
Full title: Signal Information Prediction of Mortality Identifies Unique 
Patient Subsets after Severe Traumatic Brain Injury: A Decision-Tree 
Analysis Approach 
 
Running title: Decision Tree Prediction of Mortality after TBI 
 
Lei Gao, MD. Corresponding author 
Instructor in Anesthesiology 
Massachusetts General Hospital | Harvard Medical School 
Associate Scientist 
Division of Sleep and Circadian Disorders 
Brigham and Women's Hospital | Harvard Medical School 
 
Peter Smielewski, PhD 
Senior Research Associate 
Division of Neurosurgery 
University of Cambridge 
Hills Road, Cambridge CB2 0QQ, UK 
 
Peng Li, PhD 
Instructor in Medicine, Associate Physiologist 
Division of Sleep and Circadian Disorders 
Brigham and Women's Hospital | Harvard Medical School 
 
Marek Czosnyka, PhD 
Professor of Brain Physics 
Division of Neurosurgery 
University of Cambridge 
Hills Road, Cambridge CB2 0QQ, UK 
 
Ari Ercole, MD PhD 

Consultant  
Neurosciences Critical Care Unit 
Department of Anesthesia 
University of Cambridge 
Hills Road, Cambridge CB2 0QQ, UK 
 

Abstract 

Nonlinear physiological signal features that reveal information content and causal flow 

have recently been shown to be predictors of mortality after severe traumatic brain injury 

(TBI). The extent to which these features interact together, and with traditional measures 
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to describe patients in a clinically meaningful way remains unclear. In this study, we 

incorporated basic demographics (age and initial Glasgow coma scale, GCS) with linear 

and nonlinear signal information based features - approximate entropy (ApEn), and 

multivariate conditional Granger causality (GC) to evaluate their relative contributions to 

mortality using cardio-cerebral monitoring data from 171 severe TBI patients admitted to 

a single neurocritical care center over a ten-year period. Beyond linear modelling, we 

employed a decision tree analysis approach to define a predictive hierarchy of features. 

We found ApEn (p = 0.009) and GC (p = 0.004) based features to be independent 

predictors of mortality at a time when mean intracranial pressure (ICP) was not. Our 

combined model with both signal information-based features performed the strongest 

(area under curve = 0.86 vs 0.77 for linear features only). Although low  “intracranial” 

complexity (ApEn-ICP) out-ranked both age and GCS as crucial drivers of mortality (five-

fold increase in mortality where ApEn-ICP < 1.56, 36.2% vs. 7.8%), decision tree analysis 

revealed clear subsets of patient populations using all three predictors. Patients with 

lower ApEn-ICP and aged > 60 died, whereas those with higher ApEn-ICP and GCS ³ 5 all 

survived. Yet, even with low initial intracranial complexity, as long as patients maintained 

robust GC and “extracranial” complexity (ApEn of mean arterial pressure), they all 

survived. Incorporating traditional linear and novel, nonlinear signal information features, 

particularly in a framework such as decision trees, may provide better insight into the 

‘health’ status. However, caution is required when interpreting these results in a clinical 

setting prior to external validation. 
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Introduction 

As a leading cause of death and disability and with an aging demographic, there is 

significant motivation to improve the outcomes of patients with traumatic brain injuries 



(TBI).1 This is a highly heterogeneous group of patients and there is great interest in 

tailoring treatments and physiological targets to individuals in the hope that this might 

improve outcomes.2 In order to achieve this, we need to fully characterize the patient 

phenotype. As our ability to amass complex data increases in the neurocritical care setting, 

the move towards automation to guide the expert clinician still requires the development 

and selection of the most relevant clinical information.3  

 

Traditionally, the reliance has been on known predictors of outcome such as age and 

Glasgow coma score (GCS) at presentation (taken to be a surrogate for neurological injury 

severity). However a clinically useful phenotypic description may also include 

physiological measures such as intracranial pressure (ICP) or cerebral perfusion pressure 

(CPP) which are also predictors of outcome. More recently, the incorporation of 

autoregulation assessment have been proposed as further features that might be helpful 

to individualise therapy since measurements such as the pressure reactivity index (PRx) 

have been shown to also be independently associated with outcome.4–6 Taken together, 

we refer to these as “linear” signal features owing to their established derivations. 

