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Abstract As Arctic temperatures rise at twice the global rate, sea ice is diminishing more quickly than
models can predict. Processes that dictate Arctic cloud formation and impacts on the atmospheric energy
budget are poorly understood, yet crucial for evaluating the rapidly changing Arctic. In parallel, warmer
temperatures afford conditions favorable for productivity of microorganisms that can effectively serve as ice
nucleating particles (INPs). Yet the sources of marine biologically derived INPs remain largely unknown
due to limited observations. Here we show, for the first time, how biologically derived INPs were likely
transported hundreds of kilometers from deep Bering Strait waters and upwelled to the Arctic Ocean surface
to become airborne, a process dependent upon a summertime phytoplankton bloom, bacterial respiration,
ocean dynamics, and wind‐driven mixing. Given projected enhancement in marine productivity,
combined oceanic and atmospheric transport mechanisms may play a crucial role in provision of INPs from
blooms to the Arctic atmosphere.

1. Introduction

Arctic mixed‐phase clouds (AMPCs) are a key component of the Arctic climate system that affect the delicate
energy balance over frozen surfaces (Morrison et al., 2012). One of the least understood processes regarding
AMPCs is aerosol‐cloud interactions, specifically those pertaining to cloud ice formation by mineral or biolo-
gical ice nucleating particles (INPs; Solomon et al., 2018). Biologically derived INPs (Bio‐INPs; INPs including
microbes and their exudates) that form ice greater than−15 °C are typically thought to be of terrestrial origin
—yet marine bio‐INPs have been shown to form ice at temperatures up to −3 °C (McCluskey et al., 2018a;
DeMott et al., 2016; Irish et al., 2017; Irish et al., 2019; Schnell, 1975). AMPC temperatures are often greater
than −10 °C on average, are most prevalent in late summer, and can exist down to the surface (Shupe, 2011;
Shupe et al., 2006, 2011), while the cloud‐drivenmixed layer can also extend down to the surface (Shupe et al.,
2013). These statistics indicate that marine bio‐INPs could play a critical role in cloud formation, especially in
the summer when emitted from open water (Wex et al., 2019). Yet field observations of such INPs are exceed-
ingly rare and are mainly reported in midlatitude or Southern Ocean regions (Bigg, 1973; Schnell, 1977).

Measurements of INPs in both the ocean and atmosphere are essential to directly link the thriving marine
sources of primary productivity (production of organic matter by phytoplankton) to the clouds above.
Schnell (1977) measured INPs in sub‐Arctic seawater and air and found cases where atmospheric INPs were
comparable or much lower in abundance than those found in the seawater, indicating the ocean was likely
the source of the atmospheric INPs. The Arctic summer possesses quintessential conditions for proliferation
of primary productivity when open water and daylight hours are at their maxima (Moore et al., 2018). In a
recent study, Gabric et al. (2018) demonstrate a clear connection between sea ice extent, productivity, and
marine biogenic aerosols. Additionally, recent modeling work has demonstrated that marine organic aero-
sols lead to increases in cloud ice in polar regions during the summer (Huang et al., 2018). However, to date
no studies have reported INP enhancements from naturally occurring phytoplankton blooms, which can
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link such sources to the air above. We present results from a summertime expedition in the Bering and
Chukchi Seas demonstrating how bio‐INPs likely from a phytoplankton bloom became airborne in the lower
Arctic atmosphere.

