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Abstract

An introduction to classification methods is given with sections on 

Flow Cytometry, Clustering and so on. This includes a literature survey on 

research into fuzzy clustering algorithms, with a section specifically related 

to Flow Cytometry. Details are given about the data sets and the software 

used, and the clustering algorithms investigated. The flow cytometry data 

was collected for marine phytoplankton. Two groups of data are used, one 

containing species that overlapped each other, and one containing 

independent species (non-overlapped). Ten clusters of 1000 records each 

are collated for each group, each record comprising of seven variables. Six 

clustering algorithms (Fuzzy K-Means, Adaptive Distances, Fuzzy K- 

Means, Generalised Distances, Maximum Likelihood, Minimum Total 

Volume, and Sum of all Normalised Determinants) are used to cluster the 

flow cytometry data. The results are compared for each group of data, for 

each algorithm, based on the number of clusters produced and the 

relationships of the phytoplankton species placed in each cluster. 

Conclusions are drawn about the suitability of each algorithm to cluster 

phytoplankton flow cytometry data, and a discussion follows on some flow 

cytometry data issues. Various potential algorithms that could be 

investigated in future research are discussed.
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Chapter 1 - Introduction

1.1 Phytoplankton and Flow Cytometry

1.1.1 Phytoplankton

There are two main types of plankton; animals called zooplankton and plants 

called phytoplankton. Phytoplankton are the microscopic plants which float in 

both salt and fresh water, and are passively moved by wind and currents. In 

aquatic habitats, phytoplankton are at the bottom of the food chain, and rely on 

other microscopic organisms, mostly bacteria, "which convert organic material 

into inorganic nutrients" which they require [3].

1.1.2 Importance of Phytoplankton

Phytoplankton have been shown to have a significant role in the way 

oceans affect the global climate [4]. They are responsible for the "global cycling 

of carbon dioxide through the fixing of around 50 x 109 tonnes of carbon" [5] each 

year, and perform the fundamental function of providing "proteins, carbohydrates, 

fats, vitamins, and mineral salts to primary consumers" [Web 1].

While most species are harmless, pollution can sometimes cause an 

increase in nutrient levels in water which can in turn cause the development of 

large 'blooms' of phytoplankton, (see Figure 1.1) and in some species, toxins 

which can be detrimental to marine life and occasionally humans. These 'blooms' 

can block sunlight from reaching the bottom in shallow water areas and can 

cause the "massive decline in the submerged aquatic vegetation" [Web 2].



Figure 1.1 Nodularia spumigens bloom, January 2002, in the Gippsland 

Lakes, Victoria, Australia Photo credit: J.D. Kinnon [Web 3].

By monitoring the population of test species, indications can be provided 

not only about the level of pollutants present in the waters, but also how they are 

dispersed by the movement of the water [6]. This illustrates how important it is to 

investigate changes in phytoplankton populations in order to gain an 

understanding of the global water systems.



1.1.3 Types of Phytoplankton

The majority of phytoplankton are single-celled organisms, however 

some consist of 'chains of loosely associated cells', while others form 'thread­ 

like cell systems' or uniform celled colonial structures [3].

Phytoplankton vary enormously in size from 'ultraplankton' which are 

less than 5n, to the 'macroplankton' at more than 1mm. In this project, the 

species vary from 1|j. to 42^, and the approximate size of each group/class of 

phytoplankton given is based on the data collected for the 62 species contained 

in the database used in this project.

Phytoplankton are classified (see Table 1.1) according to several 

characteristics: cell shape and size; presence or not of a cell wall; 

chloroplasts in terms of colour, number and shape; flagella in terms of 

number, length, and presence or absence of bristle-like outgrowths or fine 

hair; and type of reserve substances stored like starch, oil and leucosin [3].

Normally phytoplankton would appear green due to the green chlorophylls 

found in the chloroplasts, but the presence of auxiliary pigments and the 

quantity of these pigments, means that phytoplankton exist in a large variety of 

colours. Added to this, some unicellular planktonic algae are colourless and 

phagocytic, i.e. they can engulf and digest solid organic particles like other 

plankton, instead of photosynthesising.



Table 1.1 Taxonomic groupings of the phytoplankton species used in this 

research.

Group Class Species

Cryptophytes 

Flagellates

Flagellates 

Prymnesiophytes

Diatoms 

Dinoflagellates

Cryptophyceae 

Prasinophyceae

Rhodophyceae

Prymnesiophyceae

Bacillariophyceae

Dinophyceae

C. appendiculata, H. brunnescens,

Rhodomonas sp. 

M. pusilla, N. pyriformis,

T. tetrathele

P. pupereum, R. maculata 

C. chiton, E, huxleyi

A. coffaeformis

A.carterae, A. pigmentosum,

G. veneficum, H. triquetra

1.1.3.1 Characteristics of the Plankton Classes

Cryptophyceae : There is a large variation in the chloroplast colours of this 

class. They range from green to brown with some species appearing blue-green 

or red due to the auxiliary pigments phycocyanin and phycobilin respectively. 

These organisms vary in size from approximately 1^ to 25(j,. A pair of unequal 

length flagella "both covered with fine hair-like outgrowths" is present [3], with 

many species exhibiting a cell intucking or gullet to ingest organic particles.

Cyanophyceae (The Blue-Green Algae): This class of phytoplankton occur 

in unicellular, colonial and filamentous form, but are actually more similar to



bacteria than other plankton as they are prokaryotic, (i.e. they don't have a 

definite nucleus, nuclear membranes or chromosomes). The distinguishing 

characteristic of this class is that the walls of the cells consist of two or three 

layers close to the plasma membrane unlike other algae.

Prasinophyceae (Planktonic Green Algae) : These cells are approximately 

between 1^. and 19|o, and mostly are green in colour. The majority are unicellular 

with predominantly either 2 or 4 flagella although some uniflagillate organisms 

have been described. The flagella are thicker than other Planktonic Green Algae 

due to the presence of scales covering the surface of each flagellum. (See Figure 

1.2)

Figure 1.2 Prasinophyceae (Planktonic Green Algae)

(a) Micromonas pusilla (b) Nephroselmis pyriformis

Rhodophyceae (Red Algae) . These are the family of red algae. They are 

red due to the presence of phycoerythrin, a pigment which reflects red light and 

absorbs blue. Blue light penetrates water to a deeper level than light with longer



wavelengths, enabling red algae to live and photosynthesise at a greater depth 

than most phytoplankton [Web11]. The life cycle of red algae often entails "three 

stages of independent organisms" [Web12]. Most are multicellular, where their 

cells are generally covered by a "slimy outer sheath", and may contain several 

nuclei. Some multicellular species deposit calcium carbonate crystals both inside 

and outside their cell walls, and it can be difficult to differentiate these calcified 

red algae from corals. The cell walls may also contain "colloidal compounds", for 

example, agars and carageenan. Energy from photosynthesis is stored as a 

carbohydrate, floridean starch. Like the pigments of red algae, this carbohydrate 

is unique to this class of phytoplankton [Web13].

Prymnesiophyceae : This class of phytoplankton are in general, 

unicellular and photosynthetic. They may have a complex life cycle, "with an 

alternation between motile and non-motile phases of different morphologies" 

[Web 14]. Members of the group Prymnesiophytes were originally called 

Haptophytes due to the "presence of the unique organelle, the haptonema. This 

is a peg-like structure that extends out from the cell near the point where the two 

flagella are attached. The haptonema was originally thought to be a third 

flagellum, but has since been found to have a quite different morphology, and its 

function is unknown." Prymnesiophytes occur regularly in a golden-brown colour 

due to the presence of diadinoxanthin and fucoxanthin pigments. Many have a 

covering of external plates which can either be calcified (coccoliths) or



carbohydrate based. These can have "spines or an elaborated rim", and occur in 

many shapes from pentagons to donuts to trumpets [Web14].

Bacillariophyceae (Diatoms) : The ubiquitous Diatoms are sized between 

approximately Sjo, and 36|o. and contain xanthophyll auxiliary pigments giving 

them a yellow-brown colour. They possess no flagellates and are unique in 

having a rigid silica based cell wall.

Dinophyceae (Dinoflagellates) : Some of these phytoplankton occur as 

colourless phagocytic forms, however the majority are unicellular autotrophic 

organisms which obtain energy from chemical elements. The cells have an 

approximate size of 7^ to 45|a, some of which contain auxiliary xanthophyll 

pigments, resulting in a range of colours from yellow-green to yellow-brown. The 

cells also have two flagella, one "trailing behind the cell and lying in a groove 

(sulcus) and the ribbon-like transverse flagellum also lying in a groove (the 

cingulum or girdle)" [3]. (For examples, see Figure 1.3 below.)

Figure 1.3 Dinophyceae (Dinoflagellates)

(a) Aureodinium pigmentosum (b) Heterocapsa triquetra



1.1.4 Conventional Data Gathering Techniques

Established techniques for studying plankton consist firstly of sample 

collection, centrifuging to concentrate the cells in the sample and/or filtering. 

This is then followed by microscopic analysis usually involving fluorescence and 

staining techniques in order to highlight the presence of certain plankton [6], 

which the trained specialists would then be able to identify. This method is not 

suitable where the presence of one cell type is amongst an abundance of much 

larger populations of other organisms, and is extremely slow and laborious. In 

addition to this, as the samples are fully analysed back at the laboratory, and not 

in situ, if anything interesting is found, extra water samples cannot be taken for 

further investigation. As a result of this, "automated methods previously used to 

sort mammalian cells in biomedical science have been applied" [1].

1.1.5 Automated Cell Analysers: The Flow Cytometer

Flow cytometers are sophisticated automated cell analysers, which have 

been applied to marine biology research [7] [8] [9]. They measure fluorescence 

and light scatter from single particles as cells pass singularly in suspension 

through a laser beam, which is used to measure properties of the particle. The 

cells may simply be counted, but according to the results of the measurements, 

they may be physically separated from the continuous stream by an "electrostatic 

or mechanical sorter" [1] for microscopic analysis.

8



Figure 1.4 Schematic Diagram of A Flow Cytometer (Coulter EPICS 741) [1].

Laser (488nm)

Nozzle for
hydrodynamic
focussing

Wide angle light scatter
detector
(488 nm)

Red (Chlorophyll) 
fluorescence detector 
(>660 nm) I

Vertically 
notarised filter

Horizontally 
oolarised filter

Orange / green 
(phycoerythrin) fluorescence 
detector (530-590 nm)

Sample stream 
to sorter or waste

Vertical forward light 
scatter detector

Horizontal forward light 
scatter detector

Modern flow cytometers consists of a light source generally in the form of 

a laser / lasers, collection lens, electronics and a computer to translate signals to 

data. Scattered and emitted fluorescent light is collected by two lenses, one set 

in front of the light source and one set at right angles. It gives measurements 

which are representative of the size and shape of the cell, and by a series of 

optics, beam splitters and filters, specific bands of fluorescence can be



measured. "With flushing and sample exchange, a practical analysis speed can 

be achieved of a few minutes per sample, with 10,000 to 100,000 particles 

measured" [8]. As well as this, depending on the flow cytometer used, a single 

cell can have between 3 and 12 variables measured as part of the analysis, 

compare this with the painstaking task of using microscopes to classify particles. 

The properties indirectly measured by a flow cytometer include particle 

length, width, height and area, the presence of calcite plates covering the cell 

body, and the colour fluorescence of the chlorophyll. Also, internal cell complexity 

and, "any cell component or function that can be detected by a fluorescent 

compound, can be examined. (Table 1.2) This has led to the widespread use of 

these instruments in the biological and medical fields" [Web 4].

Table 1.2 Typical flow cytometry measurements recorded

Name

FSC-H

SSC-H

FL1 -H

FL2-H

FL3-H

Description

Log forward light scatter, - this is a measure of particle size.

Log side scatter - this can indicate the presence of coccoliths, calcite 

plates covering the cell body.

Log depolarised light scatter.

Log peak phycoerythrin fluorescence (orange 

discriminating cryptophytes and rhodophytes, 

pigment, from species which don't.

Log peak chlorophyll fluorescence. This is the

fluorescence) - used for 

which have this

height of the particle.
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FL3-A

FL3-W

Integrated chlorophyll fluorescence - this is usually closely related 

measurement 5 but linear, so it doesn't provide much more 

information. This provides the area of the particle

to

Width of the particle.

1.1.6 The EurOPA Project

1.1.6.1 Deficiencies of Commercial Flow Cytometers for Marine Use

Flow cytometry provides many advantages over optical microscopy when 

analysing phytoplankton. However, a number of considerations, still need to be 

investigated.

The principal design and use of cytometers concerns the analysis and 

sorting of mammalian cells. This means there is a limit to the size of particles that 

can be analysed, i.e. in our application area only relatively small ocean 

phytoplankton [8]. The optics and wavelengths of the lasers used are not 

conducive to analysing natural water samples. Information on the cell structure of 

the particle cannot be deduced using the fluorescence pulse profile. Large fragile 

colonies of cells tend to be disturbed by the movement of the fluid present. The 

number of parameters measured simultaneously may be limited by the 

"electronic data acquisition hardware" [1]. Most cytometers are for laboratory use 

only and are therefore difficult to transport.

The Optical Plankton Analyser (OPA) was designed with some of these 

limitations in mind; unfortunately, it was only developed as an experimental 

prototype and was inappropriate for fieldwork [8] [10].
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1.1.6.2 Development of EurOPA Instrument specifically for Phytoplankton 

Analysis

The EurOPA project developed "an optical flow cytometer specialised for 

plankton analysis in certain areas [8] [11]:

  Three lasers, with wavelengths specifically tailored to cause florescence of 

marine phytoplankton pigments;

  Analysis of a wide range of particle sizes: the width of the laser foci (300 - 

lOOOfom wide) and the low-shear fluidics are designed to allow accurate 

analysis of colonies as well as single cells, ranging from 1 to 1000[j,m in size;

  Improved electronics, to remove the limitation on the number of 

simultaneously measured parameters;

  Additional diffractometry module, to collect low angle light scatter information 

in much greater detail using a 5x5 detector square array: the resulting 

diffraction pattern contains more information on particle size and shape;

  Pulse shape analysis of light scatter and fluorescence signals, to detect chain 

and colony forming species;

  High speed imaging-in-flow module to capture video images of plankton;

  Purpose built sorter module to allow for the wide sample stream;

  Small size and easy portability for shipboard use, with a gimballed 

suspension table to eliminate effects of ship movement;

  Integration of the entire instrument with powerful data analysis techniques"

[1]-
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1.2 Data Analysis

1.2.1 The "Data Analysis Bottleneck"

Each time a particle in a sample passes through the interrogation point in 

a flow cytometer, it is classed as an event. Information about each event is 

provided by the flow cytometer - this set of measurements is known as a 

cytometric 'fingerprint' of the particle. Large numbers of such measurements can 

be collected rapidly, typically at a rate of more than 103 events per second with 

between three and twelve variables measured for each particle.

This section emphasises how much data it may be necessary to analyse 

in order to classify a particle when using multivariate data. Some species of 

phytoplankton are easily distinguishable. There may be cases where there are 

only two possible species that a particle could belong to which are easy to tell 

apart. For example, Stichococcus bacillis is a member of the Cryptophyceae 

class and is of a similar size to Hemiselmis brunnescens, also of the 

Cryptophyceae class but which fluoresces orange/green. Here just by using a 

threshold value on the orange/green fluorescence, the two species can be 

distinguished from each other. Furthermore, the threshold value could be used in 

flow cytometry to cause a cell sorter to collect samples of one of these species. 

However not all phytoplankton are so easily recognised. In which case there can 

be many more possible classifications of an organism, and an increase in the 

amount of data to be analysed may be needed. For example, when no single 

measurement will enable the particle to be identified as one specific species of 

phytoplankton, it may be required that information be used simultaneously from
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all the measurements in order to decide the identity. If species from the same 

group are to be distinguished and not just groups of species from each other, this 

is particularly the case. At this stage, principal components analysis [Web 8] can 

be used to obtain a one or two-dimensional projection of the data with maximum 

variance, enabling individual clusters to be visualised. However, "in general there 

is no unique best projection" [1]. Flow cytometers typically have limited 

capabilities for analysing phytoplankton groups [12].

