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Abstract 

Diagnostic tools for the detection of early-stage oesophageal adenocarcinoma (OAC) 

are urgently needed. Our aim was to develop an accurate and inexpensive method using 

biofluids (plasma, serum, saliva or urine) for detecting oesophageal stages through to 

OAC (squamous; inflammatory; Barrett’s; low-grade dysplasia; high-grade dysplasia; 

OAC) using attenuated total reflection Fourier-transform infrared (ATR-FTIR) 

spectroscopy. ATR-FTIR spectroscopy coupled with variable selection methods, with 

successive projections or genetic algorithms (GA) combined with quadratic 

discriminant analysis (QDA) were employed to identify spectral biomarkers in biofluids 

for accurate diagnosis in a hospital setting of different stages through to OAC. Quality 

metrics (Accuracy, Sensitivity, Specificity and F-score) and biomarkers of disease were 

computed for each model. For plasma, GA-QDA models using 15 wavenumbers 

achieved 100% classification for four classes. For saliva, PCA-QDA models achieved 

100% for the inflammatory stage and high-quality metrics for other classes. For serum, 

GA-QDA models achieved 100% performance for the OAC stage using 13 

wavenumbers. For urine, PCA-QDA models achieved 100% performance for all 

classes. Selected wavenumbers using a Student’s t-test (95% confidence interval) 

identified a differentiation of the stages on each biofluid: plasma (929 cm-1 to 1,431 cm-

1, associated with DNA/RNA and proteins); saliva (1,000 cm-1 to 1,150 cm-1, associated 

with DNA/RNA region); serum (1,435 cm-1 to 1,573 cm-1, associated with methyl 

groups of proteins and Amide II absorption); and, urine (1,681 cm-1 to 1777 cm-1, 

associated with a high frequency vibration of an antiparallel β-sheet of Amide I and 

stretching vibration of lipids). Our methods have demonstrated excellent efficacy for a 

rapid, cost-effective method of diagnosis for specific stages to OAC. These findings 

suggest a potential diagnostic tool for oesophageal cancer and could be translated into 

clinical practice. 

 

Keywords: ATR-FTIR spectroscopy; Biofluids; Classification techniques; Diagnosis; 

Oesophageal cancer; Variable selection methods 
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Introduction 

The rising incidence of oesophageal cancer over the past three decades coincides 

with a change in histologic type and primary tumour location.1 The incidence of 

oesophageal adenocarcinoma (OAC) in the Western world, which is a long-term 

complication of damage by gastro-oesophageal reflux, has been rising over recent 

decades.2 The mounting incidence of obesity, which encourages gastro-oesophageal 

reflux appears to be a key factor. The second factor is the reduced incidence of H. pylori 

infection and associated atrophic gastritis. In turn, these factors decrease the acidity and 

peptic activity of gastric juice, damaging oesophageal mucosa.2 

 There is a proven association between Barrett’s oesophagus (BO) and OAC as a 

result of chronic inflammation from gastro-oesophageal reflux disease (GORD).3 

Metaplastic cells in BO progress to OAC through intermediate histological stages of 

inflammation, low-grade dysplasia (LGD), high-grade dysplasia (HGD) and OAC. This 

transformation that takes several years.4 OAC is aggressive and usually presents late 

with a poor prognosis. 

BO is the only known precursor to OAC to date. GORD increases the risk of 

OAC by >40-fold compared with the general population.4 There remains a lack of 

insight into its natural history.5 Additionally, there are no reliable predictive biomarkers 

that might enable us to risk-stratify BO patients and identify those who would benefit 

most from endoscopic management.6 Finally, prospective studies have not established a 

clear survival benefit for screening and surveillance in BO.7 There are several 

guidelines regarding screening, surveillance and management of BO. All however fail 

to demonstrate clear evidence for an established benefit, cost-effectiveness and robust 

risk stratification for patients.8 



4 

 

A recent systematic review and meta-analysis conducted in 2017 confirmed that 

the risk of progression to HGD or OAC in BO patients is primarily determined by the 

presence or absence of LGD (OR 4.2 (2.1–8.5)).9 The progression of BO to HGD or 

adenocarcinoma is further significantly increased with increasing length of BO segment 

[OR 1.2 (1.1–1.3) per additional cm in length]. Furthermore, Krishnamoorthi et al.9 

confirmed that older age and being male are risk factors for disease progression to HGD 

and OAC. Finally, the meta-analysis suggests that use of a proton pump inhibitor (OR 

0.55 (95% CI 0.32; 0.96)) or statins (OR 0.48 (95% CI 0.31; 0.73)) significantly 

decreases the risk of progression to HGD or cancer.9 

Early detection and prevention are key strategies to manage OAC. Early 

detection of cancer or dysplasia in BO allows intervention at an early stage. The 

argument as to which BO patients are most likely to benefit from surveillance and 

management hinges on the high prevalence of BO and the low cancer incidence among 

unselected BO cases versus the burden of invasive treatment and the high morbidity and 

mortality of OAC.10 Methods investigated in the diagnosis of BO and establishment of 

LGD, HGD and OAC include high-resolution endoscopy,11 chromoendoscopy,12 

autofluorescence,13 narrow band imaging (NBI),14 and optical coherence tomography 

(OCT)15 amongst others.16-18 

Although these methods have been widely used in the diagnosis and differential 

diagnosis of oesophageal diseases, two main drawbacks are noted. Current diagnostic 

methods rely on the collection of biopsy samples at endoscopy, which is an invasive and 

poor sampling technique despite rigorous protocols. The second drawback involves 

significant inter- and intra-observer variability for the endoscopist and pathologist. The 
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need for simple, reproducible and real-time information on the disease state by non-

invasive methods has never been more relevant. 

Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy 

has been applied to detect various alterations in human tissues, cells or biofluids (urine, 

saliva, plasma, serum, cerebrospinal).19-21 The derived ATR-FTIR spectrum is a series 

of wavenumber absorbance intensities, which correspond to particular frequencies, 

including Amide I (1650 cm–1), Amide II (1550 cm–1), Amide III (1260 cm–1), 

carbohydrates (1155 cm–1), glycogen (1030 cm–1), lipids (1750 cm–1), asymmetric 

phosphate stretching vibrations (asPO2
–; 1225cm–1), symmetric phosphate stretching 

vibrations (sPO2
–; 1080 cm–1) and protein phosphorylation (970 cm–1). 

ATR-FTIR spectroscopy has been used to identify neoplasia in ovary,22 cervix,23 

breast,24 brain,25 prostate,26 lung,27 skin,28 thyroid,29 stomach,30 colon31 and pancreas.32 

Several groups have used IR spectroscopy for the detection of Barrett’s oesophagus and 

pre-cancerous changes in oesophageal tissues.33–36 To the best of our knowledge, ATR-

FTIR spectroscopy has never been applied to interrogate the oesophageal stages of 

transformation to OAC, employing the biofluids plasma, serum, saliva or urine. 

Herein we set out to develop an accurate, quick and inexpensive method using 

biofluids (plasma, saliva, serum or urine) towards detecting oesophageal stages through 

to OAC (normal; inflammatory; Barrett’s; low-grade dysplasia (LGD); high-grade 

dysplasia (HGD); and, OAC). This was using a derived FTIR spectral region, or 

combination of variables, that reflects a specific biochemical feature of disease in 

human bodily fluids. We employed successive projections algorithm (SPA) and genetic 

algorithm (GA) to select an appropriate subset of wavenumbers for quadratic 

discriminant analysis (QDA). This novel approach envisions translation of this approach 

to ready use by practicing physicians and surgeons. 
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Material and Methods 

Sample collection 

Patients were identified from Upper Gastro-intestinal Multi-Disciplinary Team 

meetings and local hospital Pathology databases. Potential participants were identified 

prospectively and consented for biofluids (blood for plasma or serum, urine or saliva) 

and tissue was taken between October 2017 and June 2019 in a clinic or endoscopy 

setting. A power test (t-test-based with a 95% confidence level) was performed to 

determine the minimum sample size at 80% power, where a total of 82 samples was 

suggested. We collected 120 (plasma), 127 (saliva), 124 (serum) and 126 (urine) 

samples, which surpass the power of 80%. Biofluid specimens were categorised as 

follows: i) plasma:  n=35 normal, n=18 inflammatory, n=27 Barrett’s, n=6 LGD, n=12 

HGD and n=22 OAC (set A); ii) saliva: n=38 normal, n=19 inflammatory, n=27 

Barrett’s, n=6 LGD, n=12 HGD and n=25 OAC (set B); iii) serum: n=36 normal, n=19 

inflammatory, n=28 Barrett’s, n=6 LGD, n=12 HGD and n=23 OAC (set C); iv) and, 

urine: n=38 normal, n=19 inflammatory, n=27 Barrett’s, n=6 LGD, n=11 HGD and 

n=25 OAC (set D).  

  Ethical approval was granted by the East of England - Cambridge Central 

Research Ethics Committee from 2015 (Archival gastro-intestinal tissue, blood, saliva 

and urine collection; REC reference: 18/EE/0069; IRAS project ID: 242639). Ethics 

was also granted from the parent University (STEMH 909 application). All biofluids 

were stored in appropriate containers initially in a fridge at 4°C for up to 2 h. Plasma or 

serum samples were generated according to local protocols. Urine samples were 

centrifuged at 2200 rpm. All biofluids were then stored at -80°C. 
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Prior to slide preparation, biofluids samples were left to thaw in the fridge at 

4°C.  Thirty μL of individual biofluids (plasma, serum, saliva or urine) were pipetted 

onto naked FisherBrand™ slides for ATR-FTIR spectral analysis.  Each slide was 

labelled with a specific GI (Gastrointestinal number) corresponding to its specific tissue 

pathological classification (i.e., squamous tissue to adenocarcinoma). All slides were 

left to dry prior to transportation in wooden slide boxes to the laboratory for spectral 

analysis. All of the samples were stored in a de-humidified glass container to prevent 

condensation and physical damage. 

ATR-FTIR spectroscopy 

Spectroscopic interrogation of biofluid samples was performed at the 

Biomedical Research Laboratory at the University of Central Lancashire (UK). 

Histological diagnoses were unknown to those who performed IR spectroscopy. IR 

spectra were obtained using a Bruker TENSOR 27 FTIR spectrometer with Helios ATR 

attachment containing a diamond crystal (Bruker Optics Ltd, Coventry, UK) and 

operated using OPUS 6.5 software. Spectra were acquired from 10 independent sample 

locations. Data acquisition parameters were: 8 cm−1 spectral resolution giving 4 cm−1 

data spacing, 32 scans, 6 mm aperture setting and 2× zero-filling factors. The ATR 

diamond crystal was washed with distilled water and dried with tissue paper between 

each sample and before each new slide. A background absorption spectrum (for 

atmospheric correction) was taken prior to each new sample. 

