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Abstract Ocean evaporative fluxes are a critical component of the Earth's energy and water cycle, but
their estimation remains uncertain. Near-surface humidity is a required input to bulk flux algorithms

that relate mean surface values to the turbulent fluxes. Several satellite-derived turbulent flux products have
been developed over the last decade that utilize passive microwave imager observations to estimate the
surface humidity. It is known, however, that these estimates tend to diverge from one another and from in
situ observations. Analysis of current state-of-the-art satellite estimates provided herein reveals that
regional-scale biases in these products remain significant. Investigations reveal a link between the

spatial coherency of the observed biases to atmospheric dynamical controls of water vapor vertical
stratification, cloud liquid water, and sea surface temperature. This information is used to develop a simple
state-dependent bias correction that results in more consistent ocean surface humidity estimates. A principal
conclusion is that further improvements to ocean near-surface humidity estimation using microwave
radiometers requires incorporation of prior information on water vapor stratification and sea

surface temperature.

Plain Language Summary To reduce the uncertainties in ocean evaporation—which is
currently of leading order in water and energy budget studies—progress is necessary to understand the
sources of error in the surface measurements needed to model the ocean-atmosphere exchange of water.
Recent studies have independently demonstrated systematic uncertainties in estimates of ocean evaporation
and surface humidity related to large-scale dynamics and vertical water vapor stratification. The results
presented herein directly establish the link between the large-scale patterns of uncertainties in ocean
evaporation estimates and the sources of errors in estimation of surface humidity from remote sensing
observations. These results are used to characterize the relationship of surface humidity errors to physical
quantities—sea surface temperature, water vapor stratification, and cloudiness—that are used to develop
simple corrections for these errors. While effective, these corrections indicate the need for future algorithm
development that incorporates information on these conditions directly into the remote sensing
inverse-modeling process.

1. Introduction

Ocean evaporation and its associated latent heat flux are critical components of the Earth's energy and water
balance. Recent investigations by Rodell et al. (2015) and L'Ecuyer et al. (2015) have demonstrated that the
uncertainty in the estimates of turbulent exchange of moisture across the ocean interface is of leading order
with respect to uncertainties in global atmospheric water and energy budgets. Ocean evaporation has his-
torically been estimated through application of “bulk flux” algorithms that relate mean near-surface meteor-
ology—surface skin and air temperature, wind speed, and air humidity—to the turbulent sensible and latent
heat fluxes (Fairall et al., 2003; Large & Pond, 1982). Intercomparison studies have been performed that indi-
cate uncertainties with each component; Brunke et al. (2011) note significant regional variability in the Qair
biases. Estimates of Qair are available from in situ observations including buoys and voluntary observing
ships (VOS), from satellite retrievals and by model reanalyses. Surface observations are limited in space
and time over the global oceans; Berry and Kent (2016) and Gulev et al. (2007) discuss sampling issues
related to direct ocean surface observations with the former noting a 20% reduction in global coverage since
the early 1990s. Reanalyses may address issues related to poor sampling, but they are subject to changes in
the observing system that inject artificial variability into long-term estimates (Roberts et al., 2012; Robertson
et al., 2014). Josey et al. (2014) find that assimilation of surface observations from moored buoys remains
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problematic in reanalyses. Further, differences of 0.5-1.0 g/kg remain for Qair seasonal to annual means
between reanalysis estimates that are large enough to, alone, preclude closing the surface energy budget
to within the oft-stated goal of 10 W/m? (Kent et al., 2014).

Microwave imagers are designed to measure precipitation, integrated water vapor and liquid water content,
sea surface temperature (SST), and wind speed. While lacking strong direct sensitivity to the near-surface
thermodynamic state, retrievals of surface air humidity have successfully been made using regression-based
approaches. These approaches stem from the early work by Liu (1986) that highlights the strong connection
between columnar water vapor and Qair on monthly time scales and the more instantaneous connection of
lower layer boundary moisture (e.g., within the lowest 500 m) to Qair discussed in Schulz et al. (1993). Wentz
(1997) has also noted that coarse water vapor profile information is contained within the microwave imager
channels. The physical mechanism is related to pressure-induced broadening and narrowing of water vapor
absorption lines. This sensitivity, though limited, has provided the foundation for microwave imager-based
estimates of Qair (Bentamy et al., 2003, 2013; Chou et al., 1995, 1997; Roberts et al., 2010; Schliissel et al.,
1995; Schulz et al., 1993; Tomita et al., 2018). These algorithms rely on similar sets of input brightness tem-
peratures from satellite microwave imagers; they differ through choice and sampling of training data sets,
regression algorithms (i.e., linear vs. nonlinear), and inclusion of externally specified predictors. Studies
such as Prytherch et al. (2014) that have intercompared these approaches find annual mean differences
exceeding 1 g/kg and regional monthly mean differences of 2 g/kg. Further, they find monthly mean biases
against surface observations that exhibit strong regional coherence; these regional variations were also noted
in direct comparisons to research vessel observations in Brunke et al. (2011).

