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1 INTRODUCTION

ABSTRACT

In radio interferometry imaging, the Fast Fourier transform (FFT) is often used to
compute maps from visibility data. A gridding procedure for convolving the measured
visibilites with a chosen gridding function is used to transform visibility values into
uniformly sampled grid points. We propose here a parameterised family of ‘least-misfit
gridding functions’ which minimise an upper bound on the difference between the DFT
and FFT dirty images for a given gridding support width and image cropping ratio.
When compared with the widely used spheroidal function with similar parameters,
these provide more than 100 times better alias suppression and RMS misfit reduction
over the usable dirty map. We discuss how appropriate parameter selection and tabu-
lation of these functions allow for a balance between accuracy, computational cost and
storage size. Although it is possible to reduce the errors introduced in the gridding
or degridding process to the level of machine precision, accuracy comparable to that
achieved by CASA requires only a lookup table with 300 entries and a support width
of 3, allowing for a greatly reduced computation cost for a given performance.

Key words: techniques: interferometric - techniques: image processing - methods:
analytical - methods: observational - methods: data analysis

plane, the result of taking the inverse direct Fourier trans-

In radio interferometry, the relation between the visibility
data V and the sky brightness distribution 7 is derived with
clarity by Clark (1999) and Thompson (1999). Using the
(u, v, w) and (I, m, n) coordinate systems defined in Thompson
(1999), this relation can be expressed as

V( ) J J didm
u,v,w) = _
V1 —12 —m?

I(l,m) exp [—i2ﬂ (ul +om+w (\/1 —12-m? - 1))] , (1)
where (I,m) are direction cosines between —1 and 1, and
(u, v, w) are baseline coordinates in units of wavelength.

If the field of observation is very small, and is close

to the phase centre, then w(V1 —12 —m2 — 1) ~ 0 can be
neglected. The visibility function can then be written as

V(u,v) = I Idldm[(l, m) exp[—i2x(ul + vm)]. (2)
Thus, the sky brightness can be obtained by performing an

inverse two—dimensional Fourier transform on the visibil-
ity function. Owing to the incomplete sampling of the (i, v)
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form (DFT) of the sampled and weighted visibility data V
is a ‘dirty image’, rather than the true sky brightness. The
inverse DFT of the sampling function is referred to as the
synthesised beam, or the dirty beam.

When the number of visibilities N, > log(NxNy), com-
putation of the DFT becomes computationally expensive
relative to using the FFT, which reduces the computational
complexity of making an image of size Ny pixels by Ny, pixels

from O(N,NxNy) to O(NXNy 10g(NxNy)) + O(N,) operations

(James W. Cooley 1965; Heideman et al. 1985; Smith et al.
2017).

The FFT algorithm requires the data to be sampled on
a Cartesian grid, however, which is not the case for visibil-
ity data. The obvious solution is to interpolate the visibility
data onto a Cartesian grid and then apply the FFT. The
nearest—neighbour method was an early application of grid-
ding in radio astronomy, and an example of its implementa-
tion is given by Hogg et al. (1969). More elaborate interpola-
tion methods include ‘cell summing’ in Mathur (1969), and
‘radial interpolation’ proposed by Thompson & Bracewell
(1974). These interpolation methods are no longer used, be-
cause they proved to be poor at suppressing aliasing. Alias-
ing is an unwanted phenomenon in which brightness, includ-
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ing noise outside the field of interest, appears within the field
of interest (Greisen 1979; Briggs et al. 1999).

The most common method used to overcome this diffi-
culty is to convolve the visibility data with a gridding func-
tion. The gridding function C(u, v, w) should satisfy the fol-
lowing three conditions (Greisen 1979):

(i) Separability: C(u,v,w) = C,(u)Cy(v)Cy(w), where Cy,
C, and C,, are usually chosen to be the same function.

(ii) Be real and symmetric about the origin. The one-
dimensional form C(u) is used for simplicity from now on.

(iii) Be nonzero only within a finite window, so that the
computational cost of the convolution is not unduly large.

The gridding process can be viewed mathematically
as a combination of a convolution and a sampling process
(O’Sullivan 1985). In practice, the convolution is conducted
only at each grid point (Thompson et al. 2017). An image
cropping process is usually performed, since the errors at
the edge are several orders of magnitude worse than around
the centre of the image. As a result, a larger dirty image
is always made. Multiplication with a correcting function is
then needed to cancel the effects arising from C(u), so as to
obtain the correct fluxes. Greisen (1976) proposed that the
correcting function should be the reciprocal of the inverse
Fourier transform of C(u). We thus obtain the FFT dirty
image, which is an approximation to the DFT dirty image.

As early as 1961, Elizabeth Waldram, in the Radio As-
tronomy Group at the Cavendish Laboratory, Cambridge,
was using gridding functions that included the Gaussian,
the sinc function, and a Gaussian times sinc function, accord-
ing to her work notes, although this work was unpublished.
Brouw (1971) later used a Gaussian gridding function with
the east—west synthesis array at Westerbork. Many gridding
functions have since been explored.

To assist in suppressing the effects of aliasing in the
dirty image, Brouw (1975) proposed a measure of the sup-
pression. It was claimed that the prolate spheroidal wave
function of order 0 (Slepian & Pollak 1961; Landau & Pol-
lak 1961) should be the optimal gridding function (Brouw
1975; Schwab 1984). Schwab (1980, 1984) then argued for a
modified optimality criterion involving weights, which sin-
gled out the spheroidal function (Stratton 1935) as the best
gridding function. The spheroidal function is widely imple-
mented in imaging pipelines such as AIPS (Astronomical Im-
age Processing Software (Wells 1985)) and CASA (Common
Astronomy Software Applications (McMullin et al. 2007)).
The spheroidal function ! will be the benchmark for com-
parison in this paper. In our numerical experiments, we use
the ‘pro_angl’ function from the Python package scipy.
The root mean square (RMS) difference between this func-
tion and the numerical approximation proposed by Schwab
(1981) is less than 107°.

Use of the gridding function is not confined to the mak-
ing of dirty images and dirty beams, for it is also used in the
degridding process. Gridding and degridding are mathemat-
ically transpose operations; degridding reconstructs the visi-
bility data from a given image model. It is essential to decon-
volution methods such as Cotton—Schwab CLEAN (Schwab

I @ = 1 is chosen, since it suppresses aliasing more effectively than

a=0.

& Cotton 1983) and the Maximum Entropy method (Gull &
Daniell 1978). Additionally, degridding is also used during
the self—calibration procedure (Cornwell & Fomalont 1999).
In summary, the gridding function is required in both grid-
ding and degridding in imaging procedures, and its choice
consequently influences the quality of the images obtained,
and all analyses based on them.

A systematic criterion should be sought for selecting the
gridding function in view of its major role in the imaging and
self—calibration processes. The gridding function was origi-
nally introduced to further the replacement of DFT by FFT,
and any new gridding function should therefore minimise the
difference between the DFT and FFT dirty images. By find-
ing and implementing such a gridding function, we are able
to obtain results which better approximate the ideal DFT
results. Image—based data analysis, such as source extraction
from dirty images as explained in Hague et al. (2018), should
also benefit from improved image accuracy. We will also be
able to obtain more accurate degridded/self-calibrated vis-
ibilities.

