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Abstract: CFS beams are often provided with web openings to accommodate building services. However, the 

area reduction in the web affects their load-bearing capacities. The reduction of bending capacity can be regained 

through providing suitable stiffeners in the vicinity of the web openings and through providing the web openings 

to the optimised CFS beams. Many research studies have been conducted for the former but no research studies 

have been reported for the latter. This paper presents an investigation on providing reinforced web openings to 

optimised CFS beams to restore the original flexural capacity. A computational analysis was carried out. The 

Finite Element (FE) elements were validated against experimental data from the literature and then used in 

conducting detailed parametric studies (80 FE models). The influence of the rectangular openings with four 

different sizes (hole height-to-web depth ratios: 0.2, 0.4, 0.6 and 0.8) and four different sleeve stiffening lengths 

(5, 10, 15 and 20 mm) on the bending capacity subject to distortional buckling was investigated in the parametric 

study. The results indicated that introducing web openings to the optmised CFS along with sleeve stiffening 

arrangement is a satisfactory approach to restore the original bending capacity. In addition, the optimum sleeve 

length was found and updated direct strength-based design equations are proposed to predict the bending 

capacity of the CFS beams with sleeve stiffened rectangular web openings subject to distortional buckling. 

 

Keywords: Cold-formed steel; Optimised beams; Rectangular web openings; Bending capacity; 

Distortional buckling; Sleeve stiffener. 

 

1. Introduction 

Cold-Formed Steel (CFS) beams are employed as floor/ceiling joists and roof purlins in light 

gauge steel and modular building constructions. Discrete web openings are commonly placed 

in these CFS beams to facilitate the installation of the services (electrical, plumbing and heating 

conduits). Without these openings, the services need to be placed under the floor joist, which 

increases the floor depth. Such web openings reduce the ability to withstand the full load due to 

the substantial reduction of the cross-sectional area. Many research studies have investigated 

the different load-bearing capacities of CFS beams without web openings under bending, shear, 

combined bending and shear and web crippling actions (Keerthan and Mahendran, 2013b, 

Keerthan et al., 2014a, Keerthan and Mahendran, 2015, Sundararajah et al., 2017a, Sundararajah 

et al., 2017b). However, limited research has been carried out to investigate the influence of the 

web holes on the load-carrying capacities of CFS beams. Among that notably, researchers have 

investigated the influenced of web openings in steel members in bending (Moen et al., 2013, 

Zhao et al., 2019, Tsavdaridis and D’Mello, 2012), shear (Keerthan and Mahendran, 2013a, 

Keerthan and Mahendran, 2012, Degtyareva et al., 2019), web-post buckling (Tsavdaridis and 

D'Mello, 2011, Tsavdaridis and Galiatsatos, 2015). The reduction of these capacities due to the 

discrete web holes present in the CFS beams need to be restored as the member losses the orig-

inal capacity. This can be achieved using stiffening arrangements around the openings. Even 

though different types of reinforcing schemes have been proposed through research studies such 

as plate stiffeners, sleeve stiffeners, transverse stiffeners and stud stiffeners (Mahendran and 

Keerthan, 2013), the most common application is the sleeve stiffening method (see Figure 1) 

and to date, no research has been reported to calculate the optimum sleeve stiffener length. 

Therefore, this study considers the sleeve stiffening method to regain the bending capacity loss.  
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Figure 1: LCB with sleeve stiffened web openings  

To compensate the bending capacity loss due to the web openings, optimised CFS beams should 

be employed. The optimisation framework performed in previous research studies (Perampalam 

et al., 2019, Ye et al., 2016) showed up to 30 % of the capacity enhancement compared with the 

available standard section Lipped Channel Beams (LCBs) using the same amount of material. 

Therefore, it is suggested to use web openings with the optimised CFS sections and balance the 

capacity loss. No research has been performed up to date on this subject area. 

Consequently, this study explores the concept of providing web openings to the optimised LCBs 

along with the sleeve stiffening reinforcing scheme. A computational investigation was carried 

out and the developed FE models were validated against available test data. Subsequently, par-

ametric studies were performed including different rectangular opening sizes, sleeve stiffening 

length, and CFS channel coil lengths. The benefits of using optimised LCBs together with rec-

tangular web openings were captured. Moreover, Direct Strength Method (DSM) based design 

equations were proposed to predict the flexural capacity of the CFS LCBs with rectangular web 

openings and sleeve stiffeners. 

