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Domestic dogs have been central to life in the North
American Arctic for millennia. The ancestors of the Inuit
were the first to introduce the widespread usage of dog
sledge transportation technology to the Americas, but
whether the Inuit adopted local Palaeo-Inuit dogs or
introduced a new dog population to the region remains
unknown. To test these hypotheses, we generated mito-
chondrial DNA and geometric morphometric data of
skull and dental elements from a total of 922 North
American Arctic dogs and wolves spanning over 4500
years. Our analyses revealed that dogs from Inuit sites
dating from 2000 BP possessmorphological and genetic sig-
natures that distinguish them from earlier Palaeo-Inuit
dogs, and identified a novel mitochondrial clade in eastern
Siberia and Alaska. The genetic legacy of these Inuit dogs
survives today inmodernArctic sledge dogs despite pheno-
typic differences between archaeological andmodernArctic
dogs. Together, our data reveal that Inuit dogs derive
from a secondary pre-contact migration of dogs distinct
from Palaeo-Inuit dogs, and probably aided the Inuit
expansion across the North American Arctic beginning
around 1000 BP.
1. Introduction
Dogs (Canis lupus familiaris) played a critical role in early
human adaptation to circumpolar high-latitude environments.
Early dog specimens from Late Pleistocene to Early Holocene
sites throughout northeastern Asia [1–3], bear witness to this
early association between humans and dogs in the Arctic.
Recent genetic analyses indicate that the earliest dogs found
in the Americas belonged to a now extinct lineage of Arctic
dog that was introduced from Eurasia at least 10 000 years
ago [4]. Aside from this initial peopling of the Americas, the
North American Arctic has experienced additional human
migration episodes of genetically distinct populations [5–10],
which were accompanied by potentially distinct dog popu-
lations. The importance of dogs during these migrations,
however, remains largely unknown [4,11]. Investigating
whether or not these new groups brought genetically differen-
tiated dog populations with them into the North American
Arctic, and the relationship between these dogs and those
already present in the region, is crucial for understanding the
history of dogs in the Americas.

Archaeological evidence suggests that dogs were relatively
rare in the North American Arctic prior to the Inuit period
[12,13]. The Inuit emergence in Alaska beginning approxi-
mately 2000 BP brought large-scale changes in lifeways,
subsistence practices and material culture to the North Ameri-
can Arctic. Their subsequent expansion translocated this
culture out of Alaska eastward to Greenland, and along the
coast of subarctic Eastern Canada starting in 1000 BP [14,15].
The rapid expansion of the Inuit is attributed in part to their
exploitation of advanced transportation technologies, includ-
ing the development and widespread usage of the umiak
and kayak for sea travel, and the dog sledge for use on land
and ice [16–18]. Despite the ubiquitous association of dog
sledging with North American Arctic peoples, and the pres-
ence of dog sledge technology in Siberia by 9000 BP [1,19],
there remains little firm evidence for dog sledging in theAmer-
icas before 1000 BP [12]. Today, sledge dogs remain culturally
and economically crucial to indigenous lifeways in the Arctic,
but dog numbers are declining rapidly due to changing
climate, the recurrence of parvovirus and distemper, the
preferential use of snowmobiles, and the culling of indigenous
dogs during both historical and modern times [20,21].
Furthermore, the relationship between modern Arctic dogs
and archaeological dogs from the Inuit and preceding
Palaeo-Inuit periods remains unclear.

