# **Supporting Information for**

# Occurrence and Sources of Radium in Groundwater Associated with Oil Fields in the Southern San Joaquin Valley, California

Peter B. McMahon<sup>1,\*</sup>, Avner Vengosh<sup>2</sup>, Tracy A. Davis<sup>3</sup>, Matthew K. Landon<sup>3</sup>, Rebecca L.

Tyne<sup>4</sup>, Michael T. Wright<sup>3</sup>, Justin T. Kulongoski<sup>3</sup>, Andrew G. Hunt<sup>1</sup>, Peter H. Barry<sup>4,5</sup>, Andrew

J. Kondash<sup>2</sup>, Zhen Wang<sup>2</sup>, Chris J. Ballentine<sup>4</sup>

<sup>1</sup>U.S. Geological Survey, Lakewood, Colorado

<sup>2</sup>Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

<sup>3</sup>U.S. Geological Survey, San Diego, California

<sup>4</sup>Department of Earth Sciences, University of Oxford, Oxford, UK

<sup>5</sup>now at Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

\*Corresponding author: Phone: 303-236-6899; e-mail: <u>pmcmahon@usgs.gov</u>

#### This PDF file includes:

Section S1, Study Area Description (pages S2-S4)
Section S2, Analysis of Radium in Sediment (pages S4-S5)
Section S3, Additional Analysis of Groundwater Mixing with Oil-Field Water (pages S5–S7)
Reference (pages S7–S12)
Supplementary Figures S1–S7 (pages S13–S16)
Supplementary Tables S1–S3, S5 (pages S17–S20)

## Other Supporting Information for this manuscript includes the following:

Table S4. Chemical and ancillary data for wells. (.xlsx)

#### Section S1. Study Area Description

The study area is in Kern County, in the southern San Joaquin Valley (SJV) (Figure 1). The SJV is part of the Central Valley of California, a 700-km-long basin containing >7500 m of Mesozoic through Cenozoic-aged sediments.<sup>1</sup> From 2014 to 2017, water samples were collected from 40 water wells located in, or near (within 5 km), the Fruitvale (FV), Lost Hills (LH), and South Belridge (SB) oil fields (Figure 1, Table S1). The water-bearing units sampled on the east side of the SJV around the FV oilfield, and the water-bearing units sampled on the west side of the valley around the LH and SB oilfields, are part of the Central Valley regional aquifer system. Aquifer sediments on the east and west sides of the valley are derived from different sources, but they generally grade into each other along the axis of the valley.<sup>2</sup>

In the FV oil field, located on the east side of the SJV, the sampled wells are screened in semi-consolidated gravel, sand, silt, and clay in late Miocene to Pleistocene fluvial deposits in the Kern River Formation (Figure S1).<sup>3</sup> Those sediments were largely derived from granitic rocks in the Sierra Nevada to the east.<sup>4</sup> The aquifer sediments are semi-confined to confined.<sup>3</sup> The primary source of natural recharge to the aquifer is the Kern River, which flows across the southern part of the oil field (Figure 1). Depths to groundwater in the sampled water wells ranged from about 61 m to 79 m (median=71 m) (Table S1). Groundwater flow directions are generally to the west, southwest.<sup>3</sup> The median depth to the bottom of perforations in the sampled water wells is 209 m, whereas the median depth to the top of perforations in FV oil wells is 1088 m.<sup>5</sup> Sediments in the Kern River Formation and marine sediments in the underlying Etchegoin Formation are present between the deepest water wells and shallowest oil wells (completed in basal portions of the Etchegoin Formation) (Figure S1).<sup>6</sup> The Macoma Claystone, within the basal portion of the Etchegoin Formation, generally serves as a hydraulic barrier between the oil

and water-bearing zones.<sup>6</sup> Oil extraction in the FV oil field began in 1928.<sup>7</sup> The oil field contains about 320 oil-production and injection wells that are listed as active or newly drilled.<sup>8</sup> Oil production in the FV field is primarily from the Etchegoin, Chanac, and Santa Margarita Formations (Figure S1). From 1960 to 2017, about 87 million m<sup>3</sup> of oil-field water were injected into those formations,<sup>8</sup> primarily for water disposal.<sup>3</sup>

In the SB and LH oil fields, located on the west side of the SJV, the sampled wells are screened in sand, silt, and clay in Holocene/Pleistocene alluvium and fluvial, deltaic, to lacustrine deposits in the Tulare Formation (Pleistocene).<sup>9</sup> The sediments were largely derived from marine rocks in the Temblor Range to the west.<sup>9</sup> The aquifers are generally unconfined to semi-confined, except for water-bearing units in the Tulare Formation that are below the Corcoran Clay, which is an important confining layer on the west side of the SJV.<sup>2</sup> Natural sources of recharge are more limited on the west side of the SJV than on the eastside, but they include precipitation and stream flow in uplands to the west that infiltrates into the aquifers.<sup>2</sup> Depths to groundwater in the sampled water wells ranged from about 10 m to 121 m (median=69 m) (Table S1). Groundwater flow directions are generally to the northeast.<sup>2</sup> The median depths to the bottom of perforations in the sampled water wells are 199 m (LH) and 153 m (SB), whereas the median depths to the top of perforations in oil wells are 414 m (LH) and 326 m (SB).<sup>5</sup> Within the LH and SB oil fields, the deepest water wells and shallowest oil wells are both completed in the Tulare Formation (Figure S1), although the Tulare oil wells in the vicinity of the sampled Tulare water wells are deeper than the water wells. In parts of LH and SB, the Amnicola, Tulare, and Corcoran Clays (deepest to shallowest) in the Tulare Formation could serve as confining layers between the oil wells and water wells.<sup>2,9</sup> Nevertheless, the close vertical proximity of the wells indicates natural mixing between oil-field formation water and fresher groundwater could

occur. Oil extraction in the LH and SB oil fields began in the early 1910s.<sup>10,11</sup> The number oilproduction and injection wells that are listed as active or newly drilled range from about 5,500 in LH to 11,700 in SB.<sup>8</sup> Oil production is primarily from the Temblor, Monterey, Etchegoin, and Tulare Formations (Figure S1). From 1960 to 2017, about 435 million m<sup>3</sup> (LH) and 1400 million m<sup>3</sup> (SB) of oil-field water were injected into these formations.<sup>8</sup> From 2014 to 2017 in LH, ~87% and ~13% of the injected water was for enhanced oil recover (EOR) and water disposal, respectively. From 2014 to 2017 in SB, ~56% and ~44% of the injected water was for EOR and water disposal, respectively.<sup>8</sup>