 

Conversely, nonlinear signal features related to complexity/information content such as 

approximate entropy (ApEn) are now seen as a potential summary of homeostatic 

integrity.7–9 Signal complexity has been shown to be an independent predictor of TBI 

outcome.10–13 In prior work, we further demonstrated that information flow between 

physiological signals (such as Granger causality) may also be linked to mortality.14 In this 



study, we refer to such parameters as ‘signal information’ based features. 

 

The success in discovering these novel prognostic features has led to uncertainty in how 

the large number of possible measurable or calculatable features, both linear and signal 

information based, describe the patient in a way that is clinically meaningful and best 

related to outcome. While it is likely that such features are not completely independent, 

it remains unclear what subset provides the best ‘description’ of the patient state or 

whether some of these features are in fact redundant. Previous work has related 

predictors to outcome with relatively simple linear models but it is not clear that there is 

a monotonic relationship between predictors and outcome.15–18  

 

In the present work, we sought to incorporate basic demographics (age and GCS, both 

known to be strong drivers of outcome) with linear and signal information-based features 

to evaluate their relative contributions to mortality. In addition to linear modelling, we 

employed decision tree analysis, a nonlinear yet highly interpretable classification 

technique, to define a predictive ‘hierarchy’ of features; this also allowed us to test 

whether non-linear relationships between features were relevant to mortality by 

comparing the performance of such a flexible model with a linear predictor.  

Materials and methods 

Patient selection and data acquisition 

Retrospective analysis of data recordings from patients admitted to the Neurosciences 

and Trauma Critical Care Unit (NCCU) at Cambridge University Hospitals, Cambridge UK 



after severe head injury between 2002 and 2012 was performed. ICP was recorded using 

an intraparenchymal probe placed as per departmental clinical protocol (Codman & 

Shurtleff Inc., MA, USA). Invasive systolic and diastolic blood pressure was recorded from 

an indwelling radial artery catheter. HR was derived from routine cardiac monitoring. All 

signals were continuously sampled using ICM+ software (Cambridge, UK, 

http://icmplus.neurosurg.cam.ac.uk) at a frequency between 30 to 200 Hz. Data was re-

sampled by averaging over ten second epochs in order to suppress pulse and respiratory 

waves to focus entirely on the slow fluctuations of ICP. 

 

There were 319 patient recordings available; total data recording length varied between 

patients from <1 hour to 14 days. However, we were interested in those that had time for 

the disease process to evolve and selected 203 with at least 72 hours recording of ICP, BP 

and HR. Those without a Glasgow Outcome Score (GOS) (n = 5), known to have more than 

2-hour gaps (n = 10) and over 24 hours from ictus at the time of admission (n = 17) were 

excluded. 171 patients entered our analysis. Since recordings in the first 24 hours tended 

to be either incomplete due to surgical intervention or confounded by artefacts due to 

sedation holds in apparently less severely injured patients, we selected the second 24 

hour period for our analysis.  All were sedated, mechanically ventilated and managed 

according to a cerebral perfusion pressure (CPP) orientated protocol  during their stay in 

critical care.19 Data collection and analysis was approved by institutional review. The 

pressure reactivity index (PRx), a moving Pearson correlation between ICP and MAP, was 

additionally calculated as a measure of cerebral autoregulation. 



