Electronic Journal of Graph Theory and Applications

Designs for graphs with six vertices and ten edges

A. D. Forbes ${ }^{\text {a }}$, T. S. Griggs ${ }^{\text {a }}$, K. A. Forbes ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
${ }^{b}$ Research, Business and Innovation, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK

anthony.d.forbes@gmail.com, terry.griggs@open.ac.uk

Abstract

The design spectrum has been determined for two of the 15 graphs with six vertices and ten edges. In this paper we completely solve the design spectrum problem for a further eight of these graphs.

Keywords: graph design, group divisible design, Wilson's construction
Mathematics Subject Classification : 05C51
DOI: 10.5614/ejgta.2019.7.2.14

1. Introduction

Throughout this paper all graphs are simple. Let G be a graph. If the edge set of a graph K can be partitioned into edge sets of graphs each isomorphic to G, we say that there exists a decomposition of K into G. In the case where K is the complete graph K_{n} we refer to the decomposition as a G-design of order n. The design spectrum of G is the set of non-negative integers n for which there exists a G-design of order n. For completeness, we remark that the empty set is a G-design of order 0 as well as 1 ; these trivial cases are usually assumed henceforth. A complete solution of the spectrum problem often seems to be difficult. However it has been achieved in many cases, especially amongst the smaller graphs. We refer the reader to the survey article of Adams, Bryant and Buchanan, [2] and, for more up to date results, the Web site maintained by Bryant and McCourt, [5]. If the graph G has v vertices, e edges, and if d is the greatest common divisor of the

[^0]vertex degrees, then a G-design of order n can exist only if the following conditions hold:
\[

$$
\begin{align*}
\text { (i) } & n \leq 1 \text { or } n \geq v \\
\text { (ii) } & n-1 \equiv 0(\bmod d) \tag{1}\\
\text { (iii) } & n(n-1) \equiv 0(\bmod 2 e)
\end{align*}
$$
\]

Except where (i) of (1) applies, adding an isolated vertex to a graph does not affect its design spectrum.

The problem for small graphs has attracted attention. As far as the authors are aware, the design spectrum problem has been completely solved for the following.
(i) All graphs with at most five vertices. For details and references, see [2] and [5]. For more recent results, see [11], [17] and [9].
(ii) All graphs with six vertices and at most eight edges. Again, see [2] and [5] for details and references. The two cases left undecided in [2] were successfully resolved by Forbes, Griggs \& Forbes, [7].
(iii) All graphs with six vertices and nine edges; See [2], [5], [1], [13], [19], [16], and the recent paper of Forbes \& Griggs, [6], where the spectrum problem for 6-vertex, 9-edge graphs is completely solved.

In Table 1 we list the 15 graphs with six vertices and ten edges. The numbering in the first column corresponds to the ordering of the ten-edge graphs within the list of all 156 graphs with six vertices, available at [18]. The second column identifies the graphs as they appear in An Atlas of Graphs by Read \& Wilson, [20]. The third column contains the edge sets which we use in our computations; the vertices are labelled in non-increasing order of degree.

Graph n_{9} is K_{5} with an additional, isolated vertex, and its spectrum is that of K_{5} except that there is no design of order 5. Hence it follows from the classic result of Hanani, [14], that an n_{9} design of order n exists if and only if $n \equiv 1$ or $5(\bmod 20)$ and $n \neq 5$. Graph n_{11} is a closed 10 -trail and its design spectrum, determined by Adams, Bryant \& Khodkar, [3], is the same as that of n_{9}. For the remaining thirteen graphs of Table 1, it is easily established that designs of order n exist only if $n \equiv 0,1,5,16(\bmod 20)$ and $n \neq 5$. In this paper we show that these conditions are sufficient for eight of the graphs. We prove the following.

Theorem 1.1. Designs of order n exist for graphs $n_{1}, n_{2}, n_{4}, n_{5}, n_{7}, n_{12}, n_{14}$ and n_{15} if and only if $n \equiv 0,1,5,16(\bmod 20)$ and $n \neq 5$.

We also have partial results for the other graphs. Generally, we can say that we have solved the design spectrum problem for all 6-vertex, 10-edge graphs with at most 16 possible exceptions. Specifically, we can prove that designs for the remaining five graphs exist for two of the four admissible residue classes given above, namely (i) the 'easy' case, $n \equiv 1(\bmod 20)$, and (ii) $n \equiv 5(\bmod 20), n \neq 5$, as well as various subclasses of $n \equiv 0,16(\bmod 20)$, namely (iii) $n \equiv 0,40,100(\bmod 120)$ and (iv) $n \equiv 36,56,76,116(\bmod 120)$. The results presented in this paper are for the eight graphs where we have the entire design spectrum. In all cases there exist decompositions of the complete graphs K_{16} and K_{20}, which allows for a uniform treatment of all

Designs for graphs with six vertices and ten edges $\quad \mid \quad$ A. D. Forbes et al.

Table 1. The 15 graphs with 6 vertices and 10 edges

G177	
	$\{5,3\}$
	,
	$\{5,3\},\{5,2\},\{5,1\},\{4,6\},\{4,2\},\{4,1\},\{3,2\},\{3,1$
	$\{6,4\},\{6,2\},\{6,1\},\{5,3\},\{5,2\},\{5$,
	, 5,2$\},\{5,1\},\{4,3\}$
	$\{4,3\},\{4,2\},\{4,5\},\{4,1\},\{6,1\},\{3,2\},\{3,5\},\{3,1\},\{2,5\},\{2$,
	$\{4,3\},\{4,5\},\{4,2\},\{4,1\},\{6,2\},\{6,1\},\{3,5\},\{3,2\},\{3,1\},\{2$
	$\{3,2\},\{3,5\},\{3,4\},\{3,1\},\{6,4\},\{6,1\},\{2,5\},\{2,4\},\{2,1\}$
	\{ 6,4$\},\{6,3\},\{6,1\},\{5,3\},\{5,2\},\{5,1\},\{4,2\},\{4,1\},\{3,1$
	$3,6\},\{3,4\},\{3,2\},\{3,1\},\{5,4\},\{5,2\},\{5,1\},\{6$,

eight graphs. Proofs of results for the remaining five graphs are likely to be more involved and the details are deferred to a future paper.

Theorem 1.1 is proved in Section 2. For our computations and in the presentation of our results, we represent the labelled graph n_{i} by a subscripted ordered 6 -tuple $\left(z_{1}, z_{2}, \ldots, z_{6}\right)_{i}$, where $z_{1}=1$, $z_{2}=2, \ldots, z_{6}=6$ give the edge sets in Table 1 and the illustrations in Figure 1. For a graph G with 10 edges, the numbers of occurrences of G in a decomposition into G of the complete graph K_{n}, the complete r-partite graph $K_{n^{r}}$ and the complete ($r+1$)-partite graph $K_{n^{r} m^{1}}$ are respectively

$$
\frac{n(n-1)}{20}, \quad \frac{n^{2} r(r-1)}{20} \text { and } \frac{n r(n(r-1)+2 m)}{20}
$$

2. Proof of Theorem 1.1

We use Wilson's construction involving group divisible designs. Recall that a K-GDD of type $g_{1}^{t_{1}} \ldots g_{r}^{t_{r}}$ is an ordered triple $(V, \mathcal{G}, \mathcal{B})$ where V is a base set of cardinality $v=t_{1} g_{1}+\cdots+t_{r} g_{r}, \mathcal{G}$ is a partition of V into t_{i} subsets of cardinality $g_{i}, i=1, \ldots, r$, called groups and \mathcal{B} is a collection of subsets of cardinalities $k \in K$, called blocks, which collectively have the property that each pair of elements from different groups occurs in precisely one block but no pair of elements from the same group occurs at all. A $\{k\}$-GDD is also called a k-GDD. As is well known, if there exist $k-2$ mutually orthogonal Latin squares (MOLS) of side q, then there exists a k-GDD of type q^{k}. So when q is a prime power there exists a q-GDD of type q^{q} and a $(q+1)$-GDD of type q^{q+1} (obtained from affine and projective planes of order q respectively). A parallel class in a group divisible design is a subset of the block set in which each element of the base set appears exactly

Figure 1. Graphs with 6 vertices and 10 edges.
once. A k-GDD is called resolvable, and denoted by k-RGDD, if the entire set of blocks can be partitioned into parallel classes.

Proposition 2.1. Let i, t, p, q be positive integers. Let w, x, y be non-negative integers such that
$x+y=w$ and $w \leq 4 t$. Let $e=0$ or 1 . Suppose there exist decompositions into the graph G of the complete graphs $K_{4 i+e}$ and $K_{x p+y q+e}$ as well as the complete multipartite graphs $K_{i, i, i, i}, K_{i, i, i, i, p}$ and $K_{i, i, i, i, q}$. Then, there exists a G-design of order $12 i t+4 i+x p+y q+e$.

Proof. There exists a 4-RGDD of type $4^{3 t+1}$ for $t \geq 1$, [15], see also [12], and a simple computation establishes that it has $4 t$ parallel classes of $3 t+1$ blocks each. If $w>0$, add a new group of w points, associate with each new point a distinct parallel class and extend each of its blocks by adjoining the point to them, thus creating $w(3 t+1)$ five-element blocks. This is possible since w does not exceed the number of parallel classes of the 4-RGDD. Thus we either have a 4-GDD of type $4^{3 t+1}$, or we have created a $\{4,5\}$ - or 5 -GDD of type $4^{3 t+1} w^{1}$.

Inflate x and y points in the new group by a factor of p and q respectively. Inflate points in the original groups by a factor of i. Thus the blocks of the GDD are replaced by graphs $K_{i, i, i, i}, K_{i, i, i, i, p}$ and $K_{i, i, i, i, q}$. If $e=1$, add an extra point. Overlay each inflated group, together with the extra point if $e=1$, with either $K_{4 i+e}$ or $K_{x p+y q+e}$, as appropriate. Since we assume the existence of decompositions into G of all of the component graphs, the construction yields a G-design of order $12 i t+4 i+x p+y q+e$ whenever $t \geq 1$ and $t \geq w / 4$.

Before applying Proposition 2.1 we establish the existence of the various decompositions that we require to make the construction work and for handling the sporadic design orders where the construction fails.

Lemma 2.1.

(i) Designs of orders 16, 20, 21, 25, 36, 40, 41, 45, 56 and 65, exist for graphs $n_{1}, n_{2}, n_{4}, n_{5}$, n_{7}, n_{12}, n_{14} and n_{15}.
(ii) Designs of orders 60 and 61 exist for graphs n_{1}, n_{2}, n_{7} and n_{12}.
(iii) A design of order 85 exists for graph n_{15}.

Proof. The decompositions are presented in the Appendix.

Lemma 2.2.

(i) There exist decompositions of complete multipartite graphs $K_{10,10,10,10}, K_{20,20,20,20}, K_{5,5,5,5,5}$, $K_{10,10,10,10,10}, K_{15,15,15,15,15}, K_{10,10,10,10,15}, K_{10,10,10,10,20}, K_{16^{6}}$ and $K_{20^{5}, 16}$ into each of graphs $n_{1}, n_{2}, n_{4}, n_{5}, n_{7}, n_{12}, n_{14}$ and n_{15}.
(ii) There exist decompositions of $K_{16,16,16,16,21}$ and $K_{20,20,20,20,25}$ into each of graphs n_{1}, n_{2}, n_{4}, n_{5}, n_{7}, n_{12} and n_{14}.
(iii) There exists a decomposition of $K_{10,10,10}$ into each of graphs n_{4}, n_{5}, n_{14} and n_{15}.
(iv) There exists a decomposition of $K_{3,3,3,3,3}$ into graph n_{15}.

Proof. The decompositions are presented in the Appendix.

Lemma 2.3.

(i) Designs of orders 60 and 61 exist for graphs n_{4}, n_{5}, n_{14} and n_{15}.
(ii) Designs of orders 76, 80, 81, 85, 96, 100, 101, 105, 116 and 125 exist for graphs n_{1}, n_{2}, n_{4}, $n_{5}, n_{7}, n_{12}, n_{14}$ and n_{15}.

Proof. We give only brief details by specifying the ingredients for Wilson's construction, namely the complete graphs, the complete multipartite graphs and the group divisible designs. It should be clear how the points of the GDDs are inflated and which GDDs are augmented by an extra point. Decompositions of the ingredients exist by Lemmas 2.1 and 2.2.

- Orders 60 and 61 for n_{4}, n_{5}, n_{14} and n_{15} are constructed from decompositions of K_{20}, K_{21} and $K_{10,10,10}$, and a 3-GDD of type 2^{3} (obtained from the projective plane of order 2).
- Order 76 (for all graphs) is constructed from decompositions of K_{16} and $K_{15,15,15,15,15}$, and the trivial 5-GDD of type 1^{5}.
- Orders 80 and 81 are constructed from decompositions of K_{20}, K_{21} and $K_{20,20,20,20}$, and the trivial 4-GDD of type 1^{4}.
- Order 85 for all graphs except n_{15} is constructed from decompositions of K_{16}, K_{21} and $K_{16,16,16,16,21}$, and the trivial 5-GDD of type 1^{5}.
- Order 85 for graph n_{15} is given by Lemma 2.1.
- Order 96 is constructed from decompositions of K_{16} and $K_{16^{6}}$, and the trivial 6-GDD of type 1^{6}.
- Orders 100 and 101 are constructed from decompositions of K_{20}, K_{21} and $K_{5,5,5,5,5}$, and a 5-GDD of type 4^{5} (obtained from a projective plane of order 4).
- Order 105 for all graphs except n_{15} is constructed from decompositions of K_{20}, K_{25} and $K_{20,20,20,20,25}$, and the trivial 5-GDD of type 1^{5}.
- Order 105 for graph n_{15} is constructed from decompositions of $K_{21}, K_{3,3,3,3,3}$, and a 5-GDD of type 7^{5} obtained by removing two groups from a 7 -GDD of type 7^{7} (obtained from an affine plane of order 7), i.e. a set of three MOLS of side 7.
- Order 116 is constructed from decompositions of K_{16}, K_{20} and $K_{20^{5}, 16}$, and the trivial 6GDD of type 1^{6}.
- Order 125 is constructed from decompositions of K_{25} and $K_{5,5,5,5,5}$, and a 5-GDD of type 5^{5} (obtained from an affine plane of order 5).

