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Abstract

Motivation: The bulk of space taken up by NGS sequencing CRAM files consists of per-base quality

values. Most of these are unnecessary for variant calling, offering an opportunity for space saving.

Results: On the Syndip test set, a 17 fold reduction in the quality storage portion of a CRAM file can

be achieved while maintaining variant calling accuracy. The size reduction of an entire CRAM file

varied from 2.2 to 7.4 fold, depending on the non-quality content of the original file (see

Supplementary Material S6 for details).

Availability and implementation: Crumble is OpenSource and can be obtained from https://github.

com/jkbonfield/crumble.

Contact: jkb@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid reduction of costs for genome sequencing (Wetterstrand,

2016) has led to a corresponding growth in storage costs, far out-

stripping Moore’s Law for CPU and Kryder’s Law for storage. This

has led to considerable research into DNA sequence data compres-

sion (Numanagi�c et al., 2016).

The most significant component in data storage cost is the per-

nucleotide confidence values, which carry information about the

likelihood of each base call being in error. The original CRAM pro-

posal (Fritz et al., 2011) introduced the term ‘quality budget’ for

lossy compression. Given a fixed amount of storage we can decide

how to spend this budget, either by uniform degradation of all qual-

ities or more targeted fidelity in important regions only. How to tar-

get this has been the focus of lossy compression research, with two

main strategies: ‘horizontal’ and ‘vertical’.

‘Horizontal’ compression smooths qualities along each sequence

in turn, as implemented in libCSAM (Cánovas et al., 2014), QVZ

(Malysa et al., 2015) and FaStore (Roguski et al., 2018) or via

quantization (Illumina, 2014). This type of compression can be

applied before alignment and is entirely reference free.

‘Vertical’ compression takes a slice through an aligned dataset in

the SAM format (Li et al., 2009) to determine which qualities to

keep and which to discard, as used in CALQ (Voges et al., 2018), or

via hashing techniques on unaligned data in Leon (Benoit et al.,

2015) and GeneCodeq (Greenfield et al., 2016). Traditional loss

measures, such as mean squared error, will appear very high, but

these tools focus on minimizing the changes in post-processed data

(variant calling).

We present Crumble as a mixture of both horizontal and

vertical compression. It operates on coordinate sorted aligned

Sequence Alignment/Map (SAM), Binary Alignment/Map (BAM)

or CRAM files. Although this approach does not explicitly use a

reference, the sequence aligner does, which may result in some ref-

erence bias.

2 Materials and methods

A variant caller evaluates the sequence base calls overlapping each

genome locus along with their associated qualities to determine

whether that site represents a variant. Irrespective of whether the

call is a variant, if the same call is made with comparable confi-

dence both with and without sequence quality values present then it

can be concluded that the qualities are not necessary in that

column.
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This requires running the variant caller twice to assess the change,

but if limited to sites with high confidence calls the need for a second

test can be avoided. We implemented a fast, but naı̈ve, caller derived

from Gap5’s consensus algorithm (Bonfield and Whitwham, 2010).

This is a pure pileup-column oriented approach that treats the lack of

a base (deletion) as a fifth base type (‘*’) and then identifies the most

likely homozygous or heterozygous combination of bases that match

the observed base calls, confidence values and mapping qualities.

Thus it assumes a single individual diploid sample and is not tuned to

work with somatic variants. This is further modified by reducing the

confidence for the consensus by the bases which do not match the hy-

pothesis, thus producing a deliberately pessimistic caller. The aim is

not to have a built-in high-quality caller, but to preserve quality values

if any downstream variant caller may be uncertain while retaining in-

dependence from any standard tool.

Even when deemed unnecessary, qualities cannot be entirely dis-

carded as tools expect them to exist. By replacing the qualities for

bases that agree with a confident consensus call with constant high

values, the entropy of the quality signal is reduced. Quality values

for bases that disagree with a confident consensus call may optional-

ly be set to a constant low value, heavily quantized or left intact.

There are sites where any variant caller may incorrectly give the

wrong call with high confidence. Furthermore the reference itself

may be incorrect and a subsequent realignment to an updated refer-

ence may change read locations and alignment strings. We do not

wish to replace qualities in such regions. We therefore have a set of

heuristics to try to find potentially unreliable calls and retain verba-

tim the confidence values for these locations and surrounding bases

depending on sequence context. Similarly there may be places where

an entire read needs to have qualities retained as there is evidence

for it being misplaced or being part of a large structural

rearrangement.

The heuristics used in Crumble to identify where confidence val-

ues should be retained vary by compression level requested, but

include:

• Concordant soft clipping: many reads having soft clipped bases

at the same site often indicates a large insertion (absent in the ref-

erence) or contamination.
• Excessive depth: possible contamination or collapsed repeat.

Variant calls often appear unusually good in such data, even

when wrong.
• Low mapping quality: possibly caused through poor reference.

We optionally can also store quality values for the reads with

high mapping quality that colocate with many low mapping

quality reads.
• Unexpected number of variants: we assume data from a single

diploid sample with at most two alleles at each locus. More than

two alleles imply misaligned data, duplication or contamination.
• Low quality variant calls: typically a single base locus where the

consensus is unclear.
• Proximity to short tandem repeats: alignments are often poor in

such regions, especially if indels are present, leading to bases

occurring in the wrong pileup column.

Finally for the quality values that we deem necessary to keep, we

optionally provide horizontal compression via the P-block algorithm

from CSAM. This is most useful on older Illumina datasets with

over 40 distinct levels of quality values.