 

Nonlinear signal information-based features 

1) Complexity - approximate entropy (ApEn) was used as the marker for the complexity 

of heart rate (ApEn-HR), mean arterial pressure (ApEn-MAP), and intracranial pressure 

(ApEn-ICP) derived using open source MATLAB (R2017a, MathWorks Inc. Natick, 

Massachusetts, United States) scripts. Following on from our prior findings, we also used 

a combined “ApEn-Product” (interaction term or product of the three individual ApEns), 

which was found to be most predictive of outcome.10  

 

2) Information flow - conditional multivariate Granger causality (GC) values were derived 

using code published by Seth et al using MATLAB.20,21 Data was aligned for each subject 

such that the same 24-hour recording period as for ApEn was used. We used the 

multivariate extension, often referred to as ‘conditional’ Granger causality analysis, as a 

marker for the causal information flow between our three time-series variables.22 For 

example, GC could infer a causal relationship from MAP to ICP only if past information in 

the MAP helped predict future ICP, after taking into account the influence of HR. 

Mathematical theory behind GC as well as data preparation workflow is described 

extensively elsewhere.23–25 Based on our prior study,14 the Granger causality from ICP to 

MAP (ICP-to-MAP) and from HR to ICP (HR-to-ICP) were identified as significant predictors 

of mortality. We tested these, and their interaction term “Granger-Product” (product 

between ICP-to-MAP and HR-to-ICP) in our models.  

 



Statistical analysis 

Linear (PRx, mean values for ICP, CPP, BP, and HR) and signal information-based features 

(ApEn and GC) for 171 patients over the same 24 hour monitoring period was used for 

analysis. Mortality was assessed at 6 months after head injury. Between group 

comparisons were made using with one-way ANOVA, or Kruskal-Wallis non-parametric 

testing as appropriate. Categorical data were compared using chi-squared testing. 

Multivariable logistic regression models (using linear only features, linear with ApEn, 

linear with GC, and a “combined” - linear with both ApEn and GC) were constructed to 

identify independent predictors of mortality and reported using odds ratios and their 95% 

confidence intervals. We also calculated the pseudo R-squared given that it also takes into 

account prevalence.  

 

We employed Chi-square Automatic Interaction Detection, or CHAID, for binary recursive 

partitioning to construct a decision tree model for the prediction of mortality; the patient 

population is repeatedly split into increasingly homogenous groups based on the 

optimum predictors of mortality (using both linear and signal information features) at 

each split. First introduced by Kass in 1980,26 recursive partitioning with CHAID is 

particularly powerful when there are many potential complex interactions between the 

predictors of interest,27 We set n = 30 (17.5%) as the minimum patient count at which 

further partitioning occurred and splits were also pruned if they did not significantly 

improve the overall model in order to minimise overfitting. Finally, we used cross-

validation for constrained optimization using multiple training sets (10 ‘folds’) within the 



cohort. The stopping rule terminates splitting when improvement in the cross-validation 

R2 is minimal (more specifically, a model is selected when none of the next ten show an 

improvement of cross-validation R2 greater than 0.005). This optimised misclassification 

error, prevented overfitting and limited tree size (number of splits). 

 

Model performance for all possible thresholds for dichotomizing the predicted 

probabilities of fatality was then assessed using receiver operated characteristics (ROC), 

and their corresponding area under the curve (AUC) and 95% CI (confidence intervals), as 

well as differences between model AUCs and corresponding 95% CIs. To assess the 

accuracy of the prediction models, calibration plots were produced by binning predicted 

mortality probabilities into deciles, and then plotting the mean observed mortality against 

the mean predicted mortality within each bin.28 Statistical analysis was performed using 

JMP Pro 14 (SAS Institute Inc, Cary, NC, USA). Data are presented as mean (± standard 

deviation), unless otherwise indicated. GC variables were log transformed due to non-

normal distribution prior to inclusion in the models. P-values are reported as is without 

thresholds for statistical significance in accordance with the latest statistical guidance 

from the American Statistical Association.29,30 All tests were two-tailed and without 

correction for multiple comparisons. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

Baseline characteristics 

In Table 1. 171 patients entered our analysis where 129 (75.4%) were male with an 

average age of 38.1 (±15) who stayed monitored average 7.3 (3.4) days. The initial post-

resuscitation GCS was 6.4 (3.4), which is not surprising given the necessity for 

neurocritical care admission; overall 107 (62.6%) sustained severe TBI resulting in GCS ≤ 

8. Six months post injury, 40 died (23.4%, GOS = 1) and 131 survived (76.6%, GOS = 2-5). 



Examining patients excluded from analysis, we did not find statistical difference in any of 

their baseline characteristics. 