 

2. Optimised LCB channels and web openings 

The optimisation of CFS beams has resulted substantial bending capacity enhancements and it 

has been identified that with the same amount of material usage, up to 30 % of bending capacity 

can be achieved for LCB sections compare to the standard LCB sections (Perampalam et al., 

2019, Ye et al., 2016). In this study, two commercially available standard sections having 337 

mm and 415 mm coil lengths (L) with 1mm and 2 mm thicknesses (t) were selected for the 

optimisation (see Table 1). The optimisation was performed using the particle swarm optimisa-

tion algorithm through developing section moment capacity equations. During the optimisation, 

the coil length was maintained constant and practical, and manufacturing constraints were ap-

plied to ensure the optimised sections applicable. The change in LCB dimensions was noticed 

during the optimisation, when the thickness changes. Also, negligible change in the dimensions 

was noticed when the yield strength (Fy) changes from 350 MPa to 550 MPa. Fy=450 MPa was 

considered in this study. The lower bound of the flange width and lip length was set to be 50 

mm and 15 mm, respectively. Table 1 also provides the optimised dimensions and correspond-

ing bending capacities obtained from FE analysis in terms of percentage. Subsequently, the rec-

tangular web openings were provided to the optimised LCBs with varying web opening height 

and a constant opening width of 150 mm. The web openings were analysed with and without 

sleeve stiffeners around the web opening edges. 
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Table 1: Available CFS sections and optimised dimensions for bending 

Available Sections Optimised dimensions 

L = 337 mm 

(t = 1, 2 mm) 

L = 415 mm 

(t = 1, 2 mm) 

L = 337 mm L = 415 mm 

t = 1 mm t = 2 mm t = 1 mm t = 2 mm 

Mbd(1mm) = 4.87 kNm  

Mbd(2mm)=15.58kNm  

 Mbd(1mm)=6.93kNm  

Mbd(2mm)=22.09kNm 

Mbd = 6.04 kNm 

(24 % ) 

Mbd = 16.74 kNm  

(8 %) 

Mbd = 8.77 kNm  

(27 %) 

Mbd = 26.76 kNm  

(21 %) 

 

3. Non-linear FE analysis of LCBs with web openings 

3.1 General  

This section presents brief information on the FE model development process. A commercially availa-

ble, advanced FE modelling software ABAQUS version 2017 was used for the analysis. FE models of 

LCB sections were developed as a four-point bending set-up with simply supported boundary condi-

tions. This arrangement ensures the pure bending failure at the mid span with the absence of the shear 

stress. The four-point loading set-up has total span of 2600 mm and the mid-span is 1000 mm.  The 

load and support conditions were provided through attaching 70 mm wide and 5mm thick web side 

plates. The rectangular openings were located in the pure bending region of the model to ensure the 

effect on the bending capacity. Figure 2 shows the schematic diagram of the considered LCB sections 

with and without web openings, and with sleeve stiffened web openings.  

 

    (a) Solid web                       (b) Web openings                 (c) Stiffened web openings 

Figure 2: Schematic diagram of the FE models 

3.2 Material Model  

The CFS material was considered as perfect plasticity model due to the negligible strain hardening 

behaviour. The FE models were developed with yield strength of 450 MPa, modulus of elasticity of 210 

GPa and Poisson’s ratio of 0.3. To ensure no failure to occur in web side plates the yield strength of the 

web side plates (see Figure 2) was taken as three times of the yield strength of the LCB channels. The 

residual stresses and corner strength enhancements were not incorporated into the FE models as both 

counteract each other (Schafer et al., 2010). 

3.3 Element selection and mesh control 

S4R shell element, an isoperimetric quadrilateral shell with four nodes and five degrees of freedom per 

node and has reduced integration, was used in FE models. Paying attention towards the accuracy and 

the computational time, 5 mm × 5 mm mesh size was selected for the flat regions of the FE models 

Rectangular 
 Web holes 

Rectangular Web holes 
stiffened with sleeves 

Web side plates 
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(Keerthan and Mahendran, 2011) while finer mesh size of 1 mm × 5 mm was used at the round corners. 