Lemma 2.4.

(i) There exist decompositions of complete multipartite graphs $K_{6,6,6,6,6}, K_{4^{6}}, K_{4^{6}, 10}$ and $K_{15^{9}}$ into each of graphs $n_{1}, n_{2}, n_{4}, n_{5}, n_{7}, n_{12}, n_{14}$ and n_{15}.
(ii) There exist decompositions of $K_{5^{5}, 10}$ and $K_{15^{9}, 20}$ into each of graphs $n_{1}, n_{2}, n_{4}, n_{5}, n_{7}, n_{12}$ and n_{14}.
(iii) There exists a decomposition of $K_{10,10,10,15}$ into graph n_{15}.

Table 2. The main construction

order	t	w	x	p	y	q	e	missing values
$120 t+40$	$t \geq 1$	0	0	-	0	-	0	40
$120 t+40+20$	$t \geq 1$	1	0	-	1	20	0	60
$120 t+40+40$	$t \geq 1$	2	0	-	2	20	0	80
$120 t+40+60$	$t \geq 1$	3	0	-	3	20	0	100
$120 t+40+80$	$t \geq 1$	4	0	-	4	20	0	120
$120 t+40+100$	$t \geq 2$	5	0	-	5	20	0	$20,140,260$
$120 t+40+1$	$t \geq 1$	0	0	-	0	-	1	41
$120 t+40+21$	$t \geq 1$	1	0	-	1	20	1	61
$120 t+40+41$	$t \geq 1$	2	0	-	2	20	1	81
$120 t+40+61$	$t \geq 1$	3	0	-	3	20	1	101
$120 t+40+81$	$t \geq 1$	4	0	-	4	20	1	121
$120 t+40+101$	$t \geq 2$	5	0	-	5	20	1	$21,141,261$
$120 t+40+125$	$t \geq 2$	7	3	15	4	20	0	$45,165,285$
$120 t+40+25$	$t \geq 1$	2	1	10	1	15	0	65
$120 t+40+45$	$t \geq 1$	3	3	15	0	-	0	85
$120 t+40+65$	$t \geq 1$	4	3	15	1	20	0	105
$120 t+40+85$	$t \geq 2$	5	3	15	2	20	0	$5,125,245$
$120 t+40+105$	$t \geq 2$	6	3	15	3	20	0	$25,145,265$
$120 t+40+16$	$t \geq 1$	1	1	15	0	-	1	56
$120 t+40+36$	$t \geq 1$	2	1	15	1	20	1	76
$120 t+40+56$	$t \geq 1$	3	1	15	2	20	1	96
$120 t+40+76$	$t \geq 1$	4	1	15	3	20	1	116
$120 t+40+96$	$t \geq 2$	5	1	15	4	20	1	$16,136,256$
$120 t+40+116$	$t \geq 2$	6	1	15	5	20	1	$36,156,276$

Proof. The decompositions are presented in the Appendix.
We are now ready to prove Theorem 1.1. For the main construction, we use Proposition 2.1 with $i=10$, and p and q taking values from $\{10,15,20\}$ as indicated in Table 2. The inflated blocks of the group divisible design become multipartite graphs $K_{10,10,10,10}, K_{10,10,10,10,10}, K_{10,10,10,10,15}$ and $K_{10,10,10,10,20}$. With the decompositions of Lemmas 2.1, 2.2 and 2.3 we obtain the designs listed in Table 2. Combining the residue classes modulo 120, we see that there exist designs of order $n, n \equiv 0,1,5$ and 16 (modulo 20) except for those orders listed under 'missing values'. The missing values are handled as follows.

Designs of order 5 do not exist because the graphs have more than five vertices. Orders 20, 40, $60,80,100,21,41,61,81,101,25,45,65,85,105,125,16,36,56,76,96$ and 116 are given by Lemmas 2.1 and 2.3. For the others, we give brief details by specifying the ingredients for Wilson's construction, namely the complete graphs, the complete multipartite graphs and the group divisible
designs. Unless it is clear we also indicate how the points of the GDD are inflated and whether the GDD is augmented by an extra point. Decompositions of the ingredients exist by Lemmas 2.1, 2.2 and 2.4.

- Orders 120 and 121 are constructed from decompositions of K_{20}, K_{21} and $K_{5,5,5,5,5}$, and a 5-GDD of type 4^{6}, [10], see also [8].
- Orders 140 and 141 are constructed from decompositions of K_{20}, K_{21} and $K_{10,10,10,10}$, and a 4-GDD of type 2^{7}, [4], [8].
- Orders 260 and 261 are constructed from decompositions of K_{20}, K_{21} and $K_{10,10,10,10}$, and a 4-GDD of type 2^{13}, [4], [8].
- Order 145 is constructed from decompositions of K_{25} and $K_{6,6,6,6,6}$, and a 5-GDD of type 4^{6}. The GDD is augmented with an extra point.
- Order 165 for all graphs except n_{15} is constructed from decompositions of $K_{25}, K_{40}, K_{5,5,5,5,5}$ and $K_{5^{5}, 10}$, and a $\{5,6\}$-GDD of type $5^{5} 4^{1}$ obtained from a 6-GDD of type 5^{6} (obtained from a projective plane of order 5) by removing one point from one group. The four points of the reduced group are inflated by a factor of 10 , all other points by a factor of 5 .
- Order 165 for graph n_{15} is constructed from decompositions of $K_{40}, K_{45}, K_{10,10,10,10}$ and $K_{10,10,10,15}$, and a 4-GDD of type 4^{4}. Inflate one point by a factor of 15 , all other points by a factor of 10 .
- Order 245 is constructed from decompositions of $K_{40}, K_{45}, K_{10,10,10,10,10}$ and $K_{10,10,10,10,15}$, and a 5-GDD of type 4^{6}. Inflate one point by a factor of 15 , all others by a factor of 10 .
- Order 265 is constructed from decompositions of K_{45} and K_{4}, and a 6-GDD of type 11^{6} obtained by removing 5 groups from an 11-GDD of type 11^{11} (obtained from an affine plane of order 11). The GDD is augmented with an extra point.
- Order 285 is constructed from decompositions of $K_{21}, K_{45}, K_{4^{6}}$ and $K_{46,10}$, and a $\{6,7\}$ GDD of type $11^{6} 2^{1}$ obtained by removing 4 groups and 9 points of another group from an 11 -GDD of type 11^{11}. Inflate the points in the group of size 2 by a factor of 10 , all other points by a factor of 4 . The GDD is augmented with an extra point.
- Order 136 is constructed from decompositions of K_{16} and $K_{15^{9}}$, and the trivial 9-GDD of type 1^{9}.
- Order 156 for all graphs except n_{15} is constructed from decompositions of K_{16}, K_{21} and $K_{15^{9}, 20}$, and the trivial $10-\mathrm{GDD}$ of type 1^{10}.
- Order 156 for graph n_{15} is constructed from decompositions of $K_{36}, K_{41}, K_{10,10,10}, K_{10,10,10,10}$ and $K_{10,10,10,15}$, and a $\{3,4\}$-GDD of type $4^{3} 3^{1}$ obtained by removing one point from a 4GDD of type 4^{4}. Inflate one point in the reduced group by a factor of 15 , all other points by a factor of 10 .
- Order 256 is constructed from an affine plane of order 16 by replacing each block with a decomposition of K_{16}.
- Order 276 is constructed from decompositions of $K_{56}, K_{5,5,5,5,5}$, and a 5-GDD of type 11^{5} obtained by removing 6 groups from an 11-GDD of type 11^{11}, i.e. a set of three MOLS of side 11.

3. Concluding Remarks

Most of the decompositions in the Appendix were obtained by a special computer program written in the C language. Designs where existence could not be decided by this program include order 60 for each of graphs n_{1}, n_{2}, n_{7}. In these cases we adapted the method outlined in [7]. We describe the construction of the n_{1} design of order 60 in some detail.

We split the graph n_{1} into two parts, K_{4} induced by vertices $1,2,3,4$, and C_{4} with vertices $1,2,5,6$ (see Figure 1). We assume the K_{60} to be partitioned is labelled with the elements of $N=\{0,1, \ldots, 59\}$. We create a partial Steiner system $\operatorname{PS}(2,4,60), \mathcal{S}$ say, with point set $N, 177$ blocks and automorphism $x \mapsto x+20(\bmod 60)$. So the blocks of \mathcal{S} occur in 59 orbits of size 3. For graph n_{1} we have the additional requirement that \mathcal{S} must have no point of even degree.

Next, we create the $T-K$ matrix \mathbf{M} for assembling the graphs C_{4}. Here, $T=T_{1} \cup T_{2}$, where T_{1} is the set of edge orbits (under the action of $x \mapsto x+20(\bmod 60)$) in the leave of \mathcal{S}, and T_{2} is the set of block orbits of \mathcal{S}. To each ordered 4-tuple J of integers we associate a 4-cycle graph $H(J) \cong C_{4}$ labelled with the elements of J. Denote by $E(J)$ the set of edge orbits corresponding to the edges of $H(J)$. We retain precisely those J where (i) $J \subset N$, (ii) the elements of J are distinct, (iii) $E(J) \subset T_{1}$, (iv) the elements of $E(J)$ are distinct, and (v) there is a block orbit $B(J) \in T_{2}$ such that $B(J)$ includes a block which contains two vertices of $H(J)$. Then K is the set of all those $E(J) \cup\{B(J)\}$ that correspond to ordered 4-tuples J satisfying (i)-(v). The matrix \mathbf{M} is defined for $t \in T$ and $k \in K$ by $\mathbf{M}_{t, k}=1$ if $t \in k, \mathbf{M}_{t, k}=0$ otherwise.

We attempt to solve $\mathbf{M v}=\mathbf{1}$ for \mathbf{v} a $\{0,1\}$ vector. If we are unsuccessful, we try another PS $(2,4,60)$. Otherwise we recover the fifty-nine 4 -tuples J corresponding to 1 s in \mathbf{v} and hence the orbits of the graphs K_{4} and C_{4} of our decomposition. Finally, we pair off orbits of K_{4} graphs and orbits of C_{4} graphs such that in each pair of orbits we choose a representative K_{4} and a representative C_{4} that have two labels in common. This is guaranteed to succeed because of condition (v) above.

References

[1] P.Adams, E.J. Billington and D.G. Hoffman, On the spectrum for $K_{m+2} \backslash K_{m}$ designs, J. Combin. Des. 5 (1997), 49-60.
[2] P. Adams, D.E. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
[3] P. Adams, D.E. Bryant and A. Khodkar, The spectrum problem for closed m-trails, $m \leq 10$, J. Combin. Math. Combin. Comput. 34 (2000), 223-240.
[4] A.E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block size four, Discrete Math. 20 (1977), 1-10.
[5] D.E. Bryant and T.A. McCourt, Existence results for G-designs, http://wiki.smp.uq.edu.au/G-designs/.
[6] A.D. Forbes and T.S. Griggs, Designs for graphs with six vertices and nine edges, Australas. J. Combin. 70 (2018), 52-74.
[7] A.D. Forbes, T.S. Griggs and K.A. Forbes, Completing the design spectra for graphs with six vertices and eight edges, Australas. J. Combin. 70 (2018), 386-389.
[8] G. Ge, Group divisible designs, Handbook of Combinatorial Designs, second edition (ed. C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press (2007), 255-260.
[9] G. Ge, S. Hu, E. Kolotoğlu and H. Wei, A Complete Solution to Spectrum Problem for FiveVertex Graphs with Application to Traffic Grooming in Optical Networks, J. Combin. Des. 23 (2015), 233-273.
[10] G. Ge and A.C.H. Ling, Asymptotic results on the existence of 4-RGDDs and uniform 5GDDs, J. Combin. Des. 13 (2005), 222-237.
[11] G. Ge and A.C.H. Ling, On the existence of ($\left.K_{5} \backslash e\right)$-designs with application to optical networks, SIAM J. Discrete Math. 21 (2008), 851-864.
[12] G. Ge and Y. Miao, PBDs, Frames and Resolvability, Handbook of Combinatorial Designs, second edition (ed. C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press (2007), 261265.
[13] R.K. Guy and L.W. Beineke, The coarseness of the complete graph, Canad. J. Math. 20 (1968), 888-894.
[14] H. Hanani, The existence and contruction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
[15] H. Hanani, D.K. Ray-Chaudhuri and R.M. Wilson, On resolvable designs, Discrete Math. 3 (1972), 343-357.
[16] Q. Kang, H. Zhao and C. Ma, Graph designs for nine graphs with six vertices and nine edges, Ars Combin. 88 (2008), 379-395.
[17] E. Kolotoğlu, The Existence and Construction of ($\left.K_{5} \backslash e\right)$-Designs of Orders 27, 135, 162, and 216, J. Combin. Des. 21 (2013), 280-302.
[18] B. McKay, Graphs: Simple Graphs: 6 vertices: all (156), http://users.cecs.anu.edu.au/~bdm/data/graphs.html.
[19] R.C. Mullin, A.L. Poplove and L. Zhu, Decomposition of Steiner triple systems into triangles, J. Combin. Math. Combin. Comp. 1 (1987), 149-174.
[20] R.C. Read and R.J. Wilson, An Atlas of Graphs, Clarendon Press, Oxford, 1998.

