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ABSTRACT 

The relationship between cognitive and sensory processes in the brain contributes to the 

regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate 

sensory processes (by increasing physiological demand) to examine the role of dispositional 

traits that may influence an individual’s ability to cognitively regulate these responses. With 

the use of near infrared spectroscopy, this study examined the influence of self-reported 

Tolerance upon prefrontal cortex (PFC) haemodynamics and affective responses. The 

haemodynamic response was measured in individuals with high- or low-Tolerance during an 

incremental exercise test. Sensory manipulation was standardized against metabolic processes 

(ventilatory threshold [VT]; and respiratory compensation point [RCP]) and affective 

responses recorded. Results showed that the high-Tolerance group displayed a larger 

haemodynamic response within the right PFC above the VT (which increased above the 

RCP). The low-Tolerance group showed a larger haemodynamic response within the left PFC 

above the VT. The high-Tolerance group reported a more positive/less negative affective 

response above the VT. These findings provide direct neurophysiological evidence of 

differential haemodynamic responses within the PFC associated with Tolerance in the 

presence of increased physiological demand. This study supports the role of dispositional 

traits and previous theorising into the underlying mechanisms (cognitive vs. sensory 

processes) of affective responses. 
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INTRODUCTION 

Affective responses (pleasure-displeasure) are proposed to be regulated in the brain by the 

prefrontal cortex (PFC) and subcortical regions, including the amygdala (Davidson and Irwin, 

1999). Research has shown an inverse coupling between PFC activation and activity in the 

amygdala (Hariri et al., 2000, 2003; Quirk et al., 2003). The relationship between the PFC 

and amygdala is strengthened when individuals are instructed to cognitively-control negative 

(aversive) affective responses (Phan et al., 2005; Banks et al., 2007; Goldin et al., 2008). A 

transient disruption, or reduced activation, of lateralised regions of the PFC is associated with 

a reduced ability to exert cognitive-control to alleviate negative affective responses (Ochsner 

et al., 2004; Beauregard, 2007; Ochsner & Gross, 2008). 

During increased physiological demand (i.e. exercise) affective responses become less 

positive/more negative as the intensity of exercise increases (for reviews see Ekkekakis & 

Petruzzello 1999; Ekkekakis et al., 2011). According to a theoretical framework (the dual 

mode model: Ekkekakis, 2003; Ekkekakis & Acevedo, 2006), at intensities below the 

ventilatory threshold (VT; the point of transition from aerobic to anaerobic metabolism), 

individuals are able to maintain PFC activation to override negative affective responses 

driven by sensory (interoceptive) input from the body. Interoceptive cues provide the brain 

with information from the body and include nociceptors (pain), metaboreceptors (chemical), 

thermoreceptors (temperature), mechanoreceptors and baroreceptors (touch, pressure, 

tension; see Ament & Verkerke, 2009). Above the VT (proximal to the respiratory 

compensation point: RCP; the point where physiological steady state cannot be maintained), 

competition between the PFC and subcortical regions, which receive sensory input from the 

body, becomes increasingly challenging. At this intensity, an individual’s ability to maintain 

PFC activation becomes threatened. Recent work, using EEG (Robertson & Marino, 2015) 
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and NIRS (Jung et al., 2015), has shown a redistribution of brain activation in PFC and motor 

regions as the intensity of exercise is increased. Since exercise influences PFC activation, it 

may be used to manipulate sensory input from the body (presumably to the amygdala) to 

examine the role of the PFC in the regulation of affective responses.  

One potential factor that may impact PFC activation, and therefore an individual’s level of 

cognitive-control to regulate affective responses, is the role of dispositional traits. The 

Preference for and Tolerance of Exercise Intensity Questionnaire (PRETIE-Q) is an inventory 

created to assess arousability and sensory modulation-related traits for interoceptive (as 

opposed to exteroceptive) stimuli (see Ekkekakis et al., 2005 for full details). The authors 

define Preference as ‘a predisposition to select a particular level of exercise intensity when 

given the opportunity’ (p354), and Tolerance as ‘a trait that influences one’s ability to 

continue exercising at an imposed level of intensity even when the activity becomes 

uncomfortable or unpleasant’ (p354). The identification of Preference and Tolerance as 

dispositional traits is supported by no change in these scores after a 6-week training program 

which resulted in improvements in physical fitness (Hall et al., 2014). Conceptual validation 

of the scales (Ekkekakis et al., 2005) showed that neither Preference nor Tolerance was 

associated with affective responses reported during exercise at intensities below VT. 

However both scales were positively associated with affective responses at VT, but only the 

Tolerance scale above the VT (Ekkekakis et al., 2005; Ekkekakis et al., 2007). Therefore, a 

higher Tolerance was associated with a more positive affective response at intensities of 

exercise above the VT, which is predominantly aversive or negative (Ekkekakis et al., 2011). 

It is proposed that Tolerance influences affective responses through cognitive processes in the 

PFC (Ekkekakis et al., 2005). Consistent with the dual mode model, sensory input to the body 

is biologically hard-wired; however the perception and modulation of the interoceptive input 
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by the PFC may be influenced by predisposed traits. In other words, individuals with high-

Tolerance may be more capable of cognitively regulating how sensory information from the 

body is perceived during exercise at physiologically challenging intensities (i.e. above VT), 

than those with low-Tolerance. Individuals with high-Tolerance would report less negative 

affective responses than those with low-Tolerance. In addition, individuals with high-

Tolerance may exercise for longer at an imposed level of intensity (i.e. above VT) that is 

uncomfortable or unpleasant (Ekkekakis et al., 2005; Ekkekakis et al., 2007).  