2. Materials and Methods
2.1. Sample Collection

Bulk seawater (herein simply called seawater) and aerosol samples were acquired on the U.S. Coast Guard
Cutter Healy from 26 August to 13 September 2017 during a collaboration between the Ice Nucleation over
the ARCtic Ocean program and the Distributed Biological Observatory (DBO)‐Northern Chukchi Integrated
Study (Figure 1; Tables S1–S3 in the supporting information). Seawater samples for INPs were collected daily
at ~16:00 UTC from Healy's underway system intake 8 m below the surface and were analyzed immediately
after collection. Seawater samples were also obtained during the occupation of DBO Transect 3 (DBO3;
Figure 1(a); Moore & Grebmeier, 2018) for carbon analyses. Sea surface microlayer samples were not col-
lected but have previously been shown to be a rich source of INPs (Abbatt et al., 2019; Irish et al., 2017;
Wilson et al., 2015). Daily (24‐hr) aerosol samples were collected ~20 m above mean sea level and 8 m from
the bow using a time‐ and size‐resolved Davis Rotating‐drum Universal‐size‐cut Monitoring (DRUM)
impactor (DA400, DRUMAir, LLC; Creamean et al., 2018a; Creamean et al., 2018b). The DRUM collected
aerosol particles at four size ranges (0.15–0.34, 0.34–1.21, 1.21–2.96, and 2.96 to >12 μm in diameter) and
sampled at 28.6 L/min. The samples were deposited onto 20 × 190 × 0.05 mm strips of petrolatum‐coated
perfluoroalkoxy substrate secured onto the rotating drums (20 mm thick, 60 mm in diameter) in each of
the four stages at the rate of 7 mm/day (5 mm of sample streaked onto the perfluoroalkoxy substrate fol-
lowed by 2 mm of blank). Samples were stored at approximately −20 °C for 8–10 months until analysis.

2.2. Ice Nucleation Measurements

The drop‐freezing experimentation has previously been described in detail by Creamean et al. (2018a, 2018b)
thus is only briefly described here. During testing, the cold plate was cooled variably at 1–10 °C/min from
room temperature until around−30 °C. A + 0.33 °C correction factor and uncertainty of ±0.15 °C was added
to the probe accuracy uncertainty based on characterization testing presented in Creamean et al. (2018b).
A + 2 °C correction factor was added to seawater samples only to account for the typical freezing depression
of salt in seawater (Irish et al., 2017; Schnell, 1977). Ultrapure water (Barnstead™ Smart2Pure™) and 30‐
PSU artificial seawater (Instant Ocean® Sea Salt) blanks were tested to confirm amaximum of a 2 °C freezing
point depression. Frozen drops were detected by eye until all 100 drops were frozen (>80% of the freezing
temperatures of drops were detected and recorded). Each sample was tested three times with 100 new drops
for each test. From the tests, the fraction frozen from detected frozen drops was calculated. Cumulative INP
spectra were calculated using the equation by Vali (1971, 2019) and corrected for the total volume of suspen-
sion and air per sample. Most seawater samples were subject to heat treatment, which reduces heat‐labile
INPs that are likely proteinaceous in nature (Hill et al., 2016).

2.3. Oceanographic Measurements

Physical oceanographic measurements were obtained from the underway system in which samples were col-
lected for INP measurements and included, but were not limited to, seawater temperature (SBE3S, Sea‐Bird
Electronics, Inc.), salinity (SBE21, Sea‐Bird Electronics, Inc.), fluorescence (Chlorophyll Fluorometer,
Seapoint Sensors, Inc.), partial pressure of carbon dioxide (pCO2; custom built unit from Palmer
Underway pCO2 system), and dissolved oxygen (dO2; SBE43, Sea‐Bird Electronics, Inc.).

Florescence measurements provided a relative indicator of chlorophyll concentration by scaling a light
absorption measurement with a predetermined scale factor (determined by the manufacturer using a
monoculture of phytoplankton). Water column measurements from DBO3 were obtained with a
conductivity‐temperature‐depth package consisting of a SBE911‐plus (Sea‐Bird Electronics, Inc.) for tem-
perature, conductivity, pressure, dO2, fluorescence, and other parameters not presented herein.