Appendix: Decompositions

Proof of Lemma 2.1

\boldsymbol{K}_{16} With vertex set $Z_{15} \cup\{\infty\}$ the decompositions consist of $(\infty, 8,14,5,12,6)_{1},(13,8,1,7,0,9)_{1},(5,2,10,6,4,7)_{1}$, $(11,9,4,12,5,6)_{1}$, $(\infty, 0,14,7,13,6)_{2},(4,6,9,3,7,0)_{2},(6,11,5,13,2,10)_{2}$, $(13,7,12,10,9,8)_{2}$, $(\infty, 0,14,6,8,2)_{4},(6,11,4,12,10,8)_{4},(10,7,5,9,8,2)_{4}$, $(8,12,4,1,9,3)_{4}$, $(0,4,10,3,2, \infty)_{5},(1,12,13, \infty, 2,4)_{5},(8,10,13,7,6,9)_{5}$, $(1,6,9,0,4,12)_{5}$, $(\infty, 8,11,9,2,10)_{7},(6,13,9,0,4,11)_{7},(6,2,7,5,14,8)_{7}$, $(2,10,0,3,4,13)_{7}$, $(0,11,9,1,7, \infty)_{12},(7,12,6,0,3,5)_{12},(5,6,9,8,13,3)_{12}$, $(3,2,9,14, \infty, 0)_{12}$, $(13,0,14,4,1, \infty)_{14},(2,13,3, \infty, 6,10)_{14},(0,4,7,5,11,10)_{14}$, $(4,6,12,2,8,11)_{14}$,
under the action of the mapping $x \mapsto x+5(\bmod 15), \infty \mapsto \infty$, and $(8,10,5,14,7,4)_{15},(12,14,9,2,11,8)_{15},(0,2,13,6,15,12)_{15}$, $(4,6,1,10,3,0)_{15},(2,4,13,9,1,7)_{15},(6,8,1,13,5,11)_{15}$, $(10,12,5,1,9,15)_{15},(14,0,9,5,13,3)_{15},(2,10,13,11,3,5)_{15}$, $(14,6,9,7,15,1)_{15},(0,8,15,3,11,7)_{15},(4,12,3,7,15,11)_{15}$.
\boldsymbol{K}_{20} With vertex set Z_{20} the decompositions consist of $(7,19,4,13,6,16)_{1},(5,11,13,15,12,18)_{1},(3,17,7,11,0,5)_{1}$, $(1,3,15,19,2,10)_{1},(2,16,4,11,0,5)_{1},(9,19,12,14,2,17)_{1}$, $(13,16,1,9,3,12)_{1},(8,18,0,13,2,3)_{1},(15,16,8,17,6,14)_{1}$, $(4,12,1,8,17,18)_{1},(6,17,2,13,10,18)_{1},(1,14,7,18,5,17)_{1}$, $(3,6,4,9,12,14)_{1},(7,12,2,15,0,10)_{1},(10,14,8,11,2,13)_{1}$, $(10,18,9,15,16,19)_{1},(0,11,1,6,9,19)_{1},(5,8,7,9,6,19)_{1}$, $(0,4,5,10,14,15)_{1}$, $(9,10,19,1,12,7)_{2},(4,9,16,5,15,14)_{2},(7,2,13,1,3,16)_{2}$, $(17,15,18,19,1,16)_{2},(0,10,16,8,6,1)_{2},(7,0,18,12,15,6)_{2}$, $(11,3,18,9,16,1)_{2},(5,8,14,18,19,1)_{2},(4,10,18,13,7,2)_{2}$, $(15,12,13,8,11,6)_{2},(4,6,11,19,17,0)_{2},(0,13,17,9,5,2)_{2}$, $(3,14,19,0,12,13)_{2},(5,3,17,10,15,12)_{2},(6,2,9,8,5,14)_{2}$, $(1,3,4,8,6,12)_{2},(7,11,17,8,5,14)_{2},(14,10,11,2,15,13)_{2}$, $(16,2,12,19,15,6)_{2}$, $(3,17,7,10,2,12)_{4},(7,1,11,14,6,16)_{4},(11,5,15,18,10,0)_{4}$, $(15,9,19,2,14,4)_{4},(19,13,3,6,18,8)_{4},(15,1,0,17,3,8)_{4}$, $(19,5,4,1,7,12)_{4},(3,9,8,5,11,16)_{4},(7,13,12,9,15,0)_{4}$, $(11,17,16,13,19,4)_{4},(17,8,18,9,7,14)_{4},(1,12,2,13,11,18)_{4}$, $(5,16,6,17,15,2)_{4},(9,0,10,1,19,6)_{4},(13,4,14,5,3,10)_{4}$,
$(0,2,4,8,12,10)_{4},(6,2,10,14,18,4)_{4},(8,16,12,6,10,18)_{4}$,
$(14,16,18,0,4,12)_{4}$,
$(16,7,6,15,2,12)_{5},(14,0,7,17,10,19)_{5},(5,14,13,11,2,12)_{5}$,
$(1,5,16,10,17,12)_{5},(0,13,2,8,4,15)_{5},(0,1,16,18,9,8)_{5}$,
$(9,19,12,17,2,10)_{5},(1,3,11,2,4,0)_{5},(15,5,12,0,3,4)_{5}$,
$(13,6,7,1,3,0)_{5},(19,1,18,12,14,15)_{5},(14,3,13,9,16,19)_{5}$,
$(19,8,16,4,5,11)_{5},(11,6,15,17,19,8)_{5},(4,6,15,9,10,14)_{5}$,
$(18,4,8,7,17,14)_{5},(10,8,11,3,9,12)_{5},(10,17,18,2,13,3)_{5}$,
$(5,7,18,6,9,11)_{5}$,
$(6,19,13,7,17,16)_{7},(13,14,0,16,3,5)_{7},(3,19,1,9,18,16)_{7}$,
$(8,5,9,3,10,7)_{7},(15,14,2,10,9,13)_{7},(3,17,12,2,15,11)_{7}$,
$(4,1,15,5,16,17)_{7},(0,17,8,9,16,1)_{7},(7,14,17,1,18,2)_{7}$,
$(4,10,3,7,6,0)_{7},(12,13,7,4,9,2)_{7},(2,5,0,18,6,13)_{7}$,
$(19,2,10,8,16,15)_{7},(11,9,4,6,18,14)_{7},(6,8,1,18,12,15)_{7}$,
$(11,1,10,13,17,8)_{7},(14,19,5,4,12,8)_{7},(11,15,5,0,7,19)_{7}$,
$(12,18,0,16,10,11)_{7}$,
$(15,1,4,10,18,12)_{12},(19,5,8,14,2,16)_{12},(3,9,12,18,6,0)_{12}$,
$(7,13,16,2,10,4)_{12},(11,17,0,6,14,8)_{12},(15,5,7,11,6,16)_{12}$,
$(19,9,11,15,10,0)_{12},(3,13,15,19,14,4)_{12},(7,17,19,3,18,8)_{12}$,
$(11,1,3,7,2,12)_{12},(10,18,3,16,5,6)_{12},(14,2,7,0,9,10)_{12}$,
$(18,6,11,4,13,14)_{12},(2,10,15,8,17,18)_{12},(6,14,19,12,1,2)_{12}$,
$(1,16,0,5,8,9)_{12},(1,13,17,8,5,12)_{12},(4,0,13,9,12,8)_{12}$,
$(4,16,17,12,9,5)_{12}$,
$(2,10,17,6,3,0)_{14},(6,14,1,10,7,4)_{14},(10,18,5,14,11,8)_{14}$,
$(14,2,9,18,15,12)_{14},(18,6,13,2,19,16)_{14},(6,9,4,11,8,0)_{14}$,
$(10,13,8,15,12,4)_{14},(14,17,12,19,16,8)_{14},(18,1,16,3,0,12)_{14}$,
$(2,5,0,7,4,16)_{14},(4,18,12,3,17,7)_{14},(8,2,16,7,1,11)_{14}$,
$(12,6,0,11,5,15)_{14},(16,10,4,15,9,19)_{14},(0,14,8,19,13,3)_{14}$,
$(7,5,13,15,3,9)_{14},(1,5,19,9,17,15)_{14},(11,1,13,17,15,3)_{14}$,
$(11,7,19,3,9,17)_{14}$,
$(19,1,15,13,5,11)_{15},(10,9,19,4,18,0)_{15},(6,9,16,11,15,10)_{15}$,
$(16,17,5,13,0,2)_{15},(6,14,16,0,4,7)_{15},(1,12,15,16,17,8)_{15}$,
$(0,2,3,9,18,12)_{15},(9,1,3,7,14,5)_{15},(1,2,8,11,4,0)_{15}$,
$(5,6,1,8,18,10)_{15},(6,13,5,3,12,16)_{15},(3,4,13,15,7,0)_{15}$,
$(9,17,10,8,3,13)_{15},(7,18,16,12,11,19)_{15},(8,11,4,3,12,19)_{15}$,
$(14,17,4,11,18,5)_{15},(14,15,18,7,13,8)_{15},(2,17,19,7,6,10)_{15}$,
$(2,14,10,19,12,15)_{15}$.
\boldsymbol{K}_{21} With vertex set Z_{21} the decompositions consist of
$(0,1,3,13,5,7)_{1},(0,1,3,7,10,8)_{2},(0,1,2,5,8,10)_{4}$,
$(0,1,2,5,8,11)_{5},(0,1,3,10,8,4)_{7},(0,1,3,7,14,12)_{12}$,
$(0,1,3,7,12,9)_{14},(0,1,3,4,8,15)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 21)$.
$\boldsymbol{K}_{\mathbf{2 5}}$ With vertex set Z_{25} the decompositions consist of
$(0,7,20,21,23,16)_{1},(14,20,5,9,3,22)_{1},(12,20,17,19,13,6)_{1}$, $(18,7,19,6,22,13)_{1},(19,1,3,9,21,22)_{1},(1,8,20,23,4,16)_{1}$, $(0,20,8,17,19,7)_{2},(3,10,11,6,0,1)_{2},(20,22,9,1,18,11)_{2}$, $(1,7,13,14,12,8)_{2},(14,3,9,18,17,5)_{2},(1,2,19,17,15,4)_{2}$, $(0,4,17,6,8,9)_{4},(20,8,5,2,16,15)_{4},(18,8,13,6,19,7)_{4}$, $(13,4,17,16,15,10)_{4},(9,22,2,7,19,10)_{4},(1,11,21,4,17,10)_{4}$, $(0,13,4,23,10,8)_{5},(14,16,0,1,5,12)_{5},(7,16,15,23,21,17)_{5}$, $(20,11,16,19,13,3)_{5},(22,2,12,8,9,5)_{5},(3,2,14,4,19,21)_{5}$, $(0,22,2,9,10,19)_{7},(19,8,5,22,23,16)_{7},(14,12,16,22,21,23)_{7}$, $(14,19,15,6,13,7)_{7},(15,1,10,23,16,11)_{7},(2,16,18,8,23,20)_{7}$, $(0,14,23,18,10,16)_{12},(3,14,9,16,17,6)_{12},(9,19,0,18,7,6)_{12}$, $(6,14,7,15,1,10)_{12},(16,2,12,18,15,10)_{12},(2,3,11,18,0,22)_{12}$, $(0,10,17,8,19,21)_{14},(20,7,16,8,9,6)_{14},(7,4,17,13,12,6)_{14}$, $(19,14,6,12,23,8)_{14},(6,0,5,9,24,2)_{14},(3,0,18,21,16,23)_{14}$, $(0,17,11,1,6,4)_{15},(12,16,0,5,8,14)_{15},(11,21,18,19,23,12)_{15}$, $(3,18,7,14,2,4)_{15},(22,20,10,14,7,9)_{15},(0,3,9,5,21,18)_{15}$,
under the action of the mapping $x \mapsto x+5(\bmod 25)$.
$\boldsymbol{K}_{\mathbf{3 6}}$ With vertex set Z_{36} the decompositions consist of
$(0,11,32,26,24,5)_{1},(8,15,16,29,3,22)_{1},(8,33,26,25,1,24)_{1}$, $(10,29,5,19,18,11)_{1},(34,28,31,11,2,25)_{1},(16,2,14,17,7,18)_{1}$, $(5,35,7,18,3,25)_{1}$,
$(0,23,4,1,17,25)_{2},(2,4,26,22,9,3)_{2},(30,23,3,11,28,4)_{2}$, $(4,12,24,15,19,34)_{2},(32,2,5,10,25,9)_{2},(1,10,31,29,15,27)_{2}$, $(14,13,29,11,25,3)_{2}$,
$(0,16,29,11,26,5)_{4},(30,23,19,13,7,29)_{4},(22,9,31,34,23,29)_{4}$, $(16,17,12,15,25,13)_{4},(34,32,12,3,20,14)_{4},(23,33,4,21,19,2)_{4}$, $(0,6,30,21,34,23)_{4}$,
$(0,26,29,7,21,3)_{5},(11,28,16,3,7,17)_{5},(3,23,9,34,33,5)_{5}$,
$(3,15,1,18,17,22)_{5},(15,6,16,14,12,29)_{5},(28,9,34,10,12,18)_{5}$, $(2,5,24,0,34,32)_{5}$,
$(0,14,28,1,31,7)_{7},(12,33,23,16,0,6)_{7},(20,26,3,11,9,22)_{7}$, $(28,21,33,26,1,8)_{7},(19,4,17,3,14,5)_{7},(10,25,11,14,18,26)_{7}$, $(3,30,21,27,29,31)_{7}$,
$(0,28,15,29,22,27)_{12},(2,30,29,9,3,15)_{12},(20,32,22,5,2,13)_{12}$, $(15,7,32,3,31,1)_{12},(28,12,33,8,9,6)_{12},(6,29,23,33,18,2)_{12}$, $(0,13,31,6,10,3)_{12}$,
$(0,22,20,30,32,17)_{14},(27,13,22,6,2,19)_{14},(27,33,19,9,1,10)_{14}$, $(6,14,0,19,7,31)_{14},(30,1,18,33,12,17)_{14},(12,23,0,29,20,27)_{14}$, $(0,13,15,35,1,8)_{14}$, $(0,9,25,23,14,11)_{15},(6,22,18,34,12,21)_{15},(5,13,9,31,11,28)_{15}$, $(30,29,5,8,4,12)_{15},(13,6,15,8,23,16)_{15},(28,19,24,30,12,7)_{15}$, $(2,3,10,23,7,29)_{15}$,
under the action of the mapping $x \mapsto x+4(\bmod 36)$.
\boldsymbol{K}_{40} With vertex set $Z_{39} \cup\{\infty\}$ the decompositions consist of $(16,6, \infty, 26,30,27)_{1},(38,1,34,25,19,17)_{1},(35,11,18,6,38,5)_{1}$, $(30,36,5,37,27,32)_{1},(35,36,13,1,10,34)_{1},(17,25,6,28,30,33)_{1}$, $(0,38,28, \infty, 2,10)_{2},(10,22,25,23,29,6)_{2},(28,22,14,6,15,37)_{2}$, $(32,23,28,11,17,27)_{2},(7,35,12,15,9,21)_{2},(33,23,12,27,6,26)_{2}$, $(8,14, \infty, 28,3,31)_{4},(7,16,5,8,20,33)_{4},(2,18,13,24,9,21)_{4}$, $(23,13,33,15,21,36)_{4},(20,6,32,25,2,21)_{4},(6,13,7,1,31,16)_{4}$, $(0,38,37, \infty, 24,14)_{5},(20,29,28,0,8,25)_{5},(19,29,8,36,34,7)_{5}$, $(22,12,21,28,18,7)_{5},(13,21,31,1,38,29)_{5},(24,3,11,8,15,5)_{5}$, $(17,4, \infty, 6,21,14)_{7},(7,27,36,31,33,8)_{7},(4,2,34,18,7,25)_{7}$, $(19,38,8,13,18,24)_{7},(26,12,4,24,27,2)_{7},(26,14,22,21,32,0)_{7}$, $(0,38,30, \infty, 5,13)_{12},(2,1,15,26,38,17)_{12},(27,16,29,33,19,21)_{12}$, $(9,24,4,6,25,13)_{12},(23,3,35,13,6,4)_{12},(11,16,32,1,4,7)_{12}$, $(0,33,22, \infty, 35,6)_{14},(24,16,10,37,35,6)_{14},(37,16,13,23,36,18)_{14}$, $(16,11,7,38,17,14)_{14},(22,11,38,15,35,21)_{14},(30,35,27,12,5,36)_{14}$, $(0,24, \infty, 27,29,1)_{15},(10,14,6,35,17,5)_{15},(7,15,22,38,19,23)_{15}$, $(12,3,19,29,37,10)_{15},(20,0,2,10,6,8)_{15},(22,11,18,28,37,0)_{15}$,