Recent intercomparisons of ocean evaporation estimates from satellite products have been performed within
the context of dynamical regimes related to the columnar water budget (Wong & Behrangi, 2018). The intent
of their decomposition, as discussed in Wong et al. (2016), is to better connect the large-scale dynamics to
moisture convergence variability. Specifically, it decomposes moisture convergence into convergent and
advective components to define a “water-budget-phase-space” with regimes where total moisture conver-
gence (or divergence) are driven primarily by convergence, advection, or their combination. In addition to
being used to examine moisture convergence variability across models and reanalyses (see Wong et al.,
2016), Wong and Behrangi (2018) demonstrate how these dynamical regimes effectively partition interpro-
duct evaporation differences relative to columnar moisture convergence and divergence at daily time scales.
It is important to recognize that the evaporation differences should be related to differences in the
near-surface bulk variables between products. In this study, our principal motivation is to connect the
regime-dependent evaporation uncertainties observed in Wong and Behrangi (2018) to the regionally coher-
ent patterns of surface humidity biases illustrated in Prytherch et al. (2014). We further discuss how these
biases arise relative to the underlying satellite retrievals used to estimate Qair. A simple, yet effective
state-dependent bias correction is developed that harmonizes many of the current retrieval estimates.

2. Data
2.1. Satellite Estimates

There are multiple satellite-derived latent heat flux products developed through use of observations from the
seven-channel (19, GHz, 22, GHz, 37, GHz, 85, GHz; v/h denotes polarization) Special Sensor
Microwave/Imager and related sensors. We examine a total of six modern Qair estimates available from
the following products: JOFURO (Japanese Ocean Flux Data Sets with Use of Remote Sensing
Observations) including versions 2 (Tomita et al., 2010) and 3 (Tomita et al., 2018); GSSTF (Goddard
Satellite-based Surface Turbulent Fluxes) version 3 (Shie, 2014); HOAPS (Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite) version 3.2 (Andersson et al., 2010); IFREMER (Institut Francais pour
la Recherche et I'Exploitation de la MER) version 4 (Bentamy et al., 2017); and the SEAFLUX-Climate Data
Record version 2 (Clayson, 2016). Collectively, these products are divided into those whose Qair algorithms
use only microwave brightness temperatures—JOFUROv2, GSSTFv3, and HOAPSv3.2—and those that
include a priori information on water vapor stratification (JOFUROv3), SST (IFREMERv4 and
SEAFLUXvV2), and cloud liquid water (SEAFLUXv2). Data are evaluated over the 55°N to 55°S open ocean
(i.e., ice-free) domain as these satellite products are unable to provide estimates over sea ice. Table 1 provides
the functional formulation of each of the data products considered in this study.
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Table 1
Algorithm Description by Product
Product Algorithm Details
JOFUROV2 s it [19y, 19y, 224, 37y, 37h]
Qair = ag + Y, a;T; Least squares®
i=1
GSSTFv3 - i [19y, 19p, 224, 374]
Qair = ag + Y, a;T; Least squares
i=1
HOAPSvV3.2 - i: [19y, 19y, 22y, 37,]
Qair = ag + Y, a;T; Least squares
i=1
JOFUROV3 i: [19y, 19h, 22y, 37y, 37, 85y, 8541
n=7 n=3 .
Qair = ag + ¥, ;T + 3, be(Tx)> +¢Q k: [22y, 85, 85p]
i=1 k=1 aj, by, c: trained for six ranges of water vapor scale height;
Least squares
IFREMERV4 Qair = Fyp(T;, SST, SST — Tair) i: [19y, 19y, 22y, 37y]
Maximume-likelihood
SEAFLUXv2 Qair = Fyn(T;, SST, LWP) i: [19y, 19h, 22y, 37y, 37, 85y, 8541

Neural network

Note. LWP = liquid water path; NN = neural network; SST = sea surface temperature; GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes version 3;
HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite version 3.2; IFREMERv4 = Institut Francais pour la Recherche et
I'Exploitation de la MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

#Denotes the type of algorithms used to train regression function.

