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 26 

Abstract 27 

Human interaction with animals has been implicated as a primary risk factor for several high 28 

impact zoonoses, including many bat-origin viral diseases; however, the animal-to-human 29 

spillover events that lead to emerging diseases are rarely observed or clinically examined, and 30 

the link between specific interactions and spillover risk is poorly understood. To investigate this 31 

phenomenon, we conducted biological-behavioral surveillance among rural residents in the 32 

Yunnan, Guangxi, and Guangdong provinces of Southern China, where we have identified a 33 

number of SARS-related coronaviruses in bats.  Serum samples were tested for four bat-borne 34 

coronaviruses using newly developed enzyme-linked immunosorbent assays (ELISA). Survey 35 

data were used to characterize associations between human-animal contact and bat 36 

coronavirus spillover risk. A total of 1,596 residents were enrolled in the study from 2015 to 37 

2017. Nine participants (0.6%) tested positive for bat coronaviruses. 265 (17%) participants 38 

reported severe acute respiratory infection (SARI) and/or influenza-like illness (ILI) symptoms in 39 

the past year, which were associated with poultry, carnivore, rodent/shrew, and bat contact, with 40 

variability by family income and province of residence. This study provides serological evidence 41 

of bat coronavirus spillover in rural communities in Southern China. The low seroprevalence 42 

observed in this study suggests that bat coronavirus spillover is a rare event. Nonetheless, this 43 

study highlights associations between human-animal interaction and zoonotic spillover risk. 44 

These findings can be used to support targeted biological behavioral surveillance in high-risk 45 

geographic areas in order to reduce the risk of zoonotic disease emergence. 46 

 47 

Key words 48 

Bat coronavirus, human-animal interaction, disease emergence, Southern China, rural 49 

community  50 



 

China Human Coronavirus Spillover Study 

 3 

Highlights 51 

Scientific question 52 

What are the behavioral risks in human-animal interactions that could lead to the emergence of 53 

bat coronaviruses in human population. 54 

Evidence before this study 55 

Bat borne coronaviruses have caused several emerging infectious disease outbreaks of global 56 

significance, including SARS. Novel SARS-related coronaviruses have been discovered in bat 57 

populations in South China, some of which have the capacity to infect human cells. Human-58 

animal interactions are thought to be critical for the emergence of bat coronaviruses, however 59 

the specific interactions linked to animal-to-human spillover remain unknown. 60 

New Findings 61 

This study found serological evidence for bat-borne coronavirus transmission to people. Direct 62 

contact with bats was not identified as a risk factor. However, self-reported severe acute 63 

respiratory infection (SARI) and/or influenza-like illness (ILI) was linked to human interaction 64 

with other wildlife and livestock, suggesting that there may be other zoonotic exposures leading 65 

to clinical illness in these populations.  66 

Significance of the study 67 

Findings from this study suggested that an integrated biological and behavioral surveillance in 68 

healthy community settings can help identify potential zoonotic disease spillover events or target 69 

surveillance to at-risk populations. This approach represents a potential early-warning system 70 

that could be used under non-outbreak conditions to identify potential zoonotic emerging 71 

diseases prior to largescale outbreaks.   72 
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1. Introduction 73 

In the highly biodiverse southern region of China, interactions among humans, wildlife, and 74 

livestock are likely to be common, and are hypothesized to be a risk factor in the emergence of 75 

zoonotic infectious diseases [1-3]. Human-animal interactions may pose a particular public 76 

health threat in rural communities where frequent contact with animals occurs and where 77 

disease prevention measures are likely less well-developed [4]. Although human-animal 78 

interactions are thought to be associated with zoonotic disease emergence, few studies have 79 

addressed the nature of specific interactions that occur between animals (particularly wild 80 

animals) and humans that lead to pathogen spillover. 81 

 82 

Bats (order Chiroptera) are reservoirs of a large number of zoonotic viruses, including 83 

coronaviruses (CoVs) that have caused disease outbreaks in human and livestock populations 84 