Data analysis and chemometric methods 

 The data import, pre-treatment and construction of chemometric classification 

models were implemented in MATLAB R2014a software (MathWorks, USA) by using 
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PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., USA) and custom-made 

routines. Raw spectra were pre-processed by cutting between 1800 and 900 cm-1 (235 

wavenumbers at 4 cm-1 spectral resolution), followed by rubberband baseline-correction 

and normalisation to the Amide I peak (i.e., 1650 cm-1). Before constructing the 

multivariate classification models (principal component analysis quadratic discriminant 

analysis, PCA-QDA; successive projections algorithm quadratic discriminant analysis, 

SPA-QDA; genetic algorithm quadratic discriminant analysis, GA-QDA) the samples 

were divided into training (60%), validation (20%) and prediction (20%) sets by the 

classic Kennard–Stone (KS)37 uniform sampling algorithm applied to the IR spectra as 

shown in Table 1. The training samples were used in the modelling procedure, whereas 

the prediction set was only used in the final classification evaluation. The optimum 

number of variables for SPA-QDA and GA-QDA was determined according to an 

average risk G of misclassification. Such a cost function is calculated in the validation 

set as: 

G =
1

NV
∑ gn

NV
n=1          (1) 

where gn is defined as: 

𝑔𝑛 =
𝑟2(𝑥𝑛,𝑚𝐼(𝑛))

min𝐼(𝑚)≠𝐼(𝑛) 𝑟2(𝑥𝑛,𝑚𝐼(𝑚))
                                                                                       (2) 

and 𝐼(𝑛) is the index of the true class for the nth validation object 𝑥𝑛. 

In this definition, the numerator is the squared Mahalanobis distance between 

object 𝑥𝑛 (of class index  𝐼(𝑛)) and the sample mean 𝑚𝐼(𝑛) of its true class. The 

denominator in Eq. (2) corresponds to the squared Mahalanobis distance between object 

𝑥𝑛 and the centre of the closest incorrect class. The minimum value of the cost function 
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(maximum fitness) is achieved when the selected variables from the original data are as 

close as possible to its true class and as distant as possible from its incorrect class in the 

validation set. The GA routine was carried out using 100 generations with 200 

chromosomes each. Crossover and mutation probabilities were set to 60% and 1%, 

respectively. Moreover, the algorithm was repeated three times, starting from different 

random initial populations. The best solution (in terms of fitness value) resulting from 

three realizations of the GA was employed. 

QDA classification score (𝑄𝑖𝑘) is estimated using the variance-covariance matrix 

for each class k and an additional natural logarithm term, as follows: 

𝑄𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝚺𝑘
−1(𝐱𝑖 − �̅�𝑘) + log𝑒|𝚺𝑘| − 2 log𝑒 𝜋𝑘           (3) 

where 𝚺𝑘 is the variance-covariance matrix of class k; and, log𝑒|𝚺𝑘| is the natural 

logarithm of the determinant of the variance-covariance matrix of class k. QDA forms a 

separated variance model for each class and does not assume that different classes have 

similar variance-covariance matrices, different to what is assumed by linear 

discriminant analysis (LDA).38 

 The calculation of figures of merit is a recommended standard practice to test 

model performance.39 Herein, measures of test accuracy including sensitivity (portion of 

positive samples correctly classified), specificity (portion of negative samples correctly 

classified), and F-score, which is a general measurement of the model accuracy. These 

quality metrics are calculated using the following equations: 

Sensitivity (%) =
𝐓𝐏

𝐓𝐏+𝐅𝐍
× 𝟏𝟎𝟎        (3) 

Specificity (%) =  
𝐓𝐍

𝐓𝐍+𝐅𝐏
× 𝟏𝟎𝟎        (4) 

F-score =
𝟐×𝐒𝐄𝐍𝐒×𝐒𝐏𝐄𝐂

𝐒𝐄𝐍𝐒+𝐒𝐏𝐄𝐂
         (5) 
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where TP stands for true positives, TN for true negatives, FP for false positives and FN 

for false negatives. SENS stands for sensitivity and SPEC for specificity. 

All selected wavenumbers derived from SPA-QDA and GA-QDA for 

oesophageal stages [i.e., normal vs. inflammatory vs. Barrett’s vs. low-grade dysplasia 

(LGD) vs. high-grade dysplasia (HGD) vs. oesophageal adenocarcinoma (OAC)] were 

confirmed by a two-tailed Student’s t-test (95% confidence interval). 

 

Results 

The number of training, validation and prediction specimens (or spectra) in each 

biofluid category is summarised in Table 1. 

Plasma dataset. Fig. 1A shows the average raw IR spectra derived from blood plasma 

for six oesophageal stages (Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. 

OAC), respectively. Overall, the IR spectra for oesophageal stages appear to overlap in 

the biochemical-cell fingerprint region (1800 cm-1 to 900 cm-1), making it difficult to 

distinguish any subtle but significant differences. On closer analysis, notable 

distinguishing peaks that represent lipid functional groups could be observed around 

1650 cm-1 (Amide I) and 1550 cm-1 (Amide II). In addition, peaks were observed in the 

region of 1050–1000 cm-1 (carbohydrates and collagen) and 1300 cm-1 to 1150 cm-1 

(Amide III and asPO2
-). The methyl groups of lipids and proteins major peaks could be 

found around 1400 cm-1, 1260 cm-1 (Amide III), 1225 cm-1 (vasPO2
-) and 1080 cm-1 

(vsPO2
-). To discriminate the six oesophageal stages, the spectral dataset was pre-

processed using baseline correction and normalisation using the Amide I peak (Figure 

1B). Average IR pre-processed spectra appear to overlap in the biochemical fingerprint 
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region (1800 cm-1 to 900 cm-1) making spectral observation and the discovery of 

markers or signatures difficult. Therefore, chemometric techniques such as PCA-QDA, 

SPA-QDA and GA-QDA algorithms were adopted to classify Normal vs. Inflammatory 

vs. Barrett’s vs. LGD vs. HGD vs. OAC based on their IR spectra. 

