the five languages, the direct comparison of average test scores is not a 

preferred approach using EGRA (AIR, 2016; Piper, 2010).61 The descriptive summary on mean 

difference provides rough estimations of trends in early grade reading achievement in 2010 

and 2016; the in-depth analysis by regions/languages is presented in the next section.   

  

                                                
60 Note that there is an overall improvement of adult literacy rates in Ethiopia over this period. According to the 

Ethiopia’s Demographic and Household Survey (DHS, 2011, 2016), between 2011 and 2016, females (among 

women aged 15-49) who can read a whole sentence or part of a sentence increased from 27.2 percent to 39.6 

percent, and males (among men aged 15-49) who can read a whole sentence or part of a sentence increased from 

48.6 percent to 62 percent. 
61 The descriptive statistics by regions/languages can be found in the EGRA country report by RTI (2010) and 

AIR (2016) and is also available upon request.  
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Table 2.7. Descriptive Statistics of Control Variables 
     2010   2016  

 
2010 average 2016 average Dif 

Pre 
(a) 

No-
Pre 
(b) 

(a)-(b) 
Pre 
(a) 

No-
Pre 
(b) 

(a)-(b) 

 m (SD) m (SD)  m m Diff. m m Diff. 

Variable of Interest  

Preschool 
Attendance 

0.14 (0.35) 0.38 (0.49) *** - - - - - - 

Covariates 

Age 10.14 (2.06) 9.84 (1.68) - 9.98 10.17 -0.19* 9.43 10.09 -0.66*** 

Female 0.50 (0.50) 0.49 (0.50) - 0.48 0.50 -0.02 0.51 0.48 0.03** 

Rural 0.82 (0.38) 0.79 (0.41) - 0.66 0.85 -0.19** 0.71 0.84 -0.13*** 

MT textbook 0.75 (0.43) 0.71 (0.45) - 0.80 0.74 0.06 0.77 0.68 0.09*** 

Book at home 0.21 (0.41) 0.44 (0.50) *** 0.30 0.20 0.10*** 0.53 0.38 0.15*** 

Mother’s 

literacy 
0.38 (0.49) 0.47 (0.50) *** 0.50 0.36 0.14*** 0.60 0.38 0.22*** 

Father’s literacy 0.52 (0.50) 0.72 (0.45) *** 0.64 0.50 0.14*** 0.81 0.66 0.15*** 

Same language 
of instruction  

0.90 (0.30) 0.94 (0.23) - 0.85 0.91 -0.06 0.94 0.95 -0.01 

Outcome Variables  

ORF 

(cwpm) 
21.78 (21.35) 21.25 (20.93) - 23.79 21.42 2.37 23.85 19.66 4.19*** 

Letter sounds 
recognition 
(clpm) 

45.35 (31.29) 47.61 (31.28) - 50.24 44.48 5.76* 54.11 43.64 10.47*** 

Familiar words 
recognition 
(cwpm) 

20.85 (19.43) 22.78 (21.31) - 22.58 20.49 2.09 26.14 20.73 5.41*** 

Invented words 

recognition 
(cwpm) 

13.72 (13.68) 15.57 (15.29) - 15.61 13.44 2.17** 18.09 14.04 4.05*** 

Reading 
comprehension 
(% of correct) 

24.00 (27.00) 22.59 (27.70) - 28.02 23.29 4.73* 25.57 20.76 4.81*** 

Listening 
comprehension 
(% of correct) 

55.82 (29.95) 74.31 (26.09) *** 62.28 54.47 7.81** 77.15 72.57 4.58*** 

% of non-reader 0.32 (0.47) 0.26 (0.44) ** 0.34 0.32 0.02 0.19 0.30 -0.11*** 

% of proficient 
reader  

0.39 (0.49) 0.39 (0.49) - 0.44 0.38 0.06 0.46 0.35 0.12*** 

Observations 9,121  8,332   1,245 7,876  2,989 5,343  

Note: (1) All figures were weighted by sample weight, given that the weighted descriptive values could accurately measure 
the true value in the population (Solon, Haider, & Wooldridge, 2013); (2) ‘Dif’ column shows the results of test for difference 

in proportions or means with different samples (EGRA 2010 and EGRA 2016). *** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 

2) ECE participation: A shift from an elite to a mass system  

With respect to preschool access, approximately 14.2 percent and 37.9 percent of children were 

reported to have attended any form of ECE, nearly tripling between 2010 and 2016 (Table 2.7). 

Table 2.8 provides further details on the expansion of pre-primary education by region during 
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the reform period. As shown in Table 2.8, there were significant regional variations in the 

growth of preschool coverage. The most notable expansion was observed in SNNP (Sidamu), 

where preschool participation soared from 18.2 percent to 64.4 percent over the six-year period. 

In contrast, there was no change in preschool participation in Oromia between 2010 and 2016. 

Table 2.9 illustrates these trends, divided by urban and rural residence. In 2010, the proportion 

of children who attended preschool was, on average, 27.4 percent for those living in an urban 

area and 11.4 percent for those living in a rural area. In 2016, this proportion increased 

significantly in both locations: 52 percent of children from urban and 34 percent of children 

from rural areas attended preschool before they entered formal schooling. Noticeably, 

preschool attendance in rural areas showed a steeper increase between 2010 and 2016 than in 

urban areas, but it still lagged behind preschool coverage in urban areas.  

Table 2.8. Proportion of Children Who Attended Preschool (EGRA) 

Region 

EGRA 2010 EGRA 2016 

Pre No-Pre Total % (weighted) Pre No-Pre Total %(weighted) 

Tigray 186 1,351 1,537 12.1% (12.6) 769 940 1,709 45.0% (50.0) 

Amhara 158 2,101 2,259 7.0% (6.1) 402 1,346 1,748 23.0% (22.0) 

Oromia 491 1,951 2,442 20.1% (21.9) 366 1,383 1,749 20.9% (23.6) 

Somali 127 1,036 1,163 11.0% (10.0) 284 1,068 1,352 21.0% (27.2) 

SNNP (Sidamu) 283 1,437 1,720 16.5% (18.2) 1,168 606 1,774 65.8% (64.4) 

Total 1,245 7,876 9,121 13.6% (14.2) 2,989 5,343 8,332 35.9% (37.9) 

Note: (1) In the parenthesis, weighted values are presented.  
Source: EGRA Dataset 2010, 2016, USAID 

Table 2.9. Proportion of Preschool Attendance by Urban-Rural (EGRA) 

Region 

EGRA 2010 EGRA 2016 

Total 

Urban 

Sample 

(N) 

Pupil 

attended 

Preschool 

(%)  

Total 

Rural 

Sample 

(N) 

Pupil 

attended 

Preschool 

(%) 

Total 

Urban 

Sample 

(N) 

Pupil 

attended 

Preschool 

(%)  

Total 

Rural 

Sample  

(N) 

Pupil 

attended 

Preschool 

(%) 

Tigray 197 31.4 1,340 11.1 223 75.7 1,486 42.8 

Amhara 238 13.8 2,021 5.7 142 42.0 1,606 18.8 

Oromia 540 39.3 1,902 12.6 190 35.3 1,559 21.1 

Somali 515 10.5 648 9.7 193 19.2 1,159 29.1 

SNNP (Sidamu) 197 9.4 1,523 19.0 314 64.9 1,460 64.1 

Total 1,687 27.4 7,434 11.4 1,062 52.0 7,270 34.1 

Note: (1) In EGRA 2010, Somali used convenience sampling (similar portion of urban and rural sample) due to security issues; 
(2) In EGRA 2016, random sampling was conducted after excluding the areas listed as priority zones by the Emergency 
Education Cluster report (UNICEF, 2016) across five regions (AIR, 2016).  

Source: EGRA Dataset 2010, 2016, USAID  

Figure 2.7 displays the distribution of the school-level average of pupils enrolled in any form 

of preschool in both cohorts. This figure depicts how access to pre-primary education in 
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Ethiopia shifted from the elite system to the mass system during the reform. In 2010, more than 

half of schools (125 out of 237) had less than 10 percent of students who had ever attended 

preschool, which shows a skewed right distribution in preschool enrolment, with an average of 

14 percent.62 Conversely, in 2016, after the massive expansion of O-Class, the distribution of 

preschool enrolment shifted close to a normal distribution. The average preschool enrolment 

almost tripled to 38 percent in 2016. About 30 percent of schools (62 out of 225) reported that 

more than half of students entered primary school after having attended preschool, while about 

one-fifth of schools still had less than 10 percent of students who ever attended preschool.  

Figure 2.7. Kernel Density of School-Level Average of Pupils Who Enrolled in Preschool 
(a) EGRA 2010 (b) EGRA 2016 

  
Note: The figures include five regions/languages in the sample of the present study. 
Source: EGRA Dataset 2010, 2016, USAID  

In addition to preschool participation at the school level, I further scrutinised whether these 

sample schools from the EGRA 2016 actually had O-Class by matching information from 

EMIS.63 Surprisingly, among the 225 sample schools, 147 primary schools (or 65%) already 

had O-Class attached to the school, which far exceeded the share of students who had ever 

attended preschool (38%). This was reaffirmed by the proportion of primary schools having 

O-Class within the same woreda. This proportion within the same community reached an 

average of 70 percent, which implies that the availability of O-Class was much higher than 

actual participation. Consistent with national patterns, this implies the limited capacity of the 

existing O-Class, which had only one or two classrooms attached to the primary school. As far 

                                                
62 A skewed right distribution indicates that the right tail (higher values) is much longer than the left tail (small 

values).  
63 The availability of O-Class is from EMIS 2014-2015 and 2015-2016, when the EGRA 2016 sample schools 

were selected.  
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as school principals in the Tigray region were concerned (personal interviews), the existing O-

Class supply has not been sufficient to cater to all 6-year-old children in the community; they 

could serve only one-third, or less than half, of preschool-eligible children. The dissonance 

between demand for and supply of O-Class could have multiple causes (e.g., multi-aged O-

Class, lack of awareness), which could negatively affect the equitable access to quality pre-

primary education.  

3) Determinants of preschool attendance  

Before getting into the main research questions, it is important to identify the factors relating 

to children’s preschool attendance, which may have changed during the massive expansion of 

preschool. Understanding the characteristics of preschool attendees not only sheds light 

methodologically on the potential direction of omitted bias, it also has policy implications as it 

reveals unequal access to preschools across different sociodemographic groups. Table 2.10 

presents the results of a logistic regression analysis that was undertaken for each EGRA cohort. 

It presents the odds ratio, which indicates the direction and statistical significance of the 

relationship, and average marginal probabilities to ease interpretation. For example, the 

average marginal probability of attending preschool for females was calculated for each child, 

using that child’s values for all the other explanatory variables, when sex is set equal to female. 

The results in Table 2.10 show that family characteristics played a significant role in 

determining preschool attendance. First, the child’s age and gender were not predictive of 

preschool attendance, suggesting little gender bias in preschool enrolment at an early age. 

Second, father’s and mother’s literacy and having reading materials at home were strongly 

related to a higher probability of attending a preschool, while these marginal probabilities 

nearly doubled between 2010 and 2016. Among others, the variable on having reading 

materials at home was the strongest predictor for preschool attendance: this was associated 

with a 6 and 10 percentage point higher probability of attending preschool in 2010 and 2016, 

respectively, compared to peers who did not have any reading materials at home. With regard 

to parental literacy, children with a literate mother had a 3 and 10 percentage point higher 

probability of attending preschool than children with an illiterate mother in 2010 and 2016, 

respectively. Mother’s literacy was a stronger determinant of preschool attendance than 

father’s literacy. Third, as expected, urban and rural residency was a strong predictor for 
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preschool attendance. In both 2010 and 2016, children living in rural areas were about 9 

percentage points less likely to attend preschool than those living in urban areas. Two other 

variables—the same language being used at home and at school and having mother tongue 

textbooks—were found to be non-significant predictors of preschool attendance in 2010, yet 

they became significant predictors in 2016: using the same language at home and at school was 

related to a lower probability of preschool attendance, and having mother tongue textbooks 

was related to a higher probability of preschool attendance in 2016.64 These results further 

support the descriptive patterns observed in Table 2.7, that children from families with 

relatively advantaged backgrounds were more likely to attend preschool in Ethiopia.  

Table 2.10. Determinants of Attendance in Preschool 
 EGRA 2010 EGRA 2016 

 Odds 

Ratio 
(SE) 

Marginal 
Prob. 

Odds 

Ratio 
(SE) 

Marginal 
Prob. 

Age 0.90 (0.13) -0.01 0.76 (0.16) -0.05 

Female  0.87 (0.09) -0.02 1.04 (0.07) 0.01 

Father’s literacy  1.24** (0.16) 0.02 1.33*** (0.11) 0.05 

Mother’s literacy 1.36*** (0.17) 0.03 1.71*** (0.12) 0.10 
Reading materials at home 1.72*** (0.22) 0.06 1.74*** (0.12) 0.10 

Rural location  0.45*** (0.06) -0.09 0.65*** (0.06) -0.08 

Same language home/school 0.94 (0.11) -0.01 0.69*** (0.09) -0.08 

Have MT textbook 0.99 (0.14) -0.01 1.36*** (0.11) 0.06 

Constant 1.04 (0.91)  27.60 (31.0)  

Grade dummies Yes  Yes  

Region dummies  Yes  Yes  

Observations  9,121  8,332  
Note: (1) All models include sampling weight; (2) Robust standard errors in parentheses; (3) Marginal probabilities present 
average marginal effects (AME). *** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 

2.8.2 Research Question 1: A Shift in Test Score Distribution during the Reform  

Using the methods proposed by Livingston (2006), Ho (2009), and Ho and Reardon (2012), I 

addressed the following research question: What is the difference in the test score distribution 

of second- and third-grade students’ reading achievement, as measured by oral reading 

fluency, between preschool attendees and non-attendees before and after the early learning 

reform in Ethiopia? Figure 2.8 presents the gap trends (metrics) with transformation invariant 

                                                
64 Although it is hard to find a clear explanation for the negative relationship between preschool attendance and 

same language use at home and school, ‘using different language at home and school’ seems to be a more urban 

phenomena (e.g., using official language Amharic at school and use mother tongue at home) from the EGRA 

sample. For example, 13 percent of children living in urban areas reported that they use different languages at 

home and school, while this occurs for 7 percent of children living rural areas.   
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properties through the probability-probability plots. The PP plots, which are derived from a 

pair of test scores on the same score scale, depict the differences not only in the mean scores 

or in selected percentiles, but anywhere in the score distributions over the full range of values 

of each variable. The PP plot allows researchers to determine the extent to which the 

comparison between the two groups differs from one test to the other in a comparable manner. 

This plot can be used even if the variables are measured in completely different and 

noncomparable units (Livingston, 2006).  

As shown in Figure 2.8, the PP plot is best described by considering the two cumulative 

distribution function (CDF) figures. Considering the ordinality and arbitrary normalization of 

test scores, the reliable comparison of two groups in the sample can be obtained only if looking 

at the CDFs of their performance (Spencer, 1983; Bond & Lang, 2013). In CDFs presented on 

the left-hand panel of each cohort, 𝐹𝑝𝑟𝑒(x) and 𝐹𝑛𝑜−𝑝𝑟𝑒(x) on the vertical axis (Y) denote the 

proportions of students at or below a given score x on the horizontal axis (X) in the preschool 

and non-preschool groups, respectively. The test score distributions in the CDF are generally 

labeled as a higher-scoring reference distribution, 𝐹𝑝𝑟𝑒 (blue line), and a lower-scoring focal 

distribution, 𝐹𝑛𝑜−𝑝𝑟𝑒  (red line).65 To illustrate, in the 2016 EGRA cohort, for the average cut 

score of reading proficiency Level 3 at 28 cwpm, 64.2 percent of the preschool group was at 

or below Level 3, whereas 72.1 percent of the non-preschool group was at or below Level 3.66 

The right-hand panel of each cohort is the corresponding PP plot that shows the proportion of 

the non-preschool group below given percentiles of the preschool group, expressed in a 

ROCFIT plot.67 This PP plot is generated by obtaining all paired cumulative proportions across 

the score scale underlying the CDFs (left-hand panel). For instance, the paired cumulative 

proportions at the reference point above (0.64, 0.72), which are derived from reading 

                                                
65 The CDF curves are not smooth, but the direction and amount of the differences between them is fairly clear. 
66 There is no single cut score for Level 3 or Level 4 on the Ethiopia EGRA, due to different benchmark settings by languages 
and by grade. Provided that the cut score for Level 3 varied from 20 to 35 correct words per minute, the average value of 28 
was used for the exemplar reference point above.  
67 ROCFIT fits maximum-likelihood receiver operating characteristic (ROC) models assuming a binormal distribution of the 
latent variable (Pepe, 2003, citing from Stata Manual). This plot can be generated by Stata command ROCFIT. To facilitate 
plotting, each of the variables should be a discrete measure of a set of ordered categories. Ho and Reardon (2012) recommends 
ROCFIT as the best approach out of six candidates for the estimation of gaps under the censored data scenarios. Originally, 
ROCFIT curve was motivated by signal detection theory to medicine and psychology and allowed for the visualization of the 
trade-offs of Type I and Type II errors across a continuum of decision thresholds. The Lorenz Curve (Lorenz, 1905) is a case 

of a PP plot from economics, where the vertical and horizontal axes are the cumulative proportions of income and households 
ranked by income, respectively. 
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proficiency Level 3, can be found in the right-panel plot. According to Ho (2009), ‘each point 

on the PP plot can be understood as a point plotted from the two intersections of a vertical slice 

through two CDFs. No matter how the scale is stretched or transformed horizontally, the 

intersections of the CDFs with this vertical slice will keep the same values’ (p. 213). In other 

words, apart from using any scale information, the construction of the PP plot is solely based 

on paired cumulative proportions; thus, all statistics generated from the PP plot are invariant 

to any transformation of scale. Given that the full CDFs are known for both groups in the 

present study, the PP plot can generate nonparametric gaps statistics straightforwardly (Ho & 

Reardon, 2012).  

In terms of the interpretation of the PP plot (right-hand panel of each cohort), which is formed 

by connecting a series of data points, the horizon axis (X) of the data point indicates the 

percentage of the preschoolers who attained that score or below; and the vertical axis (Y) of 

the data point indicates the percentage of the non-preschoolers who attained that same score or 

below. If the percentages from the two groups were equal, the data point would lie on the 

diagonal line (Y=X). The greater the difference between the two groups, the farther the data 

point departs from the diagonal line, as expressed by the larger bulge (Livingston, 2006). The 

area under the curves from the PP plot can be interpreted as the probability that a randomly 

drawn preschooler scored higher than a randomly drawn non-preschooler, while a probability 

of 0.5 represents no trend or gap. The area under the curves is considered an effective measure 

of the inherent validity of a diagnostic test. 

Specifically, the PP plots in Figure 2.8 capture the achievement gaps between preschooler and 

non-preschooler by the total sample of EGRA 2010 and EGRA 2016 (2.8-(1) and 2.8-(2)); 

urban sample (2.8-(3) and 2.8-(4)); and rural sample (2.8-(5) and 2.8-(6)). Across all three 

groups, students who attended preschool outperformed those who didn’t attend by a larger 

margin in 2016 (post-reform) than in 2010 (pre-reform). All data points for the 2016 cohort lie 

farther to the left of the diagonal line with a larger bulge, which denotes the more significant 

gap between preschooler and non-preschooler. Notably, these gaps in test score distribution are 

the largest among children living in urban areas, as opposed to those among children living in 

rural areas. When we look closely at the area under the curve, we see that it increased from 

0.52 (SE=0.01) to 0.57 (SE=0.01) between 2010 and 2016 for the entire sample. Stratified by 

urban and rural residence, the area under the curve increased from 0.54 (SE=0.02) to 0.64 
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(SE=0.02) for the urban sample, and from 0.50 (SE=0.01) to 0.55 (SE=0.01) for the rural 

sample.68  

Through the application of the PP plots, which ensure independence from the transformation 

of test score scales or any threshold for specific proficiency, the gap estimates presented in 

Figure 2.8 offer a more accurate and visual snapshot of the gap trends between 2010 and 2016. 

In line with the difference in average test scores, the difference in the full-distribution of test 

scores depending on preschool attendance increased from 2010 to 2016. Meanwhile, the 

achievement gaps between preschooler and non-preschooler were more pronounced among 

students living in urban areas than those living in rural areas. This result is contradictory to the 

findings from previous studies that highlight the ‘equaliser’ role of preschool for children from 

disadvantaged backgrounds (Engle et al., 2011; Magnuson & Duncan, 2017). The gap trends 

shown in the current analysis signal that the benefits of preschool may be larger for advantaged 

children than disadvantaged children, and it could have been widened further during the reform 

period. These findings are further explored in Chapter 3 with an assessment of the differential 

role preschool has played in child outcomes by urban-rural residence and by sub-groups 

defined by gender, parental literacy, and home learning environment.  

                                                
68 A gap trend can be expressed as a ‘change in gap’ or ‘difference in changes’. These are equivalent in an average-based 
framework but not in an ordinal framework (Ho, 2009). The Figure 2.8-PP plots capture a ‘change in gap’ where gaps are 

estimated within each year and then subtracted from each other. A ‘difference in changes’ indicates gap trends relying on the 
year-to-year linking of score scales, which has been not yet been addressed by the ordinal framework.  



Figure 2.8. Probability-Probability Plot 
(1) EGRA 2010: Total sample  (2) EGRA 2016: Total sample 

    
(3) EGRA 2010: Urban sample  (4) EGRA 2016: Urban sample  

    
(5) EGRA 2010: Rural sample  (6) EGRA 2016: Rural Sample  

    
Note: The receiver operating characteristic (ROC) curve is the plot that displays the full picture of trade-off between the sensitivity (true positive rate) and (1-specificity) (false positive rate) across 
a series of cut-off points. Source: EGRA Dataset 2010, 2016, USAID  

 28 cwpm (x) 

𝑭𝒏𝒐−𝒑𝒓𝒆(x)  = 72.1% 
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2.8.3 Research Question 2(1): Preschool Attendance and EGRA Test Scores  

To explore a change in the relations between preschool attendance and students’ academic 

outcomes, I estimated the models described in equations (2) and (5) for early grade reading test 

scores. The following research question was addressed, with particular interest in the trend 

between 2010 and 2016: Does the early learning reform (or large-scale expansion of 

preschool) strengthen or weaken the role of preschool attendance in predicting second- and 

third-grade students’ reading achievement, as measured by EGRA test scores? In the current 

analysis, the regression models were run separately by two cohorts from EGRA 2010 and 

EGRA 2016, and the survey weights provided with each round have been applied to ensure 

regional representativeness.  

Table 2.11 shows the estimates of the association between preschool attendance and oral 

reading fluency, one key measure for reading skill acquisition among the EGRA sub-tasks. 

Models 1 and 2 display estimates of a parsimonious specification which only controlled for 

five regional and grade dummies (column 1), and age, gender, and urban-rural location (column 

2).69 In Model 1, students who attended preschool read 2.5 and 5.4 more correct words per 

minute, respectively, than their peers who didn’t attend preschool in the 2010 and 2016 cohorts. 

In Model 2, once age, gender, and urban-rural locations were introduced, the difference 

between preschoolers and non-preschoolers significantly declined in the 2010 cohort but 

remained similar for Model 1 in the 2016 cohort. Model 3 added controls for household 

characteristics to the regressions, including the same language spoken at home and school, 

having reading materials at home, and father’s and mother’s literacy. Consistent with the idea 

of positive selection into pre-primary education, controlling for household characteristics 

reduced the coefficients between Model 2 and Model 3. The difference between preschoolers 

and non-preschoolers remained not significant in the 2010 cohort, whereas students in the 2016 

cohort who attended preschool read approximately 4.2 more words per minute than their peers, 

which was statistically significant at the 0.01 level.70  

As previously discussed, the results presented in Models 1, 2, and 3 show the associations 

between preschool attendance and early grade reading performance. This is unlikely to reflect 

                                                
69 Grades 2 and 3 were included as dummy variables in the model. The analysis by each grade is available upon request.  
70 In all models, coefficients were interpreted relative to a group which includes all children who experienced no preschool in 
the year prior to primary school. This reference group most likely includes children who were with their parents and 
experienced no regular out-of-home care, then the estimates would capture the substitution of preschool for home.  



 77 

the causal effect of preschool attendance, due to the selection and omitted variable bias. As an 

intermediate step to mitigate this problem, Model 4 included school fixed effects, which 

accounted for unobserved heterogeneity between schools that derived from possible time-

invariant factors.71 By introducing school fixed effects, the role of preschool attendance was 

further reduced in the 2016 cohort, although it was still statistically significant at the 0.01 

level.72 After the massive expansion of preschool, within-school differences indicated that 

students who attended preschool read 2.5 more words per minute than their non-preschool 

peers in 2016. However, interpreting the school fixed effects estimates applied to the 2010 

cohort required extra caution when there was little variation in preschool attendance and 

student outcomes within schools. To illustrate, in half of the primary schools in 2010, less than 

10 percent of students were exposed to any form of preschool, whereas less than one-fifth of 

primary schools in 2016 showed this low level of preschool participation. As explained, if there 

is little within-subject variability, the standard errors from the school fixed effects models may 

be too large to tolerate, which results in some estimates that are far from the true effect (Allison, 

2009; Clarke et al., 2015). Hence, in the subsequent analysis by regions/languages and by 

EGRA sub-tasks, the school fixed effects estimates are presented only for the 2016 cohort.  

In terms of the magnitude of changes in oral reading fluency scores, as measured by correct 

words per minute (cwpm), the reading programme increased globally by about 6.1 cwpm on 

average, which was regarded as the equivalent of nearly half a year of additional schooling 

(Piper, Sitabkhan, Mejia, & Betts, 2018). Given that reading tests should consider the regional 

contexts and linguistic characteristics of the country, further exploration was pursued to see 

whether this global norm corresponded to the benchmark of reading proficiency in Ethiopia by 

regions and languages.  

  

                                                
71 The school fixed effects model still cannot rule out, for example, the difference between and within households. Thus, the 
estimates from school fixed effects remain as the ‘association’ between preschool attendance and student outcomes. 
72 A Hausman test (Hausman, 1978) was conducted to guide the choice between random versus fixed effects model. The results 
from EGRA 2010 (chi2(9) =53.4, Prob>chi2 = 0.000) and EGRA 2016 (chi2(9) =101.0, Prob>chi2 = 0.000) indicate that the 
null hypothesis can be rejected and suggest using the fixed effect model to calculate the regression coefficients. 
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Table 2.11. Preschool Attendance and Oral Reading Fluency 

Oral Reading Fluency  
(1) (2) (3) (4) 

(correct words per minute, cwpm)    

 EGRA 2010 Cohort  

Attended preschool 2.46** 1.24 0.46 -0.39 

(SE) (1.22) (1.44) (1.55) (1.94) 

R-Squared 0.15 0.18 0.20 0.10 

Observations (schools) 9,121 9,121 9,121 9,121 (237) 

 EGRA 2016 Cohort  

Attended preschool 5.36*** 5.45*** 4.15*** 2.48*** 

(SE) (0.86) (0.87) (0.78) (0.61) 

R-Squared 0.22 0.24 0.26 0.11 

Observations (schools) 8,332 8,332 8,332 8,332 (225) 

 Controls included in EGRA 2010 and 2016 Cohort 

Region and grade dummies  Yes Yes Yes Yes (Grade only) 

Age, gender, location No Yes Yes Yes 

Household characteristics No No Yes Yes 

School fixed effects  No No No Yes 

Note: (1) Models 1, 2, and 3 account for controls as indicated and include sampling weight; (2) Model 4 uses school fixed 
effects and includes sampling weight; Number of schools in parentheses; (3) EGRA 2010: linearised standard errors (from svy 
command) in parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; (5) Appendix 
Tables D.1. (EGRA 2010) and D.2. (EGRA 2016) present the full regression results.  
*** p<0.01, ** p<0.05, *p<0.1 

Source: EGRA Dataset 2010, 2016, USAID  

Table 2.12 presents the regression results of preschool attendance and oral reading fluency by 

regions (language for SNNP), with reference to the benchmark for Ethiopia’s reading 

proficiency levels. The first column shows the difference in the highest reading proficiency 

benchmark (Level 4: reading with full comprehension) between Grade 2 and Grade 3. 

Specifically, this denotes the expected level of improvement in oral reading fluency when 

students progressed from Grade 2 to Grade 3.73 As previously described, the benchmark for 

reading proficiency level in Ethiopia was developed distinctively, based on each language-

specific metric; thus, the grade differences in the Level 4 benchmark varied by language from 

5 cwpm in Somali to 10 cwpm in Amhara and Oromia. For example, in Amhara and Oromia, 

where the benchmark increased 10 cwpm from Grade 2 to Grade 3, one can regard ‘reading 10 

more correct words per minute’ as the equivalent of one year of additional schooling.  

Although the 2010 cohort didn’t show any significant difference in average score, a positive 

association was observed in Amhara in the OLS model with full control variables (Model 1). 

For the 2016 cohort, the results from both the OLS with full control variables and school fixed 

                                                
73 Globally, the benchmark ranges between 45 and 60 words per minute (Kelly & Graham, 2017), but Ethiopia’s case shows 
more various ranges by mother tongue languages. 
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effects were presented; all associations across regions were statistically significant, which 

varied from 3 to 6 cwpm, except Tigray (Model 2). When school fixed effects were introduced 

to the 2016 cohort (Model 3), the results of three regions (Amhara, Oromia, and Somali) 

remained significant, whereas the results of the SNNP region became insignificant. In this 

preferable specification, students in Amhara and Oromia read 2.6 and 3.6 more words per 

minute (significant at 0.05 levels), respectively, which was nearly the same as one-third of a 

single year of schooling. Most interestingly, in Somali, where 5 cwpm was regarded as the 

equivalent of one year of additional schooling, the difference between preschoolers and non-

preschoolers was 5.0 cwpm in the school fixed effects specification. In other words, the 

preschool advantage in the Somali region was relatively comparable to the learning that 

occurred in one academic year.  

To check the robustness of the regression results, the results from kernel-based propensity score 

matching (PSM) are presented in Models 4 and 5 (more details about PSM in Appendix A).74 

By controlling the same observed variables to construct a matching group, the results of PSM 

were similar or slightly larger than estimates of the school fixed effects model. Given that 

Somali is one of the historically disadvantaged regions in Ethiopia, these relatively 

encouraging results indicate that the positive contribution of preschool attendance was more 

significant in the marginalised areas.  

Table 2.12. Preschool Attendance and Oral Reading Fluency by Regions  

Region 

Grade difference in 
benchmark ‘Level 4’ 
(Grade 3 benchmark– 
Grade 2 benchmark) 

(1) (2) (3) (4) (5) 

2010 

OLS 

2016 

OLS 

2016 
School 

Fixed-Effects 

2010 
Propensity 

Score 
Matching 

2016 
Propensity 

Score 
Matching 

Average   0.46 (1.55) 4.15 (0.78) *** 2.48 (0.61) *** 1.98** 3.09*** 
Tigray 7 cwpm (62-55) 1.99 (1.15) 1.41 (1.07) 0.28 (0.88) 4.94*** 0.35 
Amhara 10 cwpm (60-50) 4.81 (2.04) ** 3.40 (1.64) ** 2.59 (1.31) ** 4.82** 4.57*** 
Oromia  10 cwpm (58-48) -1.00 (4.43) 5.13 (1.80) *** 3.58 (1.57) ** 2.11 4.09*** 
Somali 5 cwpm (55-50) 2.60 (2.09) 5.86 (1.99) *** 5.08 (1.65) *** -1.77 4.80*** 

SNNP 8 cwpm (53-45) -2.07 (1.00) * 3.05 (1.49) ** 0.91(1.15) 0.02 1.56* 

Note: (1) Grade difference in Level 4 benchmark is calculated as follows: (G3 Level 4 threshold - G2 Level 4 threshold); (2) 
The same set of covariates used across all models; (3) Average estimates in Models 1 to 2 correspond to Table 2.11-Model 3 
and include sampling weight; (4) Model 3 uses school fixed effects and includes sampling weight; (5) EGRA 2010: linearised 
standard errors (from svy command) in parentheses; (6) EGRA 2016: robust standard errors, clustered at school level, in 
parentheses.  
*** p<0.01, ** p<0.05, *p<0.1 Source: EGRA Dataset 2010, 2016, USAID  

                                                
74  PSM assumes conditional independence, which requires rich data with child development history and institutional 
information. Considering the lack of richness in school-based EGRA information compared to another household survey, I 
decided to use PSM as the robustness check instead of the primary approach for the present study.  
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In addition to the results by region and language, I analysed the association between preschool 

attendance and test scores from other EGRA sub-tasks: letter sounds, familiar words, and 

invented words recognition, reading and listening comprehension. Table 2.13 summarises the 

results from these sub-tasks in relation to preschool attendance (oral reading fluency presented 

again for comparison). It reports that, in 2010, only two sub-tasks—letter sounds and invented 

words recognition—showed small but positive associations with preschool attendance in 

Model 1 (OLS). In 2016, the associations were larger than in 2010 and became positive across 

all sub-tasks of EGRA, which were statistically significant at the 0.01 levels in Model 2 (OLS). 

In Model 3, with the school fixed effects specification for the 2016 cohort, the gains from 

preschool attendance were reduced yet remained statistically significant (p < 0.01), except 

listening comprehension. In terms of the magnitude of association, the gap between 

preschoolers and non-preschoolers was the largest in letter sounds recognition and the smallest 

in listening comprehension for both cohorts.  

Table 2.13. Association between Preschool Attendance and Early Grade Reading 

Outcomes, 2010 and 2016 

EGRA Task (1) 2010 OLS (2) 2016 OLS (3) 2016 School-Fixed 

 Coef. 
(SE) 

Effect Size 
(SE) 

Coef. 
(SE) 

Effect Size 
(SE) 

Coef. 
(SE) 

Effect Size 
(SE) 

Oral reading fluency 
(cwpm) 

 

0.46 
(1.55) 

0.02 
(0.07) 

4.15*** 
(0.78) 

0.20*** 
(0.03) 

2.48*** 
(0.61) 

0.12*** 
(0.03) 

Letter sounds 
(clpm) 
 

3.33** 
(1.53) 

0.11** 
(0.05) 

6.48*** 
(0.91) 

0.20*** 
(0.03) 

3.46*** 
(0.87) 

0.11*** 
(0.03) 

Familiar words 
(cwpm) 
 

1.46 
(1.38) 

0.08 
(0.07) 

4.25*** 
(0.60) 

0.21*** 
(0.03) 

2.28*** 
(0.59) 

0.11*** 
(0.03) 

Invented words 

(cwpm) 
 

1.61** 
(0.80) 

0.11** 
(0.06) 

2.84*** 
(0.46) 

0.19*** 
(0.03) 

1.60*** 
(0.43) 

0.11*** 
(0.03) 

Reading comprehension 
(% of correct answer) 
 

1.34 
(1.92) 

0.05 
(0.07) 

4.67*** 
(0.85) 

0.17*** 
(0.03) 

2.78*** 
(0.82) 

0.10*** 
(0.03) 

Listening comprehension 
(% of correct answer) 

0.21 
(1.64) 

0.01 
(0.06) 

1.85** 
(0.76) 

0.07** 
(0.03) 

1.20 
(0.77) 

0.04 
(0.03) 

Observation 9,121 9,121 8,332 8,332 8,332 8,332 

Note: (1) The same set of covariates was used across all models; (2) Models 1 and 2 include sampling weight; (3) Model 3 
uses school fixed effects and includes sampling weight; (4) EGRA 2010: linearised standard errors (from svy command) in 
parentheses; (5) EGRA 2016: robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, *p<0.1  
Source: EGRA Dataset 2010, 2016, USAID  

To simplify the interpretation of the results, Table 2.13 also presents the effect size of each 

model. The effect size is the difference in standard deviation (SD) using the standardised scores 

(z-score) of the EGRA sub-tasks within the sample. In 2010, recognition of letter sounds and 

invented words presented a small effects size at 0.11 SD (p < 0.05) in Model 1. In 2016, five 



 81 

sub-tasks (except listening comprehension) showed effect sizes close to 0.20 SD in Model 2 

and 0.11 SD in Model 3 (all estimates are p < 0.01). These effect sizes are considered small 

(Cohen, 1992) but consistent with the small-to-moderate effect size of educational 

interventions in other LMICs (McEwan, 2015). In a large-scale preschool expansion in 

Argentina that created exogenous variations between cohorts and provinces, Berlinski et al. 

(2008) found that the impact of an additional preschool place per child was 0.23 SD (p < 0.01) 

on average for students’ learning outcomes in Grade 3. In the Sub-Saharan Africa context, 

among students aged 6-16 in Kenya and Tanzania, Bietenbeck et al. (2017) revealed that 

students who participated in preschool scored about 0.10 SD (p < 0.01) higher on standardised 

cognitive tests than peers who didn’t participate, when applying the household (sibling) fixed 

effects to control for the unobserved, time-invariant variables between households.  

In the analysis above, I included grade as the dummy variable (i.e., grade fixed effects). When 

looking at how the influence of preschools differed by grade, the benefits of preschool were 

more pronounced in Grade 3 than in Grade 2 in 2010.75 This may be counter-intuitive, given 

that, in many studies using longitudinal data (e.g., Bassok et al., 2018; Magnuson et al., 2007), 

the initial link of preschool with cognitive outcomes tended to be diminished along with the 

grade progression of a child, so-called ‘fade-out’ effects. However, in Ethiopia, Woldehanna 

and Gebremedhin (2012) found that the positive influence of preschool on children’s receptive 

vocabulary and early math skills were larger at age 8 than at age 5. Similarly, Biethentek et al. 

(2017) found a more significant contribution of preschool for an older cohort (10-12, 13-16 

years old) than a younger cohort (7-9 years old) in Kenya. While the achievement gaps 

depending on preschool attendance were relatively stable and persistent in the 2016 cohort, the 

widening gaps by grades in the 2010 cohort need further investigation.  

2.8.4 Research Question 2(2): Preschool Attendance and the Probability of Non-Reader 

and Proficient Reader  

I continued to explore the relationship between preschool attendance and early grade reading 

performance, as measured by the probability of being a non-reader and a proficient reader, two 

frequently used indicators in the global EGRA administration. The following research question 

was addressed: Does the early learning reform (or large-scale expansion of preschool) 

strengthen or weaken the role of preschool attendance in predicting second- and third-grade 

                                                
75 The results from analysis by Grade 2 and Grade 3 are available upon request.  
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students’ reading achievement, as measured by the probability of being a non-reader and a 

proficient reader? I illustrate the results of a multivariate logistic regression model as 

expressed by odds ratio, marginal effects, and predicted probabilities.  

Odds ratio. Table 2.14 presents odds ratios regarding the relationship between preschool 

attendance and students’ early grade reading performance. The first three columns of each 

outcome variable display the results from logistic regression, after controlling for region and 

grade dummies (Models 1 and 5), age, gender, and urban-rural location (Models 2 and 6), and 

household characteristics (Models 3 and 7). The last column introduces the school fixed effects 

(Models 4 and 8), which captured the achievement gaps within schools as a function of 

preschool attendance. In the 2010 cohort, the odds ratio for non-reader between preschoolers 

and non-preschoolers was statistically not significant across the models. In contrast, the results 

of the 2016 cohort indicated that, when children attended preschool, the odds of being a non-

reader decreased by 51 percent, holding all other variables constant (Model 3). When looking 

at the within-school difference, preschoolers were 23 percent less likely to be non-readers in 

2016 (Model 4).   

With regard to the likelihood of being a proficient reader, it was continuously not significant 

in the 2010 cohort. In contrast, preschoolers in 2016 were 38 percent more likely to be a 

proficient reader than non-preschoolers (Model 7), although this difference declined 

significantly in the school fixed effects specification (Model 8). A significant drop in the school 

fixed effects model implied that, without controlling for unobserved, time-invariant differences 

between schools, the estimates from the OLS or random-effect model were likely to be biased 

(Clarke et al., 2015). This perhaps justifies the application of the school fixed effects approach 

used in the current analysis. Regarding the observed characteristics of primary school (post-

preschool inputs in the present study), Chapter 3 further investigates the role of subsequent 

schooling experiences that potentially mediate the link of preschool attendance with early grade 

reading performance.  

Lastly, recall that the reference categories of non-reader and proficient reader are not mutually 

exclusive. The non-reader group was compared against all three other categories in reading 

proficiency (students with limited, increasing, or full reading fluency), which included 

proficient readers from two upper categories. Similarly, the proficient reader group was 

compared against two lower categories in reading proficiency, which included the non-reader 

group.  
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Table 2.14. EGRA 2010 and EGRA 2016: Non-Reader and Proficient Reader 

Note: (1) All Models 1 to 8 account for controls as indicated and include sampling weight; (2) Model 4 and Model 8 use school 

fixed effects; Number of schools in parentheses; (3) EGRA 2010: linearised standard errors (from svy command) in 
parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; (5) In Model 4 from EGRA 
2010, the sample of 8 groups (309 obs.) in non-reader and 10 groups (390 obs.) in proficient reader dropped as multiple positive 
or negative outcomes within groups encountered; (6) In Model 8 from EGRA 2016, the sample of 23 groups (871 obs.) in non-
reader and 11 groups (312 obs.) dropped for the same reason. (7) Appendix Tables D.3. to D.6 present the full regression 
results.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  

Marginal effects and predicted probabilities. Table 2.15 presents the AMEs of preschool 

attendance on non-reader and proficient reader and the estimates stratified by regions.76 Recall 

that the average marginal effects were computed using some fixed values (i.e., preschool and 

regions) and observed values for all other variables, which presented the averaged marginal 

effects of each predictive value. Regarding the probability of being a non-reader, having 

attended preschool decreased a child’s probability of being a non-reader by 11 percentage 

points on average (p < 0.01) in the 2016 cohort; there was no significant discrete change in the 

2010 cohort. In four out of five regions (Tigray, Oromia, Somali, and SNNP), preschool 

attendance reduced the probability of being a non-reader significantly, from 10 percentage 

points (p < 0.01) in Tigray to 15 percentage points (p < 0.01) in Somali. In Amhara, the highest 

performing region in early grade reading, the marginal effect of the association between 

preschool and students’ outcomes was much smaller but statistically significant, at 3 

percentage points (p < 0.01).  

                                                
76 For factor variables used in the current paper, that is, preschool attendance, marginal effects can be interpreted as discrete 
change when a regressor changes by a fixed amount from 0 (non-preschool) to 1 (preschool). 

 

Non-Reader (Logit) Proficient Reader (Logit) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

EGRA 2010 Cohort  

Preschool 0.94 0.99 1.06 1.28*** 1.23* 1.11 1.05 0.91 

(SE) (0.13) (0.16) (0.17) (0.04) (0.13) (0.11) (0.10) (0.21) 

Pseudo R2 0.10 0.11 0.13 - 0.07 0.08 0.09 - 

Observations 9,121 9,121 9,121 8,812 (229) 9,121 9,121 9,121 9,121 

 EGRA 2016 Cohort 

Preschool  0.46*** 0.42*** 0.49*** 0.77*** 1.57*** 1.58*** 1.38*** 1.07*** 

(SE) (0.05) (0.04) (0.05) (0.01) (0.15) (0.15) (0.12) (0.01) 

Pseudo R2 0.16 0.18 0.20 - 0.08 0.10 0.11 - 

Observations 8,332 8,332 8,332 7,461 (202) 8,332 8,332 8,332 8,020 (214)  

 Controls included in EGRA 2010 and EGRA 2016 Cohort 

Region/Grade  Yes Yes Yes Grade only Yes Yes Yes Grade only 

Age, gender, location No Yes Yes Yes No Yes Yes Yes 

Household Character No No Yes Yes No No Yes Yes 

School fixed effects  No No No Yes No No No Yes 
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When it comes to the probability of being a proficient reader, similar patterns were observed 

in 2010 and 2016. On average, the 2010 cohort didn’t show any significant gains from 

preschool attendance, whereas in the 2016 cohort, having attended preschool increased a 

child’s probability of being a proficient reader by 7 percentage points (p < 0.01). The marginal 

effects of this association were similar across regions, from 5 percentage points in Somali to 7 

percentage points in Tigray, Amhara, and SNNP.  

In addition, I found no significant correlation between the marginal effects of preschool 

attendance and the overall preschool participation rate by region. For example, Somali (highest 

gains in reducing non-readers) and Amhara (least gains in reducing non-readers) showed 

similar trends in preschool participation; in 2010, less than 10 percent of students attended 

preschool in two regions, which increased to 27.2 percent in Somali and 22 percent in Amhara 

in 2016, after the rapid expansion of public preschool. In SNNP, the marginal effect of the 

association between preschool and student outcomes was about average or slightly above other 

regions, while the preschool participation rate there increased most rapidly, from 18.2 percent 

to 64.4 percent between 2010 and 2016.  

Table 2.15. Average Marginal Effects of Preschool Attendance, by Region 

EGRA 2010 Cohort 

 (1) (2) (3) (4) (5) (6) 

Non-Reader Average Tigray Amhara Oromia Somali SNNP 

All grades  

(SE) 

0.01  

(0.03) 

0.01 

(0.02) 

0.01  

(0.03) 

0.01  

 (0.03) 

0.01  

 (0.03) 

0.01  

 (0.04) 

EGRA 2016 Cohort 

Non-Reader Average Tigray Amhara Oromia Somali SNNP 

All grades -0.11*** -0.10*** -0.03*** -0.13*** -0.15*** -0.14*** 

(SE) (0.01) (0.01) (0.00) (0.01) (0.02) (0.02) 

EGRA 2010 Cohort 

Proficient Reader Average Tigray Amhara Oromia Somali SNNP 

All grades  

(SE) 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.01) 

EGRA 2016 Cohort 

Proficient Reader  Average Tigray Amhara Oromia Somali SNNP 

All grades 0.07*** 0.07*** 0.07*** 0.06*** 0.05*** 0.07*** 

(SE) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) 

Note: (1) The table shows marginal effects of the association between preschool attendance and the probability of being a non-
reader/proficient reader by average (column 1) and stratified by 5 regions (columns 2 to 6). (2) All estimates are based on a 
logit regression model including sampling weight; (3) Robust standard errors in parentheses. *** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  

Figure 2.9 offers a visual representation of the predicted probabilities of being a non-reader as 

a function of preschool attendance, stratified by region. While marginal effects captured the 
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magnitude of the achievement gaps between preschoolers and non-preschoolers, the visualised 

probabilities depicted how these gaps changed dynamically between 2010 and 2016 across the 

five regions. As presented in Figure 2.9, each region showed a different pattern of improving 

or deteriorating early grade reading performance as a function of preschool attendance. 

Looking into regional variations and patterns was particularly pertinent to the Ethiopian 

context, where the large regional imbalance in students’ academic achievement prevailed and 

persisted across different levels of education. As it started from early grade reading in Grades 

2 and 3 in the present study, the regional disparities in reading proficiency level have been 

documented at Grade 4, measured by National Learning Assessment (World Bank, 2016), and 

language proficiency level at Grade 12, measured by National Standardised Examinations 

(Tesema & Braeken, 2018).  

Four out of the five regions, Tigray, Amhara, Oromia, and SNNP, showed an overall decline 

in the proportion of non-readers between 2010 and 2016, while the magnitude of this decline 

(positive gains) was much higher among preschoolers than non-preschoolers. For example, in 

SNNP, the most significant decline of the non-reader share was observed between 2010 and 

2016, which favoured preschoolers. Among preschoolers in SNNP, the non-reader share 

decreased from 62 percent to 24 percent between 2010 and 2016 (38 percentage points), while 

this share among non-preschoolers decreased from 62 percent to 38 percent (24 percentage 

points) during the same period. Amhara, which had the smallest share of non-readers, also 

reported a significant decline in the non-reader share among both preschoolers and non-

preschoolers, at 21 and 18 percentage points difference, respectively.  

The achievement gaps associated with preschool attendance widened between 2010 and 2016 

in two regions: in Tigray, the non-reader share among preschoolers decreased 6 percentage 

points (from 20% to 14%), while this share among non-preschoolers increased 4 percentage 

points (from 20% to 24%). A similar pattern was observed in Oromia, where preschoolers were 

less likely to be a non-reader (9 percentage points) and non-preschoolers, with an absence of 

early learning experience before entering primary school, were more likely to be a non-reader 

(6 percentage points). As an exception, in Somali there was a sharp increase in the overall non-

reader share between 2010 and 2016. 77  During this period, the non-reader share among 

                                                
77 This is partly explained by the convenience sampling applied to Somali specifically in 2010, due to the political instability 
during the election period. The convenience sampling was not the case in 2016.  
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preschoolers increased 12 percentage points (from 23% to 35%); it showed a steeper increase 

among non-preschoolers, at 28 percentage points (from 22% to 50%).  

Figure 2.9. Average Predicted Probability of Being a Non-Reader as a Function of 

Preschool Attendance, by Region 
(1) EGRA 2010, Non-Reader (2) EGRA 2016, Non-Reader 

  

Note: (1) The figure shows average predicted probability of non-reader as a function of preschool attendance, conditioned on 
the location (five regions in Ethiopia); (2) All estimates are based on a logit regression model including sampling weight; (3) 
The lines represent the upper and lower bounds of the confidence interval. Confidence level = 0.95.  
Source: EGRA Dataset 2010, 2016, USAID  

When it comes to the probability of being a proficient reader, as presented in Figure 2.10, more 

mixed patterns were observed across the five regions, yet the magnitude of positive gains was 

continually larger for preschoolers than non-preschoolers. In Amhara and SNNP, there was a 

significant increase in the probability of being a proficient reader, which favoured preschoolers. 

