
Screwing Assembly Oriented Interactive Model
Segmentation in HMD VR Environment

Abstract
Although different approaches of segmenting
and assembling geometric models for 3D
printing have been proposed, it is difficult to
find any researches which investigate model
segmentation and assembly in HMD (Head-
Mounted Display) VR environments for 3D
printing. In this work, we propose a novel and
interactive segmentation method for screwing
assembly in the environments to tackle this
problem. Our approach divides a large model
into semantic parts with a screwing interface
for repeated tight assembly. With our method,
non-professional users can intuitively segment
models larger than a printer’s workspace into
several components based on a single VR
Handle cut and robust Boolean operations.
Specifically, after a user places the cutting
interface, an automatically created bounding
box of the current part is computed for subse-
quent Boolean segmentations, which results in
multi-component semantic parts with planar
cuts. Afterwards, the bolt is positioned with
an improved K3M image thinning algorithm
and is used for merging paired components
with union and subtraction Boolean operations
respectively. Moreover, we introduce a Swept
Boolean based rotation collision detection and
location method to guarantee a collision-free
screwing assembly. Experiments show that
our approach provides a new interactive multi-
component semantic segmentation tool, which
supports not only repeated installation and dis-
assembly but also tight and aligned assembly.

Keywords: 3D Segmentation, Virtual Re-
ality, 3D Printing, HCI

1 Introduction

Popular digital manufacturing facilities such as
3D printers make it easy for non-professionals
to convert virtual digital models into physical
objects. In recent years they have been subvert-
ing manufacturing and entertainment industries,
both of which are spreading to ordinary con-
sumers. However, only a small portion of or-
dinary users are affordable to buy a desktop 3D
printer. The main reasons are: i) It is non-trivial
for an ordinary user to create and edit a model,
which need to employ most of the available pro-
fessional 3D packages. However, 3D software
often only provides 2D design interfaces to as-
sist terminal users for creating 3D models. ii)
The small dimensions of domestic desktop 3D
printers limit the sizes of the printable models
(Fig. 1). Although the ideas of gluing, con-
necting, or interlocking could solve the problem
to a certain extent [1, 2, 3, 4], it is difficult to
satisfy both multiple assemblies and seamless
tightness. As a result, such an emerging prob-
lem in 3D printing has attracted more and more
attention in the community.

The intuitive user interface in the VR environ-
ment provides a possible solution to tackle the
above mentioned challenges. By integrating VR
and 3D printing, we present a novel interactive
model segmentation and assembly approach in
VR environments for printing large models. To
the best of our knowledge, it is the first work
on segmenting and assembling models for 3D
printing in HMD VR environments.

The main contributions of the paper include:

• A fastener-based, 3D model segmentation
method that supports not only repeated dis-
assembly but also tight and aligned assem-
bly;



Figure 1: A model exceeding printing
dimension

• A new VR-based user interface for seg-
mentation, through which users can seg-
ment and assemble models according to
their needs in an intuitive way;

• A new rotation collision detection and
avoidance method based on cube cage and
Boolean operations, which prevents seg-
mented components from colliding with
each other in the assembly later.

The remainder of this paper is organized as
follows. After introducing the related works on
model segmentation especially for 3D printing
and shape design in HMD VR environment in
Section 2, we provide the overview of our work
in Section 3. Then, we describe an automatic
bounding box generation method in Section 4,
followed by the description of model segmenta-
tion based on Boolean operations in Section 5.
In Sections 6 and 7, we detail rotation collision
avoidance and bolt-nut configuration. Finally,
we present experiment results in Section 8, and
provide concluding remarks in Section 9.

2 Related Work

In this section, we will briefly review the mostly
related research efforts on model segmentation
especially for 3D printing and shape design in
HMD VR environment.