JOFUROV2 applies the five-channel regression of Schliissel et al. (1995), while both GSSTFv3 and
HOAPSv3.2 apply the four-channel regression of Bentamy et al. (2003) that follows from Schulz et al.
(1993). JOFUROV3 applies a seven-channel retrieval but also includes a priori estimates of columnar water
vapor, Q, and uses coefficients tuned for six different categories of water vapor stratification represented by
the water vapor scale height (see Tomita et al., 2018). JOFUROV3 also includes quadratic terms for the 22,,
85y, and 85}, channel. Each of the above formulations uses least squares regression to estimate model coeffi-
cients. IFREMERvV4 applies a maximum-likelihood procedure discussed in Bentamy et al. (2013) as an exten-
sion of their 2003 approach but which includes external information on SST and surface stability indicated
by differences in the sea surface and 10-m air temperature (Tair). SEAFLUXv2 applies the Roberts et al.
(2010) seven-channel nonlinear neural network regression that includes specified estimates of SST and
liquid water path (LWP). The latter two algorithms were developed upon noting SST-dependent biases in
brightness-temperature-only regressions. While SST and Qair are highly correlated, atmospheric variabil-
ity—including that related to columnar water vapor—significantly impacts the observed microwave bright-
ness and thus Qair estimates do not remain completely dependent upon the SST alone. Similar results were
found through inclusion of SST in an Advanced Microwave Sounding Unit retrieval of air temperature in
Jackson and Wick (2010); that is, atmospheric variations impacting the observed microwave brightness
impart independent information. Without the SST information—which sets a baseline for the background
surface emission—the retrievals using only the radiometer channels are forced to model the functional var-
iations between the microwave observations and atmospheric state in terms of atmospheric variability alone.
All products are available during the common period 1992-2008 and each was resampled to a common 1° by
1°, daily average grid using a conservative remapping (Jones, 1999) technique. All Qair estimates are repre-
sented at a standard height of 10 m.

2.2. Surface Observations

As a source for evaluation of the satellite estimates, direct surface observations are available from multiple
platforms including drifting and moored buoys, as well as VOS. A large collection of this data has been orga-
nized and evaluated to support the development of the National Oceanography Centre, Southampton
(NOCS) Flux Dataset version 2 (Berry & Kent, 2009). Development of this surface observation-based data
set included performing bias adjustments to humidity observations related to measurement techniques
and use of VOS metadata records to standardize all data to a common 10-m reference height. After adjust-
ments, a 0.2-g/kg bias uncertainty of these estimates remains (Berry & Kent, 2011). While NOCSv2 is
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developed as a monthly product, we utilize their daily corrected input fields—available on the same 1° by 1°
grid as the satellite estimates—for evaluation of the satellite-derived Qair estimates. These daily fields
include uncertainty estimates due to random and sampling errors. Independent comparisons with the
instantaneous VOS data used in constructing the daily fields reveal that daily pixels containing at least
one direct observation were associated with random uncertainty estimates less than 1.5 g/kg, and thus, we
only keep the NOCSv2 daily pixels having estimated errors below this threshold. This choice has little impact
on the systematic uncertainties evaluated herein. These daily average estimates have been collocated with
those from each of the satellite products and used to assess the sign, strength, and spatial patterns of systema-
tic errors for each data set.

2.3. Reanalysis

The water-budget-based dynamical decomposition of Wong et al. (2016) relies on estimates of vertically inte-
grated moisture transport and Q. Following their study, we obtain the required fields from the recently pro-
duced Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2, Gelaro et al.,
2017). Further, we obtain vertically integrated cloud liquid water and SSTs from MERRA-2 to assist evalu-
ating the satellite product Qair biases.

3. Methods
3.1. Dynamical Regimes

Following Wong and Behrangi (2018), the conservation equation for column-integrated water vapor can be
written as follows:

‘2—? +P=E = =V-(QV ) = =V-YQ-QV-V = Quiy + Quon o)

where P and E are surface precipitation and evaporation, respectively;

dp
8
is the column-integrated moisture transport vector scaled by precipitable water and g and v are the specific
humidity and velocity. Equation (1) presents a decomposition of the total moisture convergence into an
advective term, Q,qy, and the other term, Q.opn, related to mass convergence (scaled by Q). Alternative
decompositions of the vertically integrated moisture convergence could be made using an alternative scalar
to that of Q. With the use of Q, V can be interpreted as the water vapor weighted integral of winds. This
choice results in an analysis that emphasizes advection related to gradients of total columnar moisture
and a convergent component of lower layer winds as water vapor (and hence its weighting in V) decreases
rapidly from the surface. Wong et al. (2016) demonstrate partitioning of total moisture convergence into this
two-parameter space results in large-scale patterns where different “regimes”—as defined by different
thresholds in Qu4v/Qcon Space—frequently occur. A total of nine dynamical regimes is identified in Wong
et al. (2016) that represent the mixed conditions of strongly negative (—), neutral (0), and strongly positive
(4+) Qagv and Qcopn. Their analyses showed decomposition in this parameter space delineated regimes where
the advective versus convergent components dominated, or were mixed, and that they align to well-known
climatological patterns (e.g., tropical convergence zones, trade winds, and extratropical storm tracks) as well
as succinctly partition several thermodynamic metrics (e.g., convective available potential energy, convec-
tive inhibition). As an example, they find the neutral Q,q4, but strongly positive Q.,, dynamical regime,
AO0C+, is constrained geographically to the tropics and more specifically to the Intertropical and South
Pacific Convergence Zones. We have largely followed their regime definitions, but we have slightly modified
their thresholds so that the near-neutral conditions rely on a threshold of 3 mm/day rather than 1 mm/day.
We examined several similar thresholds, and none significantly impacts the qualitative results presented.
This threshold was chosen as it appears to more accurately capture the position of the trade wind inversion
within the two-parameter space.

Vgl @

3.2. State Dependence and Bias Corrections

Though most regression algorithms attempt to minimize the underlying squared error of the prediction,
there remains a distinct possibility for state-dependent (i.e., conditional) biases to exist as related to
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important but unaccounted for independent parameters. In this study, we demonstrate that the large-scale
dynamical conditions organize the biases into spatially coherent patterns; however, the fundamental drivers
of the retrieval errors are only indirectly related to the dynamics. The biases are driven directly by systematic
deviations in the water vapor stratification, SST, and LWP from those conditions represented in the empiri-
cal training data sets. That is, the microwave brightness is not responding directly to dynamical advection
and/or total convergence but to the profiles of water vapor, temperature, and clouds associated with that
variability that alters the microwave radiative transfer. In this study, we demonstrate evidence of conditional
biases related to these parameters and develop an a posteriori correction using a look-up table for the biases
conditioned upon MERRA-2 estimated SST, precipitable water fraction (% / 0 ), and columnar LWP. The

precipitable water fraction is the relative abundance of water vapor integrated over the surface to 900 hPa,
Qoo0, to the total columnar water vapor. We partition the precipitable water fraction in 2.5% increments from
0% to 100%, SST in 2 °C increments from —2 °C to 34 °C, and cloud liquid water in 5-g/m? increments from 0
to 600 g/m>. For each product all daily, collocated satellite-surface observation product differences are col-
lected within each hypercube in this space and the mean bias is estimated. Given our large data set of obser-
vations, there are approximately 320 samples per bin (median of all bins across products) in this 3-D space.
Bias corrections for each product are estimated using a trilinear interpolation of the contemporaneous daily
estimates of @ / o SST, and LWP from MERRA-2 and added to each product. Several discretization sizes

were tested with little impact. Further, we note that the primary objective is not to develop a definitive cor-
rection procedure but rather to illustrate the potential reduction of interproduct errors and differences if
these additional parameters are better accounted for within the retrieval process.