In Amhara, the share of proficient readers increased from 35 percent to 60 percent among 

preschoolers (25 percentage points) and from 33 percent to 52 percent among non-preschoolers 

(19 percentage points). Similarly, in SNNP there was a sharp increase in the share of proficient 

readers for pre-schoolers, from 18 percent to 48 percent (30 percentage points), as well as for 

non-preschoolers, from 16 percent to 40 percent (24 percentage points). In Tigray, about half 

of preschoolers were proficient readers in both 2010 and 2016, but this share decreased only 

among non-preschoolers, from 46 percent to 40 percent. Alarmingly, Oromia and Somali 

showed deteriorating trends between 2010 and 2016. In Oromia, the probability of being a 

proficient reader dropped from 52 percent to 32 percent among preschoolers (20 percentage 

points), and from 49 percent to 25 percent among non-preschoolers (24 percentage points). The 

largest decline was observed in Somali, where the proficient reader share dropped to 31 

percentage points among preschoolers (from 56% to 25%) and 34 percentage points among 

non-preschoolers (from 53% to 19%) between 2010 and 2016.  
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Figure 2.10. Average Predicted Probability of Being a Proficient Reader as a Function of 

Preschool Attendance, by Region 

(1) EGRA 2010, Proficient Reader (2) EGRA 2016, Proficient Reader 

  

Note: (1) The figure shows average predicted probability of being a proficient reader as a function of preschool attendance, 

conditioned on the location (five regions in Ethiopia); (2) All estimates are based on a logit regression model including 
sampling weight; (3) The lines represent the upper and lower bounds of the confidence interval. Confidence level = 0.95.  
Source: EGRA Dataset 2010, 2016, USAID 

Taken together, the results in Table 2.15 and Figures 2.9 and 2.10 show an interesting pattern 

of how preschool attendance was associated with students’ learning outcomes during a massive 

expansion of public preschool in Ethiopia. The wider access to preschool was accompanied by 

meaningful gains in early grade reading performance, which were substantiated by the lower 

chance of becoming non-readers and higher chance of becoming proficient readers. However, 

further exploration of the dynamic patterns across regions revealed that the achievement gap 

between preschoolers and non-preschoolers was widening, with a huge regional imbalance in 

student achievement.  

2.9 Discussion 

By exploiting the massive expansion of public preschool (O-Class) in Ethiopia, the present 

study addresses gaps in the previous literature related to the influence of large-scale ECE 

programmes in the LMIC context. Specifically, I examine the trends of the relationships 

between preschool attendance and students’ early grade reading performance between 2010 

and 2016, when enrolment rates in pre-primary soared by nearly ten times. I found that positive 

and statistically significant relationships were observed only after the expansion of public 

preschool (2016) when comparing the period before the expansion (2010).  

This is consistent with previous studies reporting the small to moderate effects of a large-scale 

expansion of pre-primary education on students’ performance in reading and mathematics in 

Grade 3 in Argentina (Berlinski et al., 2009), and on children’s school readiness in language, 
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cognitive, and socio-emotional development after long exposure to preschool (three years) in 

rural Indonesia (Brinkman et al., 2017). My findings are also consistent with prior evidence on 

ECE participation in Sub-Saharan Africa using a nationally representative sample: short-term 

benefits of preschool on 6-year-old children’s school readiness in multiple cognitive and non-

cognitive domains in Zambia (McCoy, Zuilkowski, et al., 2017); small gains in language test 

scores from Grade 1 to Grade 6 for students in South Africa (Berg et al., 2013); and better 

performance on the literacy and numeracy tests sustained across age groups from 7- to 16-year-

olds in Kenya and Tanzania (Bietenbeck et al., 2017). I acknowledge that the influences (effect 

sizes) of preschool attendance in the present study, as well as the previous studies, are 

considered small (Cohen, 1992) but statistically significant across highly diverse settings. This 

is consistent with the claim that the estimated effects of large-scale ECE programmes are 

generally smaller than those found for small-scale programmes (Duncan & Magnuson, 2013).  

Previous studies in Ethiopia have shown the benefits of preschool attendance on cognitive 

development at age 8 (Woldehanna & Gebremedhin, 2012) and secondary school completion 

(Woldehanna & Araya, 2017) among urban children; however, there is no such evidence after 

the massive expansion of ECE following the enactment of the early learning reform in 2010. 

Rather, my findings among the EGRA 2010 cohort (before the expansion) differ from those 

reported by Woldehanna and Gebremadin (2012), who studied seemingly compatible 

preschool attendees in the pre-reform context in Ethiopia.78 Their findings point to an effect 

size of 0.36 on a receptive vocabulary test of preschool attendees versus non-attendees (Grade 

2 equivalent), whereas the present study found no significant association between attending 

preschool and reading achievement at Grade 2 for the EGRA 2010 cohort. This may be 

attributed in part to the different sampling frame: sample students from the previous study were 

restricted to those living in urban areas, including Addis Ababa (the area excluded in the current 

study), and they were not a regionally representative sample (Outes-Leon & Sanchez, 2008). 

Another reason for the inconsistency may stem from the quality of preschool services provided 

(e.g., kindergarten vs. religion-based preschool); however, there is not sufficient information 

to examine the quality aspects of the preschools where children attended.  

                                                
78 The EGRA 2010 and the Young Lives samples attended preschool between 2005 and 2008. Between the two 
samples, four regions are overlapped from Amhara, Oromia, SNNP, and Tigray, then the only difference is Addis 

Ababa in Young Lives and Somali in EGRA 2010.  
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As emerging evidence, my findings from the early learning reform in Ethiopia contribute to 

our understanding of whether the benefits of ECE from small-scale trials can be replicated 

when ECE is implemented on a larger scale, especially in low-resource settings. The previous 

studies found a positive link between access to preschool and students’ learning outcomes in 

Sub-Saharan Africa (e.g., Biethentek et al., 2017; Berg et al., 2013), but the maturity of the 

ECE system and its coverage is not commensurate with that in Ethiopia. For example, among 

the nationally representative study sample, enrolment in preschool increased from 79 percent 

to 83 percent between 1997 and 2004 in Kenya, and from 64 percent to 72 percent between 

2007 and 2008 in South Africa.79 Caution is required in extrapolating previous findings to 

poorly resourced settings or the early period of the system expansion. Average gross enrolment 

ratios in pre-primary remain at 20 percent and 36 percent in low- and lower-middle income 

countries, respectively. Reflecting on the scale-up pathways suggested by Yoshikawa et al., 

(2018) and Marmot (2010), existing evidence has focused on the ‘big to better’ process, 

whereas the present study was the first to add evidence from a ‘small (nothing) to bigger’ 

pathway operating at a national scale. This may be more relevant evidence for the policymakers, 

practitioners, and researchers working in LMICs who envisage universal pre-primary 

education, which was recently elevated to the top priority on the national and international 

policy agenda.  

Through the lens of bioecological theory (Bronfenbrenner, 1979; Bronfenbrenner & Morris, 

2006), the present study attempts to fill the gap in the literature of processes linking policy 

variation to child developmental variation (Yoshikawa & Hsueh, 2001). I looked not only into 

a shift in the ECE landscape as a change of the macrosystem children and families inhabit, but 

also into a shift in the test score distribution of all children in the sample. This reaffirmed that 

the early learning reform in Ethiopia induced a big stride forward in the education system, from 

being elite-oriented to including a wider representation of society. Previous studies were 

limited to examining mean differences in child outcomes across policy environments, whereas 

I employed the novel approach of using PP plots with students’ test score distribution (Ho, 

2009; Ho & Reardon, 2012), which depicted a change in the achievement gap based on 

preschool attendance on a robust scale. The gap trends also suggested that the benefits of 

preschool can be more pronounced in students living in urban areas than those in rural areas, 

                                                
79 This figure is retrieved from UNESCO’s UIS database (January 2019). This can be different from the national 

education statistics. 
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which was relevant to the equity concerns raised by the previous study. In South Africa, Berg 

et al. (2013) found that preschool attendance had virtually no measurable influence on students’ 

academic achievement in the schools from the lower wealth quintile, while there was a more 

discernible influence for the highest quintile schools (further investigation presented in Chapter 

3). Although high value was placed on monitoring trends in preschool participation related to 

learning outcomes in order to better inform ECE policy and service provision (Bassok et al., 

2018; Connor et al., 2016), this area has been overlooked in many studies conducted in LMICs.  

This paper also adds to the evidence on the wide disparities in academic achievement within 

Ethiopia. As each region forged ahead with its own plans for expansion, the magnitude of 

preschool benefits varied considerably by region.80 This point is relevant to the previous studies 

in Ethiopia that highlighted substantial regional differences in educational opportunities and 

academic achievement at Grade 4 (NEAEA, 2016) and Grade 12 (Tesema & Braeken, 2018). 

Importantly, in the present study, while regions experienced an overall decline in the share of 

non-readers, these gains always favoured preschool attendees to a greater extent than non-

attendees. For example, in SNNP (Sidamu)—the region that experienced the most dramatic 

increase in preschool access—the share of non-readers among preschoolers decreased by 41 

percentage points (from 62% to 21%) while it decreased among non-preschoolers by 27 

percentage points (from 62% to 35%). A huge regional imbalance and growing inequalities 

imply that government efforts toward universal pre-primary need to focus on promoting 

equitable access to high-quality ECE opportunities between and within regions.  

Another interesting result can be found in the largest gains from preschool in Somali, one of 

the historically disadvantaged regions (so-called emerging regions) in Ethiopia. In this region, 

after the large-scale expansion of O-Class in 2016, the benefits of preschool on early grade 

reading performance was almost equivalent to a single year of additional schooling, even after 

accounting for the between-school difference. Preschool attendance was also associated with a 

15 percent lower chance of becoming a non-reader, which is above the national average (10%). 

This finding aligns with previous studies that emphasised the compensatory role of preschool 

for children from more disadvantaged background (Brinkman et al., 2017); however, further 

                                                
80 Meanwhile, there is little correlation between regions’ preschool expansion rates and preschool benefits in students’ 
academic achievement.  
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investigation is needed to explain this finding relative to the overall academic achievement 

trends in this region.81  

While positive influences on child outcomes after the mass expansion of preschool are 

encouraging, why was there a ‘stronger’ association between preschool and academic 

achievement for the post-reform period but not for the pre-reform period? Initially, I 

hypothesised a ‘small’ association in the recent cohort (2016) with respect to a sudden influx 

into the system of many previously excluded young children. This is, in fact, what has been 

witnessed since the early 1990s during the universalisation of primary education. In Ethiopia, 

this movement shows that access-oriented policy reform could lead to the deterioration of 

learning outcomes, given the inclusion of many young people from deprived backgrounds 

(Dom, 2010).  

My hypothesis also reflects quality concerns in most O-Classes nationwide, such as an 

unqualified workforce, a lack of an age-appropriate curriculum and learning materials, a lack 

of infrastructure and financial resources, and poor managerial capacity among regional and 

local officers, among others (Rossiter et al., 2018; Woodhead et al., 2017; Teferra & Hagos, 

2016). Unlike the previous studies on the large-scale ECE expansion, which were accompanied 

by a strong government financial commitment (often combined with international aid) and 

targeted mechanisms for rural, disadvantaged populations (Bastos et al., 2017; Berlinski et al., 

2009, 2008; Bouguen et al., 2014; Brinkman et al., 2017), the early learning reform in Ethiopia 

was rolled out without such strategies. The education sectoral budget allocated to pre-primary 

remained scarce, about 3 percent of the total during the initial reform period (Rossiter et al., 

2018). Nevertheless, I found a reverse pattern suggesting a ‘stronger’ association between 

preschool and child outcomes after the reform, once wider access to preschool was instituted, 

as partly intended by the reform aiming to improve school readiness of students.  

Although beyond the scope of this analysis, I extrapolated a few possible reasons for this 

finding. First, the current study documents gaps in academic achievement between children 

who attended preschool and those who did not, thus it may relate to greater selection bias, 

especially for preschool non-attendees, during the major shift in the ECE system. This 

transition may leave a highly disadvantaged population excluded from early learning 

                                                
81 With respect to the sampling frame, although EGRA 2010 adopted convenience sampling for Somali due to the political 
instability, EGRA 2016 used the same sampling procedure it used for Somali with four other regions (e.g., random sampling 
after excluding the UNICEF Emergency Priority Zones).  
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opportunities. In other words, nearly all 4- to 6-year-old children (95%) did not have an 

opportunity to attend preschool in 2010; however, after the massive expansion of O-Class, 50 

percent of children from the marginalised communities in remote areas still do not have access 

to pre-primary education.  

Moreover, in addition to the selection bias caused by family wealth and parental choice, 

preschool attendance was partially explained by supply factors—that is, better-resourced 

schools may have introduced O-Class earlier than schools with few resources. Provided that 

children who benefited most from the early learning reform were attending primary schools 

with relatively high educational attainment, the comparison groups that entered primary school 

without any preschool experience were more likely to come from the low-performing schools 

in underprivileged communities. Indeed, a number of recent studies have highlighted the 

importance of understanding the counterfactual (or composition effects) when investigating 

the impact of preschool programmes (Bouguen et al., 2014; Zhai, Brooks-Gunn, & Waldfogel, 

2014). Collectively, this suggests that a larger association in the post-reform period does not 

necessarily imply that the rapid expansion yielded the intended benefits—an important area for 

future research.  

Perhaps the downside of my findings from the early learning reform is that the gaps between 

preschool attendees and non-attendees widened, which may have exacerbated educational 

inequality. These findings shed light on the need for more attention to children who did not 

attend preschool. If we project the learning trajectories of both groups, drawing from the 

observed trends, the achievement gaps would be wider, due to the cumulative advantage for 

preschoolers and cumulative disadvantage for non-preschoolers. While improving the quality 

of current pre-primary service provision has been prioritised, equivalent attention should be 

given to targeted interventions for children who are deprived of early learning opportunities 

before entering primary school.  

It is worth noting that there are some innovative approaches to reaching more young children 

in Ethiopia. The first case is community-based O-Class in SNNP (Rossiter et al., 2018). This 

is a local adaptation of school-based O-Class, which was directed to be established within the 

compounds of government primary schools. To reach the wider community, O-Class in SNNP 

has been expanded through another existing structure, including religious institutions, farmers’ 
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training centres, and community centres (personal interview with REB).82 The second case is 

the Accelerated School Readiness programme initiated by the government with support from 

UNICEF. The ASR programme provides a non-formal, short-term supplementary education 

for 6-year-olds who did not attend preschool, as an ‘interim’ approach to bridge universal 

access to formal preschool provided in kindergarten or O-Class. There is a need to maintain 

policy attention on efforts to further reduce barriers to preschool for at-risk subpopulations, 

and to utilise various channels that could reach children who are still excluded from early 

learning opportunities.  

2.10 Limitations 

Though the EGRA provided a unique opportunity to assess changes in the association between 

preschool and child outcomes over time, the scope of the analyses and findings were limited 

by the characteristics of the data I had available. First, although the measure of preschool and 

all other variables were constructed in exactly the same way across the 2010 and 2016 datasets, 

a few differences could remain between the two EGRA administrations, such as how to deal 

with external barriers (e.g., flood, drought, or ethnic clashes) during the sampling and data 

collection procedure. Also, given that several additional EGRA tests were administered in 

Ethiopia in 2013 and 2014, there may be some unobservable aspects, such as the improved 

capacity of EGRA administrators, assessors, and field workers.  

Second, there is limited information on SES or the household income levels of children, 

especially in the 2016 EGRA data. One explanation for excluding SES measures in the survey 

was the validity of SES measures self-reported by 8- and 9-year-old students. Within the scope 

of the data available, I mitigated the absence of SES measures by using other indicators, such 

as urban-rural residence, father’s and mother’s literacy, and reading materials at home, yet 

there is a certain restriction. To overcome this, a future study could consider linking the EGRA 

with a household-based survey that would enable us to capture children’s comprehensive 

surroundings (family, neighbourhood, and school). 

Third, the EGRA provides a broadly defined measure of children’s preschool experiences, as 

measured by a single question on preschool attendance. Although the question offers the 

                                                
82 This approach contributed to the higher enrolment in O-Class (59%) than the national average (35%), according to the 
National Education Statistics (MOE, 2015-2016). 
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example of early learning institutions, including nursery, kindergarten, and O-Class, it is not 

possible to obtain specific information, such as which institution they attended, type (public or 

private) and quality (e.g., class size, teacher-child interaction) of the institution, when they 

started preschool, etc. The possibility of recall problems cannot be excluded, although trends 

in the preschool enrolment of the EGRA sample are comparable with those from the National 

Education Statistics.  

While I have limited quantitative information on quality, there are a number of elements worth 

considering for future research. Having information about specific quality indicators allows us 

to compare the quality of public preschool in Ethiopia to other formal or informal providers, 

and to analyse the effectiveness by different preschool service provision and the role of quality 

indicators (e.g., class size, teacher quality, adult-child interactions) in improving students’ 

achievement. For example, research in LMICs has demonstrated the importance of preschool 

quality and, in particular, the importance of engaged and caring child-teacher interactions in 

predicting preschool benefits (Aboud, 2006; Araujo et al., 2016). Further research on preschool 

quality in low-resource settings will be instrumental in extracting relevant policy implications, 

as it will enable us to identify areas that need further support, change, or regulation, and inform 

effective resource allocation.  

Fourth, the present study is limited to early literacy measures provided by the EGRA as child 

outcome indicators. Having access to measures assessing other areas of child development, 

such as early numeracy, socio-emotional development, executive function, and motor 

development, would have enriched the study findings through the lens of holistic child 

development.83 In addition, assessment for early grade reading that is highly sensitive to local 

languages adds complexity to my analysis and interpretation. Although selected languages are 

used by more than 90 percent of the population, there is also a limitation in measuring child 

development among language minority groups. For example, REBs have adapted O-Class 

materials for the Saho and Kunama languages in Tigray, for Argoba in Afar, and for Berta, 

Gumuz, and Shinasha in Benishangul-Gumuz (Rossiter et al., 2018), but these languages have 

not been used in any national assessment to monitor children’s developmental progress.  

                                                
83 I attempted to access data on the Early Grade Mathematics Assessment (EGMA) Ethiopia 2014, but there is no permission 
for public access.   
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Finally, the current study used strategies for mitigating selection bias attributable to observed 

sources of preschool attendance, which yields a more robust estimate of the associations 

between preschool attendance and learning outcomes than a simple comparison between 

children who attended preschool and those who did not. Given that, in most real-world cases, 

it is not possible to control for unobserved child and household characteristics that may affect 

preschool attendance and learning outcomes, the results of the current study cannot be given a 

direct causal interpretation but does present a rigorous estimate which shows consistent results 

with a robustness check using propensity score matching. In spite of these limitations, the two 

datasets leveraged over the reform period make it an important resource for understanding the 

patterns of association between preschool and child outcomes. None of the studies in Ethiopia 

and Sub-Saharan Africa deal with this pattern that could better inform policy and scaled-up 

service provision.  

2.11 Conclusion 

Many LMICs have recently expanded access to pre-primary education as an instrument for 

promoting human capital creation and accumulation. Evidence from the U.S. and high-income 

countries suggests that these investments yield large returns (Berlinski et al., 2008, 2009; 

Cascio, 2009; Phillips et al., 2017), but evidence from low-income countries is elusive 

(Bouguen et al., 2015; Brinkman et al., 2017). Evidence is particularly lacking in Sub-Saharan 

Africa, where the potential for policy interventions in early childhood development is much 

greater than in any other region.  

The present study has contributed to filling this gap in the literature by exploiting a large-scale 

expansion in access to public preschool in Ethiopia from 2010 to 2016. Leveraging two large, 

representative EGRA datasets that straddled the early learning reform period, I estimated the 

association between preschool attendance and students’ early grade reading outcomes 

throughout Grade 2 and Grade 3. I find a positive relation between preschool attendance and 

improved academic achievement only after the expansion, as measured by test scores on the 

EGRA sub-tasks (e.g., oral reading fluency), and the proportion of non-readers and proficient 

readers. These associations varied by regions and languages.  

Overall, patterns in 2010 overturned those in 2016, which indicates that the role of preschool 

was strengthened during the reform period. While it is encouraging that the association has 

become more pronounced over a period characterised by heightened public interest in ECE, 
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we may need further research on this pattern that focuses on the comparison group—those who 

still do not benefit from early learning opportunities. The attention of policymakers should be 

not only on improving the quality of current service provision to maximise the gains from 

preschool but also on promoting the inclusion of communities that still do not have access to 

any form of preschool.  

This study leaves many questions unanswered about the conditions under which scaled-up 

preschool can yield meaningful and sustained benefits. While evidence exploiting significant 

policy shifts with non-experimental designs is instrumental, future research using household-

level data and experimental designs may provide more definite answers about the impact of 

expanding access to pre-primary education on children’s learning. This study also captures the 

inception stage of early learning reform, but the reform in Ethiopia is far from static, and policy 

efforts are increasingly oriented toward improving quality. Studying the effects of these 

improvement efforts will inform potential effective ways to stimulate human capital 

accumulation in many LMICs.   
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3 CHAPTER 3 – Pathway from Early Childhood Education to Primary Education: 

Exploring Moderation and Mediation in the Preschool Influence in Ethiopia 

3.1 Rationale for the Chapter  

Having established the relations between expanded access to preschool and student academic 

outcomes in the previous chapter, the present chapter aims to extend these findings based on 

the dimension of equity. Educational equity has been placed at the heart of the international 

development agenda (SDG 4, United Nations, 2015), and therefore it is critical to distinguish 

between ‘equity’ and ‘equality’. According to Jacob and Holsinger (2008), equality is defined 

as ‘the state of being equal in terms of quantity, rank, status, value or degree’, while equity is 

considered ‘the social justice ramifications of education in relation to the fairness, justness, and 

impartiality of its distribution at all levels or educational subsectors’ (p. 4). Every child grows 

up in their own unique circumstances and has particular learning needs. If we provide all 

students with equal learning environments and resources that stress uniformity, it may not be 

equitable. To make education equitable, we need to offer students from disadvantaged 

backgrounds or those with special learning needs more intensive interventions and additional 

schooling. This may not be equal, but it is equitable, as it provides all students the resources 

and learning opportunities they need to achieve desired outcomes. The key to educational 

equity is to ensure that all children have a fair chance to develop basic skills and to improve 

their school readiness, regardless of their socioeconomic, demographic or geographic 

characteristics.  

Equity in education therefore can be conceptualised from different perspectives in a given 

social and economic context. Any attempt to measure equity cannot be separate from a 

normative framework of fairness and justice (see UNESCO, 2018, for details). In the current 

study, I focus on the major sources of educational inequality pointed out in previous work in 

LMICs (e.g., Lewin, 2009; Banerjee et al., 2008), such as gender, poverty, location, language 

and ethnicity, which are the key dimensions to be taken into account to achieve equity. This is 

particularly pertinent to the context of education reform in Ethiopia, where the government 

used pre-primary education as a means to increase equity at the point of entry to the education 

system (MoE, 2015). The current chapter delves into whether the relations between preschool 

and child outcomes differ by the above dimensions and how they changed after the large-scale 

expansion of O-Class. The previous chapter describes impartial access to preschool based on 
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gender, poverty, location, caregiver’s education and language, whereas this chapter assesses 

the consequences of such impartiality based on learning outcomes. While it is useful to quantify 

the overall effectiveness of ECE, understanding the specific contextual sources of the 

differential effects is critical for policymakers in low- and middle-income countries (LMICs), 

who need to recalibrate their countries’ education policies to address the different needs of 

young children from diverse backgrounds and identify strategies for optimal resource 

allocation. 

3.2 Introduction: Inequalities in ECE 

Investment in early childhood education (ECE) is often motivated by its potential to reduce 

inequalities associated with growing up in disadvantaged circumstances. The risk of poverty-

related developmental losses is high; it affects an estimated 250 million children, about half of 

those under age five in LMICs, and more than two-thirds of the children in Sub-Saharan Africa 

(Black et al., 2017). With growing evidence that the benefits of ECE are significantly greater 

for vulnerable and disadvantaged children (Engle et al., 2011; Heckman et al., 2010; Magnuson 

& Duncan, 2017), governments, multinational organisations, and NGOs are promoting the 

expansion and improvement of ECE in LMICs as one means of narrowing the learning gaps 

between children from advantaged and disadvantaged backgrounds (Black et al., 2017; Sayre 

et al., 2015).  

However, empirical evidence on the ‘equaliser’ role of ECE is largely based on small-scale, 

high-quality interventions that target low-income families and mostly took place in high-

income countries. Little is known about whether a particular group, such as children from the 

poorest households or those living in rural areas, benefits significantly more from ECE in 

LMICs. In fact, emerging evidence in these countries presents mixed findings about the 

benefits of preschool in reducing learning disparities between the rich and the poor. Some 

studies show larger benefits for disadvantaged children in terms of school readiness (e.g., 

Brinkman et al., 2017; Jung & Hasan, 2014), while others suggest a null or even negative 

influence on the academic achievement of children from poor households (e.g., Berg et al., 

2013; Bietenbeck et al., 2017; Bouguen et al., 2014).  

Ethiopia has been in the process of an extensive ECE policy reform since 2010. The 

government’s primary goal of this investment in ECE is to provide early learning opportunities 

that promote school readiness and reduce poverty-based inequities at school entry (MoE, 
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2015). During a six-year period when the gross enrolment rate in pre-primary education rose 

from 4.8 percent to 50 percent, many previously excluded young children from impoverished 

backgrounds were included in the country’s education system. However, in the absence of 

rigorous evaluation, it remains unclear whether expanding access to preschool ensures that 

poor children will be more prepared for formal schooling and reduces the gaps in school 

readiness between rich and poor children.  

The present study provides new evidence on the influence of preschool across a variety of child 

and family characteristics in Ethiopia. Using data from the Early Grade Reading Assessment 

(EGRA) 2010 and EGRA 2016, which were conducted during Ethiopia’s large-scale preschool 

expansion, I first examined whether patterns of the relationship between preschool attendance 

and students’ academic achievement differ by gender, urban and rural location, father’s or 

mother’s literacy, and home reading resources. The current study focuses in particular on 

identifying a particular group for whom the benefits of preschool were greater and whether 

these patterns changed after the expansion of public preschool (O-Class in Ethiopia). Second, 

the present study adds to a limited but growing literature that explores the sustained benefits 

of preschool for child outcomes relative to their subsequent schooling experiences. I 

specifically explored how the relationship between preschool attendance and students’ 

academic achievement is mediated by subsequent schooling environments, as measured by 

primary school characteristics. Guided by Bronfenbrenner’s (1979, 1986; Bronfenbrenner & 

Morris, 2006) bioecological theory, I explored the multiple sources of the variations in 

preschool influence from different environments (family, school, community, and policy) and 

examined these dynamic relations by exploring questions of moderation and mediation in 

multiple environments.  

This paper makes three key contributions. First, it presents the first analysis of the differential 

influence of preschool on academic achievement using a regionally representative sample in 

Ethiopia. Although exploration of moderation in ECE research is far from novel, the 

disadvantaged nature of the sample population (e.g., all children are from low-income families 

or rural villages) in prior work limits researchers’ ability to examine cross-characteristics or 

cross-site variability in effectiveness (Barnett & Belfield, 2006; Burger, 2010; McCoy, Morris, 

et al., 2016).84 Second, focusing on the large-scale expansion of preschool in Ethiopia shows 

                                                
84 In the previous studies conducted in Ethiopia (Woldehanna & Araya, 2012, 2017), the sample population was 

children from urban areas, since only children from affluent backgrounds were able to access (private) preschool.  
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the trends of the differential benefits of preschool by sub-group before and after the reform. 

The reform accompanied a major shift in Ethiopia’s ECE landscape from an elite to a mass 

system, which is a context not studied before in low-resource settings. Third, given the 

importance of sustaining environments between pre-primary and primary education (Bailey et 

al., 2017), the study offers the first exploratory analysis of the role subsequent schooling 

environments play in mediating the relationship between preschool attendance and student 

outcomes in the LMIC context. The rest of this paper is structured as follows: Section 2 

summarises the relevant literature; Section 3 outlines the purpose and research questions of the 

present study; Section 4 presents the key variables used in the analysis; Section 5 provides the 

empirical approach; Section 6 presents the results from the analysis; Sections 7 and 8 discuss 

the findings and conclusions.  

3.3 Relevant Literature 

Educational inequalities start even before children begin school, driven primarily by disparities 

in wealth. An extensive body of research from developed (Brooks-Gunn & Duncan, 1997; 

Currie, 2009; Feinstein, 2003) and developing countries (Grantham-McGregor et al., 2007; 

Naudeau et al., 2011; Rolleston, James, & Aurino, 2013; Schady et al., 2015; Walker et al., 

2011) suggests that there are steep socioeconomic status (SES) gradients in early childhood 

development, as most of the observable cognitive gap between wealthier and poorer children 

emerges prior to any formal schooling and often widens with age. Early cognitive and non-

cognitive skills are, in turn, important determinants of success in terms of subsequent 

educational attainment (Walker et al., 2011; Currie, 2009), adult health (Campbell et al., 2014), 

criminality (Currie, 2001), and the probability of employment and level of future earnings 

(Chetty et al., 2011; Gertler et al., 2014; Heckman, Malofeeva, et al., 2010).85 The evidence 

highlights the fact that disadvantages found at an early age will result in the intergenerational 

transmission of poverty and income inequality (Barnett  & Belfield., 2006; Heckman & Mosso, 

2014) if not addressed by some measure before children reach primary school age.  

Theories and evidence from the U.S. argue that policies targeting early childhood development 

may be cost-effective solutions for promoting school readiness and reducing income-related 

                                                
85 The listed evidence on long-term effects come from the U.S., except evidence from Jamaica by Getler et al. 

(2014).  
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inequalities at school entry.86 Compared to parental care at home, preschools are thought to 

prepare children more fully for a structured primary school environment, particularly 

disadvantaged children whose low-educated parents might not be able to provide similar 

stimulation at home (Brooks-gunn, 2003; Duncan & Magnuson, 2013). Attending an ECE 

programme with a rich learning environment may partially compensate or substitute for lower 

levels of parental investment and less stimulating learning conditions (Ramey & Ramey, 1998). 

Various early interventions that target disadvantaged children, such as an intensive preschool 

programme (Campbell et al., 2002, for the Abecedarian Project; Schweinhart et al., 2005, for 

the Perry Preschool Study) or a large-scale comprehensive early intervention (Deming, 2009; 

Ludwid & Miller, 2007, for Head Start), establish the long-term effects early childhood 

intervention has on adulthood, even after an initial period of fadeout. Bolstered by the empirical 

evidence, along with dynamic skill formation models (Cunha & Heckman, 2007), the rationale 

for investment in ECE as the most effective tool for reducing gaps in child development has 

grown stronger. However, compared to the evidence from the U.S. and high-income countries, 

relatively little evidence has systemically documented whether ECE programmes in LMICs 

are able to compensate for the socioeconomic gradients in cognitive development, and hence 

to address one major cause of educational inequalities. 

Prior studies point to a range of family and individual characteristic that may lead to differential 

effectiveness of ECE in rich countries, including family income, race/ethnicity, maternal 

education, and home language (Heckman, 2006; Magnuson & Duncan, 2006, 2014; Halle et 

al., 2009; Duncan & Magnuson, 2011; Reardon & Portilla, 2016). Similarly, in poorer 

countries, there is a variety of causes of learning disparities, including poverty, gender, 

geographic location, disability, malnutrition, and ethnic and linguistic minority status, which 

often interact with one other to reinforce disadvantage (Altinok, 2013; Burger, 2011; Moloi & 

Chetty, 2010; Rolleston et al., 2013).  

In Ethiopia in particular, multiple sources of inequality remain for children from the poorest 

households and/or rural areas, girls (in secondary school), and children whose parents have 

little formal education (Rolleston et al., 2013; Pankhurst et al., 2018; Woldehanna et al., 2017). 

A study based on the Young Lives longitudinal data that compared four countries—Ethiopia, 

Peru, India (Andhra Pradesh), and Vietnam—demonstrated that students from the richest 

                                                
86 School readiness is the degree to which a child is prepared to learn and succeed in school (Ackerman & Barnett, 

2005).  
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quartile made more progress than those from the poorest quartile in mathematics during their 

transition from home (age 5) to primary school (age 8) (Rolleston et al., 2014).87 By age eight, 

there is a gap of 33 percentage points between richer (87%) and poorer (54%) children in 

Ethiopia in their ability able to answer ‘how much is 2 multiplied by 4’. Moreover, urban 8-

year-olds are over five times more likely to be able to read sentences than rural 8-year-olds 

(Rolleston et al., 2013). In addition to the poverty-based learning gap, Singh (2014) found 

differential productivity of a single-year of schooling in the four countries that largely accounts 

for the cross-country divergence in learning at age 8, which was evident at age 5 and grew 

substantially in the first 2-3 years of schooling.88  

3.3.1 Empirical Evidence on the Differential Effects of ECE  

Between girls and boys. Despite the prevailing norms of gender equity in education, girls and 

boys continue to perform differently in school. Evidence from the U.S. suggests that gender 

disparities in academic achievement may mirror differences in early development and learning 

opportunities (DiPrete & Jennings, 2012; Entwisle et al., 2007). However, evidence is mixed 

regarding the extent to which ECE may mitigate gender differences across different ages. 

According to a meta-analysis of 23 ECE programmes in the U.S., the effects of ECE 

programmes on cognitive outcomes are generally similar for girls and boys, with greater 

benefits for boys on school outcomes such as grade retention and special education placement 

(Magnuson et al., 2016). Prior work evaluating individual programmes reported larger gains 

from ECE for boys in the early grades (Deming, 2009; Muschkin et al, 2018) and for girls in 

adulthood, while other work reported no gender differences (Weiland & Yoshikawa, 2013).  

The differential benefits by gender were often mixed within the same intervention. In 

evaluating the Carolina Abecedarian Project, García, Heckman, and Ziff (2018) found that, 

across the positive impacts of ECE during the life cycle for both genders, boys experienced 

greater benefits on long-term outcomes such as the labour market, employment, health, and 

reduced participation in crime; girls experienced greater benefits on short-term outcomes such 

as cognition, achievement, and educational attainment. Although there is relatively limited 

evidence on gender differences outside the U.S., most prior studies consistently report that 

                                                
87 Young Lives is an international study of childhood poverty that followed the lives of 12,000 children in four 

countries (Ethiopia, India, Peru, and Vietnam) over 15 years. 
88 The productivity of a school year is measured by ‘learning gains per grade completed’ in value-added models 

(Singh, 2015).  
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there are no significant gender differences in preschool benefits in Argentina (Berlinski et al., 

2009), rural Guatemala (Bastos et al., 2017), Kenya and Tanzania (Biethenbek et al., 2017), 

Turkey (Agirdag et al., 2015), and Uruguay (Berlinski et al., 2008). In Ethiopia, using the urban 

sample of children from the Young Lives Study, Woldehanna and Gebremedhin (2012) found 

that preschool attendance had a slightly greater influence on the cognitive development of girls 

than of boys when the children were age 5, but that preschool benefits were slightly greater for 

boys than girls when the children were age 8. Eight-year-old boys who attended preschool also 

had a higher chance of enrolling in primary school and to make a timely grade progression than 

8-year-old girls.  

Between advantaged and disadvantaged. Although earlier studies in the U.S. emphasised the 

role of ECE in reducing learning disparities between rich and poor children, most of them 

evaluated the effectiveness of early interventions that targeted low-income populations; that is, 

on average across the studies, about 90 percent of the samples were from families in poverty 

(Leak et al., 2010).89 In recent years, a growing number of studies have been conducted using 

national or state-wide sample data (e.g., Early Childhood Longitudinal Study). Researchers 

have attempted to identify whether there are particular groups for whom the benefits of 

preschool are larger and more persistent among the representative sample. In line with 

predictions from compensatory models, these studies found that the preschool benefits are 

more pronounced among low-income children at school entry (Weiland & Yoshigawa, 2013) 

and through adolescence (Casio & Schanzenbach, 2013). For other individual-level 

characteristics, evidence is consistent of greater preschool benefits for racial/ethnic minority 

children (Weiland & Yoshigawa, 2013; Gormley et al., 2008), dual language learners (Bloom 

& Weiland, 2015; Puma et al., 2010a), and rural communities (Fitzpatrick, 2008). In a review 

of ECE studies, largely from high-income countries, Burger (2009) found that preschool 

programmes might compensate for social inequalities across highly diverse settings. 

Longitudinal studies conducted in Germany (Socio-Economic Panel), the U.K. (National Child 

Development Study, British Cohort Study), and the U.S. (North Carolina More at Four Pre-K 

Program) document that children from disadvantaged family backgrounds, as defined by 

poverty level, immigrant status, special needs, English proficiency, and chronic health 

                                                
89 The Head Start and other targeted programmes (Perry Preschool and the Abecedarian Project) have extensively 

studied the heterogeneity in effects, but selection bias is a major problem, given the disadvantaged nature of the 
sample population (Barnett & Belfield, 2006). This limits researchers’ ability to examine cross-site or cross-

characteristics variability in effectiveness (McCoy et al., 2017).  
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conditions, made more progress than their more advantaged peers when they attended 

preschool (Burger, 2009).  

Empirical evidence from LMICs is more mixed on the following three patterns: (1) 

disadvantaged children benefit more from preschool than their advantaged peers; (2) children 

from different family backgrounds benefit equally; and (3) disadvantaged children benefit less 

than their advantaged peers. First, as evidence from high-income countries claims, several 

studies found that preschool had greater benefits for children from disadvantaged families, as 

defined by SES, parental education level, parenting practices, and urban and rural location. In 

evaluating the scale-up preschool initiatives in Argentina and Uruguay, disadvantaged children 

obtained larger benefits from the expansion of public preschool. The positive effects of 

preschool attendance were more pronounced among children from low-SES families on their 

third-grade test scores in Argentina (Berlinski, Galiani, & Getler, 2009), and among children 

with low-educated mothers on their level of educational attainment at age 15 in Uruguay 

(Berlinski, Galiani, & Manacorda, 2008).  

A study looking at the effects of a community-based ECE intervention in rural Indonesia found 

that the gap between rich and poor in the treated villages decreased on multiple domains in 

child development, including cognitive and non-cognitive skills. By contrast, in non-treated 

villages, this rich-poor gap either increased or stayed constant (Jung & Hasan, 2014). In the 

follow-up evaluation of the same intervention, Brinkman et al. (2017) found that, for children 

from more disadvantaged backgrounds—poorer households or poorer parenting practices—the 

preschool benefits were larger and did persist over time for children’s language and cognitive 

development and social competence. In terms of outcomes in educational attainment, a study 

of the ECE programme in rural India found a particularly strong and positive relationship 

between preschool and primary school participation among children from households below 

the poverty line (Hazarika & Viren, 2013). 

Second, prior studies found no differential effects of preschool by student background. In the 

Sub-Saharan Africa context, a study using nationally representative data from Kenya and 

Tanzania found no differential gains from preschool on students’ educational attainment and 

cognitive development between richer and poorer households, rural versus urban location, and 

mother’s education (Bietenbeck et al., 2017). Similarly, work by Bastos et al. (2017) that 

evaluated preschool construction in rural villages in Guatemala found no consistent differences 

in preschool benefits on educational attainment between advantaged and disadvantaged 
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communities, as defined by the share of adults with no education, an indigenous population, 

and the prevalence of chronic malnutrition. Rather, the positive benefits of preschool 

attendance were lower in communities where a greater share of adults had no education (Bastos 

et al., 2017).  

Third, some evidence raises concerns that, rather than ameliorating inequalities, preschool can 

further extend the privileges of more advantaged children or the more deleterious effects for 

less advantaged children. In South Africa, a study assessing the influence of a one-year pre-

primary class (R-Class) found that preschool had virtually no measurable benefits in terms of 

academic performance in schools from the lower wealth quintile, while there were more 

discernible benefits for those from the highest wealth quintile (Berg et al., 2013). Similarly, a 

study looking at Turkish students’ performance in the Programme for International Student 

Assessment 2012 reported that, although preschool was related to higher academic 

achievement for all participating students, students from wealthy families obtained greater 

benefits than students from poorer families (Agirdag et al., 2015). Strikingly, in a randomised 

experimental study of a large-scale ECE programme in Cambodia, Bouguen et al. (2013) found 

a negative effect of a new ECE programme on the cognitive development of children; the 

largest negative effects were found among children from poorer household and those with less 

educated parents.  

In all, despite the potential of ECE to close existing equity gaps, the best ways to deliver greater 

benefits for marginalised children remain elusive. It is unclear what causes this variation within 

and across countries. Researchers point out that low-quality preschool, especially in poorer 

communities—for example, with a weak infrastructure and unqualified or untrained pre-

primary teachers—may determine whether attending preschool delivers beneficial effects 

across a variety of family characteristics (Barnett, 2008; Berg et al., 2013; Burger, 2010). 

Others surmise that preschool is too late to intervene, in that much of the brain develops before 

age three, the time when many children are entering preschool (Richter et al., 2017). Thus, the 

accumulated developmental losses from birth are unlikely to be compensated by preschool 

interventions (Burger, 2010).  

3.3.2 Empirical Evidence on the Variation in Effects of ECE by Subsequent School 

Environments  

A growing body of ECE research focuses not only on early gains from the preschool 

experience, but also on how well the benefits of preschool are sustained during subsequent 
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schooling experiences.90 Earlier studies in the U.S. indicated that the benefits of preschool 

fadeout more quickly among disadvantaged groups such as black children because they are 

more likely to attend poorer quality primary schools (Currie & Thomas, 2000; Lee & Loeb, 

1995). Given that the benefits of preschool depend in part on the quality of the primary school, 

some argue that the benefits of a preschool experience would fadeout unless reinforced by 

subsequent good school experiences (Bogard & Takanishi, 2005). This aligns with the 

cumulative model of human capital acquisition (Cunha & Heckman, 2007), also known as 

‘dynamic complementarity’, which suggests that the benefits of preschool may be enhanced 

when followed up by a high-quality school environment. Recent work focuses on the 

importance of ‘sustaining environments’, or the inputs and features of primary school 

experiences, as critical pathways to preserving children’s preschool benefits (Bailey et al., 

2017; Phillips et al., 2017).  

To examine whether subsequent schooling environments contribute to sustaining the effects of 

preschool, a wide range of school characteristics has been investigated, mainly in the U.S. At 

least three patterns emerged from the existing literature on how to define, measure, and treat 

subsequent schooling experiences relative to the link between preschool and students’ 

outcomes: (1) either school-level or class-level factors; (2) either structural or process school 

quality indicators; and (3) treating these factors as either ‘moderator(s)’ or ‘mediator(s)’.  

First, the distinction between how classroom-level and school-level pathways affect student 

achievement is based on the proximity to the instructional interactions (Curenton, Dong, & 

Shen, 2015). For instance, classroom-level pathways focus on the proximal factors, including 

student-to-student (peer) learning interactions, class size, and teachers’ instructional approach, 

such as spending more time on advanced content rather than on basic math and literacy content 

(Claessens et al., 2014). By comparison, school-level pathways draw on the distal factors that 

affect the teaching and learning process. For example, school-level pathways include 

schoolwide infrastructure and resource level (e.g., school assets, expenditure per pupil), 

indicators of average schoolwide student achievement (e.g., proportion of students at or above 

                                                
90 Researchers explored preschool effects that varied by the ‘characteristics of preschool or ECE programme’, 

such as the duration and intensity (Loeb et al., 2005; McCoy et al., 2016) and teacher-child interactions in the 

ECE programme (Araujo, Carneiro, Cruz-Aguayo, & Schady, 2017; Mashburn et al., 2008; Hu et al., 2017). 
However, due to the absence of data on preschool characteristics or quality, the current study was not able to 

explore this aspect.  
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academic proficiency), and indicators of mean student SES (e.g., proportion of students who 

received free/reduced-price lunch) (Hanushek, 2003). 

Second, the school- and classroom-level pathways are further diversified by the structural and 

process aspects of school quality. Although there is no consensus on what constitutes school 

quality (Glewwe, Hanushek, Humpage, & Ravina, 2013; Sammons, 2009), it often is measured 

by structural and process characteristics that are thought to stimulate student learning, 

especially in early grade settings (Howes et al., 2008; Layzer & Goodson, 2006; Sylva et al., 

2006; Thomason & La Paro, 2009).91 Structural quality refers to the overarching structures 

needed to ensure quality in school, including the physical environment (school buildings, 

outdoor space, learning materials), teachers’ qualifications and training level, pupil-to-teacher 

ratios, and standards that regulate the learning environment and workforce conditions (Bryant, 

Zaslow, & Burchinal, 2010; Philips et al., 2000; Pianta et al., 2005). Process quality consists of 

student’s learning experience through their interactions with teachers, peers, and the learning 

materials they are engaged with (Pianta et al., 2005; Moss & Dahlberg, 2008). The key 

dimension of process quality includes teachers’ instructional support (e.g., quality of 

feedback), emotional support (e.g., positive climate), and classroom organisation (e.g., 

instructional learning formats) (Pianta, Laparo et al., 2008). 

Third, the role of subsequent schooling environments can be viewed as either a ‘moderator’ or 

a ‘mediator’ (see Baron & Kenny, 1986), depending on the researcher’s hypothesis. To 

illustrate, a moderator is one variable that affects the direction and/or strength of the relation 

between preschool experience and later learning outcomes, while a mediator is one variable 

that explains how and why such a relation was established (or failed to be). If subsequent school 

environments moderate this relation, it implies that the way the child with preschool experience 

is engaged in primary schools is different from the engagement of a child without preschool 

experience, which changes the nature of the link between preschool and student outcomes. By 

comparison, if subsequent school environments serve as mediators, they are part of the 

intervening mechanism within the established relation. The effect of preschool experience is 

thus transmitted via the children’s engagement in primary school, which may provide a 

conducive learning environment, to later outcomes.  

                                                
91  Note that the literature on structure and process quality is largely from studies in ECE, including pre-

kindergarten, kindergarten (U.S.), or reception class (U.K.).  
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Considering all these variations in conceptualizing and operationalizing the school 

characteristics, it may not be surprising that the empirical evidence on whether subsequent 

school experiences play a complementary or compensatory role is mixed. The first strand of 

research focused on assessing ‘school-level’ factors related to child outcomes. Focusing on the 

impact of Head Start, Currie and Thomas (2000) found that the Head Start programme’s fade-

out effects among black students depended on the fact that these students were more likely to 

attend poor-quality schools where students’ average test scores were low. Relatedly, Curenton 

et al. (2015) found that the association between ECE attendance and fifth-grade academic 

achievement was partially mediated by aggregate schoolwide achievement. Using the Chicago 

Longitudinal Study, Reynolds, Ou, & Topitzes (2004) found that attending a high-quality 

primary school (e.g., a magnet school) mediated the long-term benefits of preschool on 

educational attainment at age 20.92 Among the multiple indirect paths of students, family, and 

school characteristics (mediators), school factors accounted for about one-third of the total 

indirect effect (Reynolds et al., 2004). Most recent research on Head Start revealed that its 

benefits were more pronounced when followed by access to primary schools with higher 

funding levels, with particularly larger benefits among children from the poorest families 

(Johnson & Jackson, 2018). Aligned with a dynamic complementarity model (Cunha & 

Heckman, 2007), these findings suggest that early investments that are followed by sustained 

educational investment over time can effectively reduce inequality between the rich and the 

poor (Johnson & Jackson, 2018). 

The second strand of research focused on evaluating ‘classroom-level’ factors that may play a 

role in the relationship between preschool and learning outcomes. Using the U.S. Early 

Childhood Longitudinal Study, Magnuson et al. (2007) showed that the persistence of 

preschool benefits was tied to both class size and quality of instruction; unexpectedly, 

preschool gains persisted for children who experienced larger class sizes and lower levels of 

reading instruction but were eliminated for children who subsequently experienced smaller 

class sizes and higher levels of reading instruction. By comparison, Bassok et al. (2018) found 

that primary school characteristics, measured by length of school day, class size, transition 

practices, and exposure to advanced content, did not alter the relationship between preschool 

and third-grade cognitive and behavioural outcomes. Similarly, Jenkins et al. (2018) found that 

                                                
92  Magnet schools are selective elementary schools (private) that provide specialised programs across the 
curriculum. A higher proportion of students in these schools exceed national norms in reading and math 

achievement (Hickey & Reynolds, 2002).  
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advanced content and high-quality instruction in the primary grades did not moderate the 

fadeout of preschool effects, except for some mitigation induced by targeted teacher 

professional supports.  

Overall, a large body of the literature exploring school- or classroom-level pathways measures 

school environments by the structural quality indicators of school, which are easier to measure 

than the process quality indicators. With respect to the moderation versus mediation role of 

subsequent school experience, except for two studies using the mediation model (Reynolds et 

al., 2004; Curenton et al., 2015), most studies used the moderation model to see whether 

primary school characteristics altered the extent to which preschool affects students’ outcomes. 

Meanwhile, inconsistency in the findings across the studies, which often reported no 

moderation effect, raised some methodological issues for such research, such as the difficulty 

in measuring school or classroom quality and the non-random assignment of post-preschool 

environments (Bailey et al., 2017).  

It should be noted that all evidence presented here is from the U.S. and, to my knowledge, no 

study has explored the subsequent schooling experience in the LMICs.93 Two studies on ECE 

in Ethiopia applied the moderation or mediation model, but these studies did not account for 

post-preschool experience in primary school. Both used the Young Lives Study, which 

captured the period when only urban children had access to private preschool. A study by 

Woldehanna and Araya (2017) examined the differential influences of preschool by preschool 

characteristics, including duration (one to three years) and preschool type (private, community, 

and governmental), on educational attainment at age 18. The results indicated that the 

contribution of preschool was more pronounced for children who attended preschool for at 

least three years or for those who attended private preschool. Another study by Woldehanna 

(2016) looked at the indirect effects of preschool on the relation between family background 

and students’ cognitive outcomes. The author found that preschool attendance partially 

mediated the influence of family background—household wealth, parental education, and 

regional location—on students’ cognitive achievement. To fill these gaps in the knowledge, 

the present study employed a mediation model to test the hypothesis that preschool attendees’ 

early grade achievement would be mediated by subsequent schooling environments. Given that 

                                                
93 A relevant example was found in China, but the study used only structural and process quality within preschool. 
(B. Y. Hu, Zhou, Chen, Fan, & Winsler, 2017) examined the relationship between financial resources in ECE and 

student academic outcomes, mediated by teacher-child interactions in the pre-primary classrooms.  
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skill development is a multi-stage process in which investments at previous stages interact with 

and complement the current one, it is reasonable to investigate whether the relation between 

preschool and students’ early grade performance relates to subsequent primary school 

experiences.  