The present study investigates if Tolerance of the intensity of exercise influences PFC 

haemodynamics and affective responses during incremental exercise. Bilateral measures of 

the PFC (right and left) are measured due to evidence of lateralisation involved in cognitive-

control processes (Ochsner et al., 2004). Prefrontal haemodynamics can be recorded by a 

non-invasive neuroimaging technique, near infrared spectroscopy (NIRS), suitable for use 

during exercise (Ferrari & Quaresima, 2012; Perrey, 2012). Changes (∆) in cerebral 

haemodynamics; oxygenation (O2Hb; oxygen delivery and blood flow), deoxygenation 

(HHb; oxygen extraction) and total blood volume (tHb = O2Hb+HHb), reflect metabolic 

changes associated with functional (neural) activation and metabolism (Perrey, 2012). 

Cerebral activation is defined by a slight decrease in oxygen extraction (HHb) and an 

increase in oxygenation (O2Hb; two-fold of HHb), leading to hyper-oxygenation (i.e. greater 

oxygen availability; Perrey, 2012). A meta-analysis of studies examining the haemodynamic 

response using NIRS during exercise shows a quadratic trend of cerebral oxygenation as the 

exercise increases: oxygenation increases from low to moderate and remains stable from 

moderate to hard, but declines at very hard (approx. RCP to exhaustion) intensities (Rooks et 

al., 2010). However, the authors indicate that the decline near exhaustion is less pronounced 

in trained, as opposed to untrained individuals. 
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Three hypotheses are examined: 1) Prefrontal cortex haemodynamics are different between 

individuals with high- or low-Tolerance; 2) Individuals with high-Tolerance report less 

negative affective response at intensities above VT; and 3) Individuals with high-Tolerance 

exercise for longer than those with low-Tolerance at intensities above VT. 

METHODS 

Participants 

A university cohort of sports science students (n = 259) completed the PRETIE-Q (Ekkekakis 

et al., 2005) during a timetabled session. Following quantitative analysis of haemodynamic 

variables (∆O2Hb and ∆HHb) measured during exercise intensities up to exhaustion with an 

optode (transmitter-detector) distance of 4 cm (Rooks et al., 2010; assuming statistical power 

= .80 and α = .05), and allowing for attrition, at least 14 participants were required per group. 

Therefore, participants with the highest and lowest Tolerance scores were invited to 

participate in the study (n = 28; see Table 1). All except two participants were right-handed. 

The volunteers read and signed an informed consent form which was approved by the 

departmental Ethics Committee. The Physical Activity Readiness Questionnaire (Canadian 

Society for Exercise Physiology, 2002) was used to ensure suitability to exercise. 

Measures 

Preference for and Tolerance of the intensity of exercise questionnaire (PRETIE-Q) 

Tolerance was assessed using the PRETIE-Q (Ekkekakis et al., 2005). The 16-item 

questionnaire contains eight items for Preference (4-high, 4-low) and similarly eight items for 

Tolerance (4-high, 4-low). Each item comprises a 5-point response scale (1= ‘I totally 

disagree’, 2= ‘I disagree’, 3= ‘Neither agree nor disagree’, 4= ‘I agree’ and 5= ‘I strongly 

agree’). Alpha coefficients of internal consistency ranged from 0.82 to 0.87 for the Tolerance 

scale and test-retest reliability of coefficients of 0.85 and 0.72 after 3- and 4- month intervals 
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(see Ekkekakis et al., 2005, for the complete questionnaire). Alpha coefficients of internal 

consistency in the present study ranged between 0.76 and 0.81 for the Tolerance scores of the 

high and low groups, respectively.  

Near infrared spectroscopy (NIRS) 

Cerebral haemodynamics were measured using NIRS (NIRO 200 Hamamatsu Photonics, 

Hamamatsu, Japan). The emitter and detector were encased in a rubber holder with a 

separation distance of 4 cm. A differential path length factor of 5.93 for the adult forehead 

was used (van der Zee et al., 1992) to provide a measure of concentration changes (∆) in 

micromolar (µM) units of O2Hb, HHb and tHb (sample rate 2Hz). The probes were placed 

approximately over the left and right dorsolateral PFC (between Fp1-F3 and Fp2-F4 

respectively, of the international 10-20 system for EEG electrode placement) and secured to 

the skin using a double adhesive sticker. Elastic surgical tape (Kinesio Tex Gold) and a dark 

bandage were placed over the holders around the forehead. 

The Feeling Scale 

Affective responses were measured using the Feeling Scale (Hardy & Rejeski, 1989). The uni-

dimensional 11-point scale (ranging from -5 to +5 with verbal anchors at all odd integers, and 

at the zero point; -5 very bad, -3 bad, -1 fairly bad, 0 neutral, 1 fairly good, 3 good, 5 very 

good) allows multiple assessments to be made during exercise. The Feeling Scale corresponds 

to one of the two dimensions of the circumplex model of feeling states (Russell et al., 1999) 

and is recommended to measure basic affect (pleasure-displeasure) (Ekkekakis & Petruzzello 

1999). 