#### Section S2. Analysis of Radium in Sediment

Activities of <sup>228</sup>Ra and <sup>226</sup>Ra in aquifer sediment collected from the LH and SB boreholes (Figure 1) were measured using the method of Lauer et al. (ref 12). Briefly, the sediment was washed with deionized water to remove drilling mud and the >63- $\mu$ m fraction was retained for analysis. The retained fraction was dried (110°C) for 24 hours and ground to a diameter <5 mm. Dried and crushed sediment samples were packed in plastic Petri style dishes (6.5 cm diameter and 2 cm height) that were then sealed with electrical tape and coated in wax to prevent escape of <sup>220</sup>Rn and <sup>222</sup>Rn. Sealed samples were incubated for at least 21 days to allow <sup>226</sup>Ra to reach secular equilibrium with <sup>222</sup>Rn, <sup>214</sup>Bi, and <sup>214</sup>Pb; and for <sup>228</sup>Ra to reach secular equilibrium with <sup>228</sup>Ac. After incubation, samples were counted on a Canberra Broad Energy 5030 Germanium Gamma detector at Duke University. Samples were typically counted for 6 to 48 hours so counting errors (2 $\sigma$ ) were <10%. <sup>226</sup>Ra activities were measured through the 911 keV energy peak of <sup>214</sup>Pb. <sup>228</sup>Ra. Detector efficiencies were determined using a U-Th reference ore material (DL-1a) prepared by

the Canadian Certified Reference Materials Project that was packaged and incubated in a container identical to the samples. Background and efficiency checks were performed prior to and during the period of sample analysis. The data are listed in Table S5 and ref 13.

<sup>228</sup>Ra and <sup>226</sup>Ra activities in the sediment range from 8.3 to 32.5 Bq/kg and 7.5 to 52.6 Bq/kg, respectively (Table S5). The Th and U contents of the sediments can be back calculated assuming secular equilibrium between <sup>228</sup>Ra-<sup>232</sup>Th and <sup>226</sup>Ra-<sup>238</sup>U, respectively, and applying these conversion factors: 1 Bq <sup>232</sup>Th/kg = 245  $\mu$ g/kg Th; 1 Bq <sup>238</sup>U/kg = 81  $\mu$ g/kg U. Based on those calculations, the Th and U contents of the sediments range from 2030 to 7960  $\mu$ g/kg and 608 to 4260  $\mu$ g/kg, respectively.

#### Section S3. Additional Analysis of Groundwater Mixing with Oil-Field Water

Based on the mixing analysis presented in the article, the high-Ra samples are grouped into 4 categories; (1) highly mixed, surface source of oil-field water (BG4a, BG7), (2) slightly mixed, subsurface source of oil-field water (LG3, LG9), (3) highly mixed, surface and subsurface sources of oil-field water (BG5), and (4) little or no mixing with oil-field water (LG2, LG6). Data for NH<sub>4</sub>, DOC, VOCs,  $\delta^2$ H-CH<sub>4</sub>,  $\delta^{13}$ C-CH<sub>4</sub>, and  $\delta^{13}$ C-DIC provide additional understanding of mixing between groundwater and oil-field water in the seven Lost Hills and South Belridge samples with elevated <sup>226</sup>Ra+<sup>228</sup>Ra activities.

Group 1 contains the two samples with the highest Ra activities in the South Belridge oil field, BG4a and BG7. Oil-field water in these samples is from unlined oil-field water disposal ponds upgradient from the wells. BG4a and BG7 contain substantially more DOC (39 and 29 mg/L, respectively) than other South Belridge groundwater that is unaffected by mixing with oil-field water (median=0.7 mg/L) (Figure S4), and both samples contain benzene (BG7 also

contains toluene), consistent with oil-field water. BG4a and BG7 both contain low concentrations of CH<sub>4</sub> and NH<sub>4</sub>. Concentrations of CH<sub>4</sub> (0.16 to 1.25 mole %) and NH<sub>4</sub> (<0.01 to 0.24 mg N/L) in BG4a and BG7 are minor compared to the amounts in Belridge oil-field water (CH<sub>4</sub>, 85 to 87 mole %) (NH<sub>4</sub>, 118 to 460 mg N/L) (Figure S6B), even though the groundwater samples contain ~40 to 45% oil-field water. The discrepancy could be explained by CH<sub>4</sub> degassing and NH<sub>4</sub> oxidation in the open-air pond environment. NH<sub>4</sub> oxidation would produce NO<sub>3</sub>. Both samples contain NO<sub>3</sub> (6.1 to 6.9 mg N/L), although some NO<sub>3</sub> produced by NH<sub>4</sub> oxidation could have been removed by denitrification in the anoxic groundwater (O<sub>2</sub> ≤0.2 mg/L).

Group 2 contains the two samples with the highest Ra activities in the LH oil field, LG3 and LG9. Oil-field water in these samples appears to be from subsurface sources rather than pond leakage. Unlike the samples affected by pond leakage, LG3 and LG9 contain high concentrations of CH<sub>4</sub> (33 to 79 mole %) and NH<sub>4</sub> (19.7 to 21.5 mg N/L) and no nitrate.  $\delta^2$ H-CH<sub>4</sub> and  $\delta^{13}$ C-CH<sub>4</sub> values in both samples are essentially identical to thermogenic gas in Lost Hills oil-field water, whereas the isotopic composition of the small amount of CH<sub>4</sub> in BG7, which was affected by pond leakage, is more diagnostic of biogenic CH<sub>4</sub> from fermentation processes commonly associated with near-surface environments that has been affected by oxidation (Figure S6A). The presence of benzene and toluene in both samples also suggests mixing with oil-field water. LG3 and LG9 also have highly enriched  $\delta^{13}$ C-DIC values like LH oil-field water (Figure S6B).