3.4 The Present Study  

Building on the positive relations between expanded access to preschool and children’s literacy 

outcomes established in Chapter 2, the present study aims to examine whether the preschool 

benefits vary on two theoretically motivated dimensions: (1) the socio-demographic 

characteristics of child and family; and (2) subsequent schooling environments. Using the Early 

Grade Reading Assessment (EGRA) administered in 2010 and 2016 to a regionally 

representative sample of Ethiopian students, the following questions will be addressed:  

1. Do some child sub-groups, as defined by child gender, urbanity, paternal and maternal 

literacy, and home reading resources, benefit significantly more from preschool 

attendance than others, before and after the early learning reform?   

2. How are the relationships between preschool attendance and second- and third-grade 

reading achievement mediated by subsequent schooling environments? 

I first aim to identify the particular group for whom the benefits of preschool are greatest (as 

measured by the probability of being a non-reader or a proficient reader) and whether these 

patterns differ before and after the early learning reform. The definition of sub-groups—child 

gender, urbanity, paternal and maternal literacy, and home reading resources, which are 

available in the dataset—is guided by earlier studies in the region (McEwan, 2014; Bashir et 

al., 2018) and in Ethiopia (Piper, 2010; Rolleston et al., 2013; Woldehanna, 2016). Drawing 

on previous evidence, I hypothesise that the benefits of attending preschool will be significantly 

greater for children from disadvantaged backgrounds: being a girl, living in a rural area, living 

with an illiterate father and/or mother, and not having any reading materials at home. Second, 

I explore how the relationships between preschool attendance and students’ early grade reading 

performance (as measured by EGRA test scores) are mediated by their primary school 

schooling environments. My hypothesis is that school characteristics (e.g., class size, the 

availability of textbooks, and school principal’s leadership) play a role in sustaining the 

benefits of preschool along the pathway between preschool attendance and students’ learning 
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outcomes. Due to a lack of previous evidence and limited measures of school quality, my 

examination of the mediating role of primary school environments is considered exploratory.  

The present study contributes to the existing literature in a number of ways. First, to my 

knowledge, this is one of the first studies to use a regionally representative sample to assess 

the degree to which the relations between ECE attendance and early grade reading skills differ, 

based on the socio-demographic characteristics of students in Ethiopia. Prior studies on ECE 

in Ethiopia often were limited to an urban sample (Woldehanna & Araya, 2017) or to one 

targeted region or community (Dowd et al., 2016), thus certain restrictions exist in conducting 

sub-group analysis. Second, while the existing literature focuses on the direct effects of 

preschool or on whether subsequent schooling experiences alter the magnitude of these effects, 

the present study is the first to examine the mediating pathways of students’ subsequent school 

environments and learning outcomes, especially in the LMIC context. The present study 

provides a better understanding of targeted approaches to preschool expansion aimed at 

ensuring equitable access and learning for the disadvantaged, and of strategies for aligning the 

pre-primary and primary school experiences in ways that sustain the benefits of early learning.  

3.5 Data and Variables 

The present study used the dataset from the Early Grade Reading Assessment that was 

constructed in Chapter 2. Sample, key explanatory variable, outcomes variables, and control 

variables used for the current analysis are same as in the previous chapter (see Section 2.6). To 

address my second research question applying the mediation analysis, I added measures of 

school environments from the same EGRA dataset as follows:  

Measures for school environments. The hypothesised mediating pathway of subsequent 

school environments is intended to be operationalised using variables that reflect both the 

structural and process quality provided for children in the school. To measure school 

characteristics, I used information collected by the EGRA questionnaire on school principals, 

focusing in particular on activities that support mother tongue instruction (AIR, 2016): 

principals’ qualifications and experience (having a bachelor’s degree or higher, having training 

in early grade reading); principals’ involvement in reading instruction (supporting teachers in 

reading instruction, reviewing teachers’ lesson plans every week, satisfying students’ early 

grade reading achievement, managing classroom observations, conducting oral examinations 

to monitor early grade reading progress); and the schools’ resources and staff management 
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(having a school library, having new mother tongue textbooks, and having teachers trained in 

early grade reading).  

Some measures of school environment are relevant to the principal’s support for teaching and 

learning practices, which may lead to schools’ improved process quality (e.g., staff-child 

interaction, school leadership, school climate). In the broader literature on school effectiveness, 

these practices may relate to the characteristics of an effective school, such as a participative 

approach to leadership (Sammons et al., 1995), and to key elements in school improvement, 

such as self-evaluation (MacBeath, 2010), as they support the identification of barriers to 

teaching and learning. The process quality indicators are also connected to schools’ structural 

quality (e.g., class size, learning materials, teachers’ qualifications). In his study on school 

leadership in Ethiopia, (Abebe, 2012) stressed that school principals play a pivotal role in 

school management, including the utilisation of textbooks and teaching materials, teacher 

management, and monitoring support for children in disadvantaged circumstances.  

Other measures of school environment are relevant to structural quality of school such as 

principals’ qualifications, the availability of textbooks, and school library. Across a substantial 

body of literature, evidence on the effectiveness of textbook and principals’ qualification on 

students’ outcome was inconclusive (Conn, 2014), while some studies indicated that a school 

library has statistically significant effects on the increased time the students spend in school 

(Glewwe et al., 2013). Meanwhile, evidence on the effectiveness of structural school quality is 

limited but growing in Ethiopia; for example, students’ reading fluency is positively associated 

with the provision of textbooks (Woldehanna, Jones, & Bekele, 2005; Piper, 2010), and 

students’ early math achievement is positively associated with principals’ qualifications and 

the availability of textbooks (NEAEA, 2014). 

3.6 Empirical Strategy  

3.6.1 Research Question 1: Interactions  

To estimate how relations between preschool attendance and learning outcomes differed by 

child and family characteristics, I estimated a series of models in which I allowed for an 

interaction between preschool and one potential moderator. I started by recalling the 

multivariate logistic regression model used in the previous chapter: 

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠  + 𝛽2𝑋𝑖𝑠 +  𝛽3𝐹𝑖𝑠 +  𝜖𝑖𝑠                (1) 
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where 𝑌𝑖 represents the early grade reading achievement for a student i in school s; 𝑃𝑅𝐸𝑖𝑠 , 

represents a binary variable of preschool attendance; 𝑋𝑖𝑠  and 𝐹𝑖𝑠 represent a set of control 

variables, each denoting student- and family-level characteristics, including regional dummies; 

and 𝜖𝑖𝑠  indicates an error term (residual). With respect to my research interest in the 

differentials by sub-groups, I extended the equation (1) with the interaction terms, as expressed 

below:  

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠 + 𝛽2𝐹𝑒𝑚𝑎𝑙𝑒𝑖𝑠 +  𝛽3𝑃𝑅𝐸𝑖𝑠 ∗ 𝐹𝑒𝑚𝑎𝑙𝑒𝑖𝑠 + 𝛽4𝑋𝑖𝑠 + 𝛽5𝐹𝑖𝑠 +  𝜖𝑖𝑠                      (2) 

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠 + 𝛽2𝑅𝑢𝑟𝑎𝑙𝑖𝑠 + 𝛽3𝑃𝑅𝐸𝑖𝑠 ∗ 𝑅𝑢𝑟𝑎𝑙𝑖𝑠 +  𝛽4𝑋𝑖𝑠 +  𝛽5𝐹𝑖𝑠 +  𝜖𝑖𝑠                            (3) 

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠 + 𝛽2𝐹_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖𝑠 + 𝛽3𝑃𝑅𝐸𝑖𝑠 ∗ 𝐹_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖𝑠 + 𝛽4𝑋𝑖𝑠 + 𝛽5𝐹𝑖𝑠 +  𝜖𝑖𝑠           (4) 

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠 + 𝛽2𝑀_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖𝑠 +  𝛽3𝑃𝑅𝐸𝑖𝑠 ∗ 𝑀_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖𝑠 + 𝛽4𝑋𝑖𝑠 + 𝛽5𝐹𝑖𝑠 + 𝜖𝑖𝑠          (5) 

𝑦𝑖𝑠 =  𝛽0 + 𝛽1𝑃𝑅𝐸𝑖𝑠 + 𝛽2𝐵𝑜𝑜𝑘𝑎𝑡𝐻𝑜𝑚𝑒𝑖𝑠 + 𝛽3𝑃𝑅𝐸𝑖𝑠 ∗ 𝐵𝑜𝑜𝑘𝑎𝑡𝐻𝑜𝑚𝑒𝑖𝑠 +  𝛽4𝑋𝑖𝑠 + 𝛽5𝐹𝑖𝑠 + 𝜖𝑖𝑠  (6)  

The dependent variable 𝑦𝑖𝑠  is the log-odds of being a non-reader or a proficient reader, where 

the probability p is given as 𝑝𝑖𝑠 =  
𝑒𝑖𝑠

𝑦

1+𝑒
𝑖𝑠
𝑦.94 From equations (2) to (6), the logit regression model 

includes one additional term that captures the interaction between preschool and gender, urban 

and rural residence, father’s literacy, mother’s literacy, or reading materials (books) at home. 

Each model estimates the simultaneous association of the interaction term between two groups, 

as opposed to estimating the model separately for each of these groups. Inclusion of the 

interaction terms thus provides better understanding of the relationship among the study 

variables, especially whether their joint associations are significantly greater (or significantly 

less) than the sum of the parts. 

Specifically, in the model with interaction, the role of preschool attendance is conditioned on 

gender, urban-rural residency, paternal or maternal literacy, and home reading resources. This 

model provides an estimate of the benefits of preschool for each group, such as the differentials 

between boys versus girls, children living in rural versus urban areas, children with an illiterate 

versus literate father or mother, and children with fewer versus more home reading materials. 

This estimate will show, for each group, whether there was a gain in the reduced probability of 

being a non-reader (or increased probability of being a proficient reader when the model used 

that outcome variable). If these estimates are the same between two groups, it indicates that all 

                                                
94 This chapter deals with the outcome variables on the probability of being a non-reader or a proficient reader. 

The model with student’s outcomes measured by EGRA test scores is available upon request.  
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groups of children benefited equally from preschool attendance. On the other hand, if these 

estimates are different between the groups, it indicates that a particular group of children 

benefited more from preschool than others. For instance, the interaction terms allow us to test 

whether children living in rural areas benefited significantly more than those living in urban 

areas in terms of early literacy outcomes. 

As argued by several researchers (Brambor, Clark, & Golder, 2006; Kam & Frazese, 2005), all 

constitutive terms should be included when constructing an interactive model specification, 

otherwise the risk of incurring inferential errors significantly increases. If one of constitutive 

terms is dropped in the model, all coefficients on the remaining terms are altered either in size 

or significance, which causes the other parameters of interest (𝛽1to 𝛽5) be estimated with bias. 

The bias is due to the fact that the excluded terms are correlated with those remaining in the 

model and with the outcome variables. Moreover, the exclusion of those terms implicitly 

assumes that the intercept of 𝑦𝑖𝑗 on Pre (𝛽0) is not conditional on regressors (e.g., being female 

or father’s literacy), thereby imposing a fixed intercept on the model. In turn, when the model 

specifications include full constitutive terms, researchers should not interpret this as if they are 

unconditional marginal effects (Brambor et al., 2006).  

Importantly, in the models with the interactive terms, the estimated parameters cannot be 

directly interpreted as ‘effects’ (Kam & Franzese, 2007, pp. 19-20). In other words, the 

coefficients 𝛽1-𝛽3 in equations (2) to (6) cannot tell us the estimated effects on the outcome 𝑦𝑖𝑗 

if they are taken in isolation. Due to interdependencies, each variable involved in interaction 

terms has multiple effects, depending on the levels of the other variables with which it 

interacts.95 For this reason, when calculating the conditional marginal effects of preschool 

attendance as a function of gender, urban or rural residence, father’s literacy, and reading 

materials at home, I use the first derivatives of equations (2) to (6) with respect to preschool 

attendance 𝑃𝑅𝐸𝑖  (Brambor, Clark, & Golder 2006; Kam & Franzese, 2005) as follows:  

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖
=  𝛽1 + 𝛽3𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝜖 𝑖𝑠                     (7) 

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖
=  𝛽1 + 𝛽3𝑅𝑢𝑟𝑎𝑙𝑖 + 𝜖 𝑖𝑠                        (8) 

                                                
95 When linked variables are specified to the model including interaction (e.g., pre ## female), Stata command 

margins is taking care of the marginal or discrete changes correctly (Long & Freese, 2014). Since it is not possible 
to estimate a separate effect for the interaction, researchers will have the marginal effects of the component terms 

(Williams, 2012). 
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𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖
=  𝛽1 + 𝛽3𝐹_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖 + 𝜖 𝑖𝑠               (9) 

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖
=  𝛽1 + 𝛽3𝑀_𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖 + 𝜖 𝑖𝑠              (10) 

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖
=  𝛽1 + 𝛽3𝐵𝑜𝑜𝑘𝑎𝑡𝐻𝑜𝑚𝑒𝑖 + 𝜖 𝑖𝑠           (11) 

Equations (7) to (11) show how the effect of preschool attendance (𝑃𝑅𝐸𝑖) is a function of 𝛽1, 

and other terms interacted with 𝑃𝑅𝐸𝑖 . For example, in the relationship between preschool 

attendance and father’s literacy, each category of children can be defined as:  

 

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖 .𝐹𝑎𝑡ℎ𝑒𝑟 𝐼𝑙𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑒
=  𝛽1 + 𝜖 𝑖𝑠                                             (12) 

𝜕𝑦𝑖𝑠

𝜕𝑃𝑅𝐸𝑖 .𝐹𝑎𝑡ℎ𝑒𝑟 𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑒
=  𝛽1 + 𝛽3𝐹_𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖 + 𝜖 𝑖𝑠                 (13) 

 

For children with an illiterate father (eq. 12) the effect of preschool is given by 𝛽1, since for 

those children, 𝐹_𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦𝑖  would be zero, while for children with literate father (eq. 13), the 

effect is the sum of 𝛽1 + 𝛽3. Because 𝛽1 is correlated with 𝛽3, the variance of their sum is 

𝑣𝑎𝑟 (𝛽1 +  𝛽3) = 𝑣𝑎𝑟 (𝛽1) +  𝑣𝑎𝑟 (𝛽3)  + 2 ×  𝐶𝑜𝑣𝑎𝑟 (𝛽1. 𝛽3). 96 Again, our interest is in 

knowing whether the effect of a child attending preschool is the same for a child whose father 

is literate and for a child whose father is illiterate, which is expressed below:  

 

𝐻0 : 
Δ Pr  (𝑦=1 |𝑥,𝐹_𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦=0) 

Δ Pre
 = 

Δ Pr  (𝑦=1 |𝑥,𝐹_𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦=1) 

Δ Pre
                 (14) 

To test this hypothesis, I computed the average marginal effects of the association between 

preschool and student outcomes, averaging only those cases where father’s literacy was 0 (as 

observed for other values) and compared it with the average marginal effects for those cases 

where father’s literacy was 1 (eq. 14). Once I computed the average marginal effects, which 

were equivalent to a discrete change by each case, I tested whether the effects were equal or 

significantly different between two sub-groups by estimating the contrasts of margins.97 The 

                                                
96 As argued by Kam and Franzese (2007, pp. 128-129) the heteroskedasticity (non-constant variance) can be 

easily addressed in the regression by using White’s procedure to generate a consistent variance-covariance matrix 

and, therefore, to correct the coefficient-estimates’ standard errors in the estimated model. This is done in Stata 

using the option robust or vce(robust) for the regression command. 
97 I used the contrast of margin with, for example, difference in preschool and difference in gender: using Stata 
command margins r.pre##r.female (or margins pre##female, contrast(nowald pveffects) vsquish), one can test 

whether the groups’ difference is significant or not.  
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estimation of average marginal effects with predicted values, especially in the case of nonlinear 

models with interaction terms, offers a useful interpretative aid for information on the 

substantial and practical significance (Cameron & Trivedi, 2010; Williams, 2012).  

Additionally, I introduced the school fixed effects approach to the multivariate logistic model 

in order to compute within-school difference by controlling for the potential confounding 

effects of all unobserved, time-invariant school variables. An analogous procedure of the fixed 

effects used in the linear model was applied to the logit model with fixed effects; however, 

instead of maximum likelihood, ‘conditional’ maximum likelihood should be used to avoid 

bias caused by the incidental parameters problem (e.g., creating multiple records or dummy 

variables for schools) (Allison, 2009). Also, the interpretation of the school fixed effects logit 

model was limited to ‘odds ratio’. Estimating marginal effects can be problematic after the 

fixed effect model is applied because, by default, margins provide information on the 

probability of a positive outcome assuming that the fixed effect is ‘zero’, which may be an 

unreasonable assumption when computing the predictive values (Pforr, 2013; Silva & Kemp, 

2016; Williams, 2018).  

3.6.2 Research Question 2: Structural Equation Modeling  

To address my second research question, I used mediation analysis to explore how a ‘mediator’ 

variable (subsequent schooling experience in this study) might influence the relationship 

between preschool and students’ academic achievement. Structural equation modeling (SEM) 

(Baron, & Kenny, 1986) is an appropriate method for this analysis because of its suitability to 

unpacking the intervening mechanism based on the relations established in the previous study 

(see Chapter 2), to testing multiple processes simultaneously (including the direct and indirect 

paths of all predictors while taking into account a variety of covariates), and to comparing 

alternative models by assessing model fit statistics. The mediation analysis should be 

distinguished from the analysis of the moderation effect used in my first research question, 

which provides insights into whether ECE programmes may operate differently for different 

sub-groups or in different primary school settings.98 Analysis of the mediation effect allows 

me to identify the pathways to achieving a positive relationship (or the obstacles if the 

intervention failed) through multiple channels in subsequent school environments.  

                                                
98  Moderation analysis was conducted to explore whether the association differed by subsequent schooling 
experiences. However, there was no statistically significant effect of interaction terms (e.g., preschool ## school 

having continuous monitoring on child literacy skills) on students’ outcomes. 
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Specifically, I used a multiple mediator, single-level SEM, given the small variance attributable 

to the school level (see Table 3). Among the hypothesised mediators on school environments, 

pairwise correlation analysis was conducted to test how these variables are correlated with 

outcome (dependent) variables (see Table 4). Interestingly, only three measures related to 

structural quality—principals’ qualifications (bachelor’s degree or above), school has new 

mother tongue textbooks, and school has a library—were moderately correlated with the 

EGRA test scores, which ranged from 0.07 to 0.18. By contrast, the rest of school measures 

related to process quality (e.g., principals reviewed lesson plans or monitored teachers’ 

instruction via classroom observation) had no significant or negative correlation with outcome 

variables.99 The estimates from the t-test also indicated a statistically significant difference (p 

< 0.01) between preschool attendees and non-attendees in the three variables capturing 

structural quality. As explained, in Ethiopia, principals’ qualifications and the availability of 

textbooks are positively associated with students’ academic achievement (Piper, 2010; 

NEAEA, 2014; Woldehanna et al., 2008). Hence, I decided to include these three mediators in 

the analysis for each outcome variable.  

To determine the best fitting model for the present data, I tested two different models. Model 

1 first included preschool attendance as a direct predictor of three observed measures of school 

environment (i.e., principals’ qualifications, the availability of textbooks, and school library), 

and children’s EGRA test scores. Next, these three measures of school environments were 

included as direct predictors of children’s EGRA test scores. To account for common sources 

of measurement error, error terms of the three variables representing school environment were 

allowed to be correlated. In Model 2—represented visually in Figure 3.4—I introduced the 

latent variable of school environments based on the selected observed variables. Model 2 

included preschool attendance as a direct predictor of the latent measure of school environment 

and children’s EGRA test scores, then this latent measure was included as a direct predictor of 

children’s EGRA test scores. On the latent measure of school environment, I conducted a one-

factor confirmatory factor analysis and confirmed that this shows an adequate model fit (χ2(2) 

= 43.59, p < 0.001; CFI = 0.95; RMSEA = 0.05). Taken together, Model 1 is the cumulative 

model in which the joint contribution of three observed school characteristics are included, 

while Model 2 builds up with the latent variable that can be regarded as a composite score of 

three indicators related to school environment.  

                                                
99 I tested some of the ‘process quality’ variables in the SEM model but did not achieve an adequate model fit.  
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Across all models, covariates were included to account for potential sources of selection bias. 

All covariates, including child age, gender, grade, paternal and maternal literacy, home reading 

resources, language of instruction, and urbanicity, have paths to preschool attendance, 

mediators, and students’ outcomes. Analyses were conducted in Stata version 14.1. For all 

models, adequate model fit was indicated by a root mean squared error of approximation 

(RMSEA) of ≦ 0.06 (Hu & Bentler, 1999) and a comparative fit index (CFI) of ≧ 0.90 (Bentler, 

1990). The traditional goodness-of-fit statistic (i.e., a nonsignificant chi-square) test was 

relaxed because the ‘chi-square value can be overly influenced by sample size, correlations, 

variance unrelated to the model, and multivariate non-normality’ (Kline, 2011, p. 201). 

3.7 Results 

3.7.1 Research Question 1: Variation in Preschool Influence by Sub-Groups100 

Table 3.1 presents the results (as expressed by odds ratios) of the multivariate logit regression 

with interaction terms that relate to whether the relationship between preschool attendance and 

students’ learning outcomes differed across the sub-groups of gender, urban-rural residency, 

father’s literacy, mother’s literacy, and having reading materials at home. The interaction terms 

were included separately for each model, which performed best in a log likelihood ratio-test, 

instead of specifying the model with multiple interaction terms.101 Columns (5) and (6) present 

within-school differences by introducing the school fixed effects logit model for the EGRA 

2016 cohort, which accounts for unobserved school characteristics that are fixed over time.102  

Of all the interactions with preschool, gender was statistically significant in the 2016 cohort 

for the probability of being a non-reader, but not in the 2010 cohort (Models 1 to 4). This 

indicates that, in 2010, differences between preschool boys and preschool girls were similar to 

those between non-preschool boys and non-preschool girls, but the gains from preschool 

attendance were different for boys and girls in 2016. Namely, in 2016, preschool girls had a 

                                                
100 Descriptive statistics on sample characteristics were shown in Table 2.7. 
101 From the likelihood ratio (LR) test, the chi-squared value for the test and the p-value for a chi-squared value 

with two degrees of freedom were tested. In addition to the LR test, using Stata command fitstat, I compared log-

likelihood, chi-square, R-squared (McFadden adjusted), AIC (Akaike information criterion), BIC (Bayesian 

information criterion), and variance of error terms across different models with single or multiple interaction 

terms. Consistent with the LR test, the model with single interaction terms were strongly supported, based on the 

difference in BIC.  
102 As mentioned in Chapter 2, the application of the school fixed effect to the EGRA 2010 cohort is not presented 

in this paper, due to little within-subject variance of preschool attendance in the 2010 cohort.  



 119 

relative advantage over preschool boys (the odds of being a non-reader decreased by 29%), 

and this difference could be larger than the gap between non-preschool boys and non-preschool 

girls. Introducing the school fixed effect model in the 2016 cohort (Models 5 and 6) yielded 

consistent results, while the probability of being a proficient reader slightly increased among 

preschool girls.  

Similarly, the null hypothesis that interactions between preschool and urban-rural residence 

(rural as reference) are different from zero cannot be rejected in 2010, but can be rejected in 

2016. In 2010, the gains from preschool attendance were not significantly different between 

urban and rural children. In 2016, however, preschoolers living in rural areas had a significantly 

higher probability of becoming a non-reader (the odds increased by 55%) and lower probability 

of becoming a proficient reader (the odds decreased by 26%) than their peers living in urban 

areas. The within-school differences in the 2016 cohort (Models 5 and 6) were similar to the 

between-school differences (Models 3 and 4).  

In the 2010 and 2016 cohorts, father’s literacy strongly interacted with preschool in 

determining children’s learning outcomes. In terms of the higher probability of being a 

proficient reader, the odds increased by 56 percent in 2010 and 37 percent in 2016 through the 

joint influence of preschool and father’s literacy. In contrast, there is no significant interaction 

effects of the association between preschool attendance and mother’s literacy. Regarding the 

measure of having reading materials at home, the interaction with preschool attendance was 

significant only for the 2010 cohort on the probability of being a proficient reader. If some 

interaction terms are statistically significant, the next questions will be, What is the magnitude 

of interaction effects? and Are these effects large enough to matter? To answer these questions, 

I will further explore the predicted probabilities and marginal effects of preschool attendance 

conditioned on the selected dimension: gender, urban-rural residence, and father’s literacy.103 

                                                
103 The predicted probabilities and marginal effects of preschool attendance conditioned on mother’s literacy or 

reading materials at home are available upon request.  



Table 3.1. Interaction Effects of Preschool and Moderator Variables 

 
2010 2016 

2016 (school fixed-effects) 

 (1) (2) (3) (4) (5) (6) 

 Non-Reader Proficient Reader Non-Reader Proficient Reader Non-Reader Proficient Reader 

Odds ratio (SE)       

Pre  1.05 (0.21) 1.09 (0.15) 0.58*** (0.06) 1.35*** (0.14) 0.96*** (0.01) 1.00 (0.01) 
Female  1.36** (0.17) 0.79** (0.07) 1.00 (0.09) 1.33*** (0.11) 0.85*** (0.1) 1.47*** (0.01) 

Pre * Female  1.03 (0.17) 0.91 (0.17) 0.71** (0.11) 1.02 (0.13) 0.62*** (0.01) 1.14*** (0.01) 

R-squared 0.13 0.08 0.21 0.11 0.10 0.05 

Pre 1.32 (0.40) 0.95 (0.12) 0.35*** (0.07) 1.75*** (0.27) 0.52*** (0.01) 1.11***(0.02) 
Rural 1.51 (0.42) 0.56** (0.13)  1.34** (0.16)  0.58*** (0.07) - - 

Pre * Rural 0.74 (0.24) 1.14 (0.21) 1.55** (0.33) 0.74* (0.12) 1.57*** (0.04) 0.96* (0.02) 

R-squared 0.13 0.09 0.21 0.11 0.11 0.06 

Pre 1.50* (0.33) 0.79 (0.13) 0.51*** (0.07) 1.08 (0.14) 0.72*** (0.01) 0.84 (0.14) 
Father’s literacy  0.64*** (0.07) 1.25** (0.14) 0.62*** (0.06) 1.25** (0.11) 0.66*** (0.01) 1.22** (0.10) 

Pre * F’s literacy 0.56*** (0.12) 1.56** (0.30) 0.95 (0.16) 1.37** (0.21) 1.09***(0.02)  1.47** (0.26) 

R-squared 0.13 0.08 0.20 0.10 0.21 0.05 

Pre 0.89 (0.15) 1.04 (0.16) 0.47*** (0.05) 1.35*** (0.13) 0.76*** (0.01) 1.07*** (0.01) 
Mother’s literacy  1.09 (0.11) 0.91 (0.11) 0.90 (0.09) 1.09 (0.09) 1.10*** (0.01) 1.06*** (0.01) 

Pre * M’s literacy 1.46 (0.36) 1.01 (0.30) 1.11 (0.17) 1.05 (0.14) 1.01 (0.02) 1.00 (0.01) 

R-squared 0.13 0.08 0.20 0.10 0.21 0.05 

Pre  1.13 (0.24) 0.85 (0.12) 0.52*** (0.05) 1.41*** (0.13) 0.60*** (0.07) 1.07 (0.12) 
R. M at home 0.58*** (0.08) 1.41*** (0.18) 0.50*** (0.05) 1.72*** (0.14) 0.51*** (0.06) 1.71*** (0.17) 

Pre * R. M at home  0.77 (0.25) 2.04*** (0.57) 0.87 (0.14) 0.97 (0.13) 0.79 (0.17) 1.09 (0.17) 

R-squared 0.13 0.09 0.20 0.10 0.21 0.05 

All covariates Yes Yes Yes Yes Yes (except region) Yes (except region) 

School-fixed  No No No No Yes  Yes 

Observations 

(school) 
9,121 9,121 8,332 8,332 7,461 (202) 8,020 (214) 

Note: (1) Robust standard error in parenthesis; (2) Models 1, 2, 3, and 4 account for all covariates and include sampling weight; (2) Models 5 and 6 use school fixed effects and include sampling 

weights; number of schools in parentheses; (3) In Models 5 and 6, 23 groups (871 observations) in non-reader and 11 groups (312 observations) in proficient reader dropped because of all positive 
or all negative outcomes.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 



Figures 3.1 to 3.3 present the average predicted probabilities and average marginal effects of 

the association between preschool and student outcomes differed by sub-groups. Note that, to 

compute these predictive values, I first fixed to each possible combination of the two variables 

of interest (e.g., preschool and gender), estimated the margins of each cell with observed values 

of other independent variables, and averaged these margins to obtain the single marginal 

effects. In the figures, predictive probabilities (left panel of each cohort) capture the difference 

between, for example, boys and girls, stratified by preschool attendees and non-attendees. 

Average marginal effects (right panel of each cohort) capture the discrete change of 

probabilities of being a non-reader or a proficient reader if he or she attended preschool. 

Preschool and gender. Figure 3.1 displays the relations between preschool attendance and 

students’ outcomes as a function of gender. Consistent with the findings shown in Table 3.1, 

the 2010 cohort shows that differences in predicted probabilities between preschool boys and 

preschool girls were similar to those between non-preschool boys and non-preschool girls. In 

turn, marginal effects were almost zero, regardless of gender. Conversely, in 2016, when 

preschool girls showed a relatively better performance than preschool boys (lower probability 

of being a non-reader), the gender gaps among preschoolers were larger than those between 

non-preschool girls and non-preschool boys. The figure with average marginal effects indicates 

that the gain in lower predicted value of non-reader was four percentage points larger for girls 

(13%) than for boys (9%) in 2016. The difference was small but statistically significant, at the 

0.05 level (d = 0.04, SE = 0.02, p < 0.05).  

However, the preschool benefits of having a higher chance of being a proficient reader were 

similar for boys and girls across the 2010 and 2016 cohorts (Figure 3.1). Though overall 

marginal effects of the association between preschool and student outcomes increased from 

2010 to 2016, there were no differential benefits by gender among each group of preschoolers 

and non-preschoolers. Moreover, we must pay attention to the interesting fact that the overall 

gender gap was fully reversed between 2010 and 2016. In 2010, before the preschool 

expansion, both preschool boys and non-preschool boys had a relative advantage (i.e., a lower 

chance of being a non-reader and a higher chance of being a proficient reader) over preschool 

girls and non-preschool girls; however, in 2016, girls outperformed boys and the gains were 

even greater for girls among those who attended preschool.   
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Figure 3.1. Predicted Probabilities and Marginal Effects of Preschool on Early Grade 

Reading Performance as a Function of Gender 

(1) EGRA 2010: Preschool by Male-Female (2) EGRA 2016: Preschool by Male-Female 

Non-Reader 
Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Proficient Reader 

Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Note: Each cohort of EGRA 2010 and EGRA 2016 has two figures on predicted probabilities (Left) and marginal effects 
(Right).  
Source: EGRA Dataset 2010, 2016, USAID  

I further explored the gender gap based on preschool attendance, stratified by grade and 

region.104 Although similar patterns were observed by Grade 2 and Grade 3, it is surprising 

that, in 2016, Grade 2 preschoolers showed a level of achievement similar to non-preschoolers 

at Grade 3, indicating that preschoolers were nearly one year ahead of non-preschoolers, 

regardless of gender. The patterns across the five regions between 2010 and 2016 varied but 

maintained similar gender gap patterns; for example, in SNNP and Amhara, after the large-

scale expansion of preschool, girls who attended preschool made greater gains than any other 

group, including preschool boys, non-preschool boys, and non-preschool girls.  

                                                
104 The results are available upon request.  
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Preschool and urban-rural. I examined the extent to which the role of preschool differed by 

urban-rural residency. Figure 3.2 shows that, regardless of urban-rural residency, preschool 

benefits for having a lower chance of becoming a non-reader are similar in 2010 (d = 0.05, SE 

= 0.06, p > 0.1) and in 2016 (d = 0.04, SE = 0.03, p > 0.1). However, the gains from preschool, 

which favour children living in urban areas, are more pronounced in terms of the probability 

of being a proficient reader in 2016. Compared to there being no differential gains between 

urban and rural areas in 2010 (d = 0.03, SE = 0.04, p > 0.1), in 2016 the preschool benefits 

were greater for children living in urban areas than those in rural areas, and this difference was 

statistically significant at the 0.05 level (d = 0.07, SE = 0.04, p < 0.05).  

Figure 3.2. Predicted Probabilities and Marginal Effects of Preschool on Early Grade 

Reading Performance as a Function of Urban-Rural Residency 
(1) EGRA 2010: Preschool by Urban-Rural (2) EGRA 2016: Preschool by Urban-Rural 

Non-Reader 
Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Proficient Reader 

Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Note: Each cohort of EGRA 2010 and EGRA 2016 has two figures on predicted probabilities (Left) and marginal effects 
(Right).  

Source: EGRA Dataset 2010, 2016, USAID  

Preschool and father’s literacy. Finally, Figure 3.3 plots estimates from the model in which 

the indicator for preschool attendance interacted with father’s literacy. In 2010, the benefits of 
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preschool for having a lower probability of being a non-reader were greater for children with 

a literate father (d = 0.11, SE = 0.04, p < 0.01), whereas there was no differential benefit in 

2016 (d = 0.01, SE = 0.03, p > 0.1). In terms of a higher probability of being a proficient reader, 

the benefits from preschool were greater for children with literate fathers. Notably, this pattern 

is statistically significant across two cohorts in 2010 (d = 0.10, SE = 0.04, p < 0.05) and 2016 

(d = 0.08, SE = 0.03, p < 0.01). Taken together, the results show that some sub-groups—girls, 

children living in urban areas, children from households with literate fathers—benefited 

significantly more from preschool attendance. This provides suggestive evidence that the 

expansion of preschool could reinforce the learning gaps between advantaged and 

disadvantaged groups.  

 

Lastly, to check the robustness of these results, I further explore the interaction effects of the 

association between preschool attendance and woreda (district) poverty index on student 

outcomes (Appendix B). The results showed that the benefits of preschool were particularly 

significant for children living in the richest woreda, whereas there were virtually no measurable 

benefits for children living in the poorest woreda. The results reaffirm that the large-scale 

expansion of preschool in Ethiopia may not contribute to reduce learning gaps induced by 

household poverty or location.  



Figure 3.3. Predicted Probabilities and Marginal Effects of Preschool on Early Grade 

Reading Performance as a Function of Father’s Literacy 

(1) EGRA 2010: Preschool by Father’s literacy (2) EGRA 2016: Preschool by Father’s literacy 

Non-Reader 
Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Proficient Reader 

Predicted probabilities Marginal effects Predicted probabilities Marginal effects 

  
Note: Each cohort of EGRA 2010 and EGRA 2016 has two figures on predicted probabilities (Left) and marginal effects 
(Right).  
Source: EGRA Dataset 2010, 2016, USAID  

3.7.2 Research Question 2: Mediating Role of Subsequent School Experience  

1) Descriptive statistics 

Descriptive statistics for school characteristics taken from EGRA 2010 and EGRA 2016 are 

presented in Table 3.2. There is overall improvement in the average information reported by 

school principals between 2010 and 2016. In 2016 there was a higher proportion of principals 

who hold a bachelor’s degree or above (from 14% to 53%);105 were responsible for classroom 

observation (from 23% to 51%); and who conducted oral examinations to monitor students’ 

                                                
105 The rest of the school principals hold only a high school diploma.  



 126 

reading performance (from 33% to 56%). In both cohorts, less than half the schools had a 

library for Grade 2 and Grade 3 students, while the distribution of mother tongue textbooks 

was nearly universal—more than 90 percent of schools received the textbooks.106 About three-

quarters of schools had teachers who participated in trainings for mother tongue reading 

instruction, which was provided by regional/local governments or development partners.107 

The ten listed school characteristics were not strongly correlated; among the three selected 

characteristics—principals’ qualifications, textbooks, and having a library—correlations 

ranged from 0.06 to 0.26 (see Table 3.4).   

Table 3.2. Descriptive Statistics: School Characteristics 

School-level characteristics 
EGRA 2010108 EGRA 2016 

 

  Mean (SD) Mean (SD) Diff.  

(1) Principal has bachelor’s degree or above. 0.14 (0.35) 0.53 (0.50) 0.39 

(2) Principal received the training on early reading. 0.27 (0.44) 0.21 (0.41) -0.06 

(3) Principal supports teachers for reading 

instruction. 
0.83 (0.38) 0.88 (0.33) 0.05 

(4) Principal satisfied school’s reading performance. 0.48 (0.50) 0.61 (0.49) 0.13 

(5) Principal reviewed lesson plans every week. 0.20 (0.40) 0.27 (0.44) 0.07 

(6) Principal responsible for classroom observation. 0.23 (0.42) 0.51 (0.50) 0.28 

(7) Principal conducted oral examination. 0.33 (0.47) 0.56 (0.50) 0.23 
(8) School has library for G2/G3 students.   0.41 (0.49) 0.42 (0.50) 0.01 

(9) School received (new) mother tongue textbook.  0.90 (0.30) 0.96 (0.21) 0.06 

(10) School has teachers who attended in-service 

training for MT instruction.   
0.86 (0.35) 0.75 (0.43) -0.11 

Observation (Schools) 154    225   

Observation (Students) 5,843  8,332   
Note: (1) Of 225 schools in EGRA 2016, 200 responders were school principal (89%), 21 are deputy principal (9%), and 4 are 
other staff (2%). (2) About 65 percent of EGRA 2016 sample school has O-Class in 2014/15, according to matched data with 
EMIS.  

Source: EGRA Dataset 2010, 2016, USAID  

For child outcomes, I estimated the proportion of variance attributable to schools and children 

(nested in schools) by fitting a linear mixed model for each outcome with covariates and only 

a random intercept for school and a residual error for students (Table 3.3). Across all outcome 

measures of EGRA, nearly all (83% to 90%) of the variance in children’s literacy was 

accounted for by differences across children, with approximately 10 percent of the variance 

                                                
106 The share of schools with a library is consistent with the national figure; 45 percent of government primary 

schools in Ethiopia have a library (MoE, 2015-2016); some schools have a library used by teachers only, coded 

as ‘no library (0)’; new (revised) mother tongue curriculums and textbooks were introduced in 2014-2015.  
107 MT training implementers varied in 2010, organised by REB (77%), woreda (42%), cluster school or school 

(13%), or others (13%). In 2016, MT training was largely provided by USAID’s READ-TA programme. 
108 In the 2010 EGRA, missing (or mis-coded) responses in the principal’s questionnaire were high, at 36 percent. 
SEM did not apply to the 2010 EGRA cohort, due to the high rates of missing responses and low association 

between preschool and students’ outcomes. 
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explained by differences in schools. Considering the relatively small intra-class correlations at 

the school level, I used a single-level SEM framework in the current analysis.109  

Table 3.3. Intraclass Correlations (ICCs) of Dependent Variables 
 Proportion of Variance 

Outcome Variables Child School 

Oral Reading Fluency (ORF) 0.866 0.134 

Letter Sound Recognition 0.832 0.168 

Familiar Word Recognition 0.836 0.164 

Invented Word Recognition 0.851 0.149 

Reading Comprehension 0.888 0.112 

Listening Comprehension  0.903 0.097 
Source: EGRA Dataset 2010, 2016, USAID 

                                                
109 Additionally, the choice of the sing-level SEM model is related to the limited SEM functions in Stata. Stata 

provides ‘sem’ and ‘gsem’ (generalised sem) modelling options. Only gsem fits models to both single- or 
multilevel data, yet gsem does not provide key features such as goodness-of-fit statistics, model fit indicators, 

modification indices, and tests of indirect effects.  
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Table 3.4. EGRA 2016: Pairwise Correlations for Mediating and Dependent Variables 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

(1) Qualification 1.00                

(2) Training 0.09*** 1.00               

(3) Teacher support -0.02 0.10*** 1.00              

(4) Satisfaction 0.07*** 0.08*** 0.10*** 1.00             

(5) Lesson Plan -0.27*** 0.13*** 0.06*** -0.06*** 1.00            

(6) Class observation -0.16*** 0.13*** 0.10*** 0.11*** 0.37*** 1.00           

(7) Oral test -0.01 -0.21*** 0.16*** 0.04*** 0.06*** -0.06*** 1.00          

(8) Library 0.26*** 0.00 0.12*** 0.11*** -0.20*** -0.04*** -0.07*** 1.00         

(9) MT Textbook 0.14*** -0.08*** 0.13*** 0.10*** -0.06*** 0.04*** 0.02 0.06*** 1.00        

(10) Teacher Training -0.02 -0.06*** -0.02 0.04*** 0.00 -0.06*** 0.01 0.04*** -0.07*** 1.00       

(11) ORF 0.11*** -0.02** 0.03*** 0.06*** -0.12*** 0.05*** -0.02 0.15*** 0.12*** -0.08*** 1.00      

(12) Letter sounds 0.04*** -0.09*** 0.02 -0.01 -0.13*** -0.02** 0.01 0.12*** 0.09*** -0.03*** 0.72*** 1.00     

(13) Familiar words 0.16*** -0.01 0.05*** 0.08*** -0.15*** 0.03** 0.02 0.18*** 0.14*** -0.06*** 0.89*** 0.74*** 1.00    

(14) Invented words 0.15*** 0.00 0.05*** 0.07*** -0.13*** 0.03*** 0.01 0.13*** 0.13*** -0.09*** 0.86*** 0.73*** 0.89*** 1.00   

(15) Reading compre. 0.07*** -0.03*** 0.03*** 0.03*** -0.10*** 0.03** -0.02** 0.12*** 0.09*** -0.06*** 0.83*** 0.66*** 0.79*** 0.75*** 1.00  

(16) Listening compre. 0.02 -0.09*** 0.00 -0.03*** -0.13*** -0.09*** 0.06*** 0.04*** 0.03** 0.06*** 0.22*** 0.36*** 0.24*** 0.21*** 0.27*** 1.00 

Note: *** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  
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2) Mediation analysis results 

I conducted a mediation analysis to examine whether school-level characteristics mediated the 

relations between preschool attendance and students’ early literacy outcomes. Overall, SEM 

Model 2, in which a latent variable was included, showed adequate model fit statistics: (with 

ORF; 𝜒2(22) = 323.69; CFI = 0.90; RMSEA = 0.04) (see Table 5). Compared to Model 2, 

Model 1 (which included three observed variables of school environment) showed a 

significantly poorer fit (with ORF; 𝜒2(3) = 722.48; CFI = 0.73; RMSEA = 0.17; SRMR = 0.02) 

(see Appendix Table D.10). Thus, I focus on presenting and interpreting the results of Model 

2 as the final model.  

From the SEM results of Model 2, standardised coefficients of the total, direct, and indirect 

effects on oral reading fluency (ORF) are presented in Figure 4. To ease the interpretation, I 

use the term ‘effect’ in the mediation analysis, where effect indicates ‘association’. Preschool 

attendance positively influenced the mediator of schools’ structural quality (𝛽 = 0.07, SE = 

0.10, p < 0.001). Preschool attendance was also a positive predictor (direct effect) of ORF 

scores in the model (𝛽 = 1.32, SE = 0.48, p < 0.001), after controlling for child age, gender, 

grade, paternal literacy, maternal literacy, home reading resources, language of instruction, and 

urbanicity. In addition to the direct effects, I assessed the indirect effects among the study 

variables. The indicator of schools’ environments (structural quality) was found to be a 

statistically significant mediator (𝛽 = 1.09, SE = 0.18, p < 0.001). 

Figure 3.4. SEM Model on Preschool, School Environment, and Oral Reading Fluency 

 
Note: (1) Total Effects (d, 2.40) = Indirect Effects (a*b, 0.0737687 * 14.71128) + Direct Effects (c, 1.32) 
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 
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The results of the SEM model for all six outcome variables are presented in Table 3.5, including 

students’ test scores as measured by ORF, letter sounds, familiar words, invented words 

recognition, reading and listening comprehension. In three out of six outcomes—letter sounds 

recognition, reading, and listening comprehension—the model fit was marginally 

unsatisfactory (RMSEA = 0.87 to 0.88, compared to the recommended level of ≧ 0.90). The 

model with adequate fit statistics—familiar words and invented words recognition—showed 

that preschool attendance was a positive predictor (direct effect) of familiar words recognition 

(𝛽 = 1.25, SE = 0.48, p < 0.001) and invented words recognition (𝛽 = 1.41, SE = 0.34, p < 

0.001). In this model, the indicator schools’ environments (structural quality) was found to be 

a statistically significant mediator ( 𝛽  = 1.57, SE = 0.25, p < 0.001 for familiar words 

recognition; 𝛽 = 0.89, SE = 0.18, p > 0.001 for invented words recognition) for the link of 

preschool attendance with students’ outcomes. 

I further assessed the indirect relations among the study variables. For mediation effects 

analysis, no single index appears to be a viable mediation effect size measure (Wen & Fan, 

2015). Given this limitation, I followed the recommendations of Sobel (1982) to use (1) the 

proportion of total effect that is mediated (i.e., total effect explained by the indirect effect); and 

(2) the ratio of the indirect effect to direct effect (𝑅𝑚 statistic) as a proxy measure for the 

magnitude of mediation effect. Specifically, 𝑅𝑚 < 1, 𝑅𝑚=1, or 𝑅𝑚> 1 indicates that the indirect 

effect is smaller than, equal to, or larger than the direct effect, respectively. As shown in Table 

3.5, the indirect path from preschool attendance to students’ ORF score via schools’ structural 

quality explained 45.0 percent of the total association between preschool attendance and ORF 

score (𝛽 = 2.40), and the ratio of the indirect effect to direct effect is 0.82. In addition, the 

indirect path mediated by schools’ structural quality explained 55.7 percent of the total 

association between preschool attendance and familiar words test score (𝛽 = 2.82), with the 

ratio of the indirect effect to direct effect at 1.26; and 38.7 percent of the total association 

between preschool attendance and invented words test score (𝛽 = 2.40), with the ratio of the 

indirect effect to direct effect at 0.63. Notably, the contribution of the indirect effects is either 

close to or outweighs the direct effects in oral reading fluency (𝑅𝑚 = 0.82) and familiar word 

recognition (𝑅𝑚 = 1.26). In this model, the mediator of schools’ structural quality explained 

about half of the total effects for the association between preschool attendance and students’ 

outcomes.  
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Taken together, the results of the SEM suggest that the estimated path of preschool attendance 

on students’ early reading performance was partially accounted for by good school 

environments. This analysis is still exploratory, given that a limited measure of school 

characteristics was used and the multi-level structure of school was not fully counted by the 

SEM model. Nevertheless, the findings call for more attention to the subsequent schooling 

experience that could affect the sustained benefits of preschool. Ensuring a smooth transition 

between pre-primary and primary education is the critical foundation for students’ lifelong 

educational trajectories.  

Table 3.5. EGRA 2016: SEM Standardised Coefficients and Direct and Indirect Effect 
 (1) (2) (3) (4) (5) (6) 

 ORF LS FW IW RC LC 

Path Coefficients (S.E.) 

Preschool Attendance  School Structural Quality (Environments)  EGRA Outcome 

Total effects 
2.40*** 

(0.46) 

8.54*** 

(0.70) 

2.82*** 

(0.46) 

2.30*** 

(0.33) 

3.32*** 

(0.60) 

4.22*** 

(0.62) 

Direct effects 
1.32*** 

(0.48) 

8.01*** 

(0.72) 

1.25*** 

(0.48) 

1.41*** 

(0.34) 

2.39*** 

(0.62) 

4.20*** 

(0.63) 

Indirect effects 
1.08*** 

(0.18) 

0.53*** 

(0.17) 

1.57*** 

(0.25) 

0.89*** 

(0.14) 

0.93*** 

(0.18) 

0.02 

(0.09) 

% of total effect mediated 45.0 6.2 55.7 38.7 28.0 0.5 

% of total effect unmediated 55.0 93.8 44.3 61.3 72.0 99.5 

Ratio of indirect effect to 

direct effect (Rm) 
0.82 0.07 1.26 0.63 0.39 0.00 

Model Fit       

Chi-Square (DF) 323.7(22) 340.4(22) 318.7(22) 287.6(22) 311.7(22) 249.5(22) 

CFI 0.90 0.88 0.90 0.90 0.88 0.87 

RMSEA 0.04 0.04 0.04 0.04 0.04 0.04 

SRMR 0.02 0.02 0.02 0.02 0.02 0.02 

R-Square 0.18 0.20 0.19 0.16 0.18 0.12 
Note: (1) The resulting structural coefficients (standardised regression coefficients) describe the direct and indirect effects, 
based on students’ test scores measured by letters/words per minute in Model 1 to 4, and percentage of correct answers in 
Model 5 and 6; (2) Standard errors are in parentheses; (3) ORF oral reading fluency; LS Letter sound; FW familiar word 
recognition; IW invented word recognition; RC reading comprehension; LC listening comprehension; (4) DF: Degree of 
Freedom; (5) CFI: Comparative Fit Index; (6) RMSEA: Root Mean Square Error of Approximation; (7) SRMR: Standardised 
Root Mean Square Residual.  

*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 

3.8 Discussion and Future Direction for Research 

The present study is the first to employ two large and representative datasets to examine the 

relationship between preschool attendance and students’ learning outcomes across child, 

family, and school characteristics, and whether these patterns are different before and after the 

early learning reform in Ethiopia. The primary aims of this study were specifically to 

understand (1) whether the benefits of preschool were moderated by sub-group as defined by 
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gender, urban and rural location, parental literacy, and home reading resources; and (2) whether 

the relation between preschool and students’ outcomes was mediated by subsequent schooling 

environments, as captured by primary school characteristics (i.e., principals’ qualifications, 

availability of current textbooks, and a school library). The present study focused on 

empirically testing hypotheses derived from bioecological theory, which imply that the 

relationship between preschool and learning outcomes depends on characteristics of children’s 

multi-layered environments (family, school, community, and policy).  