 

Procedures  
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The study required individuals to visit the exercise physiology laboratory (approximate 

temperature 24°C, and relative humidity 40%) on one occasion. Upon arrival, participants 

completed the informed consent form and exercise testing questionnaire and initial 

assessments were taken (age, height and body mass). The procedures for the exercise tests 

were explained and a description of the Feeling Scale was provided. Participants were seated 

on a recumbent cycle ergometer (Lode Angio, Groningen, the Netherlands) and the NIRS 

optodes were carefully positioned. A facemask was fitted to measure metabolic data via 

online gas analysis (Cortex Metalyzer 3B, Biophysik, Leipzig, Germany). The participants 

then completed an incremental (20 W∙min-1; pedal cadence 70 rpm) cycling exercise test to 

exhaustion. The end of the test was determined by volitional cessation of exercise or failure 

to maintain pedal cadence despite strong verbal encouragement. The achievement of VO2peak 

was verified by a) a peak or plateau in oxygen consumption (changes < 2 ml·kg-1·min-1) with 

increasing workload; and b) a respiratory exchange ratio of at least 1.10. Cerebral 

haemodynamic responses and expired gases were measured continuously and affective 

responses were recorded pre-, during (every minute) and at the end of exercise. 

 

Data and statistical analyses  

The peak oxygen uptake (VO2peak) was determined by the highest 30 second average of 

oxygen uptake (VO2 ml∙kg-1∙min-1). The VT was determined using the three method 

procedure proposed by Gaskill et al. (2001) and the RCP was determined according to Beaver 

et al. (1986).  

Thirty second baseline measures of cerebral haemodynamics (∆O2Hb, ∆HHb and ∆tHb) were 

recorded prior to exercise. Data were exported every 10 seconds and normalised to express 

the magnitude of changes from the baseline period (arbitrarily defined as 0 µM) at the start of 

exercise. Cerebral haemodynamic variables were selected at time points corresponding to 
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intensities of exercise; 80% of VT (below VT), VT, RCP and end of exercise (End). 

Affective responses were extracted at time points corresponding to pre- and each of the 

intensities of exercise.  

To examine hypothesis 1, a Group (2; high, low) by Hemisphere (2; right, left PFC) by Time 

(4; below VT, VT, RCP, End) mixed model analysis of variance (ANOVA) was conducted 

for each of the NIRS variables (∆O2Hb, ∆HHb and ∆tHb). To examine hypothesis 2, a Group 

(2; high, low) by Time (5; pre-exercise, below VT, VT, RCP, End) mixed model ANOVA 

was conducted for affective responses. Finally, to examine hypothesis 3, two independent 

sample t-tests, with Bonferoni correction (alpha of .05 / 2 [number of tests] = .025), were 

conducted for the duration of exercise (from VT to RCP, RCP to End) of the high- and low-

Tolerance groups. All statistical analyses were performed using SPSS v. 18.0 (IBM Corp., 

Armonk, NY, USA). Greenhouse Geisser corrections were applied if the assumption of 

sphericity was not met. All significant main and interaction effects (p < .05) were followed 

by Bonferroni adjusted pairwise comparisons and simple main effects. Effect sizes associated 

with F statistics (ANOVAs) were expressed as partial eta squared (ηp
2) defined as small (.01), 

medium (.06) and large (.14) (Cohen, 1988). Values are mean ± SD unless otherwise stated.  

RESULTS 

Preliminary analyses 

To ensure Tolerance scores were different between the two groups (high, low) and to verify if 

there was a difference in overall time to exhaustion, two independent t-tests were conducted. 

These tests showed that Tolerance scores were significantly different between high- (M = 

33.1, SD = 2.3, range 30 to 38) and low- (M = 21.1, SD = 1.9, range 18 to 24) Tolerance 

groups, t(26) = 15.07, p < .001. No difference in overall time (sec) to exhaustion between 
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high- (M = 676, SD = 116) and low- (M = 646, SD = 93) Tolerance groups was shown (p > 

.05). 

To examine if there were differences in fitness (indicated by V̇O2 ml·kg-1·min-1) between 

males and females in the high- and low-Tolerance groups at time points corresponding to 

intensities of exercise (below VT, VT, RCP, End), a Group (2) by Gender (2) by Time (4) 

mixed model ANOVA was conducted. The analysis showed no differences in V̇O2 (ml·kg-

1·min-1) between groups (main and interaction effects; p > .05). However, as expected V̇O2 

(ml·kg-1·min-1) was (a) higher in males (M = 32.4, SD = 5.1) than females (M = 29.1, SD = 

2.7), F(1,24) = 4.73,  p < .05, ηp
2 = .17, and (b) significantly different at each intensity: below 

VT (M = 19.0, SD = 2.7), VT (M = 23.7, SD = 3.2), RCP (M = 36.1, SD = 5.3) and End of 

exercise (M = 43.8, SD = 6.4), F(1, 26) = 1141.48,  p < .001, ηp
2 = .98. A Gender by Time 

interaction indicated that males had a disproportionately higher V̇O2 (ml·kg-1·min-1) at RCP 

than females, F(1,26) = 4.52,  p < .05, ηp
2 = .16 (see Table 1). 