However, the web side plates were refined with 10 mm × 10 mm mesh size. Figure 3 illustrates the 

provided mesh refinements of the FE models.  

 

 

 

 

 

Figure 3: Mesh refinements of FE models 

3.4 Load and boundary conditions  

Simply supported boundary conditions were provided to the models at the centre of the web side plates 

which are attached to the LCB model with ‘tie’ constraints. The load was applied through displacement 

control approach at two middle web side plates (see Figure 4). Straps were simulated as boundary con-

ditions only at the loading and support points at the top and bottom flanges. No straps were provided in 

the middle span as the scope of this study is to calculate the bending capacity subject to distortional 

buckling. Similar straps arrangement also employed in past studies (Pham and Hancock, 2013) for dis-

tortional buckling tests. 

 

 

 

 

 

 

Figure 4: Boundary conditions for the FE models 

3.5 Analysis procedure  

Both linear and non-linear buckling analysis were performed. The buckling analysis was performed to 

incorporate the initial geometrical imperfection shape and magnitude in the non-linear analysis. The 

lowest buckling mode was considered as the initial imperfection shape and imperfection magnitude was 

taken as 0.64t (t = thickness of the CFS channel) (Schafer and Pekoz, 1998). The non-linear analysis 

was used to obtain the accurate ultimate bending capacity of the LCBs subject to distortional buckling 

due to the ability to account for the material yielding and large deformations. The parameters used in 

the non-linear static analysis were selected according to (Keerthan et al., 2014b). 

3.6 Validation of the FE models 

The aforementioned FE model characteristics were verified against the experimental results (Pham and 

Hancock, 2013) of six distortional buckling tests on LCB channels. The comparison of the ultimate 

bending capacities obtained from the test and FE models are presented in Table 2. The validation pro-

cess for the six specimens resulted mean and Coefficient of Variation (COV) values of 1.04 and 0.09, 

respectively. These values demonstrate a satisfactory agreement. Figure 5 depicts the load-displacement 

behaviour and failure mode comparison obtained from test and FE analysis. It can be seen that the load-

displacement between test and FE is consistent and predicts the ultimate bending capacity with good 

agreement. Figure 5 also shows a different post-failure behaviour between test and FE model. However, 

this variation likely to be not taken into consideration as design of the CFS beams is based on ultimate 

bending capacity. Also, the failure modes between FE analysis and experiments are very similar. There-

fore, the elaborated FE models are suitable to predict and assess the flexural behaviour of LCBs with 

web openings. 

1 mm × 5 mm mesh size 

for round corners 

10 mm × 10 mm mesh 

size for web side plates 

5 mm × 5 mm mesh size 

for flat regions 

CFS channel 

Web side plates 

Straps  

Pin 

Roller 

Load application 
(Displacement control) 
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Table 2: Verification of the FE models against the test results (Pham and Hancock, 2013) 

Specimen 
Web/ 

(mm) 

Flange

/ (mm) 

Lip   

/(mm) 

Thickness  

/ (mm) 

Yield 

strength/(MPa) 

Test / 

(kN) 

FE / 

(kN) 

Test/

FE 

Mw_C15015 152.70 64.77 16.57 1.50 541.1 9.47 9.28 1.02 

Mw_C15019 153.38 64.47 16.00 1.90 534.5 12.90 14.55 0.89 

Mw_C15024 152.60 62.70 19.70 2.40 485.3 17.96 16.71 1.07 

Mw_C20015 203.70 76.08 16.42 1.50 513.4 12.20 12.60 0.97 

Mw_C20019 202.60 77.92 17.28 1.90 510.5 18.85 21.77 0.87 

Mw_C20024 202.35 76.61 20.38 2.40 483.5 27.88 26.72 1.04 

Mean 1.04 

COV 0.09 

 

 

 

 

 

 

 

 

 

Figure 5: Load-vertical displacement behaviour and failure mode comparison of Mw_C20015 (Pham 

and Hancock, 2013) 

4. Parametric studies 

The coil lengths, thickness, opening height-to-web depth ration, and length of the sleeve stiffener were 

varied in this parametric study. The varying parameters are presented in Table 3. In total 80 FE models 

were developed. The parametric study models are labelled as Coil length (“337” or “415” mm); Opti-

mised or Standard section (“O/S”); Thickness (“1/2” mm); Opening height to web depth ratio 

(“0.2/0.4/0.6/0.8”); Sleeve length (“0/5/10/15/20”).  