Differential benefits by gender. As for gender, it is encouraging that the findings showed that 

the benefits of preschool attendance were particularly pronounced for girls after the expansion 

of O-Class in Ethiopia. In the region-wide learning assessments, such as the SACMEQ or 

PASEC in Africa, girls performed as well as or better than boys on reading assessment (Bashir 

et al., 2018).110 However, in Ethiopia there were significant gender differences in learning that 

favoured boys, which seemed to be entrenched across the five rounds of the Ethiopia National 

Learning Assessments (NEAEA, 2016; World Bank, 2016). Interestingly, however, the present 

study showed that the average achievement gap in early grade reading between girls and boys 

was reversed between 2010 and 2016: boys outperformed girls in 2010, whereas girls not only 

outperformed boys in 2016 but even obtained greater benefits from preschool than boys. While 

only a few studies in LMICs have addressed the gender gap, most of them found no significant 

gender differences in the benefits of attending preschool on academic performance (Berlinski 

et al., 2009; Bastos et al., 2017; Biethenbek et al., 2017; Agirdag et al., 2015). 

Findings from the present study add new evidence that could open policy dialogue and inform 

future research into patterns of the gender gap in the educational trajectories. There also is a 

need for further exploration of why the achievement gap between boys and girls was reversed 

across time, as well as between the early grades and the upper grades. Although girls started to 

perform well in reading in Grades 2 and 3, the National Learning Assessments for students at 

Grades 4, 8, 10, and 12 consistently showed that boys performed significantly better than girls 

in various subjects.111 Moreover, it should be noted that the gender gap tends to be compounded 

                                                
110 SACMEQ stands for Southern and Eastern Africa Consortium for Monitoring Education Quality; PASEC 

stands for Programme d’analyse des systèmes éducatif de la CONFEMEN, meaning Programme for education 

systems analysis conducted in Francophone (Western) Africa.  
111 To illustrate, in Grade 4, the achievement of boys on average was higher than that of girls by 3.02 percent. The 

mean difference in four subjects between boys and girls ranged from 2.03 percent (reading) to 4.84 percent 
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by other sources of inequality, such as urban-rural location. In Ethiopia, the gender gap is more 

pronounced in rural than in urban contexts (Piper, 2010; World Bank, 2016), thus special 

attention should be given to girls in rural areas, who perform the least well.112  

A future study should specifically examine the preschool effect by gender and the possible 

causes of this differential effect—that is, whether the curriculum challenges girls and boys in 

the same way, and whether girls and boys have the same academic needs across the educational 

trajectories and based on where they live. A future study could (a) analyse the gender gap using 

a more recent, nationally representative sample to see if there is a concurrent finding; (b) study 

whether boys and girls enter preschool with similar basic literacy and numeracy skills and 

academic needs; (c) study teachers’ and parents’ expectation regarding preschool-age boys and 

girls, as well as any cultural values around gender roles; and (d) explore whether the national 

curricular guides are gender sensitive. A study reflecting these aspects should inform efforts to 

improve ECE standards and national curricular guides to better serve both boys and girls.  

Differential benefits by urban-rural residency, parental literacy, and home reading 

resources. The results of this study suggest that the benefits of increased access to preschool 

were not particularly pronounced for students from disadvantaged backgrounds, those living 

in rural areas, or those with illiterate fathers; however, the gains were larger for their peers 

living in urban areas or with literate fathers. The preschool benefits also appeared to be smaller 

or not significant for children living with illiterate mothers or having fewer books at home, and 

those who may have a less stimulating home learning environment. These findings do not align 

with the compensatory hypothesis that assumes the benefits of preschool will be greater for the 

disadvantaged than the advantaged, which has been supported by empirical evidence from the 

U.S. and other high-income countries (e.g., Burger, 2010; Magnuson & Duncan, 2017). In fact, 

there is little support for the compensatory hypothesis among prior studies conducted in Sub-

Saharan Africa, especially the cases using a large, nationally representative sample. In South 

Africa, after the mass expansion of pre-primary classes (also known as R-Class) over a decade, 

preschool attendance further extended the advantages of children from more affluent 

                                                
(mathematics) and is significant (NEAEA, 2016). Similarly, the achievement gap between boys and girls is 4.33 

percent in Grade 10 and 8.6 percent in Grade 12 (NEAEA, 2014).  
112 However, this is not the case of the current analysis, which used EGRA 2016: girls outperformed boys in 2016, 

and rural boys performed the least well.  
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background (Berg et al., 2015). There were contrasting gains from preschool that favoured 

schools with rich resources and those located in high-performing regions—that is, there were 

no measurable preschool benefits for the poorer schools but considerable benefits for the 

wealthiest schools (Berg et al., 2015).113 In Kenya and Tanzania, while there was a positive 

influence for all preschool attendees, there was no statistically significant difference across 

sub-groups by household wealth, urban and rural residency, and mother’s education level 

(Bietenbeck et al., 2017). 

The findings of the present study provide suggestive evidence that the large-scale expansion of 

preschool can reinforce the learning gaps between children from wealthier and poorer 

backgrounds. This pattern is rather relevant to the complementary hypothesis, which is also 

known as ‘Matthew effects’, wherein an initial advantage leads to cumulative advantage over 

time, thereby creating a virtuous cycle of continuous gain (Walberg & Tsai, 1983; Stanovich, 

1986). The Matthew effects often are described as ‘the rich get richer and the poor get poorer’. 

This could provide a partial explanation for the widening achievement gap, as children who 

grow up in a high-quality home learning environment profit more from the enriched early 

learning environment in preschool than their peers who grow up in a low-quality home learning 

environment. This has further social implications, in that a large-scale expansion of preschool 

without careful planning, targeted resources, and ongoing monitoring may have the negative 

consequence of exacerbating the educational inequality (Engle et al., 2011) that emerged before 

children entered primary school and increased through subsequent formal schooling.  

Another possible explanation for this alarming pattern could be the poor quality of preschool, 

particularly in marginalised communities. In fact, O-Classes in Ethiopia, which are regarded 

as a rural phenomenon, have suffered from multiple challenges in delivering quality early 

learning programmes, including untrained or poorly qualified teachers, a lack of teaching and 

learning materials, large class size, and a lack of quality monitoring and supervision, among 

others (Teferra & Hagos, 2016). Large regional variations in financial and human resources for 

pre-primary education also risk delivering minimal benefits to those most in need. The current 

analysis was not able to test this hypothesis, due to the absence of quality measures of preschool 

                                                
113 In South Africa, using the data from the Annual Education Assessment, schools are categorised into five groups 
(quintiles) based on the relative wealth of their surrounding communities. Preschool effects have compared the 

two-lower quintiles (poorest) to the highest quintile (richest).  
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in the available dataset; this is a prominent area for future research. Future research must strive 

to disentangle whether the differential benefits of preschool are driven by differences in 

preschool quality or by any other factors attributed to family, community, and school 

characteristics. Despite the potential solutions for persistent low learning levels offered through 

increased access to preschool, the best ways to achieve equitable access and meaningful 

learning gains for all children should be further investigated.  

The present study offers some insights for policymakers, including that expanding coverage of 

pre-primary education in isolation is not enough to reduce learning inequality for young 

children in Ethiopia. More effective ECE policies are needed to ensure that children, regardless 

of their geographical constraints or household poverty status, are able to learn and benefit from 

the educational experiences provided. Despite the government’s ambition to provide universal 

pre-primary education by 2020 (at least one year prior to entering primary school), the 

expansion patterns and implementation strategies have not yet determined which compensatory 

measures can extend the advantage of preschool to most marginalised children. If O-Classes in 

rural areas are not meeting the goal of providing the conditions necessary for poor children to 

learn and to enter primary school as well prepared as their more affluent peers, the government 

should recalibrate this policy. Future studies can explore which needs of disadvantaged 

families in rural areas are not being met by current ECE provision in order to help redesign the 

ECE policy. Effective policy should ensure equity for children from disadvantaged groups as 

one way to compensate for the different circumstances in which children were born.  

Subsequent school characteristics as mediators. Finally, to determine which factors mediated 

the relation between preschool and learning outcomes, the present study tested a hypothesis 

that subsequent school environments play a role in sustaining preschool benefits. The school 

characteristics I considered in the current analysis, including principals’ qualifications, the 

availability of textbooks, and the school having a library, partially mediated the relation 

between preschool attendance and students’ academic achievement when I treated these as the 

latent variables of a school’s structural quality. My findings align with previous work 

suggesting that attending high-performing or better-resourced schools mediated the link 

between preschool and academic performance at Grade 5 (Curenton et al., 2015) and 

educational attainment at age 20 (Reynolds et al., 2004). The results of the previous studies 

consistently indicated that the indirect effects of subsequent school experience accounted for 
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one-fifth to one-third of the total effects for the association between preschool and student 

outcomes, which are small but statistically significant. Exploring primary school 

characteristics is particularly germane to the Ethiopian context, where nearly three-quarters of 

preschools are attached to a government primary school through O-Class. Due to the O-Classes 

being nested within the primary schools, the learning conditions between the two shared many 

features, such as infrastructure (e.g., classrooms, playground, toilets), school management and 

leadership under the primary school principal, and teachers recruited from the same pool of 

applicants.114  

The mediation analysis in the present study is exploratory in nature, given the limited measures 

of school characteristics that are most central to learning outcomes. Nevertheless, the results 

of this study highlight the need for policy measures that push to enhance the primary school 

environment as a continuum of the quality preschool experience. Consistent with the dynamic 

skill formation models illustrated by ‘skills beget skills’ (Cunha & Heckman, 2010), earlier 

gains from preschool are likely to be maintained if children are subsequently exposed to 

conducive learning environments. There is a need for future research that precisely measures 

the quality of early grade schooling and identifies the inputs and features of school that are 

critical to the preservation of preschool effects (Bailey et al., 2017; Bassok et al., 2018; Phillips 

et al., 2017).  

In recent years, the primary school environment in Ethiopia has changed substantially through 

the multi-phased reforms that emphasise meaningful gains in students’ learning outcomes 

(MoE, 2015; World Bank, 2017). Research is needed to assess the effects of these changes on 

students’ academic performance and to examine whether they have jointly influenced the 

sustained benefits of preschool. Future research also should highlight the importance of a 

smooth transition from pre-primary to primary education and how to ensure the best alignment 

of curricula, professional development, and teacher-child interaction across the foundational 

grades, an area which is currently under-researched in the LMIC context.   

                                                
114 Generally, teacher quality tends to be lower in O-Class than Grade 1. Qualitative interviews (personal) suggest 

that primary schools are likely to assign low-performing teachers to O-Classes (like a punishment). Moreover, 

due to irregular compensation and poor working conditions, it is not possible to attract competent candidates. 
Often, community workers without any experience or training in early childhood education lead O-Classes as a 

facilitator.  
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3.9 Limitations  

Given the current analysis using the data constructed in the previous chapter, similar limitations 

apply to this chapter, including the limited measures of students’ SES or household income 

levels, the lack of details on children’s preschool experiences (e.g., preschool type, duration, 

and quality), and the narrow focus on early literacy skills (see Section 2.10). The first limitation 

here is the blunt measure of primary school characteristics provided by the EGRA. The school-

level indicators used in the current analysis relied on principals’ self-reports. No information 

was collected via class observation by a third party, that could have allowed researchers to 

cross-check the accuracy and objectivity of the information. Moreover, the indicators could 

have been improved by reflecting the recent changes in primary school environments. Many 

school-level variables collected by EGRA 2010 and EGRA 2016, such as principals’ support 

for early grade reading, were unlikely to show a strong correlation with students’ academic 

performance. Rich measures for primary school characteristics would provide insights about 

the role of sustaining environments that could leverage early learning gains. The second 

limitation is the single-level SEM mediation model used in the present study. Since I focused 

on the total indirect effects through the school-level mediator, this model could not distinguish 

the between- and within-school components of the indirect effects. Future study can consider 

using a multi-level SEM mediation model (Preacher et al., 2010) to examine the between- and 

within-school components of the indirect effects for a Level 1 treatment variable (preschool 

attendance) through a Level 2 mediator (primary school characteristics) on the Level 1 outcome 

(i.e., 1-2-1 multi-level mediation model).  

Lastly, the current study used the conventional terms with ‘effect’ for specific empirical 

approaches, such as marginal effects in logit regression model and total, direct, and indirect 

effects in the SEM model. These estimates demonstrated the association between preschool 

attendance and students’ learning outcomes that adjust for potential sources of selection bias 

but do not imply causal inference, as it is not possible to completely rule out differential 

selection into preschool that results from unobserved confounds. 

3.10 Conclusion 

The present study provides important knowledge for policymakers and practitioners in Ethiopia 

who are interested in ECE as an instrument to ‘improve equity at the point of entry to the 
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education system’ (MoE, 2015). The results of this study highlight that the benefits of 

preschool related to gender, urbanicity, and parental literacy are not equally distributed after 

the large-scale expansion of O-Class in ways that have implications for ECE provision, 

specifically the ability to provide equitably effective educational opportunities. As a result, the 

rapid expansion of O-Class may not be achieving the equity goal of improving outcomes for 

children from diverse backgrounds. Immediate action must be taken to ensure that pre-primary 

education policies, funding, and curricula reflect this important diversity and allow flexibility 

in the provision of ECE to meet the needs of children from disadvantaged families and 

communities. The results of the current study suggest in particular that more intensive, high-

quality early interventions are needed in rural communities and for those who have a less 

stimulating home learning environment. Future research is needed to identify additional 

contextual characteristics that support and/or undermine the effectiveness of ECE and to 

closely monitor whether preschool delivers beneficial effects for the children most in need.  
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4 CHAPTER 4 – Sustained Preschool Influence on Students’ Learning Outcomes 

in Adolescence: Longitudinal Evidence from Ethiopia   

4.1 Introduction  

While the previous two chapters have looked at the relation between preschool and student 

academic outcomes in the early primary grades, this chapter focuses on the longer-term benefits 

of preschool on student educational outcomes in adolescence. Ensuring that young children 

benefit from their early learning experiences is essential to building a productive and equitable 

society. As a critical period of growth in cognitive, social, and emotional skills, investment in 

early childhood lays the foundation for lifelong learning and determines a child’s ability to 

shape a positive academic trajectory, which in turn improves their later life outcomes (Shonkoff 

& Phillips, 2000; Knudsen et al., 2006). Pioneering experiments of early childhood 

programmes (Abecedarian: Campbell et al., 2012; Chicago Parent-Child Centres: Reynolds et 

al., 2011; Perry Preschool: Schweinhart et al., 2005) and theories from the economic and 

developmental literature on skill formation (Bailey et al., 2017; Cunha & Heckman, 2007) have 

demonstrated the compelling long-term impact early childhood interventions have on 

educational attainment, health, and labour market outcomes.  

Early childhood interventions, policy in particular, are being promoted as cost-effective 

measures to rectify early life disadvantages, since this is the age when persistent development 

gaps and deficits occur (Heckman, 2006; Heckman, Pinto, & Savelyev, 2013). There are 

dynamic complementarities associated with investment in the early years, especially for 

disadvantaged children, which can make investment in subsequent years more productive 

(Cunha & Heckman, 2007). A number of cost-benefit analyses have revealed that early 

childhood interventions generate high-value benefits for society, higher than most investments 

later in the life cycle. The projected expansion of preschool in LMICs from serving one-quarter 

to one-half of young children is estimated to return US$6.4 to US$17.6 for each dollar invested 

(Engle et al., 2011); this is similar to the Perry Preschool Programme in the U.S., which has a 

benefit-to-cost ratio ranging from 7:1 to 13:1 (Belfield et al., 2006; Heckman et al., 2010). 

Reflecting this promise, early childhood education systems in LMICs have been burgeoning in 

recent years (Richter et al., 2017; Vargas-Barón, 2015), as governments, multinational 

organisations, and NGOs pursue these aspirational goals across highly diverse systems.  
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Despite the extensive literature on the medium- to long-term contribution of ECE in high-

income countries (for a review, see Ruhm & Waldfogel, 2012; McCoy, Yoshikawa, et al., 

2017), little is known about whether preschool benefits to child outcomes in LMICs persist 

into later years. In fact, no long-term ECE studies on adulthood outcomes such as employment 

and earnings exist in the low-income context, and only a handful of studies—none of which 

uses longitudinal data or experimental designs—showed the benefits preschool had on 

students’ outcomes in secondary education and above:115 school enrolment at age 7-18 in rural 

North India (Hazarika & Viren, 2013); school progression and cognitive skills at age 13-16 in 

Kenya and Tanzania (Bietenbeck et al., 2017); secondary education completion at age 17-18 

in Ethiopia (Woldehanna & Araya, 2017), and educational attainment at age 18-29 in Egypt 

(Krafft, 2015).  

A major puzzle in the extant literature is the fadeout of the initial academic gains from 

preschool, which have been observed in many experimental studies in the U.S (Bailey et al., 

2017). This phenomenon, which can be more accurately described as a ‘convergence’ that 

reflects preschool attendees’ fadeout and non-attendees’ catch-up, typically occurred over the 

course of primary school (Yoshikawa et al., 2013). While a robust body of research has 

attempted to reconcile this early convergence by demonstrating that the benefits of preschool 

persisted into adulthood (Deming, 2009; Ludwid & Miller, 2007), the ability of ECE to 

improve children’s educational outcomes in middle childhood and adolescence remained 

uncertain in recent ECE initiatives. Understanding the short-term benefits of preschool on a 

child’s educational trajectory regarding—defined as the benefits during the preschool years or 

into the early grades—and the medium-term benefits of preschool—defined primarily as the 

benefits during the secondary school years—has important theoretical and policy implications, 

as it could help identify critical periods in the life course that are central to formulating policies 

that boost or at least maintain the beneficial effects of preschool. Importantly, the degree to 

which early education represents a wise investment is determined not only by improved school 

                                                
115 There is a well-known randomised experiment of early childhood interventions in Jamaica, which revealed 

significant long-term labour market returns (e.g., 25% increase in earnings at age 22) (Gertler et al., 2014). 

However, this experiment focused on a home-based early childhood stimulation intervention (i.e., weekly home 
visits for teaching parenting skills and better mother-child interaction), which is different from the focus of the 

present study’s focus on centre-based ECE programmes.   
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readiness but also by how well these early gains are sustained over time (Magnuson et al., 

2007).   

To fill this gap, the present study examines how the relation between preschool attendance and 

student outcomes evolves from early childhood to adolescence. Using a longitudinal data from 

the Young Lives Study in Ethiopia, I assessed whether preschool attendance is persistently 

predictive of students’ educational outcomes by age 15, the age at which most students are 

transitioning to secondary school. Specifically, applying matching procedures to a uniquely 

rich dataset which tracked children over 15 years, I compared socio-demographically similar 

preschool attendees and non-attendees on a range of educational outcomes, including academic 

achievement in receptive vocabulary, mathematics, and language, and the highest grade 

achieved at ages 8, 12, and 15. In addition to exploring these overall associations, I examined 

the extent to which the links between preschool attendance and later outcomes differed based 

on three theoretically guided dimensions: (1) the socio-demographic characteristics of child 

and family; (2) the characteristics of the preschool experience; and (3) subsequent schooling 

environments in primary education.  

This study’s focus on the cumulative influence of preschool attendance in a low-income 

context and its pathway through adolescence is a particularly valuable addition to the literature. 

Extended from previous studies on ECE in Ethiopia (Woldehanna, 2016; Woldehanna & 

Araya, 2017; Vandemoortele, 2018), I used a more comprehensive measure of student 

outcomes up to age 15 and considered the differential influence of preschool in relation to 

child, family, and preschool characteristics. Furthermore, this study takes into account both the 

direct and indirect effects of the association between preschool and student outcomes relative 

to subsequent schooling experience, thereby providing a more in-depth understanding of how 

and whether preschool benefits persist in terms of students’ outcomes in adolescence. Given 

that early and later learning are complementary (Cunha & Heckman, 2007), the present study 

will enhance understanding of the contribution early learning makes in setting a path toward 

success both in primary school and later in life.   

The rest of this chapter is structured as follows: I summarise the relevant literature in Section 

2, set out the purpose and research questions of the present study in Section 3. I describe the 

data in Section 4 and provide the empirical methods used in Section 5, followed by the 
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descriptive statistics and model fit in Section 6. I provide the results from the analysis in Section 

7, discuss the findings and limitations in Sections 8 and 9, and conclude in Section 10.  

4.2 Relevant Literature  

4.2.1 Empirical Evidence on the Medium- and Long-Term Effects of ECE   

ECE in general is targeted at fostering children’s foundational skills that enable them to 

progress along a successful educational path (Heckman et al., 2013). These skills include 

cognitive skills in early literacy, numeracy, and language, and non-cognitive skills in self-

regulation, motivation, and social competence. Educational outcomes in middle childhood or 

adolescence are regarded as more distal targets of ECE (McCoy, Yoshikawa, et al., 2017). For 

the present literature review, I focus on the medium- to long-term effects ECE has on students’ 

educational outcomes. Following Rhum and Waldfogel (2012) and McCoy, Yoshikawa, et al. 

(2017), I define medium-term effects as those measured between ages 10-19, such as test 

scores, grade retention, and completion of secondary education, and long-term effects as those 

measured above age 20, such as final grade completed, employment, and earnings.116 To avoid 

any confusion, it should be acknowledged that some meta-analyses used a different definition 

of long-term effects: Nores and Barnett (2010), for example, defined short-term as up to age 7 

(roughly the beginning of compulsory formal schooling) and long-term as age 7 and above. 

Similarly, Rao et al. (2014) defined long-term as at least six months after the intervention was 

completed. In the current review, I first describe studies that assessed medium- to long-term 

effects in high-income countries, then discuss studies that assessed medium-term effects in 

LMICs. Variables that moderate or mediate the effects of ECE are explained in each study, if 

available. 

High-income countries. In the U.S., three well-known model programmes—Abecedarian, 

Chicago Parent-Child Centres, and Perry Preschool—provide strong evidence on the medium- 

to long-term effects of ECE. Although cognitive test scores for children attending preschool 

and those not attending preschool typically converge over the course of primary school 

(Barnett, 2008), all these programmes were likely to yield sizable benefits on educational, 

behavioural, and health outcomes that persisted into adulthood (Campbell et al., 2012; 

                                                
116 World Health Organisation (WHO) defines an adolescent as any person between ages 10 and 19. 
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Reynolds et al., 2011; Schweinhart et al., 2005).117 To illustrate, Temple and Reynolds (2007) 

documented that participation in the three ECE programmes led to a significant reduction in 

special education placement and grade retention, and to increases in high school completion 

and college attendance rates. Moreover, Perry Preschool and Chicago Parent-Child Centres 

participants were significantly less likely to turn to crime, and the Perry Preschool programme 

led to significantly higher rates of employment and earnings. Most recently, a meta-analysis of 

22 experimental and quasi-experimental studies in the U.S. conducted between 1960 and 2016, 

including the three above, revealed that, on average, participation in ECE led to statistically 

significant reductions in special education placement (d = 0.33 SD, 8.1 percentage points) and 

grade retention (d = 0.26 SD, 8.3 percentage points), and to an increase in high school 

completion rates (d = 0.24 SD, 11.4 percentage points) (McCoy, Yoshikawa, et al., 2017). 

These results emphasised the effectiveness of ECE for reducing education-related expenditures 

and promoting child well-being.  

In the U.K., Goodman and Sianesi (2005) investigated the benefits of ECE on a wide range of 

short- to long-term outcomes, including cognitive achievement from age 7 to 15, socialization, 

and adult outcomes on employment and earnings at age 33. The authors found positive 

influences of preschool attendance before age 5 on students’ test scores, which attenuated in 

magnitude but remained statistically significant up to age 15, while the effects on socialization 

were more elusive. In adulthood, preschool education led to significant increases in the 

probability of obtaining qualifications and of being employed at age 33. Using more recent 

data from the Longitudinal Study of Young People in England, Apps, Mendolia, and Walker 

(2013) found that preschool attendance moderately improved cognitive tests scores at ages 11, 

14, and 16, while there were no significant gains in psychological well-being, crime 

involvement, and health behaviours. The gains in cognitive skills were especially noticeable 

for girls and for children from disadvantaged socioeconomic backgrounds, which implies that 

ECE helps to reduce learning inequalities up to adolescence.  

                                                
117 As an example of convergence, the Perry Preschool project found that the cognitive advantages of preschool 

tended to decline over time, with the control group generally catching up cognitively when they entered 
kindergarten. The Abecedarian Project found similar declines in IQ over time, with effect sizes decreasing from 

0.75 standard deviations (SD) at age 4 to 0.33 SD at ages 15 and 21 (Barnett, 2008). 
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Recently, further rigorous evidence has emerged from outside the U.S. and the U.K.118 Using 

spatial and time variations in preschool availability in Norway, Havnes and Mogstad, (2011) 

found strong beneficial effects of preschool on subsequent educational attainment, including 

more years of schooling, a higher rate of college attendance, and a lower rate of high school 

dropout, and on adult outcomes including labour participation and reduced dependence on 

welfare. Preschool benefits were greatest for children with less-educated mothers. Relatedly, 

Black et al. (2010) reported that preschool attendance in Norway led to a significant 

improvement in the national exam test scores among those age 16, with the largest effects for 

children from low-income families. Dumas and Lefranc (2010) analysed a large-scale 

expansion of preschool in France and found it had positive effects on grade repetition, test 

scores, high school graduation, and later on adult wages. These effects were particularly large 

for children from a low socioeconomic background. Bingley and Westergaard-Nielsen (2012) 

also found that preschool attendance in Denmark was positively associated with completed 

schooling and earnings for those age 22-30. Preschool influence on educational attainment was 

larger for disadvantaged children, particularly for those with less-educated mothers.  

In Uruguay, Berlinski et al. (2008) analysed a massive government-led expansion of public 

preschool during the late 1990s and early 2000s. Using data on children ages 7-15, the authors 

revealed that children who attended preschool were more likely to be enrolled in school and to 

have completed 0.8 additional years of schooling by age 15. The estimated effects were 

particularly large for disadvantaged children with less-educated parents or those living outside 

the capital city, Montevideo. In all, most prior work that investigated the medium- to long-term 

effects of ECE demonstrated significant beneficial effects, especially on educational 

attainment, which were largely pronounced for children from a disadvantaged background. 

Some differentials by outcome variables or sub-groups are not surprising because of the variety 

of ECE programmes and the varied populations they are applied to.  

Low- and middle-income countries. There are relatively few examples of research in LMICs 

that examined the medium- to long-term effects of preschool attendance on later outcomes. 

The existing evidence largely investigated whether preschool benefits persist in terms of 

                                                
118 Note that listed countries (Norway, France, and Denmark) have a younger age range of preschool eligibility, 

typically between ages three and five.   
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students’ educational attainment in secondary school or above. However, to the best of my 

knowledge, no study has yet assessed the long-term effects of preschool on adult outcomes, in 

that ECE programmes are still quite recent in most LMICs. 

As for educational outcomes in early adolescence, three studies explored the associations 

between preschool attendance and academic achievement in the upper primary grades (age 11-

12). Using the Young Lives Study in India (Andra Pradesh), Singh and Mukherjee (2018) 

showed that attending a private preschool rather than a government preschool was positively 

associated with higher math achievement at age 12. With respect to preschool entrance age, a 

child who entered preschool before the age of 4 obtained greater gains from preschool than 

those who entered preschool at the age of 5 or 6. The study in rural Uganda reported similarly 

positive and significant associations between preschool attendance and math achievement at 

age 11 (Grade 6) (Hungi & Ngware, 2018). Results indicate that attending preschool for at least 

two years was optimal in terms of boosting the academic achievement of students in rural 

Uganda. By contrast, Vandemoortele (2018) used the Young Lives Study in Ethiopia (Younger 

Cohort) and found that a positive association between preschool attendance and math 

achievement at age 8 declined by age 12. There was no longer a significant difference in math 

achievement based on preschool attendance for 12-year-old students.  

In terms of educational outcomes in middle to late adolescence, studies put more emphasis on 

educational attainment such as school completion and grade retention than on academic 

achievement. Hazarika and Viren (2013) examined the relationships between participation in 

early childhood development programmes and subsequent school enrolment at ages 7-18 in 

rural Northern India and found significant and substantial increases in school enrolment. 

Specifically, participation in ECE programmes raised the average 7- to 10-year-old’s 

probability of school enrolment by 31.5 percentage points, that of the average 11- to 14-year-

old by 23.8 percentage points, and that of the average 15- to 18-year-old by 58 percentage 

points. These positive gains from preschool were particularly pronounced for boys and for 

those from households below the poverty line and less pronounced for children from 

households with an illiterate head (Hazarika & Viren, 2013). In Kenya and Tanzania, 

Bietenbeck et al. (2017) found small but statistically significant preschool benefits for students’ 

educational attainment and cognitive development from age 7 to 16. Although students 

attending preschool in both countries likely started primary school later than their peers not 
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attending preschool, they eventually caught up and even outperformed their non-preschool 

peers at ages 13-16 by one and a half more months of schooling. The authors suggested that 

lower dropout among preschool attendees underlies the gains in the number of grades 

completed. Similar patterns were observed for the relation between preschool attendance and 

cognitive skills, showing that preschool attendees outperformed their peers at ages 13-16 (0.10 

SD, p < 0.01). Work by Krafft (2015) demonstrated that participation in ECE had a positive 

effect on educational attainment for 18- to 29-year-olds in Egypt. ECE participation led to a 

significant increase in educational attainment by approximately one additional year of 

schooling. This study identified a key pathway from ECE participation to later educational 

attainment that included improved school performance (e.g., higher test scores in primary), 

decreased grade repetition, and a higher chance of transitioning into secondary education.   

Using the Young Lives Study in Ethiopia (Older Cohort), Woldehanna and Araya (2017) found 

that preschool attendees living in urban areas were 25.7 percentage points more likely to 

complete a secondary education at the proper age than their non-preschool peers. The authors 

suggested that the duration of the preschool exposure matters, as the preschool benefits were 

most pronounced for students who attended preschool for three years more than others. 

Furthermore, attending preschool for three years was associated with an increased probability 

of making the transition to higher education by age 18 (Woldehanna & Araya, 2017). While 

the previous study used a sample from the Older Cohort who were born in 1995, the current 

study used a sample from the Younger Cohort who were born in 2002. These two cohorts, 

which are seven years apart, may have different schooling experiences. For example, access to 

primary education in Ethiopia has increased significantly in recent years; the net enrolment rate 

for grades 1 to 4 (the first cycle of primary education) increased from 60.9 percent in 2004-

2005 to 85.4 percent in 2011-2012 (MoE, 2005; 2012), while there is a decline in students’ 

academic performance between the Younger Cohort and the Older Cohort, which signals a 

decline in the quality of education over this period (Woldehanna & Pankhurst, 2014). Overall, 

while identification is clearly an issue (i.e., omitted variables bias and endogeneity) in 

exploring the long-term effects of ECE (Ruhm & Waldfogel, 2012), many of the reviewed 
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studies applied advanced identification techniques that have helped to mitigate these 

challenges.119 

4.3 The Present Study 

The purpose of the present study is to examine the predictive role of preschool attendance on 

the academic achievement and educational attainment of 15-year-old students in Ethiopia. 

Specifically, this study aims to assess whether the influence of preschool would persist or 

fadeout in adolescence during the period of transition from primary to secondary education. 

Using rich longitudinal data from the Young Lives Study in Ethiopia, I applied propensity 

score matching (PSM) to test my hypothesis that students who attended preschool at or around 

age five may show significantly higher levels of academic achievement and educational 

attainment at age 15 than their peers who never were exposed to early childhood education. I 

extended my analysis to investigate whether the preschool influence varied across three key 

dimensions: (1) the socio-demographic characteristics of child and family; (2) characteristics 

of the preschool experience; and (3) subsequent schooling environments. Derived from the 

ecological sources of influence variation, the first dimension focused on educational inequality, 

while the latter two focused on educational quality. I addressed three primary research 

questions, as follows:  

1. Preschool attendance and student outcomes: What is the predictive role of preschool 

attendance on (1) students’ academic achievement, as measured by receptive 

vocabulary, mathematics, and languages (mother tongue and English); and (2) students’ 

educational attainment, as measured by the highest grade achieved and on-time grade 

progression at age 15? How do the relationships between preschool attendance and 

student outcomes evolve over time across ages 8, 12, and 15?  

2. Preschool attendance and student outcomes in relation to educational inequality: Does 

the influence of preschool vary by gender, household wealth, father’s education level, 

                                                
119  Various non-experimental methodologies were applied across the reviewed studies: (1) Difference-in-

difference, Havnes and Mogstad (2012); (2) Regression discontinuity design, Black, Devereux, Loken, and 

Salvanes (2010); (3) Instrumental variables, Dumas and Lefranc (2012), Bingley and Westergaard-Nielsen (2012), 

Woldehanna and Araya (2017); (4) Sibling fixed effect, Berlinski, Galiani, and Manacorda (2008), Bietenbeck et 
al. (2017), Krafft, (2015); and (5) Propensity score matching, Goodman and Sianesi, (2005), Apps, Mendolia, and 

Walker (2013). 
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and student’s prior achievement levels?  

3. Preschool attendance and student outcomes in relation to educational quality: Does 

the influence of preschool vary by preschool characteristics, including preschool 

starting age, type, quality, and daily hours of participation? How are the relationships 

between preschool attendance and student outcomes mediated by subsequent schooling 

environments in primary school?  

My first research question aimed to determine whether preschool attendance is predictive of 

students’ academic achievement and educational attainment at ages 8, 12, and 15. A strength 

of the current analysis was the ability to track this relationship over students’ educational 

trajectories, from early childhood to adolescence, even after accounting for their existing 

cognitive skills at age 5. In the second and third research questions, I aimed to identify the 

particular group that benefited most from enriched early learning experience and how to sustain 

the preschool influence through subsequent schooling experiences. The current analysis was 

guided by theories and prior studies in LMICs, those in Sub-Saharan Africa in particular.  

The present study contributes to the knowledge base on early childhood education in several 

ways. First, this study added evidence to the limited literature on the medium- to long-term 

influence of preschool on student outcomes, particularly in the LMIC context. Such scarcity is 

possibly related to the lack of suitable data available until the Young Lives data were released. 

Specifically, I extended the findings from previous studies using Young Lives Ethiopia, which 

showed mixed results. Some studies using the Older Cohort sample found a positive 

relationship between preschool attendance and students’ achievement in receptive vocabulary 

and math at age 8 (Woldehanna, 2016) and a higher chance of completing secondary education 

(Woldehanna & Araya, 2017); however, other studies which used the Younger Cohort sample 

found no significant relationship between preschool and students’ math achievement at age 12 

(Vandemoortele, 2018).120 Focusing on the Younger Cohort sample, the present study used a 

more extensive and comprehensive measure of student outcomes up to age 15, including 

academic achievement in receptive vocabulary, math, and language, and the highest grade 

                                                
120 The Younger Cohorts (birth in 2002) data from Young Lives have some advantages over the Older Cohorts 
(birth in 1995) data since the Younger Cohorts data contain richer information about the preschool experience 

and these were collected when they were 5 years old, which is likely to mitigate recall problems.  
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completed through adequate grade progression. I also explored the differential influence of 

preschool across a variety of characteristics of the child, family, preschool, and primary school, 

which are critical dimensions for ensuring educational equity and quality that were not 

investigated in prior studies.  

In addition, to mitigating differences in the demographic, geographic, and socioeconomic 

characteristics of students who selected into preschool versus those who did not, I compared a 

set of regression results that applied ordinary least square, kernel-based PSM, and kernel-based 

PSM within the community. By comparing the relative magnitude of the different estimates, I 

attempted to infer the mechanisms underlying students’ selection to preschool and outcome 

models. The present study thus provides a better understanding of how the predictive role of 

preschool has evolved through students’ educational trajectories from early childhood to 

adolescence in Ethiopia.  

4.4 Data and Variables 

The present paper used rich information from the Young Lives longitudinal study in Ethiopia. 

Young Lives is an international study that followed 12,000 children for 15 years in four low- 

and middle-income countries: Ethiopia, India (Andhra Pradesh), Peru, and Vietnam. With the 

aim of investigating the causes and consequences of childhood poverty, Young Lives Ethiopia 

collected data on 1,999 children aged 6 months to 18 months (the Younger Cohort), and 1,000 

children aged 7.5 to 8.5 years (the Older Cohort). The first wave of the study was conducted in 

2002 (Round 1), followed by four subsequent waves in 2006 (Round 2), 2009 (Round 3), 2013 

(Round 4), and 2016 (Round 5).  

The Young Lives dataset provides a wealth of information on children’s trajectories across 

various domains, including cognitive development, socioeconomic status, demographics, and 

access to basic services; data were collected at the child, household, and community level. All 

information in the Young Lives Study was collected through face-to-face interviews with the 

main caregivers and children. For the present study, the longitudinal nature and richness of the 

Young Lives Study offer a unique opportunity to examine whether early learning inputs affect 

children’s cognitive development and educational attainment at a later age. The current 

analysis used all five rounds of the Young Lives Ethiopia survey, in particular the Younger 

Cohort, for which information on preschool attendance was collected when the children were 
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preschool-eligible age, which could mitigate concerns about recall bias or measurement 

error.121  

Young Lives collected data from 20 sentinel sites located in five regions—Addis Ababa, 

Oromia, Amhara, SNNP, and Tigray—where 96 percent of the country’s population lives. 

Considering the challenges of conducting child-focused longitudinal research in low-income 

countries, Young Lives adopted a multi-stage sampling strategy using a mixed approach of 

purposive and random sampling (Wilson et al., 2006). First, 20 sentinel sites were purposefully 

selected in poverty-prone areas based on food deficiency; to capture Ethiopia’s diversity across 

regions and ethnicities, and in urban and rural areas; and to ensure the sustainability of the 

survey, which included selecting accessible rather than remote sites (Outes-Leon & Sanchez, 

2008). Second, within the sites, about 100 households with a child aged 6-17 months old were 

randomly selected. In comparison to households in the 2000 Demographic and Health Survey, 

Young Lives households (Round 1 survey, 2002) had better access to basic services such as 

drinking water and electricity, except those in Addis Ababa. Meanwhile, in comparison to the 

2000 Welfare Monitoring Survey, Young Lives households were poorer in terms of several 

assets, such as land, home, and livestock ownership (Outes-Leon & Sanchez, 2008). These 

findings are in line with the sampling design, which preferred poorer areas with better 

accessibility. Although Young Lives captured the country’s diversity, it was not a nationally 

representative or sub-geographically (e.g., region, zone, or sentinel) representative sample, thus 

generalisation to the national Ethiopia population should be avoided. 

4.4.1 Sample and Instrument Used for the Analysis  

As with most longitudinal datasets, the Young Lives survey was not free from sample attrition 

and missing components—in particular for the item non-responses in dependent variables. 

From the original sample of 1,999 children, the attrition rate of the Younger Cohort in Young 

Lives Ethiopia was 5.3 percent across the five rounds (Young Lives, 2016), which is lower 

than any other longitudinal study.122 Sample attrition occurred when the children were not 

                                                
121 The Older Cohort data in the Young Lives were collected after preschool-eligible age, when they were 7.5 to 

8.5 years old, which may cause some recall problems. Previous study used the Older Cohort to examine the effect 

of preschool attendance on educational attainment in secondary school or higher education completion 

(Woldehanna & Araya, 2017). 
122 Actual attrition of younger cohort is 9.6 percent in Round 5; however, attrition rates do not include deaths, 

which account for 85 (4.3%) children. Building stable relationships between the families and field supervisors, 
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found because households moved and were impossible to track (14%), refused to take part in 

later rounds (10%), or migrated internationally (6%) (Young Lives, 2018). Out of the 1,812 

students interviewed in Round 5, 1,803 students fully participated in the survey from 2002 

(Round 1) to 2016 (Round 5).  

In terms of missing components, the item non-responses for the explanatory variable 

(preschool attendance in this study) and control variables were almost none, at less than 0.04 

percent. However, the item non-responses were particularly high for the outcomes of interest, 

which were measured by at least three test scores and the highest grades achieved in each round. 

It was first noted that non-response rates in any of the outcome variables varied by rounds: 5.0 

percent for Round 3; 15.3 percent for Round 4; and 16.5 percent for Round 5. Further, missing 

test scores in one subject were not fully nested in missing values in other subjects within the 

same survey round. To illustrate, in Round 5, there were valid scores for 1,623 students in 

PPVT, 1,709 in math, 1,678 in language (English), and 1,687 in highest grade achieved, 

whereas students who had valid scores in all four outcome measures numbered only 1,447. 

Given that the present study focused on assessing the contribution of preschool sustained in 

the adolescence period, I decided to anchor the sample of the current analysis to Round 5. After 

accounting for attrition and item non-responses, Round 5 contained 1,447 students who had no 

missing values in the four outcome variables measured at age 15, approximately 72 percent of 

the initial survey sample in 2002 (1,999 respondents).  

To accommodate missing data appropriately in the modeling process, I investigated the 

possible missing data mechanism before determining the final sample for this study. 

Understanding the nature of missing patterns and the implications of such incompleteness was 

important in order to properly use the available data and reduce potential bias to a minimum in 

parameter estimates. Pairwise correlation suggested that the missingness for the outcome 

variables was strongly correlated with child’s ethnicity, family wealth quintile, region, 

household expenditure on education, and the education levels of father and caregiver. Table 

4.1 presents an investigation of the missing data pattern of two key variables, household wealth 

and location. Non-response rates for outcome variables were especially high for households in 

                                                
who were working since Round 1, contributed to keeping the 15-year attrition rate low in the Young Lives survey 

(Young Lives, 2018).  
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the lower wealth quintile and those living rural areas, which may indicate ‘missing not 

occurring at random’ (Little & Rubin, 2002).123  

Table 4.1. Missing Response Pattern by Wealth Quintile and Urban-Rural Residence 

Survey 

Round 

Number of missing 

responses in any of 

outcome variables 

(%) 

Missing response distribution 

by wealth quintile (%) 

Missing response 

distribution 

by residence (%) 

Poorest 

(Q1) 
(Q2) (Q3) (Q4) 

Richest 

(Q5) 
Urban Rural 

Round 3 81 (5.0) 27.16 35.80 18.52 11.11 7.41 17.28 82.72 

Round 4 265 (15.3) 31.50 39.94 22.10 14.86 5.80 17.66 82.34 
Round 5  286 (16.5) 30.07 36.71 19.23 6.55 4.93 10.84 89.16 

Source: Young Lives Dataset Round 3 to Round 5, Young Lives  

To keep cases with missing data and possibly prevent any potential bias from it, one can 

consider multiple imputation, which has been a popular technique to facilitate statistical 

analysis of incomplete data (Rubin, 1976, 1996; Little & Rubin, 2014). Nevertheless, this 

approach may not be the best approach for the current analysis, for the following reasons: first, 

the multiple imputation has good properties if the data are ‘missing at random’ (Allison, 2002), 

whereas the non-response pattern of the Young Lives data could be ‘missing not at random’. 

Second, if only the dependent variable has missing values and auxiliary variables are not 

identified, the use of multiple imputation should be avoided (Garson, 2015; Jakobsen et al., 

2017), as is the case with Young Lives.124 In this occurrence, no additional information will be 

obtained by using multiple imputation, but the standard errors may increase due to the 

uncertainty introduced by the multiple imputation (Garson, 2015; Jakobsen et al., 2017).  

To manage item non-response I instead used listwise deletion (also known as complete case 

analysis), an approach that produces approximately unbiased parameter estimators, even when 

data are not missing at random (Little, 1992).125 Although listwise deletion induces a loss of 

sample that results in larger standard errors, for regression analysis this approach is ‘even more 

robust than the sophisticated methods [such as maximum likelihood and multiple imputation] 

to violation of the “missing at random” assumption’ (Allison, 2002, p. 7). I conducted two 

                                                
123 In general, there are three possible missing data mechanisms, missing not at random (MNAR), missing at 

random (MAR), and missing completely at random (MCAR). If missing data are MNAR, the data missing 

mechanism is considered to be non-ignorable, while MCAR and MAR are considered to be ignorable (Little & 

Rubin, 2002). 
124 Auxiliary variables are the variables not included in the regression analysis but correlated with a variable with 

missing values and/or related to its missingness (Jakobsen et al., 2017). 
125 Provided that the data used in the study are not a nationally representative sample, complete case analysis will 

not affect the representativeness of the sample. 
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specification checks to reaffirm my choice of listwise deletion. I first ran the multiple 

imputation (20) using the PPVT scores in Round 4 (with the highest missing values) and found 

no meaningful difference in the results of interest. For example, the association between 

preschool attendance and receptive vocabulary at age 12 was nearly same before (𝛽 =0.52, SE 

= 0.07, Obs. = 1,620) and after (𝛽 =0.51, SE = 0.06, Obs. = 1,886) multiple imputation. Second, 

I ran the analysis after listwise deletion using the larger sample, holding at least one of the 

outcome variables valid rather than holding all outcomes variables valid. The coefficient 

estimates with the larger sample, which were varied by subject, tended to be larger than the 

restricted sample. Hence, performing the analysis with the non-imputed sample holding all 

outcome variables valid can be seen as a conservative decision for the present study.126 

Consequently, the final sample of the present study is 1,447 for those who had valid responses 

across all outcome variables measured at age 15. All subsequent analysis was conducted by 

pooled sample (n = 1,447) and urban sample (n = 652). The latter is a more restricted group for 

the resident areas, considering the high prevalence of preschool participation in urban areas in 

2007. When Young Lives children were five years old, attending a preschool was regarded as 

a luxury that was exclusively available to children from wealthy families (see more details on 

Section 2.4.3). The preschool attendance rate was in turn highly concentrated in the urban areas 

(57%) and very low in rural areas (3%). However, beyond the dichotomy between urban and 

rural location, various other factors, such as parental education level, household wealth, child’s 

birth order, and sub-geographical factors, were considered strong determinants of preschool 

attendance (Woldehanna, 2016; Vandemoortele, 2018). 127  In order to achieve a plausible 

identification of preschool influence, I created the counterfactual scenario separately by the 

pooled and urban samples. In the next section on the model fit, I discuss the process of 

establishing a reliable counterfactual in each sample through propensity score matching. 

                                                
126 The results from two specification checks are available upon request.  
127 In the previous study using the Young Lives data, Woldehanna (2012, 2017) exclusively used the urban sample 
for the analysis. However, Vandemoortele (2018) used the pooled sample for the primary analysis since similar 

results were found between the pooled sample and the urban-restricted sample in the sensitivity check.  
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4.4.2 Model Variables  

1) Key explanatory variable  

Preschool attendance. Preschool attendance was measured by caregivers’ responses when the 

Young Lives children were preschool-eligible age (4- to 6-year olds) between 2005 and 2007, 

before the expansion of public preschool. During the Round 2 household survey, primary 

caregivers reported whether their child had ‘regularly attended any formal or informal 

preschool since the age of three’. I categorised students as having attended ‘preschool’ if they 

attended any of these programmes, regardless of service provider or institution. Caregivers who 

reported affirmatively were also asked to report the child’s age at first enrolment, the type of 

preschool the child attended (i.e., private; community-based preschool run by an NGO, charity, 

or religious organization; government-funded preschool; public preschool run in part by 

student fees and in part by government funds), average number of days per week and hours per 

day the child attended, whether they paid for preschool, and caregiver’s self-rating on the 

quality of the care and teaching at the preschool. 

Table 4.2. presents the preschool characteristics used in sub-group analyses. To facilitate these 

analyses, preschool starting age reported in months was divided by three age groups (4, 5, and 

6 or above). The type of preschool was then regrouped by private, public (government), and 

community-based preschool, as suggested by Orkin et al. (2012).128 Quality of preschool care 

and teaching were categorised as excellent, good, and reasonably okay or bad. Average daily 

hours the child attended were divided into full-time (7 hours and above) and part-time (less 

than 7 hours), the cut-off point being seven hours per day. In all, about three-quarters of 

Ethiopian children with preschool experience started preschool before age six, attended a 

preschool run by a private organization that provided fairly good-quality service, and spent at 

least seven hours per day at preschool.  

Some caution must be paid in interpreting the quality indicators for preschool, which is a 

subjective measure which relies on caregivers’ responses to the question, ‘In your opinion, how 

good is the quality of the care and teaching at this preschool?’ In general, parents paying for 

preschool tended to believe the quality of education was high. As the evidence from high-

                                                
128 Orkin et al. (2012) suggest that private schools and public fee-paying schools can be grouped together under  

‘private’ preschool due to their similarities, while government preschools could be renamed ‘public preschools’. 
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income countries suggests, parents are likely to report their child as receiving a high-quality 

early childhood education (NICHD & Duncan, 2003). Despite the upward tendency in parents’ 

reporting, some gradients in the preschool quality ratings were observed in the Young Lives 

survey: 23.6 percent of caregivers rated the preschool as excellent, 53 percent as good, and 

23.4 percent as reasonably okay or bad. Given the lack of reliability on this indicator, the 

analysis using preschool quality is exploratory in nature. 

Table 4.2. Preschool Characteristics Where Young Lives Children Attended 
Variable Number of Students 

(N = 402)  

Percentage 

 (%) 

Preschool starting age    

  Age 4 129 32.1 % 

  Age 5 205 51.0 % 

  Age 6 or above 68 16.9 % 

Preschool type    

  Private 317 78.9 % 

  Public (Government) 24 5.9 % 

  Community-based  61 15.2 % 

Quality of care and teaching at pre-school  

  Excellent   95 23.6 % 

  Good 213 53.0 % 

  Reasonably okay or (extremely) bad  94 23.4 % 

Time spent in preschool     

  Full-time (>= 7 hours per day) 304 75.6 % 

  Part-time (< 7 hours per day) 98 24.4 % 
Source: Young Lives data, Round 2 (2008), Young Lives 

2) Outcomes of interest  

Academic achievement. Three subjects were used to measure students’ academic achievement, 

based on assessments of receptive vocabulary, mathematics, and languages (mother tongue for 

Rounds 3 and 4, English for Round 5). Table 4.3 summarizes the measures for academic 

achievement administered from Rounds 3 (age 8, 2009), 4 (age 12, 2013), and 5 (age 15, 2016). 

Students’ test scores in Round 2 (age 5, 2006), as measured by two assessments—the Peabody 

Picture Vocabulary Test and the Cognitive Development Assessment for Quantity—were used as 

control variables, and for the sub-group analysis in the present study, which denotes students’ 

cognitive skills before entering primary school.  