*** INSERT TABLE 1 AROUND HERE *** 

Cerebral haemodynamics (hypothesis 1)  

As a result of the Gender by Time interaction for VO2 (ml·kg-1·min-1) preliminary analyses of 

covariance were conducted for ∆O2Hb, ∆HHb and ∆tHb to include Gender as a covariate. 

Additional analyses were also conducted using handedness as a covariate. The analyses 

showed no influence of Gender or Handedness upon the significant main and interaction 

effects for Group, Hemisphere and/or Time (p > .05). However, as expected significant 

Gender by Time interactions were recorded for ∆O2Hb and ∆tHb (males higher than females 

at RCP; p < .05). The ANOVA and unadjusted means for ∆O2Hb, ∆HHb and ∆tHb are 

presented. 

Cerebral oxygenation (∆O2Hb)  
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A significant main effect of Time, F(1,33) = 99.39, p < .001, ηp
2 = .79, and significant Group 

by Hemisphere, F(1,26) = 4.37, p = .047, ηp
2 = .14, and Group by Hemisphere by Time, 

F(1,34) = 4.14, p = .039, ηp
2 = .14, interactions were recorded for ∆O2Hb (µM). Cerebral 

∆O2Hb remained stable from below VT (M = 2.04, SD = 2.39) to VT (M = 2.71, SD = 2.82), 

then increased from VT to RCP (M = 12.14, SD = 5.51) and RCP to End (M = 13.49, SD = 

6.87) in both groups. In the left PFC, ∆O2Hb was larger in the low- (M = 8.33, SD = 3.88) 

than the high-Tolerance (M = 6.80, SD = 4.36) group. In the right PFC, ∆O2Hb was similar 

between the low- (M = 7.46, SD = 4.01) and high-Tolerance (M = 7.78, SD = 4.27) groups. 

The three factor interaction indicated that from VT to RCP, the low-Tolerance group 

indicated a significantly larger ∆O2Hb in the left than the right PFC at RCP (and when 

compared to both hemispheres in the high-Tolerance group). From RCP to End, ∆O2Hb 

remained stable in both hemispheres in the low-Tolerance group, but significantly increased 

in both hemispheres in the high-Tolerance group. Therefore, at End, ∆O2Hb remained larger 

in the left than the right PFC in the low-, whereas ∆O2Hb was larger in the right than the left 

PFC in the high-Tolerance group (see Figure 1).  

Cerebral deoxyhaemoglobin (∆HHb) 

Significant main effects of Hemisphere, F(1,26) = 5.33, p = .029, ηp
2 = .17, and Time, 

F(1,31) = 50.99, p < .001, ηp
2 = .66, were recorded for ∆HHb (µM). Follow up tests indicated 

that ∆HHb was larger in the right (M = 1.32, SD = 1.23) than the left (M = 1.01, SD = 1.32) 

PFC in both groups. Cerebral ∆HHb remained stable from below VT (M = .16, SD = .53) to 

VT (M = .06, SD = .68), then increased from VT to RCP (M = 1.03, SD = 1.68) and RCP to 

End (M = 3.41, SD = 2.53) in both groups.  

Cerebral blood volume (∆tHb) 
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A significant main effect of Time, F(1,32) = 128.66, p < .001, ηp
2 = .83, and a Group by 

Hemisphere by Time, F(1,37) = 3.67, p = .049, ηp
2 = .12, interaction were recorded for ∆tHb 

(µM). Cerebral ∆tHb remained stable from below VT (M = 2.20, SD = 2.33) to VT (M = 

2.77, SD = 2.80), then increased from VT to RCP (M = 13.16, SD = 6.26) and RCP to End (M 

= 16.89, SD = 7.50) in both groups. The three factor interaction indicated that from VT to 

RCP, ∆tHb was significantly smaller in the left PFC in the high-Tolerance than low-

Tolerance group. From RCP to End, ∆tHb was larger in the high-Tolerance than the low-

Tolerance group. At End, ∆tHb remained similar in both hemispheres in the low-, whereas 

∆tHb was larger in the right than the left PFC in the high-Tolerance group (and when 

compared to both hemispheres in the low-Tolerance group) (see Figure 1). 

*** INSERT FIGURE 1 AROUND HERE *** 

Affective responses (hypothesis 2) 

A significant main effect of Time, F(2, 39) = 38.35, p < .001, ηp
2 = .56, and a significant 

Group by Time, F(4, 104) = 3.57, p = .009, ηp
2 = .05, interaction were recorded for affective 

responses. Affective responses declined from pre-exercise (M = 2.43, SD = 1.35) to below 

VT (M = 1.86, SD = 1.24), remained stable until VT (M = 1.68, SD = 1.44) and declined from 

VT to RCP (M = -.11, SD = 2.04) and RCP to End (M = -1.04, SD = 2.52). The interaction 

indicated that the decline in affective responses from pre-exercise to below VT was a result 

of the responses in the low-Tolerance group. Both groups reported similar affective responses 

from below VT to VT, at which point there was a larger decline in the low- than the high-

Tolerance group. Therefore, despite positive affective responses in both groups at VT, 

affective responses were negative at RCP and End in the low-Tolerance group (see Figure 2). 