1.2.2 Problems Inherent in Flow Cytometric Data

Extensive variability is inherent in phytoplankton flow cytometry data, 

"even when the sample analysed has been carefully cultured under a standard 

abiotic regime", [1] different strains of the same species can show variability in 

their cytometric 'fingerprints' [13]. To compound matters, cells at different stages 

in the species life cycle and colony formation, and cells growing under different 

environmental conditions will be present in the population. Samples taken from 

the field may also contain cells, which are eaten by other organisms. Further, 

there may be inorganic or mineral particles, contaminant organisms such as 

bacteria or other plankton species, and cell debris such as dead cells and 

fragments of cells, which are sample contaminants. All of these factors "can 

cause the data even for a nominally pure culture to appear complex" [1].
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1.2.3 Two-Dimensional Scatter Plots

Due to the multivariate nature of the data, two-dimensional plots look very 

complex and very unclear. Even if different colours or shapes are used to 

represent the data points in the different clusters, it can still appear that all the 

data belongs to one big cluster, as this method does not exploit the multivariate 

nature of flow cytometric data. The degree of overlapping of clusters is not 

obvious and this method of displaying the clusters is not viable. (See Figure 1.5)

Figure 1.5 Two-Dimensional Scatter Plots of the Data Sets
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(a) Non-Overlapping Data (b) Overlapping Data 

Plots illustrating the distributions of the ten species in (a) data set A: non- 

overlapping data, and (b) data set B: overlapping data, projected in each case 

onto the plane of the first two principal components.
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1.2.4 Principal Components Analysis - Three Dimensional Scatter 

Plots

Principal Components Analysis is a projection method used to reduce the 

dimensionality of data while maintaining the maximum variance.

The original correlated variables are linearly transformed into independent 

variables called principal components. The amount of information represented by 

each principal component is the variance, and the components are listed in 

descending order of variance. Therefore, by using the data for the first n 

components, this method can be used to establish the n-dimensional projection 

of the data with maximum variance.

Typically 2-dimensional or 3-dimensional projections are applied. In this 

study, a 3-dimensional projection was carried out reducing the dimensionality of 

the data from seven to three. This meant the data could be displayed in three- 

dimensional space instead of the hyper-dimensional space originally required. 

(See Figure 1.6)

Principal component analysis can be applied to three types of square 

matrices, "SSCP (pure sums of squares and cross products), Covariance (scaled 

sums of squares and cross products), or, Correlation (sums of squares and cross 

products from standardised data)" [Web 8]. There is no difference in the results 

when using SSCP and Covariance matrices; however the Correlation type is a 

special case. It is necessary that Correlation matrices be used either when 

different units of measurement are used to record each parameter or when the 

variances of each parameter differ significantly. The data used here was
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recorded using different measurement units, and therefore the Correlation type of 

Principal Component Analysis was performed.

Figure 1.6 Three-dimensional Scatter Plots of the Data Sets

(a) Non-Overlapping Data

17



(b) Overlapping Data

Plots illustrating the distributions of the ten species in (a) data set A: non- 

overlapping data, (b) data set B: overlapping data, projected in each case onto 

the plane of the first three principal components.

X axis: FSC-H = Log forward light scatter (size)

Y axis: SSC-H = Log side scatter (presence of coccoliths, calcite

plates covering the cell body)

Z axis: FL2-H = Log peak phycoerythrin fluorescence 

(Orange Fluorescence)
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This is a useful tool to visualise the clusters, however, generally there is 

no single best projection relevant to all phytoplankton species. A projection 

allowing one pair of species to be distinguished will not be applicable for other 

pairs of species. Therefore, a classification approach to exploit the multivariate 

nature of the data is required.

1.2.5 Statistical Multivariate Analysis

A study was carried out on the use of multivariate statistical analysis to 

identify 32 marine phytoplankton species from their flow cytometric signatures 

[12]. The flow cytometric data used in the study mentioned and the data sets 

used in this research come from the same data source. The two methods used 

were Canonical Variate Analysis (CVA) and Quadratic Discrimination Analysis 

(QDA).

1.2.5.1 Canonical Variate Analysis (CVA)

Canonical Correlation Analysis (CCA) looks to identify the connections 

present between two sets of variables as well as the strength of these 

connections. It is concerned with the correlation between linear combinations of 

the variables in each set. Firstly, the pair of linear combinations with the largest 

correlation is established. Secondly, the pair with the closest match of all pairs 

unrelated to the initially selected pair, is determined. The process continues until 

there are no more pairs of linear combinations to select from that are 

uncorrelated from the initial pair. The pairs of linear combinations are known as
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the canonical variables and their correlations are referred to as the canonical 

correlations [14].

In has been suggested that CVA is a method similar to Principal 

Component Analysis in that it reduces the dimensionality of the data [Web 7].

Looking at the multivariate statistical analysis study of the 32 marine 

phytoplankton species [12]. Where differentiation was based on the taxonomic 

group, the groups that had a specific property that could be used to discriminate 

them were separated clearly, like Dinoflagellates which tend to be the largest 

species present, or entirely, like Cryptomonas which have "high orange to red 

fluorescence ratios" [12]. It was not possible to distinguish the other three 

groups. This suggests that physical cell differences between the groups "are not 

reflected in light scattering and fluorescence properties alone" [12].

Where species-level analysis was performed, it was found that CVA "can 

be a useful preliminary graphical method to apply when analysing a small 

number of groups" [12].

12.5.2 Quadratic Discriminant Analysis (QDA)

"Classificatory discriminant analysis is used to classify observations into 

two or more known groups on the basis of one or more quantitative variables" 

[Web 7]. Classification can be done by either a parametric or a non-parametric 

method. In cases where the distribution within each class is approximately 

normal, a parametric method is applicable. Methods of this type create either a 

linear discriminant function if the covariance matrices within each group are
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assumed to be equal, or a quadratic discriminant function if the covariance 

matrices within each group are not equal.

In cases where the distribution within each class is assumed to have no 

specific distribution or a non-multivariate normal distribution, non-parametric 

methods can determine the criteria for classification, for example nearest- 

neighbour methods. "The performance of a discriminant function can be 

evaluated by estimating error rates [Web 7]. i.e. misclassification probabilities.

In multivariate statistical applications, the data sets analysed are generally 

from non-normal distributions. When a non-normal population is used to 

determine the classification criterion for a parametric method like QDA, the 

resulting error rates may be biased and therefore the evaluation of their 

performance could be misleading [Web 7].

In the multivariate statistical analysis of the marine phytoplankton flow 

cytometry data [12], QDA was found to be successful at distinguishing 

phytoplankton at species-level. Results showed classification rates exceeding 

70% for more than two-thirds of the species, with many species well separated. 

However, there were low classification rates with the diatoms, but this was likely 

to be caused by their tendency to form chains which means they overlap with 

other species.

Flow cytometric signatures sometimes follow multivariate normal 

distributions, making QDA an appropriate method to apply as even considering 

the non-normal distributions; the effects of the non-normal characteristics in 

general, are negligible due to the clear separation of many species.
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QDA proved to be a considerable improvement over "conventional AFC 

software" [12] in accuracy, despite a number of species being identified that were 

in the training data but not present in the water samples that were analysed by 

the flow cytometer. This was not unexpected considering that more species than 

were likely to be present in a single sample were included in the training data, 

and also because natural variation of the data caused observations to be 

misclassified. In addition to being successful at discriminating phytoplankton at 

species-level, QDA was also found to be "more than two orders of magnitude 

faster than conventional flow cytometric analyses for discriminating and 

enumerating phytoplankton species" [12].

The multivariate statistical method here compared favourably with a Back 

Propagation neural network approach to identify 42 marine phytoplankton strains 

[13]. The data sets were different; however 25 species were common to both 

studies.

1.2.6 Pattern Recognition

1.2.6.1 Introduction to Pattern Recognition

Pattern Recognition can be broadly described as "the interpretation of 

data in the presence of noise" [1], where data is matched to the required 'object'. 

It has a wide range of applications: identifying stock market trends, warning of 

epileptic fits from EEG waves, recognising plankton from flow cytometry data, 

and so on.
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A 'pattern' is a description of a particular instance of one of these objects 

(e.g. a photograph of a daffodil), and the idea of pattern recognition is to assign 

the instance as belonging to a particular group or class. In this example, the 

class could be defined as a collection of photographs containing the specific 

plant.

One problem to consider is that images of a particular pattern will not all 

look the same. A person can look very different in different images due to 

variation in light levels, change in background, change in profile and so on, and a 

pattern recognition system should be capable of allowing for this.

1.2.6.2 Pattern recognition as a multivariate clustering and partitioning 

problem

For convenience, data patterns are usually denoted by a list of n real 

numbers xi, x2, .......xn which correspond to the values measured that constitute

the pattern. It is useful to visualise these patterns as points in n-dimensional 

space, where each pattern is uniquely identified by a vector x, the vector from the 

origin to the point. Two conditions must apply in order for patterns to be 

identifiable: (i) Different patterns of the same object should be similar in some 

context, (ii) Groups of patterns of different objects must be separate from each 

other.

The process of pattern recognition can be considered in two parts: (i) 

Dividing the n-dimensional space into "labelled regions surrounding each cluster" 

[1]. (ii) Identifying which region a new pattern belongs to. Clusters of data points
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from different groups may not be distinct, but overlap, leading to misidentification 

by the pattern recognition system. This is true of any such system, regardless of 

how successful it is.

7.2.6.3 Memorisation and Generalisation

If there was no variation in the patterns in each class, pattern recognition 

systems could successfully identify patterns by 'memorising' a set of training 

data, which would contain patterns from each known class. Each new pattern 

would just be compared to the examples in the training set to identify which class 

it belonged to.

However, due to noise contamination during data capture or where 

patterns in the same class are inherently variable, a pattern can differ 

significantly from the known classes. Here the pattern recognition system has to 

make a 'reasonable guess' by making 'generalisations' about the classes it 

knows and select the class that is the closest fit to the new pattern.

The true measure of a pattern recognition system, is the accuracy of 

recognition of 'unseen' test data. "Fundamentally, pattern recognition is a 

decision process for which the only and ultimate criterion is minimization of the 

average number of misclassifications" [15].

1.2.7 Bayesian Statistical Pattern Recognition

Statistical Pattern Recognition systems identify which object a* an 

observed pattern x should be assigned to, based on the probability density
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functions or likelihood functions P(X|<OJ) for each class [16]. "This is the probability 

or likelihood that x could be generated by a given object coj, and is related to the a 

posteriori probability p(coi |x), that <DJ was actually the object that produced the 

observed x, via Bayes' rule:

P(x)

where p(coi) is the a priori probability of object Wj and p(x) = I.-, p(x|coj)p(»i) is the 

unconditional probability of x. Where the objects are exhaustive (covering all 

possible classifications of x) then Djp(a>j|x ) = 1." The idea of a Bayes' rule 

classifier, is to assign the pattern x to the object with the highest a posteriori 

probability. If all misclassifications are of equal cost, then this is known as an 

optimal classification strategy as the number of misidentified patterns is 

minimised. However, this is not always achieved, and in these cases, some 

misclassifications are potentially costlier than others [16] [17] [1].

1.2.8 Neural Network Pattern Recognition

1.2.8.1 Introduction to Neural Networks

The concept behind neural networks is that they model the operation of 

the human brain. To do this, they utilise a parallel processing structure that has a 

large number of processors and many interconnections between them.

The brain itself, consists of approximately 10 14 neurons, each connected 

to 104 others [18]. Each nerve cell has defined inputs and outputs. The inputs to 

the cell are a set of fibres called dendrites, and the output is a long, branch like 

fibre called the axon. The connecting point between the axon of one cell and the
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dendrite of another is called the synapse. The cells work by means of impulses 

which are generated by cells that 'fire', and are then passed along axons via 

synapses to dendrites of other cells which may in turn fire depending on the 

inputs [Web 5].

1.2.8.2 Artificial Neurons

This is the basic working model in about 90% of neural network 

applications. Each input / to the neuron has a weight w associated with it, the 

values are multiplied together to give the weighted input. (See Figure 1.7)

Figure 1.7 Diagram of an Artificial Neuron

Transfer 
Function

Output

First introduced by McCulloch and Pitts in 1943

The neuron calculates the sum of all the weighted inputs; this total is then

modified by a transfer function, typically a smooth non-linear function of the total

weighted input. Mostly, the functions used are the

Sigmoid function: output = 1 / (1+ e-total weighted input)

Tanh function: output = a * tanh (b * total weighted input)
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where a = output range

b - slope of the curve 

Finally, the output of the neuron is passed as input to other neurons [Web 5].

1.2.8.3 Artificial Neural Networks (ANNs)

The processing power of a neural network lies in the interconnections 

rather than the processors as with conventional computers. Networks consist of 3 

or more 1-dimensional or 2-dimensional layers of neurons. (See Figure 1.8)

Figure 1.8 Diagram of a Neural Network [Web 15]

Hidden 
Layer

Inputs
Output (s)

Flow of activation

In a layered network, the extent of the interconnections is considered. A 

fully connected network is where every neuron is connected to all other neurons, 

and a randomly connected network is where a random subset of interconnections 

are implemented. A partially connected network is where a subset of 

interconnections are made based on some rationale [Web 5].
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1.2.8.4 Training

Neural networks are "trained" in order to solve problems, and the network 

appears to "learn" how to respond to a given set of inputs. There are two distinct 

methods of training a neural network, Supervised and Unsupervised, each 

requiring different types of networks.

Supervised training involves showing the network examples of what we 

want it to learn. It is told what the inputs are and what the expected output should 

be. About 90% of applications use this method. There are possibly hundreds or 

thousands of weights in a typical network and so manually setting these weights 

is not an option.

The neural net uses a learning algorithm to adjust the weighting factors so 

that the difference between the expected output and the actual output of the 

network (i.e., the error) is minimised. After the training of the network has been 

completed, the ANN can be used to model the system without further supervision 

[Web 5]. In order that a supervised network can solve a problem, the weights in 

the network are set so that the expected output is generated for a given set of 

inputs. Neural networks can be computationally intensive during training and may 

need thousands of iterations to reach a solution. In some cases, there is even no 

guarantee that an acceptable result will be found. This is a characteristic of 

'gradient descent' problems.

Unsupervised training is where no information about what the data 

represents is given to the network. The network is just shown the data, which it 

attempts to make sense of. An example of Unsupervised learning is Hebb
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Learning, where, if two units are active at the same time, the strength of the 

connection between them is increased; otherwise the connection is made more 

inhibitory [Web 5].

1.2.8.5 Testing

Once the network has been trained, it needs to be tested using an unseen 

data set called the Test Set. This will indicate how well the network has been 

trained. If the network performance is poor, then retraining the neural network 

using a different data set maybe necessary [Web 5].

1.2.8.6 The Expected Output

It is useful to visualise what the expected output should be, by plotting it. If 

a single line can be drawn to separate the different values of the output, then the 

problem is said to be linearly separable, otherwise it is non-linearly separable. In 

most cases, the problems will be non-linearly separable and will need to separate 

out classes in multi-dimensional space. Here, the classes will not just be single 

point variables but groups of data [Web 5].

1.2.8.7 Features of an ANN

The network holds information / knowledge in its architecture and in its 

weights, where the information is distributed throughout the network. This opens 

up the possibility of fault tolerance. Consider any output neuron. Its activation is a
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function of the sum of many inputs. If one of the inputs to that neuron is missing 

due to some fault then the network should still operate correctly.

Neural networks have the ability to cope with noisy input data. The output 

of the network is reliant on a complex sum of many inputs, therefore it is likely 

that no one input is particularly vital in generating the output. Thus, the effect of 

noisy inputs on the network performance is negligible [Web 5].

