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Abstract

The shape gradients of an instability’s growth rate and frequency are derived for an unstable mode calculated from a
global stability analysis. These are calculated and interpreted physically for the flow around a cylinder at a Reynolds
number of 50. This is a well-known canonical flow, which is often used to discover fundamental behaviour in bluff body
flows and to test new numerical techniques. This paper shows that shape deformations affect hydrodynamic oscillations
mainly through their influence on the steady base-flow, rather than through their influence on the unsteady feedback
mechanism. Deformations that strongly affect the base-flow are shown to strongly affect the frequency and growth rate,
as expected. In addition, subtle deformations at the rear of the cylinder are shown to exploit small base-flow changes
that have a disproportionately large influence on the growth rate. The physical mechanism behind this is shown to be
similar to the well-known phenomenon of ‘base bleed’. The method presented in this paper is general and versatile. It
provides engineers with gradient information in order to optimize designs systematically. In addition, it provides physical
insight, which enables intuitive design changes that would be outside the range of an optimization algorithm or existing
geometric parametrization.
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1. Introduction

Many flows are unstable and some oscillate robustly at
well-defined frequencies. These oscillations are sometimes
desirable, for example in vortex shedding flowmeters [1],
and sometimes undesirable, for example in cyclonic sepa-
rators [2]. In many cases, a designer would like to alter
the growth rate or frequency of these hydrodynamic os-
cillations by changing the shape of an object. Previously,
shape changes to stabilise the flow or to change the oscil-
lation frequency were tried one by one, either numerically
[3] or experimentally. This is too expensive for practical
applications where geometries may be described by many
hundreds of parameters. Adjoint-based shape optimiza-
tion techniques that efficiently calculate the shape gradi-
ent of an instability’s growth rate have recently been in-
troduced in the literature [4, 5]. These studies focus solely
on the growth-rate of the instability and treat the shape
gradient as a black box in an optimization algorithm. The
purpose of this paper is to extend these techniques, de-
riving both the shape gradient of the instability’s growth
rate and frequency, and to provide physical interpretation.
This physical insight enables engineers to perform intu-
itive design changes that would be outside the range of an
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optimization algorithm or existing geometric parametriza-
tion. These techniques are demonstrated successfully on
the canonical case of flow around a cylinder at a Reynolds
number of 50, opening up the possibility for its application
to other flows.

Above a critical Reynolds number Rec≈ 47, the steady
flow around a 2D cylinder becomes unstable to hydrody-
namic oscillations at a well-defined Strouhal number [6].
These oscillations are caused by a sufficiently large region
of local absolute instability in the wake of the cylinder
[7, 8, 9]. A linear stability analysis of small perturbations
to the 2D steady flow leads to an eigenvalue problem for
the perturbation’s frequency and growth rate (the eigen-
value) and spatial structure (the eigenfunction) [10]. The
spatial structure, which is often called the direct global
mode, is given by the right eigenfunction. The receptiv-
ity of the flow to external forcing, which is often called
the adjoint global mode, is given by the left eigenfunc-
tion. Overlapping the direct and adjoint global modes
gives the structural sensitivity, which quantifies the eigen-
value’s sensitivity to localized unsteady feedback [10, 11].
Combining these with the adjoint of the base-flow [6] gives
the base-flow sensitivity, which quantifies the eigenvalue’s
sensitivity to localized changes to the base-flow.

The structural sensitivity and the base-flow sensitivity
have been used to investigate open loop control schemes
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for the flow oscillations around a cylinder [12]. Examples
include modification of the base-flow [12], boundary blow-
ing and suction [13], and placement of a small cylinder
just downstream [6, 10, 11, 14]. In many practical sit-
uations, however, one would like to alter the eigenvalue
by changing the shape of the object itself, rather than by
blowing or sucking through its surface. Examples where
this would be useful are control of the precessing vortex
core in cyclonic separators [2] and control of hydrodynamic
oscillations in gas turbine fuel injectors [15, 16, 17]. The
sensitivity of the eigenvalue to shape changes could be cal-
culated by finite differences [3] but this is too expensive to
be incorporated into a gradient-based optimization algo-
rithm. The eigenvalue sensitivity can also be calculated
using adjoint methods by combining the framework of the
structural and base-flow sensitivity with the techniques pi-
oneered by Pironneau [18] for the shape optimization of
hydrodynamic systems. This was done using a Lagrange
multiplier method for the flow in a channel containing a
rapid expansion by Nakazawa & Azegami [4] and recently
applied for the case of a cylinder by Kiriyama et. al. [5].
These papers contain no physical interpretation, however,
and consider only the growth rate sensitivity.

This paper calculates the sensitivity to shape changes of
growth rates and frequencies for the flow around a cylinder
at Re = 50. This is significantly more challenging than cal-
culating the sensitivity to base-flow modifications, which
has been done by Marquet et al. [6], because the computa-
tional domain changes. The paper shows that two types of
shape deformation contribute to the eigenvalue sensitivi-
ties: (i) deformations that cause a large change to the base-
flow, which then inefficiently alter the eigenvalue, and (ii)
deformations that cause a small change to the base-flow,
which then efficiently alter the eigenvalue. These terms
are interpreted physically and then combined with infor-
mation about how the deformations alter the production
and advection of perturbations. This allows the physical
mechanisms causing the eigenvalue sensitivity to be inter-
preted in terms of existing observations, such as the fact
that instability can be reduced by bleeding flow slowly into
the recirculating zone [19], which is known as ‘base bleed’.

2. Mathematical framework

We consider the viscous open flow past an object (figure
1). The state variable, q ≡ [u, p]T , contains the velocity
field, u, and the pressure field, p. The state is governed by
the incompressible Navier–Stokes equations. The far-field
boundary conditions are: a prescribed velocity, u+, on the
inlet, Γ+; a no-stress condition on the outlet, Γ−; and
perfect-slip conditions on the lateral boundaries, Γs. In-
side the domain, a closed no-slip boundary, Γ0, defines the
shape of the object. The governing equations and bound-
ary conditions are written:

N (q) =

(
∂u
∂t +∇u · u +∇p− ν∇2u

∇ · u

)
= 0 ; (1a)

Γ+

Γs

Γs

Γ0

Γ−
u

Ω

Figure 1: The generic domain, Ω, represents the viscous open flow
over an object. The external boundary of the domain consists of
an inlet (Γ+), outlet (Γ−) and perfect-slip (Γs) surface. A no-slip
surface (Γ0) defines the shape of the object.

u = u+ on Γ+; pñ− ν ∂u

∂n
= 0 on Γ−;

∂u

∂n
· τ̃ = u · ñ = 0 on Γs; u = 0 on Γ0.