This paper develops the subject of gridding functions,
and also the processes of gridding and degridding. In Sec-
tion 2 a new gridding function, the ‘least—misfit gridding
function?’, is proposed, based on minimising the upper
bound of the difference between the DFT and FFT dirty
images. The theory, and its computational implementation,
are explained in full detail. The spheroidal function is reeval-
uated according to the same criterion. In Section 4, the use
of the spheroidal function and the least—misfit function are
compared theoretically and numerically by examining the
resulting image accuracy and suppression of aliasing. Sec-
tion 5 shows the degridding performance using the least—
misfit gridding function. Practical implementation of the
least—misfit functions in imaging is demonstrated in Sec-
tion 6, including calculation of the computational cost.

2 LEAST-MISFIT GRIDDING FUNCTION

The inverse relationship to Equation (2) for recovering the
sky brightness from the visibility plane data is

I(l,m) = // du dv V(u, v) expli2x(ul + vm)]

When mapping a small portion of the sky, say —L/2 <[ <
L/2 and —M/2 < m < M/2 it is convenient to introduce
normalised map coordinates (x,y) defined by x = [/L,y =
m/M which each range from —% to % Writing v’ = uL and
v =wvM, we find

I(x,y) o / V@', v exp [i2n (u'x +v"y)| du’ dv’

In the following, we drop the primes on u’ and v’ for con-
venience, so they are now in units of cell widths rather
than wavelengths, and use them in conjunction with the
normalised map coordinates x and y.

2 A series of Jupyter notebook tutorials describing the use and
properties of the least—misfit functions can be found at https:
//github.com/SzeMengTan/OptimalGridding
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Figure 1. The normalised coordinate system (x,y). The size of
the two—dimensional field of interest is defined by x € [-xp, xo]
and y € [-yo, yol-

With infinite computing power, DFT would be prefer-
able to FF'T, since no information would be lost due to grid-
ding or FFT. We therefore propose a criterion which min-
imises the upper bound of the difference between the DFT
and FFT dirty images. This difference is also referred to be-
low as the ‘image misfit’. Since cropping of the edge of the
image is common in order to maintain a reasonably good
image misfit across the retained image, we introduce a pa-
rameter xg to control the retained portion of the image, so
as to minimise the image misfit within the field of view of
interest. Figure (1) shows the normalised coordinate system,
where the field of view of interest is x € [—xq, x0], ¥ € [—Y0, Yol
where xg, yg € (0,0.5]. The parameters xy and yg control the
amount of discard in both directions. They are usually taken
to be the same, but that does not mean the angular sizes of
both sides of the field are identical. O’Sullivan (1985) pro-
posed that an FFT image should be made twice as large as
the intended image, so that the outer half of it should be
discarded; in this case xg = yg = 0.25.

Our aim is to find a gridding function which can min-
imise the upper bound of the dirty image misfit within the
desired portion of the image.

le(x)|?< (Z Wk|Vk|2)(Z Wi
X X

1 - h(x) Z C(n —uy)exp [i2n(n — uy)x]

neSxk
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2.1 Theory

We first write the DFT and FFT dirty image so as to find
an expression for the image misfit. We perform the analysis
in one dimension for simplicity. The DFT dirty image can
be written as

Ip(x) = D wi Vi exp (i2mug x), (3)
k

where wy is the weight for the visibility data V.

To obtain the corresponding FFT dirty image TD(x)
with size Ny, the visibilities must be gridded to obtain the
gridded data G, after which the FFT is applied

Ny/2-1

Ip(x)=h(x) >,
n=—N,/2

G, exp (i2nnx), (4)

where h(x) is the correcting function. The coefficient G, is
written as

Gn =D\ wiVkC(n — uy). (5)
k

The gridding function C(u) is real and symmetric, with a
support of W cells of unit width. Each visibility V; is assigned
with differing weights obtained from C(«) onto W consecutive
grid points n € S, where

Sk={n€zZ:u —W/2<n<u+W/2}. (6)

The integer W is chosen by the user.

Minimisation of the misfit between the DFT and FFT
dirty image was first proposed and implemented by Tan
(1986). This work is extended here, with new results. We
begin by writing the error resulting from the use of Ip in-
stead of Ip as

e(x) = Ip(0)~Ip(x) = >, wy Vi exp (i27uy.x)
k S————

a*

k

1-h(x) Z C(n — ug)exp [2n(n — ug)x]|. (7)

neSy

by
According to the Cauchy—Schwarz inequality
la-bl*’<|a-a|lb-b|, witha b= ZwkaZbk,
derived:

the  following  expression can  be

2
| ®

£(x)

Since the term 3 wg|Vi|? depends only on the data and
the weights, our task is reduced to keeping the other factor
£(x) small by choosing C(u) and h(x) appropriately.

By writing the fractional offset part of u as v=u—|u] €
[0, 1], where |u] is the largest integer not greater than u, we
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have
> Cln—uy)expli2n(n—ug)x] = > C(r—vy) expli2n(r—vi)x],

neSy
9)

where r = -W/2+1,..,W/2 when W is even. When W is odd
with u — [ug] > 0.5, r = B=W)/2, .y (W+1)/2; if uy — Lug] <
0.5, then r = (1 -W)/2,...,(W - 1)/2.
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Hence, we can write

2
0x) = > wi|[l = h(x) > Cr = i) exp[i2n(r = vi)x]| . (10)
k r

When the number of visibilities M is large, the values
of v are effectively spread randomly throughout the inter-
val (0,1). The sum inside Equation (10) can therefore be
replaced accurately by an integral from 0 to 1 over v, pro-
vided that the weights are normalised to X; wi = 1. Hence,
we have the general dimensionless local error limit

2

1
{(x) = J dv|l - h(x) Z C(r — v)expli2n(r — v)x] (11)
0 r

1
=1- 2h(x)j dv E C(r —v)cos[2n(r — v)x]
0 r

1
+ h(x)? J dv 3 > Clry = v)C(ry = v) cos2n(ry — ra)xl.
0

rn o n

In this way we can minimise the upper bound of e2(x) by
minimising £(x), which we define as the ‘map error function’.
Since €(x) depends on both the gridding function and the
correcting function, the choice of these is crucial in reaching
a small value of e(x). We take £(x) as a quantitative measure
of the performance of a given gridding function, in terms
of the upper bound of the difference between the DFT and
FFT dirty images. For a given convolution function C(u), we
can minimise the value of £(x) at each x by choosing h(x)

) _
such that ahC) = 0. This leads to
hex) = I(IJ dv >, C(r —v)cos[2n(r — v)x] (12)

[4dv Sy S, Clry = VIC(r2 = v)cos[2n(ry = r2)x]

The numerator is equal to c(x), the real part of the inverse
Fourier transform of C(u), since

1
c(x) = JduC(u) cos(2mux) = J dv Z C(r —v)cos[2n(r — v)x].
0 r
(13)
According to Equation 2.13 of Tan (1986), the denominator

can be shown to be equal to

o0 1
Z c(x —n)2 = I dv Z Z C(r; —v)C(rp —v) cos[2n(ry —ry)x],
n=—co 0 r

(14)
so that the optimal correction function can be written as
(o)
h(x) = c(x) / > clx—n). (15)
n=—o0o0

The denominator is the sum of aliased copies of c(x)? shifted
by the integer n. The Fourier transform of a good gridding
function falls to zero rapidly outside of the map, (i.e., outside
|x|< %) and so to a good approximation, the denominator
within the interior of map simplifies to c(x)2, making h(x) =
1/c(x), which is the form used by Greisen (1976).