1.2.8.8 Neural Networks and Data Analysis

Neural networks outperform many methods of analysis because they can 

successfully :

  Be developed from data without an initial system model

  Handle noisy or irregular data

» Quickly provide answers to complex issues

  Be easily and quickly updated

  Interpret information from tens or even hundreds of variables or parameters

  Readily provide generalised solutions

1.2.8.9 Applications of Neural Networks

Their applications are almost limitless but they fall into several main 

categories.
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Classification 

Business

Credit rating and risk assessment, Insurance risk evaluation, Fraud

detection 

Engineering

Machine vision, Speech recognition, Radar signal classification 

Security

Face recognition, Speaker verification, Fingerprint analysis 

Medicine

General diagnosis, Detection of heart defects 

Science

Recognising genes, Botanical classification, Phytoplankton identification

Modelling 

Business

Prediction of share and commodity prices 

Engineering

Colour discrimination, Robot control and navigation 

Science

Prediction of the performance of drugs from the molecular structure 

Medicine

Medical imaging and image processing
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Forecasting

Future sales, Production Requirements, Market Performance 

[Web 5]

1.2.9 Clustering

Clustering can be described as a technique, which categorises large data 

sets into smaller sets or clusters. Clustering algorithms use the raw information to 

obtain groups of data, which are similar in nature. Frequently data is represented 

as data points on a graph and in general, 'similarity' between two data points is 

determined by the Euclidean distance between two such points. Clustering 

Algorithms fall in two main categories, Exclusive and Non-Exclusive with further 

categories following from each, (see Figure 1.9) all are discussed below. There 

are many uses for clustering algorithms, classification of species, [Web 6]. This 

makes clustering an obvious technique to use for analysing flow cytometry data.

Clustering algorithms could be used to identify individual species of 

phytoplankton if the appropriate parameters are chosen for the flow cytometer to 

measure. However, in this research, clustering is used as a tool to classify the 

species. Here, instead of distinguishing individual species, clustering is used to 

group together the data representing the different species which have similar 

characteristics.
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Figure 1.9 Tree of Clustering Algorithm Types

This is based on the tree diagram by Lance and Williams 1967 [19].

Algorithms

Non-Exclusive 
(Overlapping)

Exclusive

Fuzzy 
Clustering

Extrinsic 
(Supervised)

Intrinsic 
(Unsupervised)

Hierarchical Non-Hierarchical 
(Partitional)

1.2.9.1 Exclusive and Non-Exclusive

An exclusive classification is where objects are assigned to one and only 

one cluster, for example people grouped by their age. Non-exclusive 

classification in comparison, allows objects to belong to more than one cluster, 

for example, people grouped by the films category, as most people like a variety 

[20]. The following clustering techniques are of the 'exclusive' type only.

1.2.9.2 Intrinsic and Extrinsic

An intrinsic classification just uses the proximity matrix to cluster the data, 

whereas extrinsic classification also uses points in space, and relies on a 

'teacher' to separate the objects. In pattern recognition, intrinsic classification is

33



also known as 'unsupervised learning', this is because no category labels are 

used. The category labels denote any "a priori partition of the objects". Suppose 

data on various health parameters were collected from smokers and non- 

smokers, then an extrinsic classification would look at discriminating non- 

smokers from smokers according to the variables, whereas an intrinsic 

classification would group the data according to similarities in the parameters to 

investigate if smoking was a likely cause of certain health problems. "Intrinsic 

classification is the essence of cluster analysis", so only this type of algorithm will 

be covered [20].

1.2.9.3 Hierarchical and Non-Hierarchical

Intrinsic classifications can be further separated into Hierarchical or 

Partitional based on the structure of the data used. Non-hierarchical is a single 

partition, compared to hierarchical which is a "nested sequence of partitions", and 

therefore, can be described as a "special sequence of partitional classifications."

Furthermore, there are several different implementations available for 

exclusive intrinsic hierarchical classification: -

  Agglomerative and Divisive

  Serial and Simultaneous

  Monothetic and Polythetic

  Graph Theory and Matrix Algebra [20].
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12.9.4 Hierarchical Clustering Algorithms

Hierarchical algorithms are methods, which group the data over several 

iterative steps until the required number of clusters is achieved, for example, the 

Minimal Spanning Tree algorithm.

This particular technique sets each data item to be a different cluster. 

Then iteratively, the two clusters which are closest together, i.e. most similar, are 

combined to create a new single cluster. This continues until the required number 

of clusters is obtained.

A list of objects arranged to show the clustering is not always easy to 

understand, so instead a diagram called a Dendrogram can be used. This is a 

tree-type structure, which illustrates the hierarchical clustering, with a layer of n 

nodes, one for each cluster, and lines to connect the nodes to show which are 

nested within each other [20]. (See Figure 1.10)

Figure 1.10 Example of a Dendrogram 

Clusterings

{ (Xl), (X2), (X3),

{ ((xi), (x2)), ((xa), (XA) ), (x5) }

{(X1,X2 , X3.X4), (Xs)}

, X2,X3 , X4, X5)}

X2 X3 X4 X5
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Hierarchical clustering is commonly applied to biological, social, and 

behavioural sciences, as taxonomies are prevalent in these areas [20].

1.2.9.4.1 Agglomerative and Divisive

Agglomerative and divisive methods operate in the same way for both 

hierarchical and partitional classifications. An agglomerative classification 

assigns each object as a cluster, then merges these clusters together until only 

one exists. (See Figure 1.10 for an example.) A divisive classification however, 

functions in the opposite way by starting with one large cluster and then divides 

this into smaller ones [20].

1.2.9.4.2 Serial and Simultaneous

Here, the serial method uses each pattern separately, compared to the 

simultaneous type which as its name suggests, uses the whole data set at the 

same time [20].

1.2.9.4.3 Monothetic and Polythetic

Classification algorithms can also be viewed as Monothetic and Polythetic. 

This relates to the number of parameters used simultaneously, so that 

monothetic uses the parameters one by one, and polythetic uses them all 

together. The following algorithms are only polythetic [20].
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1.2.9.4.4 Graph Theory and Matrix algebra

Clustering algorithms can either be expressed in terms of graph theory, 

algebra, or in some cases both. Graph theory classifies data based on how 

complete the graph is or how fully connected it is, and an example of an 

algebraic method used for classifying is the mean-square-error [20].

1.2.9.5 Non-Hierarchical Clustering Algorithms

Non-hierarchical algorithms are methods where the number of clusters 

required is set at the start, a scoring system is used to allocate points to clusters 

and data are grouped together in order to optimise this clustering. These 

algorithms make use of centroids, central points which represent the cluster they 

are included in. One clustering criterion may be to minimise intra-cluster 

variance, which is calculated by summing the variance of each parameter that 

constitutes the centroid. An example of a Non-hierarchical algorithm is K-Means.

Here, the number of clusters required is set to be '/?' say. Then n data 

items are selected to be the initial clusters so that the data points have the 

greatest distance between them. Next, iteratively, each item in the population is 

considered and assigned to the cluster, which is closest to it. The centroid for 

each cluster is re-calculated each time a new data item is added to the cluster. 

This continues until the required number of clusters has been achieved, and all 

data items have been included [20].
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1.2.9.6 Fuzzy Clustering

The general function of a scatter matrix based clustering algorithm is to 

group the data into k clusters, where each cluster is represented by a centre jut 

and a scatter matrix Sf, with t = 1,...,/c. As far as the membership UA is concerned, 

if object / belongs completely to cluster r, uit is 1, if it does not belong to the 

cluster, uit is 0. Further more, if uit is said to be boolean and therefore only take 

the values 0,1, this is 'crisp' clustering. If however, UH is able to take all values 

between 0 and 1, this is said to be 'fuzzy' clustering. In this research, five 

variants of a recently proposed multivariate clustering algorithm (fuzzy K-means 

with scatter matrices) were compared with each other and an earlier multivariate 

clustering algorithm used in flow cytometry, based on critical distances.

1.2.9.7 Clustering Algorithms and Flow Cytometry Data 

The data sets involved in flow cytometry are large, in the order of 104 to 

106 . This means that any clustering technique which involves calculating pair- 

wise distances between patterns are not computationally feasible. This is 

because the number of calculations and required storage area is of the order N2 

where N is the number of patterns, and the data set used in this research 

frequently numbered 104 , giving the number of calculations of the order 108 . 

Furthermore the clusters in each data set can vary quite considerably with 

regards to the size of the area covered by the cluster, and the actual number of 

points per cluster may also change over orders of magnitude.
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Another problem that can be encountered is if the value of a parameter is 

outside the valid range. In such cases, the value is changed to a constant of 

between 0 and 1024 (for 10-bit data). Such data points are effectively limited to 

lying in one or more planes of the hypercubic region of data space. If clusters of 

data points like these lie in a plane, they have zero volume and are therefore 

degenerate, which means the clustering algorithm used must be able to cope 

gracefully with clusters that only occupy part of the full hypercubic area of the 

data space.

The density functions of each cluster are in general approximated closely 

by multivariate Gaussians as they are based on biological measurement data. 

Unfortunately, the clusters themselves can be elongated, with the length up to 

ten times the width. This means that any algorithm based solely on Euclidean 

distance metrics would fail to converge to a clustering solution.

1.2.9.8 Distance Metrics

There are several distance metrics that can be used to establish the 

similarity of a new object with regards to a cluster(s) of existing objects. The idea 

is to establish if the new object is near the mean of one of the clusters. If it is, the 

object can be classified as being in the same cluster, and conversely if it is far 

away, the object does not belong to that cluster. To determine if an object is near 

or not, merely looking at the data is not an option. This is because real life data 

sets are multi-dimensional and therefore cannot be visualised. Consequently, a
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mathematical equation is used instead. Two such equations are considered here, 

Euclidean and Mahalanobis.

1.2.9.8.1 The Euclidean Distance Metric

Using this distance metric, data objects are clustered by finding the 

nearest cluster to the new object.

Firstly, this method has no measurement of how successful or otherwise, 

a new object is in matching any existing clusters. Secondly, this metric merely 

measures a "relative distance from the mean point in the group" [Web 9], the 

distribution of the data within the cluster is ignored. Finally, with the Euclidean 

distance metric, the variation of the data in all the dimensions is not taken into 

account.

In clustering applications a basic minimum-distance classifier like the 

Euclidean may be suitable. However, such classifiers frequently have 

unacceptably high error rates. This may be due to one of several reasons:

  High correlation of the data

  A non-curved decision boundary

  Too much complexity in the feature space

  The presence of sub-classes

1.2.9.8.1.1 Correlated Features

Two or more features are said to be correlated if they are affected by a 

common factor and therefore change simultaneously. For example, the area and 

volume of a shape will both vary in relation with the length and width.
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Correlation has a detrimental effect on the performance of the clustering 

algorithm, so that an object at one extreme of a cluster can be nearer to another 

cluster than its own. This can also be seen if the units of measurement used for 

the different variables are not scaled very well, for example, if one variable is 

measured in microns and another in kilometres. One way to solve this problem is 

to use the Mahalanobis metric. (The Mahalanobis Metric is covered in section 

1.2.9.8.2)

1.2.9.8.1.2 Curved Boundaries

A Euclidean distance classifier will only have linear boundaries, which may 

not be able to cope with rate of growth of some variables. This can occur if one 

variable increases linearly, while another increases quadratically. The result of 

this would be a distorted feature space, which would reduce the success of the 

clustering. Possible solutions to this are:

  Redesign the data set so all features grow linearly.

  Use the Mahalanobis distance metric which can produce quadratic 

boundaries

  Use a neural network ( this approach has been considered in previous 

research)

1.2.9.8.1.3 Complex Feature Space

It is not always the variability in the data and therefore 'noise' that causes 

clustering problems, occasionally it is complexity of the data. This can happen if 

the data set being clustered is significantly more complex than the classifier.
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1.2.9.8.2 The Mahalanobis Distance Metric

With the Mahalanobis metric, the standard deviation of the object from the 

cluster mean is used as the unit of measurement. This means that the ellipse- 

shape perimeter of the cluster is the one standard deviation boundary. The result 

of this is that a statistical probability can be placed on the success or otherwise of 

the new object matching the existing ones.

This measurement is concerned with the variation between data of one 

species (variance), as well as the variation between the species (co-variance). 

Variation in the data is allowed for by weighting the differences towards the 

cluster mean, and not just treating the values equally.

"Just like many multivariate quantitative methods, the Mahalanobis 

distance can solve for multiple dimensions simultaneously" [Web 9].

Unfortunately, there can be some drawbacks to this method. As the 

number of variables increases, the amount of time and memory needed doesn't 

increase linearly, but quadratically. Also there can be difficulties in calculating 

accurate covariance matrices. But these issues are really only significant if there 

is a large number of variables involved [Web 10], in the Mahalanobis case, the 

limit is between ten and fifteen, so the data used here which has seven variables, 

falls well within the limits.

Having a large number of items in a data set can cause problems with 

overfitting by the Mahalanobis metric. Matching the objects is just as important as 

the variations between objects, and this can result in matching objects not being 

classified in the correct cluster.
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Chapter 2 - Literature Survey

2.1 Why use Clustering Algorithms?

The various light scatter, diffraction, and fluorescence parameters 

measured by AFC can provide characteristic 'signatures' for each microbial cell, 

which allow taxa to be discriminated with the use of pattern-recognition 

techniques such as ANNs [21] [13] [19] [22] [23] [24]. More than 70 species have 

been identified successfully by ANNs trained on AFC data obtained under pure 

cultures of marine microalgae grown under controlled conditions in the laboratory 

[19]. However, species growing in the field are likely to show greater variability in 

size, shape and pigmentation due to a multitude of environmental factors [25], 

thus producing a corresponding increase in the variability of the AFC signatures. 

ANNs require training on a representative sample of each species that is to be 

recognised, and unless the training data reflect such biological variation, ANN 

analysis of field samples will not be reliable.

The large data sets generated by AFC pose a number of challenges for 

analysis. The data sets are often multidimensional, making visual analysis by 

two-dimensional or three-dimensional scatter plots difficult, even with the use of 

dimensionality reduction techniques such as principal components analysis [Web 

8]. Recourse is generally made to some form of clustering algorithm capable of 

exploiting the full multivariate nature of the data. However, the typical size of AFC 

data sets (>104 patterns) precludes application of many standard clustering 

algorithms such as pair-group methods that rely on calculation of distances
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between pairs of points. AFC clusters are frequently highly elongated, and the 

variance-covariance structure can differ considerably between clusters. Some 

clusters are large and sparse, whereas others are compact and dense and 

perhaps even degenerate (possessing zero variance in one or more dimensions 

and therefore zero volume) [2].

2.2 Fuzzy Clustering Algorithms and Applications

The concept of fuzzy sets was first proposed by Zadeh [26] in 1965 and 

introduced the idea that a problem space could be blurred, which gave a different 

outlook on how to solve pattern recognition problems. The use of fuzzy sets in 

clustering was proposed by Bellman et al [27] and lead to the first fuzzy 

clustering algorithm, developed in 1969 by Ruspini [28] which introduced fuzzy 

criterion functions.

Clustering algorithms such as the K-means are based on the distances 

between data point and cluster centre and it is well documented [29] [20] [30] that 

this criterion is only effective when the clusters are spherically-based with similar 

volumes. Gustafson and Kessel developed a method based on the Fuzzy K- 

Means algorithm [31], which tried to accommodate ellipsoidal clusters by use of 

the Mahalanobis distance metric instead of the Euclidean metric, and scatter 

matrices. This performs better with ellipsoidal clusters compared with spherical 

clusters, but the algorithm again is only effective when the clusters have similar 

volumes. Even though it will function when the data is grouped into clusters of 

different shapes, their relative sizes must be known.
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The product of fuzzy determinants criterion developed by Trauwert et al 

avoids this restriction, but is more likely to find alternative clustering solutions to 

the natural clusters [32]. Trauwert proposed an algorithm based on the total 

volume of the clusters, which was measured by the sum of the square root of the 

determinants of the fuzzy covariance matrices [33]. The classical algorithms: 

fuzzy K means, fuzzy product of determinants, and minimum fuzzy volume were 

investigated and their performances compared with that of the minimum total 

hypervolume algorithm. When the clusters are not too dissimilar with regards to 

shape, size and cardinality, the 'new' algorithm performed comparably with the 

existing algorithms. However with a large variation in the clusters based on the 

above characteristics, "the minimum total hypervolume method appears to be the 

only algorithm able to reproduce the expected natural clusters" [33]. The product 

of fuzzy determinants criterion is the same as the Maximum Likelihood algorithm 

used in this study.