under the action of the mapping $x \mapsto x+3(\bmod 39), \infty \mapsto \infty$.
\boldsymbol{K}_{41} With vertex set Z_{41} the decompositions consist of
$(0,1,3,7,9,16)_{1},(0,10,22,27,21,23)_{1}$,
$(0,1,3,7,9,16)_{2},(0,5,29,19,20,11)_{2}$,
$(0,1,2,5,8,13)_{4},(0,9,11,27,31,24)_{4}$,
$(0,1,2,5,8,12)_{5},(0,9,12,26,28,30)_{5}$,
$(0,1,3,5,9,21)_{7},(0,7,17,26,30,12)_{7}$,
$(0,1,3,7,10,15)_{12},(0,11,16,35,29,14)_{12}$,
$(0,1,3,7,12,16)_{14},(0,6,31,9,27,14)_{14}$,
$(0,1,3,4,8,13)_{15},(0,11,36,29,17,15)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 41)$.
\boldsymbol{K}_{45} With vertex set $Z_{44} \cup\{\infty\}$ the decompositions consist of $(39,12,29,2, \infty, 10)_{1},(18,37,7,17, \infty, 6)_{1},(21,28,20,16,13,12)_{1}$, $(6,40,31,9,10,19)_{1},(8,10,38,32,2,19)_{1},(30,41,37,25,6,3)_{1}$, $(6,11,24,27,3,29)_{1},(23,4,37,22,29,11)_{1},(32,27,29,31,3,9)_{1}$, $(0, \infty, 38,11,21,5)_{2},(27,7,23,42,25,22)_{2},(20,24,30,33,13,17)_{2}$, $(9,18,39,7,33,8)_{2},(3,34,12,41,20,4)_{2},(34,27,30,4,13,14)_{2}$, $(40,30,38,13,42,20)_{2},(31,28,16,23,12,41)_{2},(1,5,23,13,6,29)_{2}$, $(0, \infty, 9,35,26,25)_{4},(29,26,7,19,3,41)_{4},(13,6,11,26,40,29)_{4}$, $(43,35,10,18,12,33)_{4},(13,43,7,27,38,0)_{4},(10,42,19,36,8,38)_{4}$, $(34,29,33,25,40,35)_{4},(35,16,32,28,40,38)_{4},(0,16,41,21,30,1)_{4}$, $(0, \infty, 34,22,29,31)_{5},(19,1,24,10,5,36)_{5},(43,42,18,38,36,31)_{5}$, $(42,17,32,6,40,19)_{5},(30,14,3,37,7,41)_{5},(10,25,40,41,13,20)_{5}$, $(14,20,13,43,16,33)_{5},(8,11,41,23,35,33)_{5},(3,12,39,5,28,11)_{5}$, $(0, \infty, 23,17,26,2)_{7},(36,29,26,8,4,21)_{7},(6,12,15,32,27,39)_{7}$, $(11,25,7,20,24,18)_{7},(10,17,26,15,21,42)_{7},(24,13,33,35,21,16)_{7}$,
$(1,35,7,22,15,26)_{7},(32,2,31,38,36,18)_{7},(1,29,2,39,3,14)_{7}$, $(\infty, 5,32,39,23,26)_{12},(24,40,37,38,23,19)_{12},(15,36,14,7,17,35)_{12}$, $(10,38,20,0,34,19)_{12},(6,29,20,2,41,0)_{12},(41,4,40,36,7,2)_{12}$, $(9,20,5,7,25,2)_{12},(6,23,35,41,27,3)_{12},(1,9,34,22,23,30)_{12}$, $(\infty, 30,24,27,1,7)_{14},(7,42,5,9,34,33)_{14},(27,34,15,37,17,14)_{14}$, $(37,8,43,29,36,25)_{14},(27,22,33,19,20,21)_{14},(1,42,4,40,20,30)_{14}$, $(26,5,10,12,16,36)_{14},(7,31,36,22,18,3)_{14},(0,12,31,34,21,35)_{14}$, $(\infty, 4,14,41,7,22)_{15},(39,26,17,15,27,30)_{15},(43,35,7,13,24,28)_{15}$, $(14,12,10,40,20,31)_{15},(31,26,25,37,33,5)_{15},(1,40,8,36,29,5)_{15}$, $(18,4,11,43,21,12)_{15},(33,35,21,38,39,6)_{15},(0,22,6,1,26,20)_{15}$,
under the action of the mapping $x \mapsto x+4(\bmod 44), \infty \mapsto \infty$.
$\boldsymbol{K}_{\mathbf{5 6}}$ With vertex set $Z_{55} \cup\{\infty\}$ the decompositions consist of
$(\infty, 4,38,30,51,7)_{1},(7,10,12,28,33,43)_{1},(9,29,15,54,27,10)_{1}$, $(40,9,49,17,30,31)_{1},(20,25,13,21,45,36)_{1},(50,17,35,1,31,7)_{1}$, $(32,5,36,49,47,33)_{1},(12,1,36,37,23,47)_{1},(8,50,33,21,53,2)_{1}$, $(15,19,7,1,32,13)_{1},(47,38,54,43,21,14)_{1},(1,8,28,54,6,22)_{1}$, $(1,16,39,46,4,53)_{1},(3,54,4,18,26,27)_{1}$,
$(\infty, 30,19,8,27,16)_{2},(8,3,16,49,0,17)_{2},(1,26,6,32,12,8)_{2}$, $(34,50,11,49,42,54)_{2},(0,5,6,34,15,18)_{2},(54,5,27,40,18,44)_{2}$, $(17,10,19,42,21,3)_{2},(41,18,38,39,50,13)_{2},(31,45,41,49,16,22)_{2}$, $(11,24,28,27,48,45)_{2},(9,42,22,27,3,34)_{2},(32,43,15,3,53,8)_{2}$, $(2,0,12,30,36,8)_{2},(4,33,35,11,52,54)_{2}$, $(\infty, 36,34,25,12,8)_{4},(14,28,17,7,54,33)_{4},(44,39,17,33,43,16)_{4}$, $(32,47,19,28,27,35)_{4},(12,13,40,43,21,30)_{4},(32,46,36,7,11,49)_{4}$, $(29,17,52,30,16,40)_{4},(44,42,11,40,25,28)_{4},(14,34,44,20,51,26)_{4}$, $(41,47,23,36,38,3)_{4},(54,25,33,1,9,20)_{4},(5,53,11,18,51,25)_{4}$, $(0,40,53,30,47,1)_{4},(3,36,48,15,40,46)_{4}$, $(33,35,27, \infty, 22,43)_{5},(40,31,24,34,32, \infty)_{5},(18,47,37,14,35,31)_{5}$, $(45,41,17,52,27,36)_{5},(7,49,38,48,45,3)_{5},(2,6,48,27,5,14)_{5}$, $(7,47,31,4,9,29)_{5},(17,24,44,18,13,19)_{5},(20,52,33,30,6,26)_{5}$, $(46,28,38,43,6,10)_{5},(53,30,20,36,51,15)_{5},(0,14,54,25,35,31)_{5}$, $(1,44,46,20,26,35)_{5},(3,19,46,33,39,4)_{5}$, $(\infty, 50,8,36,24,17)_{7},(15,25,42,48,17,16)_{7},(10,6,46,34,49,41)_{7}$, $(34,35,14,26,17,53)_{7},(20,18,7,27,14,48)_{7},(45,12,1,16,38,28)_{7}$, $(22,36,38,46,28,25)_{7},(39,16,49,37,34,9)_{7},(35,39,53,30,50,10)_{7}$, $(0,32,6,19,12,8)_{7},(29,37,38,47,23,52)_{7},(1,23,6,47,36,14)_{7}$, $(3,22,6,34,7,51)_{7},(4,33,3,45,38,6)_{7}$, $(6,14,43,39, \infty, 4)_{12},(37,17,1,0,44, \infty)_{12},(1,42,15,39,47,18)_{12}$, $(41,9,20,15,31,37)_{12},(23,5,39,33,52,45)_{12},(29,26,1,32,10,47)_{12}$, $(51,15,28,41,53,48)_{12},(31,25,35,9,0,16)_{12},(36,1,28,6,19,7)_{12}$, $(31,42,43,35,52,44)_{12},(50,43,7,3,48,37)_{12},(7,24,10,12,25,23)_{12}$, $(3,4,23,54,0,13)_{12},(4,2,27,33,49,44)_{12}$, $(6,2,53, \infty, 39,23)_{14},(22,37,20,32,0, \infty)_{14},(22,51,41,16,34,42)_{14}$,
$(27,18,53,52,11,12)_{14},(53,24,9,22,3,7)_{14},(37,2,26,50,9,54)_{14}$, $(7,12,15,54,23,5)_{14},(36,4,30,49,1,5)_{14},(13,35,1,5,16,40)_{14}$, $(0,27,49,13,4,6)_{14},(44,24,19,3,35,18)_{14},(21,43,26,35,6,25)_{14}$, $(3,5,48,16,43,45)_{14},(4,8,35,14,6,15)_{14}$,
under the action of the mapping $x \mapsto x+5(\bmod 55), \infty \mapsto \infty$, and with vertex set Z_{56}, $(44,1,3,46,17,25)_{15},(46,3,5,48,19,27)_{15},(48,5,7,50,21,29)_{15}$, $(50,7,9,52,23,31)_{15},(13,1,10,52,37,14)_{15},(15,3,12,54,39,16)_{15}$, $(17,5,14,0,41,18)_{15},(19,7,16,2,43,20)_{15},(12,26,51,13,36,43)_{15}$, $(14,28,53,15,38,45)_{15},(16,30,55,17,40,47)_{15},(18,32,1,19,42,49)_{15}$, $(33,37,44,14,27,36)_{15},(35,39,46,16,29,38)_{15},(37,41,48,18,31,40)_{15}$, $(39,43,50,20,33,42)_{15},(21,3,8,18,14,44)_{15},(23,5,10,20,16,46)_{15}$, $(25,7,12,22,18,48)_{15},(27,9,14,24,20,50)_{15},(0,28,37,44,16,9)_{15}$, $(2,30,39,46,18,11)_{15}$,
under the action of the mapping $x \mapsto x+8(\bmod 56)$.
$\boldsymbol{K}_{\mathbf{6 0}}$ With vertex set Z_{60} the decompositions consist of
$(23,53,0,24,28,43)_{1},(4,27,28,57,7,35)_{1},(1,31,8,32,17,30)_{1}$, $(5,35,12,36,15,21)_{1},(16,39,9,40,19,42)_{1},(14,26,28,29,8,13)_{1}$, $(32,33,18,30,20,45)_{1},(36,37,22,34,24,49)_{1},(26,40,38,41,6,58)_{1}$, $(30,42,44,45,7,24)_{1},(2,8,12,47,39,56)_{1},(6,51,12,16,0,59)_{1}$, $(10,20,16,55,52,53)_{1},(20,24,14,59,8,15)_{1},(3,28,18,24,0,41)_{1}$, $(0,27,22,40,14,37)_{1},(31,44,4,26,0,14)_{1},(30,35,8,48,38,43)_{1}$, $(39,52,12,34,25,29)_{1},(38,56,16,43,12,24)_{1},(24,43,5,7,12,50)_{1}$, $(11,47,9,28,5,46)_{1},(13,32,15,51,21,27)_{1},(17,55,19,36,5,30)_{1}$, $(21,40,23,59,29,56)_{1},(44,49,52,54,9,33)_{1},(53,56,48,58,33,45)_{1}$, $(2,57,0,52,23,49)_{1},(1,6,4,56,27,43)_{1},(5,10,0,8,38,40)_{1}$, $(12,57,21,46,3,26)_{1},(16,50,1,25,7,49)_{1},(5,29,20,54,45,46)_{1}$, $(24,58,9,33,52,57)_{1},(13,28,2,37,42,54)_{1},(49,53,32,47,3,15)_{1}$, $(36,57,51,53,7,8)_{1},(55,57,1,40,13,38)_{1},(1,59,5,44,7,34)_{1}$, $(9,48,3,5,21,51)_{1},(27,39,11,53,30,38)_{1},(31,43,15,57,51,54)_{1}$, $(1,19,35,47,13,24)_{1},(5,39,23,51,18,22)_{1},(43,55,9,27,18,34)_{1}$, $(36,47,14,43,6,54)_{1},(47,51,18,40,25,38)_{1},(22,55,44,51,49,52)_{1}$, $(26,48,55,59,18,25)_{1},(52,59,3,30,8,17)_{1},(30,53,14,21,19,26)_{1}$, $(34,57,18,25,5,17)_{1},(29,38,1,22,19,58)_{1},(26,42,5,33,23,43)_{1}$, $(37,46,9,30,10,59)_{1},(1,11,2,21,14,18)_{1},(11,30,22,50,16,49)_{1}$, $(2,22,15,26,54,58)_{1},(34,54,26,35,30,58)_{1}$, $(12,18,43,7,29,32)_{2},(10,24,3,18,45,46)_{2},(29,8,31,19,27,49)_{2}$, $(8,55,12,56,10,26)_{2},(35,54,14,3,31,33)_{2},(11,58,10,22,28,30)_{2}$, $(45,27,36,41,43,58)_{2},(26,18,47,36,45,55)_{2},(3,55,42,37,6,36)_{2}$, $(34,38,29,20,26,46)_{2},(19,26,5,11,35,50)_{2},(25,48,24,32,20,0)_{2}$, $(6,36,7,57,31,47)_{2},(2,52,27,20,16,19)_{2},(3,15,41,29,20,50)_{2}$, $(40,10,0,52,19,34)_{2},(42,10,5,15,27,35)_{2},(11,56,52,25,53,55)_{2}$, $(53,2,21,10,49,37)_{2},(54,39,42,24,41,57)_{2},(42,6,22,53,20,23)_{2}$, $(12,13,39,44,50,53)_{2},(56,14,58,24,41,0)_{2},(5,34,31,27,52,57)_{2}$,