 

Linear and signal information feature differences in survival and death 

For linear features, we confirmed significant differences in age (F = 13.8, p = 0.0003), initial 

GCS (F = 5.0, p = 0.026) and PRx (F = 5.8, p = 0.017) between those that survived versus 

those that died, using one-way ANOVA (Table 1). While CPP was borderline, no difference 

was seen with ICP either in keeping with prior studies.10,14 There was also no difference 

in the eventual total number of days of monitoring (F = 0.01, p = 0.92). We found ApEn-

Product (F = 18.1, p = 0.00004) and Granger-Product (F = 13.0, p = 0.0004) to perform best 

versus their individual variables (ICP, MAP, and HR derived) for differences between 

survival and death, shown in Table 1, as our nonlinear signal information features.  

 

 

Complexity and information flow are independent predictors of mortality 

In multivariable logistic regression, we defined our linear only model to include age, GCS, 

ICP, CPP, and PRx. Subsequently, ApEn-Product (OR 0.60, 95% CI: 0.46-0.77, p = 0.00008) 

and Granger-Product (OR = 0.48, 95% CI: 0.34-0.69, p = 0.00005) were introduced 

separately (‘with ApEn’ and ‘with Granger’ models, respectively), and together in the 

‘combined’ model in Table 2. We found that our nonlinear signal information features 

separately somewhat improved the linear only model, but more significantly, both 

survived in the final combined model as independent predictors - ApEn-Product (OR = 



0.70, 95% CI: 0.53-0.93, p = 0.009) and Granger-Product (OR = 0.59, 95% CI: 0.41-0.87, p 

= 0.004). The combined model explained the largest proportion of the variance for 

mortality (pseudo R2= 0.31) and had the highest AUC (0.86, 95% CI: 0.79-0.91).31  

 

Decision tree model  

We permitted the entry of all linear (age, sex, initial GCS, ICP, CPP and PRX), and signal 

information features (ApEn and Granger products, as well as their individual components). 

The final decision tree is shown in Figure 1. Based on our stopping criteria, there were 

eight splits. In order, the following features and cut-off values for mortality were found; 

ApEn-ICP < 1.56, age ≥ 60, GCS < 5, Granger < -0.49, CPP < 72.3, ApEn-MAP < 1.63, ICP ≥ 

22.4 and PRx ≥ -0.04. The tenfold cross-validation R2 was 0.38 with an AUC of 0.92 (95% 

CI 0.87-0.95) and was favorable compared to our combined nonlinear and linear models 

(see ROC in Figure 2). Formal model comparison revealed that all model AUCs containing 

signal information features outperformed the linear features only model (see Table 3; p 

< 0.01 for all). The AUC for the decision tree improved upon that for “with GC” (+0.08, p 

= 0.029) and marginally for “with ApEn” (+0.08, p = 0.056). While it did improve upon the 

AUC for the Combined model, at the current sample size, the magnitude of this 

improvement will need replication (+0.06, p = 0.09). 

 

Those with poor intracranial complexity (ApEn-ICP less than 1.56) were nearly 5 times 

more likely to die (36.2% vs 7.8%). The clearest paths were the 26.9% of patients 

identified by robust intracranial complexity (ApEn-ICP greater than 1.56) and good initial 



neurological assessment (GCS 5 or above), who all survived. Likewise, all those with poor 

intracranial complexity (ApEn less than 1.56) aged over 60 died.  Poor intracranial 

complexity (ApEn-ICP less than 1.56) and cardio-cerebral information flow (GC-Product 

below -0.49), even in those aged below 60, saw nearly half of subjects (n = 85) have a 

mortality of 45.0%, rising to 77.8% if CPP was also less than 72.3.  