Instead of a basing an algorithm on scatter matrices, Krishnapuram and 

Kim explored the use of a determinant or volume criteria for clustering [34]. They 

derived the minimum scatter volume (MSV) algorithm that minimises the scatter 

volume of the clusters, and the minimum cluster volume (MCV) that minimises 

the sum of the volumes of the individual clusters. The determinant of the sum of 

cluster scatter matrices was proposed as a possible clustering criterion by Duda 

and Hart [29]. Krishnapuram and Kim derived an iterative algorithm that 

minimises this criterion, by fuzzifying it. They devised both crisp and fuzzy 

versions of the sum-of-volumes criterion, and derived the minimum cluster
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volume (MCV) algorithm from this. The performance of the minimising volume 

criteria algorithm was compared with that of traditional algorithms. The results 

illustrated that "in general MCV gives better results than the K-means, MSV, and 

Gustafson-Kessel algorithms. MCV is also quite versatile and can be used in a 

variety of applications such as segmentation of intensity / range images and 

classification" [34].

2.2. 1 From a fuzzy clustering in flow cytometry point of view

Demers et al proposed a development of the k-means algorithm, the idea 

of which was to try and solve the elongated cluster problem. A scatter matrix for 

each cluster, estimated from the data points around the cluster centre, was used 

as a more general distance measure to include details of the cluster shapes. The 

algorithm as with all iterative methods, can result in poor clustering solutions if it 

becomes trapped in a local minimum, rather than the global minimum. When this 

happens, the user is required to identify and reject these deficient results [35].

The algorithm was made more robust to being trapped in local minima, as 

instead of the data points only belonging to the closest cluster, they are allowed 

to belong to all clusters to some degree. Rousseeuw et al [36], introduced 

several extensions of this fuzzy k-means approach using scatter matrices to 

include details of the cluster shapes, with various different cost functions. These 

are some of the algorithms that have been investigated in this research [2].

One drawback of these algorithms is that it is necessary to specify k the 

number of clusters in the data a priori. So, it would be more desirable if the 

algorithm used could determine the 'natural' number of clusters from the data.
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This can be achieved not only "by overspecifying the number of clusters and 

removing those that according to some criterion become redundant during the 

course of the algorithm [37]" [38]. But also where a "stability criterion" of the 

clusters is defined as a function of a scale parameter and is used to decide the 

optimal data partition [39]. This was considered as future research.

2.2.2 Applications of Fuzzy Clustering

Starting with Sneath's work on bacteriological taxonomy, partitioning 

algorithms have been applied to many applied science areas [40]. The large 

range of applications of these algorithms include, "psychology, sociology, 

geology, medicine, experimental particle physics, operations research, and the 

technology of automatic reading machines" [41]. Fuzzy clustering has been 

applied in numerous areas, for example, pattern recognition with satisfactory 

results and "considerable economic benefit" [42].

An important benefit of using fuzzy clustering is that it is an unsupervised 

method which has no need for training data. One of the most significant issues in 

pattern recognition is feature extraction. Therefore, a more important function of 

fuzzy clustering is that it can not only "extract features from raw data directly [43], 

but also select the optimal feature sets or reduce the dimensionality of obtained 

features [44]" [42].

2.3 Summary of Literature Survey

In summary, it is well documented [29] [20] [30] that the K Means method 

is only effective when the clusters are spherically based with similar volumes,
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and as the data used in this study has clusters of various shapes, it is not 

suitable. Also, clustering algorithms such as the K-means are based on the 

distances between data point and cluster centre measured using the Euclidean 

metric. This is adequate for data of low dimensionality, but as our data has seven 

dimensions, it is not computationally feasible to use this approach. The 

Gustafson and Kessel algorithm [31], although it can successfully partition the 

data into ellipsoidal clusters by use of the Mahalanobis distance metric and 

scatter matrices. It is again, only effective when the clusters have similar volume, 

which is not the case with the data set used in this research. Trauwert avoids this 

issue, using a product of fuzzy determinants criterion, but this tends to provide a 

clustering solution not based on the natural clusters [32]. Krishnapuram and Kim 

explored the use of a determinant or volume criteria for clustering [34]. They 

derived the minimum scatter volume (MSV) algorithm that minimises the scatter 

volume of the clusters, and the minimum cluster volume (MCV) that minimises 

the sum of the volumes of the individual clusters. "In general MCV gives better 

results than the K-means, MSV, and Gustafson-Kessel algorithms. MCV is also 

quite versatile and can be used in a variety of applications such as segmentation 

of intensity / range images and classification" [34]. However, as Rousseauw 

proposed five variations of a scatter matrix fuzzy clustering method [36], it was 

decided to investigate those approaches as it would be more efficient to 

implement these as they are all based on the same general algorithm, and 

include the Maximum Likelihood algorithm which is the same as the product of
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fuzzy determinants criterion. Further details of the Rousseauw methods are given 

later.

Gustafson and Kessel developed a method based on the Fuzzy K-Means 

algorithm [31], which accommodated ellipsoidal clusters by use of the 

Mahalanobis distance metric and scatter matrices. It will function when the data 

is grouped into clusters of different shapes, even though their relative sizes must 

be known. This is the same as Rousseauw's Adaptive Distances algorithm used 

in this research, see further details of this method later.

Trauwert proposed an algorithm based on the total volume of the clusters 

[33], which was measured by the sum of the square root of the determinants of 

the fuzzy covariance matrices. When the clusters are not too dissimilar with 

regards to shape, size and cardinality, the 'new' algorithm performed comparably 

with the existing algorithms. However with a large variation in the clusters based 

on the above characteristics, "the minimum total hypervolume method appears to 

be the only algorithm able to reproduce the expected natural clusters" [33]. As 

the data used in this study produce clustering solutions where clusters have 

various shapes, sizes, it was decided, this was an appropriate algorithm to study. 

The product of fuzzy determinants criterion is the same as the Maximum 

Likelihood algorithm developed by Rousseeuw, used in this research.

Rousseeuw et al [36], introduced several extensions of a fuzzy k-means 

approach using scatter matrices to include details of the cluster shapes, with 

various different cost functions. The idea of this was to solve the elongated 

cluster problem. It is, robust to being trapped in local minima, as instead of the
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data points only belonging to the closest cluster, they are allowed to belong to all 

clusters to some degree. The Mahalanobis metric is used, therefore calculating 

distances is computationally feasible. These are scalable algorithms, as scatter 

matrices always implemented as two-dimensional array, not matter how many 

data points are used, or the dimensionality of the data. The data set used in this 

research contains 104 data points of seven dimensions, therefore it was decided 

that the different variations developed by Rousseauw [36] were suitable to be 

investigated.

2.4 Real Water Samples

'Real water' samples are used in flow cytometry research and initially 

would probably contain other organisms like bits of dead fish, food remnants, 

bacteria etc., as well as phytoplankton. As the water sample flows through the 

flow cytometer, the volume of the water flowing is reduced until it is becomes a 

microscopic drop of water containing a single organism. The phytoplankton in 

this study are only between 1^i and 42^i long, so any 'foreign bodies' in the water 

sample could only potentially cause problems if they were also that small.

In addition to this, the variables measured using the flow cytometer, were 

specifically chosen by researchers at Plymouth Marine Labs, to be able to 

identify and/or classify plant plankton in water samples. The database itself holds 

on average 103 records on each of 63 species and therefore it is very likely that 

the data patterns will represent some or all of the stages in a plankton lifecycle. 

Consequently, a new data pattern could be compared with all existing records
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prior to cluster analysis, as any measurements recorded about other particles will 

most likely not match any of the data already collected. If it is not similar to any 

records, then more analysis could be done to make sure it isn't data representing 

a 'new' species of phytoplankton to the data set.

It is also possible, that the water sample could contain no particles. As 

some of the variables recorded involve size, if there was no particle in the water 

stream to measure, the data recorded would be negligible or even zero for area 

and width as there would be nothing to measure. Data patterns like these could 

be identified and removed from a data set prior to cluster analysis.

2.5 How many groups are there really in our data?

As there are many microscopic particles in water samples, could it be 

possible that there are more groups than just the ten or so allocated for 

phytoplankton?

Some data is multi-modal, so it maybe that there are more than 10 groups 

of data in the data sets. This is because data for one species can be partitioned 

into more than one cluster, especially if it is a chain forming species of 

phytoplankton. The phytoplankton are so small that if two, three or more attach 

themselves together they go through the flow cytometer as a single particle and 

therefore chains of different lengths will have different measurements and be 

classified into different clusters. Therefore it is likely that there are more than ten 

groups of data in our data. However, as scientists look for certain characteristics
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of phytoplankton, it is not important how many groups of data are in the sample, 

just if there are any that exhibit these features.

2.6 Do we need to redefine the taxonomic groups?

Flow cytometry data of phytoplankton representing one species can be 

clustered as though it is data representing a different species. This is because 

the measurements from the different species, could have been taken at different 

times in their lifecycles so that the measurements appeared to represent the 

same species, and therefore they could be partitioned into the same cluster. As a 

result of this, it could be argued that the taxonomic groups should be changed in 

order to cater for this anomaly.

In this case, I don't think redefining the taxonomic groups would help at all 

because at other times in the phytoplankton lifecycle, the data for the two species 

could be classified separately. If they were redefined, it is likely that the same 

problem would occur but for data from other species. Also because, one method 

of getting around this, could be to use all the data representing all the species in 

a data set generated. The idea of this is that, most of the data recorded should 

partition into one cluster, with only a relatively small proportion partitioned into 

different clusters.

Most importantly, the measurements that are recorded in the AFC data, 

aren't chosen so that the phytoplankton can be taxonomically identified. As 

mentioned before, they are chosen so that scientists can analyse the AFC data 

looking for specific characteristics, for example, do the phytoplankton have red
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fluorescence, and where knowledge of the phytoplankton species is not 

important.
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Chapter 3 - Materials and Methods 

3.1 Data sets

A data set of approximately 1.1 x 106 records of 7-parameter FACScan 

flow cytometer data (see Table 1.3 for the parameters) covering 64 marine 

phytoplankton species grown in culture was used here [45]. (See Table 3.1)

Table 3.1 List of all phytoplankton species in full data set

Alexandrium 

tamarense

Chaetoceros 

calcitrans

Chrysochromulina 

camella

Chlamydomonas 

reginae

Cryptomonus 

reticulate

Dunaliella 

tertiolecta

Gymnodinium 

veneficum

Hemiselmis

Amphora 

coffaeformis

Chlorella 

salina

Chrysochromulina 

chiton

Cryptomonas 

appendiculata

Cryptomonas 

rostrella

Emiliania 

huxleyi

Gymnodinium 

vitiligo

Hemiselmis

Amphidinium 

carterae

Chroomonas 

sp.

Chrysochromulina 

cymbium

Cryptomonas 

calceiformis

Dunaliella 

minuta

Gymnodinium 

micrum

Gyrodinium 

aureolum

Heterocapsa

Aureodinium 

pygmentosum

Chroomonas 

salina

Chrysochromulina 

polylepis

Cryptomonas 

maculata

Dunaliella 

primolecta

Gymnodinium 

simplex

Hemiselmis 

brunnescens

Isochrysis
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rufescens

Micromonas 

pusilla

Ochromonas 

sp.

Pseudopedinella 

sp.

Pleurochrysis 

carterae

Porphyridium 

pupureum

Rhodella 

maculata

Stichococcus 

bacillaris

Tetraselmis 

tetrathele

virescens

Nephroselmis 

pyriformis

Pavlova 

lutheri

Pelagococcus 

subviridis

Prorocentrum 

micans

Prymnesium 

parvum

Rhodomonas 

sp.

Tetraselmis 

impellucida

Tetraselmis 

verrucosa

triquetra

Nephroselmis 

rotunda

Prorocentrum 

balticum

Pheodactylum 

tricomutum

Prorocentrum 

minimum

Pyramimonas 

gross/7

Scrippsiella 

trochoidea

Tetraselmis 

striata

Thalassiosira 

weissflogii

galbana

Ochrosphaera 

neopolitana

Phaeocystis 

pouchetii

Plagioselmis 

punctata

Prorocentrum 

nanum

Pyramimonas 

obovata

Skeletonema 

costatum

Tetraselmis 

suecica

From this data set two artificial data sets A and B were constructed, each 

consisting of 103 data patterns selected randomly for each of ten species. Both 

data sets thus contained a total of 104 data patterns. Data set A comprised ten 

species for which the corresponding AFC clusters did not overlap appreciably, as 

determined by examination with PCA and visualisation by 3D scatterplots, while
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data set B comprised ten species for which the corresponding AFC clusters 

overlapped considerably. (See Table 3.2)

To make the data set more realistic in terms of real world data, the results 

were recorded during different times in the phytoplankton lifecycles so that 

normally unrelated species can be seen to have similar properties and may 

therefore be clustered together.

Table 3.2 Data sets showing the species of phytoplankton used

Non-Overlapping

Chrysochromulina chiton

Cryptomonas appendiculata

Emiliania huxleyi b111

Hemiselmis brunnescens

Micromonas pusilla

Nephroselmis pyriformis

Porphyridium pupureum

Rhodella maculata

Rhodomonas sp.

Tetraselmis tetrathele

Overlapping

Amphora coffaeformis

Amphidinium carterae

Aureodinium pigmentosum

Chrysochromulina chiton

Cryptomonas appendiculata

Emiliania Huxleyi b11 1

Gymnodinium veneficum

Hemiselmis brunnescens

Heterocapsa triquetra

Nephroselmis pyriformis

3.2 Experimental Procedure

In order to test the clustering algorithms, it was necessary to define the 

number of plankton species in the data a priori. Both data sets comprised of ten
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species and therefore it was reasonable to expect ten clusters, however, with a 

random water sample, the number of species in the sample would not be known, 

so it was decided to use six and fourteen clusters as well. Using the AimsNet 

software [46], each algorithm was applied five times on each data set for six, ten, 

and fourteen clusters. All results were assessed for reliability and performance, 

as described below, as well as using the summarised results themselves.

3.3 Computer Hardware and Software

The experiments were run on a Pentium 3 600MHz Viglen computer using

two pieces of bespoke software:

i) AimsNet - developed under the Aims project, Automated Identification 

and Characterisation of Microbial Populations (CEC grant no. MASS - 

CT97 - 0080) - written by Malcolm F Wilkins.

"AimsNet" is a Windows  application that brings the power of 

Artificial Neural Networks (ANNs) to the analysis of AFC data.

With AimsNet, the user constructs a connected structure of simple 

data processing modules to describe the desired data processing steps. 

Data flows from one module to the next via directional connections. The 

data, in either ASCII or PCS 2.0 formats, are read from file by a data 

source module. (PCS 2.0 is the standard flow cytometry data file format, 

adopted by the Society of Analytical Cytology. It allows data recorded on 

one instrument to be read for analysis on another computer [47].)
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Processed data are written back to disk as a text file, by a data sink 

module. In between, data processing modules can be used to perform 

data rescaling, removal of parameters, re-ordination methods (principal 

components analysis, canonical variate analysis), cluster analysis, and 

pattern recognition via radial basis function networks" [46]. (See Figure 

3-1)

Figure 3.1 AimsNet Front End

-IWI »l

NoOvertap2AD1 Data.anr

NoOverlap2AD2Data.anr
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"Although powerful, AimsNet is designed throughout to be easy to 

use, even by those with limited knowledge of ANN'S.
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AimsNet contains an integrated data viewer allowing visualisation 

and interpretation of the results of analysis via multiple interactive two 

dimensional and three dimensional scatterplots" [46]. (See Figure 3.2 

below)

Figure 3.2 AimsNet Data Viewer
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AimsNet uses a large library of mathematical functions and is 

significantly object oriented, which exploits the functions of the C++ 

programming language.

ii) Cluster Comparison software - written by Malcolm F Wilkins for use in this 

project. The software is run from the Windows  command line, and 

compares the results of two clusterings. Here, two sink text files of data 

generated from AimsNet are read in and compared data point by data 

point to see if the same point in each file is assigned into the same cluster, 

a percentage showing the level of matching assignments is displayed on 

the screen [2].

Both pieces of software were written in C++ using Microsoft Visual Studio version 

6.0.