$(47,34,57,33,59,32)_{2},(56,45,35,13,19,39)_{2},(0,45,29,57,47,50)_{2}$, $(59,58,8,21,3,5)_{2},(11,47,24,8,20,23)_{2},(29,59,17,28,56,16)_{2}$, $(20,23,4,8,39,56)_{2},(28,50,37,23,34,54)_{2},(49,50,46,14,57,30)_{2}$, $(8,49,43,33,7,36)_{2},(12,58,2,48,1,41)_{2},(21,5,22,48,24,27)_{2}$, $(35,59,18,53,0,4)_{2},(16,8,50,54,35,36)_{2},(1,51,30,24,15,36)_{2}$, $(2,36,34,24,29,32)_{2},(23,46,45,17,36,3)_{2},(37,31,24,59,56,57)_{2}$, $(1,43,52,29,19,31)_{2},(29,14,25,5,21,22)_{2},(51,29,53,40,7,23)_{2}$, $(26,24,44,49,22,1)_{2},(58,35,57,55,29,38)_{2},(59,12,46,57,10,19)_{2}$, $(6,13,28,8,1,21)_{2},(20,57,28,22,21,35)_{2},(50,24,27,15,17,18)_{2}$, $(0,26,53,4,6,16)_{2},(12,9,35,24,19,34)_{2},(58,5,53,13,41,20)_{2}$, $(7,13,34,3,10,39)_{2},(22,31,38,14,51,59)_{2},(7,33,41,37,24,35)_{2}$, $(52,18,51,46,57,13)_{2},(40,11,1,3,57,21)_{2}$, $(15,19,3,0,27,14)_{7},(34,29,16,22,28,11)_{7},(27,25,9,49,20,2)_{7}$, $(48,11,25,51,59,13)_{7},(51,41,34,59,56,23)_{7},(47,37,50,48,53,33)_{7}$, $(47,16,0,56,51,13)_{7},(32,11,30,24,47,29)_{7},(49,24,13,40,53,51)_{7}$, $(30,55,31,29,41,56)_{7},(42,36,40,39,46,48)_{7},(21,23,9,43,15,38)_{7}$, $(25,33,23,51,55,42)_{7},(34,6,40,1,43,7)_{7},(53,40,39,52,44,25)_{7}$, $(30,46,21,28,49,50)_{7},(45,37,33,22,46,36)_{7},(52,34,2,9,5,55)_{7}$, $(44,23,6,34,10,42)_{7},(12,42,3,8,11,21)_{7},(52,37,24,19,26,47)_{7}$, $(27,5,46,11,47,4)_{7},(42,28,33,1,38,37)_{7},(55,32,13,39,21,58)_{7}$, $(0,43,17,46,36,10)_{7},(28,6,36,45,52,20)_{7},(21,42,47,4,59,7)_{7}$, $(36,35,4,51,50,32)_{7},(39,14,4,26,19,38)_{7},(13,2,30,1,38,43)_{7}$, $(53,59,22,14,30,54)_{7},(34,53,0,55,38,37)_{7},(26,35,2,58,42,34)_{7}$, $(47,26,15,55,36,4)_{7},(18,2,3,50,47,27)_{7},(36,29,2,25,44,58)_{7}$, $(29,3,8,52,51,21)_{7},(38,31,1,58,46,4)_{7},(20,40,2,10,15,17)_{7}$, $(49,59,6,10,29,34)_{7},(3,40,7,9,17,53)_{7},(37,18,25,29,32,17)_{7}$, $(18,49,17,39,31,30)_{7},(53,51,26,20,46,21)_{7},(41,45,0,1,39,4)_{7}$, $(52,16,13,4,39,46)_{7},(14,57,1,27,25,52)_{7},(32,12,38,50,40,34)_{7}$, $(37,8,6,36,39,13)_{7},(36,23,5,30,19,1)_{7},(24,30,5,35,45,57)_{7}$, $(35,48,45,18,55,16)_{7},(57,51,19,30,55,48)_{7},(44,43,24,8,28,20)_{7}$, $(17,23,42,56,52,1)_{7},(58,8,1,49,40,47)_{7},(54,17,24,38,51,56)_{7}$, $(25,3,30,38,34,24)_{7},(8,54,28,35,47,52)_{7}$, $(27,45,7,35,34,29)_{12},(6,49,48,33,19,59)_{12},(3,22,45,40,23,42)_{12}$, $(30,4,47,59,38,26)_{12},(14,19,38,27,52,17)_{12},(16,29,53,12,0,6)_{12}$, $(30,29,44,7,22,13)_{12},(3,46,14,0,44,31)_{12},(17,15,29,56,8,12)_{12}$, $(25,39,33,1,10,48)_{12},(45,12,5,38,1,44)_{12},(50,56,11,24,45,39)_{12}$, $(40,39,18,3,53,36)_{12},(37,24,48,41,0,54)_{12},(48,39,45,55,21,42)_{12}$, $(9,31,46,15,6,13)_{12},(56,36,27,37,48,14)_{12},(26,25,53,13,34,27)_{12}$, $(49,17,59,48,2,34)_{12},(49,10,29,47,41,12)_{12},(43,45,9,20,51,18)_{12}$, $(43,30,27,21,57,49)_{12},(36,59,42,22,14,41)_{12},(50,26,16,18,23,37)_{12}$, $(15,50,14,31,20,4)_{12},(44,2,47,51,48,58)_{12},(17,6,38,45,22,26)_{12}$, $(8,38,55,15,33,27)_{12},(21,41,35,31,38,54)_{12},(1,59,57,25,40,27)_{12}$, $(9,44,23,33,28,0)_{12},(2,12,11,20,28,5)_{12},(6,11,27,51,41,13)_{12}$,
$(49,56,52,7,44,39)_{12},(14,58,49,38,54,48)_{12},(51,54,53,56,48,59)_{12}$, $(4,55,25,29,56,37)_{12},(53,57,11,32,23,50)_{12},(57,35,26,14,4,22)_{12}$, $(1,11,0,35,4,43)_{12},(36,58,57,13,21,2)_{12},(43,55,14,21,12,44)_{12}$, $(0,27,40,2,23,32)_{12},(32,10,28,50,45,52)_{12},(32,33,41,2,43,6)_{12}$, $(50,6,36,53,1,2)_{12},(57,37,31,59,45,16)_{12},(56,35,32,8,42,31)_{12}$, $(21,37,40,55,43,22)_{12},(55,19,32,44,23,13)_{12},(38,26,7,15,2,10)_{12}$, $(11,9,38,25,42,16)_{12}$, $(8,36,18,0,23,10)_{12},(34,52,13,37,47,30)_{12}$, $(24,52,6,21,40,33)_{12},(39,38,51,50,32,35)_{12},(2,14,4,24,45,30)_{12}$, $(39,14,30,40,23,19)_{12},(40,48,46,23,8,47)_{12}$,
under the action of the mapping $x \mapsto x+20(\bmod 60)$.
$\boldsymbol{K}_{\mathbf{6 1}}$ With vertex set Z_{61} the decompositions consist of
$(0,2,26,53,50,43)_{1},(35,6,2,23,12,13)_{1},(12,28,3,59,9,13)_{1}$, $(0,58,26,9,57,50)_{2},(30,36,15,46,38,58)_{2},(8,28,33,47,1,46)_{2}$, $(0,47,32,25,38,20)_{7},(21,47,5,3,55,34)_{7},(0,3,7,2,40,12)_{7}$, $(0,23,6,30,26,22)_{12},(33,6,58,1,18,0)_{12},(0,2,18,32,50,42)_{12}$, under the action of the mapping $x \mapsto x+1(\bmod 61)$.
\boldsymbol{K}_{65} With vertex set Z_{65} the decompositions consist of
$(64,5,33,46,14,4)_{1},(0,6,34,47,15,5)_{1},(1,7,35,48,16,6)_{1}$, $(2,8,36,49,17,7)_{1},(3,9,37,50,18,8)_{1},(49,26,52,1,28,59)_{1}$, $(50,27,53,2,29,60)_{1},(51,28,54,3,30,61)_{1},(52,29,55,4,31,62)_{1}$, $(53,30,56,5,32,63)_{1},(64,15,37,44,45,11)_{1},(0,16,38,45,46,12)_{1}$, $(1,17,39,46,47,13)_{1},(24,46,53,8,54,35)_{1},(53,7,18,64,0,61)_{1}$, $(2,18,10,14,40,47)_{1}$, $(62,6,43,60,11,42)_{2},(63,7,44,61,12,43)_{2},(64,8,45,62,13,44)_{2}$, $(0,9,46,63,14,45)_{2},(1,10,47,64,15,46)_{2},(14,10,44,17,54,36)_{2}$, $(15,11,45,18,55,37)_{2},(16,12,46,19,56,38)_{2},(17,13,47,20,57,39)_{2}$, $(18,14,48,21,58,40)_{2},(6,12,24,48,22,39)_{2},(7,13,25,49,23,40)_{2}$, $(8,14,26,50,24,41)_{2},(9,27,51,15,42,61)_{2},(0,13,39,52,26,55)_{2}$, $(0,18,42,6,33,16)_{2}$, $(7,53,37,28,35,59)_{4},(8,54,38,29,36,60)_{4},(9,55,39,30,37,61)_{4}$, $(10,56,40,31,38,62)_{4},(11,57,41,32,39,63)_{4},(40,54,23,39,62,64)_{4}$, $(41,55,24,40,63,0)_{4},(42,56,25,41,64,1)_{4},(43,57,26,42,0,2)_{4}$, $(44,58,27,43,1,3)_{4},(34,54,5,1,0,57)_{4},(35,55,6,2,1,58)_{4}$, $(36,56,7,3,2,59)_{4},(8,42,3,15,35,62)_{4},(9,2,47,5,14,38)_{4}$, $(4,38,8,11,31,58)_{4}$, $(39,25,61,30,29,14)_{5},(40,26,62,31,30,15)_{5},(41,27,63,32,31,16)_{5}$, $(42,28,64,33,32,17)_{5},(43,29,0,34,33,18)_{5},(64,29,7,44,6,45)_{5}$, $(0,30,8,45,7,46)_{5},(1,31,9,46,8,47)_{5},(2,32,10,47,9,48)_{5}$, $(3,33,11,48,10,49)_{5},(44,0,42,3,25,13)_{5},(45,1,43,4,26,14)_{5}$, $(46,2,44,5,27,15)_{5},(0,6,53,59,12,47)_{5},(53,5,28,7,41,31)_{5}$, $(4,21,44,23,57,47)_{5}$, $(21,1,63,25,14,51)_{7},(22,2,64,26,15,52)_{7},(23,3,0,27,16,53)_{7}$, $(24,4,1,28,17,54)_{7},(25,5,2,29,18,55)_{7},(33,0,55,48,28,34)_{7}$,
$(34,1,56,49,29,35)_{7},(35,2,57,50,30,36)_{7},(36,3,58,51,31,37)_{7}$,
$(37,4,59,52,32,38)_{7},(36,27,15,38,61,44)_{7},(37,28,16,39,62,45)_{7}$,
$(38,29,17,40,63,46)_{7},(39,30,18,41,64,47)_{7},(10,54,1,18,35,12)_{7}$, $(2,20,38,49,56,31)_{7}$,
$(12,57,62,51,14,48)_{12},(13,58,63,52,15,49)_{12},(14,59,64,53,16,50)_{12}$,
$(15,60,0,54,17,51)_{12},(16,61,1,55,18,52)_{12},(8,42,54,14,41,4)_{12}$,
$(9,43,55,15,42,5)_{12},(10,44,56,16,43,6)_{12},(11,45,57,17,44,7)_{12}$,
$(12,46,58,18,45,8)_{12},(52,11,29,38,3,8)_{12},(53,12,30,39,4,9)_{12}$,
$(54,13,31,40,5,10)_{12},(5,21,29,56,47,63)_{12},(54,40,47,26,61,3)_{12}$, $(3,42,50,26,12,17)_{12}$,
$(41,26,35,58,28,54)_{14},(42,27,36,59,29,55)_{14},(43,28,37,60,30,56)_{14}$,
$(44,29,38,61,31,57)_{14},(45,30,39,62,32,58)_{14},(37,34,29,17,13,7)_{14}$,
$(38,35,30,18,14,8)_{14},(39,36,31,19,15,9)_{14},(40,37,32,20,16,10)_{14}$, $(41,38,33,21,17,11)_{14},(5,21,60,6,39,35)_{14},(6,22,61,7,40,36)_{14}$, $(7,23,62,8,41,37)_{14},(27,56,20,34,63,49)_{14},(63,14,53,64,32,39)_{14}$, $(4,5,38,20,59,63)_{14}$,
$(35,57,37,44,39,61)_{15},(36,58,38,45,40,62)_{15},(37,59,39,46,41,63)_{15}$,
$(38,60,40,47,42,64)_{15},(39,61,41,48,43,0)_{15},(24,47,57,18,32,45)_{15}$,
$(25,48,58,19,33,46)_{15},(26,49,59,20,34,47)_{15},(27,50,60,21,35,48)_{15}$, $(28,51,61,22,36,49)_{15},(42,12,46,58,9,47)_{15},(43,13,47,59,10,48)_{15}$, $(44,14,48,60,11,49)_{15},(14,21,35,7,28,0)_{15},(46,43,11,15,57,16)_{15}$, $(1,17,54,50,20,55)_{15}$,
under the action of the mapping $x \mapsto x+5(\bmod 65)$.
$K_{\mathbf{8 5}}$ With vertex set Z_{85} the decomposition consists of
$(8,78,69,18,28,42)_{15},(9,79,70,19,29,43)_{15},(10,80,71,20,30,44)_{15}$,
$(11,81,72,21,31,45)_{15},(12,82,73,22,32,46)_{15},(60,29,32,46,62,28)_{15}$,
$(61,30,33,47,63,29)_{15},(62,31,34,48,64,30)_{15},(63,32,35,49,65,31)_{15}$,
$(64,33,36,50,66,32)_{15},(57,36,43,20,62,49)_{15},(58,37,44,21,63,50)_{15}$,
$(59,38,45,22,64,51)_{15},(60,39,46,23,65,52)_{15},(61,40,47,24,66,53)_{15}$,
$(20,65,54,43,8,7)_{15},(21,66,55,44,9,8)_{15},(22,67,56,45,10,9)_{15}$,
$(23,68,57,46,11,10)_{15},(70,28,29,27,71,69)_{15},(1,2,59,14,48,37)_{15}$,
under the action of the mapping $x \mapsto x+5(\bmod 85)$.