 

However, the decision tree also revealed that even those with poor intracranial 

complexity, as long as one is relatively young (aged less than 60), had robust cardio-

cerebral information flow (GC-Product below -0.49) and good extracranial complexity 

(ApEn-MAP greater than 1.63), this resulted in 100% survival. Note that PRx ≥ -0.04 and 

ICP ≥ 22.4 appear in the 7th and 8th splits after CPP < 72.3 and GCS < 5, respectively, 

however these final splits saw diminishing sample size and must be interpreted with 

caution.  Calibration plots showed acceptable, linear goodness-of-fit for a wide range of 

observed probabilities of mortality compared to our combined model (Figure 3A) and 

decision tree (Figure 3B) predicted probabilities.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Discussion 

To the best of our knowledge, this is the first study to examine the predictive potential of 

both the complexity of, and information flow between, the cardio-cerebral vascular 

systems for mortality after severe traumatic brain injury. We applied approximate 

entropy and multivariate conditional Granger causality analysis for the assessment of 

complexity and information flow, using the most commonly measured parameters in the 

neuro-intensive care setting (ICP, MAP, and HR). We show that ApEn and GC provide 

independent information related to mortality, which is complimentary to each other, and 

to traditional linear markers, at an early stage after TBI. Using a relatively simple decision 



tree model, predictive performance is enhanced further through maximising both linear 

and signal information-based features. This revealed clear subsets of patients related to 

mortality that could provide a framework for potential clinical and research applications.  

 

Nonlinear signal information outperforms linear features  

The identification of patients that will have a poor neurological recovery during the early 

phases of resuscitation is known to be problematic.15 Our study of 171 moderate to 

severe TBI patients is unique in the use of a uniform and early 24h time period, and the 

selection of patients with at least 72 hours of monitoring, to examine a combination of 

newly derived nonlinear markers of mortality.10,11,14 This allows potential for earlier 

clinical interventions, adds temporal information, where secondary injuries are most 

likely to manifest and be reflected in our analysis.  The removal of those with very short 

data recordings (due to death/futility, withdrawal of care, recovery, de-escalation of care 

or withdrawal of consent) mitigates against extreme values that can skew group trends.14 

The observed mortality (23.4%) is in keeping with other studies of comparable cohorts 

from a similar time period.16 Similarly, age and initial GCS were significant contributors 

that have long been established as predictors of outcome.15,16,32 Unfortunately, we did 

not have access to CT-findings, lab results or extra-cranial injuries for this particular cohort, 

which is a significant limitation. However, for the purposes of a comparator, the AUC for 

our basic logistic regression model incorporating only age, GCS and linear signal 

properties (0.77) was still comparable in terms of performance to established MRC-

CRASH, IMPACT, and APACHE II models, which have ranged from AUC 0.76 to 0.82.16–18  



 

We observed that incorporating nonlinear signal information derived from all three vital 

signs (ICP, MAP and HR) in the combined model (ApEn and GC Product plus linear 

features), were independent predictors of mortality, that outperformed the linear only 

model, and improved upon models with only one of ApEn or GC Product. Even though 

including both nonlinear predictors did reduce their effect size and 95% CI of their odds 

ratio, the combined model had a significantly higher AUC compared to the linear model 

during model comparisons. The improvement on the single nonlinear only predictor 

models was consistent but more modest going from 0.84 to 0.86 for AUC and 0.27 to 0.31 

for R2. These did not reach any acceptable threshold for significance during model 

comparison (see Table 3); we believe this may partly be due to sample size and despite 

their independent prediction values, a degree of overlap exists. However, to place these 

results into context, Raj et al. combined IMPACT (including CT and lab results) and APCHE 

II scores to achieve a similar AUC of 0.85 (95% CI: 0.81-0.89), albeit with higher precision 

due to larger sample sizes.33 These results highlight the potential value of early 

measurements of complexity not only of ICP, but also of extracranial complexity via MAP 

and HR monitoring that reveal crucial prognostic information beyond the original 

absolute mean values. Moreover, inclusion of information flow, as measured through 

multivariate conditional GC between the cardio-cerebral systems appears to offer 

additional prognostic information.  