Table 3: Details of the parametric study plan 

Coil length/ 

(mm) 

Thickness/    

(mm) 

Hole height/       

Web depth 

Sleeve length / 

(mm) 

Number of 

Models 

337 1, 2 0.2, 0.4, 0.6, 0.8 0, 5, 10, 15, 20 40 

415 1, 2 0.2, 0.4, 0.6, 0.8 0, 5, 10, 15, 20 40 

Total 80 

5. Results  

The effectiveness of providing rectangular stiffened and unstiffened web openings to the optimised 

channels was investigated through 80 FE models. The bending capacity of the 80 FE models was com-

pared with the corresponding standard LCB sections. The parametric study results for the optimised 

LCB with 415 mm coil length and 1 mm thickness are presented in Table 4. Figure 6 shows the bending 

failure mode obtained for the 337 mm coil length LCBs on various occasions. Overall, it can be noticed 

that providing rectangular web openings, the optimised channel is capable of regaining the bending 

capacity loss with less amount of material usage compared to the standard LCB sections. In addition, 

the sleeve stiffening arrangement raises the bending capacity substantially beyond the original capacity 

of the standards sections. For example, 415-O-1-0.2-20 specimen resulted a 44% of the enhanced bend-

ing capacity compare to its corresponding standard section with approximately same amount of material 
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(3% less). However, for larger web openings and for the 2 mm thickness sections the sleeve stiffeners 

were unable to regain the original capacity as these large web openings have caused up to 30% of 

bending capacity reduction (see Figure 7a). From the parametric study, it has been concluded that 15 

mm would be the optimum sleeve stiffening length as excessive sleeve length subjects to buckling and 

results in reduction of bending capacity (see Figure 7b).  

Table 4: Parametric study results for the optimised LCB (coil length=415 mm and thickness=1 mm) 

FE Model 
M 

(kNm) 
M/Ms M/Mo A% FE Model 

M 

(kNm) 
M/Ms M/Mo A% 

415-O-1-0.2-0 8.66 1.25 0.99 100 415-O-1-0.6-0 8.41 1.21 0.96 100 

415-O-1-0.2-5 8.8 1.27 1.00 76 415-O-1-0.6-5 8.8 1.27 1.00 87 

415-O-1-0.2-10 9.85 1.42 1.12 51 415-O-1-0.6-10 8.8 1.27 1.00 75 

415-O-1-0.2-15 9.73 1.40 1.11 27 415-O-1-0.6-15 8.85 1.28 1.01 62 

415-O-1-0.2-20 9.96 1.44 1.14 3 415-O-1-0.6-20 8.96 1.29 1.02 50 

415-O-1-0.4-0 8.65 1.25 0.99 100 415-O-1-0.8-0 7.34 1.06 0.84 100 

415-O-1-0.4-5 8.86 1.28 1.01 84 415-O-1-0.8-5 8.28 1.19 0.94 89 

415-O-1-0.4-10 8.91 1.29 1.02 69 415-O-1-0.8-10 8.69 1.25 0.99 78 

415-O-1-0.4-15 8.95 1.29 1.02 53 415-O-1-0.8-15 8.81 1.27 1.00 67 

415-O-1-0.4-20 8.96 1.29 1.02 38 415-O-1-0.8-20 8.84 1.28 1.01 56 

Note: M = Bending capacity with unstiffened and stiffened openings; Ms=Bending capacity of the corresponding standard sections; Mo=Bend-

ing capacity of the optimised sections; A% = Reduction in web area reference to the opening size. 

 

  

 

 

 

 

 

 

Figure 6: Distortional buckling failure modes of LCBs with 2 mm thickness and 337 mm coil length 

           (a) Rectangular opening size                                     (b) Sleeve length 

Figure 7: Effect of sleeve length and web opening size on the bending capacity 

6. Proposed design equations 

With the generated wide range of bending capacity results database, the available DSM based design 

equations are extended to cover the different sleeve stiffening lengths. DSM equations for the distor-

tional buckling of CFS beams provided in AS/NZ 4600 and AISI S100 are given in Eq. (1) to (2). 