*** INSERT FIGURE 2 AROUND HERE *** 

Exercise Duration (hypothesis 3) 
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There was no difference in the duration (sec) of exercise from VT to RCP between the high- 

(M = 250, SD = 44) and low- (M = 260, SD = 53) Tolerance group (p > .025). However, the 

duration of exercise from RCP to End was significantly longer in the high- (M = 145, SD = 

39) than the low- (M = 113, SD = 24) Tolerance group, t(26) = 2.62, p < .025. A significant 

positive correlation was shown between the duration of exercise from RCP to End and 

Tolerance scores (r = .48, p < .001). 

DISCUSSION 

Exercise was used to manipulate sensory processes (by increasing physiological demand) to 

examine the influence of a dispositional trait upon PFC haemodynamics and affective 

responses. Tolerance is proposed to influence an individual’s ability to cognitively regulate 

affective responses. In addition, Tolerance impacts an individual’s ability to continue 

exercising at levels of intensity associated with feelings of displeasure and discomfort 

(Ekkekakis et al., 2005; Ekkekakis et al., 2007). There are three main findings in this study. 

Firstly, individuals with high- and low-Tolerance showed asymmetrical PFC haemodynamics 

during exercise at intensities above VT (hypothesis 1). Secondly, individuals with low-

Tolerance reported negative affective responses at intensities of exercise above VT 

(hypothesis 2). Finally, despite no differences in fitness (VO2 ml.kg-1.min-1) between the two 

groups, individuals with high-Tolerance exercised for longer above their individually 

determined RCP compared to those with low-Tolerance (hypothesis 3). 

In line with the dual mode model, it was proposed that active involvement of the PFC 

suppresses aversive stimuli theorised to be mediated by the amygdala driven by intensified 

sensory (interoceptive) input from the body (Ekkekakis, 2003; Ekkekakis & Acevedo, 2006). 

At intensities below VT, no differences in PFC haemodynamics were observed between the 

high-and low-Tolerance groups and affective responses were positive. According to the 
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model, sensory input from the body does not threaten homeostasis and affective responses are 

predominantly positive. Tolerance was not expected to influence PFC haemodynamics and 

has not previously been shown to correlate with affective responses below VT (Ekkekakis et 

al., 2005). 

At intensities from VT to RCP, there were no differences in cerebral blood flow and volume 

in the right PFC between the high-and low-Tolerance groups. However, in the left PFC, the 

low-Tolerance group indicated larger blood flow (∆O2Hb) and volume (∆tHb) than the high-

Tolerance group. This implies that the haemodynamic response in the left PFC in the low-

Tolerance group was larger than those observed in the high-Tolerance group at RCP due to 

the increase in oxygen availability. Oxygen extraction (∆HHb) increased in both hemispheres 

in both groups. Affective responses were negative in the low-Tolerance group but remained 

positive in the high-Tolerance group. Therefore, in the low-Tolerance group a larger 

haemodynamic response in the left PFC may have been required to maintain cognitive-

control processes as the intensity of exercise started to become challenging (Ekkekakis, 2003; 

Ekkekakis & Acevedo, 2006). This would allow the individual to continue exercise despite 

the presence of negative affective responses (Ekkekakis et al., 2005).  

At intensities from RCP to End, there were differences in cerebral blood flow and volume in 

both hemispheres between high- and low-Tolerance groups. Individuals with low-Tolerance 

indicated a smaller haemodynamic response at intensities above RCP. This was shown by 

stable cerebral blood flow (∆O2Hb) in the presence of increases in oxygen extraction (∆HHb; 

i.e. lack of oxygen supply relative to demand). Individuals with high-Tolerance had an 

increased haemodynamic response at intensities above RCP. This was shown by increases in 

cerebral blood flow (∆O2Hb) and oxygen extraction (∆HHb; i.e. adequate oxygen supply 

relative to demand). The low-Tolerance group indicated deregulation (hypofrontality effects; 
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Dietrich, 2003, 2006) in the PFC and reported a more negative affective response than the 

high-Tolerance group. In addition, the duration of exercise was positively associated with 

Tolerance scores at these intensities (RCP to End). The high-Tolerance group showed an 

ability to continue exercise at a level of intensity associated with feelings of displeasure and 

discomfort (Ekkekakis et al., 2005; Ekkekakis et al., 2007). However, due to the larger 

haemodynamic response in the high-Tolerance group, it may be that these individuals are 

able to maintain PFC function more efficiently as their affective responses are not as 

negative. 

Consistent with the dual mode model, the intensified sensory (interoceptive) input, 

presumably to the amygdala, provided a greater challenge to those individuals with low-

Tolerance to maintain PFC activation (Ekkekakis, 2003; Ekkekakis & Acevedo, 2006). As 

previously reported, affective responses were less positive/negative at intensities above the 

VT (Ekkekakis et al., 2011), but these were distinctly more negative in the low- than the 

high-Tolerance group. Therefore, Tolerance potentially influenced the individual’s ability to 

exert cognitive-control in the attempt to alleviate negative affective responses (Ochsner et al., 

2004; Beauregard, 2007; Ochsner and Gross, 2008).  

Asymmetrical PFC haemodynamics were shown between the high- and low-Tolerance 

groups. Previous research investigating affective and motivational (approach-avoidance) 

processes using EEG has indicated that avoidance/withdrawal-related behaviours are 

associated with greater activity within the right relative to the left PFC (Davidson, 1993). 

