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SUMMARY

Joint inversion of multiple electromagnetic data sets, such as controlled source electromagnetic
and magnetotelluric data, has the potential to significantly reduce uncertainty in the inverted
electrical resistivity when the two data sets contain complementary information about the sub-
surface. However, evaluating quantitatively the model uncertainty reduction is made difficult
by the fact that conventional inversion methods—using gradients and model regularization—
typically produce just one model, with no associated estimate of model parameter uncertainty.
Bayesian inverse methods can provide quantitative estimates of inverted model parameter
uncertainty by generating an ensemble of models, sampled proportional to data fit. The result-
ing posterior distribution represents a combination of a priori assumptions about the model
parameters and information contained in field data. Bayesian inversion is therefore able to
quantify the impact of jointly inverting multiple data sets by using the statistical information
contained in the posterior distribution. We illustrate, for synthetic data generated from a simple
1-D model, the shape of parameter space compatible with controlled source electromagnetic
and magnetotelluric data, separately and jointly. We also demonstrate that when data sets con-
tain complementary information about the model, the region of parameter space compatible
with the joint data set is less than or equal to the intersection of the regions compatible with
the individual data sets. We adapt a trans-dimensional Markov chain Monte Carlo algorithm
for jointly inverting multiple electromagnetic data sets for 1-D earth models and apply it to
surface-towed controlled source electromagnetic and magnetotelluric data collected offshore
New Jersey, USA, to evaluate the extent of a low salinity aquifer within the continental shelf.
Our inversion results identify a region of high resistivity of varying depth and thickness in the
upper 500 m of the continental shelf, corroborating results from a previous study that used
regularized, gradient-based inversion methods. We evaluate the joint model parameter uncer-
tainty in comparison to the uncertainty obtained from the individual data sets and demonstrate
quantitatively that joint inversion offers reduced uncertainty. In addition, we show how the
Bayesian model ensemble can subsequently be used to derive uncertainty estimates of pore
water salinity within the low salinity aquifer.

Key words: Controlled source electromagnetics (CSEM); Joint inversion; Magnetotellurics;
Statistical methods; Marine electromagnetics; Probability distributions.

method (CSEM), which actively generates EM fields and measures
their attenuation and phase shift at receivers offset from the trans-
Electromagnetic (EM) methods use passive or active source EM mitter.

fields to probe subsurface conductivity structure. Depending on the The measured EM fields must be inverted to recover an estimate

1 INTRODUCTION

frequency content of the source fields, the depth of investigation can
range from hundreds of kilometres to just a few meters. Commonly
employed EM methods include the Magnetotelluric (MT) method,
which measures the Earth’s EM response to natural variations in
the geomagnetic field, and the controlled source electromagnetic

of subsurface conductivity. The standard deterministic inversion
technique for EM geophysical data relies upon an objective func-
tion that is typically the noise-weighted L2 norm of the data misfit
between measured and forward modelled data, and a regulariza-
tion penalty term against model roughness and/or difference from
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a reference model. Gradients in the objective function are then
used to attempt to discover a model that minimizes this function
(e.g. Constable et al. 1987; Newman & Alumbaugh 2000). Using
this approach, the inversion algorithm searches until it produces a
model that fits the data to within a user specified tolerance—ideally
to within the data uncertainty. Other nearby models can also be
found by adjusting the data fit tolerance or by adjusting the relative
weighting of the model roughness norm, which results in finding
one or more additional models that are usually in a neighbourhood
of the original best-fitting model.

What these methods leave unaddressed is the uncertainty in the
estimated model parameters. Most geophysical inverse problems
are non-unique—meaning that an infinite number of models may
adequately explain the measured data. In fact, regularization must
be introduced in the formulation of the objective function precisely
to constrain this non-uniqueness and allow the inverse algorithm to
converge to a solution. Bayesian sampling-based inverse methods
are a class of algorithms that provide an estimate of model parameter
uncertainty by generating an ensemble of models—each of which
fits the data, and from which statistical properties of the model pa-
rameters can be inferred (Mosegaard & Tarantola 1995). Addition-
ally, they do not require linearization, nor do they require explicit
regularization—but these benefits come at the price of significant,
additional computational cost. For an illuminating discussion of
the equivalence between Bayesian and deterministic methods, see
Calvetti & Somersalo (2018). Recent examples of Bayesian inverse
methods applied to CSEM data are provided in, infer alia, Ray &
Key (2012) and Gehrmann ez al. (2015), and MT examples are given
in Mandolesi et al. (2018) and Xiang et al. (2018).

The non-uniqueness of the inverse problem often results in signif-
icant model parameter uncertainty. This uncertainty can arise from
multiple sources, including simplifications in the governing physics
equations, computational inaccuracies in the forward calculations,
and measurement uncertainty. One approach for reducing this un-
certainty is to collect multiple kinds of data and invert them jointly.
Joint inversion aims to reduce the contribution of measurement er-
ror and governing physics to inverted model parameter uncertainty.
Because models under joint inversion are required to fit all data sets
simultaneously, the range of parameter values compatible with the
joint data set should be smaller than the range compatible with any
of the individual data sets, if they contain complementary informa-
tion about the model (Fig. 1).

Jointly inverting EM data sets with standard inverse methods—
using gradients to find a minimizer of an objective function—often
yields significant, qualitative improvements in the inverted model
parameters (e.g. Abubakar ef al. 2011). Because these methods do
not provide true, non-linear estimates of model parameter uncer-
tainty, however, this qualitative improvement is difficult to quantify.
Bayesian sampling-based inverse methods, on the other hand, can
easily be adapted to joint inversion, allowing the improvement in
model parameter uncertainty to be evaluated quantitatively.