2.4. Biogeochemical Sampling and Analyses

Water samples were taken approximately every 10 m throughout the water column from the conductivity‐
temperature‐depth rosette's 10‐L Niskin bottles for total inorganic carbon (TIC), total alkalinity (TA),
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Figure 1. Measurements demonstrating the presence and persistence of the phytoplankton bloom during Ice Nucleation over the ARCtic Ocean program
and the Distributed Biological Observatory‐Northern Chukchi Integrated Study. The Healy ship track is colored by a date, b chlorophyll, c partial pressure
of CO2 (pCO2), and d apparent oxygen utilization (AOU).Markers indicate locations of underway seawater collection. In a, they are colored by date, but only case
study samples are colored by date in the other panels while remaining samples are gray. Samples from Distributed Biological Observatory transect 3 (DBO3)
are shown in a as small yellow circles. Bathymetry data (0–250 m) were obtained from the USGS publications repository website (https://pubs.usgs.gov/of/2011/
1127/ss.html). The thin black line to the west of the ship track represents the U.S./Russian border.
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nutrients, and dissolved oxygen. The samples were placed into precleaned ~200‐ml borosilicate bottles and
poisoned with mercuric chloride to halt biological activity. Samples were analyzed for TIC using an infrared
detection system (MARIANDA‐AIRICA) and for TA using an open‐cell titration system (MARIANDA‐
VINDTA 3S) according to published best practices for oceanographic CO2 measurements (Dickson, 2007;
Goyet & Snover, 1993). Routine analysis of certified reference material (A.G. Dickson, Scripps Institute of
Oceanography) ensured that the accuracy of the TIC and TA measurements averaged 4.3 μmol/kg (~0.2%)
and 2.4 μmol/kg (~0.1%), respectively, and were stable over time. pCO2 was calculated from the bottle tem-
perature and salinity and phosphate, TIC, and TA observations (Robbins et al., 2010). Error in pCO2 from
uncertainty in TA and DIC inputs averaged 15.5 μatm (1.875%). Carbonate dissociation constants from
Millero (2006) were applied according to Evans et al. (2015). Error from the use of constants in the calcula-
tion of pCO2 from DIC and TA is estimated to be ±2.7% after Dickson (2010) and Hydes et al. (2010).

2.5. One‐Dimensional Ocean Mixing Model

The Price‐Weller‐Pinkel (PWP; Price et al., 1986) one‐dimensional mixing model was utilized to investigate
the influence of wind forcing on the stratification of the water column and compute mixed layer depth evo-
lution. It can be forced by surface heat and freshwater fluxes, as well as surface wind stress. In this study, we
turned off all forcing except for wind stress and utilized the wind speed time series from Healy's meteorolo-
gical sensors to compute the zonal and meridional components of wind stress. From this, we computed the
timescale of deepening of the surface mixed layer.

3. Results and Discussion
3.1. A Robust Bering Strait Bloom

A distinctive phytoplankton bloom near 66°N, 168°W was observed during both transects through Bering
Strait (29 August and 12 September 2017) as indicated by enhanced 8‐m chlorophyll (up to 32 μg/L)—a
proxy for phytoplankton biomass (Figures 1(a) and 1(b); time series in Figure S1). Low pCO2 and negative
apparent oxygen utilization values (Figures 1c and 1d, respectively) were also observed in Bering Strait, indi-
cating uptake of carbon dioxide and oxygen production by phytoplankton, and thus active productivity.
Notably, because of the delayed 2016 freezeup in Bering Strait, 2017, was an anomalous year in terms of pro-
ductivity enhancement and the occurrence of a secondary pulse of production in August, after the primary
spring bloom (Figure S2). Secondary blooms are becoming more common because of delayed freezeup and
wind‐driven mixing in surface waters, not only in Bering Strait but also in regions throughout the Arctic
Ocean (Ardyna et al., 2014).