Group 3 consists of one sample from SB, BG5, that is ~0.5 km downgradient from an unlined disposal pond that operated from the 1950s until 2006. BG5 contains benzene. <sup>3</sup>H and VOC data indicate some water in BG5 was in relatively recent contact with the land surface. BG5 contains the highest <sup>3</sup>H concentration (0.6 TU) among the LH and SB groundwater

S6

samples, and it also contains methyl tertiary-butyl ether (MTBE) (0.27  $\mu$ g/L), a manufactured compound banned in California beginning in 2004.<sup>14</sup> Like BG4a and BG7, BG5 contains elevated DOC (37 mg/L). Unlike BG4a and BG7, BG5 contains elevated CH<sub>4</sub> (24 mole %; isotopically like Belridge oil-field gas, Figure S6A) and NH<sub>4</sub> (18.4 mg N/L) concentrations, no nitrate, enriched  $\delta^{13}$ C-DIC (Figure S6B), and large numbers of oil-production and injection wells and injection volumes within 500 m, like the Lost Hills samples affected by subsurface sources of oil-field water (Table S1). The data indicate BG5 could contain oil-field water from surface and subsurface sources.

Group 4 consists of two samples from LH, LG2 and LG6. Water-isotope, Cl, Br, and Li data indicate those samples contain little or no oil-field water, consistent with the low CH<sub>4</sub>, NH<sub>4</sub>, and DOC concentrations and absence of benzene and toluene in the samples. LG2 and LG6 also have depleted  $\delta^{13}$ C-DIC values, like other regional groundwater unaffected by mixing with oil-field water (Figure S6B).

#### REFERENCES

- Scheirer, A. H.; Magoon, L. B. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California. Professional Paper 1713, Ch. 5; U.S. Geological Survey:VA, 2007.
- (2) Faunt, C. C. *Groundwater availability of the Central Valley aquifer*. Professional Paper 1766; U.S. Geological Survey:VA, 2009.
- (3) Wright, M. T.; McMahon, P. B.; Landon, M. K.; Kulongoski, J. T. Groundwater quality of a public supply aquifer in proximity to oil development, Fruitvale oil field, Bakersfield, California. *Appl. Geochem.* **2019**, 106 (1), 82–95.
- (4) Olson, H. C.; Miller, G. E.; Bartow, J. A. Stratigraphy, paleoenvironment and depositional setting of Tertiary sediments, southeastern San Joaquin Basin. In *Southeast San Joaquin Valley Field Trip, Kern County, California*; Bell, P., Ed.; Field Trip Guidebook 56, Part II:

Structure and Stratigraphy, Am. Assoc. Petrol. Geol. Pacific Section, Bakersfield, CA 1986, 18–55.

- (5) Davis, T. A.; Landon, M. K.; Bennett, G. L. Prioritization of oil and gas fields for regional groundwater monitoring based on a preliminary assessment of petroleum resource development and proximity to California's groundwater resources. Scientific Investigations Report 2018–5065; U.S. Geological Survey:VA, 2018.
- (6) Stephens, M. J.; Shimabukuro, D. H.; Gillespie, J. M.; Chang, W. Groundwater salinity mapping using geophysical log analysis within the Fruitvale and Rosedale Ranch oil fields, Kern County, California, USA *Hydrogeol. J.* **2019**, 27 (2), 731–746.
- (7) Preston, H. M., *Summary of operations, California oil fields*. Volume 16, California Department of Natural Resources, Division of Oil and Gas; CA, 1931.
- (8) Oil & Gas Online Data. California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: CA, 2018
   <u>http://www.conservation.ca.gov/dog/Online\_Data/Pages/Index.aspx</u>. (accessed January 28, 2019).
- (9) Kiser, S. C. Lithofacies of the Pleistocene to Recent sediments in western Kern County, California. *San Joaquin Geol. Soc.* **1988**, *7*, 14–21.
- (10) Land, P. E. *Lost Hills oil field*. TR32, California Department of Conservation, Division of Oil and Gas; CA, 1984.
- (11) Bowersox, J. R. Geology of the Belridge Diatomite, northern South Belridge field, Kern County, California. In *Structure, stratigraphy, and hydrocarbon occurrences of the San Joaquin Basin, California*; Kuespert, J. G., Reid, S. A., Eds.; Pacific Sections, SEPM and AAPG, Book 64 and Guidebook 65, 1990, pp 215–223.
- (12) Lauer, N. E.; Warner, N. R.; Vengosh, A. Sources of radium accumulation in stream sediments near disposal sites in Pennsylvania: Implications for disposal of conventional oil and gas wastewater. *Environ. Sci. Technol.* **2018**. *52* (3), 955–962.
- (13) U.S. Geological Survey, 2018. National Water Information System–Web Interface. https://dx.doi.org/10.5066/F7P55KJN. (accessed January 31, 2018)
- (14) Groundwater Information Sheet, Methyl tertiary-butyl ether (MTBE). California Water Quality Control Board; CA, 2017.
   <u>https://www.waterboards.ca.gov/gama/docs/coc\_mtbe.pdf</u> (accessed December 14, 2018).
- (15) *California Oil & Gas Fields*. Volume 1–Central California; California Department of Conservation:Sacramento 1998.
- (16) Schwartz, D. E. Characterizing the lithology, petrophysical properties, and depositional setting of the Belridge diatomite, South Belridge field, Kern County, California. In *Studies* of the Geology of the San Joaquin Basin; Graham, S. A., Ed.; Pacific Section, SEPM 60, 1988, pp. 281–301.
- (17) Taylor, T. R.; Soule, C. H. Reservoir characterization and diagenesis of the Oligocene 64-Zone Sandstone, North Belridge field, Kern County, California. *Am. Assoc. Petrol. Geol. Bull.* **1993**, 77 (9), 1549–1566.