Joint inversion methods using gradients to minimize an objective
function have been applied to geophysical problems since at least
the 1970s (Vozoff & Jupp 1975). The range of data types that have
been jointly inverted is extensive, and includes: DC resistivity and
MT data (Sasaki 1989); DC resistivity and CSEM (Gomez Trevino
& Edwards 1983); marine seismic and CSEM data (Hoversten ef al.
2006); DC resistivity and seismic tomography (Gallardo & Meju
2004); seismic traveltime and gravity (Lelievre et al. 2012); strong
motion, teleseismic, geodetic, and tsunami data (Yokota et al. 2011);
electrical resistance and ground-penetrating radar data (Bouchedda
et al. 2012); glacial isostatic adjustment and mantle convection
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Figure 1. Simple cartoon illustrating how joint inversion might reduce the
size of parameter space compatible with the measured data. The region of
this 2-D parameter space that is compatible with a hypothetical data set
1 is shown in blue, while the region compatible with data set 2 is shown
in orange. These data sets contain complementary information about the
model (their compatible regions do not overlap completely), so the region
of parameter space compatible with the joint data set should be smaller than
either of them (the shaded, overlapping region).

(Mitrovica & Forte 2004); and, most recently, marine MT and CSEM
data collected at a slow spreading mid-ocean ridge (Johansen et al.
2019). Most joint inversion studies can be classified according to
whether all data sets inform the same underlying model parameters
(e.g. receiver function and surface wave traveltime data inverted for
shear velocity) or whether multiple physical quantities are being
inverted for (e.g. CSEM and seismic tomography making inference
on electrical resistivity and P-wave velocity, respectively). In the
former case, the data fitting term can be expanded to include mul-
tiple data sets in a relatively straightforward manner, and each data
set contributes information to the model directly. In the latter case,
the two separate models must be made to ‘communicate’ in some
manner, often through the use of cross gradients or a statistical or
analytic relationship between the different physical quantities. More
recently, Agostinetti & Bodin (2018) develop a method to permit
the two models to share structure only where allowed by the data.
In this study, both data sets inform subsurface electrical resistivity,
so we will focus our attention on the first approach.

Bayesian sampling-based inverse methods are readily adaptable
to a joint inversion framework, which will be discussed in detail
in the following section. Jardani et al. (2010) inverted synthetic
seismic and seismo-electric data for reservoir properties in a 1-
D layered model; Rosas-Carbajal et al. (2013) inverted synthetic
radio frequency MT and electrical resistivity tomography (ERT)
data for 2-D electrical resistivity models; Rabben et al. (2008) es-
timated subsurface elastic parameters from synthetic PP and PS
reflection coefficients; Bodin et al. (2012) recovered estimates of
1-D shear wave velocity profiles from measured surface wave dis-
persion (SWD) and receiver function (RF) data, while Agostinetti
& Bodin (2018) invert electrical resistivity and shear wave veloc-
ity. Of the foregoing, all but Bodin ef al. (2012) and Agostinetti &
Bodin (2018) use a fixed-dimensional MCMC sampler. We follow
Bodin et al. (2012) and use a trans-dimensional MCMC sampler,
where the number of model parameters is itself an unknown. Trans-
dimensional MCMC was introduced to the geophysics literature by
Malinverno (2002) and Sambridge et al. (2006).

In this work, we sample both the individual and joint Bayesian
posterior probability density functions from MT and CSEM data
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using a trans-dimensional Markov Chain Monte Carlo (MCMC)
method based on the Metropolis—Hastings algorithm (Metropolis
et al. 1953; Hastings 1970; Geyer & Moller 1994; Green 1995).
The MT and CSEM data were collected during a marine survey off-
shore New Jersey (Fig. 2), whose objective was to map a freshwater
aquifer in the shallow continental shelf. It is well-known that MT
and CSEM data contain complementary information about subsur-
face conductivity. MT is more sensitive to conductive regions while
CSEM is more sensitive to resistive features (Constable & Weiss
2006). We use a simple 1-D model to demonstrate this by illustrating
the shapes of the regions of parameter space compatible with each
data set individually, as well as the region compatible with the joint
data set. This synthetic test demonstrates that the space compatible
with the joint data set is within the intersection of the two individ-
ual regions. Applying our algorithm to the New Jersey field data,
we identify a region of high resistivity consistent with a relatively
freshwater aquifer and quantify—using the posterior distribution of
probability density and the 90 per cent credible interval width—the
model uncertainty reduction obtained by jointly inverting the data
over inverting either of the data sets individually. Additionally, in
conjunction with porosity data from nearby well logs, we also pro-
duce quantitative estimates of pore fluid salinity within the aquifer,
with associated uncertainty.

2 MODEL PARAMETRIZATION AND
FORWARD CALCULATIONS

We choose a 1-D parametrization of the Earth such that our
model consists of k; subsurface layer interfaces and k&, -+
1 subsurface layers, each with an associated electrical resis-
tivity. The subsurface model, then, consists of £k interface
depths zg = [zy, z3, ...zx,] and k, + 1 layer resistivities p, =
[log(p1), log(pz), ...log(px,), log(px,+1)]. The last layer is assumed
to be a semi-infinite halfspace.

The resistivity of the seawater has a strong impact on the modelled
CSEM data. Because it is a function of temperature, the seawater
resistivity can vary significantly from ocean surface to seafloor in
the shallow waters above the North American continental shelf. To
avoid biasing the inversion, we model the water column as a series
of layers rather than assume a water column resistivity profile. We
model the water column in the same way we model the subsurface,
as a vector of layer interfaces z, = [z, 22, ...z, ] and a vector
of resistivities p,, = [log(p1), log(pz), ...log(px, ). log(px,+1)], ex-
cept that the water column model terminates at the seafloor, rather
than as a half-space. The combined model is formed by adding the
water column model above the subsurface model, which begins at
the seafloor and extends downward. The combined model, there-
fore, consists of k; + k,, + 1 interfaces (the extra ‘1’ counts the
seafloor) and k; + £, + 2 layer resistivities.

The EM field components produced by a finite length, horizontal
electric dipole are calculated using the open source code Dipole
1-D, described in Key (2009). The effect of the 336 m long trans-
mitter wire was simulated by numerically integrating point dipoles
distributed along the wire’s length using an efficient Gauss quadra-
ture approach. Forward modelling for MT data were done using the
standard impedance recursion approach (Ward & Hohmann 1987).