The function €(x) can measure only the upper bound
of the image misfit at certain positions. The overall upper
bound of the map error can be written as a normalised inte-
gral of the map error function £(x) across the retained range

—xp < x < xp, as follows
L™ {(x)d 16

7 | coar (16)
The integral is considered over a restricted range because
the rest of the dirty image will be discarded. We refer to
the gridding function C(#) found by minimising E as the
least—misfit gridding function.

Although the minimisation of E is over variations of
both A(x) and C(u), we may reduce the problem to consider
varying either C(u) alone, or h(x) alone. This can either be
done by using Equation (12) to express h(x) in terms of C(u),
or by using the following procedure to express C(u) in terms
of h(x). This alternative has been found to be preferable in
practice. From Equation (11), it is evident that £(x) is the
integral over v of a non-negative function. If h(x) is given,
we can minimise E by choosing C,(v) = C(r — v) so as to
minimise the integrand in Equation (11) for each v. Upon
substituting Equation (11) into Equation (16) and following
the analysis of Tan (1986), we differentiate E with respect to
C,(v) to obtain the set of simultaneous equations for C,(v),

I . dxh(x)? cos[2(r’ = r)x]Cr(v) = [, , dxh(x) cos[2x(r = v)x].
(17)

where the indices r and r’ are dummy indices, which play
the same roles as r; and rp in Equation (11) and (12).

The linear system of equations for C,(v) may then be
written in matrix form as

Z Ay Cr(v) = By = J

where A is a Toeplitz matrix whose elements are independent
of v and can be written as

! dxh(x) cos[2n(r’ — v)x], (18)

—X0

Ay = J 0 dxh(x)? cos[2x(r’ - r)x]. (19)
—x

For each v, the values C,(v) give the function C(u) at W
points. The detailed algorithm for numerical optimisation is
set out in Appendix A.

2.2 Results and discussion

Equation (11) can be used to determine the map error £(x)
for any specific choice of gridding function C(x) and cor-
recting function h(x). Before presenting the results for the
least—misfit gridding function, we present £(x) for a number
of common gridding functions, for the purpose of compari-
son. In Figure (2) we show the map error function for the
following five choices of gridding function C(u):

(i) Nearest neighbour interpolation, i.e. Cj(u) = 1 on the
interval —0.5 < u < 0.5, and zero elsewhere.

(ii) Linear interpolation, i.e. Co(u) = 1 —|u| on the interval
-1 <u <1, and zero elsewhere.

(iii) Truncated sinc function for W = 8, i.e., C3(u) = sinc(u)
for —4 < u < 4, and zero elsewhere.

(iv) Gaussian function for W = 8, i.e., C4(u) o exp(—|ul?)
for —4 < u < 4, and zero elsewhere.

(v) Truncated sinc times Gaussian function for W = 8,

2
i.e., C5(u) < exp — (%) sinc (1%) for -4 < u < 4, and zero

elsewhere.

MNRAS 000, 1-15 (2019)



Map error function for chosen gridding functions
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Figure 2. The map error function for nearest neighbour, linear
interpolation and three other gridding functions with W = 8.

Map error function of spheroidal function
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Figure 3. The map error functions for spheroidal functions, with
W ranging from 6 to 14.

The constants are chosen according to the recommenda-
tions of Briggs et al. (1999). In each case the error becomes
large at the edge of the map, x = 0.5. The performance near
the centre of the map is much better, with functions that
include the sinc factor spreading out the range of x, over
which the error is relatively small, over a larger portion of
the map.

Figure (3) shows the map error function for the zero—
order spheroidal function and values of W in the range 6
through 14. The map errors are much smaller than for the
five functions considered previously for a comparable value
of W. In particular, comparison of the results for C3, C4 and
Cs for W = 8 in Figure (2) with the black line in Figure (3)
reveals the clear superiority of the spheroidal function. By
increasing the value of W used with the spheroidal function,
the error can be reduced substantially, especially over the
central portion of the map. As we move away from the cen-
tre, however, the error increases until it becomes of order
unity at the edge.

Let us now consider the results for the least—misfit grid-
ding functions. In Figure (4), the map error function £(x)

MNRAS 000, 1-15 (2019)
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Figure 4. Map error functions for the least—misfit gridding func-
tions with different values of xp, and W = 8.

Map error function of Least-misfit function (x0=0.25)
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Figure 5. Map error functions for the least—misfit gridding func-
tions when xo = 0.25, with W ranging from 6 to 14 using the
matrix B.

optimised with different values of xy with W = 8 generally
has some features in common:

e {(x) remains fairly stable, with small fluctuations from
x=0to x = xp.

e As x exceeds xp, the map error function increases
rapidly.

When the value of x is reduced so as to increase the
discarding range of the dirty image in Figure (4), the error
within the retained range is reduced. But the cropping of a
larger portion of the image gives rise to larger FF'T compu-
tations in order to make a larger dirty image. The choice of
xo must therefore be considered carefully.

We now consider the results for xy = 0.25, for which
we seek to minimise the upper bound of the error over the
central half of the map (in one dimension). Figure (5) shows
the map error function in this case for W = 6 through W = 14.
To obtain the results for W > 12 in Figure (5) using double
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precision arithmetic, it was necessary to reformulate part of
optimisation algorithm in a slightly different way in order to
ensure numerical stability. Details are given in Appendix B.
The map error function values attained in this central region
are at least 100 times better than those for the spheroidal
function with the same W. Taking the case with W =7, the
least—misfit function can achieve a €(x) at 10_14, whereas the
spheroidal function requires W > 10 and xy < 0.2 for their
error functions to be comparable. The improvement becomes
greater as W is increased.

For gridding using single-precision arithmetic, we rec-
ommend using W = 7, since the map error (which bounds
le(x)|? in Equation (8) is less than 1071* over —xg < x < xo.

3 LEAST-MISFIT GRIDDING AND
CORRECTING FUNCTIONS FOR Xj =0.25

In this section we show graphs of the least-misfit gridding
and correcting functions for xg = 0.25. These are shown in
Figures (6) for values of W ranging from 1 to 10.