 A classification of the six oesophageal stages was developed by discriminant 

analysis using the IR spectra between 900 and 1800 cm-1. Figure 1C shows the 

wavenumbers associated with class differences. The classification performance in the 

prediction set using GA-QDA was 100% accuracy, sensitivity, specificity and F-scores. 

Fig. 1D shows the predicted class achieved by the GA-QDA model for all classes based 

on 15 selected wavenumbers. An excellent classification of the samples was observed 

(only 3 errors in the training set and 1 error in the validation set). The PCA-QDA model 

using the scores on seven PCs (90% of the total data variance) achieved 100% for 

accuracy, sensitivity, specificity and F-scores for Normal, Inflammatory, Barrett’s and 

OAC classes [see Supplementary Information (SI) Table S1]. SPA-QDA also achieved 

a very high accuracy for classification of LGD (100%) using 7 variables (namely, 1392, 

1485, 1539, 1585, 1624, 1643, and 1681 cm-1), as shown in Table S1 (see SI). Table S2 

(see SI) lists the selected wavenumbers obtained by SPA-QDA and GA-QDA models 

for plasma samples with their tentative biomolecular assignments. 

Saliva dataset. Figure 2A and 2B show the raw average IR spectra and average pre-

processed (baseline correction and normalisation) in the biochemical-cell fingerprint 

region (1,800 cm-1 to 900 cm-1) derived from the saliva for six oesophageal stages. 

There are notable differences in the wavenumber regions 1,000 cm-1 to 1,150 cm-1 

(DNA/RNA region), 1,350 cm-1 to 1,500 cm-1 (Amide II protein region) and 1,530 cm-1 

to 1,600 cm-1 (Amide I protein region) for all classes investigated. Although there is 
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some overlap amongst the average pre-processed spectra, the application of 

chemometric techniques (PCA-QDA, SPA-QDA or GA-QDA) exhibits good 

categorisation for all the classes (Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. 

HGD vs. OAC) (see SI Table S3). 

As shown in Table S3 (see SI), classification of the six stages using saliva and 

the FTIR spectra between 900 and 1800 cm-1 using all models (PCA-QDA, SPA-QDA 

and GA-QDA) gives excellent classification accuracy (88.8–100%), though poor 

specificity in the LGD class using PCA-QDA and GA-QDA. SPA-QDA is the best 

classification model for saliva, with F-Score values ranging from 76.9 to 100%. The 

correct classification using PCA-QDA achieved 100% for all figures of merits for the 

inflammatory category in the prediction set. The accuracy and sensitivity were found to 

be >88% for all the other classes, using the scores on seven PCs from PCA (Figure 2C). 

The number of PCs is selected in Figure 2C based on the minimum number of PCs that 

generates the lowest power (eigenvalue), before the power follows a constant trend. Fig. 

2D shows the predicted class achieved for PCA-QDA model for all classes. A good 

classification of the samples was observed (15 errors in the training set and 4 errors in 

the validation set). For SPA-QDA, 7 selected wavenumbers (902, 1014, 1099, 1589, 

1643, 1697, and 1743 cm-1) provided excellent classification, especially for the LGD 

class (100% predictive performance). The classification performance using GA-QDA 

was 100% for all figures of merit for the Barrett’s class based on 14 selected 

wavenumbers (991, 1003, 1068, 1107, 1431, 1558, 1585, 1604, 1624, 1689, 1701, 1716, 

1778 and 1786 cm-1). Table S4 (see SI) lists the selected wavenumbers obtained by 

SPA-QDA and GA-QDA models for saliva samples with their tentative biomolecular 

assignments. 



13 

 

Serum dataset. Figures 3A and 3B show the average raw and pre-processed spectra for 

serum samples obtained from the six oesophageal stages. Classification of Normal vs. 

Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC for serum was performed using 

discriminant analysis of the spectral bio-fingerprint region (1800-900 cm-1). GA-QDA, 

using only 13 selected wavenumbers (1000, 1315, 1319, 1330, 1338, 1435, 1442, 1446, 

1492, 1539, 1573, 1600 and 1654 cm-1; Fig. 3C) achieved 100% for all figures of merit 

for all the OAC stage, as shown in Table S5 (see SI). The GA-QDA model 

demonstrated an excellent classification with 4 errors in the training set and 2 errors in 

the validation set (Figure 3D). For Normal vs. Inflammatory vs. Barrett’s vs. OAC 

stages, the SPA-QDA model demonstrated sensitivities and specificities more than 71% 

(see SI Table S5) using only 7 variables (1041, 1477, 1539, 1593, 1631, 1662 and 1743 

cm-1). The PCA-QDA models for normal vs. Inflammatory vs. Barrett’s vs. OAC stages 

produced sensitivity and specificity greater than 71% using seven PCA scores, which 

accounted for more than 90% of original data variance. Some notable differences can be 

observed in the wavenumber regions between 1,000 cm-1 to 1,338 cm-1 (DNA/RNA 

region), 1,435 cm-1 to 1,573 cm-1 (methyl groups of proteins and protein amide II 

absorption) and 1,600 cm-1 to 1,654 cm-1 (Amide I protein region) for all of the classes 

investigated. Table S6 (see SI) lists the selected wavenumbers obtained by SPA-QDA 

and GA-QDA models for serum samples with their tentative biomolecular assignments. 