However, the larger haemodynamic response within the right PFC observed in those 

individuals with high-Tolerance presumably does not reflect withdrawal-type behaviour due 

to their perseverance of exercise at intensities above the RCP. It is postulated that, in this 

study, the larger haemodynamic response (reflecting greater activity) in the right PFC is 
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potentially due to active avoidance of withdrawal-type behaviour (as opposed to promoting 

an approach-related behaviour i.e. larger activity in the left PFC) in the presence of negative 

affect (Woo et al., 2009). This would allow individuals with high-Tolerance to continue 

exercising and indicates differential cognitive and motivational processes used by individuals 

with low-Tolerance. 

Alternatively, Craig’s theory of forebrain emotional asymmetry (2005) may explain the larger 

haemodynamic response within the right PFC of the individuals with high-Tolerance. Craig 

proposes lateralisation of interoceptive input from afferent cues. Parasympathetic afferents 

activate primarily the left and sympathetic afferents the right insular cortices. Due to the 

increased sympathetic activity exercise induces, heightened activation of the right insular 

may have had an impact on the overlying regions of the right PFC measured in this study 

(Woo et al., 2009). Although there were no physiological differences between the two 

groups, the perceptual representation of the afferent input may be influenced by the 

individual’s Tolerance of the intensity of exercise (Ekkekakis et al., 2005). It is plausible that 

the individuals with high-Tolerance had a more acute ability to regulate their somatosensory 

perception.  

It is important to highlight a range of factors which may have contributed to the differences in 

haemodynamic and perceptual responses between the high- and low-Tolerance groups. In this 

cross-sectional study, the training status of the participants was not assessed, however as 

previously indicated, no differences in aerobic power between the two groups were shown. 

Rooks et al. (2009) showed a decline in cerebral oxygenation at very hard intensities (i.e. 

above RCP), which was influenced by training status. In the present study, no decline in 

cerebral oxygenation was observed at a similar intensity; cerebral oxygenation increased in 

the high- and remained stable in the low-Tolerance group. The lack of drop in PFC 
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oxygenation near exhaustion has recently been observed by others (Jung et al., 2015). A 

potential explanation of this discrepancy may be due to differences in the placement of the 

optodes over the PFC (Jung et al., 2015), as prior work has shown region specific changes in 

PFC haemodynamics (Tempest et al., 2014). Finally, both males and females took part in this 

study and no gender effects were observed (other than those likely explained by fitness). 

Future research should interrogate the potential influence or relationship of training status, 

gender and Tolerance upon haemodynamic responses. 

The influence of the dispositional trait of Tolerance upon PFC haemodynamics has been 

highlighted in this study. However, no measures of the exact cognitive-control mechanisms 

proposed have been assessed, nor have measures of subcortical areas of the brain (i.e. the 

amygdala) been recorded. Future studies should utilise study designs from emotion research 

(i.e. to include appraisal/suppression paradigms) to understand an individual’s cognitive and 

motivational strategies involved in the regulation of affective responses during increased 

physiological demand (such as exercise). Prior work has shown that the use of imagery as a 

cognitive strategy can maintain activation (larger haemodynamic response) of the PFC and 

results in a more positive affective response at intensities above the VT, but not the RCP 

(Tempest & Parfitt, 2013). In addition, the relationship between oxygenation in different 

regions (right-left, dorsal-ventral) of the PFC and affective responses is influenced by 

increases in the intensity of exercise above the VT (Tempest et al., 2014).  

Summary 

This study used methods to standardise sensory input from the body induced by exercise to 

investigate the regulation of affective responses in the PFC. Tolerance is a dispositional trait 

associated with cerebral blood flow during exercise. It appears that those individuals with 

low-Tolerance may utilise cognitive mechanisms in the left PFC during exercise at intensities 
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above the VT and proximal to the RCP. Those individuals with high-Tolerance do not appear 

to utilise the left PFC until higher intensities of exercise (i.e. above the RCP). Additionally, 

individuals with high-Tolerance induce a larger haemodynamic response in the right PFC 

during exercise at intensities near exhaustion. Tolerance potentially influences, or is 

influenced by, the way an individual perceives and self-regulates somatosensory information 

during exercise. It is proposed that Tolerance influences the interplay between cognitive and 

sensory processes which influences the regulation of affective responses. 

REFERENCES 

Ament, W., & Verkerke, G.J. (2009). Exercise and fatigue. Sports Medicine, 39, 389-422. 

Banks, S.J., Eddy, K.T., Angstadt, M., Nathan, P.J., & Phan, K.L. (2007). Amygdala-frontal 

connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2, 303-

12. 

Beauregard, M. (2007). Mind does really matter: Evidence from neuroimaging studies of 

emotional self-regulation, psychotherapy, and placebo effect. Progress in Neurobiology, 81, 

218-36. 

Beaver. W.L., Wasserman, K., & Whipp. (1986). A new method for detecting anaerobic 

threshold by gas exchange. Journal of Applied Physiology, 8, 2020-7. 

Canadian Society for Exercise physiology. (Revised 2002). Physical Activity Readiness 

Questionnaire. Retrieved from http://www.csep.ca/cmfiles/publications/parq/par-q.pdf.    

Cohen, J.D., Dunbar, K., & McClelland, J.L. (1990). On the Control of automatic processes: 

A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 

332-61. 