Proof of Lemma 2.2

$\boldsymbol{K}_{\mathbf{1 0}, \mathbf{1 0}, \mathbf{1 0}}$ Let the vertex set be Z_{30} partitioned according to residue class modulo 3 . The decompositions consist of
$(0,1,28,5,20,14)_{4},(0,1,4,14,23,6)_{5},(0,1,11,13,8,15)_{14}$,
$(0,1,3,5,23,16)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 30)$.
$\boldsymbol{K}_{\mathbf{1 0 , 1 0 , 1 0 , 1 0}}$ Let the vertex set be Z_{40} partitioned into $\{3 j+i: j=0,1, \ldots, 9\}, i=0,1,2$, and $\{30,31, \ldots, 39\}$. The decompositions consist of
$(0,2,7,30,10,39)_{1},(0,35,13,29,4,11)_{1}$,
$(0,1,8,30,34,10)_{2},(30,5,19,24,22,23)_{2}$,
$(0,1,2,30,33,35)_{4},(0,11,17,7,25,37)_{4}$,
$(0,1,2,30,33,37)_{5},(0,13,16,5,20,30)_{5}$,
$(0,1,14,30,32,5)_{7},(0,34,7,8,11,10)_{7}$,
$(0,30,2,24,7,4)_{12},(0,13,34,2,29,39)_{12}$,
$(0,1,5,7,30,15)_{14},(0,8,32,11,36,25)_{14}$,
$(0,1,3,5,11,30)_{15},(0,36,7,13,14,31)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 30)$ for $x<30, x \mapsto(x+1(\bmod 10))+30$ for $x \geq 30$.
$\boldsymbol{K}_{\mathbf{2 0 , 2 0 , 2 0 , 2 0}}$ Let the vertex set be Z_{80} partitioned according to residue class modulo 4. The decompositions consist of
$(0,18,55,29,63,15)_{1},(8,27,29,22,17,14)_{1},(42,41,11,64,0,8)_{1}$,
$(0,3,50,41,65,19)_{2},(65,14,39,60,28,38)_{2},(65,8,78,71,30,67)_{2}$,
$(0,11,30,25,13,57)_{4},(67,5,66,8,40,20)_{4},(19,50,28,9,57,13)_{4}$,
$(0,13,70,19,59,67)_{5},(18,49,13,56,40,63)_{5},(43,25,41,8,66,26)_{5}$,
$(0,15,1,69,62,71)_{7},(29,19,2,6,60,35)_{7},(54,11,4,8,49,29)_{7}$,
$(0,10,17,36,59,11)_{12},(68,31,45,18,46,23)_{12},(62,12,59,30,53,28)_{12}$,
$(0,19,37,10,65,54)_{14},(73,0,50,72,67,41)_{14},(66,15,69,55,17,36)_{14}$,
$(0,27,5,29,42,46)_{15},(3,9,19,70,12,8)_{15},(3,2,47,57,33,24)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 80)$.
$\boldsymbol{K}_{\mathbf{3 , 3 , 3 , 3 , 3}}$ Let the vertex set be Z_{15} partitioned according to residue class modulo 5 . The decomposition consists of
$(0,6,12,4,8,3)_{15},(0,1,9,13,2,12)_{15},(0,11,3,7,14,9)_{15}$,
under the action of the mapping $x \mapsto x+5(\bmod 15)$.
$\boldsymbol{K}_{\mathbf{5 , 5 , 5 , 5}, \mathbf{5}}$ Let the vertex set be Z_{25} partitioned according to residue class modulo 5 . The decompositions consist of
$(0,1,3,7,9,12)_{1},(0,1,3,9,12,7)_{2},(0,1,6,8,22,12)_{4}$,
$(0,1,4,18,23,13)_{5},(0,1,3,12,19,4)_{7},(0,1,3,14,9,18)_{12}$,
$(0,1,3,21,12,9)_{14},(0,1,3,4,19,17)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 25)$.
$\boldsymbol{K}_{\mathbf{1 0 , 1 0 , 1 0 , 1 0 , 1 0}}$ Let the vertex set be Z_{50} partitioned according to residue class modulo 5 . The decompositions consist of
$(0,6,34,47,2,27)_{1},(0,7,19,33,8,18)_{1}$,
$(0,19,13,11,1,4)_{2},(0,12,26,33,28,3)_{2}$,
$(0,31,6,47,2,8)_{4},(0,17,36,24,49,28)_{4}$,
$(0,3,34,7,1,12)_{5},(0,6,13,24,42,25)_{5}$,
$(0,28,44,31,7,4)_{7},(0,1,9,12,33,14)_{7}$,
$(0,38,6,4,7,21)_{12},(0,3,27,49,14,8)_{12}$,
$(0,47,29,33,6,31)_{14},(0,1,43,24,13,15)_{14}$,
$(0,36,2,42,3,4)_{15},(0,18,5,7,27,26)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 50)$.
$\boldsymbol{K}_{\mathbf{1 5 , 1 5 , 1 5 , 1 5 , 1 5}}$ Let the vertex set be Z_{75} partitioned according to residue class modulo 5 . The decompositions consist of
$(0,37,34,66,58,53)_{1},(10,43,17,74,16,62)_{1},(0,12,4,51,13,14)_{1}$,
$(0,48,12,41,56,61)_{2},(70,57,13,19,54,12)_{2},(0,11,32,9,33,4)_{2}$, $(0,24,17,13,36,27)_{4},(61,0,2,8,23,18)_{4},(0,2,74,28,33,9)_{4}$, $(0,57,61,28,34,73)_{5},(57,54,1,3,50,10)_{5},(0,17,38,6,39,25)_{5}$, $(0,41,73,62,37,48)_{7},(3,6,12,22,29,34)_{7},(0,29,11,1,53,8)_{7}$, $(0,52,71,38,3,36)_{12},(55,44,28,6,72,12)_{12},(0,1,13,42,67,18)_{12}$, $(0,49,13,64,66,6)_{14},(31,10,9,12,4,43)_{14},(0,4,18,47,16,41)_{14}$, $(0,18,11,56,12,42)_{15},(65,13,67,16,24,14)_{15},(0,9,1,13,48,59)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 75)$.
$\boldsymbol{K}_{\mathbf{1 0 , 1 0 , 1 0 , 1 0 , 1 5}}$ Let the vertex set be Z_{55} partitioned into $\{4 j+i: j=0,1, \ldots, 9\}, i=0,1,2,3$, and $\{40,41, \ldots, 54\}$. The decompositions consist of
$(0,37,39,46,42,41)_{2},(28,5,39,47,52,9)_{2},(0,9,22,45,14,7)_{2}$,
$(0,34,31,13,53,48)_{4},(23,9,0,40,54,41)_{4},(0,1,5,30,38,52)_{4}$,
$(0,18,31,46,45,41)_{5},(29,18,30,15,23,48)_{5},(26,5,13,3,44,49)_{5}$,
$(0,18,31,16,46,42)_{12},(18,24,17,7,53,44)_{12},(0,3,29,8,45,49)_{12}$,
$(0,34,11,52,19,47)_{14},(6,11,33,41,20,42)_{14},(0,2,3,33,51,52)_{14}$,
under the action of the mapping $x \mapsto x+1(\bmod 40)$ for $x<40, x \mapsto(x-40+3(\bmod 15))+40$
for $x \geq 40$, and
$(0,49,27,1,5,3)_{1},(25,43,0,34,12,28)_{1},(25,4,42,19,50,23)_{1}$,
$(32,39,10,45,51,9)_{1},(5,12,44,23,10,53)_{1},(35,26,12,41,36,48)_{1}$,
$(0,29,26,19,40,45)_{7},(46,29,35,32,18,31)_{7},(51,37,36,35,2,20)_{7}$,
$(21,14,7,47,50,16)_{7},(39,8,21,18,51,49)_{7},(0,47,18,23,27,38)_{7}$,
$(0,40,3,11,9,48)_{15},(23,5,38,4,42,49)_{15},(28,22,11,50,53,25)_{15}$,
$(30,42,2,11,4,49)_{15},(15,53,39,13,16,22)_{15},(0,10,28,5,13,15)_{15}$,
under the action of the mapping $x \mapsto x+2(\bmod 40)$ for $x<40, x \mapsto(x-40+3(\bmod 15))+40$ for $x \geq 40$.
$\boldsymbol{K}_{\mathbf{1 0 , 1 0 , 1 0 , 1 0 , 2 0}}$ Let the vertex set be Z_{60} partitioned into $\{4 j+i: j=0,1, \ldots, 9\}, i=0,1,2,3$, and $\{40,41, \ldots, 59\}$. The decompositions consist of
$(1,12,42,18,51,55)_{1},(9,0,10,27,52,40)_{1},(35,4,2,40,9,50)_{1}$,
$(38,33,41,20,54,56)_{1},(15,36,59,21,44,41)_{1},(25,15,18,53,4,51)_{1}$, $(0,1,26,47,3,50)_{1}$,
$(26,44,27,37,16,55)_{2},(25,27,50,30,8,7)_{2},(54,20,5,19,11,0)_{2}$,
$(4,33,10,50,49,48)_{2},(15,46,12,34,21,47)_{2},(50,26,0,13,19,15)_{2}$,
$(1,32,34,55,48,50)_{2}$,
$(34,23,8,13,56,51)_{4},(39,24,30,43,42,56)_{4},(10,50,42,23,33,17)_{4}$,
$(4,10,58,1,5,43)_{4},(16,15,26,37,48,38)_{4},(8,1,10,35,47,50)_{4}$,
$(1,48,52,38,39,27)_{4}$,
$(4,25,56,2,14,27)_{5},(57,9,1,12,8,36)_{5},(28,46,53,6,15,23)_{5}$,
$(6,15,40,9,0,25)_{5},(16,35,2,46,49,57)_{5},(20,56,19,5,37,28)_{5}$,
$(0,7,35,44,47,48)_{5}$,
$(24,14,42,56,7,38)_{7},(49,17,23,18,14,37)_{7},(1,52,14,15,39,55)_{7}$,
$(33,12,45,42,23,32)_{7},(9,2,54,48,4,34)_{7},(42,2,39,31,8,13)_{7}$,
$(0,13,18,48,43,17)_{7}$,
$(34,16,15,18,54,49)_{12},(33,50,30,0,35,42)_{12},(37,19,30,25,53,54)_{12}$,
$(50,11,37,10,18,1)_{12},(47,39,26,58,9,19)_{12},(51,14,8,55,23,29)_{12}$, $(0,25,43,8,14,53)_{12}$,
$(48,12,21,23,1,6)_{14},(48,9,35,30,32,40)_{14},(56,3,30,31,32,8)_{14}$,
$(9,28,44,26,50,35)_{14},(13,16,19,51,3,42)_{14},(39,58,20,48,6,30)_{14}$,
$(1,16,54,10,52,30)_{14}$,
$(4,11,28,40,55,19)_{15},(38,46,30,15,12,47)_{15},(5,0,43,49,34,8)_{15}$,
$(26,49,9,35,28,36)_{15},(56,1,12,15,7,37)_{15},(1,41,15,14,22,44)_{15}$, $(0,3,33,1,44,42)_{15}$,
under the action of the mapping $x \mapsto x+2(\bmod 40)$ for $x<40, x \mapsto(x+1(\bmod 20))+40$ for $x \geq 40$.
$\boldsymbol{K}_{\mathbf{1 6 , 1 6 , 1 6 , 1 6 , 2 1}}$ For graphs $n_{2}, n_{5}, n_{7}, n_{12}$ and n_{14}, let the vertex set be Z_{85} partitioned into $\{3 j+i$: $j=0,1, \ldots, 15\}, i=0,1,2,\{48,49, \ldots, 63\}$ and $\{64,65, \ldots, 84\}$. The decompositions consist of
$(0,22,65,50,48,35)_{2},(26,9,68,25,19,63)_{2},(30,78,34,57,2,76)_{2}$,
$(32,34,66,49,54,24)_{2},(49,20,77,9,76,40)_{2},(0,5,67,51,19,25)_{2}$,
$(0,49,56,1,19,5)_{5},(20,45,12,54,25,14)_{5},(62,76,67,19,42,17)_{5}$,
$(68,11,36,49,4,25)_{5},(5,65,70,9,43,49)_{5},(0,64,66,22,63,2)_{5}$,
$(0,19,44,49,60,67)_{7},(56,80,5,16,45,33)_{7},(40,78,50,29,45,72)_{7}$,
$(16,69,17,52,30,18)_{7},(30,68,46,59,8,72)_{7},(0,70,7,20,54,74)_{7}$,
$(0,68,60,14,7,61)_{12},(35,22,54,5,45,27)_{12},(45,41,70,4,49,73)_{12}$,
$(33,71,38,10,60,67)_{12},(47,15,76,49,1,67)_{12},(48,6,65,5,25,73)_{12}$,
$(0,49,70,31,2,23)_{14},(79,58,40,33,17,18)_{14},(29,56,81,43,42,24)_{14}$,
$(82,21,26,1,56,71)_{14},(69,56,20,30,34,78)_{14},(66,0,61,17,28,8)_{14}$,
under the action of the mapping $x \mapsto x+1(\bmod 48)$ for $x<48, x \mapsto(x+1(\bmod 16))+48$ for $48 \leq x<64, x \mapsto(x-64+7(\bmod 21))+64$ for $x \geq 64$.