The Peabody Picture Vocabulary Test (hereafter PPVT) is a test of receptive vocabulary 

recognition (Dunn & Dunn, 1997), which was administered in all survey rounds. The test 

consists of selecting a picture that best represents the meaning of a stimulus word the examiner 

presents orally (Cueto & Leon, 2012). PPVT, which has been widely used as a general measure 
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of cognitive development, was adapted to the Ethiopian context and translated into local 

languages. 129  The math and language assessments were based on the Ethiopia’s national 

curricula and international testing programmes (e.g., EGRA, TIMMS), and the test items were 

ordered by increasing difficulty.  

Table 4.3. Assessments for Academic Achievement Administered in Rounds 3 to 5 

Survey Age 
Receptive 

Vocabulary 
Mathematics Language 

Round 3 (2009) age 8 PPVT 

(204 words, 

ceiling applied) 

Math test:  

29 items in basic numeracy 

and math operations 

Mother Tongue:  

14 items in reading 

and listening 

comprehension  

Round 4 (2013) age 12 PPVT 

(selected 55 

words) 

Math test:  

28 items in math operations 

(e.g., addition, division, 

square roots) and problem 

solving 

Mother Tongue:  

24 items in reading 

comprehension   

Round 5 (2016) age 15 PPVT 

(selected 55 

words) 

Math test:  

30 items in math operations 

and problem solving 

English:  

27 items in reading 

comprehension 

Source: Young Lives Dataset Round 3 to Round 5, Young Lives 
 

Based on the assessments shown in Table 4.3, I used the ‘percentage of correct answers’ and 

‘standardised test scores’ (z-score) to measure students’ academic achievement. The estimates 

using standardised test scores should be interpreted as students’ relative performance (standard 

deviation), where an individual’s test score is compared to the average score within the sample. 

In that various measures were administered in each round, it is challenging to establish the 

cross-round comparability of students’ outcomes by generating adequately equated test scores 

over time—that is, the application of item response theory. To illustrate, the test administration 

rules and items varied by each round and by subject, especially in PPVT. In the first two rounds 

(Rounds 2 and 3), PPVT provided test-takers with enough items (204) to set both a baseline 

and a ceiling, then calculated the percentage of correct answers. However, in the latter two 

rounds (Rounds 4 and 5), only 55 selected items were administered to students, rather than 

establishing a baseline or ceiling. 130  Although some anchored items were identified and 

equated across the survey rounds (Leon & Singh, 2017), this could not fully address the issue 

                                                
129 PPVT is also adaptable according to age from 2.5 to adulthood.  
130 The selection of PPVT items in Rounds 4 and 5 considered the similar cognitive equivalence and the level of 

difficulty from the previous PPVT instruments in Rounds 2 and 3 (Leon & Singh, 2017). 
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raised by changes in the administration rules and items, as well as the technical difficulties of 

equating items in six different mother tongues in Ethiopia.131 

As for the math assessments, since the math tests in Rounds 4 and 5 added higher order 

numeracy skills (e.g., problem-solving) with descriptive questions, anchored items across three 

rounds were limited to just a few computational skills (e.g., 2+3, 15 × 9, 27÷3). Moreover, 

while each child took the test at his or her own pace, there were differences in the point at 

which the test was stopped due to the test item difficulty. The math test in Round 3, that 

included 29 items, was discontinued after 8 minutes, while the math tests in Round 4 (28 items) 

and Round 5 (30 items) were discontinued after 40 and 50 minutes, respectively.  

More variations were observed in the language assessments, which reflected students’ reading 

skill development and language of instruction policy in Ethiopia. Round 3 adopted three EGRA 

sub-tasks, including oral reading fluency (correct words per minute) and reading and listening 

comprehension tests. Round 4 conducted reading comprehension tests and simple reading tests 

in the mother tongue, Amharic (Ethiopia’s official language), and in English. To reflect a 

change in language of instruction in secondary education, Round 5 administered reading 

comprehension tests only in English. According to the language of instruction policy in 

Ethiopia, mother tongue languages are used as the medium of instruction up to Grade 4, while 

students start to learn English as a subject from kindergarten or Grade 1 (lower primary); 

teachers use English as the medium of instruction in certain subjects, such as mathematics, up 

to Grade 8 (upper primary); and English becomes the main medium of instruction for all 

subjects starting in Grade 9 (secondary education). For the main analysis, I used the language 

assessment of reading and listening comprehension that were consistently administered in 

Rounds 3, 4, and 5 (I used some additional tests from Rounds 3 and 4 for the robustness check 

only).  

Educational attainment. Educational attainment was measured by two indicators: highest 

grade achieved, and on-time grade progression by the time of Rounds 4 and 5. The highest 

grade achieved was reported by the respondents at the ages of 12 and 15. On-time grade 

progression measured whether a child attended the ‘right’ grade for her or his age by 

                                                
131 Leon and Singh (2017) provide the IRT (3PL) estimates of PPVT scores across rounds and cohorts in only 

three local languages in Ethiopia (Amharic, Tigrinya, and Oromifa).    
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progressing without any interruption, such as late school entry, grade repetition, or dropout.132 

For example, this dummy variable takes a value of 1 if a 12-year-old student is currently 

enrolled in Grade 6, and 0 otherwise.133 In Round 5, when Young Lives students turned 14 or 

15 years old, completing Grades 7 to 9 was regarded as on-time grade progression. Meanwhile, 

educational attainment in Round 3 (2009) was excluded from the outcome measures because 

of the ambiguity in measuring on-time grade progression between ages 7.5 and 8.5, as the 

compulsory age for school entry in Ethiopia is age 7.134  

3) Model controls 

The present study included a set of control variables reported by primary caregivers in Rounds 

1 (2002) and 2 (2008) of the Young Lives survey, given that only variables unaffected by 

preschool participation should be included (Caliendo & Kopenig, 2008). Control variables 

were selected for inclusion in the model (matching procedure) based on prior research 

suggesting their potential relation with preschool attendance and/or student learning outcomes. 

The selected covariates can be grouped into four main categories: (1) household wealth; (2) 

household sociodemographic and geographic characteristics; (3) student characteristics; and (4) 

student’s prior academic achievement.  

Household wealth. The positive association between socioeconomic status and school 

participation and child outcomes in LMICs has been well established (Black et al., 2017; 

Grantham-McGregor et al., 2007; Lewin, 2009; Lopez Boo, 2016; Naudeau et al., 2011). Prior 

work using the Young Lives data has found that household wealth is a strong predictor of 

preschool enrolment in Ethiopia (Woldehanna, 2016; Vandemoortele, 2018). Before 2010, 

private service providers in the pre-primary sector only served middle- to high-income parents. 

Specifically, as the wealth index rises by one unit, a child’s probability of being enrolled in 

                                                
132 Instead of using the self-reported data on grade repetition or dropout, I matched the child’s age in months and 

the highest grade achieved to estimate on-time grade progression. In general, self-reported data on grade repetition 

or dropout tends to be lower than actual figure in the countries like Ethiopia where having automatic promotion 

practices for Grade 1 to Grade 4.  
133 In the Ethiopian education system, primary and secondary education both have two cycles. First, primary 

education consists of the primary first cycle (Grade 1 to Grade 4 for ages 7 to 11) and the primary second cycle 

(Grade 5 to Grade 8 for ages 12 to 14). Secondary education consists of the secondary first cycle (Grade 9 to 

Grade 10 for ages 15 and 16) and the secondary preparatory cycle (Grade 11 to Grade 12 for ages 17 and 18, 

TVET levels) (MoE, 2015). 
134 Depending on the month of child’s birth, some entered primary school at the time of Round 3 and reported the 

highest grade as none.  
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preschool increases by 74.7 percent (Woldehanna, 2016). Consequently, I estimated models 

controlling for household wealth quintile based on the wealth index. The household wealth 

index was composed of three sub-indexes: (1) the housing quality index (e.g., main materials 

of walls, roof, and floor); (2) the access to service index (e.g., access to electricity, drinking 

water, and sanitation); and (3) the consumer durables index (e.g., possession of radio, 

television, and bicycle), all of which have equal weights in the estimation of wealth index.  

Household socio-demographic and geographic characteristics. I included household socio-

demographic and geographic characteristics that prior work has found to be associated with 

school attendance and child outcomes, including education levels of father and caregiver, birth 

order of child (first born), household size (larger than 6), private expenditure on child’s 

education, caregiver’s educational aspirations, language used between caregiver and child, 

urban and rural residence, and region (sub-geographic).  

Selected control variables were aligned with evidence on the key determinants of preschool 

attendance in Ethiopia, including having a more educated parent, being a first-born child, 

speaking Amharic as a first language, and living in an urban area and/or Addis Ababa 

(Woldehanna, 2016; Vandemoortele, 2018). Substantial evidence points out that parental 

education level is an important predictor of children’s educational outcomes (Davis-Kean, 

2005; Duncan, Brooks-Gunn, & Klebanov, 1994; Haveman & Wolfe, 1995; Nagin & Tremblay, 

2001, for high-income countries). In Ethiopia and Peru, highly educated and higher income 

parents invested more in their children, particularly at younger ages, and these differences in 

investment led to large gaps in learning inequality by age 8 that persisted through age 15 

(Attanasio et al., 2017). The current analysis thus included estimated private expenditures on 

the child’s education to approximate household investment in the child. More precisely, from 

the household consumption data in Round 2, the expenditures considered are for schooling 

fees, school uniforms, tuition payment, schoolbooks and stationery, transport to/from school, 

and cinema/entertainment. Also, the present study introduced a control variable, caregiver’s 

aspirations for a child’s educational outcomes (‘Ideally, what level of formal education would 

you like your child to complete?’), which was measured by her or his responses in Round 2. 

Numerous studies have revealed that parents’ educational aspirations or expectations have a 

considerably stronger relationship with students’ academic achievement than other type of 

parental involvement (Hess et al., 1984; Peng & Wright, 1994, for high-income countries). In 
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Ethiopia, Favara (2016) found an intergenerational transmission of aspirations between parents 

and children, and that aspirations have strong predictive power for later educational attainment, 

particularly for boys.  

Student characteristics. Based on evidence from prior studies, I included student 

characteristics that entail child age, gender, nutrition status as measured by height-for-age 

scores, health problems before or at age 5, and child’s ethnicity.135 In Ethiopia, being male and 

better nourished are positively associated with preschool attendance (Vandemoortele, 2018). 

Poor nutrition status has a strong link with household poverty and prevalence of illness. In fact, 

many children in Ethiopia remain undernourished, and a lack of good health facilities results 

in frequent illness and gaps in schooling, which lead to school dropout for vulnerable children 

(UNESCO, 2014). Lastly, poor educational participation and progression remain a challenge 

for certain ethnic minority groups in Ethiopia, issues that often are compounded by geographic 

and regional disparities (Tesfay & Malmberg, 2014). 

Student prior academic achievement. Students’ prior academic achievement was included, 

which has been associated with both early schooling and student outcomes. As supported by 

dynamic skill formation models (Carneiro & Heckman, 2003; Cunha & Heckman, 2007), 

disparities in early cognitive development between advantaged and disadvantaged students are 

the principal sources of divergence in their future education. Singh (2014) highlighted that, 

across the Young Lives countries (Ethiopia, Andra Pradesh in India, Peru, and Vietnam), 

disparities in academic achievement open up by the age of five and accumulate throughout the 

educational trajectory. In these countries, students from the richest quartile made more progress 

than those from the poorest quartile in mathematics during their transition from home (age 5) 

to primary school (age 8) (Rolleston et al., 2013). In the present study, students’ prior cognitive 

skills before school entry were measured by their test scores at age 5 in two assessments, 

including PPVT and Cognitive Development Assessment for Quantity. Meanwhile, there is a 

possibility that some children were attending preschool at the time their skills were assessed. 

In that case, the measured skills could be the first manifestation of the effects of preschool 

attendance on learning. For inclusion in the matching model, students were divided into three 

                                                
135 The height-for-age standardised score (z-score) is a popular measure of nutrition status. For instance, a child’s 
stunting is defined by low height-for-age, that is, below -2 standard deviations from the reference category (WHO, 

2011). 
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ability groups (high, middle, low) according to their standardised scores on each assessment.  

4.5 Empirical Strategy: Propensity Score Matching  

The present study used propensity score matching, one of the quasi-experimental methods 

designed to evaluate treatment effects in the absence of a control group. Developed by 

Rosenbaum and  Rubin (1983) in the early 1980s, PSM emulates a situation which 

experimental research achieves through randomization by modeling the treatment assignment 

patterns directly and then creating sub-groups which match in their likelihood of belonging to 

either a treatment or a control group (Guo & Fraser, 2015). PSM models have been used in 

numerous studies that evaluated the effect of ECE (e.g., Armecin et al., 2006; Goodman & 

Sianesi, 2005; McCoy, et al., 2017), thus they circumvent the problem of selectivity in 

preschool assignment based on various contextual factors, such as household wealth, parental 

education, and geographic disadvantages.  

The primary goal of PSM is to match an individual who received a treatment with a comparable 

individual from the non-treated group who is as similar as possible in observable and pre-

treatment characteristics. In the present study, this approach allowed for the identification of 

an adequate counterfactual that led to a comparison of children who attended preschool with 

children who shared similar socio-demographic characteristics but did not attend preschool. 

PSM assumes that the propensity score is a composite value that summarizes all observable 

background characteristics and that the only remaining relevant difference between the two 

groups is treatment—which in this study is the probability of attending preschool. According 

to Rubin (1997), ‘the basic idea of propensity score methods is to replace the collection of 

confounding covariates in an observational study with one function of these covariates, called 

propensity score. This score is then used as if it were the only confounding covariates’ (p. 461). 

Compared to traditional matching methods that construct an artificial comparison group across 

multiple characteristics, which often are vulnerable to the ‘curse of dimensionality’ (Reynolds 

& Desjardins, 2009), PSM has the advantage of matching on a single dimension (Rubin, 1997).  

Through the application of PSM, the current study aimed to identify the average effect of 

preschool on those students who attended preschool; that is, the average effect of treatment on 

the treated (ATT). The ATT specifically focused on the subset of individuals actually observed 
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to attend preschool, and thus compared their educational outcomes to an estimate of what 

would have happened if the same students had not attended preschool. The ATT should be 

distinguished from the average treatment effect (ATE), which measures the average effect for 

all students by the difference between treated and untreated individuals whether or not they 

attended preschool. Provided that preschool was not randomly assigned, the estimation of ATE 

may be more likely to be biased and so have fewer practical implications. The ATT is identified 

as follows:  

ATT =  𝐸(𝑌1| 𝑇 = 1) − 𝐸(𝑌0| 𝑇 = 1) =  𝐸(𝑌1 −  𝑌0| 𝑇 = 1)             (1) 

where 𝐸(𝑌1| 𝑇 = 1) represents the probability that an outcome, 𝑌1, will occur for those students 

receiving a treatment, T. In the present study, the observed outcomes 𝑌1 were measured by 

academic achievement and educational attainment at age 15 for those students who attended 

preschool (T). Meanwhile, 𝐸(𝑌0| 𝑇 = 1) represents the probability that these outcomes would 

have occurred if those same students had not received the treatment. This is a hypothetical case 

which assumes that those who actually attended preschool had not attended preschool as a 

credible counterfactual. The last part of the right-hand side captures how the ATT was 

estimated by the probabilities between these two plausible cases. The ATT estimates are more 

effective than simple parametric regression estimators for isolating preschool effects, which 

often fail to control for a spurious correlation between the treatment and the outcome variables 

(Morgan & Winship, 2007). 

PSM includes two fundamental steps: the estimation of the propensity score, and the matching 

procedure of applying a matching algorithm using differences in the propensity score. First, I 

used a logistic regression model to estimate each student’s propensity score. While the 

propensity score can be estimated by either logit or probit models, the choice between two 

models was not critical for the current analysis, as the two models usually yield similar results 

for a binary treatment case, such as preschool versus non-preschool (Caliendo & Kopenig, 

2008).136 Using the logit regression model, each student’s propensity score was estimated as 

follows:  

                                                
136 I also estimated a probit model for the propensity score estimation, but the results from the probit model used 
a smaller number of observations under the common support area than the logit model. Hence, the logit model 

was used for the final estimation.  
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𝑙𝑜𝑔
𝑃𝑠

1− 𝑃𝑠
 =  𝛼 + 𝛽1𝑋1𝑠  + 𝛽2𝑋2𝑠 + ⋯ + 𝛽𝜅𝑋𝑘𝑠 + 𝜖𝑠       (2)   

where 𝑃𝑠 is the probability of attending school, which is the estimated propensity score for 

student s; 𝛼 and 𝛽1 through 𝛽𝜅 are estimated coefficients; 𝑋1 to 𝑋𝑘  are covariates that include 

a set of observed background characteristics; and 𝜖𝑠 represents an error term that is logically 

distributed. Each student’s propensity score was estimated once, done separately for the pooled 

and urban samples, and employed in all matching models in the current study.  

As a second step, researchers have the choice of a matching algorithm using differences in the 

propensity score estimated above. There are different types of PSM (Caliendo & Kopeinig, 

2005; Guo & Fraser, 2015), including (a) exact matching (i.e., pair or one-to-one matching; 

matches two cases with the same propensity score); (b) nearest neighbour matching (matches 

each treatment case with the non-treatment case that has the most similar propensity score); (c) 

caliper and radius matching (a type of nearest-neighbour matching that sets a limit on the 

distance between propensity scores to match two cases); (d) stratification and interval matching 

(creates intervals first, then matches treatment cases with control cases within each interval); 

and (e) kernel and local linear matching.  

In the present study, I accomplished matching by applying kernel-based matching (Heckman, 

Ichimura, & Todd, 1998) using rich information from the Young Lives Study. Kernel-based 

matching is a non-parametric estimation approach that compares the outcome of preschool 

attendees to a weighted average of the outcomes of all non-attendees, based on the distance of 

their propensity score. The distance is measured by the difference in propensity scores between 

two groups, with the highest weight being placed on those with scores nearest to the particular 

preschool attendees. Students who are similar in their estimated propensity count more in the 

estimation of the treatment effect than students who are different. Kernel matching uses more 

information for each match and thus produces lower variance, and so it yields more precise 

estimates than a traditional PSM approach, such as nearest-neighbour or caliper matching 

(Frolich, 2004; Gasper et al., 2012).  

According to Reynolds and Desjardins (2009), the ATT for matching methods is represented 

by 

https://www.google.com/search?client=firefox-b-1-d&q=Caliendo+and+Kopeinig&spell=1&sa=X&ved=0ahUKEwi-682Fz83iAhVvTd8KHduXBBYQkeECCC0oAA
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ATT =  
1

𝑛1
  ∑ (𝑌1𝑖 −  ∑ 𝑤(𝑖, 𝑗)

𝑗∈(𝑇=0)

𝑌0𝑗)

𝑖∈(𝑇=1)

                    (3) 

 

where 𝑛1 is the number of treated cases for students who attended preschool, and 𝑤(𝑖, 𝑗) is the 

weight placed on each student who did not attend preschool (j) for a student who attended 

preschool (i). In particular, w(i, j) 𝑌0𝑗 measures the weighted average of the outcomes for all 

non-preschooler cases that match to preschooler i by weighting the propensity score 

differentially or using different weights of w(i, j). ∑ 𝑤(𝑖, 𝑗)𝑗∈(𝑇=0) 𝑌0𝑗  sums across all non-

preschooler cases 𝑗 ∈ (𝑇 = 0)  and is a key element of kernel-based matching because it 

implies that each preschooler case matches all non-preschooler cases that fall into the common 

support region, rather than dropping some cases that occurred in 1-to-1 or 1-to-n matching 

(Guo & Fraser, 2015). The weight to a kernel function is defined as  

 

𝐾(𝜑), 𝜑 =  
𝑃𝑖(𝑋) − 𝑃𝑗(𝑋)

ℎ
=  

(
𝑃𝑖(𝑋)

1 − 𝑃𝑖(𝑋)
 ) −  (

𝑃𝑗(𝑋)
1 − 𝑃𝑗(𝑋)

 )

ℎ
                  (4) 

 

in which 𝜑 represents the quality of the match. This quality of match is measured by the 

distance between the propensity scores of the preschooler and non-preschooler cases as a 

number of observations (proportion) falling into the bandwidth ℎ. The last part of the right-

hand side shows that I used the odd ratios of the propensity score for the treated and control 

groups (see eq. 2), which provides more robust estimates when the study sample is not 

representative of the overall population (Smith & Todd, 2005), as is the case with Young Lives. 

Using this kernel function, the weight placed on each student who did not attend preschool is  

 

𝑤(𝑖, 𝑗) =  
𝐾(𝜑)

∑ 𝐾(𝜑)𝑗
                        (5) 

 

where the kernel weight for non-preschooler cases is divided by the sum of the kernel weights, 

given that the matching weights 𝑤(𝑖, 𝑗) must sum to one (Reynolds & DesJardins, 2009). For 

the application of kernel-based PSM, researchers also have to choose the kernel function and 

bandwidth size (h) that consequently affect the imposition of common support (Blundell, 

Dearden, & Sianesi, 2005). I used the Epanechnikov kernel function, an approach that places 
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great weight exponentially (i.e., the square of the match quality, 𝜑) on a wider range of close 

matches, which in turn puts more emphasis on those comparison students with the most similar 

propensities (Reynolds & DesJardins, 2009). The Epanechnikov kernel function needs to be 

distinguished from other commonly used kernel functions that place weight based on linearity 

(the triangle kernel) or normal density functions (the Gaussian kernel).  

Choice of bandwidth size is a ‘compromise between a small variance and an unbiased estimate 

of the true density function’ (Caliendo & Kopeinig, 2005, p. 11). In other words, wider 

bandwidths lower the variance, since more data are being used to construct the counterfactual, 

but it also lowers the match quality and increases bias. Given that there is no single rule for the 

bandwidth choice, I tried a range of bandwidths that yielded the best ‘covariate balance’ 

between the preschooler and non-preschooler groups, which is one of the key assumptions for 

the PSM (see Section 4.6.2 for details). I finally estimated models with bandwidths of 0.1-0.11; 

for a treated student who attended preschool, the comparison match was derived from students 

who did not attend preschool and whose propensity score fell within 0.05 and 0.055 on either 

side of the treated individual’s score (Alcott, 2017). I reaffirmed my choice of bandwidths 

through the sensitivity check, which showed a higher sensitivity to the omitted variables than 

another bandwidth range (see Appendix C). 

Lastly, it should be noted that correctly calculating standard errors in the PSM is a problem, 

for several reasons (Heckman, Ichimura et al., 1997). Through the matching procedure, the 

observations are no longer independent of each other, regardless of the type of matching 

approach applied. In other words, if there are correlations between matched pairs, standard 

errors are subject to bias. To correct for this bias, standard errors are adjusted by bootstrapping 

with 1,000 replications. All subsequent analyses were conducted using the PSMATCH2 

programme (Leuven & Sianesi, 2003) within the Stata 14.1 statistical package. 

Despite the growing popularity of PSM across social science disciplines such as public health, 

economics, and education (Li, 2012), this approach has methodological drawbacks that should 

be stated explicitly. Several researchers have noted that the PSM approach has potential 

problems that are caused by unobserved variables, due to its high dependency on observed 

characteristics of the sample used in the process of matching (Michalopoulos, Bloom, & Hill, 

2004). Recently, King and Nielsen (2018) argued that PSM can increase imbalance, 
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inefficiency, model dependency, and statistical bias more than other matching methods. The 

main challenge stems from the fact that PSM tries to emulate a completely randomised 

experiment, which is much less flexible than a fully blocked randomised experiment used in 

the Mahalanobis Distance or other matching methods. This complete randomization attempt 

could lead PSM to fail to account for the large imbalance that can be eliminated by the fully 

blocked randomization. This occurrence is called the PSM paradox, which refers to the fact 

that ‘the more balanced the data, or the more balanced it becomes by pruning some 

observations through matching, the more likely propensity score matching will degrade 

inferences’ (King & Nielsen, 2018, p. 1). Although PSM carries some methodological 

disadvantages, it can help reduce bias more than a standard regression adjustment. 

4.6 Descriptive Statistics and Model Fit 

4.6.1 Descriptive Statistics 

Table 4.4 provides the descriptive statistics for the variables used in my analysis, including a 

comparison between students who attended preschool (‘Preschool’ column) and those who did 

not (‘No-Preschool’ column). All estimates are presented in the pooled sample (left) and the 

urban sample (right). The first row shows that about 28 percent of Young Lives students 

reported that they attended preschool, largely in urban areas (58% among the urban sample). 

This average is higher than the gross enrolment ratio in pre-primary education reported by the 

national education statistics, which was merely 3 percent in 2007.137 This large discrepancy in 

preschool participation may stem from the fact that there were issues of measurement in the 

national education statistics, which had difficulty capturing privately run or community-based 

kindergartens (MoE, 2008). On the other hand, the Young Lives sample tends to have better 

access to services (e.g., health, education, and social protection) than the nationally 

representative samples in the Welfare Monitoring Survey (Outes & Leon, 2008).  

Most of covariates differed considerably between the preschool and non-preschool groups, 

according to the results of the t-test shown in the last column of each sample (Table 4.4). In 

particular, students who attended preschool were far more advantaged than those who did not. 

Among the pooled sample, for example, the household wealth gradients in preschool 

                                                
137 2005-2007 is the year when the Young Lives children were of preschool-eligible age.  
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attendance were apparent: about half of students from the most affluent families had attended 

preschool, whereas no children from the poorest families had attended preschool. Consistent 

with findings from prior work (Woldehanna, 2016; Vandemoortele, 2018), most of the 

covariates on household characteristics showed statistically significant differences that 

favoured preschoolers, including richer households, parents’ higher education levels, being a 

first-born child, living in a smaller household (fewer than 6), higher household spending on a 

child’s education, parents’ higher educational aspirations, different language use between 

home and school, and living in an urban area and/or Addis Ababa.138  

As for student characteristics, while there was no significant difference by age, gender, or 

health problems in early childhood, students with better nutrition status were more likely to 

attend preschool: about half of the children in the high height-for-age group attended preschool, 

in contrast to only one-fifth of children in the low height-for-age group. Wide variations across 

children’s ethnicities show the significant differences in preschool attendance between and 

within ethnicities. In terms of academic achievement at age 5, students in the high-performing 

group had attended preschool: on average, 63 percent of children with high receptive 

vocabulary skills reported that they had attended preschool, while 47 percent of children with 

low receptive vocabulary skills reported that they had not.  

At the bottom of the table, I show the descriptive statistics for the outcome variables on 

students’ academic achievement and educational attainment by different rounds. Before any 

adjustment to account for child and family characteristics, there were stark learning disparities 

between preschoolers and non-preschoolers, all of which were statistically significant (p 

<0.01). In all, the significant dissimilarities between preschoolers and non-preschoolers 

reaffirm that preschool attendance was not independent of a wide array of child and family 

characteristics. This descriptive picture implies that, without an appropriate analytical strategy, 

the estimates will be biased, due to several non-random sources of selection into preschool.  

                                                
138 On the variable of same language use between home and school, non-preschoolers (92%) were more likely to 

use same language between home and school than preschoolers (68%). 
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Table 4.4. Descriptive Statistics 
 POOLED SAMPLE URBAN SAMPLE 

Variable Average Preschool No-Preschool t-test Average Preschool No-Preschool t-test 

 Mean SD Mean SD Mean SD Diff. Diff. SD Mean SD Mean SD Diff. 

Explanatory variable               

Preschool Attendance 0.28 0.45 - - - - - 0.58 0.49 - - - - - 

Covariate – Household wealth               

Wealth quintile               

Quintile 1 (Poorest) 0.20 0.40 0.00 0.07 0.28 0.45 0.27*** 0.21 0.40 0.12 0.32 0.33 0.47 0.21*** 

Quintile 2 0.20 0.40 0.02 0.16 0.27 0.44 0.24*** 0.19 0.40 0.16 0.37 0.24 0.43 0.07* 

Quintile 3 0.20 0.40 0.15 0.36 0.22 0.41 0.07** 0.20 0.40 0.24 0.43 0.15 0.36 -0.09** 

Quintile 4 0.20 0.40 0.35 0.48 0.14 0.35 -0.21*** 0.20 0.40 0.22 0.41 0.18 0.38 -0.04 

Quintile 5 (Richest) 0.20 0.40 0.47 0.50 0.09 0.29 -0.38*** 0.19 0.40 0.26 0.44 0.10 0.30 -0.17*** 

Covariate – Household characteristics               

Father’s highest education level               

No education 0.27 0.45 0.12 0.33 0.33 0.47 0.21*** 0.20 0.40 0.12 0.32 0.31 0.46 0.19*** 

Primary education 0.53 0.50 0.39 0.49 0.58 0.49 0.19*** 0.43 0.50 0.38 0.49 0.50 0.50 0.12** 

Secondary education and above 0.20 0.40 0.49 0.50 0.09 0.28 -0.40*** 0.37 0.48 0.50 0.50 0.19 0.39 -0.32*** 

Caregiver’s highest education level               

No education 0.50 0.50 0.17 0.38 0.62 0.48 0.45*** 0.27 0.45 0.16 0.37 0.43 0.50 0.27*** 

Primary education 0.39 0.49 0.52 0.50 0.34 0.48 -0.18*** 0.50 0.50 0.52 0.50 0.47 0.50 -0.05 

Secondary education and above 0.11 0.31 0.31 0.46 0.03 0.18 -0.28*** 0.23 0.42 0.32 0.47 0.10 0.30 -0.22*** 

First born in household 0.26 0.44 0.44 0.50 0.20 0.40 -0.24*** 0.33 0.47 0.44 0.50 0.19 0.39 -0.25*** 

Household size (larger than 6) 0.37 0.48 0.27 0.45 0.40 0.49 0.13*** 0.32 0.47 0.28 0.45 0.37 0.48 0.09* 

Private Spending Level on Education               

High 0.33 0.47 0.57 0.50 0.24 0.43 -0.33*** 0.33 0.47 0.43 0.50 0.20 0.40 -0.23*** 

Middle 0.33 0.47 0.27 0.45 0.36 0.48 0.09** 0.33 0.47 0.33 0.47 0.34 0.47 0.01 

Low 0.33 0.47 0.16 0.36 0.40 0.49 0.25*** 0.33 0.47 0.24 0.43 0.46 0.50 0.22*** 

Parental aspiration toward education 0.70 0.46 0.92 0.28 0.61 0.49 -0.30*** 0.86 0.35 0.93 0.25 0.76 0.43 -0.17*** 

Language between home and school 0.86 0.35 0.68 0.47 0.92 0.26 0.24*** 0.75 0.44 0.66 0.47 0.86 0.35 0.19*** 

Living in urban 0.45 0.50 0.94 0.23 0.26 0.44 -0.68*** - - - - - - - 

Region               

Living in Addis Ababa 0.16 0.37 0.56 0.50 0.01 0.11 -0.55*** 0.36 0.48 0.59 0.49 0.04 0.21 -0.55*** 

Living in Tigray 0.23 0.42 0.02 0.14 0.32 0.47 0.30*** 0.14 0.35 0.02 0.14 0.30 0.46 0.28*** 

Living in Amhara 0.23 0.42 0.08 0.27 0.28 0.45 0.20*** 0.12 0.33 0.08 0.28 0.17 0.38 0.09*** 

Living in Oromia 0.20 0.40 0.11 0.32 0.24 0.43 0.13*** 0.12 0.33 0.08 0.27 0.19 0.39 0.11*** 

Living in SNNP 0.17 0.37 0.22 0.41 0.15 0.35 -0.07** 0.24 0.43 0.22 0.41 0.28 0.45 0.06 

Covariate – Child characteristics               

Age 14 0.36 0.48 0.32 0.47 0.38 0.49 0.06* 0.35 0.48 0.32 0.47 0.38 0.49 0.05 

Age 15 0.64 0.48 0.68 0.47 0.62 0.49 -0.06* 0.65 0.48 0.68 0.47 0.62 0.49 -0.05 

Female 0.47 0.50 0.44 0.50 0.49 0.50 0.04 0.48 0.50 0.45 0.50 0.52 0.50 0.07 

Height-for-age z-score at age 5               

High 0.33 0.47 0.48 0.50 0.28 0.45 -0.20*** 0.33 0.47 0.38 0.49 0.26 0.44 -0.12** 
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Middle 0.33 0.47 0.31 0.46 0.34 0.47 0.03 0.33 0.47 0.36 0.48 0.30 0.46 -0.06 

Low 0.34 0.47 0.21 0.41 0.39 0.49 0.17*** 0.33 0.47 0.26 0.44 0.44 0.50 0.19*** 

Child has health problem at age 5 0.09 0.29 0.08 0.27 0.09 0.29 0.01 0.08 0.27 0.08 0.27 0.08 0.27 0.00 

Child’s ethnicity               

Ethnicity 1 Others 0.12 0.32 0.17 0.37 0.10 0.30 -0.07*** 0.11 0.32 0.17 0.37 0.04 0.20 -0.13*** 

Ethnicity 2: SNNP 0.08 0.27 0.10 0.31 0.07 0.26 -0.03* 0.16 0.37 0.10 0.30 0.24 0.43 0.14*** 

Ethnicity 3: Oromo 0.22 0.42 0.29 0.46 0.20 0.40 -0.10*** 0.24 0.43 0.28 0.45 0.20 0.40 -0.08* 

Ethnicity 4: Tigrian 0.26 0.44 0.10 0.30 0.32 0.47 0.22*** 0.19 0.39 0.10 0.30 0.31 0.46 0.21*** 

Ethnicity 5: Amhara 0.32 0.47 0.34 0.47 0.32 0.47 -0.02 0.29 0.46 0.35 0.48 0.22 0.41 -0.13*** 

Covariate – Child prior achievement                

PPVT at age 5               

High 0.31 0.46 0.63 0.48 0.19 0.39 -0.44*** 0.31 0.46 0.41 0.49 0.17 0.37 -0.24*** 

Middle 0.32 0.47 0.26 0.44 0.34 0.47 0.08** 0.33 0.47 0.37 0.48 0.29 0.45 -0.08* 

Low 0.37 0.48 0.11 0.31 0.47 0.50 0.36*** 0.36 0.48 0.22 0.42 0.55 0.50 0.32*** 

CDA-Q(Math) at age 5               

High 0.26 0.44 0.52 0.50 0.16 0.37 -0.36*** 0.26 0.44 0.38 0.49 0.09 0.28 -0.29*** 

Middle 0.38 0.49 0.34 0.48 0.40 0.49 0.06* 0.30 0.46 0.30 0.46 0.30 0.46 0.00 

Low 0.35 0.48 0.14 0.35 0.44 0.50 0.30*** 0.45 0.50 0.33 0.47 0.62 0.49 0.29*** 

Outcome variables                 

Students’ academic achievement  (% of correct ans.) (z-score) (% of correct ans.) (z-score) 

PPVT scores (Round 3) 0 1 0.86 0.94 -0.33 0.76 -1.19*** 0 1 0.39 0.90 -0.53 0.87 -0.92*** 

PPVT scores (Round 4) 71.01 15.30 0.82 0.54 -0.32 0.96 -1.14*** 80.0 10.63 0.36 0.75 -0.54 1.08 -0.90*** 

PPVT scores (Round 5)  76.88 13.94 0.82 0.51 -0.32 0.96 -1.14*** 85.55 9.04 0.37 0.71 -0.51 1.11 -0.88*** 

Math scores (Round 3) 24.85 18.64 0.84 0.92 -0.33 0.82 -1.17*** 35.87 18.55 0.30 0.91 -0.42 0.97 -0.72*** 

Math scores (Round 4) 39.33 21.11 0.65 0.91 -0.27 0.91 -0.92*** 50.04 20.10 0.19 0.95 -0.29 1.00 -0.48*** 

Math scores (Round 5) 31.64 14.65 0.71 1.06 -0.27 0.83 -0.98*** 38.42 14.81 0.29 1.04 -0.41 0.77 -0.70*** 

MT scores (Round 3) 39.14 22.20 0.55 0.98 -0.21 0.93 -0.76*** 48.71 22.02 0.18 0.98 -0.25 0.98 -0.43*** 

MT scores (Round 4) 29.15 15.13 0.62 0.88 -0.26 0.93 -0.88*** 36.28 14.00 0.21 0.94 -0.33 1.01 -0.54*** 

English scores (Round 5) 54.46 20.57 0.72 0.83 -0.28 0.92 -0.99*** 64.06 18.92 0.35 0.85 -0.48 0.99 -0.83*** 

Students’ educational attainment               

Highest grade achieved (Round 4) 4.80 1.57 5.50 1.11 4.51 1.63 -0.99*** 5.30 1.24 5.55 1.07 4.94 1.37 -0.61*** 

Highest grade achieved (Round 5) 6.39 1.85 7.26 1.24 6.05 1.93 -1.21*** 7.03 1.44 7.31 1.20 6.63 1.64 -0.68*** 

On-time grade progression (Round 4, %) 0.51 0.50 0.67 0.47 0.45 0.50 -0.22*** 0.64 0.48 0.68 0.47 0.58 0.49 -0.09* 

On-time grade progression (Round 5, %)  0.55 0.50 0.78 0.42 0.46 0.50 -0.32*** 0.69 0.46 0.79 0.41 0.56 0.50 -0.23*** 

Note: (1) On students’ test scores, average test scores (in Italic) are % of correct answer, while test scores by pre and non-preschool group and the t-test results are standardised scores (z-score); 

(2) MT stands for mother tongue. (3) Ethnicity in SNNP includes Hadiya, Sidama, Wolayta; and others includes Agew, Gurage, Kambata.  
 *** p<0.01, ** p<0.05, *p<0.1  
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 
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4.6.2 Propensity Score Matching: Model Fit  

PSM may help reduce the potential for confounding bias, but it is important to examine the 

validity of the matching model before reporting ATT estimates. If matching successfully 

eliminates initial differences between preschool and non-preschool groups, this approach 

allows the tentative conclusion that the learning divergence between students is more a result 

of attending a preschool than previously existing differences. To establish a credible 

counterfactual, PSM analyses must satisfy three assumptions: conditional independence, 

common support, and covariate balance (Reynolds & Desjardins, 2009).  

Conditional independence. The key assumption of the PSM holds that, conditional on the 

observed covariates used in the model, the potential outcomes are independent of whether a 

student attended preschool (Rosenbaum & Rubin, 1983). Adherence to this conditional 

independence assumption implies that there are no unobservable characteristics that affect 

selection into either preschool or non-preschool groups and students’ potential outcomes. This 

is apparently a strong assumption; thus, it must be justified by the quality of the data used by 

researchers. Blundell et al. (2005) emphasised that the plausibility of such an underlying 

assumption should take into account the ‘informational richness of the available dataset in 

relation to a detailed understanding of the institutional set-up by which selection into treatment 

takes place’ (p. 486-487). Therefore, the more extensive and accurate the data are, the easier it 

is to justify the conditional independence assumption in the matching procedure. Due to the 

fact that the matching estimates are highly dependent on the selected observables within the 

available dataset, this approach has often faced criticism; however, the same crucial assumption 

applies to both an ordinary least square (OLS) and a matching approach, and the latter has the 

advantage of being implemented in a more flexible way (e.g., not imposing linearity) (Blundell 

et al., 2005).   

The Young Lives dataset is a suitable choice for overcoming this challenge, given that it 

provides uniquely rich information about students, households, and communities in Ethiopia 

from a child’s birth to adolescence. To accurately select the covariates, I relied on past theory 

and literature that inform preschool access in LMICs, particularly in Sub-Saharan Africa. In 

fact, the Young Lives Ethiopia data have been used to identify the key determinants of 

preschool attendance and students’ academic achievement in previous studies (Woldehanna, 
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2016; Vandemoortele, 2018). Also, as shown in Table 4.4, most of the variables selected for 

the propensity score estimation were significantly different between the preschool and non-

preschool groups, thus justifying my selection of variables used in the current analysis. 

Further, the information on the institutional settings is an important factor in terms of satisfying 

the conditional independence assumption. In particular, data on the communities the 

households belong to could contribute to improving the propensity score estimations, otherwise 

the community factors will remain as potentially confounding variables. 139  To mitigate 

potential sources of bias from the community, I applied a kernel-based matching within each 

sentinel site (equivalent to the enumeration area of the survey) as a robustness check 

analysis. 140  This approach, which compares the outcomes of preschoolers and non-

preschoolers within their specific geographical community, reduces the potential for 

confounding bias attributable to unobserved cross-community differences, including preschool 

availability (McCoy et al., 2017). This is particularly germane to Ethiopia’s decentralised 

administrative structure, where communities play a pivotal role in the delivery of basic services 

such as health, education, and social protection programmes (Khan et al., 2014).141 

Another useful source of information is the home learning environment. The importance of the 

home learning environment on child development is well established, albeit mostly in high-

income countries (see more details in Bradley & Caldwell, 1995; LeFevre et al., 2009; 

Melhuish et al., 2008; Sylva et al., 2004). Although there is no conventional measure available 

for the home learning environment (e.g., the number of books at home, reading to the child, or 

home play activities), this is partially mitigated in the current analysis by the inclusion of two 

measures used in the Young Lives survey: (1) household’s private expenditure allocated to 

child’s education (e.g., purchase of children’s books and school uniforms), and (2) parental 

aspirations for their children’s education. 142  This is probably beneficial, since these two 

                                                
139 The ‘community questionnaire’ in the Young Lives Study collected data on educational institutions in the 

community (e.g., number of pre-primary institutions, primary schools); however, due to the incompleteness and 

inconsistency of reporting, the current analysis did not account for community-level information in the survey. 
140 In Young Lives, the 20 sentinels and 24 communities were selected purposively in 2001 (21 sentinels from 

Round 2 considering migrated population), and 2 or 3 communities were nested in one sentinel. I used the sentinel 

(enumeration area) to allow me to run fixed effect with sufficient observation within the unit.  
141 The previous study (Woldehanna & Gebremedhin, 2012) used community variables as an ‘instrument’ to 
examine the effect of preschool on receptive vocabulary skills at ages 5 and 8.  
142 These two indicators were collected in the Young Lives Round 2 when children were five years old.  
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indicators have the potential to serve as a proxy for some variation in home learning 

environments.  

Nonetheless, holding the conditional independence assumption remains a challenge, since 

unobserved variables may still exist in relation to the variables of interest. To estimate the 

extent to which such unobservables may bias my ATT estimates, I tested a model’s sensitivity 

following Rosenbaum’s (2002) and Mantel-Haenszel’s sensitivity analyses (Mantel & 

Haenszel, 1959). The details of these analyses are described in Appendix C. Overall, the results 

of this sensitivity analysis suggested that confounding variables were unlikely to weaken the 

models using students’ outcomes in PPVT and educational attainment, but the models using 

math and language outcomes were relatively highly sensitive to hidden bias arising from 

unobserved variables that simultaneously affected assignment to preschool and the outcome 

variable.   

Common support. Under the common support assumption, the PSM is only appropriate when 

comparability of the treated and untreated groups is established by a sufficient overlap between 

the two along the propensity score distribution (Blundell et al., 2005; Reynolds & DesJardins, 

2009). The inspection of common support can be conducted by using the test of whether 

comparable observations from preschool and non-preschool groups are available for the whole 

sample, or only in some parts of the propensity score distributions.  

Figure 4.1 illustrates the common support regions, focusing on the extent to which preschool 

attendees and non-attendees have comparable observed probabilities of attending preschool, 

before and after PSM. Noticeably, the distributions of the propensity score before matching 

were very different between preschool attendees and non-attendees. This in turn led to the 

projection of a very limited area of common support, which does not exist at the tail of the 

distributions. It may be unsurprising, given the dissimilar features of the two groups observed 

for various child and household characteristics, even among children living in urban areas. To 

address this limited overlap in common support area, I performed a trimming procedure to 

delete observations at the lower and upper tails of the estimated score, as suggested by 

Heckman et al. (1998). By setting the value at 0.05, the matching trims participants whose 
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estimated propensity scores are below .05 and above 0.95.143 As explained previously, the 

choice of the kernel function and bandwidth size also affects the common support area; I 

carefully chose these two based on the covariate balance and model variance in the present 

study.  

After the kernel-based matching, the projection presented a great deal of overlap between the 

two groups. However, due to the initial stark differences, the imposition of common support 

caused a large loss of the sample—11.4 percent and 27.5 percent, respectively, of the pooled 

and urban samples dropped from the common support area. In particular, the proportion of 

preschool attendees in the area of common support was low, whereas no one dropped from the 

non-preschool group within the common support area. As discussed by Blundell et al. (2005), 

in kernel-based matching it is typical that ‘those treated whose propensity score is larger than 

the largest propensity score in the non-treated pool are left unmatched’ (p. 486). Despite the 

loss of a treated sample that may affect the external validity of this study, the PSM created the 

optimal counterfactual—for instance, only two covariates are different at the 0.05 level after 

matching among the pooled sample.  

Figure 4.1. Common Support Area for Preschool Attendees and Non-Attendees 
(A) Pooled sample, Full (B) Urban sample, Full 

  
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  

Covariate balance. The covariate balance assumption requires that the mean and standard 

deviation for each of the covariates do not differ significantly between the treated and matched 

untreated groups. As there is no consensus on what criteria should be used to determine 

                                                
143 According to (Crump et al., 2009), a rule of thumb for trimming is to discard all observations with estimated 

propensity scores outside the range between 0.1 to 0.9.  
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significant differences between covariates (Reynolds & DesJardins, 2009), I applied three 

commonly used methods to check the balance in observed characteristics between the matched 

groups.  

First, I used a two-sample t-test to see the difference in means across the groups for each of the 

covariates. For any given covariate, balance is regarded as achieved when there is no difference 

between the treated and matched untreated groups at the .05 significance level. Table 4.5 

presents the average of model covariates by (1) treated (mean) and all untreated sample 

(difference, t-test p value) before matching; and (2) treated (mean) and matched untreated 

sample (difference, t-test p value) after matching. Before matching among the pooled sample, 

38 of the 42 covariates were significantly different at the .05 level. In contrast, only 2 of the 42 

covariates were significantly different after matching, showing that the analytical model 

satisfies the covariate balance assumption. For the urban sample, after matching, 5 of the 42 

covariates still remained significantly different between the two groups.  

Second, I tested standardised differences and associated percentage bias by matched and 

unmatched groups (Caliendo & Kopeinig, 2008; Smith & Todd, 2005). Figure 4.2 is a visual 

presentation of these test results, showing that the matching procedure contributes to the 

convergence of associated percentage bias to zero in each of the covariates. There were no 

standardised differences greater than 20 percent, which is the threshold set by Rosenbaum and 

Rubin (1985). Similarly to the t-test results, the pooled sample showed better balance in terms 

of standardised percentage bias (closer to zero) than the urban sample.  

Lastly, by using the Stata command pscore, as developed by Becker and Ichino (2002), I 

estimated the propensity score first by logit regression, then tested whether the balancing 

property held within the identified blocks. This process enabled me to check whether the mean 

propensity score was not different between the treated and control in each covariate block. In 

the present study, the balancing property with a full set of covariates was successfully satisfied 

in eight blocks in the pooled sample and five blocks in the urban sample.  

  



175 

 

Table 4.5. Comparison of Treated, All Untreated, and Matched Untreated Groups 
 Pooled Urban 

 Before matching After matching Before matching After matching 

Variable  
Treated 

 
All 

untreated 
Treated 

Matched 
untreated 

Treated 

 

All 
untreated 

Treated 
Matched 
untreated 

 Mean Diff.  Mean Diff.  Mean Diff.  Mean Diff.  

Covariate – Household wealth 
Wealth quintile         
Quintile 1 
(Poorest) 

0.00 -0.27** 0.01 0.00 0.12 -0.21*** 0.17 0.03 

Quintile 2 0.02 -0.24** 0.04 0.00 0.16 -0.07** 0.20 0.04 
Quintile 3 0.15 -0.07** 0.18 0.00 0.24 0.09*** 0.18 -0.07 
Quintile 4 0.35 0.21** 0.33 -0.03 0.22 0.04 0.25 0.03 
Quintile 5 
(Richest) 

0.47 0.38** 0.44 0.03 0.26 0.16*** 0.21 -0.04 

Covariate – Household characteristics 
Father’s highest education level 
No education 0.12 -0.21** 0.16 0.01 0.12 -0.19*** 0.15 0.02 
Primary education 0.39 -0.19** 0.45 -0.01 0.38 -0.12*** 0.45 -0.04 
Secondary and 
above 

0.49 0.40** 0.39 0.00 0.50 0.31*** 0.41 0.06 

Caregiver’s highest education level 
No education 0.17 -0.45** 0.22 0.07** 0.16 -0.27*** 0.22 0.04 

Primary education 0.52 0.18** 0.55 -0.07 0.52 0.05 0.53 0.02 
Secondary and 
above 

0.31 0.28** 0.23 0.00 0.32 0.22*** 0.25 -0.05 

First born  0.44 0.24** 0.37 0.00 0.44 0.24*** 0.35 -0.03 
Household size (> 
6)  

0.27 -0.13** 0.31 -0.05 0.28 -0.09** 0.31 -0.01 

Private Spending Level on Education 
High 0.57 0.33** 0.48 0.06 0.43 0.23*** 0.31 0.09 

Middle 0.27 - 0.09** 0.32 -0.04 0.33 -0.01 0.40 -0.03 
Low 0.16 -0.25** 0.20 -0.02 0.24 -0.22*** 0.30 -0.06 
Parental 
aspiration  

0.92 0.30** 0.89 -0.02 0.93 0.17*** 0.92 -0.04 

Same language 
btw. 