Craig, A.D. (2005). Forebrain emotional asymmetry: a neuroanatomical basis? Trends in 

Cognitive Sciences, 9, 566-71. 

Davidson, R.J. (1993). Cerebral asymmetry and emotion: conceptual and methodological 

conundrums. Psychophysiology, 35, 607-14. 



19 

 

 

 

Davidson, R.J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective 

style. Trends in Cognitive Science, 3, 11-21. 

Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The 

transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231-56. 

Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of 

exercise. Psychiatry Research, 145, 79-83. 

Ekkekakis, P. (2003). Pleasure and displeasure from the body: Perspectives from exercise. 

Cognition and Emotion, 17, 213-39. 

Ekkekakis, P., & Acevedo, E.O. (2006). Affective responses to acute exercise: Toward a 

psychobiological dose-response model. In E.O. Acevedo & P. Ekkekakis (Eds.), 

Psychobiology of physical activity. Champaign, IL: Human Kinetics. p. 91-109. 

Ekkekakis, P., & Petruzzello, S.J. (1999). Acute aerobic exercise and affect: current status, 

problems and prospects regarding dose-response. Sports Medicine, 28, 337–74. 

Ekkekakis, P., Hall, E.E., & Petruzzello, S.J. (2005). Some like it vigorous: Individual 

differences in the preference for and tolerance of exercise intensity. Journal of Sport and 

Exercise Psychology, 27, 350-74. 

Ekkekakis, P., Parfitt, G., & Petruzzello, S.J. (2011). The pleasure and displeasure people feel 

when they exercise at different intensities: Decennial update and progress towards a tripartite 

rationale for exercise intensity prescription. Sports Medicine, 41, 641-71. 

Ekkekakis, P., Lind, E., Hall, E.E., & Petruzzello, S.J. (2007). Can self-reported tolerance of 

exercise intensity play a role in exercise testing? Medicine and Science in Sports and 

Exercise, 39, 1193-9. 

Ferrari, M & Quaresima, V. (2012). Near infrared brain and muscle oximetry: from the 

discovery to current applications. Journal of Near Infrared Spectroscopy, 20, 1-14. 

Gaskill, S.E., Ruby, B.C., Walker, A.J., Sanchez, O.A., Serfass, R.C., & Leon, A.S. (2001). 

Validity and reliability of combining three methods to determine the ventilatory threshold. 

Medicine and Science in Sports and Exercise, 33, 1841-8. 

http://brainimaging.waisman.wisc.edu/publications/1999/Functional%20neuroanatomy%20of%20emotion%20and%20affective%20style.PDF
http://brainimaging.waisman.wisc.edu/publications/1999/Functional%20neuroanatomy%20of%20emotion%20and%20affective%20style.PDF


20 

 

 

 

Goldin, P.R., McRae, K., Ramel, W., & Gross, J.J. (2008). The neural bases of emotion 

regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577-

86.  

Hall, E.E., Petruzzello, S.J., Ekkekakis, P., Miller, P.C., & Bixby, W.R. (2014). The role of 

self-reported individual differences in preference for and tolerance of exercise intensity in 

fitness-testing performance. Journal of Strength and Conditioning Research, 28, 2443-51 

Hardy, C.J., & Rejeski, W.J. (1989). Not what, but how one feels: The measurement of affect 

during exercise. Journal of Sport and Exercise Psychology, 11, 304-17. 

Hariri, A.R., Bookheimer, S.Y., & Mazziotta, J.C. (2000). Modulating emotional responses: 

Effects of a neocortical network on the limbic system. NeuroReport, 11, 43-8.  

Hariri, A.R., Mattay, V.S., Tessitore, A., Fera, F., & Weinberger, D.R. (2003). Neocortical 

modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53, 494-501.  

Jung, J., Moser, M., Baucsek, S., Dern, S., & Schneider, S. (2015). Activation patterns of 

different brain areas during incremental exercise measured by near-infrared spectroscopy. 

Experimental Brain Research, 4, 233, 4201-4. 

Ochsner, K.N., & Gross, J.J. (2008). Cognitive emotion regulation: Insights from social 

cognitive and affective neuroscience. Current Directions in Psychological Science, 17, 153-8. 

Ochsner, K. N., Ray, R. D., Robertson, E. R., Cooper, J. C., Chopra, S., Gabrieli, J. D. E., et 

al. (2004). For better or for worse: Neural Systems Supporting the Cognitive Down- and Up-

regulation of Negative Emotion. Neuroimage, 23, 483-99. 

Perrey, S. (2012). NIRS for Measuring Cerebral Hemodynamic Responses During Exercise. 

In H. Boecker, C.H. Hillman, L. Scheef, & H.K. Strüder (Eds.). Functional Neuroimaging in 

Exercise and Sport Sciences. New York: Springer. p. 335-49. 

Phan, K.L., Fitzgerald, D.A., Nathan, P.J., Moore, G.J., Uhde, T.W., & Tancer, M.E. (2005). 

Neural substrates for voluntary suppression of negative affect: A functional magnetic 

resonance imaging study. Biological Psychiatry, 57, 210-9. 