(1b)

We use the tensorial notation, (∇u)ij ≡ ∂ui
∂xj

. The unit

normal and unit tangent vectors are ñ and τ̃ . The spatial
derivative of u in the normal direction is ∂u

∂n ≡ ∇u · ñ and

in the tangential direction is ∂u
∂τ ≡ ∇u · τ̃ .

The base-flow, q̄, is a steady solution to (1). The base-
flow satisfies the no-slip condition on Γ0 and so is a func-
tion of Γ0, i.e. q̄ ≡ q̄(Γ0).

We perform a global linear stability analysis by adding
to the base-flow an infinitesimal perturbation of the form
q̂ est, where q̂ and s are both complex. The governing
equations for q̂ and s are the Navier–Stokes equations lin-
earized about q̄:

s

(
û
0

)
+ Lq̂ = 0 ; (2a)

where Lq̂ ≡
(
∇ ? ·ū +∇ū · ?− ν∇2? ∇?

∇ · ? 0

)(
û
p̂

)
;

(2b)

û = 0 on Γ+; p̂ñ− ν ∂û

∂n
= 0 on Γ−;

∂û

∂n
· τ̃ = û · ñ = 0 on Γs; û = 0 on Γ0.

(2c)

This is an eigenvalue problem whose solution is a series
of eigenmodes, which are ordered pairs, (q̂, s), consisting
of a complex eigenfunction, q̂, and its corresponding com-
plex eigenvalue, s. The real part of s is the eigenmode’s
growth rate, σ, and the imaginary part is the eigenmode’s
frequency, ω. The sensitivity analysis that follows is spe-
cific to a chosen eigenmode, typically that with the largest
growth rate. We normalise the eigenfunction by setting
‖û‖Ω = 1, where ‖?‖Ω is the norm corresponding to the
inner product, 〈a,b〉Ω ≡

∫
Ω

a∗ · b dΩ.

The eigenfunction satisfies a no-slip condition on Γ0 and
depends on the base-flow, q̄. The eigenmode is therefore
a function of both Γ0 and q̄, i.e. q̂ ≡ q̂(Γ0, q̄(Γ0)) and
s ≡ s(Γ0, q̄(Γ0)).
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Figure 2: The surface Γ0 is given by x(θ), a function of the surface
coordinate, θ. The subsequent deformation onto Γε is by the small
motion εg(θ) in the direction of the unit normal, ñ(θ). The unit
normal is defined as pointing out of the domain, Ω, so a positive
deformation (g > 0) deforms the shape inwards, whilst a negative
deformation (g < 0) deforms the shape outwards.

2.1. Deformation of Γ0

Points lying on the no-slip surface, Γ0, are given by x(θ),
a function of the surface coordinate, θ. We create the
deformed surface, Γε, by moving each point on Γ0 a small
amount εg(θ) in the direction of the surface normal (figure
2). Whilst deforming the surface, we keep fixed both the
inlet velocity, u+, and the locations of the inlet, outlet and
perfect-slip boundaries.

We now consider how the eigenmode changes as we de-
form Γ0. A Taylor expansion of the eigenmode gives:

q̂(Γε, q̄(Γε)) = q̂(Γ0, q̄(Γ0))︸ ︷︷ ︸
q̂0

+ε
∂q̂

∂Γ0
◦ g︸ ︷︷ ︸

q̂F1

+ε
∂q̂

∂q̄
◦ q̄1︸ ︷︷ ︸

q̂B1

+O(ε2) ;

(3a)

s(Γε, q̄(Γε)) = s(Γ0, q̄(Γ0))︸ ︷︷ ︸
s0

+ε
∂s

∂Γ0
◦ g︸ ︷︷ ︸

sF1

+ε
∂s

∂q̄
◦ q̄1︸ ︷︷ ︸
sB1

+O(ε2) ;

(3b)

where the first order response of the eigenfunction and
eigenvalue has been split into (i) a component due to
changing Γ0 with q̄ fixed: q̂F1 and sF1 , and (ii) a com-
ponent due to changing q̄ with Γ0 fixed: q̂B1 and sB1 . The
component sF1 will be referred to as the feedback contri-
bution to the eigenvalue response because it is caused by
changes in the unsteady feedback mechanism of the mode.
The component sB1 will be referred to as the base-flow con-
tribution to the eigenvalue response because it is caused
by the change in base-flow caused by deforming Γ0. The
change in base-flow, q̄1, is defined by the Taylor expansion
of the base-flow:

q̄(Γε) = q̄(Γ0)︸ ︷︷ ︸
q̄0

+ε
∂q̄

∂Γ0
◦ g︸ ︷︷ ︸

q̄1

+O(ε2) . (4)

2.2. Evaluation of the feedback contribution to the eigen-
value response, sF1

We substitute the Taylor expansions, (3) and (4), into
the governing equations, (1) and (2), and collect terms at

order ε. The governing equations for the feedback contri-
bution to the eigenmode response are:

s0

(
ûF1
0

)
+ sF1

(
û0

0

)
+ Lq̂F1 = 0 ; (5a)

ûF1 = 0 on Γ+; p̂F1 ñ− ν ∂ûF1
∂n

= 0 on Γ− ;

∂ûF1
∂n
· τ̃ = ûF1 · ñ = 0 on Γs; ûF1 = −g ∂û0

∂n
on Γ0 ;

(5b)

where the boundary conditions on the fixed boundaries are
the linearized boundary conditions of (2c). The boundary
condition on Γ0 comes from referring the no-slip condi-
tion on the deformed surface, Γε, back to the undeformed
surface, Γ0. It states that, at first order, deforming the
surface appears as a change in the mode’s oscillating ve-
locity at Γ0. This change in velocity is tangential to the
surface and proportional to the local shear-stress.