The nature of the Crumble algorithm makes it amenable to

streaming and it does not require large amounts of memory to

operate.

3 Results

Analysis of how quality compression affects variant calling was

performed on Syndip (Li et al., 2018), an Illumina sequenced li-

brary artificially constructed from the haploid cell lines CHM1 and

CHM13, with an associated high quality truth set based on two

PacBio assemblies (Schneider et al., 2017). When compared with

the Genome in a Bottle (GIAB) or Platinum Genomes (PlatGen)

datasets this has a considerably larger set of tricky indels in the

truth set, giving SNP false positive rates 5–10 times higher (Li et al.,

2018) than on GIAB or PlatGen truth sets. Although Syndip still

requires a list of regions to exclude, the total number of excluded

non-N reference bases is 40% fewer than GIAB 3.3.2. By restricting

analysis to solely the regions within Syndip and not within GIAB

we observe 65% of Chromosome 1 false positives occur within this

region, but crumble still shows good performance (see

Supplementary Material).

The input BAM file (ERR1341796) had previously been created

with GATK best practices including IndelRealigner and Base

Quality Score Recalibration steps. To test the impact on raw variant

calling, we ran GATK HaplotypeCaller (Poplin et al., 2017),

Bcftools (Li, 2011) and Freebayes (Garrison and Marth, 2012), fil-

tering to calls of quality 30 or above, without use of GATK Variant

Quality Score Recalibration. As a baseline we compare Crumble to

the original lossless results and against a single fixed quality value.

This latter test demonstrates that quality values are important, but

we only need a small quality budget to achieve comparable results

to lossless compression. Indeed, we observe that vertical quality

score compression can marginally improve variant calling by stand-

ard callers, as has been noted previously in the QVZ (Malysa et al.,

2015) and Leon (Benoit et al., 2015) papers.

Table 1 shows the GATK lossless results on the Syndip along with

the changes caused by lossy compression using a variety of Crumble

options on both the full Syndip data and a low coverage subset. We

chose the minimal compression level, an expected maximum compres-

sion level and a set of manually tuned parameters optimised for this

dataset. The manual tuning traded false positives and false negatives in

an attempt to get a call set comparable or better than the original in all

regards. It is unknown if the tuned parameters are appropriate for all

datasets. More complete comparisons including against other tools are

available in the online Supplementary Material.

On the original BAM file with �50� coverage we observed a 17

fold reduction in the size of CRAM compressed quality values, while

achieving a 6% drop in filtered SNP false positive rate (higher preci-

sion) and 2% drop in false negative rates (higher recall). Indels also

see a 1% improvement in both measures. At a sub-sampled 15�
coverage we see a 1% drop in filtered SNP false positive rates and a

10% reduction in SNP false negatives. Indel calls were more com-

parable, with 1% higher false positives and 3% lower false

negatives.

It is likely these gains to both SNP precision and recall only apply

to data coming from a single individual, but they demonstrate the ef-

ficacy of lossy quality compression.

4 Conclusion

We have demonstrated that Crumble, when combined with CRAM,

can greatly reduce file storage costs while having a minimal, if not

beneficial, impact on variant calling accuracy of individual samples.

For maximum compression Crumble also permits discarding read

identifiers and some auxiliary tags, typically yielding files in the size

338 J.K.Bonfield et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty608#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty608#supplementary-data


of 5–10 Gb for a 30� whole genome processed with Crumble -9p8.

Using this across a variety of BAM and CRAM files Crumble gave

an overall file size reduction from 3- to 7.8-fold (details in

Supplementary Material).

Crumble is designed to operate on a single sample file. For mul-

tiple samples, it is best to apply Crumble to each sample independ-

ently, produce gVCF, and then jointly call from those. Note

Crumble is explicitly designed to operate on diploid data, so it is not

appropriate for use on sequence from cancer or other samples with

subclonal genetic structure.
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Table 1. Effect of lossy quality compression on 50� and 15� Syndip data using GATK HaplotypeCaller

Category Original Original F Crumble-1 Crumble-1 F Crumble-9p8 Crumble-9p8 F Crumble* Crumble* F

50� Qual size (MB) 4107 — 614 — 235 — 229 —

50� SNP False Positive 6226 2968 –359 –79 –251 –67 –526 –181

50� SNP False Negative 4648 7625 0 –53 –25 –184 þ41 –123

50� Indel False Positive 3965 3649 –7 –41 þ19 þ9 –35 –32

50� Indel False Negative 7881 7972 þ7 þ11 –103 –82 –93 –72

15� Qual size (MB) 1211 – 260 — 77 — 72 —

15� SNP False Positive 4798 2517 –10 þ63 þ347 þ225 –359 –29

15� SNP False Negative 14985 27761 –205 –297 –3027 –4608 –1866 –2865

15� Indel False Positive 2781 2521 þ2 –14 þ109 þ60 þ53 þ26

15� Indel False Negative 13136 13925 –8 þ5 –484 –427 –444 –410

Note: Comparison of unfiltered and filtered (marked with ‘F’) calls on the Syndip truth set. GATK filtering rules are listed in the Supplementary Material.

Crumble* refers to parameters optimized for this dataset: ‘crumble -9p8 -u30 -Q60 -D100’. The false positive/negative values of the GATK calls on the crumbled

dataset are shown relative to their respective GATK called lossless dataset. The truth set for Chromosome 1 has 269 655 SNPs and 46 036 indels, counting multi-

allelic sites once per allele. The quality sizes are absolute for all files.
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