Urine dataset. Figure 4A and 4B show the raw and average pre-processed (baseline 

correction and normalization) spectral within the bio-fingerprint region (1,800 cm-1 to 

900 cm-1) derived from urine for all the six oesophageal stages. Although the 

discrimination for all classes on the basis of IR spectra is not straightforward due to the 

complexity of the spectra, good models using PCA-QDA, SPA-QDA and GA-QDA 



14 

 

were found for urine. The PCA-QDA model using urine spectra achieved 100% of 

classification for all figures of merit (accuracy, sensitivity, specificity and F-scores) for 

test samples using seven PCA scores as shown in Figure 4C. Fig. 4D demonstrated that 

the predicted classification performance achieved by the PCA-QDA model for all 

classes was 100%. As demonstrated in Table S7 (see SI), both SPA-QDA and GA-QDA 

models for urine samples achieved high sensitivity values for all classes (78.2–100%), 

but poor specificities particularly for Normal (SPA-QDA = 35.5%, GA-QDA = 62.5%), 

HGD (SPA-QDA = 33.3%) and OAC (SPA-QDA and GA-QDA = 20%). 

The SPA-QDA model using only 7 selected wavenumbers (9096, 1242, 1577, 

1600, 1651, 1681 and 1712 cm-1) achieved also good classification, especially for 

Inflammatory, Barrett’s and LGD classes. The predicted classification rate using GA-

QDA demonstrates good results for Barrett’s and HGD classes based on 19 selected 

wavenumbers (956, 995, 1018, 1030, 1095, 1118, 1141, 1253, 1334, 1381, 1431, 1446, 

1500, 1550, 1562, 1681, 1724, 1735 and 1777 cm-1). Spectral differences can be 

observed in the wavenumber regions between 956 cm-1 to 1,381 cm-1 (DNA/RNA 

region), 1,431 cm-1 to 1,562 cm-1 (Amide II region mainly stems from the C-N 

stretching and C-N-H bending vibrations) and 1,681 cm-1 to 1777 cm-1 (a high 

frequency vibration of an antiparallel β-sheet of Amide I and stretching vibration of 

lipids). Table S8 lists the selected wavenumbers obtained by SPA-QDA and GA-QDA 

models for urine samples with their tentative biomolecular assignments. 

Discussion 

There is no standard surveillance program for early detection of cancer in the 

oesophagus. The most reliable diagnostic measurement uses endoscopy with biopsy, 

which is advocated for screening oesophageal neoplasia especially in known high-risk 
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patients. Although endoscopy has been widely used in diagnosis and differential 

diagnosis of oesophageal diseases, approximately 20% of early oesophageal cancer 

lesions are barely visible to the naked eye. In order to have a robust surveillance 

program for early detection and improved cure rate for oesophageal adenocarcinoma, a 

skilled endoscopist and pathologist are necessary for proper mucosal sampling and 

histopathologic examination. However, the development of a quick, convenient, and 

inexpensive method for detecting early cancer or different stages such as Normal, 

Inflammatory, Barrett’s, LGD, HGD and OAC can be useful specially to guide tissue 

biopsy, thus increasing the yield of dysplasia detection. 

 An approach to oesophageal cancer screening in the general population based on 

biofluids (blood plasma, serum, saliva and urine) interrogated by ATR-FTIR 

spectroscopy linked with feature selection methods for classification could be the 

potential to segregate stages of oesophageal adenocarcinoma. The use of ATR-FTIR 

spectroscopy coupled multivariate classification techniques (PCA-QDA, SPA-QDA and 

GA-QDA) in identifying oesophageal stages of disease to adenocarcinoma has achieved 

excellent accuracy, sensitivity and specificity, encouraging investigation of screening 

for others cancers with known markers. 

ATR-FTIR spectroscopy was employed to predict six oesophageal stages in four 

different biofluids (plasma, saliva, serum and urine). PCA-QDA and GA-QDA models 

were found to give the best class differentiation compared to the SPA-QDA. GA-QDA 

successfully detected the biochemical alterations in the oesophageal stages based on 

plasma (100% accuracy, sensitivity, specificity and F-scores) using a few wavenumbers 

or biomarkers. For this model, several selected wavenumbers appear to be of particular 

interest, especially at 999 cm-1 and 1381 cm-1, representing the ring stretching vibrations 

mixed strongly with CH in-plane bending and C-O stretching, respectively. Others 
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selected wavenumbers found by GA-QDA using plasma can be found in Table S2. In 

general, the spectral alterations responsible for discrimination of oesophageal stages 

based on plasma blood were mainly associated with DNA/RNA and proteins at 

wavenumbers between 929 cm-1 and 1,431 cm-1. The major advantage for this model, 

using blood plasma, is the minimal sample preparation for FTIR analysis. 

Since a direct, easy-to-use, compact test device for oesophageal stages in human 

saliva is currently not available, we suggest ATR-FTIR spectroscopy combined with 

multivariate classification techniques for the development of a direct test that meets 

these challenges. Although saliva has a complex biology (components are produced 

mainly by acinar cells and are delivered to the oral cavity by a cell-lined duct system), 

we believe that saliva analysis based on ATR-FTIR is a powerful diagnostic tool in 

cancer. As demonstrated by the PCA-QDA model, the oesophageal stages diagnostic 

based on the saliva spectral data was found to have good accuracy, sensitivity, 

specificity and F-scores values for all classes, especially for the Inflammatory 

oesophageal stage. The selected wavenumbers found by SPA-QDA and GA-QDA 

models using saliva samples can be found in Table S2 (see SI). Several selected 

wavenumbers appear to be of particular interest, namely, the variables at 1604, 1624 

and 1643 cm-1, representing the adenine vibration in DNA, peak of nucleic acids due to 

the base carbonyl stretching, and ring breathing mode and amide I band (arises from 

C=O stretching vibrations), respectively. 

The classification rates for plasma samples were found to be better than those of 

saliva and serum for all classes. One explanation for such a difference is that plasma 

contains thousands of biomolecules at various concentrations while serum and saliva 
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may contain a more limited number of analytes resulting in fewer variations in peak 

intensities or shifts of the IR spectrum.  