The feedback contribution to the eigenvalue response is
a result of forcing the eigenmode’s governing equations by
this change in tangential velocity at the no-slip bound-
ary. The forced equations (5) are degenerate, admitting
solutions q̂F1 containing an arbitrary amount of q̂0. To
determine sF1 a compatibility condition must be satisfied.
Applying the compatibility condition requires use of the
adjoint eigenmode, (q̂†0, s

∗
0), which represents the recep-

tivity of the eigenvalue to a forcing of the eigenmode’s
governing equations. The adjoint eigenmode is defined by:

s∗0

(
û†0
0

)
+ L†q̂†0 = 0 (6a)

〈û†0, û0〉Ω = 1 (6b)

û†0 = 0 on Γ+; p̂†0ñ + ν
∂û†0
∂n

= −(û0 · ñ)û†0 on Γ−;

∂û†0
∂n
· τ̃ = û†0 · ñ = 0 on Γs; û†0 = 0 on Γ0 ;

(6c)

where the operator, L†, is the adjoint of the operator L.
The adjoint eigenfunction is normalised by (6b).

The compatibility condition is applied by taking the in-
ner product of both sides of (5a) with the adjoint eigen-

function, q̂†0. Repeated application of the divergence the-
orem allows the feedback contribution of the eigenvalue to
be evaluated as:

sF1 =

∫
Γ0

gν
∂û0

∂n
· ∂û†∗0
∂n

dΓ . (7)

The factor of
∂û†∗0
∂n measures how sensitive the eigenvalue

is to a change in the mode’s oscillating tangential velocity.
The factor of ∂û0

∂n measures how much the mode’s oscil-
lating tangential velocity will change when the surface is
deformed.
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2.3. Evaluation of the base-flow contribution to the eigen-
value response, sB1

The governing equations for the base-flow contribution
to the eigenmode response are:

s0

(
ûB1
0

)
+ sB1

(
û0

0

)
+ Lq̂B1 + δL(q̄1)q̂0 = 0 ; (8a)

ûB1 = 0 on Γ+; p̂B1 ñ− ν ∂ûB1
∂n

= 0 on Γ− ;

∂ûB1
∂n
· τ̃ = ûB1 · ñ = 0 on Γs; ûB1 = 0 on Γ0 .

(8b)

For the base-flow contribution to the eigenvalue response,
the effect of deforming Γ0 appears as a change in base-flow,
q̄1. This change in base-flow then forces the eigenmode’s
governing equations by a change, δL(q̄1), to the linear
operator, L. The change in linear operator is given by:

δL(q̄1) ≡
(
∇ ? ·ū1 +∇ū1 · ? 0

0 0

)
. (9)

The governing equations for q̂B1 are also degenerate.
Compatibility conditions must again be applied using the
adjoint eigenmode in order to determine sB1 , the base-flow
contribution to the eigenvalue response. Taking the inner
product of both sides with q̂†0 and applying the divergence
theorem gives [6]:

sB1 = 〈∇Bs, ū1〉Ω ; (10a)

where ∇Bs ≡ −(∇û∗0)T · û†0 +∇û†0 · û∗0 ; (10b)

where ∇Bs is the sensitivity of the eigenvalue to changes
in the base-flow and ū1 is the change to the base-flow ve-
locity. This sensitivity, ∇Bs, is complex valued with its
real part, ∇Bσ, being the sensitivity of the growth-rate
to baseflow changes and its imaginary part, −∇Bω, being
the sensitivity of the frequency to base-flow changes.

2.3.1. Evaluation of sB1 by direct calculation of the change
in base-flow, q̄1

For a given deformation, g, the expression (10) can be
evaluated after calculating the change in base-flow velocity,
ū1 . The governing equations for the change in base-flow,
q̄1, are:

Lq̄1 = 0 ; (11a)

ū1 = 0 on Γ+; p̄1ñ− ν
∂ū1

∂n
= 0 on Γ−;

(11b)∂ū1

∂n
· τ̃ = ū1 · ñ = 0 on Γs; ū1 = −g ∂ū0

∂n
on Γ0 .

To understand better how a change in the base-flow al-
ters the eigenvalue we rewrite (10) as:

σB1 = ‖∇Bσ‖Ω‖ū1‖Ωµσ, ωB1 = ‖∇Bω‖Ω‖ū1‖Ωµω ;
(12a)

where µσ ≡ 〈∇̃Bσ, ˜̄u1〉Ω, µω ≡ 〈∇̃Bω, ˜̄u1〉Ω ; (12b)

and |µσ| < 1, |µω| < 1 . (12c)

The terms ∇̃Bσ and ∇̃Bω are the normalised growth rate
and frequency sensitivities respectively. The term ˜̄u1 is
the normalised change in base-flow velocity. From (12)
the changes in growth rate and frequency are a product
of: (i) the sensitivity of the growth rate and frequency
to base-flow changes, ‖∇Bσ‖Ω and ‖∇Bω‖Ω; (ii) the size
of the change in base-flow velocity, ‖ū1‖Ω; and (iii) how
effective the base-flow change is at changing the growth
rate and frequency, µσ and µω. In §4 we examine each of
these components in turn in order to explain the structure
of the base-flow contribution to the shape sensitivity .

2.3.2. Evaluation of sB1 by calculation of the adjoint base-

flow, q̄†0
Direct calculation of the change in base-flow allows us

to understand the physics behind the base-flow response
but requires solving (11) for each deformation of interest,
g. We avoid having to solve (11) for every deformation by

introducing an adjoint base-flow, q̄†0, governed by:

L†q̄†0 + δL†(q̂0)q̄†0 = 0 ; (13a)

ū†0 = 0 on Γ+; p†0ñ + ν
∂ū†0
∂n

= A on Γ−;

∂ū†0
∂n
· τ̃ = ū†0 · ñ = 0 on Γs; ū†0 = 0 on Γ0 ;

(13b)

where A = −(ū0 · ñ)ū†0 − (û∗0 · ñ)û†0 . (13c)

The operator δL† is the adjoint of the operator δL.
We add the inner product between the adjoint eigen-

function, q̂†0, and (8) to the inner product between the ad-

joint base-flow, q̄†0, and (11). After repeated application
of the divergence theorem, the governing equations (13)

for q̄†0 appear as a result of eliminating terms containing

q̄1. Using this definition of q̄†0 allows the base-flow contri-
bution to the eigenvalue response to be evaluated directly
from the deformation, g, by:

sB1 =

∫
Γ0

gν
∂ū0

∂n
· ∂ū†∗0
∂n

dΓ . (14)

The factor
∂ū†0
∂n measures how sensitive the eigenvalue is to

a change in the base-flow’s tangential velocity. The factor
∂ū0

∂n measures how much base-flow’s tangential velocity will
change when the surface is deformed.