- (18) McMahon, P. B.; Kulongoski, J. T.; Vengosh, A.; Cozzarelli, I. M.; Landon, M. K.; Kharaka, Y. K.; Gillespie, J. M.; Davis, T. A. Regional patterns in the geochemistry of oilfield water, southern San Joaquin Valley, California, USA. *Appl. Geochem.* 2018, 98 (1), 127–140.
- (19) Gannon, R. S.; Saraceno, J. F.; Kulongoski, J. T.; Teunis, J. A.; Barry, P. H.; Tyne, R. L.; Kraus, T. E. C.; Hansen, A. M.; Qi, S. L. *Produced water chemistry data for the Lost Hills, Fruitvale, and North and South Belridge study areas, Southern San Joaquin Valley, California.* Data Release <u>https://doi.org/10.5066/F7X929H9</u>; U.S. Geological Survey:VA, 2018.
- (20) South Belridge Oil Field, South Wastewater Disposal Facility (SL0602990565). California State Water Resources Control Board:CA, 2019. <u>https://geotracker.waterboards.ca.gov/profile\_report.asp?global\_id=SL0602990565</u> (accessed January 25, 2019).
- (21) Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In *Climate Change in Continental Isotopic Records*; Swart, P. K.; Lohmann, K. C.; McKenzie, J.; Savin, S., Eds.; V. 78 American Geophysical Union Geophysical Monograph 78, Washington, D.C. 1993; pp 1–36.
- (22) Shelton, J. L.; Pimentel, I.; Fram, M. S.; Belitz, K. Ground-water quality data in the Kern County subbasin study unit, 2006 – Results from the California GAMA Program. Data Series 337; U.S. Geological Survey: VA, 2008.
- (23) South Belridge Oil Field, Hill Lease (SL0602935481). California State Water Resources Control Board:CA, 2018. <u>https://geotracker.waterboards.ca.gov/profile\_report?global\_id=SL0602935481&mytab=es\_idata#esidata</u> (accessed December 13, 2018).
- (24) Whiticar, M. J.; Faber, E.; Schoell, M. Biogenic methane formation in marine and freshwater environments: CO<sub>2</sub> reduction vs. acetate fermentation–Isotopic evidence. *Geochim. Cosmochim. Acta* **1986**, 50 (5), 693–709.
- (25) Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. *Geochim. Cosmochim. Acta* **1980**, 44 (5), 649–661.
- (26) Dillon, D. B.; Davis, T. A.; Landon, M. K.; Land, M. T.; Wright, M. T.; Kulongoski, J. T. Data from exploratory sampling of groundwater in selected oil and gas areas of coastal Los Angeles County and Kern and Kings Counties in southern San Joaquin Valley, 2014–15: California oil, gas, and groundwater project. Open-File Report 2016 1181; U.S. Geological Survey:VA, 2016.
- (27) McCarlson, A.; Wright, M. T.; Teunis, J. A.; Davis, T. A.; Johnson, J.; Qi, S. L. Water chemistry data for samples collected at groundwater sites near the Fruitvale oil field, September 2016–February 2017, Kern County, California. Data Release <u>https://doi.org/10.5066/F7ZW1K7T</u>; U.S. Geological Survey:VA, 2018.
- (28) Davis, T. A.; Teunis, J. A.; McCarlson, A. J.; Seitz, N. O.; Johnson, J.C. Water chemistry data for samples collected at groundwater and surface-water sites near the Lost Hills and

*Belridge oil fields, November 2016–September 2017, Kern County, California*. Data Release <u>https://doi.org/10.5066/F7NS0T5M;</u> U.S. Geological Survey:VA, 2018.

- (29) Wilde, F.D. *Field measurements*. Techniques of Water-Resources Investigations, book 9, chap. A6, with sec. 6.0–6.8; U.S. Geological Survey:VA, variously dated. http://pubs.water.usgs.gov/twri9A6/ (accessed January 28, 2019).
- (30) Wilde, F.D. *Processing of water samples (ver. 2.2).* Techniques of Water-Resources Investigations, book 9, chap. A5; U.S. Geological Survey:VA, 2009.
- (31) Connor, B. F.; Rose, D. L.; Noriega, M. C.; Murtagh, L. K.; Abney, S. R. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory— Determination of 86 volatile organic compounds in water by gas chromatography/mass spectrometry, including detections less than reporting limits. Open-File Report 97–829; U.S. Geological Survey:VA, 1998
- (32) Bird, S. M.; Fram, M. S.; Crepeau, K. L. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory-- Determination of Dissolved Organic Carbon in Water by High Temperature Catalytic Oxidation, Method Validation, and Quality-Control Practices. Open-File Report 2003-366; U.S. Geological Survey:VA 2003.
- (33) Révész, K.; Coplen, T. B. Determination of the δ<sup>2</sup>H of water: RSIL lab code 1574, chap.
   C1 of Methods of the Reston Stable Isotope Laboratory. Techniques and Methods 10–C1;
   U.S. Geological Survey:VA 2008a.
- (34) Révész, K.; Coplen, T. B. Determination of the δ<sup>18</sup>O of water: RSIL lab code 489, chap. C2 of Methods of the Reston Stable Isotope Laboratory. Techniques and Methods, 10–C2; U.S. Geological Survey:VA 2008b.
- (35) Poreda, R. J.; Cerling, T. E.; Salomon, D. K. Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. *J. Hydrol.* **1988**, 103 (1–2). 1–9.
- (36) Solomon, D. K.; Poreda, R. J.; Schiff, S. L.; Cherry, J. A. Tritium and helium 3 as groundwater age tracers in the Borden aquifer. *Water Resour. Res.* **1992**, 28 (3), 741–755.
- (37) Isotech Laboratories Inc. *Quality Assurance/Quality Control*. <u>http://www.isotechlabs.com/why/qaqc.html</u> (accessed March 26, 2019).
- (38) *Isotech Laboratories* Website; http://www.isotechlabs.com/index.html. (accessed November 8, 2018).
- (39) Potter, B. B.; Wimsatt J. Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water. Method 415.3, Rev. 1.2; U.S. Environmental Protection Agency:Washington, DC, 2009. <u>https://cfpub.epa.gov/si/si\_public\_record\_report.cfm?dirEntryId=214406</u> (accessed January 28, 2019).
- (40) Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J. A.; Downing, B. D.; Bergamaschi, B. A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. *Limnol. Oceanogr.* 2016, 61 (3), 1015–1032.