 



Beyond simply strong discrimination,  we also show that the combined model had good 

predictive calibration across a range of observed mortality probabilities (Fig. 3A). A robust 

assessment of model calibration is a crucial element of model validation as highlighted by 

Steyerberg et al;34 whilst a poorly calibrated model which systematically over or under-

predicts for particular ranges of observed outcome is poorly representative of the 

underlying biology even though it may still perform discrimination well at a population 

level. When combining models, as in this work, it is particularly important to assess 

whether an apparently improved model performance is at the same time offset by 

changes in calibration. A cross-validation process allows calibration to be assessed against 

observed mortality without assuming a ground-truth model. However, it is important to 

bear in mind that over 80% of the data is contributed by those with mortality < 50% due 

to the nature of the patient population. While it is reassuring that good discrimination is 

seen at the highest mortality range (> 50%), larger samples are needed to confirm this 

finding.  

 

Decision tree model as an exploratory clinical and research tool 

Given the intriguing finding of independent prediction by ApEn-Product and GC-Product, 

we were interested in whether the synergy may be better utilized through individual ApEn 

and GC parameters alongside linear features, especially for subsets of patients. Our 

decision tree showed the best performance amongst our models. Even though there was 

improvement on the Combined model’s AUC, this will require , this was not the main 

motivation of the study. The true value in the decision tree lies in its ability to utilise a 



multitude of predictors at different branching points; the potential ability to individualize 

prediction profiles makes a decision tree model more versatile, as was noted by Pang et 

al. in their cohort of 513 when comparing  several prognostication models.35 It effectively 

utilised established risk factors that are known to increase mortality (older age, low GCS, 

low CPP, high ICP and positive PRx) alongside and our novel nonlinear signal information-

based features in unique pathways related to mortality.  

 

The importance of low complexity, and in particular for ICP, is highlighted by an almost 

fivefold increase in mortality, in keeping with prior studies.10,11 ApEn-MAP also appeared 

further down the tree, and perhaps is a reflection on the results of early resuscitation. 

While ApEn-Product was not used, GC-Product outperformed its constituent parts. 

Despite collinearity, the ability to harness predictors for different subgroup levels reflects 

a relative strength of decision tree models over linear logistic regression. Again, the 

predictive calibration plot was good overall, with some slight over-optimism (predicted < 

observed mortality) in the highest mortality range (Figure 3B). However, due to the binary 

nature of decision tree paths,  only those with mortality < 30% and >70% are well 

represented in this particular calibration plot. 

 

Whilst technical in nature, the synergy between information flow and complexity analysis 

shown in this study may be of central importance in understanding a multisystem disease 

like TBI, where advancements have been notoriously difficult. Bashan et al argued that 

the human organism is an integrated network where complex physiological systems, each 



with its own regulatory mechanisms, continuously interact, and that failure of one system 

can trigger a breakdown of the entire network.36 In our everyday airport systems, there 

are both regional and hub ‘nodes’, where there exists a level of complexity and 

information flow that ensures efficient flight paths (i.e. information transfer). For example, 

poor weather at a regional node may inconvenience local travellers, but a disruption at a 

major hub often leads to widespread, and crippling effects on the entire network.37 In the 

context of TBI, the ICP, MAP, and HR signals themselves are likely ‘major hubs’ that 

encompass thousands of individual processes within a complex network.  