[5-13]: Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), the causative agent of 85 

the SARS outbreak affecting 32 countries in 2002-3, infecting 8,096 people and causing 774 86 

deaths [14]; Middle East Respiratory Syndrome coronavirus (MERS-CoV), which has caused 87 

823 deaths from 2,374 human cases in 27 countries by the end of February 2019, and is 88 

thought to have originally spilled over from bats into camels, in which is it now endemic [15-18]; 89 

and Severe acute diarrhea syndrome coronavirus (SADS-CoV) which emerged in the pig 90 

population of Southern China and caused the deaths of more than 20,000 piglets in 2017 and 91 

2018 [5].  92 

 93 

A large diversity of coronaviruses, including SARS-related Coronaviruses (SARSr-CoVs) have 94 

been discovered in bats, and phylogenetic and pathogenesis studies of these suggest a high 95 

capacity for transmission across species barriers [9, 11, 13, 18-22]. However, few studies have 96 

analyzed bat-to-human spillover events in non-outbreak conditions, likely due to the rarity of 97 
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these events, and difficulties in identifying at-risk populations or target geographies. Additionally, 98 

the symptoms of novel bat coronavirus infection in the human population may not be clinically 99 

recognized at the time of emergence due to lack of adequate surveillance, or confusion with 100 

other diseases. This represents a significant biosafety risk due to the large and increasing 101 

number of coronaviruses discovered in bats [23, 24] and the wide distribution of bat populations 102 

in rural regions such as Southern China [25].  103 

 104 

In this paper we report on a study designed to characterize the bat coronavirus spillover 105 

potential associated with presumed high-risk human behavior in rural communities of Southern 106 

China [26]. We collected data from community serological and behavioral surveillance to 107 

understand the driving factors of bat coronavirus spillover provide evidence for community-108 

based strategies to help prevent zoonotic disease emergence. 109 

 110 

2. Materials and Methods 111 

2.1 Study Location and Target Population 112 

We conducted a cross-sectional study in the provinces of Yunnan, Guangxi, and Guangdong, 113 

China which are known for their high levels of animal biodiversity, active animal trade activity, 114 

and historic zoonotic disease emergence events [3, 5, 10, 14, 22, 24, 27]. Eight study sites were 115 

selected in areas where we have previously reported diverse coronaviruses in bat populations 116 

[24] close (within five kilometers) to human dwellings. The study targeted human populations 117 

that are highly exposed to bats and other wildlife, including people who visit or work around bat 118 

caves, work in local live animal markets, raise animals, or are involved in trading wild animals 119 

(e.g., wild animal harvest, trade, transportation, and preparation), as identified by previous 120 

exploratory ethnographic interviews. 121 

 122 



 

China Human Coronavirus Spillover Study 

 6 

2.2 Recruitment and Sampling 123 

Prior to recruitment and sampling, project staff who received human subject research training 124 

visited each participating site to introduce the project to the community with assistance from 125 

officials from provincial and city-level Centers for Disease Control and Prevention. To generate 126 

interest and develop recruitment strategies, project staff held meetings with village committees 127 

to discuss topics relevant to their daily contact with animals and any health issues in the 128 

community that were particularly concerning for them. With permissions from local authorities, 129 

community leaders conducted house visits and broadcast announcements a week before data 130 

collection took place to inform community residents about the study and its recruitment plan. All 131 

information was communicated in local dialects using simple language to convey the study 132 

purpose, eligibility and inclusion guidelines, potential risks and benefits of participation, and the 133 

time and locations at which the study would take place.  134 

 135 

We aimed to obtain a minimum sample size of 400 participants from each of the three provinces 136 