2.4. Overall first order eigenvalue response, s1

We can now add the feedback and base-flow contribu-
tions of the eigenvalue response to obtain the overall first
order eigenvalue response, s1 = sF1 + sB1 :

s1 =

∫
Γ0

g(θ)G(θ)dΓ , (15a)

where G = GF +GB ; (15b)

GF ≡ ν ∂û0

∂n
· ∂û†∗0
∂n

; GB ≡ ν ∂ū0

∂n
· ∂ū†∗0
∂n

. (15c)
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Boundary Vertex density xl xr yc

Γ0 160.0 - - -
B0 20 -1 2 1.5
B1 8 -5 45 5
B2 1.7 -50 100 20
B3 0.25 -110 170 60

Table 1: Box coordinates and vertices per unit distance on each
surface. The resulting mesh has ≈ 138, 000 vertices and ≈ 278, 000
triangles. The number of vertices on the cylinder surface, Nsurf, is
Nsurf = 500.

The value of Re(G) at each point, x(θ), on Γ0 represents
the sensitivity of the growth rate to a local deformation,
g(θ). If the surface is locally deformed in the direction of
its unit normal then the growth rate increases if Re(G) is
positive and decreases if Re(G) is negative. The Re(GF )
component is the sensitivity of the growth rate due to the
feedback contribution. The Re(GB) component is the sen-
sitivity due to the base-flow contribution.

The value of Im(G) at each x(θ) represents the sensitiv-
ity of the frequency to local deformations. The Im(GF )
and Im(GB) terms, similarly, are the sensitivities due to
the feedback and base-flow contributions to the frequency
response.

An inner product for real, scalar functions defined on
the surface of Γ0 is given by:

〈a, b〉Γ =

∫
Γ0

a bdΓ . (16)

We define the magnitude of a deformation by using the
corresponding norm ‖g‖Γ =

√
〈g, g〉Γ. Under this defi-

nition of ‖g‖Γ, Re(G) becomes the shape gradient of the
growth rate; i.e. setting the deformation, g, to be a multi-
ple of Re(G) gives the largest change in growth rate for a
given ‖g‖Γ. Similarly, Im(G) becomes the shape gradient
of the frequency. Note that these shape gradients have
no constraints on the geometry or any features of the flow
other than that the governing equations of the base-flow
(1) and the eigenmode (2) must be satisfied.

3. Application to cylinder flow

We now consider the flow over a unit cylinder with unit
inflow (figure 3a) with Re = 50 based on the cylinder diam-
eter. This is above the critical Reynolds number, Rec ≈ 47,
for vortex shedding and so we expect the stability analysis
to yield a growing oscillating mode [6, 11].

The computational domain of figure 3a is constructed
via a Delaunay triangulation using GMSH [20]. The ver-
tex density increases towards the cylinder surface as de-
fined by the series of nested boxes shown in figure 3b and
table 1. The finite element package FEniCS [21] is used
for the spatial discretization using Taylor-Hood elements.

(b)
B3

B2

B1

B0

y, v

x, u

Γs

Γs

Γ0 Γ−Γ+
θ

(a)

Figure 3: (a) shows the domain, boundaries, coordinate system and
definition of the surface coordinate, θ ∈ [−π, π] . (b) shows how
the computational domain is broken into a series of boxes of in-
creasing vertex density with sides aligned with the streamwise and
cross-stream directions. The lower–left and upper–right box corners
are located at (xl,−yc), (xr,+yc) and are given in table 1.

The resulting large sparse matrices are manipulated us-
ing PETSc [22]. All matrix inversions are performed using
the direct LU solver MUMPS [23]. The steady base-flow is
found using a Newton-Raphson method. The generalized
eigenvalue problem from the direct and adjoint stability
problems are solved using SLEPc [24] with a shift-invert
method.

The converged base-flow is shown in figure 4a. The
global stability analysis reveals that there is only one
unstable mode, which has σ = 0.0129 s−1 and ω =
0.737 rad s−1, in good agreement with [6] and [11]. The
real and imaginary parts of û0 are in spatial quadrature.
They extend far downstream from the cylinder as shown

0

1

0 2 4 6 8

0

2

4

6

0 5 10 15 20 25 30 35

y

x

R

y

x

(a)

(b)

Figure 4: (a) Streamlines of the base-flow plotted as contours of the
streamfunction, ψ̄. The stagnation streamline, ψ̄ = 0, is dashed.
The other streamlines are at ψ̄ = −0.02, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1
and 1.3. The shaded region is the recirculation bubble, R, defined as
the region enclosed by ψ̄ = 0. (b) Streamlines of the most unstable
eigenfunction, plotted as contours of the perturbation streamfunc-
tion, Re(ψ̂).
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Figure 5: The growth rate sensitivity, Re(G), and frequency sensi-
tivity, Im(G), of the most unstable global mode in the flow behind
a cylinder. Locally deforming the cylinder inwards increases the
growth rate, σ, where Re(G) is positive and decreases the growth
rate where Re(G) is negative. Similarly, locally deforming the cylin-
der inwards increases the frequency, ω, where Im(G) is positive and
decreases the frequency where Im(G) is negative. The sensitivities
are symmetric about the centreline.

in figure 4b.

3.1. Shape sensitivity of the eigenvalue

We apply the analysis of §2 and calculate the eigen-
value sensitivity, G, decomposing it into the growth rate
sensitivity, Re(G), and the frequency sensitivity, Im(G).
The growth rate and frequency are both most sensitive to
deformations at the top and bottom of the cylinder and
relatively insensitive to deformations at the front and rear
of the cylinder (figure 5). This means that deformations
which increase or decrease the frontal area of the cylinder
lead to a greater eigenvalue response than deformations
that keep the frontal area constant. We use two such de-
formations to validate the sensitivities (figure 6) by com-
paring the actual eigenvalue response with the predicted
eigenvalue response (15).