4. Results and Discussion

Systematic errors are estimated as the mean difference of the collocated product and observed surface obser-
vations of Qair. Figure 1 illustrates these errors for each of the products assessed in this study; Figures 1a, 1c,
and e are those algorithms relying on microwave brightness temperature-only (TB-only) regressions while
those in Figures 1b, 1d, and 1f use regressions that include some additional a priori information (i.e., SST
and water vapor scale height). Two contours are additionally overlain in each plot; blue and red contours
indicate where the relative frequency of occurrence exceeds 15% (results are qualitatively similar for other
contour choices) for the deep convective regime (A0C+) and the subtropical stable boundary layer (AOC—)
regime, respectively. One immediately recognizes a strong correspondence between the large-scale coherent
biases observed in each product, especially TB-only estimates, and the locations favored by these two regimes.
The TB-only-based products either show significant overestimation of Qair in the AOC+ regimes
(JOFUROW2) or significant underestimation of Qair in the AOC— regimes (GSSTFv3 and HOAPSv3.2), with
biases exceeding 1.5 g/kg in amplitude; these are much larger than the estimated systematic uncertainty of
0.2 g/kg of the NOCSv2 surface observations. GSSTFv3 and HOAPSv3.2 use the same Bentamy et al.
(2003) algorithm but are applied to separately intercalibrated and rain-flagged brightness temperature
records. Thus, it appears these conditional errors stem primarily from the algorithm choice rather than
the exact details of the intercalibrated imager data. Similar bias patterns are seen in the more recently
developed algorithms but with amplitudes generally reduced to below 1 g/kg for the dry trade wind bias
and less than 0.25 g/kg for the deep convective moist bias. JOFUROV3, compared to JOFUOv2, shows a
remarkable reduction in the positive biases in the convective regimes; their newer algorithm differs through
inclusion of water-vapor-scale-height information. However, this comes at the expense of introducing a
potential dry bias in the northern Pacific and Atlantic. IFREMERv4—an update to the retrievals used in
GSSTFv3 and HOAPSv3.2—has a reduced bias in the deep tropics but exhibits a moist bias of 0.3 g/kg over
much of the ocean. SEAFLUXv2 has reduced biases in both the tropical convective and trade wind regimes
compared to the TB-only algorithms. Both of these latter products include SST as an input but with no
explicit information on water vapor stratification.

While Figure 1 is highly suggestive of an interplay between large-scale dynamical regimes (e.g., as noted by
contours) and the observed Qair biases, we now seek to establish the connection between the retrieval phy-
sics and the dynamical regimes explicitly. Figure 2 demonstrates the partitioning of both lower layer preci-
pitable water fraction and total LWP into the dynamical regimes spanned by Q.o and Q,q4, parameter space.
The nine dynamical regimes based on thresholds are also shown; areas above (below) the dashed line—Qcop,
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Figure 1. Mean differences (product minus observations) are shown for (a) JOFUROV2, (b) JOFUROV3, (c) GSSTFv3, (d) IFREMERV4, (e¢) HOAPSv3.2, and (f)
SEAFLUXV2 over the common period 1992-2008 and open ocean domain (55°S to 55°N). Red (blue) contours outline the 15% relative frequency of occurrence
regions for the subtropical inversion layer/AOC— (deep convective/A0C+) dynamical regimes. GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes ver-
sion 3; HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite version 3.2; IFREMERv4 = Institut Francais pour la Recherche et
I'Exploitation de la MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

plus Q,4v equal to O—represent total columnar moisture convergence (divergence). There is clearly strong
variability in the lower layer water fraction associated with these regimes. In particular, the subtropical
trade wind inversion AOC— regime exhibits very concentrated water vapor with fractional amounts
greater than 60% found between the surface and 900 hPa. Conversely, the deep total moisture
convergence regions (AOC+ and A+C+) are represented by deeply mixed water stratification. As may be
expected, the total LWP shows strong variability aligned with the Q.., axis with LWP exceeding 0.2 mm
in the most convergent regions.
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Figure 2. Composite binned mean conditions are shown for (a) water vapor fraction and (b) total liquid water path based
on Modern-Era Retrospective Analysis for Research and Applications version 2 estimates within the two-parameter
water budget decomposition into convective (Qcopn) and advective (Q,qy) conditions. The dashed line separates total
columnar moisture convergence (above) versus divergence (below); solid lines and labels are used to indicate the
thresholds used to categorize the nine dynamical regimes tailoring the approach of Wong et al. (2016). Gray is used to
indicate bins with less than 50 samples. LWP = liquid water path.
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Figure 3. Composite binned mean differences are shown for (a) JOFUROv2, (b) JOFUROV3, (c) GSSTFv3, (d)
IFREMERV4, (e) HOAPSv3.2, and (f) SEAFLUXV2 over the common period 1992-2008 within the two-parameter
dynamical state space. Products that only use brightness temperature observations as algorithm inputs are in the left
panels, while those including additional a priori inputs are organized in the right panels. GSSTFv3 = Goddard
Satellite-based Surface Turbulent Fluxes version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite version 3.2; IFREMERV4 = Institut Francais pour la Recherche et I'Exploitation de la MER version 4;
JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

Figure 3 illustrates the partitioning of the observed Qair biases into these same regimes for each product. To
first order, the sign and strength of the satellite biases are organized above and below the diagonal line
demarcating zones of total moisture convergence from divergence. However, there are local
enhancements/deviations including changes in sign within this broader pattern. The TB-only regimes all
exhibit a strong signature of moist biases in regions of total moisture convergence and dry biases in regions
of total moisture divergence. JOFUROV2, GSSTFv3, and HOAPSv3.2 all also indicate a small positive bias in
very divergent conditions (Qcoy, less than —16 mm/day) that corresponds to a local minimum in Qw / 0 (see