3 JOINT INVERSION FRAMEWORK

The non-uniqueness of the inverse problem often results in signifi-
cant model parameter uncertainty. This is particularly true of many

EM methods in geophysics that are governed by a diffusion-type
equation, where precise resolution of fine-scale structure is difficult.
In particular, inversion of EM geophysical data often suffers from
trade-offs between model parameters. The MT method experiences
a trade-off between the thickness and conductivity of a conduc-
tive layer. The CSEM method has an opposite, resistivity-thickness
trade-off. As aresult, there is often a wide range of model parameter
values that can fit a given field data set of one type equally well.
Physical or other constraints on the values model parameters are
allowed to take can limit the extent of this range, but joint inversion
can go further.

3.1 Bayesian joint inversion framework

Bayesian probability describes how information provided by mea-
sured data modifies our prior assumptions to produce posterior
probabilities on the model parameters. This process is described
in Bayes’ rule

p(m|d) o< p(d|jm)p(m), (@)

where the variables to the left of | are conditional on those to the
right. In other words, p(a|b) is the probability of a given that b is
known. m is a vector of parameters that constitute our model of the
Earth (in our case, £, &, Zs, Zy, ps, and p, ), while d is the vector
of observed data.

The p(m) term on the right-hand side of (1) is known as the
prior and is a probability density function of the model parameters
that represents all the information known and assumptions made
about the model—independent of the measured data. In this study
we assume uniform prior distributions on all model parameters
(number of interfaces, interface depths and layer resistivities)—
though the prior is only uniform when considering a fixed value of
k. By using a minimally informative prior, we allow the information
about the model parameters contained in the data to inform the
posterior distribution of probability.

The p(d|m) term on the right-hand side is called the model like-
lihood, and is a measure of data fit. The likelihood is the probability
that the modelled data differ from the measured data purely due
to random measurement error. We use a simple chi-squared (x?2)
measure of misfit

x* = (d — f(m)C;'(d — f(m)), @

where Cgy is the matrix of data covariances and f(m) is the forward
modelling function applied to a model m. This choice of misfit
corresponds to a Gaussian likelihood function, justified by the use
of stacked data:

— X2
p(djm) o< exp (T) . (3)

Finally, the product of the prior and the likelihood yields the
posterior—a probability density function of the model parameters,
written p(m|d), that reflects all the information about the model
contributed by the measured data and our prior information and
assumptions. Obtaining a good approximation to the posterior is
the objective of sampling-based Bayesian inverse methods. For non-
linear inverse problems, this is done by sampling from the posterior,
whose analytical form is unknown.

Algorithms have been developed to draw samples from unknown
distributions. One of the more successful—due to its simplicity
and robustness—is MCMC, which we utilize in this study to invert
CSEM and MT data. Our method is a trans-dimensional variant of
the Metropolis—Hastings—Green MCMC sampler (Metropolis et al.
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Figure 2. Map of a marine EM survey offshore New Jersey (upper-left-hand corner). The survey included 10 seafloor MT stations (blue squares) and over 200
line km of CSEM data, recorded on four receivers towed on the surface behind the ship. The main tow-line, extending from near the NJ shoreline out to near
the edge of the continental shelf, was chosen to cross the locations of three recent IODP drill sites (Expedition 313—green circles), for which porosity and

salinity data are available (Mountain ef al. 2010).

1953; Hastings 1970; Green 1995), meaning that the number of
model parameters is itself a parameter that we invert for, and its
selection is guided by the data. Here we adopt the ‘birth-death’
scheme (Geyer & Moller 1994) whereby, at each step, the number
of interfaces can increase by one, decrease by one, or remain the
same. For more robust and accelerated convergence, we implement
parallel tempering (PT), whereby multiple Markov chains are run
in parallel, each with its own ‘temperature’ 7. The chains at 7= 1
are unmodified and will make up the model ensemble; the chains
at temperatures 7 > | explore a ‘tempered’ model space and, by
swapping models with colder chains after each MCMC step, allow
for more robust and accelerated convergence to the high probability
regions of model space. For a detailed description of our algorithm
see Blatter ef al. (2018), Ray et al. (2013a) and Ray & Key (2012);
for a helpful discussion of MCMC, see Gilks ez al. (1995); and for a
thorough discussion of PT with numerical examples, see Sambridge
(2013).

The algorithm used in this work is the same as in Blatter et al.
(2018), except that here there is a water layer, which is sampled

separately from the subsurface. At each step of the algorithm, a
uniform random number is generated. If it is greater than B (a
pre-determined constant which has a value between 0 and 1), the
subsurface model only is perturbed; otherwise, the water layer only
is modified. Because the water layer in the New Jersey survey is
shallow (20-100 m) relative to the depths of interest in the subsur-
face (the uppermost kilometer of the crust), we chose g = 0.2 to
prioritize sampling the subsurface.

Although MT and CSEM data contain fundamentally different
information about subsurface electrical resistivity, only the relative
uncertainty associated with a measurement is relevant in a joint
Bayesian inversion framework, not the ‘type’ of data it represents.
This is true regardless of the relative information content of the data.
This makes incorporating multiple data sets in a joint Bayesian
inversion a straightforward process, where d and C, are simply
extended to include the new data, with their associated uncertainties.
When measurement errors between two data sets are uncorrelated,
eqs (2) and (3) can be used to show that the joint likelihood is simply
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Figure 3. True model (left) from which synthetic MT (upper right) and CSEM (lower right) data were generated. The CSEM frequencies inverted for were
0.75 and 1.75 Hz. The synthetic data include 5 per cent Gaussian noise. The true model was chosen to simulate the nearly 1-D geology in the region where
the New Jersey marine survey was conducted. The synthetic data were inverted using a modified, fixed-dimension version of the MCMC sampler. The water
column depth and thickness, as well as the number and depths of the subsurface interfaces were fixed during the inversion, so that only the four subsurface

layer resistivities (o1 — p4) were inverted for.

proportional to the product of the individual likelihoods:

p(dim) = p(d;[m) p(d;(m), “4)

where the joint data vector d = [d;; d;].