3D Print-oriented segmentation. 3D shape
analysis and component reuse require efficient
semantic 3D shape segmentation. Tremendous
progresses in 3D shape segmentation has been

made in the past decade [5, 6, 7, 8, 9]. With the
recent popularity of 3D printing, some segmen-
tation approaches specifically designed for de-
composing 3D models have been proposed. Due
to transportation requirements and the limited
printing volume, large models must be first sep-
arated into small components for printing and
then assembled later. In the work of [10], an
optimization algorithm for the partitioning and
packing of a printable model was proposed in a
multi-phase level-set framework, in which any
specific way of assembly is not discussed. The
Chopper algorithm proposed by Luo et al. [3]
decomposes large objects into sub-components
automatically, and then places the joint rivets be-
tween the components automatically through a
simulated annealing algorithm. Song et al. [4]
proposed a sub-module interlocking assembly,
which supports multiple assemblies and disas-
semblies. Their recent CofiFab system [11] in-
corporates 2D laser cutting and 3D printing to
produce large-scale 3D models, in which the in-
ternal structure is quickly generated by laser cut-
ting, the surface details are obtained by fine 3D
printing, and the two types of components are
finally assembled together. Jadoon et al. [12]
presented an flexible interactive tool for parti-
tion 3D models, which optimized the Chopper
framework allowing more segmentation free-
dom, while detailed assembling was not dis-
cussed there.

3D model processing in immersive VR envi-
ronment. Due to the developments of head-
mounted devices such as Oculus Rift, HTC
Vive, and other similar VR devices, more and
more applications have started to use such VR
systems. The adoption of immersive 3D in-
terfaces for model processing can be dated to
decades ago. The early immersive 3DM [13]
and FreeDrawer [14] allow users to create poly-
line or spline based surfaces with simple 3D in-
puts. In recent CavePainting [15] and TiltBrush
systems, users can create colorful art produc-
tions. Both “Drawing on Air” [16] and “Lift-
Off” [17] study intuitive 3D curve inputs, and
the latter also allows users to import a reference
image. In the work of [18], visual and hap-
tic feedback is used to provide the sensation of
painting on virtual three-dimensional objects us-



ing the MAI Painting Brush++.
To assist young people with disabilities,

McLoughlin et al. [19] proposed a method
to create an artistic experience through virtual
sculpting and 3D printing. Mendes et al. use
novel mid-air metaphors to model complex 3D
models with Boolean operations [20] and to se-
lect out-of-reach objects with iterative refine-
ments [21] in virtual reality. As sketch-based
modeling relieves users from tedious operations
in professional packages, it has been extended
into HMD environments. In the work of [22],
Arora et al. analyzed various factors that could
affect the human ability to sketch freely in a 3D
VR environment. Giunchi et al. presented an
approach to search for 3D models based on free-
form sketches within a virtual environment [23].
Different from the above works, the focus of our
work is to develop an immersive user interface
in VR for model segmentation and assembly for
3D printing.

3 Approach Overview

As shown in Fig. 2, given an input Mesh M
that need to be divided, the user first places a
section P for segmentation using the dominant
hand (usually the right hand) handle in a VR en-
vironment. If the user is not satisfied with the
position of P , the non-dominant hand (usually
the left hand) handle can be used to adjust it.
Then, a bounding box V is automatically com-
puted on one side of the section according to the
segmentation planeC, which surrounds the con-
nected part of the model on the same side com-
pletely. After that, two components, M1 and
M2, are generated with the section as the seg-
mentation interface, and the entire M is com-
posed ofM1 andM2: M =M1∪M2, which are
produced with Boolean intersection/subtraction
operations with M and V as input primitives
(Equation 1): {

M1 =M ∩ V
M2 =M − V. (1)

Once M is successfully segmented into M1

and M2, the bolt template B will be placed at
the segmentation planeC for the componentM1

and the screwing simulation can be previewed.
At the same time, a swept volume S of M1 is

Yes

No

Bounding Box 

Generation

Collide?