(Yunnan, Guangxi, and Guangdong), for a total sample size of over 1,200 participants. A 137 

snowball sampling method was used because the population size at selected sites and the 138 

people who were highly exposed to wild animals were difficult to elucidate [28]. During each 139 

house visit, we requested information about potential eligible participants from the residents’ 140 

networks, and we then followed their referrals to recruit from the community. Only one person 141 

per household was recruited to participate in this study, and no participants were recruited from 142 

clinics or healthcare settings. We made every effort to include participants across a range of 143 

demographic indices including gender, age, and socioeconomic status, as well as to ensure that 144 

any contribution was voluntary and involved minimal risk to the participants. 145 

 146 

2.3 Data collection and management 147 
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Following the completion of the informed consent process, a standardized Mandarin 148 

questionnaire was administered by study staff in local dialects. The interview was conducted in 149 

a private environment where confidentiality was maintained, and interviewers and participants 150 

were paired by sex. Children aged 10 to 18 years were interviewed with the permission and in 151 

the presence of a parent or guardian.  152 

 153 

The questionnaire included five sections consisting of demographics, living circumstances and 154 

livelihood, travel, and types of contact with animals, as well as unusual illness symptoms in the 155 

past 12 months. The survey assessed symptoms including fever with cough and shortness of 156 

breath or difficulty breathing (severe acute respiratory infection [SARI] symptoms) and fever with 157 

muscle aches, cough, or sore throat (influenza-like illness [ILI] symptoms) (Appendices). SARI 158 

and ILI symptoms were included in the survey in anticipation of potentially low coronavirus sero-159 

positivity rates. These symptoms are commonly used as metrics in emerging infectious 160 

respiratory disease surveillance and are known to be associated with coronavirus infections 161 

(e.g., MERS-CoV, SARS-CoV) [29]. Therefore, SARI and ILI symptom histories can be 162 

analyzed in addition to serological testing to maximize our understanding of bat coronavirus 163 

spillover risk.  164 

 165 

After the questionnaire interview, participants were asked to provide a blood sample (2.5-5 mL 166 

stored in a serum-separating tube) and an oropharyngeal swab (stored in a cryotube with viral 167 

transport medium). Samples were collected by study staff from local clinics. All samples were 168 

stored in liquid nitrogen immediately after collection and transferred to an ultralow (-80°C) 169 

freezer within 48 hours. 170 

 171 

A unique alphanumeric identification code was assigned to each questionnaire and biological 172 

specimen collected from each participant. No personal identifying information was collected. 173 
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Only authorized study personnel who received human subject research training were allowed 174 

access to the questionnaire and biological data. 175 

 176 

2.4 Serological testing 177 

Serum samples collected from study participants were analyzed using newly developed IgG 178 

enzyme-linked immunosorbent assays (ELISA) based on selected nucleocapsid proteins (NP) 179 

expressed and purified in E. coli for four specific coronaviruses: SARSr-CoV (DQ071615, Bat 180 

SARS coronavirus Rp3, NP), HKU10-CoV (sample 3740, NP), HKU9-CoV (MG762674, 181 

BatCoV_HKU9-2202, NP), and MERS-CoV (JX869059, Human betacoronavirus 2c EMC/2012, 182 

NP).  Micro-titer plates were coated with recombinant and purified NP (100ng/well); samples 183 

were tested at 1:20 dilution; and an anti-Human IgG-HRP conjugated monoclonal antibody 184 

(Kyab Biotech Co., Ltd, Wuhan, China) was used as the secondary antibody with different 185 

dilution ratios for different coronaviruses. 100 serum samples collected from healthy people in 186 