Several interesting points are most apparent for small
values of W < 3, although larger values of W would typically
be used in order to take advantage of the improved map
error. These points are discussed in Appendix C

For W > 2 the correcting function h(x) increases mono-
tonically over the range 0 < x < xg. However, the bottom
left panel of Figure (6) shows that, as x extends past xg
and approaches the edge, h(x) begins to decrease once more.
This also happens for larger values of W, although it is not
apparent from the bottom right panel, which is plotted for
values of x extending only up to xp.

By substituting the optimal correcting function h(x)
given by Equation (12) into expression (11) for the map
error, we find that

1
f(x)=1- h(x)I dv Z C(r—=v)cos[2n(r —v)x] =1 — h(x)c(x).
0 r

(20)

In the portions of the map where £(x) is small, h(x) = 1/c(x),
which is the most commonly used correcting function for-
mula. When we use the least—misfit gridding functions, we
retain only the portion of the map with |x|< xp. In this cen-
tral portion, the difference between 1/c(x) and the optimal
h(x) given by Equation (12) or (15) is negligible.

The difference between h(x) and 1/c(x) is significant only
if 1(x) is not small. We plot the correcting functions for the
spheroidal function with W = 6 using the two different for-
mula, as shown in Figure (7). The correcting function cal-
culated based on Equation (15) is plotted as the blue line,
and that calculated via 1/c(x) is plotted as the orange line.
The difference between these becomes significant only as x
approaches 0.45, where the corresponding £(x) becomes as
large as 1073.

We then compare the rational approximation of the
gridding function proposed by Tan (1986) using the same cri-
teria against our least—misfit gridding function when W = 6
and xg = 0.25. Figure (8) shows the corresponding map er-
ror functions. The least—misfit function has an error func-
tion £(x) approximately 100 times smaller than that of the
rational approximation. Since the error function is the up-
per bound of the square of the image misfit, our updated

implementation improves the image misfit roughly tenfold
when W =6 and xg = 0.25.

4 COMPARISON OF LEAST-MISFIT
FUNCTION AND SPHEROIDAL FUNCTION

We have already made a theoretical comparison between
the least—misfit function and the spheroidal function, in our
comparison of the map error function for the two gridding
functions. This section reports a numerical experiment to
make comparison using simulated data, studying the image
misfit and the suppression of aliasing.

4.1 Comparison of image misfit

We simulated a VLA snapshot observing 34 4 GHz point
sources with differing fluxes and locations across the field of
view. No noise sources or other complications were added.
The simulation was generated with the VLA A-array config-
uration. More details of this dataset are given in Appendix
D.

Figure (9) shows the RMS value of the image misfit.
The gridding functions used are least—misfit functions with
differing values of W. The x—axis represents the normalised
image plane coordinate. For a given value of x, the y—axis is
the RMS value of the image misfit within the range [—x, x].
This choice accurately reproduces the features found in Fig-
ure (5). The RMS value of the image misfit remains at a
small and steady value from 0 to 0.25. It then undergoes
a rapid increase from 0.25 to 0.5, where the image will be
cropped. The final FFT image therefore successfully main-
tains a small image misfit from its corresponding DFT image
across the entire image. For this particular simulated data,
the least—misfit function with W = 7 already causes the im-
age misfit to reach the limit of single precision floating point
arithmetic. The mild fluctuations visible in Figure (5) do not
manifest significantly because of the averaging operation in-
volved in taking the RMS value.

Figure (10) shows the RMS value of the image misfit
for the same data, using spheroidal functions with different
values of W. This figure also shares the same features as
Figure (3).

Comparison of Figure (9) with Figure (10) reveals that,
in the range [0,0.25], the image misfit using the least—misfit
gridding function is at least 102 times better than that using
the spheroidal function with the same window width W. To
achieve single precision in the image misfit, the least—misfit
gridding function needs only a support width of W =7 with
xg = 0.25, whereas PSWF requires a width W = 10 with
image cropping from at least xg =0.2.

In addition, we construct a dirty image using the same
data as in CASA for comparison with the DFT dirty image;
the RMS value of the image misfit is plotted in blue in Figure
(11). We then make a double-sized dirty image via CASA with
the same pixel size and crop the outer half of the image, to
determine whether the image cropping influences the image
misfit. The corresponding RMS values are plotted in orange.
The two further lines are identical to the lines with W =6,7
in Figure (3).

Since the dirty image has already been cropped in CASA,
the blue line in the figure attains a misfit of 1073 at around
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Figure 6. The least—misfit gridding functions, and the corresponding correcting functions when xo = 0.25 with W varying from 1 to 10.

Correcting function of spheroidal function (W = 6)
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Figure 7. Correcting functions for the spheroidal function (W =
6) calculated via Equation (15) and from 1/c¢(x). The difference
inside the central part of the image is as small as 1078, almost
indistinguishable.

x = 0.5, compared to 10~! achieved by spheroidal functions
with W = 6,7 with no cropping. Further image cropping,
which corresponds to the orange line, reduces the image mis-
fit by much less than 10. It is therefore unnecessary to per-
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Map error function comparison (W = 6, xp = 0.25)
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Figure 8. The error function for the least-—misfit gridding func-
tion (xp = 0.25, W = 6) and its rational approximation respectively.

form extra image cropping on CASA dirty images. To achieve
the same image misfit, we need only use W = 3 for the least—
misfit gridding function, leading to a much lower gridding
computational cost.
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RMS of image misfit using least-misfit function
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Figure 9. RMS value of the image misfit for 34 point—source sim-
ulated data using the least—misfit functions with differing values
of W.
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Figure 10. RMS value of the image misfit for 34 point—source
simulated data using spheroidal functions (@ = 1) with differing
values of W.
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Figure 11. RMS value of the CASA dirty image misfit for the
34-source simulated data.

Aliasing experiment result using least-misfit function (x, = 0.25)
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Figure 12. Normalised brightness of alias versus the horizontal
distance from the point source to the edge of the field of view.
Least—misfit functions with differing values of W are used. The x—
axis represents the normalised distance from the point source to
the image edge, and the y—axis is the normalised aliasing bright-
ness.

4.2 Comparison of aliasing suppression
performance

We consider a simple aliasing scenario in which there is no
source within the field of view, and a single point source
outside it which causes aliasing within it. We simulate a set
of point—source visibility data based on the VLA A-array
configuration, and shift the point source from very close to
the edge to further away. The point source was kept outside
the field of view, and its horizontal distance from the image
edge was varied but with its declination kept constant. The
brightness of the alias is expected to decrease as a result of
the aliasing suppression using the gridding function.

We constructed DFT and FFT dirty images from the
datasets, and recorded the brightness of the aliases from the
images of the differences. Figure (12) shows the normalised
brightness of aliases versus the horizontal distance in the
normalised coordinate x from the source to the edge of the
image. The least—misfit functions are used with different val-
ues of W.

The trend in the aliasing suppression shown in Figure
(12) is consistent with the map error functions for the least—
misfit gridding functions in Figure (5). Aliases in the central
half of the image are well suppressed, with a normalised
brightness of the alias of approximately 1077 for W = 7.
The small fluctuations of the normalised brightness within
[0,0.25] are also consistent with Figure (5).