For graphs n_{1} and n_{4}, let the vertex set be Z_{85} partitioned into $\{4 j+i: j=0,1, \ldots, 15\}$, $i=0,1,2,3$, and $\{64,65, \ldots, 84\}$. The decompositions consist of
$(63,40,69,45,84,38)_{1},(10,16,27,78,71,9)_{1},(35,69,41,14,4,34)_{1}$,
$(63,18,53,65,37,77)_{1},(32,1,22,35,14,58)_{1},(48,68,25,34,43,37)_{1}$,
$(32,7,75,10,67,62)_{1},(19,4,71,33,41,72)_{1},(0,49,47,76,65,77)_{1}$,
$(45,14,22,27,23,84)_{4},(52,43,67,13,46,22)_{4},(74,0,57,7,18,14)_{4}$,
$(14,52,17,66,68,7)_{4},(71,29,17,2,52,39)_{4},(77,53,28,15,6,51)_{4}$,
$(55,12,79,22,61,10)_{4},(48,19,21,65,83,68)_{4},(65,1,7,12,54,2)_{4}$,
under the action of the mapping $x \mapsto x+2(\bmod 64)$ for $x<64, x \mapsto(x-64+5(\bmod 20))+64$ for $64 \leq x<84,84 \mapsto 84$.
$\boldsymbol{K}_{\mathbf{2 0 , 2 0 , 2 0 , 2 0 , 2 5}}$ Let the vertex set be Z_{105} partitioned into $\{4 j+i: j=0,1, \ldots, 19\}, i=0,1,2,3$, and $\{80,81, \ldots, 104\}$. The decompositions consist of
$(54,104,67,65,11,73)_{1},(55,84,68,66,12,74)_{1},(11,98,64,25,2,8)_{1}$,
$(12,103,65,26,3,9)_{1},(58,97,1,75,7,24)_{1},(59,102,2,76,8,25)_{1}$,
$(85,55,54,33,6,17)_{1},(90,56,55,34,7,18)_{1},(56,23,101,30,38,96)_{1}$,
$(38,43,13,48,8,53)_{1},(0,7,33,81,25,86)_{1}$,
$(104,77,31,24,40,78)_{2},(84,78,32,25,41,79)_{2},(86,50,76,9,67,58)_{2}$,
$(91,51,77,10,68,59)_{2},(87,17,36,74,3,25)_{2},(92,18,37,75,4,26)_{2}$,
$(55,40,34,5,45,93)_{2},(56,41,35,6,46,98)_{2},(90,56,25,34,53,27)_{2}$, $(47,25,88,16,22,72)_{2},(1,0,2,100,88,90)_{2}$,
$(84,78,6,32,0,29)_{4},(89,79,7,33,1,30)_{4},(81,68,65,27,46,9)_{4}$,
$(86,69,66,28,47,10)_{4},(54,57,59,72,24,47)_{4},(55,58,60,73,25,48)_{4}$,
$(92,1,57,0,28,44)_{4},(97,2,58,1,29,45)_{4},(19,8,10,83,95,33)_{4}$,
$(76,80,93,13,65,67)_{4},(0,98,85,14,55,63)_{4}$,
$(64,51,63,6,97,102)_{5},(65,52,64,7,102,82)_{5},(44,69,27,58,42,84)_{5}$,
$(45,70,28,59,43,89)_{5},(79,29,76,58,70,96)_{5},(0,30,77,59,71,101)_{5}$,
$(24,58,66,103,99,85)_{5},(25,59,67,83,104,90)_{5},(44,51,18,80,101,61)_{5}$,
$(33,59,76,80,101,66)_{5},(83,1,43,48,76,62)_{5}$,
$(101,27,6,5,9,58)_{7},(81,28,7,6,10,59)_{7},(100,23,10,49,52,56)_{7}$,
$(80,24,11,50,53,57)_{7},(32,88,55,79,41,104)_{7},(33,93,56,0,42,84)_{7}$,
$(102,48,37,49,31,30)_{7},(82,49,38,50,32,31)_{7},(30,45,40,75,79,32)_{7}$, $(69,32,67,99,84,14)_{7},(1,6,40,56,71,103)_{7}$,
$(0,93,79,14,1,21)_{12},(20,43,62,8,84,53)_{12},(94,61,19,81,8,33)_{12}$, $(34,90,17,56,68,61)_{12},(96,58,21,84,64,26)_{12},(41,74,72,101,102,35)_{12}$, $(70,79,4,21,29,88)_{12},(93,57,75,82,6,48)_{12},(19,26,5,80,100,9)_{12}$, $(0,58,102,49,77,15)_{12},(1,14,27,76,24,26)_{12}$,
$(50,77,90,44,101,8)_{14},(51,78,95,45,81,9)_{14},(12,51,9,87,61,28)_{14}$,
$(13,52,10,92,62,29)_{14},(10,28,65,36,93,87)_{14},(11,29,66,37,98,92)_{14}$,
$(41,56,34,32,11,103)_{14},(42,57,35,33,12,83)_{14},(54,55,8,84,41,86)_{14}$,
$(67,21,68,54,99,101)_{14},(84,0,5,22,17,85)_{14}$,
under the action of the mapping $x \mapsto x+2(\bmod 80)$ for $x<80, x \mapsto(x-80+\lambda(\bmod 25))+80$ for $x \geq 80$, where $\lambda=5$ for graph n_{12} and $\lambda=10$ otherwise.
$\boldsymbol{K}_{16}{ }^{6}$ Let the vertex set be Z_{96} partitioned according to residue class modulo 6. The decompositions consist of
$(0,39,37,64,43,38)_{1},(10,21,62,29,0,66)_{1}$,
$(71,49,40,56,3,54)_{1},(0,47,67,70,13,61)_{1}$,
$(0,2,52,25,88,49)_{2},(3,58,79,2,86,18)_{2}$,
$(11,56,27,18,70,44)_{2},(0,39,43,65,5,11)_{2}$,
$(0,86,34,3,7,87)_{4},(32,3,60,17,64,11)_{4}$,
$(14,59,55,36,39,19)_{4},(0,11,94,37,44,49)_{4}$, $(0,87,57,67,56,13)_{5},(39,86,76,18,13,35)_{5}$,
$(8,61,58,42,69,44)_{5},(0,5,7,3,32,20)_{5}$,
$(0,45,14,20,94,5)_{7},(86,76,54,79,1,27)_{7}$,
$(63,28,5,90,24,7)_{7},(0,41,8,67,87,68)_{7}$,
$(0,88,23,43,1,64)_{12},(46,12,39,67,2,92)_{12}$,
$(70,55,66,26,17,13)_{12},(0,2,19,35,5,61)_{12}$, $(0,13,94,39,76,2)_{14},(34,78,20,42,51,25)_{14}$, $(25,74,24,86,46,43)_{14},(0,3,67,16,26,74)_{14}$, $(0,59,64,45,68,26)_{15},(83,7,51,90,22,91)_{15}$,
$(38,71,54,61,22,11)_{15},(0,34,9,55,31,94)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 96)$.
$\boldsymbol{K}_{\mathbf{2 0 , 2 0 , 2 0 , 2 0 , 2 0 , 1 6}}$ Let the vertex set be Z_{116} partitioned into $\{4 j+i: j=0,1, \ldots, 19\}, i=$ $0,1,2,3,\{80,81, \ldots, 99\}$ and $\{100,101, \ldots, 115\}$. The decompositions consist of $(0,82,53,22,41,37)_{1},(62,110,98,20,97,28)_{1},(72,82,109,25,100,49)_{1}$, $(50,53,39,68,97,51)_{1},(69,110,6,79,24,19)_{1},(77,89,23,18,10,6)_{1}$, $(14,20,39,101,88,113)_{1}$, $(0,13,101,87,51,69)_{2},(113,40,89,30,34,29)_{2},(38,43,89,17,29,73)_{2}$, $(18,40,59,83,3,105)_{2},(58,59,28,96,56,75)_{2},(106,31,81,8,77,20)_{2}$, $(7,104,14,89,60,32)_{2}$,
$(0,113,80,47,53,84)_{4},(112,44,74,3,90,81)_{4},(88,14,60,73,108,17)_{4}$,
$(15,58,34,41,20,96)_{4},(95,23,30,53,52,25)_{4},(114,26,73,27,8,15)_{4}$,
$(23,33,29,78,108,82)_{4}$,
$(0,22,114,45,1,4)_{5},(85,112,13,68,42,55)_{5},(80,104,50,0,1,91)_{5}$,
$(49,98,110,62,3,47)_{5},(95,7,71,10,1,54)_{5},(74,60,76,69,33,82)_{5}$,
$(80,13,102,2,67,28)_{5}$,
$(0,87,109,30,46,19)_{7},(107,50,83,15,19,17)_{7},(18,112,44,59,21,81)_{7}$,
$(21,87,79,16,12,58)_{7},(67,86,77,101,14,34)_{7},(64,49,43,50,113,80)_{7}$, $(80,15,22,66,40,105)_{7}$,
$(0,43,114,95,50,19)_{12},(57,85,68,58,34,110)_{12},(0,21,95,12,15,78)_{12}$,
$(48,26,43,87,61,17)_{12},(31,6,112,35,5,93)_{12},(6,3,105,92,45,110)_{12}$,
$(0,27,105,74,93,99)_{12}$,
$(0,27,91,105,62,76)_{14},(55,18,80,48,1,101)_{14},(62,49,92,112,72,63)_{14}$,
$(58,103,3,0,59,54)_{14},(1,40,111,47,81,25)_{14},(82,65,74,76,46,92)_{14}$,
$(3,78,109,82,9,40)_{14}$,
$(0,81,38,55,3,104)_{15},(104,44,94,15,34,1)_{15},(78,107,40,59,61,95)_{15}$,
$(92,48,82,10,100,33)_{15},(60,54,47,59,45,29)_{15},(8,93,104,114,45,35)_{15}$,
$(0,13,24,39,46,91)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 80)$ for $x<80, x \mapsto(x+1(\bmod 20))+80$ for $80 \leq x<100, x \mapsto(x-100+1(\bmod 16))+100$ for $x \geq 100$.