Because of the likelihood function’s insistence that only the data
error determine a datum’s weight in the inversion process, it is im-
perative that the data covariance matrix, C,, be accurately estimated.
Indeed, both the degree of posterior model complexity (Agostinetti
& Malinverno 2010) and the posterior model parameter variance
(Guo et al. 2014) are to a large extent determined by the data er-
rors. Estimating C, involves determining the data variances and the
degree and nature of data error correlation.

The data variances (the diagonal elements of C,) were determined
through standard MT (Egbert 1997) and CSEM (Myer et al. 2010)
data processing methods. The CSEM data inverted in this study
are the log-amplitude of the in-line electric field (in the frequency
domain) and its phase; the MT data inverted are the log of the
apparent resistivity (also frequency domain) and its phase. While
the errors in such data may not be normally distributed, the departure
from Gaussianity is negligibly small if the data errors are small
relative to the magnitude of the data themselves (Wheelock et al.
2015, suggest 10 per cent relative error as a reasonable threshold).
Here we assume the data errors are normally distributed.

Although Bayes’ rule admits no differentiation of data based on
‘type’, there is a concern that the measurement errors estimated
from data processing workflows do not always accurately reflect the
total data error. For example, inaccuracy due to forward modelling
or assuming 1-D or 2-D physics also contribute to the overall dis-
crepancy between forward modelled and measured data. To prevent
overly optimistic error estimates from producing spurious or overly
complex model structure, we used a relative error floor of 1 per cent
for CSEM data and 5 per cent for MT data.

It is possible, in a Bayesian context, to go one step further and
posit that, even after careful data processing and error estimation,
some of the information about the data errors remains unknown.
Usually, this is done by introducing a scale factor that multiplies C,
and which can be estimated through maximum likelihood (Mecklen-
brauker & Gerstoft 2000; Dosso & Wilmut 2006; Sambridge 2013;
Ray et al. 2016) or through Hierarchical Bayes methods (Bodin
et al. 2012; Malinverno & Briggs 2004; Agostinetti et al. 2015).
In the case of joint inversion, there is usually a different scale fac-
tor applied to each data set separately (Agostinetti & Bodin 2018).
Under the Hierarchical Bayes approach, these scale factors are hy-
perparameters inverted for, allowing the data and hyperparameters
to select the optimal contribution for each data set. Hierarchical
Bayes is similar in many respects to the weighting terms introduced
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Figure 4. Scatter plots of pairs of model parameters from 70 000 randomly selected models from the posterior model ensembles of individually inverted
MT and CSEM data (green and orange points, respectively) as well as a joint inversion of both data sets (blue points). The true value is indicated in each
off-diagonal plot by the black circle. The plots along the diagonal are the model parameter probability distributions, with the true value indicated by the black
dashed line. In each column, the x-axis of each plot corresponds to the x-axis of the probability-distribution plot in that column, while in each row the y-axes

of the off-diagonal plots are the same as the y-axis of the final plot in that row.

in standard, linearized joint inversion to weight the relative contribu-
tion of each data set to the objective function—the main difference
being that in the latter case the choice of what values to assign each
weight is largely arbitrary (Commer & Newman 2009; Key 2016).

‘We chose not to use Hierarchical Bayes to estimate a scale factor
weighting the MT against the CSEM data as there is evidence, in
the case that the data errors have been robustly estimated, that the
posterior distribution estimated via Hierarchical Bayes converges to
that obtained using standard trans-dimensional MCMC (Agostinetti
& Malinverno 2018). In such cases, if the data errors are normally
distributed, C, is diagonal, and the data variances have been robustly
estimated, then the maximum likelihood estimate for a scale factor
is equal to the rms of the residuals, and should be close to unity
(see the Appendix for a derivation). We subsequently show that the
distribution of RMS misfit across all models in the joint ensemble
reaches its maximum value in the neighbourhood of one, for both
data sets individually and for the joint data set. Sampling for data
error scale factors using Hierarchical Bayes would therefore not

significantly affect the joint posterior probability distribution in our
case.

One final issue in estimating C, involves the problem of corre-
lated noise (the off-diagonal elements of C;). Although it is stan-
dard practice to assume independent, normally distributed noise, it
is likely that the measurement error is correlated to some degree.
To account for this, one could assume a Gaussian, exponential, or
other parametric correlation between the data noise at different oft-
sets or frequencies (Bodin ef al. 2012; Xiang et al. 2018). Another
approach is to sample the posterior residuals to estimate a non-
parametric correlation (Ray ez al. 2013b). While we acknowledge
the importance of accurately estimating the data error statistics, the
choice of which scheme to pursue to account for data error correla-
tion is not obvious. Indeed, overly complex or unjustified modelling
of error correlations can lead to spurious inverted model structure
(Xiang et al. 2018). Given the lack of a definitive alternative, we
follow the standard choice in the literature and assume Cy, is diago-
nal.
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Figure 5. Larger version of a single plot from Fig. 4. The orange and green dots indicate possible parameter estimates that gradient-based inversion of only
the MT or CSEM data, respectively, might produce, depending on the starting model, choice of regularization and other parameters. A joint inversion of both
data sets, however, would be restricted to searching within the region highlighted by the black dashed oval, ensuring a model estimate much closer to the true

value (small black circle).
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Figure 6. 2-D joint inversion of the main New Jersey tow-line (white dashed
line) obtained using the freely available inversion code MARE2D. See
Gustafson et al (accepted). White triangles are MT sites as indicated in
Fig. 2. Warm colours indicate resistive structures, while cooler colours indi-
cate more conductive features. The shallow resistor (indicating the presence
of the fresh-brackish water aquifer) is clearly visible in the upper 400 m,
out to a distance of 90 km along the tow-line. The highly conductive region
(brine-saturated sediments) begins approximately 60 km offshore, at a depth
of about 500 m.