- (41) Fishman, M. J.; Friedman, L. C. Methods for determination of inorganic substances in water and fluvial sediments. Techniques of Water-Resources Investigations, book 5, chap. A1; U.S. Geological Survey:VA 1989.
- (42) Fishman, M. J. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of inorganic and organic constituents in water and fluvial sediments. Open-File Report 93–125; U.S. Geological Survey:VA 1993.
- (43) Faires, L. M. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of metals in water by inductively coupled plasma-mass spectrometry. Open-File Report 92–634; U.S. Geological Survey:VA 1993.
- (44) McLain, B.J. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of chromium in water by graphite furnace atomic absorption spectrophotometry; Open-File Report 93–449; U.S. Geological Survey:VA 1993.
- (45) *Standard methods for the examination of water and wastewater (20th ed.)*; American Water Works Association and Water Environment Federation: Washington, D.C., 1998.
- (46) Garbarino, J. R. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium using inductively coupled plasma-mass spectrometry. Open-File Report 99–93; U.S. Geological Survey:VA 1999.
- (47) Garbarino, J. R.; Kanagy, L. K.; Cree, M. E. Chapter 1—Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry. Techniques and Methods, book 5, chap. B1; U.S. Geological Survey:VA 2006.
- (48) Patton, C. J.; Krystalla, J. R. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods. Techniques and Methods, book 5, chap. B8; U.S. Geological Survey: VA, 2011.
- (49) Epstein, S.; Mayeda, T. K. Variation of O18 content of waters from natural sources. *Geochim. Cosmochim. Acta* **1953**, 4 (5), 213–224.
- (50) Coplen, T. B.; Wildman, J. D.; Chen, J. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope-ratio analysis. *Anal. Chem.* **1991**, 63 (9), 910– 912.
- (51) Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. *Pure Appl. Chem.* **1994**, 66 (2), 273–276.
- (52) Vogel, J. S.; Nelson, D. E.; Southon, J. R. 14C background levels in an accelerator mass spectrometry system. *Radiocarbon* **1987**, 29 (3), 323–333.
- (53) Donahue, D. J.; Linick, T. W.; Jull, A. J. T. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. *Radiocarbon* **1990**, 32 (2), 135– 142.
- (54) McNichol, A. P.; Gagnon, A. R.; Jones, G. A.; Osborne, E. A. Illumination of a black box—Analysis of gas composition during graphite target preparation. *Radiocarbon* 1992, 34 (3), 321–329.

- (55) McNichol, A. P.; Jones, G. A.; Hutton, D. L.; Gagnon, A. R. The rapid preparation of seawater ΣCO2 for radiocarbon analysis at the National Ocean Sciences AMS Facility. *Radiocarbon* 1994, 36 (2), 237–246.
- (56) Gagnon, A. R.; Jones, G. A. AMS-graphite target production methods at the Woods Hole Oceanographic Institution during 1986–1991. *Radiocarbon* **1993**, 35 (2), 301–310.
- (57) Schneider, R. J.; Jones, G. A.; McNichol, A. P.; von Reden, K. F.; Elder, K. L.; Huang, K.; Kessel, E. D. Methods for data screening, flagging and error analysis at the National Ocean Sciences AMS Facility. *Nuclear Instruments and Methods in Physics Research, Section B—Beam interactions with materials and atoms* **1994**, 92 (1–4), 172–175.
- (58) Ostlund, H. G.; Dorsey, H. G. Rapid electrolytic enrichment and gas proportional counting of tritium. In *Proceedings of the International Conference of Low-Radioactivity Measurements and Applications*; Bratislava, Slovenske pedagogicke nakladatelstvo, 55–60, 1977.
- (59) *Prescribed procedures for measurement of radioactivity in drinking water*; EPA 600/4-80-032; U.S. Environmental Protection Agency: Washington, D.C., 1980.
- (60) Hunt, A. G. Noble Gas Laboratory's standard operating procedures for the measurement of dissolved gas in water samples. Techniques and Methods, book 5, chap. A11; U.S. Geological Survey:VA 2015.
- (61) Ballentine, C. J.; O'Nions, R. K.; Coleman, M. L. A Magnus opus: Helium, neon, and argon isotopes in a North Sea oilfield. *Geochim. Cosmochim. Acta* **1996**, 60 (5), 831–849.
- (62) Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J. Noble gases solubility models of hydrocarbon charge mechanisms in the Sleipner Vest methane field. *Geochim. Cosmochim. Acta* 2016, 194, 291–309, doi:10.1016/j.gca.2016.08.021.
- (63) Barry, P. H.; Lawson, M.; Meurer, W. P.; Danabalan, D.; Byrne, D. J.; Mabry, J. C.; Ballentine, C. J. Determining fluid migration and isolation times in multiphase crustal domains using noble gases. *Geology* 2017, 45 (9), 775–778.
- (64) Tyne, R. L.; Barry, P. H.; Kulongoski, J. T., Landon, M. K.; Hillegonds, D. J.; McMahon, P. B.; Ballentine, C. J. Noble gas characterization of produced waters from the Fruitvale and Lost Hills oil fields, CA, USA. Goldschmidt Abstracts, 2018 (2592).

### Figures



Figure S1. Generalized stratigraphic relations in the studied oil fields, modified from refs 1, 10–11, 15–17.



Figure S2. Major-ion composition of groundwater.



Figure S3. Barite saturation index in relation to sulfate concentration in groundwater. The higher  $SO_4$  concentrations in LH and SB, compared to FV, are accompanied by greater barite saturation

indexes. Despite the high potential for secondary barite co-precipitation and associated removal of Ra, groundwater in the LH and SB oil fields has high Ra, indicating the geochemical conditions that enhance Ra mobilization are more effective than Ra retention by secondary processes.



Figure S4. Concentrations of dissolved organic carbon in relation to chloride concentrations in groundwater and oil-field water. Data for oil-field water from refs 18, 19.



Figure S5. (A) and (C) concentrations of boron in relation to chloride concentrations in selected samples, (B)  $\delta^2$ H-H<sub>2</sub>O in relation to  $\delta^{18}$ O-H<sub>2</sub>O. Data for oil-field water from refs 18, 19. In (A) and (B), data for disposal pond from ref 20, data for Global Meteoric Water Line and Local Meteoric Water Line from refs 21 and 22, respectively. In C, data for disposal pond from ref 23.



Figure S6. (A)  $\delta^2$ H-CH<sub>4</sub> in relation to  $\delta^{13}$ C-CH<sub>4</sub> and (B) concentrations of ammonium in relation to  $\delta^{13}$ C-DIC. Data for oil-field water from refs 18, 19. In (A), methane source boundaries from refs 24, 25.



Figure S7. Conceptual model of radium demobilization in near-pond environment and radium mobilization in downgradient zone of mixing between pond seepage and ambient groundwater. Not to scale.