Previous studies have suggested that dogs associated with
modern Arctic populations are the direct descendants of the
populations that were brought by the Inuit [22–24], reaffirming
the intrinsic technological role of dogs for modern Inuit who
continue to occupy the North American Arctic. However,
more recent introductions of dogs attributed to the European
settlement of the Eastern Arctic beginning in the eighteenth
century, and Alaskan settlers at various times in the nineteenth
century, largely in connection tomining and settlement [22,23],
probably also contributed to the genetic make-up of modern
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Figure 1. Morphometric variation of Arctic dogs and wolves. (a) Size variation of Pleistocene and Modern wolves, and Palaeo-Inuit, Inuit, historic and recent
Greenland (Historic and modern Greenland breeds, see electronic supplementary material, text) dogs. Boxplot of the log-transformed centroid size with sample
size shown in brackets. ‘n.s.’ highlight non-significant pairwise comparison (Wilcoxon’s test) between neighboring groups (table 2). (b) Overall shape differentiation
between groups shown as neighbour-joining networks derived from Mahalanobis distances for each element separately. (c) Visualization of the cranial (top), first
lower molar (middle) and mandible (bottom) shape differences between: wolves (black) and all domestic dogs (red); Palaeo-Inuit dogs (pink) and Inuit dogs
(green); and Greenland dogs (orange), and Inuit dogs (green). Shape differences are visualized along the discriminant axis between the groups. Wireframes
with dashed lines indicate non-significant differences.
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dog populations across the region. In order to disentangle
the spatio-temporal patterns in past North American Arctic
dog populations and their relationship to recent Arctic dogs,
it is necessary to establish the morphological and genetic
distinctiveness of these groups.

To do so, we examined the phenotypic changes associated
with the arrival of Inuit dogs using geometric morphometric
(GMM) analyses [25] to explore cranial, lower first molar and
mandibularmorphometricvariation.We thenanalysedcomplete
and partial mitochondrial genomes of pre-contact Arctic dogs
alongside publicly available data for pre-contact dogs from
across the Americas [4,26], as well as historical and modern
Arctic sledge dogs [22,23]. Integrating these datasets allowed us
to investigate the history of pre-contact dogs in the North
American Arctic, contextualize the origins of Inuit dogs relative
to earlier Palaeo-Inuit dogs, and clarify the relationship between
these archaeological dogs and modern Arctic dog populations.
2. Results and discussion
(a) The origins and legacy of pre-contact Arctic dogs
To better understand the diversity of ancient Arctic dog
morphologies, we investigated the phenotypic variation
between Palaeo-Inuit, Inuit and more recent Greenland dog
(historical Arctic and modern Greenland breed, see electronic
supplementary material, text), as well as Arctic wolf popu-
lations. To do so, we used GMM on the crania, lower first
molars and hemi-mandibles (figure 1 and table 1; electronic
supplementary material, figure S14). Overall, wolves were
easily distinguishable from dogs (table 2). In particular, wolves
were less morphologically diverse in lower M1 size and shape,
and possessed consistently larger measurements, and narrower
and lower braincases relative to our sampled dogs (figure 1).

Analyses of the dogs found that Inuit dogs differ from both
Palaeo-Inuit and recent Greenland dogs (figure 1 and table 2).
Inuit dogs tended to be larger than Palaeo-Inuit dogs, but
smaller than recent Greenland dogs with no allometric repat-
terning (except for the mandible between Palaeo-Inuit and
Inuit; figure 1a and table 2). Comparatively, Inuit dogs possess
a proportionally narrower cranium, a less elevated braincase, a
wider lower M1 and a more developed mandibular ascending
ramus than Palaeo-Inuit dogs (figure 1c).Where the differences
are significant, the mean cross-validation between Palaeo-Inuit
and Inuit dogs ranges from 71.0% to 83.8% depending on the
element (table 2).

We detected no differences in the crania between the Inuit
and recent Greenland dogs (table 2). However, Inuit andGreen-
land dogs did differ in the size, shape and form of their lower
M1 and mandible (mean cross-validation ranging from 63.5%
to 85.0%), with no change in size-shape relationship (allome-
tries) nor variance. Compared to historical and modern Arctic
dogs, Inuit dogs showed a proportionally wider molar and a
more convex bend to the mandibular body (figure 1c). Inuit
dogs exhibit a similar cranial shape to the recent Arctic dogs
while differing from the Palaeo-Inuit dogs, though the Inuit
dogs differ equivalently from both Palaeo-Inuit and recent
Arctic dogs in their molar and mandible (table 2).