3.2. Anomalous Concentrations of Biological INPs From the Ocean

High concentrations of INPs relative to all seawater samples collected during the cruise were found in the
sample collected northwest of the bloom (29 August), where chlorophyll concentrations were relatively
low (<5 μg/L; Figure 2a). The 29 August seawater sample represents the upper bounds of what was observed
from all samples whereby the entire sample froze before −15 °C. It contained INPs at freezing temperatures
warmer than those recently reported from other Arctic locations, but remaining samples had INPs that were
comparable to these previous measurements (Figure S3; Irish et al., 2017; Wilson et al., 2015). Heat
treatment was used to verify that these INPs contained proteinaceous material and, in fact, that all seawater
samples contained suchmaterial (Figure S4). Results from supporting Deoxyribonucleic acid (DNA) analysis
show there were over twice the number of bacteria in the 29 August sample compared to the 28 August
seawater sample (Figure S5). Though we were not able to identify which were responsible for the INPs,
the DNA results revealed the presence of known bacterial ice nucleators.

The 29 August coarse‐mode aerosol sample followed a similar suit to the seawater, forming ice up to −5 °C
(Figure 2b). Furthermore, there were a greater number of viable microorganisms cultured from total aerosol
on 29 August compared to 28 August (Figure S6), supporting the fact that the air on 29 August contained
relatively high numbers of biological aerosols. The 29 August coarse and total aerosol samples were on
the lower end of what has been observed in previous laboratory and field measurements reported in marine
boundary layer conditions, but consistent with previous observations in Bering Strait and with what is
expected for pristine sea spray (McCluskey et al., 2018b; Figure S7).
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Coarse INPs—at least the lower end of the 3‐ to 12‐μm range—correspond to typical sizes of diatom frag-
ments and bacteria, which are abundant in seawater and therefore more likely to be transferred to aerosol
(McCluskey et al., 2018a). Recent studies corroborate our findings whereby INPs are >3 μm in Arctic aerosol
(Mason et al., 2016; Si et al., 2018). Bacteria, certain proteins, and cell‐free macromolecules fall in the greater
than −15 °C INP freezing temperature range (Fröhlich‐Nowoisky et al., 2016), whereas most diatoms and
phytoplankton typically freeze at temperatures well below this threshold (Knopf et al., 2011). Aerosol com-
positional information measured during the cruise, air mass transport history, and comparison to previous
sea spray studies indicate INPs such as dust were likely not a major source on 29 August and corroborate
local marine processes as the prominent source of the INPs (Figures S7 and S8). Combined, key information
on previously reported freezing temperatures and particle size and composition indicates the INPs observed
in the seawater in the present study were likely bacteria and/or cell‐free exudates adhered to larger particles
and became aerosolized in the air above the ocean (Wilson et al., 2015).

Historically, the location of the 29 August seawater sample is a “hot spot” for benthic biomass deposition
(Grebmeier et al., 2015). In these areas, phytoplankton sink to the bottom, where light limitation and cooler
temperatures often favor the proliferation of bacteria. In this hot spot, phytoplankton are deposited on the
seafloor due to ocean circulation patterns (Springer et al., 1996), leading to high bacterial abundance north
of Bering Strait. The body of previous work in this region demonstrates that the location of the 29 August
sample is especially likely to have high bacterial abundance relative to other sampling locations.

3.3. Transport of INPs Caused by Oceanic and Lower Atmospheric Dynamics

Typically, Bering Strait is fed by nutrient‐rich Anadyr Water (AW) from the southwest, nutrient‐limited
Alaskan Coastal Water from the southeast, and Bering Shelf Water directly from the south (Grebmeier,
2012; Grebmeier et al., 2006; Pickart et al., 2010). AW spurs production in the surface waters of Bering