0.68 -0.24** 0.68 0.09** 0.66 -0.19*** 0.62 0.04 

Living in urban 0.94 0.68** 0.90 -0.01 - - - - 
Region 

Living in Addis  0.56 0.55** 0.33 0.05 0.59 0.55*** 0.39 0.11*** 
Living in Tigray 0.02 -0.30** 0.03 0.00 0.02 -0.28*** 0.04 -0.02  
Living in Amhara 0.08 -0.20** 0.14 0.03 0.08 -0.09*** 0.15 -0.06 
Living in Oromia 0.11 -0.12** 0.19 0.00 0.08 -0.11*** 0.15 0.02 
Living in SNNP 0.22 0.07** 0.31 -0.03 0.22 -0.06* 0.29 0.10**  

Covariate – Child characteristics 
Age 14 0.32 -0.06* 0.33 -0.05 0.32 -0.05 0.36 -0.03 
Age 15 0.68 0.06* 0.67  0.05 0.68 0.05 0.65 0.03 
Female 0.44 -0.04 0.44 -0.01 0.45 -0.07* 0.42 -0.09 

Height-for-age z-score at age 5 
High 0.48 0.20** 0.45 0.08 0.38 0.12*** 0.37 0.08 
Middle 0.31 -0.03 0.30 -0.02 0.36 0.06* 0.35 0.13*** 
Low 0.21 -0.17** 0.25 -0.05 0.26 -0.19*** 0.29 -0.21*** 
Health prob. at 
age 5 

0.08 -0.01 0.08 0.03 0.08 0.00 0.08 0.05** 

Child’s ethnicity 
Ethnicity 1: Others 0.17 0.07** 0.13 -0.05 0.17 0.13*** 0.14 0.04 

Ethnicity 2: SNNP 0.10 0.03** 0.16 -0.01 0.10 -0.14*** 0.17 0.05 
Ethnicity 3: Oromo 0.29 0.10** 0.30 0.03 0.28 0.08** 0.29 0.00 
Ethnicity 4: 
Tigrian 

0.10 -0.22** 0.07 -0.01 0.10 -0.20*** 0.31 -0.06 

Ethnicity 5: 
Amhara 

0.34 0.02 0.34 0.04 0.35 0.13*** 0.33 -0.04 

Covariate – Child prior achievement  
PPVT at age 5         
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High 0.63 0.44** 0.52 -0.07 0.41 0.24*** 0.28 0.03 
Middle 0.26 -0.08** 0.30 0.03 0.37 0.08** 0.38 -0.07 
Low 0.11 -0.36** 0.18 0.04 0.22 -0.32*** 0.35 0.03 
CDA-Q(Math) at age 5 

High 0.52 0.35** 0.38 0.05 0.38 0.29*** 0.23 0.06 
Middle 0.34 -0.06* 0.41 -0.02 0.30 0.00 0.33 -0.05 
Low 0.14 -0.30** 0.21 -0.02 0.33 -0.29*** 0.45 -0.01 

Notes: * indicate significant difference from treatment group:  
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 

Figure 4.2. Covariate Balance before and after Matching  
(A) Pooled sample (B) Urban sample 

  
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 

4.7 Results 

4.7.1 Research Question 1: Preschool Attendance and Student Outcomes at Age 15  

From Table 4.6 to Table 4.8, I illustrate the results of four sets of regression analyses used in 

the present study. In Model 1, an unadjusted OLS regression was estimated to show average 

differences in student outcomes between students attending preschool and students not 

attending preschool. Model 2 presented estimates of an OLS specification which controlled for 

a full set of covariates, which were included in Models 3 and 4.  

In Model 3, estimates applying the kernel-based propensity score matching (Heckman, 

Ichimura, & Todd, 1998) were presented to account for observable sources of non-random 

selection into preschool. Through the matching process, a set of models was fit in to construct 

the credible counterfactual of preschool and non-preschool students, based on an extensive list 

of child, household, and community characteristics. Using the weights generated by the kernel-

based matching, I present the ‘difference in means’ between treated (preschool) and control 
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(non-preschool) groups for the matched sample.144 It should be noted that ATT estimates in 

Model 3 had to be redefined as the mean difference for those falling within the common support 

region. Standard errors were calculated using bootstrap, with 1,000 replications. I consider this 

to be my primary analytic approach for the present study.  

In Model 4, I replicated the kernel matching approach within each sentinel site of the Young 

Lives Study, comparing preschool attendees’ outcomes to the weighted average of non-

attendees within their specific geographic community. By comparing students within a given 

sentinel site, this approach reduced the potential for confounding bias caused by unobserved 

between-community differences. Meanwhile, Model 4 reduced the sample size because it 

required the within-subject variability in a given sentinel site to have at least one preschool 

attendee and one non-attendee. To illustrate, when this model was applied, 415 sample students 

from six sentinel sites were dropped, as they did not have either a preschool attendee or a non-

attendee. In this regard, I consider Model 4 a robustness check to my primary analytical 

approach in Model 3.  

Preschool and academic achievement. Table 4.6 presents the results of the relationship 

between preschool attendance and students’ academic achievement for the pooled sample. In 

Model 1, the unadjusted OLS estimates of preschool attendance were largest for PPVT at age 

8 (1.19 SD) and math at age 8 (1.17 SD), and smallest for mother tongue (MT) at age 8 (0.76 

SD) and age 12 (0.88 SD), all of which were statistically significant (p <0.01). In Model 2, after 

introducing a set of covariates, the coefficients of preschool attendance were substantially 

reduced. The largest and significant associations were observed for PPVT at age 8 (0.43 SD) 

and math at age 8 (0.38 SD), whereas the associations became no longer significant for math 

at age 12 (0.02 SD) and age 15 (0.04 SD), and for MT at age 8 (0.15 SD) and age 12 (0.12 SD). 

The positive associations between preschool and students’ performance only persisted up to 

age 15 in PPVT and English tests, with the coefficients of 0.24 SD for both (p <0.01), while 

the associations faded out on students’ performance in math and MT tests from age 12 onwards.  

                                                
144 Same parameters can be estimated by applying the weights generated by the kernel matching to an unadjusted 

regression equation (Model 1). For the sensitivity check of the estimates obtained by ‘difference-in-means’ in the 

current analysis, I also conducted ‘regression-adjusted matched estimation’, which runs a regression of outcome 

on treatment indicator and confounding covariates (Model 2) applying the weights generated by the kernel 
matching. The regression-adjusted regression drew a similar result with difference-in-means (The results are 

available upon request).  
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Consistent with the OLS estimates in Model 2, Model 3, with kernel-based matching estimates 

(the primary approach of the present study), showed that preschool attendance was associated 

with significantly better performance in PPVT at ages 8, 12, and 15 and in English at age 15, 

yet the predictive role of preschool dissipated in math and MT performance by age 12. As for 

PPVT scores, the ATT estimates of preschool attendees versus non-attendees were attenuated 

from age 8 (0.36 SD) to age 12 (0.21 SD) and age 15 (0.19 SD), but all remained statistically 

significant at p <0.01. Conversely, the ATT estimates in math steeply decreased from age 8 

(0.51 SD) to age 12 (0.09 SD) and age 15 (0.16 SD) and were no longer statistically significant. 

Similarly, in the language assessments, the associations between preschool and MT test scores 

diminished from age 8 (0.29 SD) to age 12 (0 SD). One exception was the predictive role of 

preschool in significantly better performance in English at age 15 (0.33 SD, p < 0.01). While 

there is MT-centred instruction in Ethiopia during the lower primary grades, students are 

exposed to English from kindergarten or Grade 1. Thus, this could be seen as accumulated 

language skills in English, which were measured at age 15 for the first time.145 Model 4, with 

the kernel-based matching estimates within sentinel sites (robustness check), showed similar 

patterns with Model 3. Results were only slightly different with respect to the observed 

magnitude and significance of the associations relative to the estimates in Model 3, except 

English performance at age 15.  

Given that estimates from the OLS model tend to be biased upwards, the kernel matching 

estimates in this study (Model 3) were more conservative than the OLS estimates with full 

covariates (Model 2) for students’ performance in PPVT. The reverse patterns were observed 

in math and language achievement, as the kernel matching estimates were larger than the OLS 

estimates. One partial explanation could be the low sensitivity of the ATT estimates to the 

confounding variables, which were lower in math test scores (Γ = 1.1) and mother tongue 

scores (Γ = 1.0) than other test scores in PPVT (Γ = 2.15) (see Appendix C for more details). 

On the other hand, as noted earlier, some of sample in the treated group was dropped during 

the matching procedure due to the lack of common support, which may change the composition 

of matched pairs and so lead to different estimates.  

                                                
145 Young Lives introduced the English language assessment in Round 5 (2016) and school survey 2016-2017. It 

reflects the growing emphasis on English learning in Ethiopia as a ‘transferable skill’ to continuing education, 
labour market opportunities, and social mobility (Graddol, 2010). Round 4 administered only a simple reading 

test of English skill (e.g., read a word or a sentence).  
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Table 4.6. Relation between Preschool and Academic Achievement, ATT (Pooled Sample) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Subject PPVT Math 
Language 

Mother Tongue (MT) English 

Round 

(Age) 

Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 

(Age 8) (Age 12) (Age 15) (Age 8) (Age 12) (Age 15) (Age 8) (Age 12) (Age 15) 

Model 1: OLS unadjusted 

Preschool coeff.  1.19*** 1.14*** 1.14*** 1.17*** 0.92*** 0.98*** 0.76*** 0.88*** 1.00*** 

(SE) (0.16) (0.17) (0.14) (0.17) (0.16) (0.17) (0.16) (0.14) (0.12) 

Model 2: OLS with all covariates 

Preschool coeff.  0.43*** 0.34*** 0.24*** 0.38*** 0.02 0.04 0.15* 0.12 0.24*** 

(SE) (0.12) (0.08) (0.08) (0.11) (0.10) (0.05) (0.10) (0.11) (0.10) 

R-squared 0.46 0.46 0.46 0.47 0.32 0.33 0.31 0.33 0.35 

Observations 1447 1417 1447 1417 1354 1447 1444 1320 1447 

Model 3: Kernel matching estimates (primary approach) 

ATT  0.36*** 0.21*** 0.19*** 0.51*** 0.09 0.16* 0.29*** 0.00 0.33*** 

(SE) (0.12) (0.10) (0.07) (0.11) (0.20) (0.11) (0.12) (0.11) (0.15) 

Average of treated  0.66 0.67 0.70 0.61 0.45 0.41 0.29 0.43 0.51 

Average of 

matched control  
0.30 0.46 0.51 0.10 0.36 0.24 -0.01 0.43 0.18 

Observations 1447 1417 1447 1417 1354 1447 1444 1320 1447 

Model 4: Kernel matching within sentinel site (robustness check) 

ATT  0.57*** 0.25** 0.21*** 0.50*** 0.17 0.21** 0.21** -0.08 0.08 

(SE) (0.15) (0.14) (0.14) (0.16) (0.17) (0.15) (0.16) (0.18) (0.17) 

Observations 1032 1003 1032 1017 953 1032 1029 927 1032 

Note: (1) Preschool coefficients (coeff.) and ATTs are based on the standardised score (z-score) of each test; (2) In Model 1 
and 2: robust standard errors, clustered at community level, in parentheses; (3) In Model 3: standard errors using bootstrap 
(1,000 replications) in parentheses; (4) In Model 4 using kernel matching within sentinel site, six sentinel sites dropped due to 
the lack of either preschool attendees or non-attendees.  

*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 

Table 4.7 shows the results of the same set of regression models when the analyses were 

restricted to the urban sample. The ATT estimates of the kernel-based matching (Model 3) 

showed similar patterns of the statistical significance with those from the pooled sample, whilst 

the estimates declined slightly across the subjects and ages. Consistent with the findings from 

the pooled sample, significant associations between preschool attendance and students’ 

performance were observed in PPVT (0.40 SD, p < 0.01) and English (0.24 SD, p < 0.05) by 

the age of 15, while no significant associations were found in math and MT performance from 

age 12. 
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Table 4.7. Relation between Preschool and Academic Achievement, ATT (Urban Sample) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Subject PPVT Math 
Language 

Mother Tongue (MT) English 

Round 

(Age) 

Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 

(age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) 

Model 1: OLS unadjusted 

Preschool coeff.  0.92*** 0.90*** 0.88*** 0.72*** 0.49** 0.70*** 0.43*** 0.55** 0.83*** 

(SE) (0.13) (0.18) (0.17) (0.21) (0.16) (0.16) (0.21) (0.18) (0.20) 

Model 2: OLS with all covariates 

Preschool coeff.  0.24* 0.30** 0.30*** 0.27*** 0.03 0.05 0.06 0.01 0.23** 

(SE) (0.11) (0.10) (0.06) (0.07) (0.16) (0.07) (0.13) (0.08) (0.09) 

R-squared 0.39 0.35 0.34 0.35 0.20 0.30 0.22 0.24 0.34 

Observations 652 632 652 646 622 652 650 610 652 

Model 3: Kernel matching estimates (primary approach) 

ATT  0.30*** 0.17* 0.40*** 0.42*** 0.16 0.17* 0.19* -0.16 0.24** 

(SE) (0.14) (0.14) (0.11) (0.14) (0.20) (0.11) (0.16) (0.12) (0.13) 

Average of treated  0.21 0.20 0.25 0.11 0.06 0.01 -0.01 0.06 0.18 

Average of 

matched control  
-0.09 0.03 -0.15 -0.31 -0.10 -0.19 -0.20 0.20 -0.06 

Observations 652 632 652 646 622 652 650 610 652 

Model 4: Kernel matching within sentinel site (robustness check) 

ATT  0.32*** 0.38*** 0.23** 0.31*** 0.34** 0.23** 0.22** -0.27** 0.27** 

(SE) (0.20) (0.22) (0.19) (0.21) (0.22) (0.18) (0.22) (0.21) (0.22) 

Observations 652 632 652 646 622 652 650 610 652 

Note: (1) Preschool coefficients (coeff.) and ATTs are based on the standardised score (z-score) of each test; (2) In Model 1 
and 2: robust standard errors, clustered at community level, in parentheses; (3) In Model 3: standard errors using bootstrap 
(1,000 replications) in parentheses; (4) In Model 4 using kernel matching within sentinel site, six sentinel sites dropped due to 
the lack of either preschool attendees or non-attendees.  

*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  

Supplementary analysis for students’ outcomes on language test. The fadeout of preschool 

influence on math achievement by age 12 in Ethiopia was suggested by Vandemooretele 

(2018), and the current analysis confirmed this pattern by age 15. For the language assessments, 

however, an irregular pattern was observed between Rounds 4 and 5, as the predictive role of 

preschool faded out by age 12 but re-emerged at age 15. Although this pattern could simply be 

a function of subject difference—that is, mother tongue versus English—my supplementary 

analysis suggested that it could be in part attributable to measurement issues. 

To elaborate, the test difficulty of MT assessments, which consist of reading and listening 

comprehension tasks, seems to be higher than Ethiopian students’ average academic ability. 

Besides the assessments used in the main analysis, Young Lives administered some additional 

language tests in each round: oral reading fluency and word recognition tests in Round 3, and 

simple reading tests in three languages (Amharic, MT, and English) in Round 4. Noticeably, 

in Round 3, although about one-third of students (34.6%, except missing responses) were not 
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able to read any words on the oral reading fluency test, only 3 percent of students reported a 

zero score on the reading comprehension test. 

Using these additional language tests, the ATT estimates of the kernel-based matching showed 

that the association between preschool attendance and oral reading fluency in Round 3 (age 8) 

was statistically significant (0.35 SD, p < 0.01) and that preschool attendees read 10.2 more 

words correctly per minute than their matched peers who did not attend preschool.146 This 

suggests that, for 8-year-olds, preschool attendance is more strongly predictive of students’ 

oral reading fluency skills than their reading and listening comprehension skills. In another 

reading test in Round 4 (age 12), which assessed students’ reading skills in five categories—

cannot read, read only letter, read only word, read single sentence, and read multiple 

sentences—preschool attendees were 25 percentage points more likely to read sentences in 

their mother tongue than non-attendees (p < 0.01) and 10 percentage points more likely to read 

words or sentences in English than non-attendees (p < 0.05). 147  The results of this 

supplementary analysis can explain in part why the predictive role of preschool seems to be 

weaker in MT assessments at age 8 and 12 but becomes stronger again in English assessments 

at age 15. With relatively easier test instruments, attending a preschool remained a significant 

contributor to students’ MT performance across different ages.  

Preschool and educational attainment. As shown in Table 4.8, I continued to investigate the 

relation between preschool and educational attainment as measured by the highest grade 

achieved and on-time grade progression at ages 12 and 15. According to the ATT estimates of 

the kernel-based matching (Model 3) for the pooled sample, preschool attendees completed 

0.74 higher grades (p < .01) than non-attendees. Students who attended preschool also had a 

27.1 percentage point higher chance of adequately progressing by grade by age 15.148 Among 

the urban sample (last four columns), preschool attendees completed 0.33 higher grades (p < 

                                                
146 The results on the oral reading fluency present in the Appendix Table E.1 and E.2.  
147 For 12-year-olds, the reading level categories for MT were re-grouped into (i) cannot read at all; (ii) read only 

letter or words; and (ii) read single or multiple sentences; for English (15-year-olds) (i) cannot read at all; (ii) read 

only letter; and (iii) read words or sentences.  
148 On-time progression was calculated based on Young Lives students’ ages (age 14 or 15). In Round 5 (n=1,447), 

525 students were age 14 and 922 students were age 15, thus those who reported the completion of Grade 7 or 

Grade 8 were counted for ‘on-time grade progression’. Besides, secondary school transition needs to be considered 

only for students age 15 (n=922 of the sample) who reported the completion of Grade 8—for example, among 15-
year-olds, those who attended preschool had a 17.4% higher chance of progressing to secondary school at the 

proper age. 



182 

 

.01) than non-attendees and had a 15 percentage point higher chance of adequately progressing 

by grade by age 15 (p < .01). The ATT estimates applying the kernel matching within the 

sentinel (Model 4) showed patterns consistent with Model 3, except students’ outcomes in 

Round 4 among the urban sample. 

Table 4.8. Relation between Preschool and Educational Attainment, ATT (Pooled/Urban)  
 (1) (2) (3) (4) (5) (6) (7) (8) 

 Pooled Sample Urban Sample 

Education Attainment  
Highest Grade 

Achieved 

On-time 

Progression 

Highest Grade 

Achieved 

On-time 

Progression 

Round  

(Age) 

Round 4 Round 5 Round 4 Round 5 Round 4 Round 5 Round 4 Round 5 

(age 12)  (age 15) (age 12)  (age 15) (age 12)  (age 15) (age 12)  (age 15) 

Model 1: OLS unadjusted (Odds ratio)  (Odds ratio) 

Preschool coeff. /Odds ratio 0.99*** 1.20*** 2.46*** 4.08*** 0.61*** 0.68*** 1.49** 2.89*** 

(SE) (0.30) (0.31) (0.62) (1.32) (0.42) (0.48) (0.70) (1.48) 

Model 2: OLS with all covariates (Odds ratio)   (Odds ratio) 

Preschool coeff. /Odds ratio 0.62*** 0.56*** 2.04** 3.39*** 0.40*** 0.37*** 1.82** 2.64*** 

(SE) (0.15) (0.18) (0.60) (0.66) (0.18) (0.24) (0.72) (0.68) 

R-squared 0.43 0.38 - - 0.38 0.37 - - 

Observations 1402 1,447 1,447 1447 649 652 652 652 

Model 3: Kernel matching estimates (primary approach) 

 Grade % Grade % 

ATT  0.75*** 0.74*** 0.30*** 0.27*** 0.35*** 0.33** 0.20*** 0.15*** 

(SE) (0.21) (0.23) (0.07) (0.07) (0.19) (0.26) (0.07) (0.08) 

Average of treated  5.31 7.06 0.67 0.73 5.42 7.14 0.69 0.76 

Average of matched control  4.56 6.32 0.37 0.46 5.07 6.81 0.49 0.61 

Observations 1402 1447 1447 1447 649 652 652 652 

Model 4: Kernel matching within sentinel site (robustness check) 

 Grade % Grade % 

ATT  0.52*** 0.57*** 0.17*** 0.23*** 0.09 0.40** 0.08 0.17*** 

(SE) (0.26) (0.29) (0.09) (0.08) (0.29) (0.34) (0.11) (0.11) 

Observations 1014 1032 1032 1032 649 652 652 652 

Note: (1) Italics are ‘odds ratio’; (2) In Model 1 and 2: robust standard errors, clustered at community level, in parentheses; 
(3) In Model 3: standard errors using bootstrap (1,000 replications) in parentheses; (4) In Model 4 using kernel matching 
within sentinel site, six sentinel sites dropped due to the lack of either preschool attendees or non-attendees.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  

4.7.2 Research Question 2: Variation in Preschool Influence by Child and Family 

Characteristics 

Table 4.9 presents the differential influence of preschool by sub-groups, as defined by child 

gender, household wealth, father’s education level, and child’s prior achievement level. To 

avoid cluttering the tables, Table 4.9 shows the ATT estimates of the kernel-based matching 

only (correspond to Model 3 in Tables 4.6 to 4.8) and outcome variables measured at age 15 

(Round 5), including PPVT, English, and highest grade achieved. This table illustrates the 

mean scores/grades by treated and matched control group, ATT estimates, and standard errors 
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for the matched sample. The upper and lower parts of the table show the pooled and urban 

sample, respectively.  

Preschool and gender. The influence of preschool varied by gender. It showed significant 

benefits for both boys and girls on PPVT achievement, but greater benefits among boys on 

language achievement and highest grade achieved by age 15. Boys who attended preschool 

were scored an average of 0.20 SD higher in PPVT (p < 0.05), 0.53 SD higher in English (p < 

0.01), and they completed 1.03 additional school years (p < 0.01) by age 15, all of which were 

statistically significant. For girls the benefits of preschool were significant in PPVT by an 

average of 0.18 SD (p < 0.05) and in grade completion by 0.40 additional year (p < 0.05). 

Similar patterns of gender difference were observed in the urban sample. I also estimated the 

model that included the interaction term between preschool and gender, which turned out to be 

not statistically significant, meaning that differences between preschool boys and preschool 

girls were similar to those between non-preschool boys and non-preschool girls.  

Preschool and household wealth. The positive influence of preschool appears to be greater for 

students from more affluent households than for those from poorer households, divided by the 

median of household wealth index. For students from the upper wealth group, test scores 

increased by 0.21 SD in PPVT and 0.36 SD in English (p < 0.01 for both), and they completed 

0.78 additional school years on average (p < 0.01). In contrast, for the lower wealth group there 

was no significant benefit from preschool across three outcome measures.149 Among the urban 

sample, rich children consistently benefited more from preschool on their achievement in 

PPVT and English, whereas the benefit on educational attainment was more pronounced for 

poor children; that is, they completed 0.54 additional years (p < 0.01) than their peers who did 

not attend preschool. The model with the interaction term between preschool and household 

wealth was found to be not statistically significant across the three outcome variables.  

Preschool and father’s education level. The influence of preschool varies by father’s 

education level, which was categorised by no education, some primary education or 

completion, and secondary education and above. The gains from preschool tended to be greater 

                                                
149 I also estimated the differential benefits of preschool by household wealth tercile (3 groups) and limited my 

sample to only two upper wealth groups (given that preschool attendance is very low in the lowest wealth group). 
The estimates from this supplementary analysis consistently indicated that, within the two upper wealth groups, 

children from richer households obtained greater benefits than those from poorer households.  



184 

 

for students with fathers who enrolled in or completed primary education. For students from 

this middle group, PPVT and English test scores increased by 0.25 SD and 0.41 SD (p < 0.01 

for both), and they completed 0.85 additional grades (p < 0.01) by age 15. For students from 

the lowest group (no education), the preschool benefit was more pronounced only for English 

achievement (0.62 SD, p < 0.05). For students from the highest group (secondary education 

and above), although there were no significant preschool benefits for academic achievement, 

they completed 0.77 additional school years (p < 0.01) by age 15 than their peers with no 

preschool experience. Similar patterns—that is, greater gains for the middle group—were 

observed for the urban sample, while children from all three groups obtained significant gains 

from preschool on their achievement in PPVT (0.35 SD to 0.51 SD, p < 0.01). The model that 

considered the interaction term between preschool and father’s education level turned out to 

be not statistically significant in all outcome variables. 

Preschool and prior achievement level. When grouped by students’ prior achievement, the 

positive influence of preschool appeared to be greater for students from the middle 

achievement group, followed by those from the low achievement group. For students from the 

middle achievement group, those who attended preschool were scored an average of 0.56 SD 

higher in PPVT, 0.76 SD higher in English, and they completed 1.64 additional school years 

by age 15, all of which were statistically significant at the 0.01 level. Similarly, students from 

the low achievement group scored 0.46 SD (p < 0.01) higher in English and completed 0.98 

additional grades (p < 0.01) by the age of 15, although no significant benefits were found on 

PPVT achievement. In contrast, there was no significant benefit for students from the high 

achievement group across all three outcomes. It may be worth noting that children from the 

middle achievement level showed some extremes in their later achievement, depending on 

preschool attendance. Preschool attendees in this middle group had similar or even higher 

achievement than those from the high achievement group, whereas preschool non-attendees in 

this group had significantly lower achievement than those from the low achievement group. 

Among the urban sample, the two lower groups consistently gained the most from preschool 

on academic achievement, the one exception being on higher educational attainment by the 

upper achievement group (0.58 additional grades, p < 0.01). The model with the interaction 

term between preschool and students’ prior achievement was found to be not statistically 

significant across the three outcome variables. 
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Table 4.9. Sub-Group Analysis by Child and Family Characteristics, ATT (Pooled/Urban)        
Subject, Round (age) PPVT, Round 5 (age 15) Language (English), Round 5 (age 15) Highest Grade Achieved, Round 5 (age 15) 

 Treated 
Matched 

control 
ATT (SE) Treated 

Matched 

control 
Coeff. (SE) Treated 

Matched 

control 
Coeff. (SE) 

Pooled Sample 

Preschool attendance 0.70 0.51 0.19*** (0.08) 0.51 0.18 0.33*** (0.18) 7.06 6.32 0.74*** (0.28) 

A. Gender              

Boys 0.70 0.50 0.20** (0.11) 0.43 -0.10 0.53*** (0.20) 6.90 5.87 1.03*** (0.36) 

Girls 0.71 0.53 0.18** (0.10) 0.60 0.50 0.10 (0.27) 7.27 6.87 0.40** (0.30) 

B. Household Wealth 

Lowest 50 percent 0.30  0.18  0.12  (0.24) 0.15 -0.04 0.19 (0.23) 6.35 5.67 0.69 (0.31) 

Top 50 percent   0.77  0.56  0.21***  (0.08) 0.56 0.20 0.36*** (0.20) 7.18 6.40 0.78*** (0.31) 

C. Father’s Education Level  

No education  0.64 0.45 0.19 (0.16) 0.38 -0.24 0.62** (0.38) 6.63 6.33 0.30 (0.41) 

Some primary/ completion 0.64 0.39 0.25*** (0.10) 0.52 0.11 0.41*** (0.14) 6.94 6.09 0.85*** (0.53) 

Secondary and above 0.80 0.69 0.11 (0.10) 0.54 0.43 0.11 (0.35) 7.38 6.61 0.77*** (0.23) 

DE. Prior Achievement level 

Low 0.53 0.36 0.17 (0.13) 0.56 0.10 0.46** (0.20) 7.33 6.35 0.98*** (0.41) 

Middle  0.79 0.23 0.56*** (0.10) 0.56 -0.20 0.76*** (0.20) 6.89 5.25 1.64*** (0.55) 

High 0.71 0.68 0.03 (0.09) 0.45 0.37 0.08 (0.27) 7.07 6.82 0.25 (0.25) 

Urban Sample 

Preschool attendance 0.25 -0.15 0.40*** (0.12) 0.18 -0.05 0.23** (0.14) 7.14 6.81 0.33** (0.32) 

A. Gender  

Boys 0.25 -0.13 0.38*** (0.21) 0.09 -0.26 0.35*** (0.20) 6.94 6.16 0.78*** (0.42) 

Girls 0.26 -0.15 0.41*** (0.12) 0.31 0.15 0.16 (0.18) 7.42 7.43 -0.01 (0.33) 

B. Household Wealth 

Lowest 50 percent 0.10 -0.26 0.36*** (0.15) 0.07 -0.06 0.13 (0.22) 6.92 6.38 0.54** (0.54) 

Top 50 percent  0.37 -0.05 0.42*** (0.18) 0.28 -0.05 0.33*** (0.17) 7.31 7.18 0.13 (0.32) 

C. Father’s Education Level  

No education  0.13 -0.38 0.51*** (0.21) 0.04 0.00 0.04 (0.40) 6.79 7.02 -0.23 (0.41) 

Some primary/ completion 0.11 -0.24 0.35*** (0.20) 0.18 -0.24 0.42*** (0.18) 6.96 6.38 0.58** (0.59) 

Secondary and above 0.45 0.10 0.35*** (0.14) 0.24 0.19 0.05 (0.19) 7.46 7.31 0.15 (0.26) 

D. Prior Achievement Level 

Low 0.08 -0.32 0.40*** (0.18) 0.20 -0.10 0.30** (0.16) 7.04 6.70 0.34 (0.31) 

Middle  0.27 -0.30 0.57*** (0.15) 0.22 -0.06 0.28* (0.26) 7.09 6.91 0.18 (0.67) 

High 0.46 0.38 0.08 (0.19) 0.10 0.02 0.08 (0.21) 7.33 6.74 0.58** (0.29) 

*** p<0.01, ** p<0.05, *p<0.1 Source: Young Lives Dataset Round 2 to Round 5, Young Lives  
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4.7.3 Research Question 3(1): Variation in Preschool Influence by Preschool 

Characteristics  

Table 4.10 shows results stratified by various characteristics of preschool: (1) preschool 

starting age (4, 5, and 6)150; (2) preschool type (private, government-funded, and community-

based); (3) subjective preschool quality reported by parents (okay or bad, good, and excellent); 

and (4) daily hours of participation (half or full day). Considering the limited measures for 

preschool quality, my examinations here are considered exploratory. The upper and lower parts 

of the table represent the pooled and urban samples, respectively.  

Preschool starting age. At the top of Table 4.10, I separately show the ATT estimates of kernel 

matching for students starting preschool at age 4, 5, or 6 (or later) versus students who never 

attended preschool. As for academic achievement, early participation in preschool at ages 4 

and 5 was associated with significantly improved scores in PPVT (0.23 SD for age 4 and 0.21 

SD for age 5, p < 0.01) and English achievement (0.35 SD for both ages, p < 0.1), but there 

was no significant association with later participation in preschool at age 6. Regarding 

educational attainment, early and late participation in preschool were both associated with the 

highest grade achieved at age 15. For all three sub-groups, the preschool benefits were nearly 

equivalent to three-quarters of an additional school year by age 15. Similarly, within the urban 

sample, entrance to preschool at age 4 led to greater gains in academic achievement in PPVT 

(0.57 SD, p < 0.01) and English (0.37 SD, p < 0.01). No significant differences were observed 

for the outcome of the highest grade achieved, based on the age of first preschool participation.  

Preschool type. I compared students attending different types of preschool to students who did 

not attend any type of preschool. Since private kindergarten was the dominant service provider 

in Ethiopia before 2010, significant and positive associations were found only between private-

run preschools and students’ outcomes in PPVT (0.29 SD, p < 0.01), language achievement 

(0.41 SD, p < 0.05), and the highest grade achieved (0.79 additional school year, p < 0.01). 

One exception was the significantly strong association between government-funded preschool 

and students’ highest grade achieved. The benefit of attending a government-funded preschool 

was equivalent to more than one single year of schooling (1.23 additional school year, p < 0.01) 

                                                
150 Duration of preschool attendance was considered; however, it was hard to measure, given that 406 of 476 (or 

85.3%) children were still enrolled in preschool when the Round 2 survey was conducted.  
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and greater than attending a private-run preschool (0.86 additional school year, p < 0.01). This 

pattern continued in the urban sample, as represented by the greater benefit of private preschool 

on academic achievement and the larger gains from government preschool on educational 

attainment.  

Preschool quality. On the measure of preschool quality, significant and positive associations 

were observed between high-quality preschool and students’ PPVT test scores (0.32 SD, p < 

0.01), but it was not significantly associated with students’ English test scores. Regardless of 

the quality of preschool, all preschool attendees completed higher grades than those who never 

attended preschool. Similarly, among the urban sample, strong associations appeared only 

between high-quality preschool and students’ PPVT test scores. As explained previously, the 

measure of preschool quality could be subjective, as it relied on the self-reports of parents who 

sent their children to preschool. They most likely believed it was worthwhile to pay for 

preschool, as it provided good-quality services that enhanced child development.  

Daily hours of preschool participation. Regarding how long children attended preschool daily, 

significant associations between preschool attendance and academic achievement (0.31 SD for 

PPVT, p < 0.01) were observed only for full-time preschool, which offered more than seven 

hours of services per day. Both groups attending half-day or full-day preschool achieved higher 

grades than those who did not attend preschool, by 0.63 and 0.80 additional schooling, by the 

age of 15. Within the urban sample, significant and positive associations were found only 

between full-time preschool and students’ PPVT outcomes. Although there were some 

variations, the results focusing on PPVT outcomes confirmed the hypothesis that preschool, 

which offers high-quality and more intensive exposure, may relate to more favourable 

outcomes for children.  
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Table 4.10. Sub-Group Analysis by Preschool Quality, ATT (Pooled/Urban) 
Subject PPVT Language (English) Highest Grade Achieved 

Round  Round 5  Round 5  Round 5  

(age) (age 15) (age 15) (age 15) 

Pooled Sample  

 ATT (SE) ATT (SE) ATT (SE) 

A. Preschool starting age 

Age 4 0.23** (0.11) 0.35* (0.21) 0.75** (0.31) 

Age 5 0.21*** (0.08) 0.35* (0.19) 0.69** (0.29) 

Age 6 or later 0.11 (0.11) 0.26 (0.21) 0.83** (0.33) 

B. Preschool type 

Private 0.29*** (0.08) 0.41** (0.19) 0.79*** (0.28) 

Government-funded -0.20 (0.22) 0.10 (0.30) 1.23*** (0.37) 

Community-based -0.03 (0.11) 0.12 (0.21) 0.39 (0.32) 

C. Subjective preschool quality  

Okay or Bad 0.09 (0.11) 0.35* (0.20) 0.86*** (0.30) 

Good 0.20** (0.08) 0.33* (0.19) 0.63** (0.29) 

Excellent 0.32*** (0.09) 0.28 (0.21) 0.89*** (0.31) 

D. Daily hours of preschool participation 

Half day -0.04 (0.10) 0.27 (0.20) 0.63** (0.30) 

Full day (> 7hrs) 0.31*** (0.08) 0.36* (0.19) 0.80*** (0.28) 

Urban Sample 

 ATT (SE) ATT (SE) ATT (SE) 

A. Preschool starting age 

Age 4 0.57*** (0.15) 0.37** (0.17) 0.45 (0.35) 

Age 5 0.34*** (0.13) 0.19 (0.15) 0.26 (0.33) 

Age 6 0.37** (0.18) 0.21 (0.18) 0.38 (0.37) 

B. Preschool type 

Private 0.48*** (0.12) 0.29** (0.14) 0.35 (0.33) 

Government-funded -0.09 (0.32) -0.07 (0.27) 1.08*** (0.36) 

Community-based 0.22 (0.19) 0.13 (0.20) -0.24 (0.40) 

C. Subjective preschool quality 

Okay or Bad 0.36** (0.16) 0.31* (0.16) 0.53 (0.34) 

Good 0.35*** (0.13) 0.19 (0.15) 0.16 (0.33) 

Excellent 0.60*** (0.13) 0.23 (0.18) 0.46 (0.37) 

D. Daily hours of preschool participation 

Half day 0.07 (0.16) 0.25 (0.16) 0.34 (0.35) 

Full day (> 7hrs) 0.54*** (0.12) 0.23 (0.14) 0.33 (0.33) 

*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  

4.7.4 Research Question 3(2): Mediating Role of Subsequent School Experience 

This section further explores how subsequent school experience mediates the relationship 

between preschool and students’ academic achievement. Aligned with the previous chapter, I 

applied mediation analysis using the structural equation modeling (SEM) framework to address 

this research question (see Section 3.6.2. for empirical strategy).  
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1) Data: Primary school characteristics after pre-primary education   

The mediation analysis in the present study used the dataset from the Young Lives Ethiopia 

school survey, which was administered in 2012-2013 separately from the household-based 

Young Lives survey. The Young Lives school survey 2012-2013, conducted at the beginning 

and end of the academic year, was designed to allow researchers to investigate what shapes 

children’s learning and progression over the course of a school year. The school survey 

provides a wealth of information about pupils (e.g., academic achievement and school 

engagement), teachers (e.g., teacher efficacy and pedagogical content knowledge), and schools 

(e.g., school resources and organisation) (see Aurino, James, & Rolleston, 2014, for further 

details).151  One strength of the Young Lives school survey is that some information was 

collected via classroom observation conducted by field workers, rather than relying on 

principals’ self-reported responses. For instance, the school asset index was constructed based 

on the physical resources in schools that were collected by direct observation, such as having 

electricity, a functional library, internet access, working computers, a sports or play area, 

working latrines/toilets, water facilities for various uses, etc. 

The original sample of the Young Lives school survey 2012-2013 was nearly 12,000 primary 

school students studying in Grades 4 and 5. The school survey 2012-2013 was conducted at 30 

sites, including the 20 main Young Lives sites (in the regions of Addis Ababa, Amhara, 

Oromia, SNNP, and Tigray) and 10 additional sites from two historically disadvantaged 

regions of Ethiopia, Somali and Afar.152 Crucially for the purpose of the present study, I used 

only the sample overlapping between the main Young Lives survey and the school survey 

2012-2013 in order to capture students’ educational trajectories from early childhood to 

adolescence. Therefore, the study sample was limited to the 549 students who straddled the 

longitudinal household survey and the cross-sectional school survey. This final sample is 

approximately one-quarter of the Young Lives Younger Cohort sample and about 5 percent of 

the school survey 2012-2013 sample.  

                                                
151 The third round of the Young Lives school survey was administered in 2016-2017, but it was not included in 

the present study due to the limited size of overlap with the main Young Lives survey. 
152 The School Survey 2012-2013 constituted a site-level census, as it sampled all pupils (including both Young 
Lives children and non-Young Lives children) studying in all Grade 4 and Grade 5 classes in all schools located 

within the geographic boundaries of each survey sentinel site (Aurino, James, & Rolleston, 2014).  
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2) Descriptive statistics and SEM models 

Descriptive statistics for school characteristics drawn from the Young Lives school survey 

2012-2013 are presented in Table 4.11.153 Most of the schools in the survey were public and 

had an average school asset index of 0.73. Only one-quarter of the schools had classrooms with 

fewer than 50 students. While 63 percent of the schools showed a 1:1 textbook-pupil ratio, 

about one-third used a newly revised government MT textbook. About one-third of schools 

reported that principals provided some incentives for well-performing teachers, such as 

financial incentives, promotion to a higher level of teaching, teacher training courses, or 

certificates, prizes, or ceremonies. 

Table 4.11. Descriptive Statistics: Selected School Characteristics 
School characteristics School Survey 2012-2013 
 Mean (SD) 

(1) School asset index 0.73 (0.21) 

(2) Average classroom size, less than 50 0.27 (0.44) 

(3) 1:1 MT textbook-pupil ratio 0.63 (0.48) 

(4) Use of new government language textbook  0.32 (0.47) 

(5) Incentive for a well-performing teacher 0.33 (0.47) 

(6) Low school attendance    0.22 (0.42) 

(7) School is public school.  0.96 (0.19) 

Observation (Students) 549   
Note: (1) School asset index is calculated by the sum of ‘1 (yes)’ from binary indicators divided by the number of items (e.g., 
radio, computer, library, internet, working toilets, etc). (2) School asset index, average classroom size, textbook-pupil ratio, 

and low school attendance were collected via observation by field workers; the rest is from principal’s response.  
Source: Young Lives School Survey 2012/13, Young Lives 

Table 4.12 shows the results of pairwise correlation analysis among the hypothesised mediators 

of school characteristics to investigate how these variables are correlated with outcome 

(dependent) variables. Except for two measures (class size, availability of a new government 

textbook), five measures of school characteristics were moderately correlated with PPVT test 

scores at ages 12 and 15, which ranged from 0.16 to 0.30. Given that the majority of schools 

were public, I decided to include four measures—school asset index, MT textbook-pupil ratio, 

students’ attendance level, and incentives for a well-performing teacher—in order to construct 

an indicator of subsequent schooling environments. The estimates from the t-test also indicated 

a statistically significant difference between preschool attendees and non-attendees in the four 

variables (p < 0.01 for school assets, students’ attendance; p < 0.05 for textbook-pupil ratio, 

                                                
153 Given the exhaustive list of school (class and teacher) characteristics in the Young Lives School Survey 2012-

2013, only selected variables are presented in Table 4.11.  
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teacher incentives). While the former two measures captured the schools’ structural quality, 

such as infrastructure and learning materials, the last measure on teacher incentive was relevant 

to process quality that could facilitate the interaction between students, teachers, and principals.  

In prior studies on the effectiveness of education interventions in LMICs, evidence varied by 

specific school-level characteristics, target populations, or other contextual factors (Conn, 

2014). For instance, according to the review articles summarizing the estimated effects of 

school materials interventions (e.g., textbooks, writing materials, and flipcharts) on students’ 

learning outcomes, school materials seemed to have a significant and positive effect on 

students’ math scores but not on language (Krishnaratne et al., 2013), or to be compounded by 

effects of co-occurring teacher training and class size reduction programmes (McEwan, 2014). 

Evidence on textbook distribution was more mixed, as it could interact with numerous 

contextual factors, including students’ basic literacy levels, varying levels of difficulty of the 

textbooks, or differences in how teachers integrated these books into the curriculum (Conn, 

2014). An individual randomised evaluation of textbook provision showed it only had an 

impact for high-performing students in Kenya (Glewwe et al., 2009) and for students living in 

rural areas across five francophone countries (Frölich & Michaelowa, 2011). Similarly, teacher 

incentives produced relatively small or non-significant effects on student outcomes across ten 

studies conducted in LMICs (Snilstveit et al., 2016), with one exception conducted in Kenya 

(Duflo, Dupas, & Kremer, 2015). In this study, teacher incentives included offering short-term 

teacher contracts to local teachers, which led to significantly improved student learning 

outcomes only when combined with class size reduction (Duflo et al., 2015). By comparison, 

the teacher incentive indicator used in the present study entailed both formal and informal 

rewards for teachers (e.g., financial incentive, job promotion, or a certificate or prize) that were 

likely offered by school leadership. Although there is no clear guidance from prior studies to 

generate a hypothesis, the four measures selected for the current analysis have been frequently 

used in the existing literature. 
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Table 4.12. Pairwise Correlation for Mediating and Dependent Variables 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) School asset 1.00         

(2) Class size -0.01 1.00        

(3) Text ratio  0.27*** -0.12*** 1.00       

(4) New Text -0.16*** -0.01 -0.01 1.00      

(5) Incentive 0.12*** 0.04 0.10** -0.02 1.00     

(6) Low Att.  -0.24*** 0.06 -0.16*** 0.21*** -0.23*** 1.00    

(7) School Type  -0.01 -0.31*** 0.01 -0.11** 0.02 0.08 1.00   

(8) PPVT-R4  0.21*** -0.04 0.30*** 0.02 0.16*** -0.30*** -0.17*** 1.00  

(9) PPVT- R5  0.18*** -0.02 0.16*** 0.01 0.23*** -0.25*** -0.17*** 0.71*** 1.00 

*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 

After identifying the potential mediators, I estimated two sets of SEM models to determine the 

best fitting model for the present data. Model 1 first included preschool attendance as a direct 

predictor of four observed measures of school environment (i.e., school asset index, MT 

textbook-pupil ratio, students’ attendance level, and incentives for a well-performing teacher), 

and students’ PPVT scores. Next, these four measures of school environments were included 

as direct predictors of students’ PPVT scores. To account for common sources of measurement 

error, error terms of the four variables representing school environments were allowed to be 

correlated. In Model 2—represented visually in Figures 4.3 and 4.4—I introduced the latent 

variable of school environments based on the selected observed variables. Model 2 included 

preschool attendance as a direct predictor of the latent measure of school environments and 

students’ PPVT scores, then this latent measure was included as a direct predictor of students’ 

PPVT scores. On the latent measure of school environments, I conducted a one-factor 

confirmatory factor analysis and confirmed that this shows an adequate model fit (χ2(2) = 5.89, 

p < 0.001; CFI = 0.93; RMSEA = 0.06). 

Across all models, covariates were included to account for potential sources of selection bias. 

All covariates, including child gender, father’s education level, household size, whether a child 

was the first born, language between home and school, and wealth quintile, had paths to 

preschool attendance, mediators, and students’ outcomes. Analyses were conducted in Stata 

version 14.1. For all models, adequate model fit was indicated by a root mean squared error of 

approximation (RMSEA) of ≦ 0.06 (Hu & Bentler, 1999) and a comparative fit index (CFI) of 

≧ 0.90 (Bentler, 1990). The traditional goodness-of-fit statistic (i.e., a nonsignificant chi-

square) test was relaxed because the ‘chi-square value can be overly influenced by sample size, 

correlations, variance unrelated to the model, and multivariate non-normality’ (Kline, 2011, p. 

201). 
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3) Results of SEM 

Using the mediation analysis framework, I examined the extent to which school-level 

characteristics mediated the relations between preschool attendance and students’ receptive 

vocabulary skills during adolescence. Overall, SEM Model 2, in which a latent variable was 

included, showed adequate model fit statistics: (with PPVT-Round 5; 𝜒2(26) = 64.55; CFI = 

0.89; RMSEA = 0.05) (see Table 4.13). Compared to Model 2, Model 1 (which included four 

observed variables of school environment) showed a significantly poorer fit (with PPVT-

Round 5; 𝜒2(3) = 30.28; CFI = 0.92; RMSEA = 0.14; SRMR = 0.03) (see Appendix Table 

E.4). Thus, I focused on presenting and interpreting the results of Model 2 as the final model.  

From the SEM results of Model 2, standardised coefficients of the total, direct, and indirect 

effects on PPVT Rounds 4 (age 12) and 5 (age 15) are presented in Figures 4.3 and 4.4. To 

ease the interpretation, I use the term ‘effect’ in the mediation analysis, where effect indicates 

‘association’. At the age of 12, preschool attendance positively influenced the mediator of 

schools’ characteristics (𝛽 = 0.19, SE = 0.06, p < 0.001). Preschool attendance was also a 

positive predictor (direct effect) of PPVT scores in the model (𝛽 = 0.43, SE = 0.12, p < 0.001), 

after controlling for child gender, father’s education level, household size, whether a child was 

the first born, language between home and school, and wealth quintile. In addition to the direct 

effects, I assessed the indirect effects among the study variables. The indicator of schools’ 

environments was found to be a statistically significant mediator (𝛽 = 0.28, SE = 0.10, p < 

0.001). Similar relationships were observed for students’ PPVT outcomes at age 15. Preschool 

attendance positively influenced the mediator of schools’ characteristics (𝛽 = 0.19, SE = 0.06, 

p < 0.001). Preschool attendance was also a positive predictor (direct effect) of PPVT scores 

in the model (𝛽 = 0.42, SE = 0.11, p < 0.001), after accounting for a set of covariates. In terms 

of the indirect effects among the study variables, the indicator of schools’ environments was 

found to be a statistically significant mediator (𝛽 = 0.21, SE = 0.07, p < 0.001). 
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Figure 4.3. SEM Model on Preschool Attendance and PPVT at Age 12 

 

Note: (Total Effects (d, 0.71) = Indirect Effects (a*b, 0.1898911*1.490002) + Direct Effects (c, 0.43). 
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives School Survey Dataset 2012-2013, Young Lives  

Figure 4.4. SEM Model on Preschool Attendance and PPVT at Age 15 

 

Note: (Total Effects (d, 0.63) = Indirect Effects (a*b, 0.1889541 * 1.10886) + Direct Effects (c, 0.42). 
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives School Survey Dataset 2012-2013, Young Lives 

Table 4.13 summarizes the results of the SEM model. Given that no single index appears to be 

a viable mediation effect size measure (Wen & Fan, 2015), I followed the recommendations of 

Sobel (1982) to use (1) the proportion of total effect that is mediated (i.e., total effect explained 

by the indirect effect); and (2) the ratio of the indirect effect to direct effect (𝑅𝑚 statistic) as a 

proxy measure for the magnitude of mediation effect. As shown in Table 4.13, the indirect path 

from preschool attendance to students’ PPVT score at age 12 via schools’ characteristics 

explained 39.4 percent of the total association between preschool attendance and ORF score 
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(𝛽 = 0.71), and the ratio of the indirect effect to direct effect is 0.65. In addition, the indirect 

path mediated by schools’ environments explained 33.3 percent of the total association 

between preschool attendance and students’ PPVT score at age 15 (𝛽 = 0.63), with the ratio of 

the indirect effect to direct effect at 0.50. The contribution of the indirect effects is about half 

of the direct effects in PPVT at age 12 (𝑅𝑚 = 0.65) and at age 15 (𝑅𝑚 = 0.50), attenuated as 

students make the transition from primary to secondary. In this model, the mediator of schools’ 

environment explained about one-third of the total effects for the association between 

preschool attendance and students’ outcomes at ages 12 and 15.  

Collectively, the results of the SEM suggest that the relations between preschool attendance 

and students’ achievement at ages 12 and 15 were partially accounted for by subsequent 

schooling experience. There are several limitations of the current analysis, including a 

restricted sample, partially captured school environments at one point in time, and a single-

level SEM framework. Despite these limitations, the findings of this study enhance our 

understanding of the mechanisms underlying students’ skill formation from early childhood to 

adolescence and the environmental factors that could potentially affect the sustained benefits 

of preschool up to age 15. 