3.4 Comparing the Results of Two Clusterings

An objective method is required for comparing the performance of two 

clustering algorithms. The result of running a clustering algorithm on a set of data 

is a partitioning of the data space; when this partition is applied to the data, a 

"clustering scheme" is generated for the data. Given two clustering schemes C 

and D, the proposed measure of similarity between them m(C,D) is defined as 

the a priori probability that two randomly-selected points drawn from the data set 

will be clustered in the same way under both clustering schemes; i.e. that either
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both clustering schemes will assign both points to the same cluster, or that both 

clustering schemes will assign them to separate clusters. Letting cbe the event 

'both points are assigned to the same cluster under C', letting d be the event 

'both points are assigned to the same cluster under D\ letting c' be the event 

that 'both points are assigned to different clusters under C' ' and letting cf' be the 

event that both points are assigned to different clusters under D' ', we can write 

m(C,D) = p(c)p(d\c}+ p(c')p(d'\c'). The characteristics of this similarity measure

are:

(i) if C and D are identical (perfect correlation), p(d\ c)= p(d'\ c')= 1.0

so iw(C,D)=1.0; 

(ii) If C and D are independent (no correlation) p(d\c)=p(d) and

p(<f\c')= P(d') and so m(c,D) = P(c)P(d)+ P(c%(d'}\ 

(iii) It is commutative; i.e. m(c,D)=m(D,c).

Because of the large size of the data set, determining m(c,D) by 

exhaustive enumeration of all possible pairs of data points is computationally 

intensive; however the proportion can be estimated to a desired level of 

accuracy, and confidence bounds placed on the value obtained, by repeatedly 

randomly drawing a large number n of pairs of data points and finding the 

proportion p of such trials for which the two schemes agree. The sampling 

standard deviation of p, a measure of the size of the uncertainty in the value of p 

as an estimator of m(C,D), is given by q = -Jnp(l - p}/n = Jp(l - p)/n [2]. All
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similarity measures reported in this paper were evaluated from /?=107 pairs of 

data points.

3.5 Evaluating Algorithm Performance

Each algorithm was applied five times on both the non-overlapping data 

set and the overlapping data set, for k clusters where k = 6, 10 and 14 clusters. 

Each algorithm was evaluated according to : 

(i) Consistency of results between multiple replicate runs of the algorithm for

the same value of k, which was assessed by averaging the similarity

measured between each pair combination of clustering schemes from the

five replicate results;

(ii) Performance of the algorithm in comparison to a "gold standard" clustering 

scheme which corresponds to the actual identity of the data patterns, 

which is known in advance in this project. This is applicable for k = 10 

clusters only. This was assessed by averaging the similarity measured 

between the clustering schemes from each of the five replicate results 

obtained and the "gold standard" clustering scheme.
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Chapter 4 - Clustering Algorithms

4.1 Introduction

The algorithms investigated here are based on the K Means Algorithm. 

This algorithm has been extended by various workers to include the use of 

scatter matrices (variance-covariance matrices), thereby allowing modelling of 

data with non-spherical clusters. Rousseeuw et al. unified this work by proposing 

four variants of a generic fuzzy /c-means (FKM) algorithm: Adaptive Distances 

(AD); Maximum Likelihood (ML); Minimum Total Volume (MTV) and Sum of All 

Normalised Determinants (SAND). Each variant is designed to minimise a 

different objective criterion [36] (a measure of clustering 'goodness').

These algorithms require the number of clusters in an unknown data set to 

be determined a priori. Although, some algorithms exist which calculate the 

optimum number of clusters in a data set, they were not implemented and 

analysed in this research as the algorithms selected were fast, robust classifiers. 

It is at least as efficient to apply a fast robust algorithm several times in order to 

approximate the number of clusters in an unknown data set, than to use an 

untested algorithm to try to determine the optimum number.

"The four algorithms proposed by Rousseeuw et al. [36] are all variant 

forms of one generic fuzzy clustering algorithm, summarised below. In this 

algorithm, a cluster t is characterised completely by the position of its centre n,

and a scatter matrix S,. The distance dit between the /*th data pattern x, and the
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cluster centre is defined by the Mahalanobis generalised distance metric

Each data pattern is associated to some extent with all the clusters, not 

just the closest; the extent of this association is given by uu , the fuzzy 

membership of the yth data pattern to cluster t. The cluster memberships are

subject to the constraints that O<H,, <1, £« =!; in other words for any data
t

pattern, the sum of its cluster memberships over all clusters is one. Constraining 

uit strictly to the values 0 and 1 produces a crisp clustering, for which each data

pattern is associated exclusively with only one cluster; however allowing ui{ to

take intermediate values between 0 and 1 results in a fuzzy clustering" [2].

The 3D scatterplot of the clusters (See Figure 1.6) indicated that the 

overlapping data set had five clusters, four separate clusters and one large 

cluster of six overlapped clusters. In view of this, extra experiments were run just 

on the overlapping data set whereby the data was adjusted so that the large 

conglomerate cluster represented one taxon of species, with the remaining 

species each designated as a taxon. Each algorithm was applied a further five 

times for five clusters with the adjusted overlapping data set.

Through experimentation, and a compromise between speed of 

convergence and accuracy of clustering, it was decided that the stopping criteria 

s indicating convergence, would be set at 0.01.
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4.2 Fuzzy K-Means FKM

Fuzzy /(-means clustering is a variant of classic /(-means clustering that 

allows data points to become associated to some degree with all clusters and not 

just the closest cluster [48] [49]. This reflects the inherent uncertainty in allocating 

a data point to a single cluster where there are several potential candidates. The 

algorithm is in practice stable and robust, and less likely than the classic /(-means 

algorithm to produce inadequate clustering solutions. The purpose of the Fuzzy 

K-Means technique is to minimise the sum of the distances from the objects to 

the cluster centres. When the algorithm was implemented in AimsNet [46], it was 

extended to include the use of covariance matrices, allowing non-Euclidean 

distance metrics.

The variant used in this study is obtained by changing the manner of 

calculating the quantities 4 and BK which are variables used to represent the

relevant objective function. The alternative Fuzzy K-Means algorithm follows the 

notation in the paper by P. J. Rousseeuw published in 1996 so that [36]: 

At = 0, and

B,t = e,e2(x, - nj' (S,)- 1 (x, - v,)

where e 1 and e2 are the absolute values of the largest two eigenvalues of the 

fuzzy covariance matrix Sf. This is because, with degenerate clusters, at least 

one of the small eigenvalues would be close to zero. If this was used, Bit would 

become zero as the matrix determinant is a product of all the eigenvalues. 

Therefore by using the two largest eigenvalues, the algorithm remains stable 

even when degenerative clusters are encountered. The focus of this method is to
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minimise the sum of the squared distances from the objects to the cluster 

centres. This is achieved by using equations At and Bit above which adapts the 

general algorithm to the FKM approach.

The variant of the Fuzzy K Means algorithm used is as follows:

1. For each cluster t initialise the cluster centre \i, to a randomly-selected

data pattern and initialise the scatter matrix S, to the identity matrix

2. For each cluster f, calculate A, and fi,f which are variables used to

simplify the relevant objective function where, 

At = 0, and 

Btt=eie2(x i - p,)' (S,r 1 fx, - jij

3. Calculate memberships: for each data pattern x,:

(i) Initialise Tt to an empty set where 7]. is a set of 

indices t of the clusters that data pattern x, belongs

to, 

(ii) For each cluster t calculate the distance from each

data pattern x, to the cluster centre Bu <- Bt d 2 

(iii) For each cluster t calculate the membership u» of 

each data pattern x, to the cluster where,

1
. Z 1/^

rtT,
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(iv) If any uit > 0, add t to set 7*, and repeat step 3 while 

some memberships are strictly negative.

4. For each cluster t update the cluster centre n, and the scatter matrix

5. as follows,

ft - -r-i 2 "/ "
2>«

/ /

5. If no membership M., changed by more than a small value s during the 

previous iteration, stop; otherwise return to step 2

Here the value of e indicating convergence was set a priori to be 0.01.
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4.2.1 Results

4.2.1.1 Non-Overlapping Data

4.2.1.1.1 Six Clusters

Data was partitioned each time so that in 5 out of 6 clusters, more than 

one species was in each cluster. The 6th cluster contained data for M. pusilla 

with negligible amounts of other species data, e.g. 0.8% or 0.4% which is not 

visible on the results charts. Three out of five times, one cluster contained data 

from many species. More than 90% of the data representing single species was 

grouped into one cluster for 8 out of 10 species. With 9 out of 10 species 

containing more than 80% of the corresponding data in a single cluster. In all 

cases, data representing C. appendiculata, P. pupureum, and Rhodomonas sp. 

were partitioned into the same cluster, these species are from different classes. 

In 3 out of 5 cases, R maculata, N. pyriformis, and H. brunnescens were 

partitioned into the same cluster, these species were also from different classes. 

Finally, in 3 out of 5 applications, data representing C. chiton and T. tetrathele 

were grouped into the same cluster, and these species were also from different 

classes. (See Figure 4.1)

4.2.1.1.2 Ten Clusters

Four times, the data was partitioned into less than ten clusters and on two 

occasions, the data from many species was grouped into one large cluster. 

Looking at the results from all five applications, more than 90% of the data 

representing single species was grouped into one cluster for between 6 and 9 out
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of 10 species. With between 7 and 10 out of 10 species containing more than 

80% of the corresponding data in a single cluster. In the results for application 

number 5, cluster 1 actually contains 58% of the data, but the scale only goes up 

to 30% so the rest of the chart can be seen clearly. In 4 out of 5 of the 

applications, the data for P. pupureum and Rhodomonas sp. were grouped 

together, these two species are in different classes. In 3 out of 5 cases, the data 

for N. pyriformis and M. pusilla were grouped together, these two species are in 

the same class. (See Figure 4.2)

4.2.1.1.3 Fourteen Clusters

The algorithm did not converge when fourteen clusters were used to 

partition the data. It appears that this algorithm when applied to the non- 

overlapping data set, generates clustering solutions where the difference 

between two successive iterations of the algorithm, is greater than the specified 

value used to indicate convergence.
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Figure 4.1 FKM Non-Overlapping Data - Six Clusters
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Figure 4.2 FKM Non-Overlapping Data -Ten Clusters
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4.2.1.2 Overlapping Data

4.2.1.2.1 Six Clusters

More than 90% of the data representing single species was grouped into 

one cluster for between 6 and 8 out of 10 species. With between 7 and 9 out of 

10 species containing more than 80% of the corresponding data in a single 

cluster. In 4 out of 5 cases, data representing C. chiton, A. pigmentosum, and A. 

coffaeformis, were grouped together where the species are from different 

classes, but which all belong to the group taxon. In all 5 cases, data representing 

A. carterae, A. pigmentosum, G. veneficum and H. triquetra were grouped 

together, where all species belong to the same class. (See Figure 4.3)

4.2.12.2 Ten Clusters

Between 6 and 8 clusters contained data for different species partitioned 

into the same cluster. More than 90% of the data representing single species 

was grouped into one cluster for between 5 and 7 out of 10 species. With 

between 7 and 9 out of 10 species containing more than 80% of the 

corresponding data in a single cluster. In all cases, data representing A. carterae 

and A. pigmentosum were partitioned into the same cluster, these species are 

from the same class. In 4 out of 5 cases, data representing G. veneficum and H. 

triquetra were grouped together as was data representing A. carterae and G. 

veneficum. Each pair of species is from the same class. In 4 out of 5 cases, data 

representing A. pigmentosum and C. chiton were grouped together. Although 

these species are from different classes, the data from these species was shown

72



to overlap in the 3D plot of the overlapping data set, the species represented in 

this overlapping cluster are known as the 'group taxon 1 . The data representing 

the group taxon was analysed in further tests, the results of which are included 

later in this section. (See Figure 4.4)

4.2.1.2.3 Fourteen Clusters

The data for a single species was partitioned over more clusters than with 

non-overlapping data, with some clusters containing negligible amounts of data. 

More than 90% of the data representing single species was grouped into one 

cluster for between 5 and 5 out of 10 species. With between 5 and 7 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In 4 out of 5 of the cases, 2 clusters contained very small amounts of data e.g. 

0.29%. In all cases, data representing A. carterae and A. pigmentosum were 

grouped together as was data representing A. carterae and G. veneficum. Each 

pair of species is from the same class. In 3 out of 5 cases, data representing G. 

veneficum and H. triquetra were grouped together, both species also being in the 

same class. In 4 out of 5 cases, data representing A. pigmentosum and C. chiton 

were grouped together, which are from different classes but both belong to the 

group taxon. (See Figure 4.5)
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4.2.1.2.4 Five Clusters - One Taxon

Between 97% and 98% of the taxon data was partitioned into 1 to 3 main 

clusters out of the five. In 4 out of 5 of the results, the main taxon clusters only 

contained group taxon data. In one case, in one cluster the taxon data was 

partitioned with data representing E. huxleyi, C. appendiculata, and H. 

brunnescens which are all in different classes to that of the species represented 

by the group taxon. In 4 out of 5 cases, data representing E. huxleyi and N. 

pyriformis were partitioned in the same cluster, they are in different classes. (See 

Figure 4.6)
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Figure 4.3 FKM Overlapping Data - Six Clusters
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Figure 4.4 FKM Overlapping Data - Ten Clusters
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Figure 4.5 FKM Overlapping Data - Fourteen Clusters
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Figure 4.6 FKM Overlapping Data - Five Clusters / One Taxon
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4,3 Adaptive Distances AD

The AD algorithm, also known as the Gustafson-Kessel algorithm seeks to 

minimise the fuzzy sum of squared generalised distances of the data patterns to 

the cluster centres [36]. This is subject to the constraint that the determinant of 

the scatter matrices (a measure of cluster volume) can be fixed in advance. 

However, bad clustering can result if unsuitable values are chosen.

In order for this technique to be successful, the data should be divided into 

groups of similar numbers of elements so that all the data can be allocated. Also 

the dispersion within each cluster should be minimised.

This algorithm follows the notation in the paper by P. J. Rousseeuw 

published in 1996 and is obtained by changing the manner of calculating the 

quantities^, and B,t which are variables used to represent the objective function,

so that [36] :

where p is the data dimensionality, nt = £]«,., , and the parameters ft and T are
i

given by /? = !//?, and r-0 where /? and r are variables used in order that the

formula can be generalised.

The focus of this method is to partition the data in clusters of similar 

cardinality, a low level of dispersion, and equal volume. This is achieved by using 

equations At and B» above which adapts the general algorithm to the AD 

approach.
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The Adaptive Distances algorithm used is as follows:

1. For each cluster t initialise the cluster centre \i, to a randomly-selected

data pattern and initialise the scatter matrix S, to the identity matrix

2. For each cluster f, calculate A, and BK which are variables used to 

simplify the relevant objective function where,

and

3. Calculate memberships: for each data pattern x,:

(i) Initialise Tt to an empty set where Tf is a set of 

indices t of the clusters that data pattern x, belongs

to, 

(ii) For each cluster t calculate the distance from each

data pattern x, to the cluster centre BH <- B,du 2 

(iii) For each cluster f calculate the membership uit of 

each data pattern x, to the cluster where,

1

uu <- o, / * r,
(iv) If any «„ > 0, add Ho set T,, and repeat step 3 while 

some memberships are strictly negative.
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4. For each cluster t update the cluster centre n, and the scatter matrix

5. as follows,

5. If no membership uit changed by more than a small value s during the 

previous iteration, stop; otherwise return to step 2.

Here, a reasonable a priori assumption is that all clusters should start with 

the same volume; i.e. 6, = 1 for all t where 0t is the constraint of unknown positive

definite matrix Gt used to avoid the determinant of Gt becoming zero. Gt is an 

unknown positive definite matrix used in the original objective function for this 

algorithm, and the value of e indicating convergence was taken to be 0.01.
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4.3.1 Results

4.3.1.1 Non-Overlapping Data

4.3.1.1.1 Six Clusters

This algorithm partitioned the data in six clusters on each application. 

More than 90% of the data representing single species was grouped into one 

cluster for between 7 and 8 out of 10 species. With between 8 and 10 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In all 5 cases, data representing H. brunnescens and R. maculata, C. 

appendiculata and Rhodomonas sp., and E. huxleyi and N. pyriformis were 

grouped together in the relevant pairs. H. brunnescens and R. maculata are 

from the same class, whereas C. appendiculata and Rhodomonas sp., and E. 

huxleyi and N. pyriformis are from different classes. In 4 out of 5 cases, data 

representing C. chiton and T. tetrathele were grouped together, these species 

are also from different classes. (See Figure 4.7)

4.3.1.1.2 Ten Clusters

This algorithm partitioned the data in ten clusters on each application. 