As expected, the aliasing effect within the outer half of
the image deteriorates as the distance between the source
and the field edge decreases. Furthermore, as W increases,
the least—misfit function suppresses aliasing more strongly.
For W > 7, the brightness of the alias is already less than
1077 of the original brightness within the range [0,0.25].

The same numerical experiment was then repeated us-
ing spheroidal functions (@ = 1) with different values of W.
Figure (13) shows the results. This is consistent with the
results in Figure (3): the image misfit in this case is the

MNRAS 000, 1-15 (2019)



Aliasing experiment results using spheroidal function
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Figure 13. Normalised brightness of the alias versus the horizon-
tal distance from the point source to the edge of the field of view.
The gridding functions used here are the spheroidal functions with
differing values of W. The x—axis represents the normalised dis-
tance from the point source to the image edge, and the y—axis is
the normalised aliasing brightness.

normalised aliasing brightness, and it grows with small fluc-
tuations as the distance from the image centre increases. As
W increases, the normalised aliasing brightness reduces. For
W > 10, the alias brightness is at least 1077 of the original
brightness within the range [0, 0.25].

With W fixed, the least-misfit gridding function
achieves at least 102 times smaller normalised aliasing
brightness than the spheroidal function at the same posi-
tion. We conclude that the least—misfit gridding function is
clearly superior at suppressing aliasing than the spheroidal
function with the same value of W.

Given its good performance in aliasing suppression, the
least—misfit gridding function can potentially replace the
spheroidal function in wide—field imaging algorithms such
as the w-projection method (Cornwell et al. 2003) and w—
Stacking method (Humphreys & Cornwell 2011; Offringa
et al. 2014). We are writing a paper proposing an improved
w—Stacking method, in which our least-misfit gridding func-
tions are used along with modifications on the original w—
Stacking method. As a result, we can make the difference
between the DFT and FFT dirty images for wide-field ob-
servations negligible to single precision by using W = 7 and
to double precision by using W = 14.

5 DEGRIDDING WITH THE LEAST-MISFIT
GRIDDING FUNCTION

The quality of a degridding procedure may be evaluated in
terms of an RMS ‘visibility misfit’, which is defined as the
difference between the original visibilities and those degrid-
ded from an image model. In the following numerical exper-
iment, we reuse the simulated data for 34 point sources and
the VLA A-array described in Appendix D.

Figure (14) shows the results for the least-misfit grid-
ding functions with xy = 0.25 for different values of W, using
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RMS of visibility misfit using double and single precision arithmetic
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Figure 14. RMS value of the degridding misfit when using the
least-misfit gridding function with different values of W.

both single and double precision arithmetic. For single pre-
cision arithmetic, there is no advantage in using W > 7.

In the Cotton-Schwab CLEAN algorithm (Schwab &
Cotton 1983), the visibilities are calculated from the current
CLEAN model and are subtracted from the measured visi-
bility data during each major cycle in order to obtain a set
of visibility residuals which are gridded to form a new dirty
map for minor cycles of cleaning. Ideally the calculation of
the visibilities from the model is done using the DFT, but
it is more computationally efficient to use an FFT followed
by degridding. We have conducted experiments which con-
firm that by using the least-misfit function with W =7, the
error introduced by the degridding is negligible at the level
of single-precision arithmetic. In this way, no extra error is
introduced during major cycles. Under the same conditions,
we have found that the spheroidal function with the same
support, leads to an RMS misfit at least 100 times that of
the least-misfit function.

In summary it is recommended that the least-misfit
gridding function with W = 7 and xg = 0.25 be also used
for degridding when single precision arithmetic is adequate.

6 PRACTICAL IMPLEMENTATION OF THE
LEAST-MISFIT FUNCTION

There are two distinct ways to use the least—misfit gridding
function during imaging: either calculate the exact function
values directly for the given visibility data, or retrieve val-
ues from a pre—calculated look—up table. In the latter case
the look—up table usually has very limited samples, so the
values retrieved are approximations to the exact values. We
shall first discuss the use of the look—up table, with attention
to the choice of the sampling number and the interpolation
method. We then examine the method of direct calculation,
and compare the computational cost between these two im-
plementation methods. After that, we explore different com-
binations of W and xq for the least—misfit function, focussing
on the balance between the computational cost and the de-
sired level of accuracy. As a result, we recommend use of
the least—misfit gridding function with W =7 and x¢ = 0.25
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RMS of image misfit using least-misfit function with different Mg
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Figure 15. RMS value of the image misfit achieved using look-up
tables of the least—misfit function (W =7, x¢ = 0.25) with differing
sampling rates.

in order to achieve both image and visibility misfit at single
floating point precision. To attain the same precision using
spheroidal functions, much greater computational and stor-
age costs would be incurred.

6.1 Look—up table implementation

In previous experiments, exact values of the gridding func-
tions were calculated and used, but in practice a pre—
calculated look—up table is commonly used, in which the
gridding function is uniformly sampled by a so—called ‘sam-
pling rate’ within each grid. The bigger the sampling rate
is, the finer the gridding function is sampled. Given the vis-
ibility data, the corresponding gridding weights can then be
retrieved from the table using the nearest—neighbour rule.
The process of generating the look—up table is set out in
Appendix E.

When the nearest-neighbour rule is in use, for the least—
misfit function with W = 7 and xy = 0.25, a sampling rate
of 10° already causes both the image and visibility misfit
to reach the single precision limit during the gridding and
degridding process; see Figure (15) and Table (1). The sam-
pling rate My changes from 10 to 10% when My = 100, the
accuracy achieved is already comparable to that achieved by
CASA, as demonstrated in Figure 11.

Using the same image model of the 34 point-source VLA
simulated data as in Section 5, we recorded the RMS of the
difference between the degridded and original visibility in
Table (1). Although the small sampling rate prevents the
gridding function from achieving its best performance, with
My = 10° the accuracy achieved (1077) already matches the
use of the exact gridding function values.

With the look—up table in use, the RMS image misfit
builds up away from the centre of the map; this can be seen
in Figure (15), and also in Figure (11) for which a look—
up table of the spheroidal function is used in CASA. It is
particularly obvious closer to the centre of the image. As
an example, with My fixed, the RMS of the image misfit
increases rapidly from x = 0 to approximately x = 0.02, and
then there is a more steady and gentle rise to x = xg. The
effect is explained in Appendix F.

Table 1. RMS value of the visibility misfit using the least—misfit
gridding (W =7, x¢ = 0.25) look—up table with differing sampling
rates Mg

My RMS of the visibility misfit
102 6.23 x 1073
103 4.48 x 1074
104 4.40 x 1073
105 4.62x 1070
100 4.85 %1077
No sampling 2.98 x 1077

Compared to other interpolation methods, such as lin-
ear, quadratic or cubic interpolation, nearest—neighbour re-
quires less memory access and lower calculation cost. It has
one obvious disadvantage, however: a fairly large sampling
rate My is necessary to reach the desired accuracy. For ex-
ample, when W increases to 14, a sampling rate of more than
10'2 is necessary to achieve its best gridding and degridding
performance. In contrast, the sampling rate can be decreased
to around 10° if linear interpolation is used.