Wuhan were tested using this ELISA kit to set up the cutoff value, and positive test results were 187 

determined by the cut-off value in each run for each of the four coronaviruses, as the product of 188 

the mean of all serum samples’ optical density (OD) values plus three standard deviations, and 189 

confirmed by Western blot test [30]. 190 

 191 

2.5 Questionnaire data analysis 192 

Questionnaire data were entered into an Excel database with quality control for data cleaning 193 

and validation. The glmnet package in R version 3.6.0 was used to fit a least absolute shrinkage 194 

and selection operator (LASSO) regression to characterize associations between animal contact 195 

and SARI and/or ILI symptoms in the preceding 12 months [31, 32]. The bat coronavirus 196 

serology testing outcome was not analyzed in the LASSO due to low rates of sero-positivity.   197 

The LASSO regression is an adaptation of the generalized linear model (GLM) and was 198 

selected because it is effective at minimizing prediction error for datasets with many predictor 199 



 

China Human Coronavirus Spillover Study 

 9 

variables.  The model identifies subsets of predictors that are associated with the outcome of 200 

interest by applying a shrinkage operation to regression coefficients and shrinking some 201 

coefficients to exactly 0. The LASSO is often utilized for its variable selection capabilities for 202 

sparse datasets including surveys and questionnaires. Demographic variables (age, gender, 203 

province, and income) were included in the model as independent and interaction terms in order 204 

to account for potential confounding. Because the LASSO does not generate confidence 205 

intervals, we repeated the model using bootstrapping to instead calculate bootstrap support, i.e., 206 

the proportion of times a predictor variable is selected into the model [33-36] 207 

 208 

Chi-Square and fisher exact tests were also conducted to explore the associations between 209 

potential risk factors in local demographics, behaviors, and attitudes (independent variables) 210 

and bat CoV serological evidence (dependent variables), with effect size examined. However, 211 

due to the low positivity rate (9/1,497), the results were not robust and are not reported in this 212 

paper.  213 

3. Results  214 

From October 2015 to July 2017, a total of 1,596 residents from eight sites in Yunnan (n=761), 215 

Guangxi (n=412), and Guangdong (n=423) provinces were enrolled in this study. Of these, 216 

1,585 participants completed the questionnaires and 11 participants withdrew from the 217 

questionnaire interview due to scheduling reasons. After the interviews, 1,497 participants 218 

provided biological samples for lab analysis. 219 

 220 

3.1 Demographics 221 

More female (62%) than male (38%) community members participated in this study. Most 222 

participants were adults over 45 years old (69%) and had been living in the community for more 223 

than 5 years (97%) with their family members (95%). A majority relied on a comparatively low 224 
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family annual per capita income less than 10,000 RMB (86%), which is below the national mean 225 

of per capita disposable income of rural households from 2015 to 2017 (11,422 - 13,432 RMB) 226 

[37]. Most participants (98%) had not received a college education and were making a living on 227 

crop production (76%). 9% of participants frequently traveled outside the county as migrant 228 

laborers. Some participants were working in sectors where frequent human-animal contacts 229 

occur, such as the animal production business (1.7%), wild animal trade (0.5%), 230 

slaughterhouses or abattoirs (0.5%), protected nature reserve rangers (0.4%) or in wildlife 231 

restaurants (0.3%). It was common for participants to have multiple part-time jobs as income 232 

sources (Table 1)  233 
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 234 

Variable  
Total 

N Valid % 

Gender  Female  968 61.5 
(n= 1,574) Male  605 38.4 

 Other  1 0.1 

Age  Under 18 years 71 4.5 
(n=1,582) 18 to 44 years 420 26.5 

 45 to 64 years 780 49.3 
 Age 65 or older 311 19.7 

Province  Guang Dong 420 26.5 
(n=1,585) Guang Xi 412 26.0 

 Yun Nan 753 47.5 

Residence time  < 1 month 4 0.3 
(n=1,568) 1 month – 1 year 12 0.8 

 1 year – 5 years 26 1.7 
 > 5 years 1,526 97.3 

Family annual  <1000 yuan 271 17.3 
PCI (n=1,565) 1001-10000 yuan 1067 68.2 
 >10000 yuan 227 14.5 