As well as being the growth rate sensitivity, Re(G) is
also the shape gradient of the growth rate. For a fixed
deformation magnitude, ‖g‖Γ, and real constant, α, a de-
formation of the form g = αRe(G) causes the maximum
increase in growth rate if α > 0 and the maximum decrease
in growth growth rate if α < 0. Similarly, Im(G), is the
shape gradient of the frequency and with fixed ‖g‖Γ the
deformation g = αIm(G) causes the maximum increase in
frequency if α > 0 and causes the maximum decrease in
frequency if α < 0. Such deformations are shown in figure
7 for ‖g‖Γ = 0.1. The deformation that causes the maxi-
mum increase in growth rate is a bulge that increases the
frontal area of the cylinder. The deformation that causes
the maximum increase in frequency is a slightly different
bulge in the opposite direction. The shape gradients of the
growth rate and frequency have a similar structure but op-

posite sign i.e. Re(G)
‖Re(G)‖Γ ≈ −

Im(G)
‖Im(G)‖Γ . For fixed ‖g‖Γ, this

means the deformation that causes the maximum increase

Figure 6: The eigenvalue response as the unit cylinder is deformed
into an ellipse by scaling the cylinder in the cross–stream (black)
and streamwise (red) directions. The original location of the eigen-
value for the unperturbed cylinder is marked (�). For deformation
magnitudes ‖g‖Γ = 0.01, 0.02, 0.03, 0.04 and 0.05, the position of
the new eigenvalue is predicted (◦) using the sensitivity analysis of
§2 and computed (•) by repeating the full stability analysis. The
loci of the predicted eigenvalue positions are given by the solid lines.
This shows that, as expected, the eigenvalue response is predicted
accurately by the adjoint methods when ‖g‖Γ is small. The largest
deformation magnitude, ‖g‖Γ = 0.05, corresponds to a change in the
major–axis of the cylinder of ≈ 10%.

in growth rate is similar to the deformation that causes
the maximum decrease in frequency and vice–versa.

3.2. The feedback, GF , and base-flow, GB, contributions
to the shape sensitivity

The overall shape sensitivity, G, is split into its feedback,
GF , and base-flow, GB , contributions (figure 8). For both
the growth rate and the frequency, the feedback contribu-
tion is significantly smaller than the base-flow contribu-
tion. This means that control of the eigenvalue through
deformation of the surface is primarily through changes to
the base-flow

The feedback and base-flow contributions are caused by
changes in tangential velocity at the no-slip boundary. The
feedback contribution is due to the change in the eigen-
mode’s oscillating tangential velocity and the base-flow
contribution is due to the change in the base-flow’s steady
tangential velocity. Unlike eigenvalue control by suction
or blowing, where this change in tangential velocity can
be arbitrarily chosen by the designer, shape deformation
results in changes proportional to the local shear. This
gives rise to the factors of the wall-normal gradients of the
direct states, ∂û0

∂n and ∂ū0

∂n , appearing in the expressions
(15c) for GF and GB . The remaining factors in the ex-
pressions for GF and GB are the wall-normal gradients of

the adjoint states,
∂û†0
∂n and

∂ū†0
∂n , measuring the sensitivity

of the eigenvalue to a local change in tangential velocity.
The overlap between these wall-normal gradients deter-
mines the regions of the surface where the eigenvalue is
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Figure 7: The ‖g‖Γ = 0.1 deformations of the unit cylinder that give
the maximum increase/decrease in growth rate, σ, and the maximum
increase/decrease in frequency, ω.

Figure 8: (a) The growth rate sensitivity, Re(G), and (b) the fre-
quency sensitivity, Im(G), decomposed into feedback, GF , and base-
flow, GB , contributions.

sensitive to surface deformation. The phase difference be-
tween these terms determines whether deformations affect
the growth rate, σ, or the frequency, ω.

For the feedback contribution, figure 9(a i), the wall-
normal gradients differ by four orders of magnitude. The
eigenfunction has greatest wall-normal gradient (dashed
line) at the rear of the cylinder, falling to a minimum near
the separation point and remaining low at the front of
the cylinder. This makes shape changes at the rear of
the cylinder most effective at altering the eigenmode’s os-
cillating tangential velocity. The eigenvalue, however, is
most sensitive (dotted line) to changes in the oscillating
tangential velocity near the separation point, leading to a
sensitivity (solid line) that is largest around the rear of the
cylinder.

For the base-flow contribution, figure 9(a ii), the wall-
normal gradients have comparable magnitudes and much
greater overlap. Although the eigenvalue is most sensi-
tive to base-flow changes near the separation point where
the shear is identically zero, the base-flow shear quickly
increases over the front of the cylinder resulting in signifi-
cant overlap near the top of the cylinder. At the separation
point, where the feedback contribution is low and the base-
flow contribution is zero, shape deformations provide little
control of the eigenvalue. This confirms the observation
that the exact geometry around the cylinder’s separation
point has little influence on the stability of the flow [8].

The phase-difference between the direct and adjoint
eigenmode varies continuously across the surface of the
cylinder. In contrast, the phase-difference between the
direct and adjoint base-flow (figure 9(b)) is approximately
piecewise constant. Changes in the phase occur only at the
separation point, where the reversal of the base-flow shear
causes the phase difference to change discontinuously, and
at the front of the cylinder, where the phase of the adjoint
base-flow changes rapidly. The remainder of the cylinder
has approximately constant phase difference in each region
and with a phase difference such that deformations have
the opposite effect on the growth rate and frequency. This
leads the real part of GB to appear as a scaled and inverted
version of the imaginary part. Because the base-flow con-
tribution is the dominant contribution, this is responsible
for the shape gradients of the growth rate and frequency
having similar structure but opposite sign. This results in
similar changes in base-flow (figure 10) when applying a
deformation proportional to Re(GB), for the greatest in-
crease in growth-rate through base-flow changes, and pro-
portional to Im(GB), for the greatest increase in frequency
through base-flow changes.