Section Optimization

Bolt Placement

Screwable components ∑Mi'

Section Placement

Rotation Collision 

Detection

Boolean Segmentation

Section Adjustment

Swept Volume 

Generation

Mesh M

Figure 2: System workflow of a single
segmentation

generated for rotation collision detection. If S
intersects with the component M2, the position
and orientation of the section need to be opti-
mized. If not, union and subtraction Boolean
operations will be applied to M1 and M2 re-
spectively, and a pair of screwable components
M ′

i(i = 1, 2) is created.

4 Automatic Bounding Box
Generation

4.1 Initial Section Placement and
Adjustment

For the input mesh M , as shown in Fig. 3a, the
user can edit the scale of the brush and place
the section P directly with the dominant hand
handle. Although the computation of the seg-
mentation plane C is independent of the brush
size, the user can tune the brush scale for conve-
nience. In order to obtain a robust segmentation



(a) Initial placement of
the section (circular purple
plate)

(b) Section adjustment (cir-
cular red plate)

Figure 3: Place the section with both hands.

contour, the section center should be as close as
possible to the intended segmentation interface.
Therefore, the non-dominant hand handle can be
adopted to edit the position and orientation of
the section P , as shown in Fig. 3b.

4.2 K3M-based Section Center
Calculation

Both the bounding box generation and the bolt
location depend on the center and the normal of
the segmentation plane C, which coincides with
its planar polygonal contour in 3D. Therefore,
the normal vector can be obtained as the cross
product of two normalized edges of its contour
polygon, and its central position can be deter-
mined as follows.

The three-dimensional planar polygon is
firstly transformed into a two-dimensional poly-
gon and discretized into an image (Fig. 4a).
Then the approximated center is calculated
based on the simplified K3M algorithm [24] (re-
fer to Fig. 4b). Although the K3M algorithm
has certain advantages including retaining the
right angle at the linear interconnection and pro-
ducing a single-pixel wide skeleton, it is mainly
used to generate a single-pixel line skeleton. In
this work we extend it so that it can be applied
for the bolt-nut placement at the segmentation
interface in our system.

Similar to onion peeling, the center of C can
be obtained by gradually eroding the segmenta-
tion interface from the outside to the inside. The
boundary pixels are peeled off layer by layer,
and the last pixel is served as the center. The
original K3M algorithm requires seven steps for
each iteration. During each iteration, it deter-
mines the number of the neighborhood points
of its boundary pixels. It can be simplified into

(a) Segmentation interface (b) Simplified K3M

Figure 4: Segmentation center location.

two iterations. The image boundary point is ob-
tained at the first step (Phase 0), and the bound-
ary points are deleted (converted to the back-
ground) at the second step (Phase 1). Finally,
there is only one pixel left in the image, which
is the center.

Phase 0: Traverse all the foreground pixels in
the image, and mark them as boundary points
when they have 1∼7 neighboring pixels.

Phase 1: Traverse all the boundary points.
When a boundary point has 2∼7 neighboring
pixels, its mark will be removed and it will be
converted into a background pixel.

Ending condition: Count all the foreground
pixels in the image, and stop the iterations when
only one pixel is left in the image; otherwise,
return to Phase 0.

4.3 Flooding-based Bounding Box
Generation

In our approach, Boolean operations are uti-
lized to segment the initial model, and the sec-
ond primitive in a Boolean operation is the half-
mesh agent which consists of the surface trian-
gles of a compact bounding box.

It is nontrivial for a user to manually place a
suitable bounding box given a complex model
to be segmented. Therefore, we present an auto-
matic component bounding box creation method
after the placement of a cut plane. The proce-
dure takes the cut position and its normal vec-
tor as input, and performs a flooding algorithm
to recursively produce a compact bounding sur-
face, which avoids users’ complicated interac-
tions.

Our automatic generation approach is in-
spired by the work of [25]. First, the bounding
box enclosing the model M is initialized, which



is voxelized with a preset resolution. Then, the
voxels are classified into three categories, that
is, the outer voxels outside M , the feature vox-
els intersecting the mesh surface, and the inner
voxels inside M . Finally, the bounding box V
is generated by extracting the outer faces of the
feature voxels.