Livelihood  Extraction of minerals, gas, oil, timber (n=1,566) 5 0.3 
since last year Crop production (n=1,569) 1,196 76.2 
 Wildlife restaurant business (n=1,564) 5 0.3 

 Wild/exotic animal trade/market business (n=1,566) 8 0.5 
 Rancher/farmer animal production business (n=1,566) 27 1.7 
 Meat processing, slaughterhouse, abattoir (n=1,567) 8 0.5 
 Zoo/sanctuary animal health care (n=1,565) 1 0.1 
 Protected area worker (n=1,567) 7 0.4 
 Hunter/trapper/fisher (n=1,565) 3 0.2 
 Forager/gatherer/non-timber forest product collector (n=1,566) 4 0.3 
 Migrant laborer (n=1,567) 144 9.2 
 Nurse, doctor, healer, community health worker (n=1567) 7 0.4 
 Construction (n=1,564) 41 2.6 
 Other (n=1,568) 293 18.7 

Education  None 428 27.3 
(n=1,570) Primary School 632 40.3 

 Secondary school/Polytechnic school 479 30.5 
 College/university/professional 31 2.0 

Live with  No 73 4.7 
family 
(n=1,564) 

Yes 1491 95.3 

Table 1 Demographics of study participants. Total counts differ due to missing responses.  235 

3.2 Animal contact and exposure to bat coronaviruses  236 

Serological testing of serum samples from 1,497 local residents revealed that 9 individuals 237 

(0.6%) in four study sites were positive for bat coronaviruses, indicating exposure at some point 238 

in their life to bat origin SARSr-CoVs (n=7, Yunnan), HKU10 CoV (n=2, Guangxi), or other 239 
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coronaviruses that are phylogenetically closely related to these. All individuals who tested 240 

positive (male=6, female=3) were over 45 years old, and most (n=8) were making a living from 241 

crop production. None of those participants reported any symptoms in the 12 months preceding 242 

the interview.  243 

 244 

Due to the low rate of sero-positivity, we did not obtain robust results from the statistical 245 

comparisons of animal-contact behavior by coronavirus outcome. Figure 12 shows animal 246 

contact rates in the previous 12 months among the survey population (n= 1,585) and among 247 

seropositive individuals (n=9). Participants reported common contact with poultry and 248 

rodents/shrews, and most animal contact occurred in domestic settings through animal raising 249 

or food preparation activities.  250 

 251 

 252 

Figure 12. Animal contact by taxa and activities. Values and shading represent the survey 253 

population; red numbers in the upper-right corners of the cells indicate the number of 254 

seropositive individuals with the given contact.   255 

 256 
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3.3 Self-report SARI/ILI symptoms and animal contact  257 

Among the 1,585 participants who responded, 265 (17%) reported experiencing SARI (n = 73) 258 

and/or ILI (n = 227) symptoms in the last year.  The LASSO regression showed that eating raw 259 

or undercooked carnivores in the preceding 12 months was the most salient predictor of self-260 

reported SARI and/or ILI symptoms over the same time period (odds ratio [OR] = 1.6; bootstrap 261 

support = 0.67).  Additional salient predictors were slaughtering poultry as a resident of Guangxi 262 

province (OR = 1.4; support = 0.68), having an income below 10,000 RMB as a resident of 263 

Guangxi province (OR = 1.3; support = 0.84), domestic contact with bats (OR = 1.3; support = 264 

0.63) and domestic contact with rodents or shrews as a resident of Guangdong province (OR = 265 

1.2; support = 0.63) (Figure 23).   266 

 267 

Some demographic variables were associated with self-reported SARI and/or ILI symptoms as 268 

either independent or interactive terms.  For example, respondents aged 41 to 60 and residents 269 

of the YunNan province were less likely to report symptoms. Slaughtering poultry was positively 270 

associated with the outcome only in GuangXi residents, whereas the association was negative 271 

in GuangDong residents.  Family income also showed interactions, with family income less than 272 