4 SYNTHETIC TEST

To demonstrate how joint inversion reduces the size of parame-
ter space compatible with the data, we constructed a simple toy
model (see Fig. 3) consisting of a shallow water layer above three

subsurface layers and a half-space. This model was designed to
emulate the expected resistivity profile of the upper kilometer of
the continental shelf, based on 2-D regularized inversions of the
New Jersey data by Gustafson et al (accepted). We generated syn-
thetic MT and surface-towed CSEM data from this model by adding
Spercent Gaussian noise to the model responses. We assumed an
isotropic Earth, an assumption discussed in Gustafson et al. The
frequencies and other parameters used were taken from the field
data set to keep the synthetic data realistic. We then inverted this
synthetic data using a version of our MCMC code modified to keep
the number and depth of the layer interfaces, as well as the thickness
and resistivity of the water column, constant—that is, fixed at their
true values. In other words, only the resistivities of the subsurface
layers were allowed to vary. The MT and CSEM data were inverted
separately and jointly.

To visualize the size and shape of the trade-offs inherent in the
(non-linear) inversion of these synthetic data, we selected models
at random from the posterior model ensemble from each inversion
(individual and joint) and made scatter plots of each pair of model
parameters—(p1, p2), (p1, p3), etc. Fig. 4 shows the scatter plots
and marginal model parameter probability distributions arranged
like a covariance matrix. The true model is plotted in the lower left
of Fig. 4, with each layer labeled and highlighted. A larger version
of the (p1, p2) plot is shown in Fig. 5.

A few conclusions can be drawn from Fig. 4. First, the synthetic
MT and CSEM data do indeed contain complementary information
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individual data set deteriorates somewhat when the models in the ensemble are required to satisfy both data sets simultaneously. Compare with Table 1.

6102 J8aquisnoN 1| uo Jesn Aseiqi] IOHMTEIN AG 85101 5S/2281/E/8 1 ZNoBIsqe-ajone/b/woo dno-olwspeoe//:sdiy wolj pspeojumoq



1830 D. Blatter et al.

about the subsurface model parameters, as indicated by the differ-
ing shapes and locations of the green and orange point clouds. The
extent of their intersection is, in all cases, less than their individual
extents. Secondly, it appears that the region of model space com-
patible with the joint data set is indeed roughly equivalent to the
intersection of the regions of model space compatible with the in-
dividual data sets, and in some cases appears to be even smaller.
Furthermore, examining the model parameter variances further in-
dicates that the range of acceptable values for each model parameter
has indeed been reduced by joint inversion—in some cases, by a
great deal.

While Fig. 4 is arranged in the style of a covariance matrix,
it is important to recognize that it represents more information
than a covariance matrix can provide. The latter boils down the
wealth of information displayed in each plot of Fig. 4 to a single
number. While this approximation may be adequate locally (e.g. in
the neighbourhood of a particular dot in Fig. 5), it clearly does not
hold far from that model, as indicated by the complex shapes traced
out in Fig. 4.

5 FIELD DATA INVERSIONS

We now illustrate these points by applying the full, trans-
dimensional MCMC sampler to a field data set. The New Jersey
EM data set (see Fig. 2) is part of a larger freshwater marine EM
data set that was collected to understand the spatial extent of low
salinities observed in a series of nearby wells. Surface-towed CSEM
data was collected along a 130-km-long profile across the continen-
tal shelf, beginning near the New Jersey shoreline and ending at the
shelf edge. In addition, eight seafloor MT receivers were deployed
roughly 10-20 km apart to constrain the broad scale structure and
better resolve the more conductive sediments. High quality MT data
were collected from 10~* to 102 Hz—unusually high for marine MT
data. The skin depth, z; =~ (500 m)+/p/f, is the depth at which an
EM signal of frequency f'will have attenuated to 1/e of its original
amplitude within a homogeneous medium of resistivity p. This re-
lation indicates that the thicker the conductive sea water, the more
attenuation the MT signal will suffer before reaching the subsur-
face. For instance, at 1 Hz in 0.2 ohm-m seawater, the skin depth
is &~ 220 m. The relatively shallow waters of the continental shelf
(18-100 m) allowed higher-than-normal frequencies to penetrate
the water column. Here we invert only the data from 10" to 10?
Hz, as we are primarily interested in the upper kilometer of the sub-
surface. The surface-towed CSEM system featured a 336-m-long
electric dipole antenna broadcasting a 0.25 Hz fundamental fre-
quency waveform. Four broad-band receivers measuring the inline
horizontal electric field were towed behind the antenna at offsets of
600, 870, 1120 and 1380 m. Further details on the survey design,
data collection, processing, and inversion can be found in Gustafson
et al (accepted).

Regularized, deterministic 2-D joint inversions of the data (Fig. 6)
obtained using the freely available code MARE2D (Key 2012) re-
veal a laterally continuous, 90 km long, 10-110 ohm-m resistive
layer within the upper 400 m (Gustafson et al, accepted). At around
60 km offshore, this resistive zone becomes shallower, occupying
depths of 50-200 m. It continues for roughly 30 km more before
petering out. A conductive zone ( <1 ohm-m) was identified that
begins near the centre of the survey line and extends out to the shelf
edge at depths beneath the shallower resistive layer (450-750 m).
Although there are 2-D features in the gradient-based inversion re-
sults of the New Jersey survey data, these variations are on the order

Table 1. Average rms misfit across all models in the CSEM-only, MT-only
and joint posterior model ensembles for data collected at location NOS,
arranged by data type.

Data type CSEM-only MT-only Joint
MT — 1.23 1.35
CSEM 0.71 — 1.02
Total 0.71 1.23 1.22

of tens to hundreds of meters vertically over a length scale of some
120 km, justifying the use of a 1-D layered earth model.

We used the full, trans-dimensional MCMC sampler to invert the
MT data collected offshore New Jersey, as well as the surface-towed
CSEM data from the 130-km-long main line. All 8 MT stations
(stations NO1-N08) were inverted individually for 1-D models. The
surface-towed CSEM data from the main tow line were divided into
groups of 15 adjacent soundings (no overlap between groups) and
averaged. These average soundings were then inverted individually
for 1-D models. In addition, each of the averaged CSEM soundings
was inverted jointly with the data from the nearest MT station. For
each inversion, either joint or individual, we allowed the MCMC
sampler to draw one million samples from the posterior distribution.
We then removed the first 300 000 samples from each chain (known
as the ‘burn in’) and combined the remaining models from all of
the PT chains at 7=1 to form the posterior model ensemble. We
ran each inversion with eight PT chains, three of them at 7=1 (for
a total combined posterior ensemble of 3 x 700000 = 2.1 million
models). The trans-dimensional MCMC algorithm was allowed to
place interfaces down to a depth of 3000 m, but here we only show
the upper 1200 m since our data sensitivity and target of interest are
in this region.