For 𝑑  ≤ 0.673,              𝑀𝑏𝑑 = 𝑀𝑦 + [1 −
1

𝐶𝑦𝑑
2 ] (𝑀𝑝 − 𝑀𝑦)                                     (1) 
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For 𝑑  > 0.673,              𝑀𝑏𝑑 = [1 − 0.22 (
𝑀𝑜𝑑

𝑀𝑦
)

0.5

] (
𝑀𝑜𝑑

𝑀𝑦
)

0.5

𝑀𝑦                              (2)   

Where Mbd = ultimate bending capacity for distortional buckling,  𝑑 = √𝑀𝑦 𝑀𝑜𝑑⁄   = non-dimensional 

slenderness,  𝑀𝑦 = yielding moment,  𝑀𝑜𝑑 = elastic distortional buckling moment, 𝑀𝑝 = plastic moment 

and 𝑐𝑦𝑑 = √0.673 𝑑⁄ ≤ 3. These equations are only applicable for the solid web LCBs. AISI S100 

and AS/NZ 4600 provide DSM based design guidelines to predict the ultimate bending capacity of the 

CFS beams with rectangular web holes. However, there are no design provisions provided for sleeve 

stiffened rectangular web openings. Therefore, a simple approach is developing a reduction factor (qs) 

as a function of influencing parameters such that the ultimate bending capacity of LCBs with sleeve 

stiffened rectangular web openings (Mbd, sleeve) can calculate from its corresponding solid web LCB’s 

capacity (Mbd) as given in Eq. (3) 

𝑀𝑏𝑑,𝑠𝑙𝑒𝑒𝑣𝑒 = 𝑀𝑏𝑑 × 𝑞𝑠                                                               (3)   

Where Mbd can be calculated from Eq. (1)-(2) and qs can be calculated from Eq. (4). Eq. (4) was devel-

oped based on the parametric study results of 80 FE models with different influencing parameters 

(H=web height, h=opening height, Hl=lip length, Hf=flange width, s= sleeve length, t=thickness). The 

equation for qs was developed and optimised through the classic genetic algorithm and using generalised 

reduced gradient solving method. The optimisation resulted in mean and COV values of 1.00 and 0.06, 

respectively. 

𝑞𝑠 = {1 −
[

ℎ

𝐻
]

0.112
[

𝐻𝑙
𝐻𝑓

]

0.103

  

 [
𝐻

𝑡
]

0.084 } × {1 + [0.049 + (
𝑠

𝑡
)]

0.037
}         (4) 

Figure 8a shows the comparison of the reduction factor obtained from the FE analysis and proposed 

equation and Figure 8b shows the bending capacity prediction of the LCBs sleeve stiffened rectangular 

web openings subject to distortional buckling using modified DSM equations. In this study, the width 

of the opening was maintained to 150 mm and yield strength was considered as 450 MPa. Further ex-

tensive studies are required to enlarge the application of the proposed DSM equations. 

 

(a) Accuracy of the proposed qs                       (b) 80 FE models in DSM plot 

Figure 8: Proposed new design equations 

7. Concluding remarks 

This research highlights the effectiveness of providing web openings to the optimised CFS LCBs. First, 

the standard LCBs were optimised and up to 25% of bending capacity enhancement was achieved with 

the same amount of steel material. Four sizes of the rectangular web openings along with four different 

sleeve stiffener lengths were introduced to the optimised LCBs and capacity reduction and regaining 

ability was investigated through developing 80 FE models. From the FE analysis, it was found that 

proving the web openings to the optimised section is a good option as the capacity is enhanced already 
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with the optimisation and thus compensates the bending capacity loss due to the opening. However, 

despite using large web opening sizes, the full capacity is gained back with the sleeve stiffeners. In 

addition, stiffening length of 15 mm was identified as the optimum sleeve and updated DSM based 

design equations were proposed to predict the bending capacity of the LCBs with sleeve stiffened rec-

tangular web opening subject to distortional buckling.  
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