Problems can arise with liquid samples, such as urine, because very low 

concentration components may not be detected. Low concentrations can be overcome 

by drying samples directly on to the crystal to increase their concentrations and, 

therefore, increase their signal intensities. We believe that clinically relevant levels 

could be detected in ATR-FTIR spectra of dried insoluble fractions of urine samples 

without any requirement for chemical manipulation. Urine can be collected non-

invasively and without the need for a trained professional to be present. It can also be 

collected frequently and stored for several days. It is therefore ideal as a diagnostic 

medium if it can provide clinically useful information. Urine samples for this present 

study demonstrated excellent discrimination for all stages using urine samples based on 

PCA-QDA models. SPA-QDA and GA-QDA presented relatively well segregation 

amongst all the classes using a few selected wavenumbers, as can seen in Table S8 (see 

SI). Despite relatively high values of accuracies and sensitivities, these two algorithms, 

in particular SPA-QDA, produced low specificity values (<50%) for classes Normal, 

HGD, and OAC (Table S7). The specificity is a measure of the classification fail 

towards one class. For example, a specificity of 100% in OAC means that no 

misclassification in the other 5 classes was assigned as OAC (there is no false positive 

for OAC); while a specificity of 20% in OAC means that most samples wrongly 

classified in this model were assigned as OAC. This affects the model classification 

performance, despite the satisfactory values of accuracy and sensitivity in general. Thus, 

for urine samples, PCA-QDA is the most reliable model.  
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The classification performance of the spectroscopy-based models to determine 

oesophageal stage are a result of a combination between the algorithm being used and 

the nature of the sample measured. Although the type of classifier employed in this 

study is the same for all algorithms (QDA), the feature extraction (PCA) and feature 

selection (SPA and GA) methods work in different manner, thus leading the models to 

different results. PCA reduces the spectral dataset to features representing the main 

sources of variance in the data, but not necessarily these sources of variation are 

correlated with differences between the samples; and, SPA and GA, which are iterative 

algorithms of variable selection, work by reducing data collinearity (SPA) and by 

mimicking the process of natural selection in a computation fashion (GA).40 Differently 

from PCA, both SPA and GA act on the original sample space, while PCA projects the 

sample on a orthogonal space; and SPA and GA are more complex algorithms, where 

more parameters need to be optimized and the computational-cost is higher. Therefore, 

choosing the right algorithm for data analysis is an empirical process. 

Spectroscopy of urine has been already used to diagnostic several cancers, such 

as endometrial and ovarian cancer, where different spectral markers were found to be 

associated with the pathologic stage.41 Molecular signatures of oesophageal cancer and 

Barrett’s oesophagus have been found in urine;42 and other biofluids, such as blood43 

and saliva,44 are known to contain key molecular signatures related to oesophageal 

cancer. For these reasons, and confirmed by the results reported herein, we believe that 

IR spectroscopy can be used to discriminate oesophageal transformation to 

adenocarcinoma based on these biofluids. 

 

Conclusion 
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The results of this study show that ATR-FTIR spectroscopy coupled with 

multivariate classification algorithms (PCA-QDA, SPA-QDA and GA-QDA), result in a 

powerful alternative approach for detection of oesophageal stages of disease to OAC. 

Herein, we present a new, rational and convenient approach to different biofluids 

(plasma, saliva, serum and urine) using ATR-FTIR spectroscopy, opening a new level 

of non-invasive diagnostic tool in this field. We also demonstrate a fast, clean, and non-

destructive methodology involving minimal sample preparation to categorise the 

samples. For urine samples, the resulting PCA-QDA model successfully detect 

biochemical alterations at the maximum classification rate (100%) for different figures 

of merit (accuracy, sensitivity, and F-scores). This method makes it possible to detect 

all the oesophageal stages to adenocarcinoma without special sample preparation and 

reagents, from a minimal sample volume and (almost) immediately after sample 

collection. In this pilot study, we have demonstrated for the first time that saliva- and 

urine-based ATR-FTIR spectroscopy coupled with a multivariate classification 

algorithm has the potential to discriminate oesophageal stages. Further work with 

biofluids and spectroscopic analysis should be performed in the future to validate these 

encouraging results. 

 

Conflicts of Interest 

There are no conflicts to declare. 

Acknowledgements 

This study was funded by Rosemere Cancer Foundation and the University of Central 

Lancashire start-up fund, UK. CLMM would like to thank Coordenação de 



20 

 

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brazil (grant 

88881.128982/2016-01) for financial support. Professor Kássio M.G. Lima would like 

to thank UFRN (process number: 23077.019698/2019-67) for his training license.  

 

References 
 

1 H. Pohl and H. G. Welch, J. Natl. Cancer Inst., 2005, 97, 142–146. 

2 L. H. Moyes and J. J. Going, J. Clin. Pathol., 2011, 64, 742–750. 

3 A. Wong and R. C. Fitzgerald, Clin. Gastroenterol. Hepatol., 2005, 3, 1–10. 

4 S. Bhat, H. G. Coleman, F. Yousef, B. T. Johnston, D. T. McManus, A. T. Gavin 

and L. J. Murray, J. Natl. Cancer Inst., 2011, 103, 1049–1057. 

5 S. J. Spechler, P. Sharma, R. F. Souza, J. M. Inadomi and N. J. Shaheen,  

Gastroenterology, 2011, 140, e18–e13. 

6 A. Bhardwaj, D. B. Stairs, H. Mani and T. J. McGarrity, Patholog. Res. Int., 

2012, 2012, 1–20. 