Table 4.13. Results of SEM on the Link between Preschool Attendance and PPVT  
 (1) (2) 

 PPVT - Round 4 PPVT- Round 5 

Age (age 12) (age 15) 

Path coefficients (S.E) 

    Preschool attendance  School Environments  PPVT outcome 

Total effects 
0.71*** 

(0.11) 

0.63*** 

(0.10) 

Direct effects 
0.43*** 

(0.12) 

0.42*** 

(0.11) 

Indirect effects 
0.28*** 

(0.10) 

0.21*** 

(0.07) 

% of total effect mediated 39.4 33.3 

% of total effect unmediated 60.6 66.7 

Ratio of indirect effect to direct effect (Rm) 0.65 0.50 

Model Fit 
Chi-Square (DF) 70.88(26) 64.55(26) 

CFI 0.87 0.89 

RMSEA 0.05 0.05 
SRMR 0.03 0.03 

R-Square 0.31 0.34 
Note: (1) The resulting structural coefficients (standardised regression coefficients) describe the direct and indirect effects. (2) 

Standard errors are in parentheses; (3) DF: Degree of Freedom; (4) CFI: Comparative Fit Index; (5) RMSEA: Root Mean 
Square Error of Approximation; (6) SRMR: Standardised Root Mean Square Residual.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives School Survey Dataset 2012-2013, Young Lives  
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4.8 Discussion  

By drawing on data which tracked children in Ethiopia over 15 years, the present study has 

addressed gaps in the knowledge related to the lasting influence of preschool attendance on 

student outcomes in adolescence, particularly in a low-income context. Although the data 

captured the period when huge disparities in preschool access existed between advantaged and 

disadvantaged children, this study presents estimates using kernel-based matching (PSM) to 

adjust for several non-random sources of selection into preschool (e.g., household wealth, 

father’s education, geographic location, child’s nutrition and prior achievement). These 

estimates have been supported by alternative approaches, including OLS and kernel-based 

matching within specific community sites. While existing studies in Ethiopia have explored 

similar research questions using the Young Lives data (e.g., Woldehanna & Gebremedhin, 

2012; Woldehanna & Araya, 2017; Vandemoortele, 2018), the current study extends that work 

with more comprehensive outcome measures at later ages, replicating the earlier findings with 

the Younger Cohort data, and considering additional hypotheses on key dimensions of student, 

family, and school characteristics.  

Overall findings of the present study align with previous work suggesting a positive medium-

term contribution of ECE to the cognitive skills, school enrolment, and educational progression 

of children in LMICs (Berlinski et al., 2008; Bietenbeck et al., 2017; Hazarika & Viren, 2013; 

Krafft, 2015). First, the results from the current study revealed that children who attended 

preschool between ages 4 and 6 not only outperformed their peers in academic achievement at 

age 8, but that these benefits carried forward over time; by age 15 they showed improved 

achievement in receptive vocabulary (0.19 SD) and English (0.33 SD). These results 

complement prior evidence from Sub-Saharan Africa showing the association between 

preschool attendance and 13- to 16-year-old’s academic achievement in Kenya and Tanzania, 

as measured by the composite score of English, numeracy, and language tests (0.08 to 0.12 SD) 

(Bietenbeck et al., 2017). However, in the meantime, the present study found some variations 

by subject, in which a convergence of test scores between preschool attendees and non-

attendees occurred at age 12 in math and mother tongue. Although this result differs from the 

evidence from India and Uganda that documents a positive significant association between 

preschool attendance and math achievement by age 11-12 (Hungi & Ngware, 2018; Singh & 

Mukherjee, 2018), the fadeout of preschool gains has been reported in Ethiopia, particularly 
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on math achievement for 12-year-old students (Vandemoortele, 2018), which was confirmed 

by the current study up to age 15.   

When we look closely at the mixed pattern by subjects, it is noteworthy that the sizable benefits 

of preschool appeared on students’ achievement in PPVT up to age 15. Although the initial 

academic gains were attenuated over time—from 0.36 SD at age 8 to 0.19 SD at age 15—it 

remained significant at the 0.01 level. As supported by prior work in the U.S., some 

convergence in preschool effects is inevitable over the course of primary school, while it could 

be maintained by adolescence (Ansari, 2018; Bassok et al., 2018). By contrast, regarding the 

lack of observable benefits in math and mother tongue after age 12, one potential explanation 

is the type of instruction children were exposed to and Ethiopian children’s generally low level 

of basic academic skills. While the PPVT, a basic measure of receptive vocabulary, is thought 

to be sensitive to a child’s exposure to declarative knowledge about words, their definitions, 

and their usage (Nagy & Scott, 2000), it is relatively less sensitive to the national curriculum 

or to any particular pedagogical approach than math or reading comprehension tests, which 

contain more advanced skills and curriculum-sensitive content. Moreover, about a quarter of 

the 12-year-old Young Lives children (Younger Cohort) in Ethiopia could not read sentence(s) 

in 2013, and more than a third of 15-year-olds were unable to answer any of the math questions 

correctly in 2016 (Young Lives, 2017). My supplementary analysis also indicated that the 

preschool benefits were pronounced only in tasks in the mother tongue (e.g., oral reading 

fluency) that were easier than the reading comprehension tasks. Collectively, the fadeout of 

initial academic benefits may stem from the dissonance among the basic academic skill levels 

of Ethiopian children, their exposure to the right level of instruction, and the difficulty of tests.  

Second, as for educational attainment, the results of the present study showed that preschool 

attendance led to significant increases in grade completion: by age 15, preschool attendees had 

accumulated about 0.7 additional years of schooling and were 25 percent more likely to 

progress adequately to age-appropriate grades. These results are in line with the previous work 

showing the benefits of ECE participation for higher educational attainment in LMICs 

(Berlinski et al., 2008; Bietenbeck et al., 2017; Hazarika & Viren, 2013; Krafft, 2015). In 

particular, despite the highly diverse LMIC settings, the magnitude of gains in the present study 

are similar to prior evidence that found a preschool effect of an additional 0.8 years of schooling 

at age 15 in Uruguay (Berlinski et al., 2008) and an additional year of schooling in Egypt 
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(Krafft, 2015). On the probability of achieving on-time grade progression, my findings are 

similar to Woldehanna and Araya’s (2017) estimates using the Young Lives’ Older Cohort: 

preschoolers were 25.7 percent more likely to complete secondary education at the proper age 

than their non-preschool peers.  

Additionally, it is noteworthy that the benefits of preschool for later educational attainment do 

not exhibit ‘convergence’ or even an increase over students’ educational trajectories. While the 

present study showed sustained preschool benefits in grade completion without a decline 

between ages 12 and 15, the results of studies in Uruguay (Berlinski et al., 2008), rural India 

(Hazarika & Viren, 2013), and Kenya and Tanzania (Bietenbeck et al., 2017) consistently point 

out that ‘positive effects of preschool on school enrolment […] grows monotonically with age’ 

(Berlinski et al., 2008, p. 1425). Further research needs to investigate this sustained or growing 

pattern that may support the multiplier effects of early learning inputs on future educational 

attainment (Cunha & Heckman, 2007), which present patterns that are distinct from those in 

academic benefits (e.g., IQ or test scores).    

Third, the present study aimed to understand whether students respond differently to preschool 

attendance according to gender, household wealth, father’s education level, and prior academic 

achievement. In terms of gender, the benefits of preschool tend to be larger among boys than 

among girls, but the differential influence as a function of gender is never statistically 

significant. These findings of no gender difference are similar to those from studies in Kenya 

and Tanzania (Bietenbeck et al., 2017), but only a few studies have assessed the differential 

effect of ECE by gender and the findings remain inconclusive (Barnett, 1995).  

Notably, my findings based on household wealth and father’s education level countered prior 

evidence showing particularly pronounced benefits of preschool for children from low-income 

households or those who live with poorly educated parents (U.K., App et al., 2013; Norway, 

Havnes & Mogstad, 2011; France, Dumas & Lefranc, 2012; Northern India, Hazarika & Viren, 

2013; Uruguay, Berlinski et al., 2008). Unlike students from more affluent families, for whom 

the preschool benefits were sustained at age 15, the associations between preschool attendance 

and educational outcomes among students from poorer families are no longer evident in 

adolescence. It is possible to infer that the different life conditions of children with different 

socioeconomic backgrounds affect their ability to benefit from early learning. For children 
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living in poverty, who are likely to grow up in less stimulating home learning environments, 

preschool participation alone may not be sufficient to overcome various barriers to and 

constraints on their ability to succeed throughout the life course (Brooks-gunn, 2003; Brooks-

Gunn & Duncan, 1997). These results, which disappointingly are not aligned with ECE’s 

compensatory prediction, imply that enriched early learning experiences can in fact amplify 

the learning inequality induced by socioeconomic disparities. This pattern appears to continue 

even after a large-scale expansion of public preschool, when children from a broad range of 

household wealth groups suddenly flooded into the pre-primary education system.  

In contrast, there are relatively encouraging results from students’ prior achievement levels. 

These results indicate that the association between preschool and child academic outcomes are 

greater among low achievers than high achievers. Contrary to these findings, prior evidence in 

the U.S. shows that the longer-term advantages of preschool were a function of children’s 

earlier academic achievement (e.g., Ansari et al., 2017; Campbell et al., 2012), which is in line 

with predictions from complementary models. However, before concluding whether my 

findings are aligned with the compensatory models, there is a need for further investigation 

into the possibility of a ceiling effect among the high-achievement group and some irregular 

patterns observed within the middle-achievement group.    

Fourth, the present study explored whether the association between preschool attendance and 

students’ achievement at age 15 may differ by preschool characteristics. Several notable 

patterns did emerge: for academic achievement in PPVT and English at age 15, positive 

associations were observed among students who entered preschool earlier (at age 4) and 

attended private pre-primary institutions which provided high-quality teaching and full-time 

services.154 These patterns are consistent with the prior evidence suggesting that preschool 

duration matters (e.g., Loeb et al., 2007, in the U.S.).155 Within the LMIC context in particular, 

entrance to preschool before age 4 or attending preschool for at least two years were positively 

associated with improved academic achievement at age 11-12 in rural India (Singh & 

Makherjee, 2018) and Uganda (Hungi & Ngware, 2017), and with a higher probability of 

                                                
154 Note that children in the control group generally stayed at home, as there are few alternative options in Ethiopia. 
155 However, there are some mixed findings in the earlier studies by Barnett (1995) and Currie (2001) reporting 

that there is no significant effect, depending on age of entry to the U.S.  



200 

 

completing secondary education in Ethiopia (Woldehanna & Araya, 2017).156 As for preschool 

type, provided that about four-fifths of preschools in Ethiopia were privately run during the 

period the data were collected, it may not be proper to generalise my finding that favours 

private preschool for students’ academic achievement; however, attending a public preschool 

was highly associated with better educational attainment, which is equivalent to almost one 

additional year of schooling.  

Further, the results of this study are aligned with the argument that preschool quality matters. 

Although little is known about the relation between preschool quality and child outcomes in 

low-resource settings, due to the lack of valid measures, my findings are consistent with earlier 

evidence from Bangladesh suggesting a positive association between quality preschool 

environments and children’s first-grade performance (Aboud, 2006; Aboud et al., 2008). In 

line with my hypothesis that increased daily exposure to formal early learning environments 

may be beneficial for students’ educational outcomes, the results of this study show that 

children attending preschool for more than seven hours a day appeared to have benefited more 

than those who attended fewer than seven hours. Based on these findings, more work is needed 

to understand various preschool characteristics that can influence the fundamental skills linked 

to individuals’ long-term success, including age-appropriate curricula, teacher-child 

interactions, and teacher professional development. Moreover, as prior evidence points out that 

the positive associations between the daily preschool exposure and improved academic 

achievement are conditional on family income and race (Loeb et al., 2007), future research 

needs to explore the intersectionality between such complex processes as ECE programme 

quality, duration, and intensity and the characteristics of family and child for preserving the 

benefits of preschool across a variety of contexts, particularly in low-resource settings. 

Fifth, the present study tested whether subsequent school environments could mediate the link 

between preschool attendance and student outcomes in adolescence. The school characteristics 

of upper primary grades that were investigated in the current analysis—school asset index, 

textbook-pupil ratio, low attendance, and teacher incentives—partially mediated the relation 

between preschool and students’ PPVT scores at ages 12 and 15 when I treated these as the 

                                                
156 The age of preschool entry and duration are not necessarily consistent (e.g., early entry to preschool, then stop 
or dropout from preschool during the course), however, in this study, I assumed that early preschool entry (ages 

4, 5, 6) leads to the longer duration (3, 2, 1 years) of preschool.   
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latent variable. This latent variable is similar to a composite score of four indicators related to 

school environments. In particular, the indirect path via subsequent school experience 

accounted for about one-third of the total association between preschool attendance and 

student’s receptive vocabulary skills at ages 12 and 15. These findings are consistent with prior 

evidence from the U.S. from Curenton et al. (2015) and Reynolds et al. (2004); however, it is 

not possible to find commensurate evidence in LMICs, as few longitudinal studies of ECE 

programmes collected data on later school experiences. Determining the extent to which 

subsequent educational contexts facilitate the persistence of preschool influence has an 

important policy implication that can help to foster and sustain early academic advantages 

(Magnuson et al., 2007; Ramey & Ramey, 1998). Taken together, despite the fact that a number 

of theoretically driven preschool and primary school characteristics in the present study were 

relatively coarse and unlikely to capture the full scope of possible underlying mechanisms, this 

study highlights the importance of the institutional environments which children face at each 

stage of life that have the potential to promote or hinder the sustained benefits of ECE.  

Lastly, the Young Lives sample (Younger Cohort) used in this chapter could be compatible 

with the EGRA 2010 sample used in the previous two chapters in terms of the ECE landscape 

in Ethiopia between 2005 and 2008.157 However, according to the analysis using the most 

similar test in ORF measured at age 8, the opposite pattern is observed between the two 

samples: there was no significant association between preschool and ORF scores in the EGRA 

2010 sample, whereas it became positive and statistically significant among the Young Lives 

sample (0.35 SD, p < 0.01). As noted earlier, this is attributed in part to the different sampling 

frame: while the EGRA 2010 was a regionally representative sample from the five regions in 

Ethiopia, the Young Lives Study oversampled the disadvantaged population purposively 

through a multi-stage sampling processes (Outes-Leon, 2011). To illustrate, the Young Lives 

sample showed a huge disparity in preschool access between urban (25.2%) and rural (2.6%) 

children, whereas the EGRA sample showed less disparity between urban (24%) and rural 

(11.3%) children. Meanwhile, both samples consistently showed no observable benefits of 

preschool on reading comprehension achievement.  

                                                
157 This is a period when both samples of children were preschool-eligible age.  
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4.9 Limitations  

Although the Young Lives data provide a unique opportunity to assess the evolution of the 

relationship between preschool and child outcomes over time, there are several limitations that 

should be noted when interpreting results. First, these data captured the period when attending 

a preschool was regarded as a luxury that served a mere 5 percent of children in urban areas in 

Ethiopia out of seven million children. Hence, the Young Lives children attending preschool 

were distinct from the national Ethiopian population. This raises an issue of external validity, 

which limits the generalizability of my findings to the broader population, and to those who 

attended (or are attending) preschool in recent years. Additionally, this data limitation should 

be considered when interpreting the differential benefits of preschool between advantaged and 

disadvantaged children. There is a possibility that the observed differential influence by 

household wealth and parental education could be driven by differential selection—for 

example, with higher-income children over-represented in the sample attending preschool, 

especially in private and full-time preschool institutions. Although I adjusted for several non-

random sources of preschool assignment, unobserved differences across these groups are likely 

to remain. 

Second, despite covering a number of outcome measures for cognitive skills, this study was 

unable to explore non-cognitive skills—self-regulation, motivation, and persistence—that may 

contribute to the benefits of preschool for individuals’ long-term success, according to prior 

evidence (Heckman et al., 2013).158 Future research is needed that includes a broader range of 

cognitive and non-cognitive skills to measure the contribution of preschool attendance on 

various child developmental domains in both the short and long run. Third, as noted above, a 

lack of detailed data on preschool characteristics and subsequent school experience limits the 

conclusions that can be drawn in this study about mechanisms and implications for sustained 

gains from preschool. More work on both structural and process quality and their interaction 

with child and family characteristics will be necessary to identify preschool quality features 

that optimise student outcomes, particularly for low-resource, low-capacity settings.  

                                                
158 I also estimated the association between preschool attendance and non-cognitive skills available in the Young 
Lives data—self-efficacy, self-esteem, relationship with parents and peers—however, it never become significant 

(the results are available upon request).  
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Fourth, assuming that the impact of the unobservable time invariant is small, the current study 

used propensity score matching with a rich set of child and family covariates to yield a robust 

estimate that rules out many alternative explanations on differential selection into preschool. It 

is also notable that the propensity score models did little beyond the OLS regression models 

that account for 40-45 covariates, which perhaps implies that estimates from this methodology 

are likely close to the causal identification. In the meantime, interpretation needs to consider 

that it is not possible to completely rule out differential selection into preschool, particularly in 

LMICs, where household resources are limited and unpredictable (McCoy et al., 2017). In fact, 

households in Ethiopia frequently experience external shocks such as drought, flood, crop 

failure and ethnic clashes that negatively affect children’s schooling (Berhane, Abay, & 

Woldehanna, 2016). Additionally, in the pursuit of long-term associations in the present study, 

selectivity occurred not only at the pre-primary level but continued at the primary and 

secondary levels. For example, parents who enrolled their children in preschool may in turn 

select higher quality primary schools. Lastly, with regard to the importance of considering the 

counterfactual’s circumstances (Zhai et al., 2014), children in the control group likely stayed 

at home (non-formal home-based care) in the absence of alternative options in Ethiopia. 

However, there is a still possibility that they were involved in informal child care programmes 

or community-based social protection services, and in this case estimates may be biased 

downward.  

4.10 Conclusion  

Given the importance of early childhood development for outcomes later in life, investments 

in early childhood education are often considered promising investments with long-term pay-

offs. The present study provides an important first step in understanding how the relation 

between preschool attendance and educational outcomes evolves over time in the context of a 

low-income country. The results of this study suggest that preschool attendance led to 

significant improvement in academic achievement and increased educational attainment of 

Ethiopian children at ages 8, 12, and 15. Nevertheless, some alarming patterns emerged in the 

differential benefits by household wealth, contrary to the common belief that an enriched early 

learning experience plays a role in ‘equalizing’ existing socioeconomic gradients in learning. 

In addition, des  
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pite its limited ability to reflect the latest ECE landscape in Ethiopia, the present study sheds 

light on the importance of quality in preschool and subsequent school experiences. Notably, 

these quality dimensions have the potential not only to determine the preservation of preschool 

benefits but to facilitate students’ positive academic trajectories from early childhood through 

adolescence.  

In recent years, Ethiopia has been striving to transform the country’s pre-primary education 

system through a rapid large-scale expansion of public preschool. However, this endeavour 

must not come at the expense of equitable access to high-quality education for all. While 

maintaining quality in the process of scaling up is a major challenge for every programme 

(Engle et al., 2011), particular attention must be paid in that expanding coverage to pursuing a 

systematic approach to the scale-up of ECE, including careful planning, targeted resourcing, 

and the continued monitoring and capacity-building of stakeholders as core strategies for 

reducing disparities and boosting the learning of Ethiopian children.   
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5 CHAPTER 5 – REFLECTION 

Ethiopia’s pre-primary education policy reform is continuously evolving. By exploiting the 

inception phase of reform, this dissertation found that expanded access strengthens the role 

preschool plays in predicting students’ early grade reading outcomes; however, preschool 

expansion comes at the expense of equitable gains between advantaged and disadvantaged 

children. In that each of the previous chapters discusses my findings extensively, as well as 

their implications and limitations, and provides brief conclusions, this chapter offers my 

reflections on my research and field experiences in Ethiopia and on lessons learned for research 

and policy.  

Since 2017, as part of the World Bank’s education team, I’ve been privileged to observe and 

be involved in the ongoing early learning reform in Ethiopia. This reflection is based on my 

numerous notes from field visits and from meetings/interviews with policymakers and 

stakeholders in Ethiopia.159 The reform has been an interplay between barriers to change and 

drivers for change; I focus on its potential and further room for improvement. I frame my 

reflection within three directions proposed by Yoshikawa and Nieto (2013) with respect to the 

emerging paradigm shifts for early childhood research, practice, and policy. These include (1) 

from impacts on the mean level of children’s development to impacts on equity and inequality; 

(2) from quality to effectiveness factors in ECE settings, networks, and systems; and (3) from 

sectoral and multisectoral to community-based and participatory. 

5.1 From Impacts on the Mean Level of Children’s Development to Impacts on 

Equity and Inequality 

The primary goal of the early learning reform in Ethiopia is to increase equity in the education 

system by reaching children from disadvantaged backgrounds, who are most at risk of 

exclusion, drop-out and under-achievement (MoE, 2015). My findings suggest that the rapid 

expansion of O-Class may not be achieving this goal and may instead amplify learning 

inequalities between rich and poor students. I examine not only the influences of ECE on 

average learning outcomes, but also the distribution of learning outcomes and other factors in 

a particular population. As national-level enrolment growth hides large discrepancies in 

                                                
159 The qualitative information is used with permission of the World Bank.  
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preschool access by location and household wealth, the average student achievement level 

masks large disparities in learning gains associated with preschool, particularly that the most 

disadvantaged children are least likely to benefit from pre-primary education. This reinforces 

the indication that an unsystematic approach to scale-up has not benefited all children equally.  

Although O-Classes have started to reach many remote rural areas in Ethiopia, this singular 

effort to increase enrolment in preschool is not enough to reduce learning inequality among 

young children. Strategies that aim to achieve equity goals should go beyond the ‘one-size-fits-

all’ policy approach. Yoshigawa and Nieto (2013) noted that ‘closely monitoring ECD 

indicators in different subpopulations and using information with a framework of corrective 

and distributive justice can be an effective tool against unintended effects of ECD programmes 

in the direction of greater inequality or social exclusion’ (p. 488). By regular monitoring of the 

equity indicators from various data sources available in Ethiopia (e.g., national statistics, 

national learning assessment, and household surveys), more proactive compensatory measures 

in ECE policy should be introduced to meet the needs of marginalised communities. This will 

enable all children to benefit and learn from enriched early learning experiences regardless of 

their geographic constraints or household economic status.  

Moreover, about half of Ethiopian children still remain out of ECE. This alarming figure calls 

for giving more attention to reaching children currently deprived of early learning 

opportunities. There are two points to consider in recalibrating ECE policy and practice. First, 

targeted financial support should be provided based on resource levels and capacity for 

delivering ECE at the school and community level. The pitfall of the enrolment-based school 

grants for O-Class, which are the major financing source for ECE, is that they provide funding 

only for established O-Classes, not for schools without an O-Class. 160  Another financing 

source for O-Class is the block grants allocated to woreda (districts); however, due to 

competition with other education levels or other sectors within a woreda, little funding is 

allocated to pre-primary education.161 The current approaches—a uniform funding allocation 

                                                
160 School grants (an enrolment-based capitation grant provided directly to school) for primary schools have been 

provided since 2013 under the GEQIP-II programme. In 2016-2017, school grants for O-Class were introduced 
as a top-up to the regular school grants for primary in order to reflect growing demand for pre-primary education.  
161 From personal interviews with regional and local stakeholders. 
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formula and no grants earmarked for ECE—have the potential to reinforce the vicious cycle of 

‘the rich get richer and the poor get poorer’ that leave behind the schools most in need.  

Second, targeted interventions should be provided for those without ECE experience, but in an 

inclusive manner. In 2015, as one potential way to intervene, Ethiopia introduced the 

Accelerated School Readiness programme, a short-term supplementary course during summer 

break or the first two months of Grade 1. During my school visits in Ethiopia, I encountered 

settings similar to those of my research design—the Grade 1 classroom using ability grouping 

according to students who attended kindergarten, those attended O-Class, and those who did 

not attend either. Although observed differences in reading ability across the three groups 

reaffirmed the importance of early learning, more concerns were raised about how this ability 

grouping approach affects child development.162 Labelling a child as ‘unprepared’ at school 

entry may have a negative influence on their development, especially on their socio-emotional 

skills such as self-esteem, motivation, and persistence. Therefore, any interventions that aim to 

remedy early learning loss should be academically motivated and emotionally sensitive to the 

targeted group.  

5.2 From Quality to Effectiveness Factors in ECE Settings, Networks, and Systems 

A rapid expansion of preschool comes with the risk of lowering quality; however, the 

government’s focus is gradually shifting to improving quality. This shift involves the 

introduction of a practice-based, interactive teacher training for O-Class teachers in two 

educationally disadvantaged regions, Benishangul-Gumuz and Gambella, which were 

implemented in 2017-2018.163 This pilot intervention, led by the government with technical 

and financial support from the World Bank, includes the development and implementation of 

in-service teacher training and the provision of curriculum materials, including some basic play 

materials, to O-Classes. The training consists of comprehensive knowledge of child 

development, interactive pedagogical approaches, and hands-on activities to facilitate play-

based learning. More than 700 teachers were trained, which exceeded the initial target for the 

                                                
162  Note that this is an anecdotal case that cannot be generalised to practices in other schools in Ethiopia. 

International evidence also reached a consensus that ability grouping has a negative impact, especially for those 

who struggle most with their learning (McGillicuddy & Devine, 2017).  
163 This pilot programme is part of the World Bank’s Ethiopia Education Results Based Financing project financed 

by the Global Partnership for Education.  
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two regions, and demand from the local communities continues to grow. Training participants 

reported that the new training was a ‘transformative’ experience which was very distinct from 

traditional training, and that it in particular identified (i) perception changes in ECE; (ii) 

improved confidence in activity-based learning and increased teacher-child interactivity; (iii) 

better understanding of more inclusive approaches for meeting the diverse needs of young 

children; (iv) learning skills for classroom management and lesson planning; and (v) creating 

locally adapted learning materials.164  

Moreover, beyond these two promising quality elements, new teacher training and curriculum, 

the experience gained in the two regions benefited the pre-primary education sector in Ethiopia 

through capacity-building and horizontal and vertical collaboration among policy networks. 

As Hommel (2013) pointed out, while the traditional focus of a scale-up initiative is on training 

and capacity-building for frontline providers (i.e., teachers), the capacity of various 

stakeholders—federal and regional government officers, development partners, researchers, 

NGOs, and community and school leaders—may be just as critical in successful ECE systems.  

The first advance is capacity-building among key stakeholders at different levels. To illustrate, 

at the central level, although the initial training was led by ECE experts from development 

partners and NGOs, the lead responsibility gradually shifted to experts at the Ministry of 

Education and an established talent pool from the earlier trainings; the recent scale-up 

initiatives have been fully managed by the federal government. At the regional level, the 

implementers’ leadership and institutional capacity have been strengthened. In the 

Benishangul-Gumuz region, Regional Education Bureau (REB) led the locally adapted teacher 

training by ensuring the involvement of teachers of local ethnicity and incorporating local 

culture and languages into activities. The effective management model used in this region, a 

technical ECE working group composed of a steering committee and a technical committee of 

regional officials, has been replicated in other regions.165 After the teacher training, the REB 

organized and supported the ECE training for school leaders and supervisors by their own 

capacity. Capacity-building also has expanded to the Colleges of Teachers’ Education, as some 

                                                
164 Based on interviews with trainees and pre- and post-training questionnaires.  
165 In a technical working group, a steering committee is responsible for planning, monitoring, and financing; and 

a technical committee is responsible for management, logistic, and day-to-day/follow-up activities.  
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college instructors have applied their new knowledge and approaches to improve pre-service 

training by, for example, shifting from theory-oriented to play-oriented training.  

The second advance is collaboration among key stakeholders. From the development of 

curriculum materials to the implementation and monitoring of the intervention, horizontal and 

vertical links have been strengthened across the MoE, REBs, developmental partners, and 

researchers (e.g., UNICEF, World Bank, Save the Children, Right to Play, and Kotebe 

Metropolitan University) in collaboration with teachers, schools, and communities. Successful 

implementation was made possible by the rise of ‘policy networks’ that share a common set of 

values and goals through new partnerships of political actors (Sabatier & Jenkins-Smith, 1993).  

Building on these efforts, the national flagship reform programme, GEQIP-E, introduced the 

Quality Enhancement and Assurance Programme (QEAP) for O-Class in 2018 (World Bank, 

2017).166 QEAP aims to provide a comprehensive package of interventions to systemically 

improve the quality of O-Class provision within a coherent framework. To address the 

observed problem of ‘working in silos’, QEAP intends to provide an incentive for improved 

coordination across interventions and key stakeholders working on O-Class quality 

improvement, without which meaningful results at the classroom level cannot be achieved. The 

design of QEAP considers in particular the fact that each of a set of policy levers—teacher 

professional development, curriculum, quality monitoring, and data-based accountability— 

has its own properties and limitations but may ‘act in interdependent fashion to determine the 

ultimate effectiveness of ECE policies in enhancing child development at scale’ (Yoshigawa 

et al., 2018, p. 8). Although some uncertainty and challenges remain in finding answers to the 

questions, ‘how can ECE systems be improved to deliver the results?’ research using the 

systems approach is emerging and growing in the ECE field (Kagan & Kauerz, 2012). Future 

research needs to delve into the interlinked effective factors—the key dimensions of quality 

associated with more positive effects—that work together to meet the practice and policy needs 

of ECE systems.  

                                                
166 QEAP for O-Classes comprises two key components: Quality Enhancement (QE); and Quality Assurance (QA). 

The QE component, which improves pedagogical practices in the classroom, includes teacher preparation and 

professional development, curriculum, and TLM for O-Class, and training for management and supervision. The 
QA component establishes national standards, an inspection process, and EMIS data collection (World Bank, 

2017, p. 41). 
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5.3 From Sectoral and Multisectoral to Community-Based and Participatory  

The initial phase of the early learning reform was implemented in a top-down manner directed 

by the central governments. The downward delegation from federal and regional governments 

to woredas and schools often suffered from a lack of coordination and poor communication, 

which led to ‘incoherence between national objectives and local preferences and capacities’ 

(Rossiter et al., 2018). As each region forged ahead with its own plan for preschool expansion, 

there were both challenges and opportunities. In other words, the various expansion efforts 

resulted in huge regional disparities due to the different levels of financial and human 

resources; however, they also resulted in innovative service delivery tailored to the needs of 

local communities. For example, given that school proximity is a key factor in a child’s 

schooling outcomes, O-Classes in SNNP utilised the existing community-based organizations, 

such as religious institutions, farmers’ training centres, and established community centres. 

The Accelerated School Readiness programme in Afar was adapted to reflect the needs of 

pastoralist communities and their mobile school systems.  

In the absence of a dedicated budget at the central level, community contributions have been a 

main driver in the expansion of preschool in Ethiopia. Although my dissertation focuses on 

ECE policies at the federal and regional levels, Rossiter et al., (2018) stressed that, with a 

strong sense of community ownership of O-Class, ‘community investments and collaboration 

in early learning service provision assure strong voice in negotiations of which services are 

going to be delivered’ (p. 30). In fact, during my school visits, I observed the significant 

contributions the parent-teacher associations and community leaders made to the provision of 

early learning, including the construction of classrooms and latrines for young children, the 

hiring of local teacher assistants, and the provision of basic stationery and/or school meals. 

With peer-to-peer support within and between communities, ‘upward’ delegation from 

community to school can be more flexible and responsive to a community’s need to integrate 

local cultural norms. Meanwhile, careful attention must be paid to variations in local beliefs 

and values about children and families, and to resource constraints, which often are perceived 

as barriers to ECE implementation.  

Participatory processes, particularly those involving regional/local stakeholders, parents, 

community members, and children themselves, are an important link between community-

based input and policy development. The government of Ethiopia is currently preparing a 
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revision of the National Early Childhood Care and Education framework. In the revision 

process, strategies that aim to increase participation at the community level should go beyond 

representing the interests of the government. It should be a collaborative process that captures 

the expectations and demands, as well as innovative ideas from, the local and community 

stakeholders. A deep understanding of the complex ways policy initiatives intersect with local 

realities is needed to achieve this goal. Specifically, the new policy framework can support the 

regional stakeholders in developing region-tailored goals and strategies to promote local 

ownership of ECE provision and ameliorate sub-geographical inequalities in ECE. More 

investment of time and resources is needed to create a platform that reflects local voices and 

guarantees the participation of communities and local governments. These efforts will promote 

an open dialogue between local actors and national/regional policymakers.  

A primary contribution of this dissertation is to inform future ECE policy in Ethiopia, and 

possibly in other LMICs. Further improvement in these areas—promoting equitable access to 

and gains from preschool, strengthening quality and institutional capacity in the ECE systems, 

and ensuring a participatory approach with stakeholders at all levels—requires both time and 

a political and financial commitment. It also calls for creative thinking about interconnected 

but under-researched issues, including the multi-aged O-Classes, the learning continuum of the 

foundational grades, a sustainable financing mechanism, the ECE workforce, public and 

private partnerships, and multi-sectoral governance. The positive momentum created by the 

ongoing early learning reform in Ethiopia must be continued in order to build up inclusive and 

coherent ECE systems.  
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APPENDICES  

Appendix A. [Chapter 2] Robustness Check: Propensity Score Matching  

As presented in Table 2.12 above, I used the propensity score matching as a robustness check 

for the results derived from the OLS and school fixed effects model. The PSM, developed by 

Rubin and Rosenbaum (1983), is a widely used quasi-experimental method in observational 

studies when conducting an experiment is not feasible. Specifically, PSM emulates a situation 

which experimental research achieves through randomization by modeling the treatment 

assignment patterns directly and creating sub-groups which match in their likelihood of 

belonging to either a treatment or a control group (technical details appear in Chapter 4; Guo 

& Fraser, 2015). Here, the propensity score is defined as the conditional probability of 

attending preschool (treatment) given pre-treatment characteristics of preschool attendees and 

non-attendees. By accounting for observable sources of non-random selection into preschool, 

this approach allowed me to identify an adequate counterfactual, which compared children who 

attended preschool (treated group) with those who shared similar socio-demographic 

characteristics but did not attend preschool (control group).  

Specifically, I used a kernel density matching approach (Heckman, Ichimura, & Todd, 1998) 

to match preschool attendees and non-attendees, drawing from the same set of covariates used 

in the OLS and school fixed effects model. Kernel matching is a nonparametric matching 

approach that compares the outcome of each individual who attended preschool to a weighted 

average of the outcomes of all children who didn’t attend preschool, with the highest weight 

being placed on those with propensity scores nearest to the particular preschool attendee. 

Kernel matching uses more information for each match, thus producing a lower variance than 

traditional propensity scores matching techniques.  

As a first step to create a reliable counterfactual, Figure 2.A presents the common support areas 

(i.e., probability densities), especially before and after PSM. This figure shows the extent to 

which treated (preschool) and non-treated (non-preschool) students have comparable observed 

likelihoods of attending preschool. Notably, before kernel-based matching (left panel of each 

cohort), the overlapped areas in the distribution of the propensity score declines from 2010 to 

2016, indicating that the gaps widen between preschool attendees and non-attendees. After 

kernel-based matching (right panel of each cohort), the projection presents a great deal of 
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overlap between the two groups, which supports establishing the comparability of the treated 

and untreated group. 

Figure A. 1. Common Support Area for Preschool Attendees and Non-Attendees 
(a) EGRA 2010, before and after matching (b) EGRA 2016, before and after matching 

  
Note: In EGRA 2010, 61 students are out of common support (7,876 no-pre; 1,184 pre; 9,060 total); In EGRA 2016, 114 
students are out of common support (5,316 no-pre; 2,862 pre; 8,178 total).  
Source: EGRA Dataset 2010, 2016, USAID  

Second, to meet the covariate balance assumption of PSM, I checked the balance in observed 

characteristics between preschool attendees and non-attendees through the matching process. 

Figure 2.B is a visual presentation of standardised differences and associated percentage bias 

by unmatched and matched groups (Caliendo & Kopeinig, 2008). This figure captures how 

matching procedure contributes to the convergence of associated percentage bias into zero in 

each of covariates. According to the threshold set to 0.20 (Rosenbaum & Rubin, 1985), 

standardised percentage bias across covariates (observed characteristics) displays excellent 

balance, closer to zero, for both EGRA cohorts. 

Figure A. 2. Covariate Balance between Matched and Unmatched Groups 
(a) EGRA 2010 (b) EGRA 2016 

  
Source: EGRA Dataset 2010, 2016, USAID 
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Finally, Table 2.A shows the results of PSM with each value of treated and control groups by 

region. As described earlier, most of the results are similar or slightly larger than estimates of 

OLS and school fixed effect model. This corroborates the finding of the present study that the 

role of preschool has been strengthened during a large-scale expansion of public preschool in 

predicting students’ early grade reading achievement.  

Table A. 1. Results of Propensity Score Matching 
ORF 

(correct words per 
minute) 

2010 EGRA 2016 EGRA 

Treated Control Diff (t-test) Treated Control Diff (t-test) 

Total Average 22.87 20.89 1.98** 22.03 18.94 3.09*** 

Tigray 25.60 20.66 4.94*** 19.84 19.49 0.35 

Amhara 32.02 27.20 4.82** 37.27 32.70 4.57*** 
Oromia 24.41 22.30 2.11 19.13 15.04 4.09*** 
Somali 32.20 33.97 -1.77 14.60 9.80 4.80*** 
SNNP(s) 8.74 8.72 0.02 20.62 19.06 1.56* 

Note: All estimates include sampling weight. *** p<0.01, ** p<0.05, *p<0.1  
Source: EGRA Dataset 2010, 2016, USAID   
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Appendix B. [Chapter 3] Robustness Check: Interaction Effects of Woreda Poverty 

Level 

In this sub-section, I turn to testing the robustness of my estimates to alternative explanations. 

I reported above that the benefits of preschool were particularly pronounced for children from 

advantaged backgrounds—those living in urban areas and/or who have a literate father—than 

their peers from disadvantaged backgrounds. The dichotomy variables such as urbanicity and 

parental literacy provide useful information for identifying a particular group for whom the 

benefits of preschool were greater; however, it has limited ability to capture a more detailed 

picture of the socioeconomic gradients that may affect the preschool benefits. To address this 

limitation, I used the ‘woreda poverty index’ drawn from the Ethiopia Socio-economic Survey 

2015/16 (ESS) (Central Statistical Agency & World Bank, 2017) for my robustness check.167 

A woreda, which is equivalent to a district, is the third-level sub-national administrative 

division in Ethiopia, following region and zone. There currently are approximately 670 rural 

woreda and 100 urban woreda in Ethiopia (Yilmaz & Venugopal, 2008).  

ESS 2015/16 is a nationally representative survey of more than 3,600 households in Ethiopia 

in both rural and urban areas. The objective of ESS is to collect multi-topic, household-level 

panel data, with a special focus on improving agriculture statistics and generating a clearer 

understanding of its connection with welfare indicators and socioeconomic characteristics 

(CSA & World Bank, 2017). Drawing on the ESS 2015/16, the national-level poverty index 

was initially estimated based on the ‘per adult total consumption expenditure’ of each 

household, which consists of food consumption and non-food consumption expenditures 

(Woldehanna, Amha, Yonis, & Tafere, 2018).168 Per-adult total consumption, for example, 

captured the stark urban-rural difference, as household consumption levels in urban areas were 

more than 2.5 times higher than those in rural areas. In the present study, the woreda-level 

poverty index was estimated by following the same procedure used for the national figure. 

However, in spite of the advantage of using a detailed poverty indicator, there are two main 

constraints that require extra caution in interpreting the results of this analysis. First, ESS is 

only representative at the national level, not at the regional or woreda levels. There is a 

                                                
167 The ESS is a collaborative project between the Central Statistics Agency of Ethiopia and the World Bank 

Living Standards Measurement Study-Integrated Surveys of Agriculture.  
168 The food consumption report was based on a recall period of seven days, then multiplied by 52 to convert it 

into a yearly consumption value.  
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possibility that, in some woredas, rich households were oversampled, and vice versa. While 

the woreda poverty index is highly correlated with the urban and rural location (d = 0.37, p < 

0.001), any generalisation of the results should be avoided. Second, when I matched the EGRA 

and ESS datasets, only 80 percent (179 out of 225) of EGRA 2016 schools are located in the 

woreda where the ESS 2015/16 survey was conducted, thus there was a partial loss of the 

EGRA sample. Considering these two major limitations, I used this indicator only for the 

robustness check on the differential influence of preschool by urban and rural areas.  

Woreda poverty levels, based on the per-adult total consumption expenditure of households in 

the woreda, starts from ‘0’ for the richest to ‘1’ for the poorest population. Figure A-1 presents 

the average marginal effects of the association between preschool and student outcomes on (1) 

the probability of being a non-reader, and (2) the probability of being a proficient reader, as a 

function of the woreda poverty-level index. Consistent with the differential influence by urban 

and rural location, the results showed that the benefits of preschool were much greater for 

children from affluent backgrounds than poorer backgrounds. For children living in the richest 

woreda, attending a preschool reduced the probability of being a non-reader by 13.2 percentage 

points (p < 0.01), whereas there were virtually no measurable benefits for children living in the 

poorest woreda (d = -0.02, p > 0.01). Similarly, preschool had a more discernible benefit for 

children from the richest woreda on the probability of being a proficient reader, which 

increased by 16.3 percentage points (p < 0.01), but there were no significant gains from 

preschool for children living in the poorest woreda (d = -0.01, p > 0.01). The results of this 

analysis reaffirm that the large-scale expansion of preschool in Ethiopia may not play an 

‘equaliser’ role for learning inequality, as intended. Apparently, the benefits of preschool were 

concentrated on children from wealthier backgrounds rather than on their peers from poorer 

and marginalised backgrounds.   
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Figure B. 1.  EGRA 2016: Interaction between Preschool and Woreda Poverty Level 
(1) Probability of being a non-reader (2) Probability of being a proficient reader 

  
Note: The areas along with the line represent the upper and lower bounds of the confidence interval. Confidence level = 0.95. 
Source: EGRA Dataset 2010, 2016, USAID   
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Appendix C. [Chapter 4] Propensity Score Matching Sensitivity Checks to Unobserved 

Variables 

To assess the extent to which the current study is sensitive to hidden selection bias, I present 

the results of a Rosenbaum bounds sensitivity analysis (Rosenbaum, 2005) and Mantel-

Haenszel bounds sensitivity analysis (Becker & Caliendo, 2007). In testing a model’s 

sensitivity, the basic question is whether unobserved factors can alter the relationship between 

treatment and outcomes. These two sensitivity tests determine how strongly confounding 

factors—that is, unobserved variables that might influence both assignment to preschool and 

students’ later educational outcomes—would need to influence the selection process of 

forming relationships to undermine the implications of the matching analysis. The bounding 

approach does not directly test the assumption that there is no confounding variable in the 

model but provides evidence on ‘the degree to which any significance results hinge on this 

untestable assumption’ (Bharath et al., 2011, p.1197).  

For the models with continuous outcome variables (e.g., test scores), Stata’s rbounds 

programme (Gangl, 2007) was used to calculate a Wilcoxon’s singed rank test statistic and the 

Hodges-Lehmann point and interval estimates (DiPrete & Gangl, 2004). Table 4.A, for 

example, shows the results of the Rosenbaum bounds sensitivity analysis for PPVT Round 5 

with the range of significance levels for the Wilcoxon’s Singed Rank Statistic. It shows that 

the model became sensitive to hidden bias at Γ = 2.15 for PPVT Round 5, which is the critical 

test statistic value before exceeding the conventional 0.05 significance level. For the models 

with binary outcome variables (e.g., on-time grade progression), Stata’s mhbounds programme 

(Becker & Caliendo, 2007) was used to calculate the Mantel-Haenszel test statistic (Mantel & 

Haenszel, 1959). 
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Table C. 1. Results of the Sensitivity Analysis (rbounds) for PPVT Round 5 Outcome: 

Range of Significance Levels for the Signed Rank Statistic  

Gamma (Γ) 
Minimum Maximum 

1 < .00001 < .00001 

1.5 0 .000072 

1.8 0 .003159 

1.9 0 .007811   

2 0 .016913 

2.1 0 .032708   

2.15 0 .043828 

2.2 0 .057432 

2.3 0 .092816 
Note: (1) Gamma is log odds of differential assignment due to unobserved factors.  

Table 4.B summarises the model’s sensitivity to hidden bias across the outcome variables used 

in the present study. All matching models used kernel-based PSM with the Epanechikov kernel 

within the bandwidth at 0.11. As a results of Rosenbaum bounds sensitivity analysis, the 

model’s sensitivity is at Γ = 2.15 for PPVT, Γ = 1.1 for math, Γ = 1.45 for language, Γ = 2.2 

for the highest grade achieved, and Γ = 2.5 for on-time grade progression at age 15. For 

example, in interpreting the results of on-time grade progression at age 15, the test statistic 

value of 2.5 (Γ) 169 indicates that, in order for the 95 percent confidence interval of the model’s 

ATT to include zero, an unobserved variable would need to cause the odds ratio of treatment 

assignment to differ between the treatment and comparison groups by a factor of 2.5 (Becker 

& Caliendo, 2007). Compared to the PPVT score, the highest grade achieved, and on-time 

grade progression, the results of the math and language scores were a relatively small value, 

indicating their high sensitivity to hidden bias; therefore, further analysis that controls for 

additional biases is warranted. As a reference point, in the logistic regression model used to 

generate the propensity score, the odds ratio for preschool attendance was the greatest for living 

in an urban area (OR=3.64) and being a first born (OR=3.62), followed by being in the high-

achievement group (OR=2.28), living with parents with high educational aspirations 

(OR=1.43), and coming from the richest households (OR=1.05).  