Figure 2a). JOFUROV3 exhibits a generally dry bias (0.2 to 0.5 g/kg) with little difference between regions of
total moisture convergence/divergence excepting a small moist bias of 0.25 g/kg in the AOC+ regime.
IFREMERV4 exhibits a moist bias of 0.3-0.5 g/kg across this phase space. SEAFLUXv2 exhibits a weak
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Figure 4. Composite binned mean differences are shown for (a) JOFUROV2, (b) GSSTFv3 (c) HOAPSv3.2, (d) JOFUROV3,
(e) IFREMERvV4, and (f) SEAFLUXV2 over the common period 1992-2008 within the two-parameter water vapor fraction
versus sea surface temperature space. Products which only use brightness temperature observations as algorithm inputs
are in the left panels while those including additional a priori inputs are organized in the right panels.

GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite version 3.2; IFREMERv4 = Institut Frangais pour la Recherche et I'Exploitation de la
MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

bias of 0.1-0.2 g/kg where lower layer moisture concentration is most peaked. However, the latter two
products both show moist biases of 0.5 g/kg in strongly advective and convergent regions (A+C+). These
occur primarily in the extratropical storm tracks and can be seen Figure 1.

It has been known since Liu (1986) that the strong connection between total columnar water vapor and sur-
face layer specific humidity breaks down at shorter time scales; this was the impetus for Schulz et al. (1993)
to isolate a boundary layer water vapor signal for use in Qair retrievals. Clearly, inclusion of a priori informa-
tion on water vapor stratification as in JOFUOROV3 has the ability to sharply reduce, but not eliminate, the
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Figure 5. (a-f) Mean differences are shown after the implementation of a state-dependent bias correction for each product. Hatched regions indicate where the bias

amplitude has been reduced. (g-1) The time-mean corrections are shown. Contours (0.1 g/kg; negative is dashed) indicate the difference between the

three-parameter look-up table correction and a two-parameter (see text) correction. Positive contours thus indicate the three-parameter correction adding
additional moisture. GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite version 3.2; IFREMERvV4 = Institut Francais pour la Recherche et I'Exploitation de la MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets

with Use of Remote Sensing Observations version 2.

conditional biases related to moisture convergence. However, inclusion of SST information as in
IFREMERv4 and SEAFLUXv?2 also partially accounts for this bias; note that the regions of highest SSTs
are typically collocated with the regions of deep convection and mixing. SSTs also provide information on
average atmospheric temperature and humidity in a large-scale climatological sense (e.g., warm, wet
tropics and cold, drier extratropics). In short, both water vapor stratification and SSTs provide additional

independent constraints that help mitigate the underlying conditional biases.

In an attempt to better clarify these underlying relationships, Figure 4 provides an analysis of the retrieval
biases as conditioned within the SST- @ / 0
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Table 2

Bias Statistics Before and After Correction

Product |Original bias| (g/kg)a |Corrected bias| (g/ kg)a Percent with reduced bias (%) Mean reduction (g/kg) Mean amplification (g/kg)
JOFUROV2 0.54 0.26 89 0.50 0.17
JOFUROV3 0.43 0.18 95 0.35 0.14
GSSTFv3 0.60 0.26 92 0.55 0.16
IFREMERvV4 0.30 0.18 92 0.25 0.19
HOAPSv3.2 0.53 0.25 90 0.49 0.15
SEAFLUXv2 0.28 0.20 86 0.21 0.07

Note. GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite
version 3.2; IFREMERv4 = Institut Francais pour la Recherche et 'Exploitation de la MER version 4; JOFUROv2 = Japanese Ocean Flux Data Sets with Use of
Remote Sensing Observations version 2.