Given that the GMM analyses suggested that the dogs
associated with the different cultural groups were morphologi-
cally divergent, we assessed whether Palaeo-Inuit, Inuit and
historical andmodernArctic dogswere also genetically distinct.
We obtained mitochondrial genomes from 186 samples with a
minimum average coverage of threefold to investigate the
mitochondrial diversity of Arctic dogs through time and trace
patterns of migration. An additional 40 samples were assigned
to specific haplogroups by generating mitochondrial control
region sequences using Sanger sequencing (table 1). Globally,
modern and ancient domestic dogs group into four major
(A–D), and two minor (E–F) mitochondrial clades [4,26,29].
Our phylogenetic analyses revealed that nearly all of
the sampled dogs belonged to the mitochondrial A clade (elec-
tronic supplementary material, figure S4). We also identified
four major subclades within the A clade: A1a, A2a, A1b and



Table 1. Number of samples generated or used in study. (a) Morphometric sample size: number of samples per group and per element analysed. (b) Genetic
sample size: numbers of samples successfully sequenced per group and per type of sequencing/number attempted.

Palaeo-Inuit Inuit historical modern modern wolf Pleistocene wolf total

(a)

GMM crania 11 17 6 2 3 1 40

mandible 86 48 5 14 70 24 247

lower M1 85 57 6 14 58 64 284

no. of spec.a 124 92 12 16 70 77 391

Palaeo-Inuit Inuit historical modern Siberin Holocene otherb total

(b)

DNA Sangerc 23/87 128/261 20/51 9/14 13/30 0/36 193/479

3 × coveraged 12/41 84/197 62/126 14/14 14/27 1/14 199/431

10 × coveraged 2/41 28/197 37/126 14/14 3/27 0/14 94/431

no. of spec.a 92 289 147 24 40 36 628a

ano. of spec.: number of specimens. Some specimens underwent Sanger and next-generation sequencing or multiple elements from an individual were included
in the GMM analyses.
bCultural affiliations including medieval and historical Iceland, Norse and unknown.
cD-loop haplotypes obtained via Sanger sequencing/samples sequenced with Sanger sequencing from specified culture.
dMitogenomes obtained with indicated mean coverage/samples sequenced with next-generation sequencing from specified culture.
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A2b, three ofwhich had been previously identified in theArctic
(A1b,A2a [23] andA2b [4]) (figure 2). By contrast,mostmodern
European dogs have haplotypes in the A1a clade.

All previously sampled pre-contact dogs from the
Americas, including the earliest specimens known from the
continent, exclusively carried A2b haplotypes [4,11] (figure 2).
The uniformity of this clade in early contexts and the arrival
of dogs carrying different haplotypes in later periods
suggests that specific dog populations were associated with
different cultural group. Thus, our data show that early
human migration(s) (prior to 10 000 years ago) into the
Americas were associated with dogs carrying only A2b hap-
lotypes, while later migrations (after 5500 years ago) into the
North American Arctic introduced dogs carrying haplotypes
belonging to A1a, A1b and A2a subclades (figure 2).

Of the 92 specimens that were extracted and sequenced from
Palaeo-Inuit contexts, only 12 possessed sufficient DNA to allow
them to be assigned to haplogroups. Despite this sample size,
these data represent the only currently available genetic infor-
mation from Palaeo-Inuit dogs. While most Palaeo-Inuit dogs
possessed A2b haplotypes (83.3%), two Palaeo-Inuit specimens
from Alaska possessed A2a haplotypes (CK-H37-M1, SEL-33-
0057b) suggesting that the A2a haplotype was present in
North American Arctic prior to the Inuit period (figure 2). We
found haplotypes immediately basal to this A2 subclade in
Siberia dating to several thousand years prior to the Inuit
colonization of the North American Arctic, suggesting that the
appearance of these lineages on Palaeo-Inuit sites was the
result of the Siberian ancestry of the dogs and people (electronic
supplementarymaterial, figure S4). Thus, though the Inuit were
likely not responsible for the first appearance of this dog lineage
in the Americas, they were responsible for the considerable
geographical expansion of this lineage into the Eastern Arctic,
where, during the Inuit period, they became the most common
haplotypes across the entire North American Arctic (figure 2).