  

                                                
169 The test statistic value gamma is a log odds of differential assignment due to unobserved factors. 
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Table C. 2. Results of Sensitivity Test 

Outcome 
Sensitivity 

 Pooled sample Urban sample 

Rosenbaum bounds sensitivity analysis 

PPVT – Round 3 1.8 1.05 

PPVT – Round 4 1.8 1.45 

PPVT – Round 5 2.15 1.75 

Math – Round 3  2.2 2.25 

Math – Round 4 1.0 1.0 

Math – Round 5 1.1 1.05 

Language - Round 3 1.25 1.0 

Language - Round 4 1.0 1.0 

Language - Round 5 1.45 1.95 

Highest Grade – Round 5 2.2 1.7 

Mantel-Haenszel bounds sensitivity analysis 
On-time progression – Round 4 1.8 1.2 

On-time progression – Round 5 2.5 1.6 
Note: (1) All models used the bandwidth at 0.11; (2) The ‘Sensitivity’ column presents the critical value at which the 
Rosenbaum or Mantel-Haenszel test statistics’ significance level exceeds the conventional 0.05 level; (3) All matching models 
used kernel-based matching with the Epanechikov kernel. 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  
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Appendix D. [Chapter 2] TABLES 

Table D. 1. EGRA 2010: Preschool Attendance and Oral Reading Fluency (correct words 

per minute) 
Variables (1) (2) (3) (4) 
 ORF  ORF ORF ORF 

Preschool 2.46** 1.24 0.46 -0.39 

 (1.22) (1.44) (1.55) (1.94) 

Age  1.81* 1.81* 1.13 

  (1.02) (0.98) (0.73) 

Age*Age  -0.04 -0.04 -0.02 

  (0.04) (0.03) (0.03) 

Female  -3.02*** -3.04*** -3.23*** 

  (1.03) (1.04) (0.85) 

Same language at home   1.97 -1.91 

   (2.77) (2.14) 

Reading materials at home   5.99*** 5.96*** 

   (1.73) (1.62) 
Father’s literacy   2.94** 2.18*** 

   (1.11) (0.71) 

Mother’s literacy   -0.45 1.44* 

   (1.00) (0.79) 

Region: Tigray 11.74*** 11.64*** 11.77*** - 

 (2.70) (2.76) (2.81)  

Region: Amhara 15.87*** 15.31*** 14.92*** - 

 (2.91) (3.06) (2.94)  

Region: Oromia 19.46*** 16.91*** 17.34*** - 

 (3.48) (3.16) (3.04)  

Region: Somali 18.82*** 15.23*** 16.40*** - 
 (6.59) (4.95) (4.29)  

Region: SNNP (ref) - - - - 

     

Grade 3 8.20*** 7.24*** 7.06*** 7.46*** 

 (1.04) (1.16) (1.17) (0.92) 

Grade 2 (ref) - - - - 

     

Rural - -8.09*** -7.12*** - 

  (2.17) (1.91)  

Constant 3.85* 0.17 -5.09 8.63* 

 (2.01) (6.21) (5.84) (4.99) 

Observations 9,121 9,121 9,121 9,121 
R-squared 0.15 0.18 0.20 0.10 

Number of schools    237 
Note: (1) Models 1, 2, and 3 account for controls as indicated and include sampling weight; (2) Model 4 uses school fixed 

effects and includes sampling weight; (3) EGRA 2010: linearised standard errors (from svy command) in parentheses; (4) 
EGRA 2016: robust standard errors, clustered at school level, in parentheses 
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 2. EGRA 2016: Preschool Attendance and Oral Reading Fluency (correct words 

per minute) 
Variables (1) (2) (3) (4) 

 ORF  ORF ORF ORF 

Preschool 5.36*** 5.45*** 4.15*** 2.48*** 

 (0.86) (0.87) (0.78) (0.61) 

Age  0.77 0.63 0.90 

  (1.58) (1.59) (1.46) 

Age*Age  0.02 0.03 0.01 

  (0.07) (0.07) (0.07) 
Female  2.39*** 2.33*** 2.29*** 

  (0.61) (0.59) (0.60) 

Same language at home   0.59 1.81* 

   (1.84) (1.08) 

Reading materials at home   5.29*** 4.82*** 

   (0.58) (0.48) 

Father’s literacy   3.10*** 2.77*** 

   (0.53) (0.50) 

Mother’s literacy   0.64 0.27 

   (0.54) (0.53) 

Region: Tigray 0.57 1.26 0.39 - 
 (2.05) (1.91) (1.82)  

Region: Amhara 15.31*** 16.12*** 15.45*** - 

 (2.09) (2.03) (1.95)  

Region: Oromia -3.82** -3.27* -2.99 - 

 (1.83) (1.86) (1.85)  

Region: Somali -8.05*** -7.29*** -7.26*** - 

 (1.92) (2.02) (1.89)  

Region: SNNP (ref) - - - - 

     

Grade 3 10.96*** 9.81*** 9.41*** 9.29*** 

 (0.63) (0.71) (0.74) (0.71) 

Grade 2 (ref) - - - - 
     

Rural - -6.21*** -6.17*** - 

  (1.64) (1.56)  

Constant 12.66*** 6.88 2.89 2.62 

 (1.50) (9.05) (8.69) (7.86) 

Observations 8,332 8,332 8,332 8,332 

R-squared 0.22 0.24 0.26 0.11 

Number of schools    225 
Note: (1) Models 1, 2, and 3 account for controls as indicated and include sampling weight; (2) Model 4 uses school fixed 
effects and includes sampling weight; (3) EGRA 2010: linearised standard errors (from svy command) in parentheses; (4) 
EGRA 2016: robust standard errors, clustered at school level, in parentheses 
*** p<0.01, ** p<0.05, *p<0.1 

Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 3. EGRA 2010: Preschool Attendance and Non-Reader (odds ratio) 
Variables (1) (2) (3) (4) 
 Non-reader Non-reader Non-reader Non-reader 

Preschool 0.94 0.99 1.06 1.28*** 

 (0.13) (0.16) (0.17) (0.04) 

Age  0.75*** 0.74*** 0.81*** 

  (0.08) (0.08) (0.02) 

Age*Age  1.01** 1.01** 1.00*** 

  (0.00) (0.00) (0.00) 

Female  1.36*** 1.37*** 1.66*** 

  (0.15) (0.16) (0.04) 

Same language at home   0.57* 0.97 

   (0.17) (0.05) 

Reading materials at home   0.55*** 0.47*** 

   (0.07) (0.01) 
Father’s literacy   0.60*** 0.55*** 

   (0.07) (0.01) 

Mother’s literacy   1.15 0.82*** 

   (0.11) (0.02) 

Region: Tigray 0.16*** 0.16*** 0.13*** - 

 (0.04) (0.04) (0.04)  

Region: Amhara 0.16*** 0.17*** 0.16*** - 

 (0.05) (0.05) (0.05)  

Region: Oromia 0.27*** 0.31*** 0.27*** - 

 (0.07) (0.08) (0.07)  

Region: Somali 0.18*** 0.23*** 0.17*** - 
 (0.07) (0.09) (0.06)  

Region: SNNP (ref) - - - - 

     

Grade 3 0.46*** 0.51*** 0.51*** 0.42*** 

 (0.04) (0.05) (0.05) (0.01) 

Grade 2 (ref) - - - - 

     

Rural - 1.53* 1.41 - 

  (0.35) (0.32)  

Constant 2.45*** 9.03*** 25.84*** 5.43*** 

 (0.54) (6.35) (20.59) (1.87) 

Observations 9,121 9,121 9,121 8,812 

Pseudo R2 0.10 0.11 0.13 - 
Number of schools    229 

Note: (1) All Models 1 to 4 include sampling weight; (2) Model 4 use school fixed effects; (3) EGRA 2010: linearised standard 
errors (from svy command) in parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; 
(5) In Model 4, the sample of 8 groups (309 obs.) in non-reader and 10 groups (390 obs.) in proficient reader dropped as 
multiple positive or negative outcomes within groups encountered. 
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 4. EGRA 2016: Preschool Attendance and Non-Reader (odds ratio) 
Variables (1) (2) (3) (4) 
 Non-reader Non-reader Non-reader Non-reader 

Preschool 0.46*** 0.42*** 0.49*** 0.77*** 

 (0.05) (0.04) (0.05) (0.01) 

Age  0.48*** 0.50** 0.64*** 

  (0.12) (0.13) (0.01) 

Age*Age  1.03** 1.02* 1.01*** 

  (0.01) (0.01) (0.00) 

Female  0.89 0.89 0.70*** 

  (0.08) (0.07) (0.00) 

Same language at home   0.78 0.74*** 

   (0.18) (0.01) 

Reading materials at home   0.47*** 0.49*** 

   (0.05) (0.00) 
Father’s literacy   0.61*** 0.68*** 

   (0.06) (0.01) 

Mother’s literacy   0.94 1.10*** 

   (0.09) (0.01) 

Region: Tigray 0.44*** 0.41*** 0.45*** - 

 (0.10) (0.10) (0.10)  

Region: Amhara 0.07*** 0.07*** 0.07*** - 

 (0.02) (0.02) (0.02)  

Region: Oromia 0.95 0.91 0.88 - 

 (0.20) (0.19) (0.18)  

Region: Somali 1.84*** 1.71** 1.70** - 
 (0.41) (0.41) (0.43)  

Region: SNNP (ref) - - - - 

     

Grade 3 0.39*** 0.47*** 0.50*** 0.46*** 

 (0.03) (0.04) (0.05) (0.00) 

Grade 2 (ref) - - - - 

     

Rural - 1.52** 1.59** - 

  (0.32) (0.34)  

Constant 1.01 70.75*** 132.12*** 1.68*** 

 (0.17) (94.85) (186.38) (0.23) 

Observations 8,332 8,332 8,332 7,461 

Pseudo R2 0.16 0.18 0.20 - 
Number of schools    202 

Note: (1) All Models 1 to 4 include sampling weight; (2) Model 4 use school fixed effects; (3) EGRA 2010: linearised standard 
errors (from svy command) in parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; 
(5) In Model 4, the sample of 23 groups (871 obs.) in non-reader and 11 groups (312 obs.) dropped as multiple positive or 
negative outcomes within groups encountered.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  

  



246 

 

Table D. 5. EGRA 2010: Preschool Attendance and Proficient Reader (odds ratio) 
Variables (1) (2) (3) (4) 
 Proficient 

reader 

Proficient 

reader 

Proficient 

reader 

Proficient 

reader 

Preschool 1.23* 1.11 1.05 1.19*** 

 (0.13) (0.11) (0.10) (0.04) 

Age  1.27** 1.27** 1.57*** 

  (0.12) (0.12) (0.05) 

Age*Age  0.99** 0.99** 0.98*** 

  (0.00) (0.00) (0.00) 

Female  0.78** 0.78** 0.72*** 

  (0.08) (0.08) (0.01) 

Same language at home   1.27 0.85*** 

   (0.34) (0.04) 

Reading materials at home   1.59*** 1.61*** 
   (0.17) (0.04) 

Father’s literacy   1.31** 1.29*** 

   (0.15) (0.03) 

Mother’s literacy   0.91 1.14*** 

   (0.10) (0.03) 

Region: Tigray 4.27*** 4.30*** 4.55*** - 

 (1.40) (1.45) (1.44)  

Region: Amhara 2.74*** 2.65*** 2.59*** - 

 (0.89) (0.88) (0.84)  

Region: Oromia 5.16*** 4.33*** 4.60*** - 

 (1.84) (1.49) (1.54)  
Region: Somali 5.99*** 4.64*** 5.28*** - 

 (2.44) (1.80) (1.92)  

Region: SNNP (ref) - - - - 

     

Grade 3 1.57*** 1.47*** 1.45*** 1.65*** 

 (0.14) (0.13) (0.13) (0.04) 

Grade 2 (ref) - - - - 

     

Rural  - 0.54*** 0.58*** - 

  (0.12) (0.12)  

Constant 0.15*** 0.06*** 0.04*** 3.29*** 

 (0.04) (0.05) (0.03) (0.86) 

Observations 9,121 9,121 9,121 8,731 
Pseudo R2 0.07 0.08 0.09 - 

Number of schools    227 
Note: (1) All Models 1 to 4 include sampling weight; (2) Model 4 use school fixed effects; (3) EGRA 2010: linearised standard 

errors (from svy command) in parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; 
(5) In Model 4, the sample of 8 groups (309 obs.) in non-reader and 10 groups (390 obs.) in proficient reader dropped as 
multiple positive or negative outcomes within groups encountered. 
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 6. EGRA 2016: Preschool Attendance and Proficient Reader (odds ratio) 
Variables (1) (2) (3) (4) 
 Proficient reader Proficient reader Proficient reader Proficient reader 

Preschool 1.57*** 1.58*** 1.38*** 1.07*** 

 (0.15) (0.15) (0.12) (0.01) 

Age  1.29 1.28 0.99 

  (0.25) (0.25) (0.02) 

Age*Age  0.99 0.99 1.00*** 

  (0.01) (0.01) (0.00) 

Female  1.35*** 1.35*** 1.56*** 

  (0.10) (0.11) (0.01) 

Same language at home   0.93 0.95** 

   (0.18) (0.02) 

Reading materials at home   1.70*** 1.72*** 

   (0.12) (0.01) 
Father’s literacy   1.37*** 1.32*** 

   (0.09) (0.01) 

Mother’s literacy   1.11 1.06*** 

   (0.08) (0.01) 

Region: Tigray 1.10 1.20 1.10 - 

 (0.26) (0.27) (0.25)  

Region: Amhara 1.76** 1.96*** 1.86*** - 

 (0.40) (0.44) (0.41)  

Region: Oromia 0.49*** 0.52*** 0.52*** - 

 (0.11) (0.12) (0.12)  

Region: Somali 0.35*** 0.37*** 0.35*** - 
 (0.09) (0.10) (0.09)  

Region: SNNP (ref) - - - - 

     

Grade 3 1.96*** 1.76*** 1.73*** 1.75*** 

 (0.14) (0.13) (0.13) (0.01) 

Grade 2 (ref) - - - - 

     

Rural  0.51*** 0.50*** - 

  (0.10) (0.10)  

Constant 0.44*** 0.10** 0.07** 1.50*** 

 (0.08) (0.11) (0.08) (0.19) 

Observations 8,332 8,332 8,332 8,020 

Pseudo R2 0.08 0.10 0.11  
Number of schools     214 

Note: (1) All Models 1 to 4 include sampling weight; (2) Model 4 use school fixed effects; (3) EGRA 2010: linearised standard 
errors (from svy command) in parentheses; (4) EGRA 2016: robust standard errors, clustered at school level, in parentheses; 
(5) In Model 4, the sample of 23 groups (871 obs.) in non-reader and 11 groups (312 obs.) dropped as multiple positive or 
negative outcomes within groups encountered.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 7.  EGRA 2010: Preschool Attendance and EGRA 6 Sub-Tasks (SD, effect size) 
Variables (1) (2) (3) (4) (5) (6) 
 ORF Letter 

Sounds 

Familiar  

Words 

Invented 

Words 

Reading 

Compre. 

Listening 

Compre. 

Preschool 0.02 0.11** 0.08 0.11** 0.05 0.01 

 (0.07) (0.05) (0.07) (0.06) (0.07) (0.06) 

Age 0.09* 0.04 0.03 0.06 0.10** 0.13*** 

 (0.05) (0.04) (0.04) (0.04) (0.04) (0.05) 

Age*Age -0.00 -0.00 -0.00 -0.00 -0.00* -0.00* 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Female -0.15*** -0.17*** -0.15*** -0.11** -0.08 -0.04 

 (0.05) (0.04) (0.05) (0.05) (0.05) (0.03) 

Same language  0.09 0.29** 0.11 0.09 0.07 0.31*** 

 (0.13) (0.12) (0.13) (0.14) (0.15) (0.08) 

Reading M at home  0.29*** 0.20*** 0.25*** 0.23*** 0.25** 0.20*** 
 (0.08) (0.06) (0.07) (0.06) (0.10) (0.05) 

Father’s literacy 0.14** 0.17*** 0.18*** 0.18*** 0.13** 0.16*** 

 (0.05) (0.06) (0.05) (0.05) (0.06) (0.04) 

Mother’s literacy -0.02 -0.02 -0.02 0.01 -0.04 0.04 

 (0.05) (0.04) (0.04) (0.04) (0.05) (0.04) 

Region: Tigray 0.56*** 0.21 0.90*** 0.53*** 0.36*** 0.30*** 

 (0.13) (0.19) (0.16) (0.14) (0.09) (0.10) 

Region: Amhara 0.71*** 0.47*** 0.79*** 0.60*** 0.53*** 0.13 

 (0.14) (0.16) (0.15) (0.12) (0.12) (0.16) 

Region: Oromia 0.83*** 0.50*** 0.53*** 0.35*** 0.86*** 1.36*** 

 (0.15) (0.14) (0.13) (0.10) (0.14) (0.11) 
Region: Somali 0.79*** 0.48*** 0.40*** 0.75*** 0.58*** 0.07 

 (0.21) (0.15) (0.10) (0.13) (0.15) (0.15) 

Region: SNNP (ref) - - - - - - 

       

Grade 3 0.34*** 0.34*** 0.39*** 0.32*** 0.36*** 0.12*** 

 (0.06) (0.05) (0.05) (0.04) (0.05) (0.04) 

Grade 2 (ref) - - - - - - 

       

Rural -0.34*** -0.30*** -0.28*** -0.34*** -0.31*** -0.17** 

 (0.09) (0.07) (0.10) (0.08) (0.10) (0.07) 

Constant -1.26*** -0.94*** -0.98*** -0.97*** -1.25*** -1.78*** 

 (0.28) (0.30) (0.33) (0.31) (0.30) (0.30) 

Observations 9,121 9,119 9,119 9,118 9,121 9,116 
R-squared 0.20 0.13 0.18 0.15 0.19 0.35 

Note: (1) All models 1 to 6 include sampling weight; (2) Linearised standard errors (from svy command) in parentheses.  
*** p<0.01, ** p<0.05, *p<0.1  
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 8. EGRA 2016: Preschool Attendance and EGRA 6 Sub-Tasks (SD, effect size) 
Variables (1) (2) (3) (4) (5) (6) 
 ORF Letter 

Sounds 

Familiar  

Words 

Invented 

Words 

Reading 

Compre. 

Listening 

Compre. 

Preschool 0.20*** 0.20*** 0.21*** 0.19*** 0.17*** 0.07** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Age 0.03 0.12* 0.03 0.11 0.01 0.19** 

 (0.07) (0.07) (0.07) (0.07) (0.07) (0.08) 

Age*Age 0.00 -0.00 0.00 -0.00 0.00 -0.01* 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Female 0.11*** 0.08*** 0.09*** 0.09*** 0.15*** -0.08*** 

 (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) 

Same language  0.03 -0.01 -0.01 -0.07 0.05 0.20*** 

 (0.07) (0.07) (0.06) (0.08) (0.07) (0.07) 

Reading M at home  0.26*** 0.27*** 0.26*** 0.27*** 0.23*** 0.17*** 
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Father’s literacy 0.15*** 0.22*** 0.17*** 0.19*** 0.12*** 0.09*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Mother’s literacy 0.03 0.05* 0.03 0.04 0.04 -0.01 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Region: Tigray 0.02 -0.72*** 0.50*** 0.00 -0.18*** -0.31*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) 

Region: Amhara 0.75*** -0.10** 0.85*** 0.59*** 0.44*** -0.55*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Region: Oromia -0.14*** -0.33*** -0.15*** -0.55*** -0.10** 0.11*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) 
Region: Somali -0.35*** -0.78*** -0.37*** -0.38*** -0.31*** -0.76*** 

 (0.04) (0.05) (0.04) (0.06) (0.05) (0.05) 

Region: SNNP (ref) - - - - - - 

       

Grade 3 0.45*** 0.35*** 0.43*** 0.35*** 0.48*** 0.12*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Grade 2 (ref) - - - - - - 

       

Rural -0.30*** -0.33*** -0.38*** -0.26*** -0.30*** -0.20*** 

 (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) 

Constant -0.81** -0.71* -0.78** -0.96** -0.69* -1.16*** 

 (0.36) (0.37) (0.36) (0.38) (0.38) (0.42) 

Observations 8,332 8,332 8,332 8,332 8,332 8,332 
R-squared 0.26 0.23 0.32 0.26 0.19 0.16 

Note: (1) All models 1 to 6 include sampling weight; (2) Robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, *p<0.1  
Source: EGRA Dataset 2010, 2016, USAID  
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Table D. 9. EGRA 2016: Preschool Attendance and EGRA 6 Sub-Tasks with School Fixed 

Effects Model (SD, effect size) 
Variables (1) (2) (3) (4) (5) (6) 

 ORF Letter 

Sounds 

Familiar  

Words 

Invented 

Words 

Reading 

Compre. 

Listening 

Compre. 

Preschool 0.12*** 0.11*** 0.11*** 0.11*** 0.10*** 0.04 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Age 0.04 0.15* 0.08 0.15* 0.05 0.24*** 

 (0.07) (0.09) (0.07) (0.08) (0.08) (0.06) 

Age*Age 0.00 -0.00 -0.00 -0.00 0.00 -0.01*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Female 0.11*** 0.07** 0.09*** 0.08** 0.15*** -0.08*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Same language  0.09* 0.10 0.08 0.06 0.10* 0.17** 

 (0.05) (0.08) (0.05) (0.06) (0.06) (0.08) 

Reading M at home  0.23*** 0.25*** 0.23*** 0.26*** 0.21*** 0.14*** 

 (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) 

Father’s literacy 0.13*** 0.19*** 0.15*** 0.15*** 0.11*** 0.08*** 

 (0.02) (0.03) (0.03) (0.02) (0.03) (0.03) 

Mother’s literacy 0.01 0.01 0.01 0.01 0.03 -0.04* 

 (0.03) (0.02) (0.02) (0.03) (0.03) (0.02) 
Grade 3 0.42*** 0.35*** 0.40*** 0.34*** 0.45*** 0.13*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Grade 2 (ref) - - - - - - 

       

Rural - - - - - - 

       

Constant -0.73*** -1.24*** -0.90*** -0.94*** -0.75*** -1.88*** 

 (0.26) (0.27) (0.25) (0.26) (0.28) (0.31) 

Observations 8,332 8,332 8,332 8,332 8,332 8,332 

R-squared 0.11 0.11 0.12 0.09 0.11 0.04 

Number of Schools 225 225 225 225 225 225 
Note: (1) All models 1 to 6 include sampling weight; (2) Robust standard errors in parentheses. (3) School fixed effects model 
does not account for five regional variables.   
*** p<0.01, ** p<0.05, *p<0.1  
Source: EGRA Dataset 2010, 2016, USAID  
  



251 

 

Table D. 10. EGRA 2016: Results of SEM with Observable School Characteristics  
 (1) (2) (3) (4) (5) (6) 

 ORF LS FW IW RC LC 

 Correct words/letters per minute % of correct answers 

Path Coefficients (S.E.) 

Preschool Attendance  School Structural Quality (Environments)  EGRA Outcome 

Total effects 
2.40*** 

(0.46) 

8.54*** 

(0.70) 

2.82*** 

(0.46) 

2.30*** 

(0.33) 

3.32*** 

(0.60) 

4.22*** 

(0.62) 

Direct effects 
2.00*** 

(0.46) 

8.38*** 

(0.70) 

2.21*** 

(0.45) 

1.90*** 

(0.33) 

2.97*** 

(0.60) 

4.23*** 

(0.63) 

Indirect effects 
0.40*** 

(0.08) 

0.15*** 

(0.10) 

0.61*** 

(0.10) 

0.40*** 

(0.06) 

0.36*** 

(0.09) 

-0.01 

(0.06) 

% of total effect mediated 16.7 1.9 21.6 17.4 10.5 -0.2 

% of total effect unmediated 83.3 98.1 78.4 82.6 89.5 100.2 

Ratio of indirect effect to 

direct effect (Rm) 
0.20 0.02 0.28 0.21 0.12 0.00 

Model Fit       

Chi-Square (DF) 722.48(3) 722.48(3) 722.48(3) 722.48(3) 722.48(3) 722.48(3) 

CFI 0.73 0.74 0.75 0.72 0.71 0.60 

RMSEA 0.17 0.17 0.17 0.17 0.17 0.17 

SRMR 0.03 0.03 0.03 0.03 0.03 0.03 

R-Square 0.18 0.20 0.19 0.16 0.18 0.12 
Note: (1) The resulting structural coefficients (standardised regression coefficients) describe the direct and indirect effects. (2) 
Standard errors are in parentheses; (3) ORF oral reading fluency; LS Letter sound; FW familiar word recognition; IW invented 
word recognition; RC reading comprehension; LC listening comprehension; (4) DF: Degree of Freedom; (5) CFI: Comparative 
Fit Index; (6) RMSEA: Root Mean Square Error of Approximation; (7) SRMR: Standardised Root Mean Square Residual.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: EGRA Dataset 2010, 2016, USAID 
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Appendix E. [Chapter 4] TABLES 

Table E. 1. Young Lives: Relation between Preschool and Academic Achievement, Full OLS Model (Pooled sample) (standardized scores) 
Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 

PPVT Math 

Language Supplementary 

 
Mother Tongue English 

Oral Reading 
Fluency 

Round Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 
(Age) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) 

Preschool attendance 0.43*** 0.34*** 0.24*** 0.38*** 0.02 0.04 0.15* 0.12 0.24** 0.35** 
 (0.12) (0.08) (0.08) (0.11) (0.10) (0.05) (0.10) (0.11) (0.10) (0.15) 
Private Spending on education (vs. high)          

Low -0.15*** -0.10* -0.13** -0.24*** -0.13** -0.15** -0.22** -0.13** -0.16** -0.24** 
 (0.04) (0.05) (0.05) (0.06) (0.05) (0.07) (0.09) (0.05) (0.07) (0.10) 
Middle 0.00 0.01 -0.02 -0.02 0.03 0.00 -0.07 -0.04 -0.06* -0.10 
 (0.04) (0.05) (0.05) (0.07) (0.05) (0.05) (0.07) (0.04) (0.03) (0.06) 

Parental aspiration 0.18*** 0.18*** 0.12* 0.10 0.08* 0.09* 0.11* 0.09 0.17*** 0.03 
 (0.06) (0.05) (0.06) (0.06) (0.04) (0.05) (0.06) (0.06) (0.05) (0.04) 
Age 14 (vs. Age 15)  -0.21*** -0.03 -0.03 -0.15*** -0.08 0.04 -0.10 -0.10* -0.02 -0.10* 
 (0.04) (0.06) (0.05) (0.04) (0.06) (0.05) (0.06) (0.05) (0.05) (0.05) 

Female (vs. Male) 0.01 0.01 -0.03 0.00 0.06 -0.02 0.06 0.13* 0.10* 0.07* 
 (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.05) (0.07) (0.05) (0.04) 
PPVT at age 5 (vs. Low)           

Middle 0.06 0.20*** 0.21*** 0.04 0.08 0.01 0.03 0.12* 0.13** -0.00 
 (0.05) (0.06) (0.05) (0.06) (0.08) (0.05) (0.05) (0.06) (0.06) (0.05) 
High 0.12** 0.25*** 0.22*** 0.21** 0.21*** 0.12** 0.12 0.21*** 0.18*** 0.02 
 (0.06) (0.07) (0.05) (0.08) (0.06) (0.06) (0.08) (0.06) (0.04) (0.05) 

CDA-Q(Math) at age 5 (vs. High)          

Low -0.24*** -0.15* -0.11 -0.16** -0.17** -0.19** -0.13 -0.13* -0.21*** -0.24*** 
 (0.06) (0.08) (0.07) (0.07) (0.08) (0.07) (0.08) (0.07) (0.06) (0.08) 
Middle -0.19*** -0.11** -0.11** -0.15** -0.11 -0.16*** -0.12** -0.07 -0.14*** -0.25*** 
 (0.04) (0.04) (0.05) (0.06) (0.08) (0.05) (0.05) (0.05) (0.04) (0.06) 

Height-for-age z-score at age 5 (vs. High)          
Low -0.18** -0.17** -0.09 -0.16*** -0.09** -0.12** -0.23*** -0.13** -0.01 -0.12* 
 (0.07) (0.07) (0.05) (0.04) (0.03) (0.05) (0.07) (0.05) (0.05) (0.06) 
Middle -0.20*** -0.10 -0.04 -0.11** -0.07 -0.11* -0.15** -0.12** -0.04 -0.05 

 (0.06) (0.06) (0.05) (0.04) (0.04) (0.06) (0.06) (0.05) (0.05) (0.05) 
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Health prob. at age 5(vs. No) -0.14* -0.08 -0.11 -0.06 -0.04 0.02 -0.03 -0.05 0.04 -0.01 
 (0.07) (0.07) (0.07) (0.06) (0.06) (0.08) (0.07) (0.10) (0.08) (0.07) 
Father’s highest education level (vs. Secondary and above)         

No education  -0.07 -0.09 -0.07 -0.31*** -0.33*** -0.31*** -0.24** -0.19** -0.31*** -0.16 
 (0.09) (0.06) (0.06) (0.07) (0.07) (0.06) (0.10) (0.08) (0.06) (0.10) 

Primary education -0.10 -0.05 -0.10** -0.20*** -0.22*** -0.19** -0.09 -0.12* -0.18** -0.08 
 (0.07) (0.05) (0.05) (0.05) (0.07) (0.07) (0.08) (0.07) (0.07) (0.08) 

Caregiver’s highest education level (vs. Secondary and above)        
No education  -0.18* -0.07 -0.06 -0.05 -0.13 0.02 0.01 -0.10 -0.01 0.03 
 (0.10) (0.10) (0.10) (0.06) (0.10) (0.07) (0.10) (0.12) (0.10) (0.09) 
Primary education -0.12 -0.03 -0.01 -0.01 -0.12 -0.06 0.02 0.02 0.04 0.06 

 (0.09) (0.06) (0.06) (0.07) (0.11) (0.08) (0.09) (0.12) (0.09) (0.08) 
Household size (> 6)  -0.10** -0.17** -0.11** -0.15*** -0.13** -0.03 -0.11* -0.14* -0.03 -0.12 

 (0.04) (0.06) (0.05) (0.03) (0.05) (0.06) (0.06) (0.07) (0.05) (0.07) 
First born -0.00 0.05 0.06 -0.05 -0.01 0.03 0.06 0.05 0.17*** 0.08 
 (0.04) (0.03) (0.05) (0.05) (0.06) (0.08) (0.07) (0.07) (0.05) (0.06) 
Same language home/school -0.13 -0.03 -0.01 -0.08 0.02 0.08 0.02 -0.04 -0.07 -0.04 
 (0.08) (0.07) (0.07) (0.09) (0.05) (0.07) (0.08) (0.06) (0.06) (0.09) 
Wealth quintile (vs. Quintile 4)           

Quintile 1 -0.07 -0.19 -0.44*** -0.24*** -0.13 -0.16 -0.21** -0.22** -0.11 -0.09 
 (0.08) (0.13) (0.12) (0.08) (0.10) (0.10) (0.08) (0.10) (0.09) (0.08) 

Quintile 2 -0.06 -0.12 -0.25** -0.14** -0.07 -0.11 -0.21** -0.08 -0.05 -0.06 
 (0.08) (0.10) (0.10) (0.06) (0.09) (0.09) (0.08) (0.09) (0.08) (0.07) 
Quintile 3 -0.02 0.02 -0.16** -0.09 -0.04 -0.08 -0.08 -0.07 -0.09 -0.04 
 (0.05) (0.08) (0.06) (0.05) (0.06) (0.07) (0.06) (0.07) (0.07) (0.07) 
Quintile 5 0.23*** 0.08 0.10* 0.16** 0.14* 0.19 0.04 0.06 -0.03 0.19** 
 (0.08) (0.06) (0.05) (0.07) (0.07) (0.14) (0.05) (0.10) (0.06) (0.08) 

Region (vs. Addis Ababa)           
Living in Tigray -0.04 -0.18 -0.31 0.16 -0.41*** -1.01*** 0.19 -0.08 -0.39** -0.38 

 (0.30) (0.24) (0.20) (0.18) (0.13) (0.16) (0.25) (0.10) (0.17) (0.23) 
Living in Amhara -0.38** -0.37 -0.14 0.00 -0.10 -0.49*** -0.12 0.04 0.06 -0.51*** 
 (0.18) (0.24) (0.17) (0.20) (0.14) (0.08) (0.18) (0.11) (0.10) (0.17) 
Living in Oromia -0.55*** 0.24 0.03 -0.34* -0.28** -0.77*** -0.32** -0.74*** -0.65*** -0.79*** 
 (0.15) (0.21) (0.15) (0.17) (0.13) (0.09) (0.14) (0.11) (0.10) (0.11) 
Living in SNNP -0.15 -0.43*** -0.44*** -0.05 -0.48*** -0.76*** -0.23 -0.42** -0.54*** -0.70*** 
 (0.26) (0.11) (0.14) (0.23) (0.14) (0.08) (0.17) (0.18) (0.12) (0.18) 

Child’s ethnicity (vs. SNNP)          
Ethnicity 1: Others -0.17 -0.01 -0.32 0.04 0.15* 0.08 0.10 0.19* 0.06 0.37*** 

 (0.24) (0.18) (0.19) (0.16) (0.08) (0.08) (0.13) (0.10) (0.13) (0.07) 
Ethnicity 3: Oromiffa 0.01 -0.13 -0.29 0.01 -0.09 -0.02 0.12 0.14 0.02 0.31* 
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 (0.23) (0.15) (0.17) (0.17) (0.08) (0.09) (0.14) (0.12) (0.13) (0.16) 
Ethnicity 4: Tigrian 0.02 0.10 -0.09 0.19 0.13 0.32* 0.42 0.11 0.17 0.33 
 (0.27) (0.18) (0.17) (0.22) (0.09) (0.17) (0.27) (0.16) (0.16) (0.33) 
Ethnicity 5: Amhara 0.16 0.04 -0.20 0.09 -0.04 0.01 0.18 0.11 0.12 0.41*** 

 (0.21) (0.15) (0.18) (0.13) (0.05) (0.11) (0.13) (0.10) (0.12) (0.08) 

Living in urban 0.13 0.44 0.46** 0.35*** 0.46*** 0.21*** 0.34*** 0.34*** 0.29** 0.31*** 
 (0.17) (0.27) (0.20) (0.08) (0.08) (0.06) (0.10) (0.06) (0.11) (0.07) 
Constant 0.59 0.02 0.37 0.30 0.41* 0.73*** 0.09 0.20 0.21 0.34 
 (0.36) (0.39) (0.35) (0.28) (0.21) (0.17) (0.22) (0.27) (0.26) (0.23) 

Observations 1,447 1,417 1,447 1,417 1,354 1,447 1,444 1,320 1,447 1,390 
R-squared 0.46 0.46 0.46 0.47 0.32 0.33 0.31 0.33 0.35 0.46 

Note: (1) Preschool coefficients and ATTs are based on the standardised score (z-score) of each test; (2) robust standard errors, clustered at community level, in parentheses; (3) Ethnicity in SNNP 
includes Hadiva, Sidama, Wolayta; and others includes Agew, Gurage, Kambata.  
 *** p<0.01, ** p<0.05, *p<0.1  
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 
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Table E. 2. Young Lives: Relation between Preschool and Academic Achievement, Full OLS Model (Urban sample) (standardized scores) 
Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 

PPVT Math 

Language Supplementary 

 
Mother Tongue English 

Oral Reading 
Fluency 

Round Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 
(Age) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) 

Preschool attendance 0.24* 0.30** 0.30*** 0.27*** 0.03 0.05 0.06 0.01 0.23** 0.27** 
 (0.11) (0.10) (0.06) (0.07) (0.16) (0.07) (0.13) (0.08) (0.09) (0.15) 
Private Spending on education (vs. high)          

Low -0.11 0.10 -0.09 -0.19 -0.06 -0.09 -0.13 -0.00 0.09 -0.13 
 (0.07) (0.12) (0.09) (0.11) (0.06) (0.07) (0.15) (0.12) (0.10) (0.15) 
Middle -0.08 0.08 -0.06 -0.13 -0.08 -0.07 -0.08 -0.02 -0.02 -0.01 
 (0.06) (0.13) (0.08) (0.10) (0.09) (0.09) (0.12) (0.08) (0.06) (0.08) 

Parental aspiration 0.12 -0.02 -0.00 0.14 0.08 0.01 0.16* 0.17 0.17 -0.01 
 (0.11) (0.12) (0.08) (0.13) (0.10) (0.15) (0.08) (0.10) (0.12) (0.04) 
Age 14 (vs. Age 15)  -0.24*** -0.09 0.07 -0.16* -0.14 0.05 -0.16 -0.10 -0.05 -0.16 
 (0.06) (0.08) (0.08) (0.07) (0.12) (0.10) (0.09) (0.10) (0.09) (0.09) 
Female (vs. Male) 0.00 0.03 -0.10 0.07 0.13 0.08 0.11 0.14 0.16 0.13** 
 (0.08) (0.09) (0.08) (0.07) (0.11) (0.09) (0.08) (0.13) (0.09) (0.05) 
PPVT at age 5 (vs. High)           

Middle -0.09 -0.21 -0.30*** -0.28*** -0.24** -0.12 -0.14 -0.09 -0.11* -0.07 

 (0.10) (0.14) (0.09) (0.08) (0.08) (0.09) (0.09) (0.07) (0.06) (0.09) 
High -0.13 -0.23* -0.21* -0.22* -0.07 -0.20* -0.24* -0.04 -0.15 -0.18 
 (0.12) (0.12) (0.11) (0.12) (0.14) (0.09) (0.11) (0.10) (0.09) (0.11) 

CDA-Q(Math) at age 5 (vs. High)          
Low -0.31*** -0.30** -0.10 -0.13 -0.11 -0.24* -0.22 -0.23 -0.22** -0.37*** 
 (0.08) (0.13) (0.09) (0.12) (0.12) (0.12) (0.13) (0.13) (0.08) (0.09) 
Middle -0.15 -0.05 0.06 -0.10 -0.00 -0.08 -0.12 -0.26** -0.13 -0.22*** 
 (0.09) (0.07) (0.09) (0.08) (0.15) (0.07) (0.11) (0.09) (0.13) (0.06) 

Height-for-age z-score at age 5 (vs. High)          
Low 0.01 0.01 0.02 0.10 0.03 -0.05 0.11 0.08 -0.06 0.09 
 (0.14) (0.11) (0.12) (0.11) (0.07) (0.06) (0.10) (0.11) (0.12) (0.07) 
Middle 0.10 0.10 0.13** 0.11 0.01 0.07 0.21* 0.14*** -0.03 0.08 

 (0.08) (0.06) (0.05) (0.08) (0.05) (0.08) (0.10) (0.03) (0.08) (0.12) 
Health prob. at age 5(vs. No) -0.18 -0.38* -0.15 -0.08 -0.07 -0.15 -0.01 -0.15 -0.19* -0.04 
 (0.16) (0.17) (0.12) (0.11) (0.14) (0.16) (0.09) (0.19) (0.10) (0.11) 
Father’s highest education level (vs. Secondary and above)         

No education  0.03 -0.13 -0.10 -0.35*** -0.31** -0.31*** -0.17 -0.13 -0.24** -0.10 

 (0.13) (0.08) (0.13) (0.06) (0.10) (0.09) (0.10) (0.11) (0.10) (0.13) 
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Primary education -0.06 0.06 -0.17** -0.20*** -0.17** -0.21** -0.06 -0.08 -0.08 -0.00 
 (0.09) (0.08) (0.05) (0.05) (0.05) (0.07) (0.11) (0.10) (0.08) (0.09) 

Caregiver’s highest education level (vs. Secondary and above)        
No education  0.01 -0.13 -0.03 0.02 -0.05 0.07 0.09 -0.08 0.01 0.05 
 (0.09) (0.12) (0.14) (0.09) (0.13) (0.07) (0.11) (0.20) (0.10) (0.13) 

Primary education -0.02 -0.07 0.02 -0.01 -0.17 -0.04 0.07 -0.00 0.03 0.09 
 (0.09) (0.07) (0.07) (0.07) (0.14) (0.08) (0.08) (0.15) (0.11) (0.06) 
Household size (> 6)  -0.12** -0.09 -0.12 -0.16* -0.16** 0.02 -0.13 0.00 0.01 -0.11 
 (0.05) (0.12) (0.10) (0.07) (0.06) (0.08) (0.10) (0.13) (0.10) (0.13) 
First born -0.05 0.04 0.02 -0.06 0.00 -0.03 0.12 0.06 0.12 0.15** 
 (0.07) (0.02) (0.05) (0.08) (0.10) (0.13) (0.08) (0.10) (0.07) (0.05) 
Same language home/school -0.04 -0.09 0.09 -0.01 0.09 0.07 0.04 -0.02 -0.08 -0.06 
 (0.06) (0.08) (0.14) (0.10) (0.07) (0.09) (0.09) (0.09) (0.06) (0.12) 

Wealth quintile (vs. Quintile 5)           
Quintile 1 -0.20 -0.37** -0.37** -0.20 -0.40*** -0.43** -0.16 -0.15 -0.16* -0.20 
 (0.12) (0.14) (0.11) (0.12) (0.09) (0.17) (0.12) (0.14) (0.08) (0.15) 
Quintile 2 -0.38** -0.40** -0.37** -0.23 -0.33** -0.31 -0.21 -0.09 -0.12 -0.19 
 (0.12) (0.13) (0.13) (0.14) (0.13) (0.20) (0.13) (0.20) (0.10) (0.13) 
Quintile 3 -0.09 -0.27** -0.10 -0.07 -0.26** -0.24 -0.03 -0.07 -0.10 -0.12 
 (0.11) (0.09) (0.12) (0.11) (0.11) (0.19) (0.11) (0.13) (0.11) (0.16) 
Quintile 4 0.12 -0.21 0.01 0.04 -0.27 -0.12 -0.02 -0.02 -0.05 0.00 

 (0.11) (0.13) (0.08) (0.09) (0.15) (0.12) (0.07) (0.16) (0.14) (0.15) 
Region (vs. Addis Ababa)           

Living in Tigray -0.27 -0.60*** -1.00*** 0.59*** -0.39** -1.01*** 0.35 0.06 -0.38 -0.10 
 (0.20) (0.15) (0.16) (0.13) (0.16) (0.20) (0.29) (0.14) (0.21) (0.30) 
Living in Amhara 0.05 0.27* 0.03 0.19 -0.03 -0.44*** 0.16 0.27 0.38** -0.24* 
 (0.15) (0.14) (0.09) (0.16) (0.16) (0.13) (0.18) (0.14) (0.13) (0.13) 
Living in Oromia -0.65*** -0.23* -0.33* -0.56*** -0.33* -0.79*** -0.49** -0.90*** -0.76*** -0.54*** 
 (0.15) (0.10) (0.16) (0.14) (0.15) (0.10) (0.15) (0.13) (0.09) (0.10) 

Living in SNNP 0.14 -0.34*** -0.27*** 0.10 -0.52*** -0.77*** -0.18 -0.37*** -0.52*** -0.63*** 
 (0.09) (0.10) (0.05) (0.09) (0.14) (0.06) (0.12) (0.11) (0.07) (0.12) 

Child’s ethnicity (vs. SNNP)           
Ethnicity 1: Others 0.28 0.40** 0.19*** 0.22 0.24 0.14 0.14 0.44*** 0.17 0.15 
 (0.18) (0.15) (0.04) (0.15) (0.17) (0.08) (0.16) (0.08) (0.15) (0.11) 
Ethnicity 3: Oromo 0.34* 0.21 0.04 0.11 -0.12 -0.05 0.10 0.32* 0.11 0.13 
 (0.17) (0.17) (0.06) (0.09) (0.11) (0.09) (0.18) (0.16) (0.08) (0.23) 
Ethnicity 4: Tigrian 0.19 0.40** 0.22** 0.16 0.12 0.34 0.32 0.24* 0.16 0.10 
 (0.27) (0.17) (0.07) (0.18) (0.14) (0.19) (0.30) (0.12) (0.19) (0.38) 

Ethnicity 5: Amhara 0.34 0.32* 0.10** 0.14 -0.05 0.05 0.15 0.22** 0.21* 0.23* 
 (0.19) (0.17) (0.04) (0.15) (0.10) (0.16) (0.18) (0.08) (0.11) (0.11) 
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Constant -2.13*** -0.96 0.79 -2.01*** 0.78 0.99* -1.68*** -1.80** -1.56** -0.81 
 (0.47) (0.61) (0.51) (0.49) (0.57) (0.52) (0.48) (0.62) (0.56) (0.47) 

Observations 652 632 652 646 622 652 650 610 652 602 
R-squared 0.39 0.35 0.34 0.35 0.20 0.30 0.22 0.24 0.34 0.34 

Note: (1) Preschool coefficients and ATTs are based on the standardised score (z-score) of each test; (2) robust standard errors, clustered at community level, in parentheses; (3) Ethnicity in SNNP 
includes Hadiva, Sidama, Wolayta; and others includes Agew, Gurage, Kambata.  
 *** p<0.01, ** p<0.05, *p<0.1  
Source: Young Lives Dataset Round 2 to Round 5, Young Lives 
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Table E. 3. Young Lives: Relation between Preschool and Educational Attainment, Full OLS/ Logit Model (Pooled/Urban sample) 
 POOLED SAMPLE URBAN SAMPLE 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

 
Highest grade achieved 

On-time progression 
(Odds ratio) 

Highest grade achieved 
On-time progression 

(Odds ratio) 

Round Round 3 Round 4 Round 5 Round 3 Round 4 Round 5 Round 3 Round 4 
(Age) (age 8) (age 12) (age 15) (age 8) (age 12) (age 15) (age 8) (age 12) 

Preschool attendance 0.62*** 0.56*** 2.04** 3.39*** 0.40* 0.37 1.82 2.64*** 

 (0.15) (0.18) (0.60) (0.66) (0.18) (0.24) (0.72) (0.68) 
Private Spending on education (vs. high)        

Low -0.06 -0.16 1.15 1.01 -0.39*** -0.31*** 1.13 0.75** 

 (0.09) (0.10) (0.19) (0.14) (0.07) (0.05) (0.24) (0.10) 
Middle 0.09 0.03 0.99 1.05 0.21** 0.26* 0.97 1.45 

 (0.06) (0.08) (0.14) (0.13) (0.09) (0.12) (0.14) (0.33) 
Parental aspiration 0.19 0.28* 1.48** 1.55** -0.04 -0.13 1.46* 1.25 

 (0.13) (0.15) (0.25) (0.28) (0.12) (0.14) (0.30) (0.38) 
Age 14 (vs. Age 15)  -0.43*** -0.26*** 1.00 0.78* -0.16 -0.17 1.42** 1.09 

 (0.07) (0.07) (0.15) (0.10) (0.16) (0.16) (0.24) (0.38) 
Female (vs. Male) 0.23** 0.44*** 1.34 1.65*** -0.30** -0.35* 0.91 0.45** 

 (0.09) (0.12) (0.27) (0.28) (0.12) (0.16) (0.26) (0.15) 
PPVT at age 5 (vs. High)         

Middle -0.03 -0.04 1.26* 0.85 -0.11 -0.15 0.97 0.78 

 (0.07) (0.10) (0.17) (0.13) (0.14) (0.13) (0.26) (0.18) 
High 0.10 0.18 1.17 1.12 0.26*** 0.20** 1.50*** 1.30 

 (0.11) (0.11) (0.20) (0.25) (0.06) (0.08) (0.22) (0.31) 
CDA-Q(Math) at age 5 (vs. High)        

Low -0.15 -0.20 1.21 0.87 0.16* 0.14 1.52*** 1.06 

 (0.16) (0.17) (0.29) (0.23) (0.08) (0.14) (0.22) (0.33) 
Middle -0.13 -0.20** 1.11 0.80* -0.17 -0.46* 1.23 0.68 

 (0.09) (0.09) (0.20) (0.10) (0.15) (0.20) (0.45) (0.38) 
Height-for-age z-score at age 5 (vs. High)        

Low -0.49*** -0.44*** 0.58*** 0.56*** -0.31* -0.32* 1.53 0.78 

 (0.08) (0.10) (0.09) (0.10) (0.14) (0.15) (0.51) (0.20) 
Middle -0.14* -0.19 0.83 0.73 -0.13 -0.12 0.94 0.75 

 (0.08) (0.11) (0.11) (0.16) (0.13) (0.17) (0.23) (0.17) 
Health prob. at age 5(vs. No) -0.17 -0.26 0.89 0.75 0.13 -0.04 0.75 0.98 

 (0.12) (0.17) (0.17) (0.18) (0.17) (0.14) (0.32) (0.37) 
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Father’s highest education level (vs. Secondary and above)       
No education  -0.26** -0.40** 1.18 0.64** 0.08 -0.05 1.08 0.87 

 (0.12) (0.15) (0.28) (0.14) (0.06) (0.10) (0.33) (0.26) 
Primary education -0.25** -0.30** 1.01 0.72 -0.13 -0.14 1.09 0.99 

 (0.11) (0.14) (0.22) (0.15) (0.11) (0.13) (0.18) (0.21) 
Caregiver’s highest education level (vs. Secondary and above)      

No education  0.08 -0.08 0.70 0.88 0.09 0.09 0.94 0.93 

 (0.13) (0.13) (0.22) (0.27) (0.10) (0.14) (0.22) (0.25) 
Primary education 0.08 -0.03 1.12 0.97 0.02 0.02 0.88 1.34 

 (0.08) (0.11) (0.30) (0.25) (0.14) (0.17) (0.20) (0.40) 
Household size (> 6)  -0.19** -0.14 0.83 0.85 -0.03 0.12 1.35 1.50 

 (0.07) (0.08) (0.10) (0.13) (0.14) (0.21) (0.40) (0.45) 
First born 0.01 0.22* 0.93 0.98 -0.36** -0.58*** 1.30 0.43** 

 (0.10) (0.12) (0.15) (0.17) (0.15) (0.12) (0.38) (0.16) 
Same language home/school -0.07 -0.08 0.71 1.15 -0.22 -0.35 1.20 0.55 

 (0.13) (0.14) (0.15) (0.25) (0.20) (0.25) (0.24) (0.27) 
Wealth quintile (vs. Quintile 4)         

Quintile 1 -0.49*** -0.75*** 0.33*** 0.31*** -0.15 -0.23 1.07 0.70 

 (0.17) (0.19) (0.08) (0.08) (0.19) (0.17) (0.25) (0.29) 
Quintile 2 -0.15 -0.38** 0.66** 0.62* 0.00 -0.03 0.82 0.86 

 (0.14) (0.16) (0.12) (0.17) (0.13) (0.16) (0.19) (0.14) 
Quintile 3 -0.17* -0.18* 0.67** 0.71 -0.02 -0.02 0.95 1.26 

 (0.09) (0.10) (0.12) (0.15) (0.18) (0.22) (0.26) (0.38) 
Quintile 5 0.12 0.17 0.70** 1.22 -0.00 0.01 1.04 1.30 

 (0.08) (0.11) (0.12) (0.32) (0.12) (0.15) (0.19) (0.29) 
Region (vs. Addis Ababa)         

Living in Tigray 1.49*** 1.54*** 3.44*** 7.48*** 1.07** 1.31*** 3.01*** 5.00*** 

 (0.38) (0.42) (1.05) (4.67) (0.33) (0.38) (1.03) (2.59) 
Living in Amhara 0.27 0.44 2.06* 2.50** 0.93** 1.17*** 1.70 6.13*** 

 (0.32) (0.32) (0.85) (0.95) (0.30) (0.30) (0.65) (2.69) 
Living in Oromia -0.25 -0.11 1.18 0.78 -0.36* -0.25 1.01 0.63 

 (0.20) (0.22) (0.32) (0.21) (0.17) (0.19) (0.27) (0.24) 
Living in SNNP -0.98*** -0.77*** 0.86 0.44*** -0.68*** -0.63*** 1.03 0.42*** 

 (0.19) (0.20) (0.30) (0.09) (0.16) (0.15) (0.26) (0.11) 
Child’s ethnicity (vs. SNNP)         

Ethnicity 1: Others -0.17 0.07 0.94 1.82* 0.33 0.44* 1.61 2.21 

 (0.18) (0.17) (0.30) (0.60) (0.20) (0.23) (0.77) (1.25) 
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Ethnicity 3: Oromo -0.05 0.10 1.52* 1.71 0.37 0.30 2.09*** 1.49 

 (0.17) (0.16) (0.36) (0.56) (0.21) (0.23) (0.55) (0.67) 
Ethnicity 4: Tigrian -0.05 0.29 2.41*** 2.52** 0.19 0.26 3.12*** 1.96 

 (0.33) (0.35) (0.71) (0.96) (0.38) (0.39) (1.35) (0.87) 
Ethnicity 5: Amhara 0.08 0.24 1.47 1.59* 0.26 0.36 1.80* 1.40 

 (0.15) (0.15) (0.35) (0.40) (0.24) (0.27) (0.60) (0.56) 

urban 0.42 0.41 1.56** 1.45 - - - - 

 (0.25) (0.27) (0.31) (0.53) - - - - 

Constant -2.13*** -0.96 0.79 -2.01*** 0.78 0.99* -1.68*** -1.80** 
 (0.47) (0.61) (0.51) (0.49) (0.57) (0.52) (0.48) (0.62) 

Observations 1,402 1,447 1,447 1,447 649 652 652 652 

R-squared 0.43 0.38 - - 0.38 0.37 - - 
Note: (1) Model 1, 2, 5, 6 use OLS regression, and standard errors, clustered at community level, in parentheses; (2) Model 3, 4, 7, 8 use Logit regression, and standard errors, clustered at 
community level, in parentheses; (3) Ethnicity in SNNP includes Hadiva, Sidama, Wolayta; and others includes Agew, Gurage, Kambata..  
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives  
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Table E. 4. Young Lives: Results of SEM with Observable School Characteristics 
 (1) (2) 

 PPVT- 

Round 4 

PPVT- 

Round 5 

Age  (age 12) (age 15) 

Path coefficiePath coefficients (S.E) 

Preschool     Preschool attendance  School Environments  PPVT outcome 

Total effects 

(SE) 

1.04*** 

(0.09) 

1.02*** 

(0.09) 

Direct effects 

(SE) 

0.92*** 

(0.08) 

0.94*** 

(0.09) 

Indirect effects 

(SE) 

0.12*** 

(0.03) 

0.08*** 

(0.03) 

% of total effect mediated 11.5 7.8 

% of total effect unmediated 88.5 92.2 

Ratio of indirect effect to direct effect (Rm) 0.13 0.09 

Model Fit   

Chi-Square (DF) 61.01(6) 62.87(6) 

CFI 0.80 0.75 

RMSEA 0.14 0.14 
SRMR 0.07 0.07 

R-Square 0.24 0.23 
  Note: (1) The resulting structural coefficients (standardised regression coefficients) describe the direct and indirect effects. 

(2) Standard errors are in parentheses; (3) DF: Degree of Freedom; (4) CFI: Comparative Fit Index; (5) RMSEA: Root Mean 
Square Error of Approximation; (6) SRMR: Standardised Root Mean Square Residual.  
*** p<0.01, ** p<0.05, *p<0.1 
Source: Young Lives Dataset Round 2 to Round 5, Young Lives School Survey Dataset 2012-2013, Young Lives  
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