6.2 Direct calculation implementation

The direct calculation method provides exact gridding func-
tion values. Given the visibility data, we can calculate the
fractional offset part of each u as v = u — |u] € [0,1] (in
the one-dimensional case); the corresponding W gridding
weights can then be calculated via Equation (18). The cal-
culation need be performed only once for a certain visibility
data.

We compare the usage of the two different methods here.
The look—up table only needs to be built up once and then
stored. A sampling rate of 100 already causes the image and
visibility misfit level to attain the single precision limit us-
ing the nearest neighbour rule with W = 7,xy = 0.25, and
to attain the double precision limit using linear interpola-
tion with W = 14,x9 = 0.25. Because of the symmetry of
the gridding function it is only necessary to store 3.5 x 10°
single precision floating points; only 13.35MB is required to
attain the single precision limit with W =7, x9 = 0.25. On a
computer with the quad—core Intel 15-2310 @ 2.90GHz pro-
cessor and 8 GB of memory, such a table is constructed in
12 seconds, corresponding to 12 microseconds to calculate
each gridding value.

For W = 14, x5 = 0.25, the corresponding table would
cost 53.41MB in storage, with double precision floating
points stored. For W > 11, the B matrix must be calcu-
lated for each value of v, and it is therefore advisable to use
the look—up table via linear interpolation to save the large
direct computational cost: the look—up table with the same
sampling rate and value of W takes 104 seconds to deter-
mine on the same computer, or 104 microseconds for each
gridding value.

When a look—up table is used then, for a specific visi-
bility dataset, the nearest gridding function value must be
searched for every (u,v) coordinate when using the nearest—
neighbour method. In our program, only 0.38 microseconds
is required on average to find 7 indices from the look—up ta-
ble for each item of visibility data. For linear interpolation,
apart from the searching cost, the interpolation process gen-
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Operation comparison with different xos and Ws
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Figure 16. Computational cost comparison with different com-
binations of W and x¢ when using the least—misfit function.

erates extra computational cost, which is very much afford-
able. In comparison, the gridding values calculated via the
direct calculation method can usually only be reused for the
same visibility data, but no extra searching or interpolation
cost is needed.

6.3 Choice of W and x

No matter which method is used to obtain the least—misfit
function values, the gridding process is the same. Given the
number of (u, v) positions specified as N,, when each visibil-
ity comprising both real and imaginary parts is to be gridded
onto u or v alone, there will firstly be 2 multiplications with
the corresponding real weight. Then the weighted visibility
will have 2W multiplications with the gridding values, and
2W additions on the corresponding grid points. For a two—
dimensional gridding on u and v for given visibility data,
there are (AW2+2)N,, operations. If the one-dimensional grid-
ding function is precomputed, an extra W2 multiplications
will be added to find the coefficients, making the operations
increase to (SW2 +2)N,.

We consider next the FFT cost. Given the image pixel
size Nx and Ny, since the FFT image will be cropped, it
is necessary to make a Nx/(2xp) by Ny/(2yp) FFT dirty im-
age. Here, yq is usually equal to xy. We simulated a 6-hour
long observation using the same 34-source configuration, and
tested it on our computer with a quad—core Intel i5-2310 @
2.90GHz processor and 8 GB of memory. This computer
took 1.112 seconds to compute the FFT dirty image of size
2048 by 2048, effectively taking 62 nanoseconds to compute
the FFT value on each pixel with xy = 0.25. For comparison,
the gridding operation for this data only took 0.566 seconds.
The correcting function can be calculated very easily once
the image size is given.

To achieve greater accuracy in both the gridding and
degridding process, W should be larger and xy smaller. A
larger W incurs greater computational cost of the convolu-
tion, however, and a smaller xj incurs higher FFT computa-
tional costs. To achieve the desired precision at an affordable
computational cost, a compromise is necessary.
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The combination W = 7 and xg = 0.25 is not the only
one to attain the desired single precision. We choose 5 sets
of W and xg pairs for which the image and visibility misfit

reach the single precision limit. The convolution and FFT
NeNy o (NXNy)
4x0y0 4xoyo |

operations are combined as N, (SW2 +2)+5

It is assumed that xg = yg.

The computing cost is plotted as the number of op-
erations in Figure (16), with the visibility number ranging
from 10* to 108 and Ny = Ny = 2048. For N, > 107, W
largely dominates the overall computational cost. For the
choice W = 6,xyp = 0.2, which is plotted in blue, then al-
though the corresponding FFT image has to be cropped
more than any other W and x( pair, its computational cost
is the smallest, because W is least. When N,, is smaller, x
dominates the computational cost. The computational cost
of using W = 8, xy = 0.3 and W =7, xy = 0.25 remain relatively
small for the given range of visibility numbers. We prefer to
use W = 7,x9 = 0.25, to give a smaller look—up table and
setup table. Based on a good balance between the accuracy
and the computational cost, we recommend using W = 7 and
xo = 0.25 so as to achieve the single floating point precision
limit in both the image and visibility misfit.

When we compare the least—misfit function against the
spheroidal function, we are forced, in order to achieve the
same level of image or visibility misfit, to choose a much
larger W for the spheroidal function; this incurs extra com-
putational and storage costs. If we choose the same value
of W for both gridding functions, better precision is always
obtained by using the least—misfit function. The least—misfit
function is therefore preferred.

Since the computational cost saved by using a smaller
value of W increases with the number of visibilities, espe-
cially in view of the construction of the next generation of
radio interferometers such as SKA (Square Kilometre Ar-
ray)(Hall et al. 2008), it is worth using the least-misfit grid-
ding functions with less computational cost but much higher
accuracy in both the gridding and degridding processes.

7 CONCLUSIONS

In this paper we have proposed a new set of gridding func-
tions based on the criterion that the difference between the
DFT and FFT dirty images should be minimised. As a re-
sult, accurate dirty images promise to provide more accurate
information about the radio sky, and high—precision dirty
images will benefit future applications that work directly
with dirty images such as Hague et al. (2018).

In summary, the least—misfit gridding function outper-
forms the widely-used spheroidal function 100-fold in terms
of the image misfit with the same W. In the suppression
of aliasing, even though the spheroidal function was cho-
sen specifically to suppress aliasing effects, the least—misfit
function is able to suppress the alias at least 100 times more
effectively. Essentially, aliasing is a part of the image misfit,
and there is therefore no need to consider its suppression
separately.

We have also considered the computational cost and
the degridding process. We recommend the use of the least—
misfit gridding function with W = 7 and x5 = 0.25, so as
to achieve a balance between the desired accuracy and the
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computational cost in both the gridding and degridding pro-
cesses. If a look—up table is used, a sampling rate of 10° al-
ready causes the image and visibility misfit level to reach the
single precision limit using the nearest neighbour rule with
W =17,xp = 0.25, and to reach the double precision limit us-
ing the linear interpolation with W = 14, xg = 0.25. Such a
table with W =7, xy = 0.25 requires only 14M storage. If even
single precision is not required, the least—misfit function can
achieve the same image accuracy as CASA with W =3 and a
sampling rate of 100.