More than 90% of the data representing single species was grouped into one 

cluster for between 6 and 7 out of 10 species. With between 8 and 10 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In all 5 cases, data representing H. brunnescens and R. maculata, were grouped 

together, these species are from different classes. Also in all 5 cases, data 

representing M. pusilla, and N. pyriformis were grouped together, these species
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belong to the same class. In 3 out of the 5 cases, data representing C. 

appendiculata and H. brunnescens were grouped together, these species also 

belong to the same class. (See Figure 4.8)

4.3.1.1.3 Fourteen Clusters

This algorithm partitioned the data into fourteen clusters on each 

application. More than 90% of the data representing single species was grouped 

into one cluster for between 5 and 6 out of 10 species. With between 8 and 9 out 

of 10 species containing more than 80% of the corresponding data in a single 

cluster. In all 5 cases, data representing H. brunnescens and R. maculata, were 

grouped together, these species are from different classes. (See Figure 4.9)
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Figure 4.7 AD Non-Overlapping - Six Clusters
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Figure 4.8 AD Non-Overlapping Data - Ten Clusters
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Figure 4.9 AD Non-Overlapping Data - Fourteen Clusters
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4.3.1.2 Overlapping Data

4.3.1.2.1 Six Clusters

There were some similarities between the results of the five applications of 

this algorithm. More than 90% of the data representing single species was 

grouped into one cluster for between 6 and 9 out of 10 species. With between 7 

and 10 out of 10 species containing more than 80% of the corresponding data in 

a single cluster. In all 5 cases, data representing G. veneficum and H. triquetra, 

and A. carterae and G. veneficum were grouped together in the relevant pairings, 

pair-wise these species are from the same class. There tended to be more data 

split into two significant clusters than with the non-overlapping data. Various 

combinations of the data representing A. coffaeformis, A. carterae, A. 

pigmentosum, C. chiton, G. veneficum and H. triquetra were partitioned together. 

Although these species are in different classes, they belong to the group taxon. 

(See Figure 4.10)

4.3.1.2.2 Ten Clusters

The data was grouped in a similar fashion for each application of the 

algorithm and partitioned the data into ten clusters each time. More than 90% of 

the data representing single species was grouped into one cluster for between 4 

and 6 out of 10 species. With between 7 and 8 out of 10 species containing more 

than 80% of the corresponding data in a single cluster. In all 5 cases, data 

representing A. carterae and A. pigmentosum, G. veneficum and H. triquetra, 

and A. carterae and G. veneficum were grouped together in the relevant pairings,
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pair-wise these species are from the same class. In 4 out of 5 cases, data 

representing C. appendiculata and H. brunnescens were partitioned together, 

these species are also in the same class. (See Figure 4.11)

4.3.1.2.3 Fourteen Clusters

There were also several similarities between the results of each 

application of this algorithm, and the data was partitioned into fourteen clusters 

each time. More than 90% of the data representing single species was grouped 

into one cluster for between 2 and 4 out of 10 species. With between 4 and 6 out 

of 10 species containing more than 80% of the corresponding data in a single 

cluster. In all 5 cases, data representing A. carterae and A. pigmentosum, G. 

veneficum and H. triquetra, and A. carterae and G. veneficum were grouped 

together in the relevant pairings, pair-wise these species are from the same 

class. (See Figure 4.12)

4.3.1.2.4 Five Clusters - One Taxon

Between 95% and 98% of the taxon data was partitioned into 2 main 

clusters out of the five. In 4 out of 5 cases, data representing C. appendiculata 

and E. huxleyi were partitioned in the same cluster, these species are in different 

classes. In 3 out of 5 cases, data representing H. Brunnescens and N. pyriformis 

were partitioned in the same cluster, they are also in different classes. The data 

from the other taxons were grouped together in clusters in a similar manner for 

each application. (See Figure 4.13)
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Figure 4.10 AD Overlapping Data - Six Clusters
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Figure 4.11 AD Overlapping Data - Ten clusters
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Figure 4.12 AD Overlapping Data - Fourteen Clusters
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Figure 4.13 AD Overlapping Data - Five Clusters / One Taxon
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4.4 Maximum Likelihood ML

The ML algorithm assumes that each cluster represents a multivariate 

normal probability distribution, and attempts to find a clustering solution that 

maximises the overall likelihood of the data set over all clusters and data items; 

this method tends to seek cluster solutions where all clusters have similar 

volumes [36]. In this case, //* and Sf are unknown for t, and it is the "set of indices 

of the observations belonging to cluster f [50]. The likelihood function can be 

inferred as the product of the objective functions for all / [51]. Probable values of 

/(, //tand SfCan be calculated by maximising this likelihood function.

This approach not only has the ability to recognise ellipse shaped clusters 

which have different orientations, but also has the property that no constants 

have to be set a priori, unlike Adaptive Distances. Unfortunately a bias occurs 

towards results with clusters of similar volumes, when the clusters actually have 

wide ranging volumes.

This algorithm follows the notation in the paper by P. J. Rousseeuw 

published in 1996 [36], and is obtained by changing the manner of calculating the 

quantities^, and B-,t which are variables used to represent the relevant objective

function, so that: 

4= —logs,

where n, is the cluster centre of cluster t, S, is the scatter matrix of cluster t, 

and x. is the /th data point.
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The focus of this method is to maximise the likelihood of producing a 

clustering solution which matches the natural clusters in the data. This is 

achieved by using equations At and Bn above which adapts the general algorithm 

to the ML approach. It assumes each data object is drawn from a multivariate 

normal distribution N(n, ,S,).

The Maximum Likelihood algorithm used is as follows:

1. For each cluster t initialise the cluster centre \i t to a randomly-selected

data pattern and initialise the scatter matrix S, to the identity matrix

2. For each cluster f, calculate A, and Bit which are variables used to 

simplify the objective function where,

and

3. Calculate memberships: for each data pattern x,:

(i) Initialise T. to an empty set where 7] is a set of 

indices t of the clusters that data pattern x, belongs

to, 

(ii) For each cluster t calculate the distance from each

data pattern x, to the cluster centre Bit <- Bt dit 2 

(iii) For each cluster t calculate the membership uit of 

each data pattern x, to the cluster where,
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— A.

rtT,

«,,<-(Ussr,

(iv) If any un > 0, add t to set T,, and repeat step 3 while

some memberships are strictly negative.

4. For each cluster t update the cluster centre n, and the scatter matrix

5. as follows,

5. if no membership u u changed by more than a small value e during the 

previous iteration, stop; otherwise return to step 2.

Here the value of s indicating convergence was set a priori to be 0.01
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4,4.1 Results

4.4.1.1 Non-Overlapping Data

4.4.1.1.1 Six Clusters

Similarly as for ten and fourteen clusters, the data was partitioned so that 

between, 14% and 32% of the data was combined into one cluster. More than 

90% of the data representing single species was grouped into one cluster for 

between 1 and 7 out of 10 species. With between 2 and 9 out of 10 species 

containing more than 80% of the corresponding data in a single cluster. In all 

applications the data representing M. pusilla and N. pyriformis were partitioned in 

the same cluster, these species are in the same class. In 4 out of 5 cases, data 

representing G. veneficum and H. triquetra were grouped together, these species 

are in different classes. In 3 out of 5 cases, data representing C. chiton and T. 

tetrathele was partitioned into the same cluster, these species belong to different 

classes. Also in 3 out of 5 cases, data representing C. appendiculata and H. 

brunnescens were grouped together and these species belong to the same 

class. (See Figure 4.14)

4.4.1.1.2 Ten Clusters

The algorithm partitioned the data into ten clusters on each application. 

However, it had a tendency to partition the data so that nine clusters contained 

data for a single species but with between 40% and 100% of the data for that 

species. The tenth cluster contained all the remaining data, meaning data from 

nine or ten species were present in this very large cluster, between 39% and
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43% of all the data were contained in this single cluster. More than 90% of the 

data representing single species was grouped into one cluster for between 1 and 

7 out of 10 species. With between 1 and 9 out of 10 species containing more 

than 80% of the corresponding data in a single cluster. (See Figure 4.15)

4.4.1.1.3 Fourteen Clusters

The algorithm partitioned the data into fourteen clusters on each 

application. Similarly as for ten and six clusters, it consistently partitioned the 

data so that 13 clusters contained data for one or more species where in some 

cases, only a negligible amount of data was involved, e.g. 0.01%. The largest 

cluster contained all the remaining data, meaning data from nine or ten species 

were present in this very large cluster, between 33% and 50% of all the data 

were contained in this single cluster. More than 90% of the data representing 

single species was grouped into one cluster for 1 out of 10 species. With 

between 1 and 3 out of 10 species containing more than 80% of the 

corresponding data in a single cluster. (See Figure 4.16)
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Figure 4.14 ML Non-Overlapping Data - Six Clusters
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Figure 4.15 ML Non-Overlapping Data - Ten Clusters
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Figure 4.16 ML Non-Overlapping Data - Fourteen Clusters
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4.4.1.2 Overlapping Data

4.4.1.2.1 Six Clusters

In 3 out of 5 cases, one cluster was very large and contained data for all 

ten species, and between 50% and 54% of the data was contained in this cluster. 

More than 90% of the data representing single species was grouped into one 

cluster for between 0 and 9 out of 10 species. With between 2 and 9 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In 4 out of 5 cases, the data representing G. veneficum, H. triquetra and A. 

carterae are partitioned together, these species are in the same class. In 3 out of 

5 applications, the data representing A. coffaeformis and C. chiton are grouped 

together, these species are in different classes but both belong to the group 

taxon. Also in 3 out of 5 cases, data representing H. brunnescens and N. 

pyriformis were grouped together, these species are in different classes and 

don't belong to the group taxon. (See Figure 4.17)

4.4.1.2.2 Ten Clusters

One application of this algorithm resulted in nine clusters, not ten. The 

data for the ten species tended to be partitioned so that nine clusters contained 

some data from one of the nine, with the last cluster consistently containing data 

from all ten species in varying proportions in one very large cluster, just as with 

the non-overlapping data. The amount of data in the large cluster varies from 

50% to 62%. More than 90% of the data representing single species was 

grouped into one cluster for between 1 and 3 out of 10 species. With between 2
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and 5 out of 10 species containing more than 80% of the corresponding data in a 

single cluster. (See Figure 4.18)

4.4.1.2.3 Fourteen Clusters

Data tended to only be grouped into eleven or twelve clusters instead of 

fourteen, with a further two or three clusters with very small amounts of data in 

them, therefore only eight or nine clusters were of any real interest. Again the last 

cluster contained data for all ten species in one large cluster. The amount of data 

in the large cluster varied between 58% and 60%. More than 90% of the data 

representing single species was grouped into one cluster for 2 out of 10 species. 

With 2 out of 10 species containing more than 80% of the corresponding data in 

a single cluster. (See Figure 4.19)

4.4.1.2.4 Five Clusters - One Taxon

The data in taxon one is partitioned into between 3 and 5 clusters in each 

application of the algorithm, between 90% and 100% of the group taxon data 

were partitioned in these clusters. In 4 out of 5 cases, data representing A. 

pigmentosum and C. appendiculata was grouped together, these species are in 

different classes. In 3 out of 5 applications, data representing C. appendiculata 

and H. brunnescens, which are also in different classes. (See Figure 4.20)
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Figure 4.17 ML Overlapping Data - Six Clusters
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Figure 4.18 ML Overlapping Data - Ten Clusters
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Figure 4.19 ML Overlapping Data - Fourteen Clusters
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Figure 4.20 ML Overlapping Data - Five Clusters / One Taxon
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4.5 Minimum Total Volume MTV

The MTV algorithm minimises the total cluster volume, and is biased 

towards finding clustering solutions where the clusters have similar densities, 

rather than similar volumes.

This algorithm follows the notation in the paper by P. J. Rousseeuw 

published in 1996 and is obtained by changing the manner of calculating the 

quantities ,4, and Bit which are variables used to represent the relevant objective 

function, so that [36]:

A ^n ^ 
' 2/3 '

where p is the data dimensionality, «, =^uit , and the parameters /? and r are
i

given by /? = 1/2, T = p/2 where f3 and T are variables used in order that the 

formula can be generalised.

The focus of this method is to produce clustering solutions where the 

clusters have different cardinalities, and to minimise the total volume of the 

clusters. This is achieved by using equations At and Brt above which adapts the 

general algorithm to the MTV approach.

The Minimum Total Volume algorithm used is as follows:

1. For each cluster t initialise the cluster centre n, to a randomly-selected

data pattern and initialise the scatter matrix S, to the identity matrix
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2. For each cluster f, calculate A, and Bit which are variables used to 

simplify the objective function where,

3. Calculate memberships: for each data pattern x, :

(i) Initialise Tt to an empty set where T, is a set of 

indices t of the clusters that data pattern x ; belongs

to, 

(ii) For each cluster t calculate the distance from each

data pattern x, to the cluster centre Bn <- B,dn 2 

(iii) For each cluster t calculate the membership uit of

each data pattern x, to the cluster where,

«„<- 1

rtT,

r*T'

XV B.
-A.

(iv) If any uit > 0, add t to set T,, and repeat step 3 while

some memberships are strictly negative. 

4. For each cluster t update the cluster centre \i, and the scatter matrix

S, as follows,
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s <

5. If no membership «„ changed by more than a small value e during the 

previous iteration, stop; otherwise return to step 2.

Here, a reasonable a pr/or/ assumption is that all clusters should start with 

the same volume; i.e. 6, = 1 for all t and the value of s indicating convergence

was taken to be 0.01 .
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4.5.1 Results

4.5.1.1 Non-Overlapping Data

No results were produced by this algorithm using the Non-Overlapping 

Data set. MTV failed to converge to a solution, both when the number of clusters 

specified was the actual number of clusters present, and when it differed from the 

optimal or 'natural' number of clusters. Further investigation showed that this 

algorithm tended to become trapped cycling between two clustering solutions.

4.5.1.2 Overlapping Data

4.5.1.2.1 Ten Clusters

Only results where ten clusters were specified converged. There are no 

results for the cases where fourteen clusters, six clusters or the group taxon 

specified, when using the overlapping data set with this algorithm. The data was 

partitioned into ten clusters each time. More than 90% of the data representing 

single species was grouped into one cluster for between 5 and 7 out of 10 

species. With between 7 and 9 out of 10 species containing more than 80% of 

the corresponding data in a single cluster. In all 5 cases, data representing A. 

carterae and A. pigmentosum, G. veneficum and H. triquetra, and A. carterae 

and G. veneficum were grouped together in the relevant pairings, pair-wise these 

species are from the same class. In 4 out of 5 cases, data representing C. 

appendiculata and H. brunnescens were partitioned together, these species are 

also in the same class. (See Figure 4.21)
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Figure 4.21 MTV Overlapping Data - Ten Clusters
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4.6 Sum of All Normalised Determinants SAND

The SAND algorithm attempts to reduce the bias of the MTV algorithm 

towards finding clustering solutions where the clusters have similar densities, by 

normalising the cluster volumes by the dimensionality.

This algorithm follows the notation in the paper by P. J. Rousseeuw 

published in 1996 and is obtained by changing the manner of calculating the 

quantities^, and Bit which are variables used to represent the relevant objective 

function, so that [36]:

where p is the data dimensionality, «, =]>]«„ , and the parameters j3 and r are
i

given by f3 = l/p , T = 1 where f3 and T are variables used in order that the

formula can be generalised.

The focus of this method is similar to that of MTV, but uses the pth root of 

the volume, not the squared root. This amount is very small with seven 

dimensions, and it gives an average size of the clusters instead of the volume. 

Therefore SAND tends to minimise the total size of the clusters. This is achieved 

by using equations At and Bit above which adapts the general algorithm to the 

SAND approach.
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The Sum of All Normal Determinants algorithm used is as follows:

1. For each cluster t initialise the cluster centre n, to a randomly-selected

data pattern and initialise the scatter matrix S, to the identity matrix

2. For each cluster t, calculate A, and Bn which are variables used to 

simplify the objective function where,

and

3. Calculate memberships: for each data pattern x,.

(i) Initialise Tt to an empty set where Ti is a set of 

indices t of the clusters that data pattern x, belongs

to, 

(ii) For each cluster t calculate the distance from each

data pattern x, to the cluster centre BH <- B,d* 

(iii) For each cluster f calculate the membership uit of 

each data pattern x, to the cluster where,

. . »/ fi« !

rtT, riT,

un ^Q,t£T,

(iv) If any ua > 0, add f to set T., and repeat step 3 while 

some memberships are strictly negative.