Figure 2. Cumulative ice nucleating particle (INP) concentrations for a seawater and b coarse aerosol samples (for the size
ranges of 2.96 to >12 μm). The case study samples are colored by the same schematic as Figure 1a, while spectra from
samples collected during remaining, noncase study days are shown in light gray for both seawater and coarse aerosol
(“all”). C the map shows the segment of the ship track in Bering Strait where the case study samples were collected. The
eight Distributed Biological Observatory transect 3 (DBO3) stations are shown and labeled. The open circles in a
represent the heat treated 28 and 29 august seawater samples. The dark gray spectra in a represents the ultrapure water
(circles) and 30‐PSU artificial seawater (squares) blanks and in b represents the aerosol blank. Error bars for the INP
concentrations and freezing temperatures correspond to standard deviation per 0.5 °C bin and temperature probe‐plate
versus drop variability standard deviation, respectively (Creamean et al., 2018b).
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Strait, and the swift northward flow then carries phytoplankton into the Chukchi Sea. North of the strait,
however, the flow weakens considerably (Pisareva et al., 2015), which allows a significant amount of carbon
to be exported to the seafloor at the deposition zone where bacterial respiration can occur. The water column
measurements fromHealy's occupation of the DBO3 during 29–30 August suggest that this was the case. The
cold and relatively salty AW was prominent near the bottom of Station 2 (Figure 3a). The high turbidity of
this water, together with the low fluorescence, positive apparent oxygen utilization, and high pCO2, indicate
active respiration was taking place (Figure 3).

Notably, AW was flowing to the south during the occupation of DBO3 as indicated by absolute geostrophic
velocity (Figure 3f). This southward flow, as well as the strong southward flow near the Alaskan coast, was in
response to a northerly wind event on the Chukchi shelf that began roughly a week before the occupation of
the transect and reached wind speeds exceeding 10 m/s near DBO3 (Figure S9a), which reversed the AW
flow. Importantly, however, we verified that the flow through Bering Strait was northward for most of the
month of August (Figure S9b). Hence, the bloom activity in Bering Strait likely resulted in deposition of car-
bon to the seafloor in the region of DBO3 during the time leading up to the cruise, resulting in respiration.

Figure 3. Physical and biogeochemical oceanographic measurements along the Distributed Biological Observatory transect 3 looking to the north. The numbers
on the top axes denote the station numbers. The location of the 29 august sample is indicated on panel (a). The bottom depth data are from Healy's echosounder.
(a) Vertical section of potential temperature (color) overlain by salinity (contours). (b) Same as (a) except for beam transmission (color) overlain by potential
density (contours, kg/m3). (c) Same as (b) except for fluorescence. (d) Same as (b) except for apparent oxygen utilization. (e) Same as (b) except for pCO2. The water
sample data points are marked by the black dots. (f) Same as (b) except for absolute geostrophic velocity. Negative velocities (red shades) are southward.
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How did the bacteria in the sediments subsequently get transported to the sea surface and released to the
atmosphere?We argue that the wind event and the corresponding southward flow in late August were essen-
tial to this process. Note the strongly sloped isopycnals (lines of constant density) near Station 2 associated
with the southward flow of AW. Just shoreward of this, the 25.8 kg/m3 isopycnal outcrops at Station 3. This
weakly stratified water is more easily homogenized by wind mixing, which might be able to stir material
from near the bottom to the sea surface. To test this, we used the PWP model. The density profile of
Station 3 was used as the initial condition, and the PWP model was forced with the wind stress associated
with the late‐August storm. This revealed that the wind‐driven surface mixed‐layer deepened to within
10 m of the seafloor during the event, which would effectively transport near‐bottommaterial to the sea sur-
face. The mixed‐layer depth is commonly observed down to 20–30 m in this region (Rainville et al., 2011).