All the MCMC inversions were computed in serial (no
parallelization—either over the different PT chains or during the
forward calculations—was implemented). The MT-only inversions
each took approximately 2 hr to complete, while the CSEM-only
and joint inversions each took approximately 1.5 d. The computation
time could be greatly reduced by implementing parallel computing
strategies across PT chains and in the forward calculations (e.g.
across frequencies).

The MT and CSEM data from location NOS5 (see Fig. 2) are
plotted in Fig. 7. Also plotted in Fig. 7 are the forward responses
of 50 randomly selected models from the joint inversion model
ensemble. For each data set, and for each model ensemble (CSEM-
only, MT-only and joint), we computed the average RMS misfit to
the data (Table 1). Histograms of RMS misfit to the MT and CSEM
data for each model in their respective model ensembles are shown
in Fig. 8.

As might be expected, the joint ensemble is less able to fit the indi-
vidual MT and CSEM data sets relative to the MT-only and CSEM-
only model ensembles (as indicated by the orange histograms in
Fig. 8). Just because a model is able to fit one data set very well, how-
ever, does not mean that its estimates of subsurface model parame-
ters are necessarily the most accurate. Indeed, when complementary
information from a second data set is added, it becomes clear that
the model parameter estimates derived from the first data set were
based on an incomplete picture of the subsurface. To demonstrate
this, we randomly selected 50 models from the CSEM-only and
MT-only model ensembles for the data at location NO5. We then
computed the MT forward responses of the models derived from
the CSEM data, and the CSEM forward responses of the models de-
rived from the MT data, and plotted them against the measured MT
and CSEM data (Fig. 9). Comparing Fig. 9 to Fig. 7 indicates the
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Figure 9. MT and CSEM data from location NO5 (compare with Fig. 7). The measured data are plotted in red (error bars in black). The MT forward responses
of 50 models randomly selected from the CSEM-only posterior model ensemble are plotted on the left, while the CSEM forward responses of 50 models
randomly selected from the MT-only posterior model ensemble are plotted on the right. The poor fit of these forward responses indicates that many of these

models will not be compatible with the joint data set.

degree to which joint inversion constrains the region of parameter
space compatible with the data. In particular, it is interesting to note
that the CSEM-only models tend to overpredict the apparent resis-
tivity while the MT-only models tend to underpredict the electric
field amplitude (suggesting that these models are underestimating
the subsurface resistivity). This does not, however, prevent them
from fitting their respective data sets better than the models in the
joint model ensemble. In fact, the CSEM-only models tend to overfit
the CSEM data, while the MT-only models tend to under-fit the MT
data.

Ultimately, the goal of geophysical inversion is to obtain esti-
mates of model parameters—in this case, the electrical resistivity
of the upper kilometer of the continental shelf offshore New Jersey.
Gradient-based methods provide a single estimate of each model
parameter without assessing the trade-offs inherent in inversion and
illustrated in Figs 4 and 5. The trans-dimensional MCMC sampler,
by contrast, produces a posterior model ensemble, from which an
estimate of the posterior distribution of probability density can be
estimated.

Fig. 10 shows the marginal posterior probability density for re-
sistivity as a function of depth for the CSEM-only, MT-only and
joint model ensembles at location NO5. At each depth, the marginal
distribution of probability density across resistivity is indicated
by colour: warmer colours indicate higher probability density and
cooler colours indicate lower density. The width of the warm colour
region at a given depth is indicated by the left and right red lines,

which indicate the 5th and 95th percentiles of the distribution, re-
spectively, and bound the 90 per cent credible interval. This means
that 90 per cent of the models in the ensemble have electrical resis-
tivity values that fall between the red lines, making the 90 per cent
credible interval a reasonable proxy for how well the data can con-
strain the model.

The geological interpretation of Fig. 10(c) is as follows: conduc-
tive seawater (40 m deep) followed by a thin (=40 m thick), con-
ductive layer of shallow, seawater-saturated sediments; a resistive
layer (=175 m thick) of sediments filled with relatively fresh water;
another layer of relatively conductive, seawater-saturated sediment
(A175 m thick); and a thick (=400 m) layer of highly conductive,
briney sediments. Beneath the thick conductive layer, the subsur-
face appears to become increasingly resistive with depth as the
sensitivity of the data to the subsurface resistivity decreases. This
interpretation, based on the posterior, is corroborated by 2-D inver-
sions of the data by Gustafson et al (accepted); see also the white
line in Fig. 10(c).

The posterior distribution obtained from the CSEM data alone
(Fig. 10a) indicates a much simpler structure: namely, the resis-
tive freshwater aquifer and the conductive brine layer. Of the two,
the CSEM data appears more sensitive to the presence of the re-
sistor than the conductor, as indicated by the narrower extent of
the 90 per cent credible interval over the depth range of the resis-
tor. By contrast, Fig. 10(b)—obtained by inverting only the MT
data—indicates that the MT data is preferentially sensitive to con-
ductors. Clearly indicated in the MT-only posterior distribution are
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Figure 10. Posterior probability density functions obtained from CSEM-only (a), MT-only (b) and joint (c) inversions of EM data acquired at location NO5 (see
Fig. 2). The warmer colours indicate higher probability density, the cooler colours lower probability density. The left-most and right-most red lines represent
the 5th and 95th percentiles, respectively, of the posterior PDF at each depth. The white line is a 1-D profile from the respective gradient-based 2-D inversions
of Gustafson et al (accepted), plotted for reference. The CSEM data is primarily sensitive to the shallow resistor, while the MT data has greater sensitivity to
the more conductive layers. The joint inversion, meanwhile, better resolves both the resistor and the conductors.

the upper and lower seawater-filled layers and the highly conduc-
tive brine layer. The resistive layer, although present, is very poorly
constrained; the MT data appears to be able to place only a lower
bound on the freshwater aquifer’s resistivity.