The classification of voxels is derived from
the signed distance field [26] of the voxel ver-
tices to M . For each voxel corner c, there is the
closet point p onM . When p lies on some facets
ofM , the normal of p can be directly calculated.
Otherwise, if p is at the vertices or edges of M ,
an angle weighted pseud-onormal nA is applied
[26]. Therefore, the sign of c can be computed
by Equation 2. If all vertices of a voxel are in-
side M , the voxel is an inner voxel with sign
value -1. If only a part of the vertices of a voxel
are insideM , it is a feature voxel with sign value
0. If all vertices of a voxel are outside M , the it
is an outer voxel with sign value 1. They to-
gether make up the tri-value distance field [25]:

c


outside M, if nA · (c− p) > 0
inside M, if nA · (c− p) < 0
on M, if nA · (c− p) = 0

(2)
Actually, the feature voxels F of the model

component M1 are the main source for produc-
ing the bounding box, and a voxel flooding algo-
rithm is utilized for finding all inner voxels and
feature voxels Y of M1, from which F is se-
lected. Firstly, a local coordinate system is con-
structed by taking the center of the segmentation
interfaceC as the origin and its normal vector as
the y-axis (Fig. 5). After that, we search for in-
ner voxels and feature voxels of the first layer
by starting from the center voxel of C as a seed.
It is followed by recursive searching in the x-
axis and z-axis directions, from which all inner
voxels and feature voxels Y1 from the first layer
right above C are found and marked to avoid re-
peated lookups. Then, we use the inner voxels
and feature voxels right above Y1 as the seeds
and then search for inner and feature voxels re-
cursively in the x-axis, y-axis, and z-axis direc-
tions, and find all other inner voxels and feature
voxels Y2 of M1 from all the remaining layers,
Y = Y1 ∪ Y2. Therefore, F is finally obtained
by combining the feature voxels F2 in Y2 and

Figure 5: Flooding algorithm.

Figure 6: The final bounding box.

Y1, that is, F = Y1 ∪ F2.
The bounding box V is essentially the outer

faces of F , which are adjacent to an outer voxel
and a feature voxel. So the extraction and gen-
eration of V can be carried out by checking the
voxel values adjacent to each face of each fea-
ture voxel based on the tri-value distance field
(Fig. 6).

5 Model Segmentation based on
Boolean Operations

5.1 Model Segmentation Principle

Although users can segment the input model M
at any position and in any direction, in order to
ensure the validity of the model segmentation
and the convenience of subsequent assembly, the
principles for users to follow are provided as fol-
lows:

1. Segmentation position: The segmentation
position (i. e., segmentation center) of the



Figure 7: Boolean operation.

model M should be as close as possible
to its skeleton center, preventing the model
from being segmented into too many parts,
which is also not conducive to assembly.
At the same time, segmentation should be
placed at the positions with locally simi-
lar cylindrical shapes, which benefits bolt-
based assembly and reinforcement.

2. Segmentation direction: Although the
model can be segmented in any direction in
principle, the two segmented components
M1 and M2 should be located in different
half spaces with the segmentation interface
as the boundary to reduce the possibility of
collision during screwing.

5.2 Robust Boolean Operations

Three phases of our system are based on
Boolean operations. That is, the Boolean-based
segmentation of the model (Fig. 7), the use of
Boolean operation on testing whether the swept
volume S of one component intersects with an-
other component for collision detection, and in-
tegrating bolts and nuts to the segmented com-
ponents in the subsequent sections.

Due to the importance of Boolean operations
in our system, we chose a rather robust method
for mesh intersection calculation and Boolean
operation in libigl [27]. To perform the Boolean
operations of two triangle meshes TriMeshA
and TriMeshB , the unified “mesh configura-
tion” [28] is firstly calculated to find the inter-
sections of all triangles, and the new edges and
vertices will be added at the intersection lines
accurately. Then the voxels surrounded by the
configured surface are marked according to their

Figure 8: Screwing process simulation.