The least—misfit gridding function has a strong potential
to be used to make more accurate wide—field images,
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APPENDIX A: ALGORITHM FOR
NUMERICAL OPTIMISATION

In Tan (1986), the minimisation of E was undertaken by a
joint optimisation over both C(u) and A(x). In the present
paper we use a different approach, in which we explicitly
vary only A(x) in the optimisation, and use the system of
Equation (18) to find the optimal gridding function C(u)
corresponding to this choice of h.

We perform the optimisation by representing A(x) on a
set of Ng + 1 equally-spaced points from x = 0 to x = xp.
From x =0 to x = xq, A(x) increases smoothly from A(0) = 1.
This function is also symmetric about x = 0, so that it has
a total of (2Ng + 1) points. For the variable v, we use a grid
of Mg equally-spaced points in the interior of the interval
0 < v < 0.5. For C(u), as a result of its symmetry, there
are 2WMg points. These grids need be of only modest size:
Ng =32 and M, = 16 suffice for the examples presented here.

We use the following procedure to generate E(h(x)):

(i) From an initial A(x) of (Ng + 1) values running from
x =0 to x = xp, we calculate A, from Equation (19), using
a trapezoidal rule to calculate the integral. We can then
determine A;,lr.

(i) We next evaluate C,(v) using Equation (18), again
using a trapezoidal rule for the integral on the right-hand
side.

(iii) Next, calculate £(x) from Equation (11), approximat-
ing the integral over v by a simple sum over the points at
which C,(v) has been determined.

(iv) Finally, we calculate E from Equation (16), using the
trapezoidal rule for the integral over x.

Since we have essentially expressed E in terms of the sam-
ples of h(x) for 0 < x < xp alone, we may use the Levenberg—
Marquardt algorithm (Moré 1978) to perform the minimisa-
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tion of E. By making use of modern Python libraries, and if
we identify the E function with the function leastsq from
package scipy.optimise, it returns the optimised h(x) with
(Ng + 1) values.

Although the optimisation gives h(x) sampled on a
coarse grid between 0 and xp, we can still calculate C(u)
at arbitrary values of u using Equation (18). The values of
h(x) and £(x) can also be calculated at arbitrary points over
the entire map —0.5 < x < 0.5 by using Equations (11) and
(12).

An initial guess for h(x) is needed to begin the opti-
misation. We introduce the notation Ay (x) to distinguish
between correcting functions with differing support widths.
The choice h(x) = 1 works well if W < 4. For W > 4 the min-
imisation does not converge satisfactorily. This problem can
be overcome by providing the initial Ay (x) as a function of
the optimised haw_1)(x) and Ay _2)(x):

(i) hw(x) =1 for W < 4;
(iD) fow () = By _y () hw-2)(x) for W > 4.

APPENDIX B: CALCULATION OF
LEAST-MISFIT GRIDDING FUNCTIONS FOR
W>12

As part of the optimisation algorithm it is necessary to com-
pute the values of C,(v) from the current trial value of h(x).
The system in Equation (17) involves the matrix A, and its
elements are given in Equation (19). Since these elements
are independent of v, the solutions for different values of
v can be found using a solver for linear systems, with the
same coefficient matrix for differing right-hand sides. Unfor-
tunately, for large values of W, the condition number of A
increases rapidly, causing loss of precision and failure of the
linear solver.

Equations (17) can be regarded as the normal equations
for solving the linear least—squares problem so as to minimise
E in Equation (16) for C-(v) = C(r — v) when h(x) is given.
Instead of forming the normal equations, however, we can
solve the least—squares problem directly. Upon substituting
Equation (11) into (16) and writing out the complex expo-
nential in terms of its real and imaginary parts, we have

1 1 X0
E = —I dvI dx (B1)
2XO 0 —X0

[(1 — h(x) Sy Cr () cosl2n(r — x])? + (h(x) Sy Cr(v) sin[27(r — v)x])z] ,

Since the integrand is non—negative at every value of v, we
can consider each value separately and minimise

[, dx [(1 — () S,y Cr(v)) cos[27(r = v)x])? + (h(x) =y Cr(v) sin[27(r — V)x])z].

Upon discretising the problem by approximating the integral
by a sum over M samples x; distributed over the interval of
integration, we can minimise

=, [0 = h) B G0 cosi2n(r = vl + () £ G () sinl2n(r = v ]P.

This may be written as ||d — Be||> where ¢, = C-(v), d; =
1 ifl<is<M

and
0 ifM+1<i<2M

| h(xi) cos[2nr(r — v)x;] ifl<is<M

Bir = . . . (BZ)
h(x;)sin[2a(r — v)x;] fM+1<i<2M
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For each value of v, the linear—least squares problem for c
given B and d can be solved by factorizing B using the QR
algorithm (as is done by the dgels() routine in LAPACK).
This procedure does not require the matrix A in Equation
(17), which is numerically badly conditioned; consequently
the calculation can be done using double precision arith-
metic for W < 14.

Values of W that are even higher may be considered us-
ing an extended precision package such as gmpy2 in Python.
It was convenient to reformulate the optimization as an
eigenvalue problem in this case, and for the least—misfit grid-
ding function with W =20 and x( = 0.25 the integrated map
error was 6.62 x 10743,

APPENDIX C: LEAST-MISFIT GRIDDING
FUNCTION WITH SMALL VALUES OF W

For W = 1, each visibility point is gridded onto its nearest
neighbour. Figure (6) shows that the least-misfit gridding
function C(u) in this case is approximately equal to one over
the range |u|< 0.5. The fact that it is not exactly one implies
that, when the visibility is exactly on a gridpoint, a higher
weight is preferable than when the visibility is midway be-
tween grid points. Since C(u) = 0 for |u|> 0.5, the gridding
function is discontinuous at |u|=0.5.

For W = 2, each visibility point is gridded onto its two
nearest neighbours. The least-—misfit function in this case
differs slightly from the simple linear interpolation function
C(u) = 1 — |u] for |u|< 1. The orange curve in the middle
left panel of Figure (6) is not a straight line, and does not
pass through one when u = 0 and zero when u = 1. This
tells us that the gridding function is discontinuous at |u|= 1,
since its value is zero for all |u|> 1. Since C is even, it too
has a discontinuity in its slope at u = 0. When this gridding
function is used in conjunction with the correction function,
the integrated map error from zero to xyp = 0.25 is smaller
than for conventional linear interpolation; see Figure (2).

Based on these two cases, we expect that C(u) (and its
derivatives) may be discontinuous at integer values of u when
W is even, and may be discontinuous at half-integer values
of u (i.e., values half-way between the integers) when W is
odd.