That the joint posterior resolves all four subsurface layers indi-
cates that complementary information from each data set has altered
and constrained the regions of parameter space compatible with the
data. To further illustrate this we computed, for each model in the
three ensembles, the median resistivity over depth ranges consistent
with the four layers described earlier: the uppermost conductive
sediments (seafloor-60 m); the freshwater aquifer (80-200 m); the
lower conductive sediments (225-375 m); and the highly conduc-
tive brine-saturated sediments (400—750 m). We labeled these me-
dian resistivities p,—p4 and made covariance-like scatter plots and
variance-like probability distributions (Figs 11 and 12), similar to
the synthetic examples shown previously.

While the trans-dimensional nature of the MCMC algorithm pre-
vents a direct comparison of Figs 11 and 12 to Figs 4 and 5 (where
the number of layers and their thicknesses was held constant), the
main conclusion remains the same: the region of parameter space
compatible with the joint data set is roughly equivalent to the over-
lap between the regions compatible with the data sets separately. In
Fig. 12, for example, the resistivity of the uppermost layer trades off
with that of the freshwater aquifer in the models obtained from the
CSEM data only; as the freshwater aquifer becomes more resistive,
the uppermost layer must become more conductive to compensate
and still fit the CSEM data. In the meantime, while the MT data is

relatively insensitive to the freshwater aquifer resistivity, it is much
better able than the CSEM data to uniquely constrain the resistivity
of the uppermost layer. This, in turn, allows the joint data set to
constrain the resistivity of the freshwater aquifer to the portion of
the trade-off curve that overlaps with the MT data’s knowledge of
the uppermost layer resistivity.

Finally, the contrast between the posterior distributions in Fig. 10
and the model estimates obtained by inverting the same data using
gradient-based methods (the white lines in Fig. 10) is illustrative
of the ways in which Bayesian sampling methods can improve our
understanding of model parameter uncertainty. A common method
of estimating the uncertainty of model parameter estimates obtained
from gradient-based inverse algorithms assumes that the distribu-
tion of probability for each model parameter is normal with mean
equal to the gradient-based parameter estimate. Yet at ~ 100 m
depth in Fig. 10(b), a normal distribution of probability density
centred at the white line clearly fails to capture the uncertainty
indicated by the Bayesian posterior distribution, no matter the vari-
ance. Likewise, a normal distribution centred at the gradient-based
model estimate in Fig. 10(c) at ~375 m depth fails to capture the
bimodal nature of the Bayesian posterior. We found this second
mode—at resistivities >10 ohm-m—to be robust in the sense that
it is present in the vast majority of models in the joint ensemble.
Seismic data show reflections at 370 and 400 m (see Gustafson
et al. accepted), indicating the presence of another resistive layer.
Yet this layer would be invisible to any linearized uncertainty
estimate.
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Figure 11. Off-diagonal: scatter plots of median resistivity (calculated over the depth intervals shown in the lower-left) for &~ 70 000 models randomly-selected
from the MT-only, CSEM-only, and joint posterior distributions obtained from the data at location NOS. The joint posterior distribution is shown (lower-left).
Each point represents a model from its respective ensemble: MT-only (green); CSEM-only (orange); joint (blue). Diagonal: distributions of probability density
for each median resistivity. Compare with Fig. 4. The x-axes of the plots in a given column are identical; the y-axes of the plots in a given row are identical
with the y-axis of the final plot in that row. As in Fig. 4, the region of parameter space compatible with the joint data set (blue) appears to be restricted to the

overlap between the regions compatible with the data sets individually.

6 QUANTIFYING UNCERTAINTY IN
PORE FLUID SALINITY

It is often the case that physical properties other than bulk electrical
resistivity are of interest. In the case of this study, the salinity
of the pore fluids in the aquifer is desired since it can be used
to characterize the aquifer as a potential resource and as a key
to explaining the water’s provenance through palaeo-hydrological
modelling (Cohen et al. 2010). Archie’s Law (Archie 1942) relates
bulk resistivity, pp, and other rock parameters such as porosity, ¢,
to the resistivity of the pore fluids, o,
pr = ppd", ®)
where m is an empirically derived constant that is related to the
connectedness of the pore spaces. Salinity can, in turn, be computed
from p, if temperature is also known. Here, we assumed a linear
temperature profile as a function of depth from the seafloor down

T(z) =To +az, (6)

where 7)) = 11.4°Cand a = % %C We used the well-known 1978
Practical Salinity Scale (PSS-78) conversion from temperature and
electrical resistivity to salinity (Perkin & Lewis 1980).

Because gradient-based inversions produce single estimates of
each model parameter, they can produce only single estimates of
related parameters—in this case pore fluid salinity. Bayesian in-
version, by contrast, produces an ensemble of models which fit
the data and which are sampled according to the posterior prob-
ability density. Consequently, an ensemble of estimates of related
parameters can be produced, from which quantitative uncertainty
estimates can be obtained that reflect the underlying uncertainty
in the inverted model parameters. In addition, if measurements of
other relevant parameters for which there is uncertainty are avail-
able, such as porosity measurements from a well log, these can be
further incorporated into the uncertainty estimate.

We utilized a straightforward Monte Carlo approach to obtain
uncertainty estimates of pore fluid salinity in the upper several hun-
dred meters of the subsurface along the main tow line offshore New
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Figure 12. Larger version of a single plot from Fig. 11 (location NO5). As in Fig. 5, the complementary nature of the information contained in the MT and
CSEM data sets allows the joint data set to better constrain the resistivity of the both the upper layer of sediments (p;) and the freshwater aquifer (p2).

Jersey. First, we chose CSEM and MT soundings nearest to the
wells M0027A, M0028A and M0029A, for which we have recent
porosity and salinity measurements at varying depths (Expedition
313 Scientists 2010; Mountain et al. 2010), and inverted them to
obtain a posterior model ensemble. Next, we defined a probabil-
ity density distribution for the cementation factor, m: lacking field
measurements, we assumed m is normally distributed with mean of
2.0 and stand deviation of 0.2. We also assume the well log poros-
ity ¢ is normally distributed with standard deviation o, = 0.05
(see Fig. 13). Finally, for each well log, we executed the following
procedure:

(i) for each porosity measurement in the well log (each at a unique
depth), repeat the following steps NN times:

(i1) draw a random value of p, from the posterior distribution by
randomly choosing a model from the ensemble and identifying its
resistivity at the depth of the porosity measurement.