7 S. J. Spechler. JAMA, 2013, 310, 627–636. 

8 C. Amadi and P. Gatenby, World J Gastroenterol., 2017, 23, 5051–5067. 

9 R. Krishnamoorthi, S. Singh, K. Ragunathan, K. Visrodia, K. K. Wang, D .A. 

Katzka and P. G. Iyer, Clin. Gastroenterol. Hepatol., 2018, 16, 1046–1055. 

10 R. Milind and S. E. Attwood, World J Gastroenterol. 2012, 18, 3483–91.  

11 M. A. Kara, F. P. Peters, W. D. Rosmolen, K. K. Krishnadath, F. J. ten Kate, P. 

Fockens and J. J. G. H. Bergman, Endoscopy, 2005, 37, 929–936. 

12 J. Pohl, O. Pech, A. May, H. Manner and A. Fissler-Eckhoff, Am J 

Gastroenterol, 2010, 105, 2350–2356. 

13 P. J. Trivedi and B. Braden, QJM, 2013, 106, 117–131. 

14 J. Mannath, V. Subramanian, C. J. Hawkey and K. Ragunath, Endoscopy, 2010, 

42, 351–359. 

15 R. S. DaCosta, B. C. Wilson and N. E. Marcon, Dig. Endosc., 2003, 15, 153–173. 

16 M. A. Kara, R. S. DaCosta, C. J. Streutker, N. E. Marcon, J. J. G. H. M. Bergman 

and B. C. Wilson, Dis Esophagus, 2007, 20, 141–150. 

17 W. L. Curvers, F. G. van Vilsteren, L. C. Baak, C. Böhmer, R. C. Mallant-Hent, 

A. H. Naber, A.van Oijen, C. Y. Ponsioen, P. Scholten, E. Schenk, E. Schoon, C. 

A. Seldenrijk, G. A. Meijer, F. J. ten Kate and J. J. Bergman, Gastrointest 

Endosc, 2011, 73, 195–203. 



21 

 

18 K. Egger, M. Werner, A. Meining, R. Ott, H. D. Allescher, H. Hoffler, M. 

Classen and T. Rosch, Gut, 2003, 52, 18–23. 

19 F. L. Martin, J. G. Kelly, V. Llabjani, P. L. Martin-Hirsch, I. I.Patel, J. Trevisan, 

N. J. Fullwood and M. J. Walsh, Nat. Protoc., 2010, 5, 1748–1760. 

20 M. J. Baker, J. Trevisan, P, Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. 

R. Fielden, S.W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. 

Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. 

J.Walsh, B. R.Wood, P. Gardner and F. L. Martin, Nat. Protoc., 2014, 9, 1771–

1791. 

21 S. De Bruyne, M. M. Speeckaert and J. R. Delanghe, Crit. Rev. Clin. Lab. Sci., 

2018, 55, 1–20. 

22 G. Theophilou, K. M. G. Lima, M. Briggs, P. L.Martin-Hirsch, H. F. Stringfellow 

and F. L. Martin, Analyst, 2016, 141, 585–94. 

23 N. C. Purandare, J. Trevisan, I. I. Patel, K. Gajjar, A. L. Mitchell, G. Theophilou, 

G. Valasoulis, M. Martin, G. von Bünau, M. Kyrgiou, E. Paraskevaidis, P. L. 

Martin-Hirsch, W. J. Prendiville and F. L. Martin, Bioanalysis, 2013, 5, 2697–

711. 

24 J. G. Kelly, A. A. Ahmadzai, P. Hermansen, M. A. Pitt, Z. Saidan,  P. L. Martin-

Hirsch and F. L. Martin, Anal. Bioanal. Chem., 2011, 401, 957–967. 

25 J. R. Hands, K. M. Dorling, P. Abel, K. M. Ashton, A. Brodbelt, C. Davis, T. 

Dawson, M. D. Jenkinson, R. W. Lea, C. Walker and M. J. Baker, J. 

Biophotonics, 2014, 7, 189–199. 

26 G. Theophilou, K. M. G. Lima, M. Briggs, P. L. Martin-Hirsch, H. F. 

Stringfellow and F.L. Martin, Sci. Rep, 2015, 5, 13465. 

27 C. Petibois, B. Drogat, A. Bikfalvi, G. Déléris and M. Moenner, FEBS Lett., 

2007, 581, 5469–5474. 

28 F. Andleed, Hafeezullah, A. Atiq, M. Atiq and  S. Malik, Cancer Biomarkers, 

2018, 1, 1–8. 

29 M. Wu, W. Zhang, P. Tian, X. Ling and Z. Xu, Int J Clin Exp Med, 2016, 9, 

2351–2358. 

30 Q. Li, X. Sun, Y. Xu, L. Yang, Y. Zhang, S. Weng, J. Shi and J. Wu, World J 

Gastroenterol.2005, 11, 3842–3845. 

31 Q. Li, C. Hao, X. Kang, J. Zhang, X. Sun, W. Wang and H. Zeng, Sensors, 2017, 

17, 1–9. 

32 G. J. Vazquez-Zapien, M. M. Mata-Miranda, V. Sanchez-Monroy, R. J. Delgado-

Macuil, D. G. Perez-Ishiwara and M. Rojas-Lopez, Stem Cells Int., 2016, 2016, 

1–10. 

33 D. E. Mazia., M. T. Do, F. M. Shamji, S. R. Sundaresan, D. G. Perkins and P. T. 



22 

 

Wong, Cancer Detect. Prev., 2007, 31, 244–253. 

34 L. Quaroni and  A. G. Casson, Analyst, 2009, 134, 1240–1246. 

35 J. S. Wang, Y. Z. Xu, J. S. Shi, L. Zhang, X. Y. Duan, L. M. Yang, Y. L. Su, S. 

F. Weng, D. F. Xu and J. G. Wu, Guangpuxue Yu Guangpu Fenxi. 2003, 23, 

863–865.  