“winding number vectors”. Finally, the bound-
aries of the corresponding voxels are extracted
using specific Boolean operations (Union, Inter-
section, etc.).

6 Collision detection and
optimization

6.1 Rotation simulation and collision
detection

After placing an improper segmentation, two
of the components may collide with each other
when screwing. To this end, we provide a so-
lution for rotation collision detection and opti-
mization. Moreover, the process of screwing the
bolt is displayed with a previewing animation.

In order to simulate the screwing process of
the components and to detect the collision, the
bolt needs to be placed in the expected position
temporarily. For components M1 and M2 shar-
ing the same segmentation interface, the bolts
and nuts can be assembled normally on either
side. But in general, users are used to cutting a
small part of the model, so we place the boltB at
the segmentation center O of M1 regularly, and
the normal vector of the bolt is aligned with the
normal vector nP of the segmentation interface.
The component M1 with a bolt is represented as
M ′

1.
The simulation of the component screwing

process is rotating and moving M ′
1 with time t

forth and back along the normal of the segmen-
tation interface, similar to the process of screw-
ing the bolt by hand in reality, as shown in Fig. 8.

The swept volume S is generated by screw-
ing M1. Using the swept volume algorithm pro-
vided in libigl [27], S is essentially the union of



(a) Swept volume (b) Collision region

Figure 9: Collision detection.

a moving solid object M1 [29] (Equation 3):

S =
⋃

t∈[0,1]

f(t)M1, (3)

where f(t) is a rigid motion over time t of M1.
Since the surface of the swept volume gener-

ated by M1 and f(t) is a piecewise-ruled sur-
face, which cannot be represented exactly by a
triangle mesh. An approximate swept volume
can be computed based on signed distances [29]
(Fig. 9a), and an offset parameter can be set to
approximate the exact swept volume.

Whether an intersection I between S and an-
other component M2 exists can be determined
by a Boolean intersection operation (Equa-
tion 4), where I is the potential 3D collision re-
gion (Fig. 9b). The existence of I means that the
position of the section is not proper, and the seg-
mented components cannot be assembled after
3D printing. Therefore, the position and orienta-
tion of the section need to be optimized. If there
is no collision between the segmented compo-
nents during the screwing process, the bolt can
be placed at the segmentation interface directly
for 3D printing.

I = S ∩M2. (4)

6.2 Segmentation optimization

As mentioned above, if the collision region I ex-
ists, the position and orientation of the section
P need to be optimized. We provide two opti-
mization schemes, an intelligent version and an
interactive one.

The intelligent optimization scheme focuses
on optimizing the orientation of section P . The
normal vector of the section is the same as the
normal vector of the segmentation interface, nP .

Figure 10: Section optimization diagram.

Figure 11: Optimized section.

As shown in Fig. 10, a four-step algorithm is
employed to rectify the failed section direction:

1. Compute the line l coinciding with nP as
its direction which passes the center O of
the segmentation interface.

2. Find the closest point pc and the farthest
point pf away from line l in the collision
region I .

3. Calculate the angle γ between
−−→
Opc and−−→

Opf as the rotation angle of P , taking v =
−−→
Opc−

−−→
Opf as the rotating orientation of P .

4. Transform the section center to the center
O of the segmentation interface, and rotate
the section with angle γ along v, thus ob-
taining an optimized section P ′, as shown
in Fig. 11.

Since the intelligent optimization scheme
above can only avoid the current collision step,
which means the optimized segmentation of a
new section may still cause a new collision in
other regions, the intelligent optimization can be



(a) Leg with a bolt (b) Body with a nut

Figure 12: Bolt and nut placement of a dog
model.

performed iteratively until no collision occurs
any more.

However, if no collision-free orientation can
be found after too many iterations (a predefined
maximum steps), an interactive operation is re-
quired and the collision positions will be visual-
ized for reference. Users can place the section
at a new location along the skeleton manually to
satisfy the requirements with the non-dominant
hand handle.