Temporal shifts in mitochondrial haplotype frequencies
suggest a near-replacement of Palaeo-Inuit dogs in the North
AmericanArctic coincidingwith the Inuit expansion fromSiberia
(figure 2 and electronic supplementary material, figure S11).
Demographic analyses (as reconstructed from Bayesian skyline
plots) show apparent founder effects coinciding with the
timing of the Inuit expansion into the eastern around 1000 BP
(electronic supplementary material, figure S9). The pattern of
haplotype frequencies between locations and time periods
provide strong evidence that Inuit migrants brought dogs with
them from Siberia (figure 2; electronic supplementary material,
figure S11). In particular, the frequencies of haplotypes from
different subclades differed strongly between the Palaeo-Inuit
and Inuit Arctic samples (FST = 0.33, p< 0.001), but were similar
between Siberian and North American Inuit samples (FST =
0.04, p> 0.10; see electronic supplementary material, text and
figure S11). These results are consistent with the results of pre-
vious human genetic analyses which have linked Inuit groups
to both Siberian and earlier Alaskan populations [30,31].

Inuit andhistorical populations also possesseddifferent hap-
lotype frequencies (FST = 0.33, p < 0.001; figure 2). In particular,
the A1a haplotypes increased over the past 300 years. A more
recent expansion of subclades A1a and A1b compared to those
of A2a was further supported by a network analysis and Baye-
sian skyline plots (see electronic supplementary material, text
and figure S12). The European exploration of both Greenland
and the Canadian Arctic during the nineteenth and twentieth
centuries, and the nineteenth century Alaskan Gold Rush
increased the interaction between indigenous Arctic groups
and Europeans, facilitating longer distance travel of both dogs
and people [24]. This cultural mixing brought Eurasian dogs to
the region in large numbers [22], probably contributing to the
increase in A1a haplotype frequency. On the other hand, two
instances of A1a subclade haplotypes from northern Alaska in
the Inuit archaeological sample suggest the possibility of drift
as a partial explanation for the increase in frequency of this sub-
clade over the past 300 years. Lethal epidemics in indigenous
dogs have also led to large-scale population turnover and repla-
cement by European breeds in many regions [24,32]. While the
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Figure 2. Phylogenetic topology and geographic distribution of haplotypes through time. (a) The A-clade mitochondrial haplotypes of dogs inferred by maximum-
likelihood analyses depicting the four subclades discussed in the text with their respective bootstrap support ( for the whole tree see electronic supplementary material).
(b) Geographical origin of North American dog samples and cultural affiliation. Pie charts indicate the abundance of subclades. Sites with more than one sample are
shown in boxes with representation of sample number and haplotype. Modern samples outside of the North American Arctic were excluded from the map and pie chart.
Culture dates represent the earliest and latest appearance of each group in the North American Arctic within this dataset [6]. (Online version in colour.)
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Inuit dog lineage have been preserved in bothmodernCanadian
Inuit and Greenland Sledge Dogs, the mitochondrial haplotype
diversity of the population has changed. The low frequency of
the A1a haplotypes in Inuit dog populations (2.9%) stands in
stark contrast to the high frequency of Ala haplotypes in recent
Arctic dogs (37%). We observed no A1a haplotypes in Palaeo-
Inuit dog populations. Our results show that although modern
North American Arctic dogs are descended in large part from
Inuit period populations there has been regional European
A1a introgressionduring thehistorical/modern era contributing
to the increase in frequency of A1a.

(b) Canids as tools for the adaptation of humans to
Arctic environments

Dogs are an important cultural symbol in the North American
Arctic where sledge dogs and dog traction are highly visible
components of Arctic identity [33–35]. Dogs were used not
only for traction and sledging, but also for hunting, clothing
and occasionally as food either preferentially, or during periods
of famine [36]. Wolves and other wild canids were additio-
nally exploited for their pelts which protect from frost
buildup, or killed as a precaution against potential predation
or conflict [37,38].