36 T. D. Wang, G. Triadafilopoulos, J. M. Crawford, L. R. Dixon, T. Bhandari, P. 

Sahbaie, S. Friedland, R. Soetikno and C. H. Contag, Proc. Natl. Acad. Sci. U. S. 

A., 2007, 104, 15864–15869. 

37 R. Kennard and L. Stone, Technometric, 1969, 11, 137–148. 

38 S. J. Dixon and  R. G. Brereton, Chemom. Intell. Lab. Syst., 2009, 95, 1–17. 

39 K. T. Cheung, J. Trevisan, J. G. Kelly, K. M. Ashton, H. F. Stringfellow, S. E. 

Taylor, M. N. Singh, P. L. Martin-Hirsch and F. L. Martin, Analyst, 2011, 136, 

2047. 

40 C. L. M. Morais, M. Paraskevaidi, L. Cui, N. J. Fullwood, M. Isabelle, K. M. G. 

Lima, P. L. Martin-Hirsch, H. Sreedhar, J. Trevisan, M. J. Walsh, D. Zhang, Y. 

G. Zhu and F. L. Martin, Nat. Protoc., 2019, 14, 1546–1577.  

41 M. Paraskevaidi., C. L. M. Morais, K. M. G. Lima, K. M. Ashton, H. F. 

Stringfellow, P. L. Martin-Hirsch and F. L. Martin, Analyst, 2018, 143, 3156-

3163. 

42 V. W. Davis, D. E. Schiller, D. Eurich and M. B. Sawyer, World J. Surg. Oncol., 

2012, 10, 271.  

43 A. T. Kunzmann, Ú. C. McMenamin, A. D. Spence, R. T. Gray, L. J. Murray, R. 

C. Turkington and H. G. Coleman, Eur. J. Gastroenterol. Hepatol., 2018, 30, 

263–273. 

44 O. Rapado-González, B. Majem, L. Muinelo-Romay, R. López-López and M. M. 

Suarez-Cunqueiro, Int. J. Mol Sci., 2016, 17, 1531. 

 

 

  



23 

 

Figures Captions 

Figure 1: Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using plasma samples. The panel shows: (A) Average raw in mid-IR region of 

1800 cm-1 to 900 cm-1 and (B) average pre-processed IR spectra obtained from all stages 

segregated into Normal (black colour) vs. Inflammatory (blue colour) vs. Barrett’s 

(green colour) vs. LGD (yellow colour) vs. HGD (magenta colour) vs. OAC (red 

colour). (C) 15 selected wavenumbers by GA-QDA. (D) Predicted class vs. samples 

used for training and prediction sets (dashed box), where each circle marker represents 

one sample. 

Figure 2: Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using saliva samples. The panel shows: (A) Average raw in mid-IR region of 

1800 cm-1 to 900 cm-1 and (B) average pre-processed IR spectra obtained from all stages 

segregated into Normal (black colour) vs. Inflammatory (blue colour) vs. Barrett’s 

(green colour) vs. LGD (yellow colour) vs. HGD (magenta colour) vs. OAC (red 

colour). (C) Singular value decomposition (SVD) vs. Number of principal component 

(PC) obtained by PCA-QDA, where Power represents the eigenvalue. (D) Predicted 

class vs. samples used for training and prediction sets (dashed box), where each circle 

marker represents one sample. 

Figure 3: Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using serum samples. The panel shows: (A) Average raw in mid-IR region of 

1800 cm-1 to 900 cm-1 and (B) average pre-processed IR spectra obtained from all stages 

segregated into Normal (black colour) vs. Inflammatory (blue colour) vs. Barrett’s 

(green colour) vs. LGD (yellow colour) vs. HGD (magenta colour) vs. OAC (red 

colour). (C) 13 selected wavenumbers by GA-QDA. (D) Predicted class vs. samples 
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used for training and prediction sets (dashed box), where each circle marker represents 

one sample. 

Figure 4: Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using urine samples. The panel shows: (A) Average raw in mid-IR region of 

1800 cm-1 to 900 cm-1 and (B) average pre-processed IR spectra obtained from all stages 

segregated into Normal (black colour) vs. Inflammatory (blue colour) vs. Barrett’s 

(green colour) vs. LGD (yellow colour) vs. HGD (magenta colour) vs. OAC (red 

colour). (C) Singular value decomposition (SVD) vs. Number of principal component 

(PC) obtained by PCA-QDA, where Power represents the eigenvalue. (D) Predicted 

class plot vs. samples used for training and prediction sets (dashed box), where each 

circle marker represents one sample. 
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Tables Legends 

Table 1: Number of training, validation and prediction specimens in each biofluids 

category. 

 

Category – biofluids Training  Validation Prediction 

Normal – plasma 21 7 7 

Normal – serum 22 7 7 

Normal – saliva 22 8 8 

Normal – urine 22 8 8 

Inflammatory – plasma 10 4 4 

Inflammatory – serum 11 4 4 

Inflammatory – saliva 11 4 4 

Inflammatory – urine 11 4 4 

Barrett’s – plasma 17 5 5 

Barrett’s – serum 18 5 5 

Barrett’s – saliva 17 5 5 

Barrett’s – urine 17 5 5 

LGD – plasma 3 1 2 

LGD – serum 3 1 2 

LGD – saliva 3 1 2 

LGD – urine 3 1 2 

HGD – plasma 7 2 3 

HGD – serum 7 2 3 

HGD – saliva 7 2 3 

HGD – urine 6 2 3 

OAC – plasma 12 5 5 

OAC – serum 14 4 4 

OAC – saliva 15 5 5 

OAC – urine 15 5 5 
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