7 Bolt-nut configuration

Based on the segmentation interface center O,
we can get the minimum distance R from O to
the interface boundary. The radius r of the bolt
and the nut should satisfy

r

R
∈ [α, β], (5)

where α is used to avoid creating too small bolts,
and β is used to avoid too thin walls of the nut
hole, which may lead to collapse during screw-
ing. In practical applications, we set r

R = 2
3 in

most cases. Users can adjust the value according
to different requirements. In our experiments we
empirically set α = 1

5 , β = 4
5 , which have satis-

factory results.
Attaching bolts and nuts onto the components

Mi (i = 1, 2) by Boolean union and subtraction
operations will create a pair of screwable com-
ponents (Equation 6):

M ′
1 =M1 ∪B,

M ′
2 =M2 −B.

(6)

The example of a dog model with r
R = 1

3 is
shown in Fig. 12.

(a) Partial sequence of segmentation

(b) Segmentation interface with its center

(c) Segmented components

Figure 13: Armadillo segmentation.

8 Experiments and Discussion

To validate the effectiveness of the proposed al-
gorithm, we developed a prototype system based
on OpenVR using HTC Vive helmet. Our ex-
periments are performed on a desktop PC, with
4.0 GHZ Intel i7-6700K CPU, 8G memory and
Nvidia GTX 1070 graphics card. In addition to
the dog model above, another example of the
Armadillo model segmented using our system
is shown in Fig. 13. Fig. 13a shows a part of
the segmentation. After each pair of component
segmentation, the center of the segmentation in-
terface is calculated automatically (Fig. 13b),
which will be used for the placement of bolts
and nuts. Components after segmentation can
be seen in Meshlab [30], as shown in Fig. 13c.

As shown in Fig. 14, a single model can be
segmented multiple times as needed, and all
3D printed models can be repeatedly disassem-
bled and assembled. The assembled compo-
nents with very tiny gaps are firmly connected
with each other. According to our tests, if the
model is too small, the screw threads of the gen-
erated bolts and nuts are so fine that they may
collapse easily during the screwing assembly.



(a) Dog components (b) Assembled dog

(c) Armadillo components (d) Assembled
Armadillo

Figure 14: 3D printing and assembly of model
components.

The larger the model is, the better the result will
be by using our system, which is just the re-
quirement for large model segmentation before
printing. Since we use robust Boolean operation
based on “mesh configuration” and swept vol-
ume algorithm in the libigl library, our method
is not real-time. But it does not matter as in
our interactive system, a single Boolean oper-
ation takes only about 1∼2 seconds. Although
the calculation of swept volume may take sev-
eral seconds, it is only calculated once so it has
little effect on the user’s experience.

9 Conclusion

We have presented a VR-based segmentation
and assembly approach for printing 3D models,
which is suitable for dividing large-size models
into small components and printing them sepa-
rately. Pairs of bolt fasteners will be generated at
the segmentation interfaces, which supports re-
peated seamless and firm assembly. In the seg-
mentation procedure, users wear a VR helmet
with high immersive experience, which provides
convenient user interaction. Non-professional
users can segment a 3D model on demand di-
rectly with VR handles.

Some steps in our system are based on

Boolean operations using libigl library, which
may affect the performance of our proposed ap-
proach. In order to achieve a real-time perfor-
mance, an approximate GPU parallel Boolean
operation [31] can be used for interactive dis-
play in our future interaction system, and its
final processing of the model can use robust
Boolean operations based on “mesh configura-
tion”.

Our system also provides collision detection
and optimization of the segmented components,
which guarantees successful assembly of com-
ponent pairs with bolts and nuts.