While most Arctic assemblages primarily consist of dom-
estic canid specimens, there is evidence that wolves were
also exploited during the Inuit period. On the basis of size,
a large mandible from Nunalleq—a Thule Inuit site in south-
western Alaska [39]—was provisionally identified as a grey
wolf (AL2797), alongside a large number of dog specimens
[38,40]. Phylogenetic analysis of the mitochondrial genome
from this individual places it among modern and historical
wolves from Alaska and Canada (electronic supplementary
material, figure S3). This identification was further confirmed
by multiple analyses based on low coverage nuclear genome
obtained from this individual (electronic supplementary
material, figure S10). Two additional Alaskan samples
(TRF.02.27, TRF.02.28) taken from clothing made of canid
pelts held in ethnographic collections are also likely made
from wolf pelts on the basis of their mitochondrial genomes
(electronic supplementary material, figure S4) indicating that
the use of wolf pelts continued into at least the historical
period despite easy access to dogs.

Both nineteenth century Arctic explorers and twentieth
century anthropologists reported that Arctic groups often
encouraged hybridization of their dogs with wolf populations
in order to maintain and strengthen their lineages [41–44].
In the wild, asymmetric bias has been seen with evidence for
female wolf–male dog hybridization being dominant and
only rare instances of male wolf–female dog hybridization
being observed [45]. While the nature of female wolf–male
dog hybridization would result in the offspring carrying wolf
mitochondrial genomes it also would more than likely exclude
these offspring from being in a domestic archaeological con-
text. On the other hand, intentional hybridization of dogs
and wolves would likely have been biased towards male
wolves mating with female dogs through the deliberate picket-
ing of female dogs in oestrus [46]. The sexual asymmetry in
wolf hybridization remains unclear, although explanations
for the limited male wolf–female dog hybridization linked to
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biological and behavioural constraints, such as male wolf
aggression towards dogs, social compatibility and fertility
cycles [45,47], mitochondrial introgression from wolves into
dogs is improbable, and we did not observed it in our mito-
chondrial dataset. Anecdotes of hybridization between
wolves and dogs are nevertheless widespread in Greenland
today, and these reports suggest that hybrids often make
poor sledge dogs, and that wolf traits are reportedly selected
against [44,46]. This, combined with the observed infrequency
of gene flow betweenwolves and dogs over thousands of years
[48,49]makes it unlikely (though not impossible) that any simi-
larities observed between Inuit dogs and Arctic wolves is the
result of systematic hybridization, and an analysis of nuclear
DNAwill clarify this. In addition, the larger cranial and mand-
ible size of the Inuit dogs, when compared with those from the
Palaeo-Inuit period, would have been an advantage for their
role in transportation and traction during this period though
the overall robusticity of the dogs is difficult to detect from
skull elements alone. More extensive analyses of postcranial
elements could further quantify the unique morphology
required for prolonged specialization in sledge pulling.
1929
(c) Novel X-clade dogs in Eastern Siberia and Alaska
Phylogenetic analysis also revealed seven canid mitogenomes
(03.P04.H1.1024, AL2990, AL2991, AL3004, AL3053, AL3007,
TRF.02.29) clustering with modern Eurasian wolves, outside
any known domestic dog clades, forming a novel subclade
referred to in this study as X clade (electronic supplementary
material, figures S2, S4–S6 and S8). Three of the samples in
X clade are derived from archaeological contexts: two from
Neolithic Siberian canids excavated at the Boisman II site in
Khasansky District of Primorsky Krai, Russia (AL2990,
AL2991; see electronic supplementary material, table S5
for radiocarbon dates) and one dog from the Birnirk site,
Pajpel’gak in Chukotka (03.P04.H1.1024). Additionally, this
novel subclade contains four historical dogs from Kamchatka,
Chukotka, Bering Island and Alaska. While the origins of
the fur from the ethnographic Alaskan clothing (TRF.02.29)
cannot be conclusively confirmed as dog based on the
sample record alone, the ethnographic samples of aboriginal
dogs collected from Kamchatka, Chukotka and Bering Island
have a definitive classification, having been collected from
dogs during the twentieth century (AL3004, AL3053,
AL3007; M. Sablin 2019, personal communication).