For W = 3, visible discontinuities remain in the least—
misfit gridding function C(u) at |u|= 0.5 and |u|= 1.5. This
behaviour is a natural extension of the situation for W = 1,
and may also be understood by considering the set of three
grid points onto which each visibility is distributed. Accord-
ing to which side of the midpoint between two grid points a
baseline falls, the visibility is gridded onto a different set of
three points. For example, if the baseline is |ug]+0.49 (where
Lug] is an integer), the visibility is distributed among |ug] -1,
Lug] and |ug|+1, whereas if the baseline is [ug]+0.51, the vis-
ibility is distributed among |ug], lug] +1 and |ug] + 2. Since
the value of the gridding function at the edge of its support,
i.e., C(x1.5), is non-negligible, the way in which the visibility
is distributed among the grid points is expected to change
discontinuously as the baseline passes through |ug] + 0.5;
this is because one grid point disappears from the set and is
replaced by another.

For W > 4, these discontinuities in value and derivatives
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Table D1. Locations and fluxes of 34 simulated point sources. X
and Y are specified in pixel numbers, and represent the distances
from the image centre (0, 0) to the corresponding point sources.

Index X Y Flux (Jy) Index X Y Flux (Jy)
1 0 0 2 18 0 270 1
2 0 15 2 19 0 330 1
3 -120 180 2 20 330 0 1
4 150  -150 2 21 0 -330 1
5 300 90 2 22 -330 0 1
6 -90 300 2 23 270 270 1
7 90 -90 1 24 270  -270 1
8 -90 90 1 25 -270 270 1
9 -90 -90 1 26 -270  -270 1
10 180 90 1 27 390 390 3
11 180 180 1 28 390 -390 3
12 180  -180 1 29 -390 -390 3
13 -180 180 1 30 -390 390 3
14 -180  -180 1 31 345 0 2
15 270 0 1 32 -345 0 2
16 0 -270 1 33 0 -345 2
17 -270 0 1 34 0 345 2

cease to be visible. In particular, the values of C(u) at the
edge of the support |u|= W/2 are very small.

APPENDIX D: 34-SOURCE SIMULATED DATA

Table (D1) shows the location and flux of the 34 simulated
point sources used in the numerical experiments. Sources are
scattered about the phase centre with different fluxes across
the full field of view.

Sources 27, 28, 29 and 30 are at four corners of the field,
and are chosen to have the largest fluxes of the 34 sources.

APPENDIX E: GENERATION OF THE
LOOK-UP TABLE

The look—up table for the least—misfit gridding function is
assembled as follows:

e Create v € [0,1) as a set of My numbers spaced equally
between 0 and 1. We refer to My as the ‘sampling rate’ in
this paper.

e If W < 11 then, for each value of v, calculate a set
of W gridding function values according to Equation (18)
using matrix A, which can be used repeatedly as it is not
dependent on v.

e If W > 11 then, for each value of v, calculate a set of W
gridding function values according to Equation (B2) using
matrix B. The B matrix must be recalculated for each v,
increasing the computational cost.

APPENDIX F: EFFECT OF THE LOOK-UP
TABLE

Figure (9) shows that, if the gridding function is calculated
precisely, the RMS misfit between the DFT and the FFT
is proportional to the square root of the map error £(x),
as expected from equation (10). When, however, we store
the gridding function C(u) for —-W/2 < u < W/2 in a table
with WM points over this range, and use nearest-neighbour
lookup to perform the convolution as shown in Figure (15),
the performance is degraded unless a large value of Mg 2 100
is used. The misfit is also no longer constant over the map,
but tends to increase away from the centre of the map as a
result of performing the lookup.

In this appendix we account for these effects, and inves-
tigate how the degradation depends on the value of M. As
well as nearest-neighbour lookup, the higher-order interpo-
lation schemes for calculating C(u) from its sampled values
are also of interest.

The key observation is that equation (11) for the map
error £(x) holds for any choice of h(x) and C,(v) = C(r —v). If
these are set equal to the optimal A(°PY(x) and Cﬁ()pt)(v) for
the least—misfit functions, we find results such as those in
Figure (5). When table lookup or interpolation are used, we
are effectively using a different gridding function C,(v) which
coincides with the optimal function at the tabulated points,
but which takes different values away from these points. By
substituting the interpolated function for C,(v) and the op-
timal correction A©°PY(x) into (11), it is possible to evalu-
ate £(x) for the various schemes. We can also use equation
(16) to calculate the mean square misfit over the map region
—xg < x < xp; its square root provides an RMS error bound.

We consider the following interpolation methods, using
a table of C(vy) where v; = k/Mg and k takes integer values
lying between —WM; /2 and WM /2.

e Nearest neighbour table lookup, in which C(v) is ap-
proximated by C(vy) where v is the entry in the table clos-
est to v. This is a piecewise polynomial approximation of
degree d =0,

e Linear interpolation, of degree d = 1

e Quadratic interpolation, of degree d =2

e Cubic interpolation, of degree d =3

For d > 1 we use a polynomial of degree d which passes
through vi, Vislse-, Virqd €valuated at v, where vy < v <
Vi+1- The computation can be performed efficiently using
the standard Newton interpolation formula (see Abramowitz
and Stegun 25.2.28 and 25.2.29). If the function that is to be
approximated has continuous derivatives of order up to d+1,
the error in the approximation is O(h*!), where h = M;l is
the separation between the tabulated points.

Figure F1 shows how the map error function £(x) varies
for these interpolation schemes, as well as for the exact grid-
ding function, in the case of the least-misfit gridding function
for W =7 and xp = 0.25. Interpolation schemes generally in-
crease the map error relative to the exact gridding function
over almost all of the map, with the degradation getting
worse away from the map centre. Re-plotting of the figures
on log-log axes reveals that, when the error due to interpo-
lation is greater than that for the exact gridding function,
£(x) ~ x2@+D_ Thus the RMS difference between the DFT
and FFT maps in these regions behaves as x(@*+D.
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Figure F1. Map error {(x) for different interpolation schemes and lookup table sampling rate M using the least-misfit gridding function

for W =7 and x¢ = 0.25.
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Figure F2. Root mean square error VE over the portion of map
retained in various interpolation schemes for the least-misfit grid-
ding function with W =7 and x( = 0.25.
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We see also from the graphs that, as My increases, the
rate at which £(x) approaches the exact gridding function
depends strongly on the choice of d. A plot of VE where
E is given by equation (16), provides a bound on the RMS
error over —xg < x < xg. This is shown in Figure F2. Inter-
polation of degree d leads to an RMS error dependent on
My @+ above the minimum provided by the exact gridding
function. Based on such graphs, we may choose the size of
the table so that the results of the interpolation are indis-
tinguishable from results using the exact gridding function.
In the example considered, My =~ 106 for nearest-neighbor
interpolation, and 103 for linear interpolation.

The choice of interpolation scheme depends on the
trade-off between the time required to fetch data from a
lookup table of a given size, and the time to do the interpo-
lation of a given degree. If the computation time dominates,
a low-degree interpolation and a large lookup table is prefer-
able. If memory access time dominates, the ability to fit a
smaller table into high speed cache may favour interpolation
of higher degree.
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