4. Physical mechanisms behind the baseflow con-
tribution to the eigenvalue response, sB1

We now explain the physical mechanisms behind the
base-flow contributions to the growth rate and frequency
sensitivities and what causes them to have a similar struc-
ture. We do this by examining each of the terms giving

7



Figure 9: (a) The magnitudes and (b) the arguments of the con-
tributions to the eigenvalue shape sensitivity at each point on the
cylinder surface. The location of the separation point is shown by
the vertical dashed line. (a i) The feedback contribution, GF , split

into its factors
√
ν ∂û0
∂n

and
√
ν
∂û
†∗
0

∂n
. Additional factors of 102 are

included to aid visibility. (a ii) The base-flow contribution, GB , split

into its factors
√
ν ∂ū0
∂n

and
√
ν ∂ū0
∂n

. (b) The complex arguments of

GF and GB and whether they mainly act to increase (↑) or decrease
(↓) the growth-rate, σ, and frequency, ω.

0

1

0 2 4 6

0

1

0 2 4 6

y

x

(a)
1.50

0.00

y

x

(b)
1.50

0.00

Figure 10: The change in base-flow velocity, ū1, due to a unit de-
formation, g, in the direction of the base-flow contributions to the

shape gradient of (a) the growth-rate, giving g =
Re(GB)

‖Re(GB)‖Γ
, and

(b) the frequency, giving g =
Im(GB)

‖Im(GB)‖Γ
.

rise to the base-flow contribution: (i) the sensitivity of the
growth rate and frequency to base-flow changes, ‖∇Bσ‖Ω
and ‖∇Bω‖Ω; (ii) the size of the change in base-flow veloc-
ity, ‖ū1‖Ω; and (iii) the effectiveness of the base-flow ve-
locity change at changing the growth rate and frequency,
µσ and µω.

4.1. Sensitivity of the eigenvalue to base-flow changes,
∇Bs

The sensitivity of the eigenvalue to an arbitrary change
in base-flow velocity is given by ∇Bs. Because this in-
cludes the sensitivity to changes in base-flow velocity that
are not divergence-free, ∇Bs is also not divergence-free,
containing a component orthogonal to all divergence-free
vector fields. We give ∇Bs a more physically meaningful
interpretation by replacing it in all the previous definitions
with its projection onto the space of divergence-free vector
fields.

The projected growth rate sensitivity and frequency sen-
sitivity, figure 11a and figure 11b, now represent the op-
timal divergence-free changes to the base-flow velocity in
order to alter the growth rate and frequency. They are op-
timal in the sense that a change in base-flow velocity which
is a scalar multiple of these projected sensitivities will pro-
duce the greatest change in growth rate and frequency for
a given magnitude, ‖ū1‖Ω. The effectiveness quantities,
µσ, and µω, now represent how close the change in base-
flow velocity is to being a scalar multiple of the optimal
changes for the growth rate and frequency.

For the growth rate, the optimal change in base-flow ve-
locity is located primarily within the recirculation bubble,
R, defined as the region enclosed by the stagnation stream-
line (figure 4a). For the frequency, the optimal change in
base-flow velocity has large components both inside and
outside the recirculation bubble. The changes in base-flow
velocity caused by deformations proportional to GB are
not well aligned with these optimal changes and so are not
particularly effective at changing the eigenvalue.

8



In figure 11 we also decompose the projected sensitivi-
ties into the sensitivity due to changes in the production of
perturbations,

(
∇Bs

)
P

, and the sensitivity due to changes

in the advection of perturbations,
(
∇Bs

)
A

[6]. In §4.4 we
use this decomposition to show that deformations propor-
tional to the growth rate and frequency shape gradients
modify the eigenvalue primarily by changing how pertur-
bations are advected.

4.2. Magnitude of the change in base-flow velocity, ‖ū1‖Ω
The change in growth rate and frequency is proportional

to the magnitude of the change in base-flow velocity caused
by deforming the cylinder. We find a set of orthonormal
deformations ranked by the magnitude of the change in
base-flow velocity by rewriting (11) as:

ū1 = Cg (17)

where C is a linear operator mapping deformations to the
velocity component of the change in base-flow.

A generalized singular value decomposition of the dis-
cretized form of C produces a unique set of orthonormal
deformation basis functions, g̃i, and a unique set of or-
thonormal velocity basis functions, ˜̄u1,i. The deformation
basis functions, g̃i, and the velocity basis functions, ˜̄ui, are
related by:

λi ˜̄u1,i = Cg̃i ; (18a)

〈g̃i, g̃j〉Γ = 〈˜̄u1,i, ˜̄u1,j〉Ω =

{
0 for i 6= j

1 for i = j
; (18b)

where the λ2
i are the singular values of C. Physically, λ2

i

is the amplification of the deformation, being the square
of the ratio of the size of the change in base-flow veloc-
ity to the size of the deformation causing it. If a defor-
mation basis function has a large λ2

i then it will cause a
large change in base-flow velocity. Similarly, a deformation
basis-function with a small λ2

i will cause a small change in
the base-flow velocity.

We perform the singular value decomposition, obtaining
a set of deformation basis-functions that are purely sym-
metric or antisymmetric about the centerline. Due to the
symmetry of the base-flow and the eigenvalue’s sensitivity
to changes in base-flow velocity, ∇Bs, only symmetric de-
formations can alter the eigenvalue. The singular values
corresponding to the first 15 most amplified deformation
basis functions are shown in figure 12 and the shapes of
the deformation basis functions and corresponding velocity
basis functions are shown in figure 13.

For the most amplified deformations, the changes in the
velocity field take place primarily outside the recircula-
tion bubble. Because the optimal velocity change for al-
tering the growth rate is concentrated in the recircula-
tion bubble, R, we find an additional basis-function used
to represent the deformation giving the largest change in
velocity within R. This is done by repeating the singu-
lar value decomposition using the modified inner product,

〈a,b〉R ≡
∫
R a ·b dΩ, and orthogonalising against the first

fifteen basis functions found using the original inner prod-
uct. To perform the orthogonalisation we use a Gram-
Schmidt orthogonalisation process. This recirculation de-
formation basis function, g̃R, has a very low amplification
(figure 12) meaning it does not cause a large change in
base-flow velocity. The recirculation velocity basis func-
tion, ˜̄u1,R, has a significant component located within the
recirculation bubble (figure 13 ) and produces what is ef-
fectively a ‘base-bleed’.