Table S1. Construction and ancillary data for sampled water wells. Data on water wells from refs 26-28. Data on oil-field infrastructure from ref 8. [na, not applicable; nd, no data]

|           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                  |       |           |                               | Number of      | Number of oil |                                         |                          |                      |
|-----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-------|-----------|-------------------------------|----------------|---------------|-----------------------------------------|--------------------------|----------------------|
|           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                  |       |           |                               | Plugged and    | and gas       | Number of                               |                          | Median depth to      |
|           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth to top    | Depth to         | Well  |           |                               | Buried oil and | production    | injection                               | Cumulative injection     | top of perforations  |
|           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of perforations | bottom of        | depth | Depth to  |                               | gas wells      | wells within  | wells within                            | volume within 500 m      | in oil and gas wells |
| Well name | Project ID    | Well type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (m)             | perforations (m) | (m)   | water (m) | Aquifer or other sample type  | within 500 m   | 500 m         | 500 m                                   | (m3), (injection period) | within 500 m (m)     |
| FG1       | 4_FRUT_ZR_01  | Public supply well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128.0           | 213.4            | 219.5 | 79.2      | Alluvium                      | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| FG2       | 4_FRUT_ZR_02  | Public supply well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 137.2           | 213.4            | 219.5 | nd        | Alluvium                      | 38             | 39            | 3                                       | 1,134,432 (1978-1994)    | 1263                 |
| FG3       | 4_FRUT_ZR_03  | Public supply well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.3           | 219.8            | 219.8 | nd        | Alluvium                      | 9              | 9             | 1                                       | 303,030 (1982-1998)      | 1283                 |
| FG4       | 4_FRUT_ZR_04  | Public supply well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.9           | 210.3            | 216.4 | nd        | Alluvium                      | 15             | 22            | 0                                       | 0 (na)                   | 1054                 |
| FG5       | 4_FRUT_ZR_05  | Public supply well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140.2           | 213.4            | 219.5 | 72.5      | Alluvium                      | 2              | 2             | 0                                       | 0 (na)                   | 1615                 |
| FG6       | 4_FRUT_ZR_06  | zaproven za                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.2            | 207.3            | 213.4 | 65.2      | Alluvium                      | 2              | 2             |                                         | 0 (na)                   | 1423                 |
| FG7       | 4_FRUT_ZR_07  | こ。<br>「<br>し<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125.0           | 204.2            | 210.3 | 74.4      | Alluvium                      | 5              | 4             |                                         | 189,205 (1977-1983)      | 1315                 |
| FG8       | 4_FRUT_ZR_08  | zaprovenska z standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.4            | 243.8            | 243.8 | 71.6      | Alluvium                      | 5              | 5             |                                         | 0 (na)                   | 1316                 |
| FG9       | 4_FRUT_ZR_09  | に<br>し、<br>フ<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.3            | 182.9            | 182.9 | 61.3      | Alluvium                      | 10             | 10            | <text><text><text></text></text></text> | 0 (1985-1986)            | 1141                 |
| FG10      | 4_FRUT_ZR_10  | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115.8           | 213.4            | 219.5 | 70.4      | Alluvium                      | 0              | 0             |                                         | 0 (na)                   | na                   |
| FG11      | 4_FRUT_ZR_11  | こ。<br>「<br>し<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106.7           | 182.9            | 206.7 | 72.8      | Alluvium                      | 2              | 2             |                                         | 0 (na)                   | 1329                 |
| FG12      | 4_FRUT_ZR_12  | zza z z z z z z z z z z z z z z z z z z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.1            | 172.5            | 253.9 | nd        | Alluvium                      | 1              | 1             |                                         | 0 (na)                   | 2509                 |
| FG13      | 4_FRUT_ZR_13  | ア<br>し、<br>プロ<br>、<br>プロ<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155.1           | 198.1            | 198.1 | 66.4      | Alluvium                      | 10             | 25            |                                         | 15,882,280 (1979-2017)   | 1329                 |
| FG14      | 4_FRUT_ZR_14  | z = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.0           | 146.3            | 152.4 | 61.5      | Alluvium                      | 40             | 43            |                                         | 736,880 (1978-1984)      | 1267                 |
|           |               | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |       |           |                               |                |               |                                         |                          |                      |
| BG1       | BELS-01       | tractory of the state of the stat | 79.7            | 94.5             | 96.0  | 54.6      | Alluvium                      | 138            | 137           |                                         | 17,434,688 (1977-2017)   | 344                  |
| BG2       | BELS-02       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.8           | 182.9            | 185.9 | nd        | Tulare                        | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| BG3       | BELS-03       | transformation of the state of t  | nd              | nd               | nd    | nd        | nd                            | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| BG4a      | 4_BELS_EXP-01 | tractory of the state of the stat | 85.3            | 91.4             | 93.0  | nd        | Alluvium                      | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| BG4b      | BELS-04       | I I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.6           | 120.4            | 121.9 | 61.6      | Tulare                        | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| BG5       | BELS-05       | tractory of the state of the stat | 155.4           | 167.6            | 167.6 | 69.4      | Tulare                        | 166            | 519           | 381                                     | 38,066,876 (1977-2017)   | 351                  |
| BG6       | BELS-06       | transformation of the state of t  | 76.2            | 153.0            | 153.0 | nd        | Tulare                        | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| BG7       | BELS-07       | transformation of the state of t  | 74.7            | 165.2            | 176.8 | 83.1      | Tulare                        | 2              | 12            | 0                                       | 0 (na)                   | 1,570                |
| BG8       | BELS-08       | tractory of the state of the stat | 161.5           | 192.0            | 195.1 | 74.7      | Tulare                        | 428            | 517           | 246                                     | 18,336,993 (1977-2018)   | 342                  |
| BG9       | BELS-09       | tractory of the state of the stat | 99.4            | 102.4            | 103.6 | 69.2      | Alluvium                      | 235            | 354           | 182                                     | 8,974,959 (1978-2018)    | 331                  |
| BG10      | BELS-10       | tractory of the state of the stat | 77.7            | 86.9             | 86.9  | 58.6      | Alluvium                      | 390            | 553           | 197                                     | 27,574,071 (1977-2018)   | 430                  |
| BS2       | 4_BELS_PW02   | (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na              | na               | na    | na        | Oil-field water disposal pond | 1              | 3             |                                         | na                       | nd                   |
| BS3       | 4_BELS_PW03   | (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na              | na               | na    | na        | Oil-field water disposal pond | 0              | 0             | <text><text><text></text></text></text> | na                       | nd                   |
|           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                  |       |           |                               |                |               |                                         |                          |                      |
| LG1       | LOST-01       | I I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194.2           | 233.2            | 302.7 | 114.9     | Tulare                        | 99             | 180           |                                         | 19,171,918 (1977-2017)   | 571                  |
| LG2       | LOST-02       | (1,1,1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143.3           | 320.0            | 356.6 | nd        | Tulare                        | 2              | 0             |                                         | 0 (na)                   | nd                   |
| LG3       | LOST-03       | I I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 225.9           | 231.6            | 233.2 | 120.9     | Tulare                        | 93             | 211           | <table-cell></table-cell>               | 19,065,515 (1989-2017)   | nd                   |
| LG4       | LOST-04       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128.0           | 257.6            | 317.0 | nd        | Tulare                        | 1              | 0             |                                         | 0 (na)                   | nd                   |
| LG5       | LOST-05       | I I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137.2           | 149.4            | 185.3 | 88.2      | Tulare                        | 1              | 12            | <text><text></text></text>              | 91,789 (1990-2017)       | nd                   |
| LG6       | LOST-06       | transformation of the state of t  | nd              | nd               | nd    | nd        | nd                            | 0              | 0             |                                         | 0 (na)                   | na                   |
| LG7       | LOST-07       | Irrigation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61.0            | 176.8            | 178.3 | nd        | Tulare                        | 0              | 0             |                                         | 0 (na)                   | na                   |
| LG8       | LOST-08       | Irrigation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.5            | 207.3            | 207.3 | nd        | Tulare                        | 0              | 0             |                                         | 0 (na)                   | na                   |
| LG9       | LOST-09       | Monitoring well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 191.2           | 196.9            | 198.4 | nd        | Tulare                        | 62             | 113           | 52                                      | 9,785,578 (1999-2017)    | nd                   |
| LG10      | LOST-10       | Monitoring well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.3            | 91.4             | 91.4  | 10.5      | Alluvium                      | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| LG11      | LOST-11       | Monitoring well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61.0            | 67.1             | 67.1  | 12.0      | Alluvium                      | 1              | 1             | 0                                       | 0 (na)                   | nd                   |
| LG12      | LOST-12       | Irrigation well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.6           | 201.2            | 201.2 | nd        | Tulare                        | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| LG13      | LOST-13       | Test well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 167.6           | 176.8            | 176.8 | nd        | Tulare                        | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| LG14      | LOST-14       | Test well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125.0           | 134.1            | 134.1 | nd        | Alluvium                      | 0              | 0             | 0                                       | 0 (na)                   | na                   |
| LG15      | LOST-15       | Oil field water supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 133.8           | 255.1            | 280.4 | nd        | Tulare                        | 247            | 424           | 191                                     | nd                       | nd                   |
| LP6       | 4 LOST PW06   | Oil-field injectate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na              | na               | na    | na        | Oil-field injectate           | 128            | 233           | 106                                     | na                       | 571                  |