While the X-clade clusters with modern grey wolves, the
inclusion of several recent dogs with known origin eliminates
the possibility of this clade representing grey wolves. Although,
as previously discussed, interbreeding between dogs and
wolves is generally biased towards the mating of male wolves
with female dogs whichwould not result in the passing ofmito-
chondrial genomes from wolves to dogs. The X clade could
represent an ancient introgression event of mitochondrial wolf
haplotypes into dogs. Additionally, the ancient origin of the
clade is demonstrated by sample AL2991 (BOIS 5), which was
directly dated to between 6660 and 6495 cal. BP, falling within
the clade. This ancient origin is corroborated by Bayesian tree,
generated with BEAST2.4 and calibrated with dated samples,
estimating the origin of the clade between 5300 and 10 000
years BP (electronic supplementary material, figure S8). Due to
constraints on coverage used in the Bayesian analysis sample
AL2991, the oldest dated sample in the clade, was not included
in the analysis. The inclusion of AL2991 may have pushed the
age of the clade backwards as AL2991 lies well within rather
than basal to the clade and is a few millenia older than the
samples included in the Bayesian analysis. Even AL2991
included in the Bayesian analysis the sample age falls within
the estimated window of origin for the X clade. The compara-
tively recent origin of this clade, compared to some of the
more prominent mitochondrial clades, suggests that the X
clade was not present in dogs at the time of domestication. The
X clade lineage also appears in historical dogs, demonstrating
the continuation of the lineage until at least 75 years ago. The
single individual carrying an X clade mitochondrial genome in
Alaska may indicate a relatively recent introduction of
the lineage to the North American Arctic after the arrival
of the Inuit, explaining why the lineage did not spread across
the North American Arctic during the Inuit migration and
expansion like A1a and A1b haplotypes. The absence of the X-
clade haplotypes in published studies speaks to the apparent
low frequency and restricted distribution of these haplotypes
to far eastern Siberia and Alaska. Furthermore, the absence of
these haplotypes inmoderndogsmay reflect the lackof systema-
tic sampling in the region to date, the low frequency or the
disappearance of these haplotypes.
3. Conclusion
The phenotypic and genetic data presented here suggest that a
novel dog population that was morphologically divergent
from, and genetically more diverse than earlier Palaeo-Inuit
dogs, accompanied Inuit migrants into and across the North
American Arctic. The Inuit migration represents a significant
episode in the history of dogs in the North American Arctic,
and the dispersal of Inuit culture is mirrored in the dispersal
of its genetically distinct dogs. More specifically, our data indi-
cate that though dogs that possessed A2a signatures were
present in the North American Arctic prior to the arrival of
the Inuit, they were responsible for dominance and eastward
expansion of the A2a subclade. The settlement of the North
American Arctic by Inuit cultures brought a more mitochond-
rially diverse and morphologically distinct dog population,
and the subsequent European colonization of the North Ameri-
canArctic further influenced themitochondrial diversity inmore
recent centuries. Despite the fact that dog sledging is widely
associated with the North American Arctic today, sledging
was probably less common prior to the Inuit period. The preser-
vation of these distinctive Inuit dogs is likely a reflection of the
highly specialized role that dogs played in both long-range
transportation and daily subsistence practices in Inuit society.
The legacy of these Inuit dogs survives today in Arctic sledge
dogs, making them some of the last remaining descendant
populations of a pre-European dog lineage in the Americas.
4. Material and methods
(a) Ancient and modern specimens
Archaeological and ethnographic materials were sampled from
Palaeo-Inuit, Inuit, historical and modern contexts across the
North American Arctic, subarctic Eastern Canada, Iceland and
eastern Siberia. A total genetic dataset of 628 specimens was com-
posed of 186 novel sequences (table 1) and 221 GenBank entries
(electronic supplementary material, table S1 and S2). A total of
512 specimens were analysed using GMM, and the dataset
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includes 40 crania, 247 mandibles and 284 lower first molars (59
individual specimens were analysed by more than one element;
electronic supplementary material, table S3).

(b) Ancient DNA extraction and sequencing
All samples were processed in facilities dedicated to ancient DNA
analyses and all PCRs were performed in separate facilities [50].
Ancient DNA laboratory work was conducted at four institutions:
the Swedish Museum of Natural History, the Centre for GeoGe-
netics at the Natural History Museum of Denmark, University of
Oxford’s PalaeoBARN Lab, and the Veterinary Genetics Labora-
tory (VGL) ancient DNA facility at the University of California,
Davis (UC Davis).