10,000 RMB being positively associated with the outcome in respondents who raised poultry but 273 

negatively associated in respondents who cooked or handled poultry.  Gender was not found to 274 

be salient in either direction. 275 
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 276 

Figure 23. Most salient predictors of self-reported ILI and/or SARI symptoms in the last year (s = 277 

bootstrap support; n = count positive out of 1,585 respondents). Bootstrap support values  0.6 278 

are demonstrated here, meaning they were identified as associated with the outcome for 60% or 279 

more of the bootstrap iterations. Odds ratios > 1 (orange) are positively associated with the 280 

outcome, and odds ratios <1 (purple) are negatively associated with the outcome.  281 

 282 

3.4 Attitudes towards zoonotic diseases emergence 283 

When asked about animals and disease transmission, more than half of the study participants 284 

believed that animals could spread disease (n=871, 56%) and were worried about disease 285 

emergence from animals at wet markets (n=810, 52%). Of those worried about disease 286 

emergence, 46% (n=370) still purchased animals from wet markets in the past 12 months. 287 

Among all participants who purchased animals from wet markets in the past 12 months (n=502, 288 

32%), some (n=194, 39%) took protection measures or strategies such as washing hands, 289 

purchasing live animals less often (n=153, 30%), or purchasing meat at supermarkets instead of 290 
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live animal markets (n=148, 29%). Very few participants considered wearing a mask (n=7, 1%) 291 

or gloves (n=7, 1%) while visiting the markets. 292 

 293 

4. Discussion 294 

We used a novel human surveillance approach to integrate serological and behavioral data to 295 

characterize associations between human-animal contact and zoonotic disease spillover risk in 296 

Southern China. This study provides the first serological evidence of  bat-origin SARSr-CoVs 297 

and HKU10 CoV transmission to people and highlights potential spillover pathways through 298 

animal contact. Given the high diversity and recombination rate of bat coronaviruses, and close 299 

relationship of SARSr-CoVs to SARS-CoV, it is possible that exposure to these coronaviruses 300 

may lead to disease emergence in human populations. Continuous surveillance of both human 301 

and bat populations, as well as further pathogenesis studies of these viruses, are important to 302 

determine the extent of the disease risk. 303 

 304 

Contact with animals was prevalent among the survey population. Raising poultry and having 305 

rodents/shrews in the house were the most common types of contact. Correspondingly, contact 306 

with poultry and rodents/shrews, as well as with carnivores, was identified in the LASSO 307 

regression as being associated with self-reported ILI and/or SARI symptoms, with results 308 

varying by income and province. It’s important to note that the questionnaire used broad 309 

classification of the type of animals for these exposures due to the presumed variability in 310 

respondent’s capacity to identify species or genera of wildlife. It is likely that the most significant 311 

exposure we identified (to carnivores) reflects animals as diverse as civets, porcupines, ferret 312 

badgers and animals that respondents identified as non-rodent and non-shrew. This study also 313 

assessed health risks from human interaction activities for each study participant in the survey 314 

based on their travel history and the health history of people who they lived with, to minimize the 315 
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possibility of human-to-human transmission of other pathogens causing ILI and/or SARI 316 

symptoms. We did not find evidence supporting a direct relationship between bat contact and 317 

bat coronavirus sero-positivity in the human population. However, there is frequent contact with 318 

domestic animals in these communities and it is known that other bat-origin viruses have been 319 

transmitted to humans via livestock (e.g. henipavirses and filoviruses) [38-41]. It is possible that 320 

these findings reflect indirect exposure to bat CoVs via these pathway, or fomites and future 321 

surveillance may benefit from including a wide range of livestock and peri-domestic animals in 322 

viral and serological studies to identify potential spillover pathways [42-45]. 323 