113



4. For each cluster t update the cluster centre n, and the scatter matrix

5. as follows,

IX2 *- „
~< ^"i 2 t

L—i "
i '

5. If no membership U H changed by more than a small value e during the 

previous iteration, stop; otherwise return to step 2.

Here, a reasonable a priori assumption is that all clusters should start with 

the same volume; i.e. 9, = 1 for all t, and the value of s indicating convergence

was taken to be 0.01.
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4.6.1 Results

4.6.1.1 Non-Overlapping Data

4.6.1.1.1 Six Clusters

This algorithm partitioned the data in six clusters on each application. 

More than 90% of the data representing single species was grouped into one 

cluster for between 7 and 9 out of 10 species. With between 9 and 10 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In 4 out of 5 cases, data representing M. pusilla, and N. pyriformis were grouped 

together, these species belong to the same class. Also in 4 out of 5 applications, 

data representing E. huxleyi and N. pyriformis were partitioned in to the same 

cluster, these species are in different classes. In 3 out of the 5 cases, data 

representing C. appendiculata and Rhodomonas sp. were grouped together, 

these species also belong to different classes. There was a variety in the pattern 

of the groupings over the five applications. (See Figure 4.22)

4.6.1.1.2 Ten Clusters

This algorithm partitioned the data in ten clusters on each application, 

although one cluster in the first application only contained 0.08% of the data. 

More than 90% of the data representing single species was grouped into one 

cluster for between 6 and 7 out of 10 species. With between 8 and 10 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In all 5 cases, data representing H. brunnescens and R. maculata, were grouped 

together, these species are from different classes. Also in all 5 cases, data
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representing M. pusilla, and N. pyriformis and C. appendiculata, H. brunnescens 

and Rhodomonas sp. were grouped together, the species in each combination 

belong to the same class. In 3 out of the 5 cases, data representing C. chiton and 

T. tetrathele were grouped together, these species belong to different classes. 

(See Figure 4.23)

4.6.1.1.3 Fourteen Clusters

This algorithm partitioned the data in fourteen clusters on 4 occasions with 

on cluster in one case only containing 0.02% of the data. Only 12 clusters were 

created in the 5th application. More than 90% of the data representing single 

species was grouped into one cluster for between 3 and 7 out of 10 species. With 

between 5 and 9 out of 10 species containing more than 80% of the 

corresponding data in a single cluster. In all 5 cases, data representing H. 

brunnescens and R. maculata, were grouped together, these species are from 

different classes. In 3 out of 5 cases, data representing M. pusilla, and N. 

pyriformis were grouped together, these species belong to the same class. Also 

in 3 out of the 5 cases, data representing C. appendiculata and H. brunnescens 

were grouped together, these species also belong to the same class. (See 

Figure 4.24)
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Figure 4.22 - SAND Non-Overlapping Data - Six Clusters
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Figure 4.23 SAND Non-Overlapping Data - Ten Clusters
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Figure 4.24 SAND Non-Overlapping Data - Fourteen Clusters
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4.6.1.2 Overlapping Data

4.6.1.2.1 Six Clusters

All five applications of this algorithm partitioned the data into 6 clusters. 

More than 90% of the data representing single species was grouped into one 

cluster for between 6 and 8 out of 10 species. With between 8 and 9 out of 10 

species containing more than 80% of the corresponding data in a single cluster. 

In all 5 cases, data representing C. appendiculata and G. veneficum were 

partitioned together, both of these species are in the same class. Also looking at 

all 5 cases, various combinations of A. coffaeformis, A. carterae, A. 

pigmentosum, C. chiton, G. veneficum and H. triquetra were grouped together in 

each case, these species are not all from the same class but all belong to the 

group taxon. In 3 out of 5 applications, data representing E. huxleyi and N. 

pyriformis were grouped together in the same cluster, these species are in 

different classes. (See Figure 4.25)

4.6.1.2.2 Ten Clusters

One of the five applications only partitioned the data into nine clusters, not 

ten, but the pattern of the data clustering was similar in each case. The data was 

partitioned into ten clusters each time. More than 90% of the data representing 

single species was grouped into one cluster for between 4 and 6 out of 10 

species. With between 6 and 9 out of 10 species containing more than 80% of 

the corresponding data in a single cluster. In all 5 cases, data representing A. 

coffaeformis, A. carterae, A. pigmentosum, and G. veneficum were partitioned
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together, not all of these species are in the same class, but they are all in the 

group taxon. Also in all 5 cases, H. triquetra and G. veneficum were grouped 

together, these species are from the same class. In 3 out of 5 cases, data 

representing C. appendiculata and H. brunnescens were partitioned together, 

these species are also in the same class. (See Figure 4.26)

4.6.1.2.3 Fourteen Clusters

Two out of the five applications only had thirteen clusters created instead 

of fourteen, and one of the cases had fourteen clusters, but one of the clusters 

only contained 0.02% of the data and therefore appeared to be empty. More than 

90% of the data representing single species was grouped into one cluster for 

between 4 and 6 out of 10 species. With between 7 and 8 out of 10 species 

containing more than 80% of the corresponding data in a single cluster. In all 5 

cases, data representing A. carterae, A. pigmentosum, and G. veneficum were 

partitioned together, all of these species are in the same class. Also in all 5 

cases, H. triquetra and G. veneficum were grouped together, these species are 

also from the same class. (See Figure 4.27)

4.6.1.2.4 Five Clusters - One Taxon

At least 98% of the taxon data was partitioned into 2-3 main clusters out 

of the five. In 4 out of 5 results, data representing C. appendiculata and H. 

brunnescens were partitioned in the same cluster, these species are in the same 

class. In 3 out of 5 results, data representing E. huxleyi and N. pyriformis were
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partitioned in the same cluster, these species are in different classes. (See 

Figure 4.28)
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Figure 4.25 SAND Overlapping Data - Six Clusters
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Figure 4.26 SAND Overlapping Data - Ten Clusters
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Figure 4.27 SAND Overlapping Data - Fourteen Clusters
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Figure 4.28 SAND Overlapping Data - Five Clusters / One Taxon
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4.7 DKLL (Darners Kim Legendre Legendre - Critical Distances) Algorithm

Demers et al. proposed an iterative cluster analysis algorithm for AFC 

data capable of modelling the heterogeneous nature of typical AFC clusters [35]. 

This algorithm, henceforth denoted as DKLL, was based on an extension of the 

classic /c-means algorithm [51].

"A common problem with such iterative algorithms is that over the course 

of several iterations, one cluster tends to expand to include all the data. The 

DKLL algorithm incorporated the use of threshold "critical distances" to prevent 

this. At each step of the algorithm, only those points within the critical distance of 

the cluster centre are used in calculating the corresponding scatter matrix.

The critical distances are gradually increased during successive iterations, 

under the assumption that the clustering becomes progressively more reliable. In 

practice, however, this approach is not ideal: there are no guidelines as to how 

rapidly the critical distances should be increased, and the number of data points 

within the critical distance of the cluster centre may well fall to zero at some 

point, leaving the cluster scatter matrix undefined.

Furthermore, the algorithm frequently fails to converge to an optimal 

clustering solution, requiring user intervention to reject inadequate results [35].

The DKLL algorithm described in Demers et al. can be summarised as follows 

[35]: 

1. For each cluster t initialise its cluster centre p., to a randomly-selected data

pattern and initialise its scatter matrix S, to the identity matrix
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2. Assign each data pattern x, to its closest cluster f ; i.e. for which d,, = mmdllr
k

3. For each cluster f, update ji, to the mean of the set of patterns assigned to 

cluster t

4. For each cluster t, calculate the 'critical distance1 (Euclidean distance to the 

closest neighbouring cluster centre) c. = mm\\uk -u.\\
k*t " "

5. For each cluster f, update S, to the covariance matrix of the set of patterns 

assigned to cluster t and falling within a Euclidean distance c,z of the cluster 

centre.

6. Calculate the objective criterion F = ^X2 where dt is the generalised

distance between pattern / and the centroid of the cluster to which it has been 

assigned. 

7. Repeat steps 2-6 until F attains a minimum value.

The quantity z is initially small (around 0.25); this is designed to exclude 

patterns for which the cluster identity is uncertain from influencing the calculation 

of the scatter matrices. As the algorithm progresses, the cluster assignments are 

supposed to become more reliable and z is increased accordingly. In the 

implementation used here, z is increased by 0.005 at each iteration, up to a 

maximum value of 0.5. Any cluster with less than 3p data patterns assigned to it 

following step 2 (where p is the data dimensionality) is deemed to be irrelevant 

and is removed from further consideration" [2].
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4.7.1 Results

4.7.1.1 Non-Overlapping Data

4.7.1.1.1 Six Clusters

More than 90% of the data representing single species was grouped into one 

cluster for 9 out of 10 species. With 10 out of 10 species containing more than 

80% of the corresponding data in a single cluster. In 4 out of 5 applications, data 

representing H. brunnescens and R. maculata were grouped together, these 

species are in different classes. Also in 4 out of 5 cases, data representing C. 

chiton and T. tetrathele were partitioned into the same cluster, these species are 

also in different classes. Again, in 4 out of 5 applications, data representing C. 

appendiculata, P. pupureum, and Rhodomonas sp. were grouped together, and 

again these species are in different classes. In 3 out of 5 applications, data 

representing M, pusilla and N. pyriformis were partitioned in the same cluster, 

these species are in the same class. (See Figure 4.29)

4.7.1.1.2 Ten Clusters

Ten clusters were not always generated, and in fact this algorithm was 

applied many times to get five sets of results with ten clusters. More than 90% of 

the data representing single species was grouped into one cluster for between 7 

and 9 out of 10 species. With between 8 and 9 out of 10 species containing more 

than 80% of the corresponding data in a single cluster. In 3 out of 5 applications, 

data representing C. chiton and T. tetrathele were grouped together as was data
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representing H. brunnescens and R maculate, both pairs of species were in 

different classes. (See Figure 4.30)

4.7.1.1.3 Fourteen Clusters

Between eleven and fourteen clusters were generated over the 5 

applications of this algorithm. More than 90% of the data representing single 

species was grouped into one cluster for between 5 and 8 out of 10 species. With 

between 6 and 9 out of 10 species containing more than 80% of the 

corresponding data in a single cluster. In 4 out of 5 applications, data 

representing H. brunnescens and R maculata were grouped together, these 

species were in different classes. (See Figure 4.31)
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Figure 4.29 DKLL Non-Overlapping Data - Six Clusters
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Figure 4.30 DKLL Non-Overlapping Data - Ten Clusters
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Figure 4.31 DKLL Non-Overlapping Data - Fourteen Clusters
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4.7.1.2 Overlapping Data

4.7.1.2.1 Six Clusters

More than 90% of the data representing single species was grouped into 

one cluster for between 9 and 10 out of 10 species. With between 9 and 10 out of 

10 species containing more than 80% of the corresponding data in a single 

cluster. In all 5 applications, data representing A. carterae, G. veneficum, and H. 

triquetra were grouped together, all three species are from the same class. Again 

in all 5 cases, data representing A. carterae, A. pigmentosum and C. chiton were 

grouped together, these species are in different classes, but all in the group 

taxon. In 3 out of 5 applications, data representing A. coffaeformis, A. carterae, 

G. veneficum, and H. triquetra were grouped together, these species are from 

different classes but all belong to the group taxon. (See Figure 4.32)

4.7.1.2.2 Ten Clusters

The pattern of clustering over the five applications had similarities, and it 

was necessary to run many applications in order to get five sets of results where 

ten clusters were generated. More than 90% of the data representing single 

species was grouped into one cluster for between 6 and 8 out of 10 species. With 

between 6 and 9 out of 10 species containing more than 80% of the 

corresponding data in a single cluster. In all 5 applications, data representing A. 

carterae, G. veneficum, and H. triquetra were grouped together, all three species 

are from the same class. In 4 out of 5 cases, data representing A. carterae, E. 

huxleyi, and N. pyriformis were grouped together, they are from different classes.
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In 3 out of 5 cases, data representing A. carterae, A. pigmentosum and C. chiton 

were grouped together, these species are in different classes, but all in the group 

taxon. (See Figure 4.33)

4.7.1.2.3 Fourteen Clusters

Between ten and fourteen clusters were created by this algorithm over five 

applications. More than 90% of the data representing single species was 

grouped into one cluster for between 6 and 8 out of 10 species. With between 6 

and 9 out of 10 species containing more than 80% of the corresponding data in a 

single cluster. In all 5 cases, data representing C. chiton and N. pyriformis were 

partitioned into the same cluster, these species are in different classes and not in 

the group taxon. In 4 out of 5 applications, data representing A. carterae, G. 

veneficum, and H. triquetra were grouped together, all three species are from the 

same class. In 3 out of 5 cases, data representing A. carterae, A. pigmentosum 

and C. chiton were grouped together, these species are in different classes, but 

all in the group taxon. (See Figure 4.34)

4.7.1.2.4 Five Clusters - One Taxon

The data in the group taxon was partitioned into between 2 and 4 clusters 

in each application of the algorithm, between 97% and 98% of the group taxon 

data were partitioned in these clusters. In all 5 cases, data representing C. 

appendiculata and H. brunnescens, were grouped together, these species are in 

the same class. (See Figure 4.35)
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Figure 4.32 DKLL Overlapping Data - Six Clusters
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Figure 4.33 DKLL Overlapping Data - Ten Clusters
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Figure 4.34 DKLL Overlapping Data - Fourteen Clusters
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Figure 4.35 DKLL Overlapping Data - Five Clusters / One Taxon
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4.8 Results Summary

The different runs of the algorithms produce different clustering solutions 

because the data points used as the initial cluster centres were chosen at 

random.

4.8.1 Comparison Of Algorithms Using Data With Non-Overlapping 

Clusters

Table 4.1 Summary of times to convergence and consistency of clustering of 

the algorithms when using Data Set A (Non-Overlapping Clusters)

No. of 

clusters

AD

FKM

DKLL

ML

MTV

SAND

Time to 

convergence

10

68 sees

75 sees

63 sees

77 sees

*

86 sees

Consistency between 

replicates

6

0.906

0.907

0.921

0.857

*

0.866

10

0.962

0.954

0.947

0.890

*

0.939

14

0.991

*

0.965

0.929

*

0.955

Consistency of results for 10 

clusters with "gold standard"

10

0.963

0.940

0.948

0.843

*

0.939

Did not converge to a solution
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4.8.1.1 Six Clusters

Decreasing the number of clusters specified had the effect of combining 

some species within a cluster and splitting some species between clusters. DKLL 

allocated data patterns to clusters most consistently, although AD was only 

slightly less consistent. In contrast, increasing the specified number usually 

resulted in splitting species between clusters, with most clusters representing 

only a single species. AD allocated patterns most consistently followed by DKLL. 

MTV failed to converge to a solution. Further investigation showed that it tended 

to become trapped cycling between two clustering solutions. The other five 

clustering algorithms repeatedly converged when using six clusters.

4.8.1.2 Ten Clusters

With /<=10 clusters, AD produced clustering schemes in which each cluster 

was dominated by data patterns from a single species; it had the highest 

consistency between replicates and performed best in comparison to the gold 

standard (See Table 4.1). FKM resulted in a similar performance to AD, but 6 

species tended to be paired together to get 3 clusters and 1 species was put in 2 

clusters in significant proportions.

DKLL performed marginally less well, being less consistent between 

replicates and occasionally finding "composite" clusters containing two species, 

resulting in poorer performance in comparison to the gold standard. SAND 

performed slightly less well in terms of consistency between replicates, producing 

a higher proportion of composite clusters.
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MTV failed to converge to a solution. ML frequently tended to produce a 

large aggregate cluster comprising patterns from eight or more species. This was 

a consequence of the unusual way in which it partitioned the data space. It 

generated small regions (representing the densely populated clusters) enclosed 

by a single large region (representing the remainder of the space). All the other 

algorithms produced partitions in which the regions were adjoining but 

continuous (i.e. in which no region was contained within another).