We project the real and imaginary parts of the base-
flow contribution to the shape gradient, GB , onto the set
of basis functions using the surface inner product, 〈·, ·〉Γ.
This shows how much each basis function contributes to
the base-flow contributions to the growth rate, Re(GB),
and frequency, Im(GB). For the frequency, the most am-
plified basis function, g̃0, is responsible for almost all of
the base-flow contribution to the shape gradient. For the
growth-rate, although the most amplified basis function is
responsible for most of the base-flow contribution, there
are still noticeable (> 1%) contributions from the second
most amplified basis function, g̃1, and the recirculation
basis function, g̃R.

4.3. Effectiveness

The effectiveness of each of the velocity basis functions
at changing the growth rate and frequency is shown in
figure 15. The least amplified basis function, ˜̄u1,R, is the
most effective at altering the growth rate. The most ampli-
fied basis function, ˜̄u1,0, is the most effective at changing
the frequency.

4.3.1. Effectiveness at changing the growth rate, µσ
The local contributions to µσ from perturbation produc-

tion, µσ,P , and perturbation advection, µσ,A, are shown in
figure 16. The most amplified basis function, g̃0, acts by
changing how perturbations are advected, destabilising the
system by advecting perturbations back towards the site
of production. This produces an overall destabilisation de-
spite a reduced perturbation production due to weakening
of the shear layer.

In contrast, the second most amplified basis function,
g̃1, acts by changing how perturbations are produced by
strengthening the shear layer. This is complemented by a
smaller additional destabilisation due to increased advec-
tion of perturbations back towards the site of production.

The most effective basis function at altering the growth
rate, g̃R, does so by strongly reducing the production of
perturbations. The change in base-flow velocity has a high
velocity region close to and parallel to the centreline. This
is ‘base–bleed’, a change in base-flow velocity normally
achieved using blowing. This suppresses the region of ab-
solute instability in the cylinder wake [25, 26] primarily by
reduction of perturbation production but also by helping
to advect perturbations downstream.
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Figure 11: Sensitivity of the growth rate and frequency to changes in base-flow velocity projected onto the space of divergence-free fields.
The streamlines show the divergence–free base-flow responses that have the greatest influence on (a) the growth rate and (b) the frequency.
The colourscale shows the local influence of the base-flow responses from zero (black) to maximal (white). The overall sensitivity in (i) is
split into the components due to (ii) production of perturbations and (iii) advection of perturbations
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Figure 12: (a) Amplifications, λ2
i , and (b) proportions of the ve-

locity basis-functions within the recirculation bubble, FR, for the
first 15 symmetric basis functions, g̃i, (shown by i = 0, . . . , 14) and
for the recirculation basis function, g̃R, (shown by i = R). The

amplification is defined by λ2
i ≡

‖ū1,i‖2Ω
‖g̃i‖2Γ

. The proportion of the

velocity basis-function within the recirculation bubble is defined by

FR ≡
∫
R ˜̄u1,i·˜̄u1,i dΩ∫
Ω

˜̄u1,i·˜̄u1,i dΩ
.
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Figure 13: (a) The first 2 deformation basis functions, g̃i, and the
recirculation deformation basis function, g̃R, shown as a function
of θ. (b) The morphed unit cylinder when applying deformations
of 0.1 g̃i. (c) The streamlines of the corresponding velocity basis
functions, ˜̄u1,i. The colour scale shows the local magnitude of ˜̄u1,i

from zero (black) to maximal (white).
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Figure 14: Fraction of the base-flow contribution to the shape gra-
dient of the growth rate, Re(GB), and the frequency, Im(GB), ac-
counted for by each deformation basis-function, g̃i.

Figure 15: The effectiveness of the basis functions in changing the
growth rate, |µσ |, and the frequency, |µω |, defined in (12b). The
most effective basis functions are circled.
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Figure 16: (a)–(c) Streamlines of the velocity basis functions, ˜̄u1,i. The colour scale shows whether the change in base-flow velocity locally decreases the growth rate (blue) or increases
the growth rate (red). The (i) overall change in growth rate is split into contributions from (ii) production of perturbations and (iii) advection of perturbations. The effectiveness, µσ is
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the colour scale over the whole domain.
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Figure 17: Streamlines of the velocity basis function, ˜̄u1,0. The
colour scale shows whether the change in base-flow velocity locally
decreases the frequency (blue) or increases the frequency (red). The
(a) overall change in frequency is split into contributions from (b)
production of perturbations and (c) advection of perturbations. The
effectiveness, µω is similarly split into contributions from the produc-
tion of perturbations, µω,P , and advection of perturbations, µω,A,
i.e. µσ = µω,P +µω,A. The effectiveness is calculated by integrating
the colour scale over the whole domain..

4.3.2. Effectiveness at changing the frequency, µω
Similar to the previous section we split (figure 17) µω

into a component due to (i) perturbation production, µω,P ,
and (ii) perturbation advection, µω,A. The most amplified
deformation, g̃0, is also the most effective at altering the
frequency and so will be the most significant component
of the base-flow contribution to the frequency shape gra-
dient. The basis function is highly effective at altering the
frequency because it strongly advects the perturbations
back towards the cylinder. This results in a large decrease
in oscillation frequency, offset slightly from an increase due
to modified perturbation production.

4.4. Overall contribution to the base-flow contribution, Ḡ

Instead of using the surface inner product, 〈·, ·〉Γ, the
projection of the base-flow contribution onto the set of
deformation basis functions can instead be calculated by
combining the individual terms examined in the previous
sections:

Re(Ḡ) =
∑
i

βσ,ig̃i, Im(Ḡ) =
∑
i

βω,ig̃i . (19a)

where βσ,i ≡ ‖∇Bσ‖Ωλiµσ,i, βω,i ≡ ‖∇Bω‖Ωλiµω,i .
(19b)

The fraction that each deformation makes up of the base-
flow contribution to the shape gradient is given in table
2.

Because, g̃0, is the most amplified deformation basis
function by an order of magnitude, it makes up the major-
ity of the base-flow contribution to both the growth rate

Basis
β2
σ,i

‖Re(Ḡ)‖2Ω
β2
ω,i

‖Im(Ḡ)‖2Ω
g̃0 0.8901 0.9986
g̃1 0.0552 0.0004
g̃R 0.0186 0.0001

Table 2: Fractional contribution of each deformation basis function
to the base-flow contribution to the sensitivity of the growth rate,

β2
σ,i

‖Re(Ḡ)‖2Ω
, and the frequency,

β2
ω,i

‖Im(Ḡ)‖2Ω
.

shape gradient and to the frequency shape gradient. This
leads to the observed similarities between the shape gra-
dients. The mechanism by which g̃0 alters the growth rate
and frequency is by advection of perturbations back to-
wards the cylinder. This increases the growth rate but
decreases the frequency, leading to the different signs of
the growth rate and frequency shape gradients.