Total genomic DNA was extracted from 628 samples from
across Russia and Arctic North America using modified DNA
extraction methods from previous studies ([51,52], see electronic
supplementary material). Complete mitochondrial genomes
were obtained through either shotgun sequencing (422 samples)
or mitochondrial capture approaches (308 samples). Details of
the approaches and library preparation are in the electronic sup-
plementary material, text. Following sequencing, the reads from
each sample were mapped to the CanFam3.1 reference genome
with BWA aln, and aligned reads with a mapping quality score
lower than 30 were filtered out of the resulting bam files [53,54].
Subsequently, consensus sequences were called and the sequences
were aligned with a panel of reference sequences.

Complete mitochondrial genomes were obtained for 147
samples that had a minimum of threefold read depth over 80% of
the mitochondrial genome, and maximum-likelihood phylogenies
with constructed using RAxML [55,56]. Additionally, 94 samples
had genomes with 10-fold mean coverage, this was reduced to
76 samples with a minimum mean of 10-fold read depth of at
least 80% of sites covered. These 76 mitochondrial genomes were
then used for further demographic analyses. More robust phylo-
genetic trees were constructed from the 10-fold dataset with
RAxML and BEAST2.4 [55–57]. Effective population size was
inferred from Bayesian Skyline plots generated with BEAST2.4
[55–57]. Additionally, fragmentary mitochondrial sequences were
obtained from 40 additional samples using Sanger sequencing, all
of which possessed sufficient information to assign the resulting
D-loop sequences to specific haplotypes. These datawere combined
with previously published data from pre-contact dogs from the
Americas, modern dogs, and modern wolves acquired from Gen-
Bank for phylogenetic and demographic analyses (electronic
supplementary material, table S2) [4,26].

(c) Geometric morphometrics
Geometricmorphometric analyseswere performed on a total of 571
elements (MNI = 401). Mandible and lower M1 shape were ana-
lysed in two-dimensional from photographs (see electronic
supplementary material, text for protocol details) digitized with
15 landmarks, and two landmarks and 49 sliding semilandmarks,
respectively, using tpsDig2 (electronic supplementary material,
figure S14) [58]. Crania were analysed in three-dimensional using
modelsbuilt byphotogrammetry [59] inAgisoftPhotoScan (Agisoft
LLC, St Petersburg, Russia), with 30 landmarks digitized using
morphoDig [60] (electronic supplementary material, figure S14).
Prior to analyses, coordinates were superimposed with a general-
ized procrustes analysis (GPA) [61,62] using the Procrustes
distance criterion for optimizing semilandmarks position, and
symmetrizing left and right landmarks for the crania.

Size variationwas testedwithWilcoxon test and visualizedwith
boxplots showing the log-transformed centroid size. Shape and form
(size + shape) variation were explored with principal component
analysis (PCA, electronic supplementary material, figure S15),
before the differences were tested with MANOVA and visualized
using canonical variate analyses (electronic supplementarymaterial,
figure S16) based on a reduced number of PCA scores [28]. Differ-
ences between groups were also depicted using neighbour-joining
networks based on Mahalanobis distances and visualization of
shape changes along the discriminant axis. Cross-validation percen-
tages were calculated following [28] and are reported as the mean
and 90% confidence interval of 100 discriminant analyses based
on ressampled balanced group size. Allometries (size and shape
relationships)were tested usingMANCOVA.Analyses of Procrustes
variance was performed following [27] for shape and Fligner–Kill-
een tests for size. All statistical analyses were performed in R v.
3.4.3 [63] primarily with the package Morpho [64].

Data accessibility. Mitochondrial sequence alignments have been deposited
at theEuropeanNucleotideArchive (ENA)withproject no. PRJEB31489.

All datasets are available in the electronic supplementary material
files and mitochondrial sequence alignments have been deposited at
the European Nucleotide Archive (ENA) with project no. PRJEB31489.
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