However, there are still some limitations in
our current approach, which can be further op-
timized in the future. First of all, in order to
increase the robustness of the bolt assembly, a
mechanical analysis can be used to determine
the wall thickness and bolt diameter, which pre-
vents the bolt from breaking during the screwing
process. Secondly, the optimization schemes for
the section in the case of collision can be im-
proved. For the intelligent optimization scheme,
it takes too long time to compute the swept vol-
ume. Therefore, the optimal orientation and
position of the section should be automatically
searched locally. For the collision detection dur-
ing the screwing, we can refer to the 2D projec-
tion method in [32].

References
[1] Juraj Vanek, Jorge A. Garcia Galicia, Bedrich Benes,

Radomı́r Mech, Nathan A. Carr, Ondrej Stava, and
Gavin S. P. Miller. Packmerger: A 3d print volume
optimizer. Comput. Graph. Forum, 33(6):322–332,
2014.

[2] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel
Cohen-Or. Approximate pyramidal shape decom-
position. ACM Trans. Graph., 33(6):213:1–213:12,
2014.

[3] L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik.
Chopper: partitioning models into 3d-printable parts.
ACM Trans. Graph., 31:1–9, 2012.

[4] P. Song, Z. Fu, L. Liu, and C. W. Fu. Printing 3d
objects with interlocking parts. Computer Aided Ge-
ometric Design, 35-36:137–148, 2015.

[5] Rui S. V. Rodrigues, Jos F. M. Morgado, and Abel
J. P. Gomes. Part-based mesh segmentation: A sur-
vey. Computer Graphics Forum, 37(6):235–274,
2018.

[6] Zhenyu Shu, Chengwu Qi, Shi-Qing Xin, Chao Hu,
Li Wang, Yu Zhang, and Ligang Liu. Unsupervised
3d shape segmentation and co-segmentation via deep



learning. Computer Aided Geometric Design, 43:39–
52, 2016.

[7] Truc Le, Giang Bui, and Ye Duan. A multi-view
recurrent neural network for 3d mesh segmentation.
Computers & Graphics, 66:103–112, 2017.

[8] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao
Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas J. Guibas. A scal-
able active framework for region annotation in 3d
shape collections. ACM Trans. Graph., 35(6):210:1–
210:12, 2016.

[9] David George, Xianghua Xie, and Gary K. L. Tam.
3d mesh segmentation via multi-branch 1d convolu-
tional neural networks. Graphical Models, 96:1–10,
2018.

[10] Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang,
and Huamin Wang. Level-set-based partitioning and
packing optimization of a printable model. ACM
Trans. Graph., 34(6):214:1–214:11, 2015.

[11] P. Song, B. Deng, Z. Wang, Z. Dong, W. Li, C. W.
Fu, and L. Liu. Cofifab: coarse-to-fine fabrication of
large 3d objects. ACM Trans. Graph., 35:1–11, 2016.

[12] Aamir Khan Jadoon, Chenming Wu, Yong-Jin Liu,
Ying He, and Charlie C. L. Wang. Interactive parti-
tioning of 3d models into printable parts. IEEE Com-
puter Graphics and Applications, 38(4):38–53, 2018.

[13] Jeff Butterworth, Andrew Davidson, Stephen Hench,
and Marc Olano. 3dm: A three dimensional modeler
using a head-mounted display. In Proceedings of the
1992 Symposium on Interactive 3D Graphics, SI3D
’92, pages 135–138, 1992.

[14] Gerold Wesche and Hans-Peter Seidel. Freedrawer: a
free-form sketching system on the responsive work-
bench. In VRST, pages 167–174, 2001.

[15] Daniel F. Keefe, Daniel Acevedo Feliz, Tomer
Moscovich, David H. Laidlaw, and Joseph J. LaVi-
ola Jr. Cavepainting: a fully immersive 3d artistic
medium and interactive experience. In Proceedings
of the 2001 Symposium on Interactive 3D Graphics,
SI3D, pages 85–93, 2001.

[16] D. F. Keefe, R. C. Zeleznik, and D. H. Laidlaw.
Drawing on air: input techniques for controlled 3d
line illustration. IEEE Trans. Vis. Comput. Graph.,
13:1067–1081, 2007.