Quirk, G.J., Likhtik, E., Guillaume Pelletier, J., & Paré, D. (2003). Stimulation of medial 

prefrontal cortex decreases the responsiveness of central amygdala output neurons. Journal of 

Neuroscience, 23, 8800-7.  

http://dept.psych.columbia.edu/~kochsner/pdf/Ochsner_Better_or_Worse.pdf
http://dept.psych.columbia.edu/~kochsner/pdf/Ochsner_Better_or_Worse.pdf


21 

 

 

 

Roberston, C.V, & Marino, F.E. (2015). Prefrontal and motor cortex EEG responses and their 

relationship to ventilatory thresholds during exhaustive incremental exercise. European 

Journal of Applied Physiology, [Epub ahead of print]. 

Rooks, C.R., Thom, N.J., McCully, K.K., & Dishman, R.K. (2010). Effects of incremental 

exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic 

review. Progress in Neurobiology, 92, 134-50. 

Russell, J.A., Weiss, A., & Mendelsohn, G.A. (1989). Affect Grid: A single item scale of 

pleasure and arousal. Journal of Personality and Social Psychology, 57, 493–502. 

Tempest, G.D., Eston, R., Parfitt, G. (2014). Prefrontal cortex haemodynamics and affective 

responses during exercise: A multi-channel near infrared spectroscopy study. PLoS ONE, 9, 

e95924.  

Tempest, G.D., & Parfitt, G. (2013). Imagery use and affective responses during exercise: An 

examination of cerebral haemodynamics using near infrared spectroscopy. Journal of Sport 

and Exercise Psychology, 35, 503-13. 

van der Zee, P., Cope, M., Arridge, S.R., Essenpreis, M., Potter, L.A., Edwards, A. D., et al. 

(1992). Experimentally measured optical pathlengths for the adult head, calf and forearm and 

the head of the newborn infant as a function of interoptode spacing. Advances in 

Experimental Medicine and Biology, 316, 143–53. 

Woo, M., Kim, S., Kim, J., Petruzzello, S.J., & Hatfield, B.D. (2009). Examining the 

exercise-affect dose-response relationship: does duration influence frontal EEG asymmetry? 

International Journal of Psychophysiology, 72, 166-72. 

  



22 

 

 

 

Figure 1: Change in cerebral (a) oxygenation (∆O2Hb), (b) deoxygenation (∆HHb) and (c) 

blood volume (∆tHb) in the right and left PFC at each time point for the high- and low-

Tolerance groups, M and SEM.  

 

Time points corresponding to: 80% ventilatory threshold (below VT), VT, respiratory 

compensation point (RCP) and end of exercise (End). * Significantly higher than the other 

hemisphere within group; ** significantly higher than the other hemisphere within and 

between groups; # significantly higher than the other hemisphere between groups (p < .05). 

The pattern of the haemodynamic data (∆O2Hb, ∆HHb and ∆tHb) were relatively linear 

between the time points examined.  
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Figure 2: Affective responses at each time point for the high- and low-Tolerance groups, M 

and SEM. 

 

Time points corresponding to: pre-exercise (pre), 80% ventilatory threshold (below VT), VT, 

respiratory compensation point (RCP) and end of exercise (End). * Significantly more 

positive affective responses in the high- than the low-Tolerance group (p < .05). 
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Table 1. Participant demographics and oxygen uptake (V̇O2 ml·kg-1·min-1) for the high- and 

low-Tolerance groups, M and SD.  

  High tolerance group Low tolerance group 

  Males# 

(n =7) 

Females 

(n =7) 

Total* 

(n =14) 

Males# 

(n =7) 

Females 

(n =7) 

Total* 

(n =14) 

Demographics       

 Age (yrs) 20.1 (1.1) 20.7 (1.4) 20.6 (1.4) 21.3 (2.7) 20.8 (3.8) 21.5 (3.4) 

 Height (cm) 177.1 (5.0) 164.8 (3.1) 171.0 (7.5) 179.0 (8.4) 167.4 (5.5) 173.2 (9.1) 

 Body mass (kg) 71.5 (4.1) 65.0 (7.1) 69.3 (7.3) 77.6 (9.1) 57.5 (3.8) 68.6 (12.8) 

 BMI 22.8 (1.4) 23.9 (2.5) 23.4 (2.0) 24.2 (2.2) 20.6 (1.9) 22.4 (2.7) 

        

V̇O2 ml·kg-1·min-1      

 below VT 20.9 (2.8) 18.1 (1.7) 19.5 (2.7) 18.8 (3.2) 18.0 (1.6) 18.4 (2.5) 

 VT 26.1 (3.5) 22.7 (2.3) 24.4 (3.4) 23.6 (4.0) 22.5 (2.0) 23.0 (3.1) 

 RCP 40.1 (4.7) 34.8 (3.5) 37.8 (5.1) 36.7 (7.0) 34.2 (3.6) 35.4 (5.5) 

 End (VO2peak) 49.4 (5.9) 41.7 (4.2) 45.6 (6.3) 43.0 (8.2) 41.1 (4.0) 42.1 (6.3) 

Oxygen uptake (V̇O2 ml·kg-1·min-1) at time points corresponding to: 80% ventilatory 

threshold (below VT), at VT, respiratory compensation point (RCP) and end of exercise 

(End) indicating maximal oxygen uptake (V̇O2peak). * Significant increase in V̇O2 at each 

time point; # significantly higher V̇O2 in males than females at each time point, (p < .05). 

 