(iii) draw a random sample from the distribution for m.

(iv) draw a random sample from the distribution for ¢.

(v) compute prfrom eq. (5), then use it to compute salinity using
T from eq. (6).

We then binned the computed salinity values with depth and, for
each bin, plotted a normalized histogram (see Fig. 14). These salin-
ity estimates reflect the posterior uncertainty in the inverted bulk
resistivity as well as the uncertainty in the porosity and the degree
of cementation of the geological units. The freshwater aquifer is
clearly visible in the measured salinity log for well M0027A (the
dashed lines in Fig. 14 are measured salinity logs). This is also
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Figure 13. Probability distributions for the cementation factor, m, in
Archie’s Law (top panel) and the porosity of continental shelf sediments
(bottom panel)—shown here for a porosity of 45 per cent. These distribu-
tions were used in the Monte Carlo process for estimating the uncertainty in
the pore fluid salinity.

reflected in the uncertainty estimates near MO027A by a concentra-
tion of probability density below 20 practical salinity units—and,
at some depths, well below 10 units. The salinity estimates from
inversions of CSEM data only tend to predict lower salinities, prob-
ably due to the method’s relative sensitivity to resistors, as well as
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Figure 14. Distributions of probability density for pore fluid salinity as a function of depth at the locations of wells M0027A, M0028A and M0029A (see
Fig. 2). Pore fluid resistivity (o) was obtained from Archie’s Law (5) via a Monte Carlo method. Values of m and ¢ were drawn from their respective
distributions (Fig. 13). Values of p; were drawn from their respective model ensembles (obtained by inverting data nearest to the drilling locations—NO03-N05).
Pore fluid salinity was finally obtained using the PSS-78 standard, assuming a linear temperature gradient. The salinity values were binned in depth. In each
plot, the well log salinity is plotted over the probability density (red dashed line). In each case, the joint inversion yields the most accurate estimate of salinity.

This is important since it is often the case that reliable well data are not available.

the surface-towed system’s relatively shallow sensitivity. The MT
data-derived estimates, on the other hand, tend to predict higher
salinities, and with a larger spread in probability density, likely the
result of the MT method’s preferential sensitivity to conductors.
The joint dataset-derived salinity estimates, however, tend to pro-
vide the most accurate assessments of the uncertainty. That Bayesian
sampling methods can provide a reliably accurate estimate of the
uncertainty on related parameters of interest—and that joint inver-
sion offers improved estimates of this uncertainty—is important as
reliable well data are not uniformly available.

7 CONCLUSION

Bayesian sampling methods provide quantitative estimates of non-
linear inverted model parameter uncertainty. As a result, they allow
the uncertainty-reduction provided by joint inversion of multiple
data sets to be visualized and assessed, which we demonstrated on
a synthetic data set.

We provided Bayesian inference on the electrical resistivity of the
upper kilometre of the North American continental shelf offshore
New Jersey. We applied a trans-dimensional MCMC algorithm to
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invert surface-towed CSEM and seafloor MT data for an ensemble
of 1-D models, from which we obtained 1-D estimates of probability
density for resistivity as a function of depth. We clearly identify the
zone of relatively fresh (brackish) water indicated on well logs and
in previous, gradient-based inversions of these same CSEM and
MT data. In addition, we combined information from the posterior
model ensembles and porosity measurements from nearby well-logs
in a Monte Carlo scheme to estimate the salinity of the pore fluids in
the upper kilometre of continental shelf sediments. These estimates
were then compared to in situ measurements. This ability to provide
accurate uncertainty estimates for parameters of interest to scientists
outside the EM geophysics community is a strong argument in
favour of applying Bayesian sampling methods to invert EM data
whenever computationally feasible.
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APPENDIX: MAXIMUM LIKELIHOOD

ESTIMATE OF DATA COVARIANCE
SCALE FACTOR

The joint likelihood function is the product of the individual likeli-
hood functions:

p(djm) = L;(m) L;(m). (AT)

If we substitute in the exponential form of the likelihood for one of
these, we have:

TH—1
p(dim) = L, (m) “C“”) (A2)

1
- exp| =
VQ2a)N2a2V2|Cy, | P ( 202

where the residual vector r; = d, — f,(m) and N, is the number
of data in the second data set. Here we have introduced a constant
factor, o, that scales all the entries of the data covariance matrix for
the second data set, Cg,. To find a maximum likelihood estimate of
o, we first take the negative logarithm of the likelihood function:

1
— log(p(dm)) = —log(L(m)) + >log [(27)"|Ca, ]

r, 7 Cylr
+Nlog(o) + 2 42 2:22 : (A3)
Next, we differentiate with respect to o:
0 N, 1 Cq,7'r
o (Slog(p(djm) = — — %= (A4)

To find the value of the scale factor o that maximizes the likelihood,
we set this derivative equal to zero and solve for o:

5 — [RCanr2 (A3)
N,
In other words, the scale factor that maximizes the likelihood
function—also a value that Hierarchical Bayes approach would
sample—is the rms residual between the forward modelled and
measured data.
Finally, we can insert 6,,,, from eq. (A5) into eq. (A3), giving:

N
+R(Cy,, N2), (A6)

Tc—l
— log(p(d|m)) = —log(Z(m)) + %log (”dzrz>

where R(Cyg,, N,) contains the terms that do not depend on m. Thus
the MCMC sampling could be done using A6 as the negative log
likelihood, without artificially fixing the scaling factor between the
two data types or using Hierarchical Bayes. We could also carry out
the same treatment for each data type’s likelihood individually and
arrive at a similar equation to (A6). An analogous example would
be maximum likelihood data errors for every frequency in seismic
full waveform inversion as shown in Ray et al. (2016, eq. 29).
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