Proof of Lemma 2.4

$\boldsymbol{K}_{\mathbf{1 0 , 1 0 , 1 0 , 1 5}}$ Let the vertex set be Z_{45} partitioned into $\{3 j+i: j=0,1, \ldots, 9\}, i=0,1,2$, and $\{30,31, \ldots, 44\}$. The decomposition consists of
$(0,35,26,7,19,30)_{15},(9,10,24,39,43,19)_{15},(18,8,21,37,10,19)_{15}$,
$(18,38,27,22,5,35)_{15},(1,38,11,26,15,34)_{15}$,
under the action of the mapping $x \mapsto x+2(\bmod 30)$ for $x<30, x \mapsto(x+1(\bmod 15))+30$ for $x \geq 30$.
$\boldsymbol{K}_{\mathbf{6 , 6 , 6 , 6}, \mathbf{6}}$ Let the vertex set be Z_{30} partitioned into $\{4 j+i: j=0,1, \ldots, 5\}, i=0,1,2,3$, and $\{24,25, \ldots, 29\}$. The decompositions for seven of the graphs consist of
$(0,17,26,23,27,28)_{1},(26,16,7,21,18,2)_{1},(11,13,4,10,0,16)_{1}$,
$(0,28,25,2,19,23)_{4},(22,1,13,16,12,15)_{4},(0,11,7,5,29,26)_{4}$,
$(0,23,18,5,9,20)_{5},(18,13,4,27,24,11)_{5},(16,5,13,28,25,12)_{5}$,
$(0,26,7,14,13,15)_{7},(10,5,19,3,27,28)_{7},(14,8,25,11,19,12)_{7}$,
$(0,18,7,26,28,17)_{12},(6,15,16,13,21,27)_{12},(8,24,6,17,9,3)_{12}$,
$(0,23,1,15,24,26)_{14},(23,4,6,20,17,11)_{14},(19,10,27,8,25,4)_{14}$,
$(0,19,12,1,22,23)_{15},(1,22,11,28,26,20)_{15},(15,22,16,25,24,1)_{15}$,
under the action of the mapping $x \mapsto x+2(\bmod 24)$ for $x<24, x \mapsto(x+1(\bmod 6))+24$ for $x \geq 24$.

For graph n_{2}, let the vertex set be Z_{30} partitioned according to residue class modulo 5 . The decomposition consists of
$(0,12,21,13,1,17)_{2},(21,15,22,14,18,24)_{2},(2,13,19,5,14,8)_{2}$,
$(5,27,21,23,24,9)_{2},(7,28,14,5,21,23)_{2},(4,8,10,21,26,6)_{2}$,
under the action of the mapping $x \mapsto x+5(\bmod 30)$.
$\boldsymbol{K}_{4^{6}}$ Let the vertex set be Z_{24} partitioned according to residue class modulo 6. The decompositions consist of
$(0,1,3,20,9,11)_{1},(0,1,3,10,5,11)_{2},(0,1,2,5,9,11)_{4}$,
$(0,1,2,5,9,12)_{5},(0,1,3,5,10,13)_{7},(0,1,4,9,15,2)_{12}$,
$(0,1,3,11,15,8)_{14},(0,1,3,4,8,13)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 24)$.
$\boldsymbol{K}_{\mathbf{5 , 5 , 5 , 5 , 5 , 1 0}}$ Let the vertex set be Z_{35} partitioned into $\{5 j+i: j=0,1,2,3,4\}, i=0,1,2,3,4$, and $\{25,26, \ldots, 34\}$. The decompositions consist of
$(0,1,3,25,9,26)_{1},(0,7,11,32,13,31)_{1}$,
$(0,1,3,25,7,11)_{2},(0,4,13,26,32,27)_{2}$,
$(15,6,8,25,2,26)_{4},(0,2,11,3,32,31)_{4}$,
$(10,12,24,32,6,34)_{5},(0,1,12,9,25,31)_{5}$,
$(12,23,20,10,25,27)_{7},(26,0,1,4,7,13)_{7}$,
$(2,0,14,18,25,26)_{12},(0,1,17,23,28,29)_{12}$,
$(11,24,7,28,0,25)_{14},(0,3,9,2,29,28)_{14}$,
under the action of the mapping $x \mapsto x+1(\bmod 25)$ for $x<25, x \mapsto(x-25+2(\bmod 10))+25$ for $x \geq 25$.
$\boldsymbol{K}_{4^{6}, \mathbf{1 0}}$ Let the vertex set be Z_{34} partitioned into $\{6 j+i: j=0,1,2,3\}, i=0,1,2,3,4,5$, and $\{24,25, \ldots, 33\}$. The decompositions consist of
$(3,20,11,31,19,0)_{1},(19,17,18,24,15,22)_{1},(23,20,32,13,30,9)_{1}$,
$(1,15,6,27,25,30)_{1},(19,4,26,21,8,28)_{1},(0,5,13,29,28,33)_{1}$,
$(21,12,32,11,30,1)_{2},(5,16,3,8,24,28)_{2},(5,12,31,10,26,1)_{2}$,
$(21,13,24,18,22,8)_{2},(8,22,25,23,32,1)_{2},(0,10,28,7,8,20)_{2}$,
$(20,10,24,13,9,3)_{4},(20,23,6,30,31,21)_{4},(16,7,24,5,12,11)_{4}$,
$(14,22,13,32,28,6)_{4},(9,14,0,27,33,5)_{4},(0,13,22,25,26,3)_{4}$,
$(27,8,5,16,9,24)_{5},(29,9,19,10,6,26)_{5},(31,1,8,3,5,21)_{5}$,
$(21,11,13,30,25,20)_{5},(11,16,3,28,33,32)_{5},(1,6,22,15,23,8)_{5}$,
$(23,19,0,29,31,22)_{7},(8,23,30,6,16,28)_{7},(12,23,20,4,32,2)_{7}$,
$(18,23,3,26,24,1)_{7},(18,7,21,16,30,33)_{7},(1,4,0,14,27,33)_{7}$,
$(0,15,10,32,25,14)_{12},(4,3,14,19,11,6)_{12},(11,19,10,31,28,18)_{12}$,
$(3,7,29,5,10,24)_{12},(6,2,3,31,28,11)_{12},(2,13,17,32,25,0)_{12}$,
$(28,17,18,21,16,22)_{14},(25,19,21,12,17,27)_{14},(32,15,11,14,1,29)_{14}$,
$(4,15,24,7,31,5)_{14},(15,23,16,8,26,33)_{14},(0,2,16,7,11,25)_{14}$,
$(7,16,25,9,12,17)_{15},(4,1,9,32,26,2)_{15},(2,19,28,29,6,5)_{15}$,
$(9,10,30,29,23,0)_{15},(5,18,15,26,32,14)_{15},(0,5,1,10,33,2)_{15}$,
under the action of the mapping $x \mapsto x+3(\bmod 24)$ for $x<24, x \mapsto(x-24+5(\bmod 10))+24$ for $x \geq 24$.
\boldsymbol{K}_{159} Let the vertex set be Z_{135} partitioned according to residue class modulo 9. The decompositions consist of
$(0,24,19,34,21,109)_{1},(105,97,127,3,32,50)_{1},(66,103,8,72,68,65)_{1}$,
$(43,14,103,0,82,129)_{1},(60,64,108,121,48,8)_{1},(0,59,82,110,17,66)_{1}$, $(0,71,97,3,124,95)_{2},(4,114,63,92,18,132)_{2},(22,54,21,41,59,79)_{2}$,
$(58,35,70,118,50,86)_{2},(79,123,9,5,113,33)_{2},(0,30,73,79,80,31)_{2}$,
$(0,1,115,111,105,119)_{4},(77,91,31,80,25,38)_{4},(122,52,114,8,19,37)_{4}$, $(103,129,116,81,36,6)_{4},(91,40,57,132,128,98)_{4},(100,95,41,22,39,72)_{4}$, $(0,77,61,129,49,17)_{5},(16,67,27,30,14,83)_{5},(56,115,126,46,10,94)_{5}$, $(133,102,32,94,31,127)_{5},(132,32,94,117,89,120)_{5},(130,17,106,110,123,58)_{5}$, $(0,120,104,106,80,46)_{7},(125,131,124,24,75,86)_{7},(51,115,54,31,119,39)_{7}$, $(42,25,130,118,77,120)_{7},(107,132,20,63,10,74)_{7},(14,35,9,127,112,33)_{7}$, $(0,39,62,77,64,121)_{12},(11,45,122,66,37,5)_{12},(100,20,96,30,48,49)_{12}$, $(28,8,110,132,21,103)_{12},(5,97,128,50,98,91)_{12},(21,53,56,123,16,4)_{12}$, $(0,75,56,73,80,60)_{14},(130,46,71,101,117,128)_{14},(33,0,77,127,34,8)_{14}$, $(84,16,127,87,64,62)_{14},(113,91,119,15,103,93)_{14},(0,14,114,11,97,53)_{14}$, $(0,62,57,120,95,46)_{15},(31,41,75,43,123,18)_{15},(84,61,29,85,125,105)_{15}$, $(108,125,78,57,59,71)_{15},(79,57,92,107,63,37)_{15},(0,60,86,91,56,83)_{15}$,
under the action of the mapping $x \mapsto x+1(\bmod 135)$.
$\boldsymbol{K}_{15^{9}, 20}$ Let the vertex set be Z_{155} partitioned into $\{9 j+i: j=0,1, \ldots, 14\}, i=0,1, \ldots, 8$, and $\{135,136, \ldots, 154\}$. The decompositions consist of
$(0,64,50,26,21,34)_{1},(101,140,130,64,98,52)_{1},(21,138,37,54,8,60)_{1}$, $(9,143,87,56,83,85)_{1},(18,83,93,95,60,43)_{1},(114,73,66,58,92,119)_{1}$, $(111,56,107,4,67,76)_{1},(117,137,44,111,35,118)_{1}$, $(0,50,110,112,44,64)_{2},(13,10,80,50,23,137)_{2},(55,89,2,146,60,116)_{2}$, $(37,96,49,140,76,48)_{2},(99,50,19,43,116,132)_{2},(151,115,18,101,87,14)_{2}$, $(118,26,110,153,146,140)_{2},(134,15,108,93,34,31)_{2}$, $(0,91,148,59,48,70)_{4},(102,35,145,106,69,128)_{4},(73,120,110,4,79,128)_{4}$, $(106,20,116,103,76,45)_{4},(17,15,130,68,10,142)_{4},(37,94,97,114,83,135)_{4}$, $(113,85,97,143,138,145)_{4},(123,122,111,11,26,152)_{4}$,
$(0,10,30,26,35,113)_{5},(81,66,92,69,94,58)_{5},(78,58,7,102,77,153)_{5}$,
$(78,107,119,5,146,136)_{5},(85,34,46,131,132,151)_{5},(49,6,131,124,63,75)_{5}$, $(0,76,93,143,136,45)_{5},(0,6,22,80,137,150)_{5}$,
$(0,68,148,128,44,22)_{7},(16,54,146,82,128,17)_{7},(41,121,74,1,16,44)_{7}$,
$(141,132,115,53,1,34)_{7},(143,79,47,28,1,70)_{7},(98,108,25,12,96,152)_{7}$,
$(37,31,11,45,42,146)_{7},(123,36,70,23,86,64)_{7}$,
$(0,20,8,67,21,146)_{12},(24,30,52,109,141,98)_{12},(53,3,70,147,51,77)_{12}$,
$(129,29,125,54,122,106)_{12},(70,80,37,150,110,119)_{12},(134,30,15,85,81,152)_{12}$,
$(17,61,3,35,152,151)_{12},(6,35,95,133,1,141)_{12}$,
$(0,77,33,135,79,153)_{14},(60,77,125,128,88,65)_{14},(128,108,73,122,107,44)_{14}$,
$(113,132,4,9,1,146)_{14},(107,73,60,22,83,148)_{14},(87,4,45,137,41,147)_{14}$, $(3,99,69,138,46,83)_{14},(60,119,9,82,140,41)_{14}$,
under the action of the mapping $x \mapsto x+1(\bmod 135)$ for $x<135, x \mapsto(x-135+4(\bmod 20))+$ 135 for $x \geq 135$.

[^0]: Received: 24 January 2018, Revised: 30 May 2019, Accepted: 12 June 2019.