Because g̃0 is also the most effective deformation at al-
tering the frequency, it makes up virtually all of the base-
flow contribution to the frequency shape gradient. In con-
trast, for the growth rate, the second most amplified defor-
mation basis function, g̃1, and the recirculation basis func-
tion, g̃R, are both more effective than g̃0. This means that
the base-flow contribution to the growth rate shape gra-
dient has noticeable contributions from g̃1 and g̃R. These
additional contributions lead to the subtle differences in
the growth rate and frequency shape gradients at the top
and at the rear of the cylinder.

5. Conclusion

This paper concerns the growth rate and frequency of
hydrodynamic oscillations in the wake of a cylinder at
Re = 50. This is a well-known canonical flow, which is of-
ten used to discover fundamental behaviour in bluff body
flows and to test new numerical techniques. An adjoint
method is used to calculate the sensitivity of hydrody-
namic oscillations to all possible deformations of the cylin-
der. This calculation is exact to first order and, crucially,
is obtained with just two relatively cheap calculations. It
goes significantly beyond previous studies, which only con-
sidered the influence of suction and blowing at the cylinder
surface or the addition of a second control cylinder.

This paper shows that deformations affect hydrody-
namic oscillations mainly through their influence on the
steady base-flow, rather than through their influence on
the unsteady feedback mechanism. This is consistent with
the results of Marquet et al. [6] and Sipp et. al. [12] who
considered the sensitivity to the placement of a control
cylinder near the surface.

The deformation that most increases the growth rate
is a bulge that increases the frontal area of the cylinder
(g ∝ +Re(G) in figure 7a). The deformation that most
increases the frequency is a subtly different bulge in the
opposite direction (g ∝ +Im(G) in figure 7a). The lat-
ter deformation (for frequency) acts entirely through the
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deformation that causes the largest modification to the
base-flow everywhere (g̃0 in figure 13b). The former de-
formation (for growth rate) acts mainly through the de-
formation just described, leading to similarities between
the two shape gradients. However, it also has noticeable
contributions from subtle deformations at the rear of the
cylinder (g̃R in figure 13b). Although these deformations
only slightly change the base-flow in the recirculation zone
(R in figure 12), these base-flow changes have a dispropor-
tionately large influence on the growth rate (R in figure
16) through a phenomenon similar to base bleed.

The deformations are also decomposed into their influ-
ence through the production and the advection of pertur-
bations. On the one hand, this reveals that the deforma-
tion that causes the biggest change to the base-flow acts
to increase the growth rate by reducing advection while si-
multaneously decreasing the growth rate by reducing pro-
duction (figure 16a). These effects counter each other. On
the other hand, the deformation that causes the biggest
change to the recirculation region acts to decrease the
growth rate by increasing advection while simultaneously
decreasing the growth rate by reducing production (figure
16c). These effects reinforce each other. This explains
physically why geometry changes that modify the recircu-
lation region have a disproportionately large influence on
the growth rate.

The adjoint method developed in this paper shows how
to alter the frequency and growth rate of hydrodynamic
oscillations by making small changes to the geometry of a
cylinder. The method is general and versatile. It can be
applied to internal or external flows, and it can be com-
bined with a geometric parametrization and optimization
algorithm in order to find, for example, the optimal shape
to stabilize a flow. Although the user does not have to
understand the underlying physical phenomena in order
to use this method, the user can nevertheless interrogate
the output to interpret the results physically. This im-
proves physical insight into the behaviour that gives rise
to a given optimal shape, and therefore can enable intu-
itive design changes that may be outside the range of the
optimization algorithm or existing geometric parametriza-
tion.

Now that adjoint methods for shape optimization of
eigenvalues in hydrodynamic stability have been devel-
oped, the desirable next step is to apply them to industrial
problems. Three problems currently being investigated by
this group are the reduction of hydrodynamic noise gen-
erated by cyclonic separators [2], the alteration of trailing
edge stall characteristics in airfoils, and the control of os-
cillations in injket print heads [28]. This paper enables a
significant change in engineering practice in all three areas
and has great promise for the design of objects that wish
to exploit or prevent oscillations in fluid flows.

Figure A.18: The response of the eigenvalues to the deformation

g = −σ0
Re(G)

‖Re(G)‖2Γ
. This is the linear prediction of the smallest defor-

mation required to make the flow marginally stable. The shifted po-
sitions (×) of the unstable global mode (�) and stable global modes
(♦) are calculated by applying the linear analysis of §2 to each mode
in turn.
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Appendix A. Extension to higher Reynolds num-
bers

At higher Reynolds numbers, there may be many un-
stable modes. If the goal is to create a stable flow, then
the shape gradient of each of the unstable modes must be
calculated and the deformation that is implemented must
stabilise every mode[27]. Furthermore, care must be taken
to ensure that modes which were originally stable are not
destabilised by the deformations. In figure A.18, this is
verified for the case of the cylinder where it is seen that
the stable global modes are unaffected by deformations
proportional to the unstable mode’s shape gradient.

To demonstrate application of this technique at
Reynolds numbers further from the critical Reynolds num-
ber, Rec ≈ 47, linear predictions of the smallest defor-
mation required to stabilise the cylinder are presented in
figure A.19. The shape of the deformed cylinder is cal-
culated by, at each Reynolds number, performing the sta-
bility analysis to get the growth rate, σ(Re), and find-
ing the shape gradient of the eigenvalue, G(Re). A de-
formation proportional to Re(G) is then used such that
σ(Re) + δσ = 0, where δσ is the predicted change in σ due
to application of the shape gradient.
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Figure A.19: Cylinders, deformed by direct application of the shape
gradient of the growth rate, that are marginally stable at different
Re. The unperturbed cylinder (gray) is shown in comparison with
the deformed cylinders at Re = 48, 50, 55 and 60. The cylinder is
deformed by direct application of the shape gradient. This produces
the smallest deformation required to make the flow marginally stable
as measured by the surface norm, ‖·‖Γ.
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