#### Table S2. Sample collection methods.

|                                                                                                     |                                                                                                |                                                                    |                            |                                         | Preservati                            |         |           |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|-----------------------------------------|---------------------------------------|---------|-----------|--|
| Analyte group                                                                                       | Sampling method                                                                                | Bottles                                                            | Rinse                      | Filter                                  | ve                                    | Storage | Reference |  |
| Field parameters:<br>temperature, dissolved oxygen, specific<br>conductance, pH, turbidity, sulfide | Monitor until stability criteria reached<br>during well purging                                | none                                                               | 3 casing<br>volumes        | none                                    | none                                  | none    | 29        |  |
| Volatile organic compounds (VOCs)                                                                   | Collected from short methanol rinsed<br>teflon tubing in a chamber bag at the<br>wellhead      | 3 40-mL<br>amber glass,<br>no headspace                            | 3 volumes,<br>bottom fill  | none                                    | Acidify to<br>pH<2 with 1:1<br>HCl    | chill   | 30, 31    |  |
| Dissolved organic carbon (DOC)                                                                      | Collected from short non- methanol<br>rinsed teflon tubing in a chamber bag<br>at the wellhead | 250-mL<br>baked amber<br>glass                                     | 1 volume,<br>bottom fill   | 0.45 micron                             | Acidify to<br>pH<2 with<br>4.5N H2SO4 | chill   | 30, 32    |  |
|                                                                                                     |                                                                                                | 250 ml clear<br>HDPE                                               | yes                        | none                                    | none                                  | chill   |           |  |
| Major and minor ions, trace elements,<br>alkalinity                                                 | Collected from short methanol rinsed<br>teflon tubing in a chamber bag at the<br>wellhead      | 250 ml clear<br>HDPE                                               | yes                        |                                         | Acidify to<br>pH<2 with 7.5<br>N HNO3 | chill   | 30        |  |
|                                                                                                     |                                                                                                | 250 ml clear<br>HDPE                                               | yes                        |                                         | none                                  | chill   |           |  |
| Nutrients                                                                                           | Collected from short methanol rinsed teflon tubing in a chamber bag at the wellhead            | 125 ml brown<br>HDPE                                               | yes                        |                                         | none                                  | chill   | 30        |  |
| Stable isotopes of hydrogen (δ2Η) and<br>oxygen (δ18Ο) in water                                     | Collected from short methanol rinsed teflon tubing in a chamber bag at the wellhead            | 60-mL glass<br>with polyseal<br>cap                                | none                       | : '' '' '' '' '' '' '' '' '' '' '' '' ' | none                                  | ambient | 33, 34    |  |
| δ13C of inorganic carbon dissolved in water<br>and carbon-14 abundance                              | Collected from short methanol rinsed<br>teflon tubing in a chamber bag at the<br>wellhead      | 1-L coated<br>clear glass<br>with polyseal<br>cap, no<br>headspace | 3 volumes,<br>bottom fill  |                                         | none                                  | chill   | 30        |  |
| Tritium                                                                                             | Collected from short non- methanol<br>rinsed teflon tubing in achamber bag<br>at the wellhead  | 1-L HDPE<br>with polyseal<br>cap, no<br>headspace                  | Bottom fill                |                                         | none                                  | ambient | 30        |  |
| Radium-224 and radium- 226                                                                          | Collected from short methanol rinsed<br>teflon tubing in a chamber bag at the<br>wellhead      | 1-L HDPE                                                           | 3 volumes                  |                                         | Acidify to<br>pH<2 with 7.5<br>N HNO3 | ambient | 30        |  |
| Radium-228                                                                                          | Collected from short methanol rinsed<br>teflon tubing in a chamber bag at the<br>wellhead      | 2 1-L HDPE                                                         | 3 volumes                  |                                         | Acidify to<br>pH<2 with 7.5<br>N HNO3 | ambient | 30        |  |
| Dissolved noble gases                                                                               | Collected at the wellhead                                                                      | 2 copper<br>tubes, no<br>bubbles,<br>crimped                       | minimum 10<br>tube volumes |                                         | none                                  | ambient | 35, 36    |  |
| Dissolved hydrocarbon gases, δ13C & δ2H of<br>methane                                               | Collected from short non-methanol<br>rinsed teflon tubing in achamber bag<br>at the wellhead   | Isoflask                                                           | none                       |                                         | biocide                               | ambient | 37, 38    |  |