4These values represent the mean of the absolute value of the biases for all ocean pixels.

partitioning discussed in section 3.2 for these variables. For the older, TB-only retrieval algorithms, strong
gradients of the biases are present along both axes. The most prominent bias gradient is that related to the
water vapor stratification with moist biases being present in conditions associated with deeply mixed (i.e.,
low Qo / 0 ) conditions and dry biases in environments with strong boundary layer moisture

concentration. For more well mixed atmospheres, there is also an increase in the moist bias with
increasing SST. The newer retrieval algorithms that incorporate a priori information appear to mitigate
these biases found in the TB-only algorithms. JOFUROvV3, which uses water-vapor-scale-height-dependent
regressions but not SST information, strongly reduces the bias gradient along the water vapor fraction
axis, as one might expect. SEAFLUXv2, which incorporates SST as an input but lacks information on
water vapor stratification, reduces the gradient along the SST axis but maintains a prominent—albeit
reduced from TB-only—bias gradient associated with water vapor fraction. IFREMERv4 represents an
algorithm that incorporates a priori information on the SST and the near-surface stability. It is seen that
both the biases along the SST and water vapor stratification axis are reduced though a moist bias of
0.5 g/kg is found for moderate SSTs and well-mixed atmospheres; these are likely associated with
extratropical frontal systems. Though not shown, a weak dependence on the LWP was also found in
similarly binned diagrams. It has been shown in studies such as Roberts et al. (2010) that cloud liquid
water can mask water vapor emission signals leading to Qair biases. Referring back to Figure 2, it is clear
that the large-scale dynamical regimes are important for controlling the distribution of water vapor
stratification and cloudiness. We find that Figures 2—4 clearly demonstrate the connection of retrieval
biases due principally to conditional biases in water vapor stratification and SST to the coherent bias
patterns shown in Figure 1. That is, water vapor transport dynamics are tightly linked to water vapor
stratification and cloudiness that result in biases of Qair estimates stemming from the limited information
on these conditions within the brightness temperature observations alone. More recent algorithms that
specify this type of information (i.e., JOFUROv3, SEAFLUXv2, and IFREMERv4) appear to reduce,
though not eliminate these conditional biases. However, none of these latter algorithms include explicit
information on water vapor stratification, cloudiness, and SSTs simultaneously.

To show the value of this additional information, we have developed a bias correction through development
of a three-dimensional look-up table for each product based on the MERRA-2 water vapor fraction, SST, and
LWP. For each day of observations, we used the observed MERRA-2 parameters to estimate the state-
dependent satellite product biases (and hence required correction) at each grid point through trilinear inter-
polation of a look-up table described in section 3.2. Figure 5 demonstrates the new, reduced systematic errors
for each product in addition to the long-term mean correction. Hatched regions indicate those areas where
the amplitude of the bias has been reduced from the original data. Table 2 provides statistics for each product
on the average bias amplitude before and after correction, the percentage of points with a reduced bias
amplitude, and the average correction for points with a reduced or amplified bias strength. As expected,
all products have a reduced bias amplitude on average, with all but SEAFLUXV2 (86%) exhibiting bias reduc-
tions for approximately 90% or more of the global ocean pixels. For those locations exhibiting bias reduc-
tions, the TB-only algorithms exhibit approximately 0.5-g/kg bias reductions, while the more recent
algorithms are approximately 0.2-0.3 g/kg. For the small fraction of locations (~10%) where biases are ampli-
fied, the adjustments are all below 0.2 g/kg.
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Figure 6. (a-f) The daily resolution corrections for a single day, 1 January 2001, are shown to illustrate the typical character of the correction for each product. Note
the strong synoptic scale organization and the larger corrections for temperature-only algorithms. GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes
version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite version 3.2; IFREMERv4 = Institut Francais pour la Recherche et
I'Exploitation de la MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

Figures 5a-5f illustrate the spatial pattern of bias after correction and can be contrasted with those in
Figure 1. Figures 5g-5I depict the time-mean correction patterns as well as the additional correction pro-
vided by including LWP as an independent parameter. The TB-only-based estimates, seen in Figures 5a-
5c, show substantially reduced biases overall though a dry bias of up to 0.5 g/kg appears to remains over
the northwestern equatorial Pacific, Bay of Bengal, and the Arabian Sea. The time-mean correction patterns
closely mirror the bias patterns found in Figure 1. Contours in Figures 5g-51 indicate additional moistening
over the northern Indian Ocean (up to 0.5 g/kg) that are in excess of corrections using only a two-
dimensional water vapor fraction and SST correction without LWP data. The added contributions from
LWP information are a smaller-order (generally 0.1-0.2 g/kg) correction compared to the time-mean correc-
tions exceeding 1 g/kg for TB-only products; but for the more recent products where biases are smaller, addi-
tional information from the LWP correction are more significant and can approach 30-50% of the total
correction. Those algorithms including a priori information (see Figures 5d-5f and 5j-51) now exhibit very
small biases across the global oceans with limited coherent signatures.