 

 

Limitations 

The motivation for this study was to explore a potentially useful tool to better classify 

heterogeneous patients (traditionally notoriously difficult in TBI). However, the decision 

tree must be interpreted with caution, particularly in clinical settings, prior to external 

validation. Due to the nature of TBI and the available sample size, some terminal nodes 

contain less than 10 subjects, so there is likely some degree of overfitting and 

overoptimistic predictions.   

 

This is a retrospective, observational study where it was not feasible to control for the 

effects of clinical interventions (e.g. medication administration and/or ventilator weaning, 

surgical interventions, or disconnection from monitoring etc). A large part of the earlier 

data collection period was prior to an electronic record so many patients were limited to 



initial presenting GCS as a marker of severity. However, others have shown that inclusion 

of extracranial injuries did not necessarily add any significant predictive ability.38 Timing 

of ictus is only beginning to be captured accurately in more recent data collections and 

remains a major limitation. Whilst limiting analysis on only those with 72 hours 

monitoring reduced power, we believe it reduced heterogeneity of  the sample and 

optimized inaccuracies over timing after ictus.  

 

Although all patients were monitored on a single neuro-critical care unit where 

therapeutic interventions were standardized, variation inevitably occurs. For example, 

internal validation was rigorously performed, but due to the challenges working with new, 

data intensive algorithms, we are working on future validation using data from outside 

our institutions and care settings (e.g. from other developed and developing countries). 

Concurrently, newer, more robust and flexible nonlinear measures are emerging,39,40 and 

some have been applied in a range of healthcare settings;41–47 the challenge will be to 

efficiently test and incorporate these tools in the myriad of data collected in the intensive 

care setting. 

 

Finally, complexity and information flow can only characterise data that is provided and 

is unable to account for unmeasured variables such as metabolic changes (CO2 or serum 

osmolality for example) or therapeutic interventions such as anaesthesia or sedation 

which was unfortunately not available; these are unlikely to account for the strong link to 



mortality, but future studies should look to incorporating treatment, imaging, metabolic 

and lab variables to enhance these findings.  

 

Conclusions 

We propose that incorporating multiple nonlinear signals, particularly in a framework 

such as decision trees, may provide better insight into the ‘health’ status of patients with 

severe TBI. While the results presented here should only be considered as experimental 

prior to external validation, we believe this does present potentially tangible prediction 

pathways for clinicians and researchers versus odds ratios, which can be harder to 

interpret; this framework may in future help triage those who require more intensive 

neurological management at an earlier stage.  
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Figure 1. Decision tree for predicting mortality at 6-months from ictus (GOS=1) in our TBI cohort. 
Splitting determined by best performing variable for increasing homogeneity regarding those 
with fatal outcome. Percentages within boxes represent proportion with fatal outcome. N 
(percentage) number of subjects at eath branch, ApEn-ICP approximate entropy of intracranial 
pressure, GCS initial presenting Glasgow Coma Score, GC-Product granger causality product (ICP-
to-MAP x HR-to-ICP), CPP cerebral perfusion pressure, ApEn-MAP approximate entropy of mean 
arterial pressure. Shaded color bar reflects increasing proportion of fatalities from less than 10% 
to over 50%. alog transformed. 

 



 

 

Figure 2. Linear only model (Age, GCS, PRx, ICP, CPP); Combined model (linear only model plus 
ApEn and Granger products); Decision Tree model (based on Figure 1, best predictor 
combination selected from linear and nonlinear parameters). GCS Glasgow Coma Scale, PRx 
pressure reactivity index, ICP intracranial pressure, CPP cerebral perfusion pressure, ApEn 
approximate entropy, Granger multivariate conditional Granger causality.  

 

 

 

 

 



 

Figure 3. Calibration plots for Combined model and Decision tree. Circles proportionally 
represent number of patients binned by predicted mortality and plot against actual mortality 
observed  

 

 

 

 

 

 