[17] Bret Jackson and Daniel F. Keefe. Lift-off: Using
reference imagery and freehand sketching to create
3d models in VR. IEEE Transactions on Visual-
ization and Computer Graphics, 22(4):1442–1451,
2016.

[18] Mai Otsuki, Kenji Sugihara, Azusa Toda, Fumihisa
Shibata, and Asako Kimura. A brush device with
visual and haptic feedback for virtual painting of 3d
virtual objects. Virtual Reality, 22(2):167–181, 2018.

[19] Leigh McLoughlin, Oleg Fryazinov, Mark Moseley,
Mathieu Sanchez, Valery Adzhiev, Peter Comninos,
and Alexander A. Pasko. Virtual sculpting and 3d
printing for young people with disabilities. IEEE
Computer Graphics and Applications, 36(1):22–28,
2016.

[20] Daniel Mendes, Daniel Medeiros, Maurı́cio Sousa,
Ricardo Ferreira, Alberto Raposo, Alfredo Ferreira,
and Joaquim A. Jorge. Mid-air modeling with
boolean operations in VR. In 2017 IEEE Symposium
on 3D User Interfaces, 3DUI 2017, Los Angeles, CA,
USA, March 18-19, 2017, pages 154–157, 2017.

[21] Daniel Mendes, Daniel Medeiros, Maurı́cio Sousa,
Eduardo Cordeiro, Alfredo Ferreira, and Joaquim A.
Jorge. Design and evaluation of a novel out-of-
reach selection technique for VR using iterative re-
finement. Computers & Graphics, 67:95–102, 2017.

[22] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson,
Tovi Grossman, Karan Singh, and George W. Fitz-
maurice. Experimental evaluation of sketching on
surfaces in VR. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems,
Denver, CO, USA, May 06-11, 2017., pages 5643–
5654, 2017.

[23] Daniele Giunchi, Stuart James, and Anthony Steed.
3d sketching for interactive model retrieval in vir-
tual reality. In Proceedings of the Joint Symposium
on Computational Aesthetics and Sketch-Based In-
terfaces and Modeling and Non-Photorealistic Ani-
mation and Rendering, Expressive ’18, pages 1:1–
1:12, 2018.

[24] K. Saeed, M. Tabedzki, M. Rybnik, and M. Adamski.
K3m: a universal algorithm for image skeletoniza-
tion and a review of thinning techniques. Int. J. Appl.
Math. Comput. Sci., 20:317–335, 2010.

[25] C. Xian, H. Lin, and S. Gao. Automatic generation of
coarse bounding cages from dense meshes. In IEEE
International Conference on Shape Modeling & Ap-
plications, pages 21–27, 2009.

[26] J. A. Baerentzen and H. Aanaes. Signed dis-
tance computation using the angle weighted pseudo-
normal. IEEE Trans. Vis. Comput. Graph., 11:243–
253, 2005.

[27] A. Jacobson, Daniele. Panozzo, C. Schller, O. Dia-
manti, Q. Zhou, S. Koch, and et al. libigl: a sim-
ple c++ geometry processing library. http://
libigl.github.io/libigl/, 2017.

[28] Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson.
Mesh arrangements for solid geometry. ACM Trans.
Graph., 35:1–15, 2016.

[29] A. Garg, A. Jacobson, and E. Grinspun. Computa-
tional design of reconfigurables. ACM Trans. Graph.,
35:1–14, 2016.

[30] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia. Meshlab: an open-
source mesh processing tool. In Eurographics Italian
Chapter Conference, pages 129–136, 2008.

[31] H. Zhao, C. C. L. Wang, Y. Chen, and X. Jin. Paral-
lel and efficient boolean on polygonal solids. Visual
Computer, 27:507–517, 2011.

[32] T. Sun and C. Zheng. Computational design of twisty
joints and puzzles. ACM Trans. Graph., 34:1–11,
2015.