For completeness, Figures 6 demonstrates the large-scale coherence of the corrections at daily resolution.
The patterns are more muted for those products incorporating a priori information; however, all corrections
exhibit large-scale organization on the synoptic scale; these are driven primarily by the patterns of water
vapor convergence/divergence. Figure 7 illustrates the open ocean (55°N to 55°S) area-average time series
of surface humidity before and after corrections are implemented. As Kent et al. (2014) find, annual mean
differences greater than 0.5 g/kg are found between the original product estimates. Both IFREMERv4 and
SEAFLUXV2 represent an upper range on the estimates while most of the TB-only estimates are relatively
drier by 0.3-0.5 g/kg. Consistent with the weak dry bias in Figure 1, JOFUROV3 is drier compared to surface
observations and falls below JOFUROV2 and toward the lower range of estimates that include HOAPSv3.2
and GSSTFv3, which exhibit significant (greater than 1.25 g/kg) dry biases in the subtropical trade-inversion
regime. Obviously, there are compensating regional biases over this areal mean for the latter products. After
corrections, all estimates collapse to within about 0.2 g/kg of one another in the areal mean after 2000 with
consistent seasonal cycle amplitudes. In this sense, total uncertainties in the areal mean are reduced by up to
50% and are approaching the 0.2 g/kg stated mean uncertainties in the surface observations (Berry & Kent,
2011). In the early to mid-1990s, the spread is also reduced by about 50% but only to about 0.4 g/kg. During
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Figure 7. Ocean area-average (55°N to 55°S) Qair time series are shown for all six product estimates for the (a) original
and (b) bias-corrected data. Samples are only included in the computations when all products are simultaneously avail-
able thus eliminating differences that arise due to sampling variability (e.g., use of different cloud/rain masks).
GSSTFv3 = Goddard Satellite-based Surface Turbulent Fluxes version 3; HOAPSv3.2 = Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite version 3.2; IFREMERv4 = Institut Francais pour la Recherche et I'Exploitation de la
MER version 4; JOFUROV2 = Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations version 2.

this time frame, there are fewer microwave radiometers available and intersensor calibration, interpolation
procedures, and other factors are likely also impacting product uncertainties.

5. Conclusions

The results presented in this study indicate a strong relationship between observed Qair biases and dynami-
cal regimes of moisture convergence/divergence resulting in specific characteristics of water vapor stratifica-
tion and cloudiness regimes. The large-scale coherence of systematic errors in Qair from passive microwave-
based satellite retrievals are an imprint of conditional dependencies upon water vapor stratification, cloud
effects, and SSTs that are organized through the large-scale dynamics. Because the relationship between
near-surface and total columnar humidity is linked to water vapor dynamics, the use of statistical regressions
that are essentially unconditioned upon this factor will either overpredict or underpredict the near-surface
humidity as one deviates from the “typical” water vapor stratification resolved by the training data used
in the statistical regressions; that is, a conditional bias remains. It has been shown that a simple a posteriori
bias correction conditioned on these parameters significantly reduces the interproduct differences resulting
in more consistent and accurate—relative to surface observations—representations of surface humidity.
However, some residual biases remain and it is likely that proper inclusion of these additional conditional
dependencies should be undertaken at the retrieval level itself as done in Tomita et al. (2018) for the devel-
opment of JOFUROV3. The need for more accurate a priori information on vertical stratification is also sup-
ported by studies such as Jackson et al. (2006) who demonstrate using microwave imager observations
together with direct information from microwave sounders significantly improves retrievals of Qair.
However, multisensor-based retrievals as in Jackson et al. (2006) tend to have significantly reduced sampling
as collocated observations from separate sensors are required. It should be noted that as more a priori infor-
mation is added as part of the algorithm retrieval itself, the surface humidity estimates will themselves
become less independent from sources of that information. Use of reanalysis information to specify water
vapor stratification, for example, could introduce errors related to those in the reanalysis itself. The neces-
sary inclusion of this information stems from the lack of significant direct sensitivities to water vapor strati-
fication and SST (Special Sensor Microwave/Imager does not contain 6- or 10-GHz channel) in the
traditional set of microwave imagers applied to problems of over-ocean Qair estimation. Future development
efforts in this area should include (i) physically based variational estimates that incorporate background
information in a consistent framework and (ii) application of multisensor retrievals that incorporate addi-
tional temperature and humidity information from the boundary layer. Finally, the spatial coherence of
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the large-scale biases—even at the instantaneous level—indicates that any optimal estimation-based ana-
lyses must treat observational error covariance structures with care.
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