Another possible mechanism for transporting material from depth to the surface is vertical advection due to
convergence in the bottom Ekman layer. On the cyclonic (shoreward) side of the reversed AW jet, the
Ekman convergence results in upwelling. A scaling for the vertical velocity is ζH/2, where ζ is the relative
vorticity andH is the bottom boundary layer height (Pedlosky, 1987). Based on the calculated absolute geos-
trophic velocity, the value of ζ on the cyclonic side of the jet is on the order of 5 × 10−6 s−1. Since the water
column is weakly stratified at Station 3, we takeH to be on the order of the water depth (50 m). This gives an
upwelling rate of ~10 m/day, which means it would take 5 days for water near the bottom to reach the sur-
face. The strong northerly winds began about a week before DBO3 was occupied, implying that the reversed
AW jet was present long enough for this to happen. To become airborne, the INPs in the surface waters were
then likely aerosolized during ejection from surface bubble bursting, a process which is well known in terms
of generating sea spray aerosol (Wilson et al., 2015). The strong wind speeds during the late‐August storm
likely induced wave breaking and bubble bursting at the surface.

4. Conclusions and Broader Implications

Our results demonstrate that flow dynamics andmixing, in the presence of wind forcing, can strongly impact
INP populations from the bottom of the shelf to the air above the surface (Figure 4). Nutrient‐rich AW flows
into Bering Strait, enabling proliferation of a phytoplankton bloom in the surface waters. The photo‐
inhibited bacteria residing in and near the sediment below the bloom are dormant and unproductive

Figure 4. Conceptual model of processes associated with the bloom. Bottom axis represents relative distance and time.
Numbers correspond to the steps in the process, namely, (1) nutrient input, (2) primary production, (3) slowing of
the current, (4) deposition of nutrient exhaustion, (5) wind‐forced turnover, and (6) aerosolization. The blue with the
minus sign indicates inactive microbes, while the green with the plus sign indicates actively producingmicrobes. Blue and
white arrows indicate water and air movement, respectively. DBO3 = Distributed Biological Observatory transect 3.
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since vertical export is limited by the rapid lateral transport and food is not available to them. As the flow
progresses northward and slows, the nutrients are drawn down, and the phytoplankton starts to decay
and sink, providing a steady source of carbon to the seafloor. Bacterial respiration and growth ensue at
the deposition zone north of Bering Strait. At this point, northerly wind forcing results in the transport of
the active bacteria from the bottom deposition zone to the surface via two mechanisms: upwelling on the
cyclonic side of the reversed circulation and turbulent wind mixing. The strong winds also likely induced
surface bubble breaking and aerosolization of the bacterial material. Some of these materials were likely pro-
ficient INPs that may assist cloud glaciation processes at relatively warm temperatures should they become
vertically mixed through themarine boundary layer to cloud levels. Shupe et al. (2006, 2013) report relatively
low and warm summertime AMPCs and occasional vertical mixing in the Arctic marine boundary layer,
which makes it plausible that the characteristic INPs studied here may reach levels in which they realisti-
cally assist cloud glaciation. However, we note that our findings are qualitative in nature and a more quan-
titative assessment of the relationships between the various measurements should be conducted in
future studies.

More broadly, the processes that invigorate AMPC formation are poorly quantified, but results such as ours
can help elucidate the sources, abundance, and efficiency of Arctic INPs in addition to the mechanisms that
promote aerosolization from the marine environment. One thought‐provoking question that arises from this
study is as follows: Are shelf deposition zones in the Arctic a key source of airborne INPs? We believe that
this question warrants further study, especially considering the ongoing ecological shifts in this region,
and potentially other regions, rich in benthic and pelagic activity. Additionally, with the projected increase
in Arctic blooms under warmer climate scenarios, quantifying INP abundance and effectiveness from such
sources with similar particulate dispersal processes as those reported here is crucial to estimating the Arctic
INP and ultimately the Arctic aerosol budget. Another question that should be addressed in future observa-
tions is as follows: Will a warmer climate, and thus a more productive Arctic Ocean, serve as a dominant
source of INPs that affect AMPC formation? Results from the current work provides motivation to augment
the frequency and spatial coverage of targeted Arctic INP, ecological, and oceanographic measurements in
the future.
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