Table S3. Laboratory analytical methods. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.

Government.

| Analyte group                                                                                       | Analytical method                                                                                                                                                   | Laboratory                                                                                                                                     | Reference     |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Field parameters:<br>temperature, dissolved oxygen, specific<br>conductance, pH, turbidity, sulfide | Calibrated field meters and test kits                                                                                                                               | USGS field measurement                                                                                                                         | 29            |
| Volatile organic compounds (VOCs)                                                                   | Purge and trap capillary gas<br>chromatography/mass spectrometry<br>(EPA Method 524.2)                                                                              | USGS National Water-Quality Laboratory, Lakewood,<br>Colorado                                                                                  | 31            |
| Dissolved organic carbon (DOC)                                                                      | High-temperature combustion<br>catalytic oxidation (EPA 415.3 rev<br>1.2)                                                                                           | USGS Organic Matter<br>Research Laboratory, Sacramento, California                                                                             | 32, 39, 40    |
| Major and minor ions, trace elements,<br>alkalinity                                                 | Atomic absorption spectrometry,<br>colorimetry, ion-exchange<br>chromatography, inductively-coupled<br>plasma atomic-emission<br>spectrometry and mass spectrometry | USGS National Water-Quality Laboratory, Lakewood,<br>Colorado                                                                                  | 41-47         |
| Nutrients                                                                                           | Kjedahl digestion, colorimetry by<br>enzymatic reduction                                                                                                            | USGS National Water-Quality Laboratory, Lakewood,<br>Colorado                                                                                  | 42, 48        |
| Stable isotopes of hydrogen (δ2H) and oxygen<br>(δ18O) in water                                     | Gaseous hydrogen and carbon<br>dioxidewater equilibration and<br>stable-isotope mass spectrometry                                                                   | USGS Stable Isotope<br>Laboratory, Reston, Virginia                                                                                            | 33, 34, 49-51 |
| $\delta 13C$ of inorganic carbon dissolved in water and carbon-14 abundance                         | Stable isotope ratio mass<br>spectrometry and accelerator mass<br>spectrometry                                                                                      | Woods Hole Oceanographic Institution, National Ocean<br>Sciences Accelerator Mass Spectrometry Facility (NOSAMS),<br>Woods Hole, Massachusetts | 52-57         |
| Tritium                                                                                             | Electrolytic enrichment and gas counting                                                                                                                            | USGS Stable<br>Isotope and Tritium Laboratory, Menlo Park, California                                                                          | 58            |
| Radium-224 and radium- 226                                                                          | Alpha spectroscopy (EPA method<br>903.1)                                                                                                                            | ALS Laboratories, Fort Collins, Colorado                                                                                                       | 59            |
| Radium-228 Gas proportional counting (EP,<br>method 904.0)                                          |                                                                                                                                                                     | ALS Laboratories, Fort Collins, Colorado                                                                                                       | 59            |
| Dissolved noble gases                                                                               | Mass spectrometry                                                                                                                                                   | USGS Noble Gas Laboratory,<br>Denver, CO                                                                                                       | 60            |
| Dissolved noble gases                                                                               | Mass spectrometry                                                                                                                                                   | Noble Gas Laboratory, Univ. of Oxford, Oxford, U.K.                                                                                            | 61-64         |
| Dissolved hydrocarbon gases, δ13C & δ2H of<br>methane                                               | Gas chromatography, Stable isotope<br>ratio mass spectrometry                                                                                                       | Weatherford (formerly Isotech) Laboratories                                                                                                    | 37, 38        |

Table S5. 226Ra and 228Ra activities in sediment samples collected from the LH and SB boreholes. Data can be downloaded from ref 13 using the site numbers, sample dates, and sample times listed in the table.

| Sample name | Site number     | Sample date | Sample time | Aquifer/Formation | Depth (m)   | Ra-226 (Bq/kg) | Ra-228 (Bq/kg) |      |
|-------------|-----------------|-------------|-------------|-------------------|-------------|----------------|----------------|------|
| BR-110      | 353049119434101 | 7/7/2018    | 1100        | Alluvium          | 33.5        | 11.4           | 8.3            |      |
| BR-160      | 353049119434101 | 7/7/2018    | 1700        | Alluvium          | 48.8        |                | 10.0           | 0.92 |
| BR-260      | 353049119434101 | 7/8/2018    | 1400        | Alluvium          | 79.2        |                | 13.7           | 0.86 |
| BR-310      | 353049119434101 | 7/8/2018    | 1500        | Tulare            | 94.5        |                | 32.5           | 0.62 |
| BR-340      | 353049119434101 | 7/8/2018    | 1700        | Tulare            | 103.6       |                | 10.2           | 1.36 |
| BR-410      | 353049119434101 | 7/9/2018    | 1000        | Tulare            | 134.5       |                | 10.2           | 0.26 |
| LH-40-50    | 354048119445001 | 3/8/2018    | 1300        | Alluvium          | 12.2 - 15.2 |                | 17.6           | 0.89 |
| LH-220      | 354048119445001 | 3/9/2019    | 1100        | Alluvium          | 67.1        |                | 14.1           | 1.26 |
| LH-380      | 354048119445001 | 3/9/2018    | 1600        | Tulare            | 115.8       |                | 11.5           | 1.39 |
| LH-480      | 354048119445001 | 3/10/2018   | 1100        | Tulare            | 146.3       |                | 10.2           | 0.51 |