 324 

While it is known that bias can occur in self-reported illness data, this approach has been widely 325 

used in previous disease surveillance and risk factor studies [46-49]. It may be particularly 326 

useful as an early warning system during non-outbreak conditions to assess broad categories of 327 

high-risk within communities for further longitudinal surveillance. This may be particularly 328 

important in rural communities, where people have high levels of contact with domestic and wild 329 

animals but may not seek diagnosis or treatment in a timely fashion, slowing early detection and 330 

response.  331 

 332 

While the majority of survey respondents believed that animals could spread disease and were 333 

worried about disease emergence from animals at wet markets, many did not take measures to 334 

protect themselves from exposure. Further work on what drives these local attitudes to risk may 335 

help in developing risk-mitigation behavior change programs. A number of affordable and 336 

readily adaptable measures could be targeted to these at-risk populations, including  use gloves 337 

and masks while killing or butchering animals, and handwashing.  338 

 339 

The low levels of sero-positivity found in the study could reflect a number of factors: 1) the rarity 340 

of spillover and bat-to-human transmission, as has been reported for other virus-host systems 341 
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[50-54]; 2) the use of a snowball technique for sample selection that could have biased the 342 

population sampled; 3) the limited diversity of CoVs that this study tested for; 4) the possibility 343 

that these infections cause high mortality rates and therefore the number of survivors and 344 

number of seropositive people is low, although this seems unlikely because the mortality rate 345 

from SARS was >10% during an outbreak that included hospital exposure and therefore likely 346 

high infectious doses [55, 56]; and 5) that antibodies to these viruses wane rapidly in humans. 347 

The latter hypothesis is supported by findings that antibodies to SARS decline rapidly (2-3 348 

years) after illness [57]. Expanding this approach to a larger cohort of subjects, using a 349 

longitudinal (repeated sampling) approach, and targeting selection to people who are in the 350 

higher risk categories we have identified may provide a larger number of sero-positives and 351 

more critical information on what drives spillover risk. However, despite the small sample sizes, 352 

this study suggests that there are a substantial number of people in rural Southern China who 353 

are exposed to bat-origin viruses, and that this exposure is likely within normal practices for 354 

rural communities, rather than specific high risk groups (e.g. wet market workers). Considering 355 

the proven potential of some SARSr-CoVs currently circulating in bats in southern China, to 356 

infect human cells, cause clinical signs in humanized mouse models, and lead to infections that 357 

cannot be treated with monoclonal therapies effective against SARS-CoV [58-60], this 358 

represents a clear and present danger to our biosafety and public health. Further studies to 359 

determine the relationship between SARSr-CoV and HKU10-CoV exposure and illness in 360 

people may help elucidate this risk and provide critical mitigation strategies. 361 
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Highlights 

 

Scientific question 

What are the behavioral risks in human-animal interactions that could lead to the emergence of 

bat coronaviruses in human population. 

 

Evidence before this study 

Bat borne coronaviruses have caused several emerging infectious disease outbreaks of global 

significance, including SARS. Novel SARS-related coronaviruses have been discovered in bat 

populations in South China, some of which have the capacity to infect human cells. Human-

animal interactions are thought to be critical for the emergence of bat coronaviruses, however 

the specific interactions linked to animal-to-human spillover remain unknown. 

 

New Findings 

This study found serological evidence for bat-borne coronavirus transmission to people. Direct 

contact with bats was not identified as a risk factor. However, self-reported severe acute 

respiratory infection (SARI) and/or influenza-like illness (ILI) was linked to human interaction 

with other wildlife and livestock, suggesting that there may be other zoonotic exposures leading 

to clinical illness in these populations.  

 

Significance of the study 

Findings from this study suggested that an integrated biological and behavioral surveillance in 

healthy community settings can help identify potential zoonotic disease spillover events or target 

surveillance to at-risk populations. This approach represents a potential early-warning system 

that could be used under non-outbreak conditions to identify potential zoonotic emerging 

diseases prior to largescale outbreaks.  