Table 4.1 also shows the times to convergence of each algorithm when 

using ten clusters. According to these times, DKLL has the fastest convergence 

and produces very consistent results, and AD has marginally the second fastest 

convergence but is even more consistent. This shows that the fastest converging 

algorithm does not necessarily produce the worst results and that more 

consistent results can be achieved by using a slightly slower algorithm. The 

algorithm which had the longest time to convergence is SAND which has variable 

consistency, showing that an algorithm with a longer convergence time does not 

necessarily produce the better results.

4.8.1.3 Fourteen Clusters

Again AD had the highest consistency between replicates and performed 

best in comparison to the gold standard. DKLL also produced consistently good 

results. (See Table 4.1) SAND performed better on the non-overlapping data, 

compared with ML, which repeatedly grouped together several discrete clusters
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into one. FKM did not converge when applied to the non-overlapping set, and 

neither did MTV.
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4.8.2 Comparison Of Algorithms Using Data With Overlapping 
Clusters

Table 4.2 Summary of times to convergence and consistency of clustering of 

the algorithms when using Data Set B (Overlapping Clusters)

No. of 

clusters

AD

FKM

DKLL

ML

MTV

SAND

Time to 

convergence

10

4 mins 49

11 mins 49

3 mins 45

5 mins 24

15 mins 32

20 mins 5

Consistency between replicates

5 

(group)

0.807

0.555

0.712

0.447

*

0.662

6

0.878

0.922

0.938

0.764

*

0.877

10

0.971

0.953

0.923

0.880

0.954

0.923

14

0.973

0.953

0.930

0.876

*

0.959

Consistency of results for 10 

clusters with "gold standard"

10

0.946

0.940

0.916

0.680

0.940

0.926

Did not converge to a solution
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4.8.2.7 Six Clusters

FKM had the highest consistency when using six clusters. AD also 

performed consistently well, but not as well as FKM, and the same for DKLL ML 

continued to repeatedly group together several discrete clusters into one. MTV 

did not converge, and SAND showed a tendency for the data to be partitioned so 

that four or five species were grouped in the same cluster.

4.8.2.2 Ten Clusters

All algorithms converged when ten clusters were specified, and all 

algorithms showed an increase in tendency to find "composite" clusters 

containing two or more species.

AD performed most consistently between replicates and with allocation of 

cells of known identity to the same cluster. Although SAND gave closer 

agreement with the five visually defined clusters than AD, overall it did not 

perform well with the overlapping data. FKM performed reasonably well, and 

MTV consistently failed to converge with the number of clusters specified that 

were not the natural number of clusters in the data set. ML again consistently 

partitioned the data so that a very large percentage of the data was grouped into 

one large cluster.

With the overlapping data, the time to convergence was significantly 

slower for all algorithms, however, the fastest algorithm was still DKLL which 

again had the second most consistent results, with AD slightly slower, but with 

better consistency, as with the non-overlapping data. (See Table 4.2)
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4.8.2.3 Fourteen Clusters

FKM showed very good consistency, but partitioned data for a single 

species into more clusters than with non-overlapping data. AD had the highest 

consistency. ML continued to repeatedly group together several discrete clusters 

into one, and tended to only group the data into eleven or twelve clusters, not 

fourteen. MTV did not converge. SAND and DKLL also did not always partition 

the data into fourteen clusters, although DKLL had the second highest 

consistency. (See Table 4.2)

4.8.2.4 Five Clusters — One Taxon

For this case, the "gold standard" would be where there was one cluster 

containing Taxon 1, and the data for the other four species partitioned one 

species per cluster. FKM repeatedly grouped the data in taxon 1 into two or three 

clusters out of five and had a low rate of consistency. AD reliably grouped the 

data in taxon 1 into two main clusters, and had the highest consistency. SAND 

tended to group the data in taxon 1 into three clusters with one large and two 

much smaller clusters. MTV did not converge. When ML and DKLL were applied, 

the data was grouped differently each time with no real pattern to the clustering.
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4.9 Conclusions

FKM performed consistently however it did not always converge, and 

SAND was more variable. ML was consistently poor and MTV was prone to non- 

convergence making these four algorithms unsuitable for the type of clustering 

application described here. AD performed the most consistently with both data 

sets, irrespective of the number of clusters specified, and DKLL was almost as 

good. However, with DKLL it was necessary to generate more than five results 

as the number of clusters the algorithm chose to use, varied slightly with the non- 

overlapping data, but quite significantly with the overlapping data. The algorithm 

was run more times to try to get five results where 10 clusters were produced. 

This was possible with the non-overlapping data, but not with the overlapping 

data set.

With AD, it consistently generated similar clustering solutions, regardless 

of the number of clusters specified a priori, or whether the data contained 

overlapping clusters or not. The 'Five Clusters / One Taxon' results show that 

between 95% and 98% of the taxon data was partitioned into 2 clusters, on each 

application of the algorithm. AD had the second fastest time to convergence, and 

had the highest consistency when ten and fourteen clusters were specified at 

96% and 99% respectively, and the highest consistency of results for ten clusters 

with the 'Gold Standard' at 96%, when the non-overlapping data set was used. 

This method also had the second fastest time to convergence, and had the 

highest consistency when five, ten and fourteen clusters were specified at 81%, 

97% and 97% respectively, and the highest consistency of results for ten clusters
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with the 'Gold Standard 1 at 95%.Therefore it was concluded that the Adaptive 

Distances algorithm was the most suited to the clustering application studied.

Phytoplankton were often grouped together in the same cluster where 

sometimes the species were of the same group or class, but sometimes there 

was no taxonomic connection between the species. The data for two such 

species was plotted, and it could be seen that the main area of clustering was in 

the same place for both species. This maybe due to the data being recorded at 

different times in the plankton lifecycles so that the species had similarities at that 

time. This means, that although it is possible to compare the algorithms to see 

which one clustered the species together by group or class in the best way, this 

will not provide a realistic view of how accurately the data of the species are 

being clustered. This may also be due to different species having the same flow 

cytometric signature. This is because the variables that are recorded are for 

classification purposes, e.g. are there any phytoplankton species in the water 

with red fluorescence, and are not for taxonomic identification.

In the present study, the number of clusters is specified beforehand, 

based, for example, on preliminary visual inspection of the data or on prior 

knowledge of the problem domain. Commonly, however, no prior information is 

available on the number of clusters in a data set. Techniques for automatically 

determining the number of clusters from the data have been developed using 

minimization of a cost function and/or persistence of clusters at different length 

scales [52] [39] [53].
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Chapter 5 - Future Research

5.1 Introduction

In this research, it was necessary for the number of clusters in the data to be 

determined a priori when applying the clustering algorithms. Therefore one 

possible option for future research is to investigate algorithms which calculate the 

optimum number of clusters in unknown data sets as well as performing the 

classification.

Although some algorithms of this type exist, they have not been rigorously 

tested or applied to AFC data. AFC data can cause problems to clustering 

algorithms due to the elliptical nature, overlap of some clusters and biological 

variation of the species. The complexity of the data also means that some 

algorithms use approaches that are not currently computationally feasible. There 

are four possible methods that could be considered, namely:

• Minimising a regularised cost function (RCF) [53]

• Unsupervised Robust C Means (URCP) [37]

• The Robust Competitive Agglomeration Algorithm (RCA) [54]

• A Competitive Elliptical Clustering Algorithm (ECL) [55]

5.2 Minimising a Regularised Cost Function Algorithm (RCF)

This algorithm purely determines the number of clusters in the data and 

the corresponding cluster centres, but it doesn't actually classify the data. It 

operates by using scale -space theory concepts in relation to clustering [53]. The
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cost function consists of 2 parts; the first is the Euclidean distance metric, which 

calculates the cluster centres so that the sum-of-squared distance from each 

pattern to the cluster centre is minimised. The second part, is a regularisation 

term, which further dictates that the sum-of-squared distances between clusters 

is also minimised. The idea of this term is to draw cluster centres in the 

neighbourhood towards a 'winning' cluster which is the closest centre to a 

particular given input pattern. After training, clusters with a negligible winning 

count are deleted and the clusters within the neighbourhood of the 'winning' 

cluster are combined. The neighbourhood is shown to be a scale parameter, and 

the number of clusters is identified while varying the scale value. The number of 

clusters occurring most frequently over the largest range of the scale parameter 

is given as the number of clusters in the data, and the corresponding cluster 

centres calculated. If required, 'conscience learning' can be included in the 

algorithm to deter the same cluster centres from 'winning' too frequently. It is 

possible that different numbers of clusters can occur with the same high 

frequency over the same range of the scale parameter. In these cases, 

determining the 'best' solution can be based on either cluster validity or domain 

knowledge. In this algorithm, the Dunn index is applied as a measure of cluster 

validity and is used as a further criterion when choosing between possible 

solutions. This method is robust due to the implementation of the cluster validity, 

but would take a long time to converge unless the cluster centres were initialised 

to the "convergence values from the previous scale" [53]. Also, it was thought 

that the application of a scale parameter would result in an algorithm less
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sensitive to noise. Once the cluster centres have been determined, they can then 

be superimposed on the data plots.

5.3 Unsupervised Robust C Means Algorithm (URCP)

This clustering algorithm the Robust C Prototypes (RCP) algorithm is a 

combination of fuzzy clustering and statistical estimators and is based on the 

Fuzzy 'C' Means technique. Although the initial algorithm still requires the 

number of clusters to be known a priori, it was developed to become the 

Unsupervised Robust C Prototypes algorithms (URCP) to operate with an 

unknown number of clusters. This development is based on the initial number of 

clusters being greater than the actual number of clusters in the data, and 

therefore it is only necessary to know the maximum number of clusters that could 

be in the data. In this algorithm, two sets of weights (memberships) are 

generated for each data point. The first set partitions the data set, and the 

second memberships are unconstrained, and are used to determine robust 

estimates of the prototype parameters, which characterise each cluster. The 

evaluation of the prototype parameters can be severely affected by noise and 

outliers; this is because the constraint on the weights does not allow outlier or 

noisy data points "to have small membership values in all clusters 

simultaneously" [37]. To overcome the noise issue, the algorithm is developed to 

include M-estimators [56], and to minimise the effect of outliers, a loss function 

(rho) is associated with each cluster. The weight function argument is the 

squares of the distances and is always non-negative; consequently, a new
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weight function was developed. It was based on the median of the distances, 

and the median of absolute deviations due to the robustness of these estimates. 

In order for ellipsoidal clusters to be identified, the Mahalanobis distance metric is 

used and the optimum number of clusters in unknown data is determined by 

repeatedly merging smaller clusters.

5.4 A Robust Competitive Agglomeration Algorithm (RCA)

Clustering algorithms can usually be categorised as either hierarchical or 

partitional clustering. The main advantages of hierarchical clustering are that, 

initialisation and the existence of local minima does not influence the clustering 

process, and that the number of clusters in the data does not need to be 

specified a priori. Prototype based clustering methods are the most popular of 

the partitional clustering category [57], and are classed as 'hard' or 'fuzzy' 

clustering. The advantages of these prototype approaches are that data points 

are able to move to different clusters in order to minimise the objective function, 

by using the relevant distance metric, information about the size and shape of the 

clusters can be combined within the objective function. In order to detect elliptical 

clusters, the Mahalanobis distance is used. The 'Competitive Agglomeration' 

(CA) is a technique which minimises a fuzzy prototype-based objective function 

iteratively which combines the advantages of both partitional and hierarchical 

clustering, and has the ability to identify many different shaped clusters. In the 

CA algorithm, the first step is to divide the data set into many small clusters. 

During each iteration, adjacent clusters 'compete' for data points, so that the
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losing clusters tend to become smaller until they disappear. The final partition is 

said to have the optimum number of clusters in relation to the objective function. 

The CA technique is relatively robust to the effects of local minima and 

initialisation. The Robust Competitive Agglomeration (RCA) algorithm is an 

extension of CA in that it is also insensitive to noise and outliers. Concepts from 

robust statistics are combined in order for the RCA algorithm to be robust to 

noise. Here, for each data point, two sets of weights are assigned where, the first 

set partitions the data set, and the second is used to determine robust estimates 

of the "cluster prototypes" [54]. RCA is able to find an unknown number of 

clusters, recognise clusters of various shapes, and is robust to noisy data sets. 

The RCA algorithm is based on the Robust C Prototypes (RCP) algorithm used 

in the "Unsupervised Robust C Means" section featured previously.

5.5 A Competitive Elliptical Clustering Algorithm (ECL)

Some clustering algorithms can have the problem where the covariance 

matrices become singular or nearly singular giving difficulties when inverting. 

This algorithm starts with spherical clusters and so avoids this singularity issue. It 

is based on Competitive Learning [58] which converges faster than some 

algorithms [55], and a frequency sensitive modification prevents larger clusters 

from being favoured. The classification part of the algorithm uses the 

Expectation Maximisation (EM) technique which has its roots in the Maximum 

Likelihood algorithm, and the update phase of the algorithm is described as 

sequential therefore the parameters are recalculated as each data point is
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processed. Competitive Learning quickly tends to an optimum due to the small 

steps taken during this phase, and is less likely to result in local optima than the 

k-means algorithm [59]. For the case where elliptical clusters are found in data, 

covariance matrices represent the clusters and need to be updated. Therefore a 

covariance update rule is introduced to update the inverse of the matrices directly 

as opposed to after processing each data point. This algorithm is reported as 

producing good results even with overlapping data [55] .

5.6 Discussion of the Algorithms

With the RCF algorithm, it is claimed to be able to find the optimum 

number of clusters, and seems to be able to identify several different types of 

data sets. For example, it successfully identified: non-overlapping clusters of 

varying spreads; overlapping clusters of varying spreads; and a combination of 

non-overlapping and overlapping clusters. As the data is known to contain 

clusters of varying spreads and overlaps, this is a highly desirable property. 

However, the data sets used were very small in comparison to ours and therefore 

it might not be a true reflection of its performance. It uses a 'cluster validity 

measure' when determining the optimum, which can be difficult to devise, and a 

single validity index is not likely to be appropriate for all clustering problems. 

Finally, this algorithm is based on the Euclidean distance metric. It would not be 

computationally feasible to use this distance metric with our data, and would also 

mean the algorithm would not be able to recognise any ellipsoidal clusters 

present in the AFC data.
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The URCP algorithm is based on the RCP algorithm. It is able to find the 

optimum number of clusters, it uses the Mahalanobis metric to measuring the 

distance between points and clusters centres and is therefore able to recognise 

elliptical clusters, and it has been developed to overcome problems with noise 

and outliers. There is no reference made about whether overlapping data can be 

clustered and three variables are needed a priori, although if these variables 

were initialised to the 'wrong' values, this would only increase the time to 

convergence, it should not affect the accuracy of the results.

The RCA algorithm is also based on the RCP algorithm, and again uses 

two sets of weights, however the classification is achieved via different means. 

Once again, the Mahalanobis measure is used for ellipsoidal clusters, the 

algorithm is insensitive to noise and outliers as before, and is less sensitive to 

local minima and the effects of initialisation. Being insensitive to local minima 

makes this algorithm more likely to find the global optimum solution as opposed 

to a local one. Again there is no reference to the performance of the algorithm 

with overlapping data, and in this case, two parameters are needed a priori 

instead of three as previously. An equation is even given to estimate the 

maximum number of possible clusters, but again, the actual value assigned to 

these a priori parameters only affects the speed of the algorithm, and not the 

accuracy of the results.

As far as the ECL algorithm is concerned, the Mahalanobis distance 

metric is used which means the algorithm can identify elliptical clusters, and it 

uses spherical clustering initially to solve the problem of singular covariances.
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The competitive learning aspect allows this algorithm to be adaptive to changing 

data, and is less susceptible to finding local optima than some algorithms. It 

incorporates a frequency sensitive approach to the competitive learning to 

prevent favouritism of the larger clusters, to have the ability to classify where 

different sized clusters are encountered, and is reported as producing good 

results even with some data overlap. Several parameters are required a priori, to 

initialise the mean positions of the clusters and the inter-class distance, no 

information is given about the acceptable range of values for these variables or 

the effects on the results. Unfortunately the classification phase is based on the 

Maximum Likelihood approach which produced some of the worst clustering 

results when classifying our AFC data sets.

After comparing the advantages and disadvantages of the prospective 

algorithms above, the two algorithms that are the most suited for this application 

are the Unsupervised Robust C Means Algorithm (URCP) and the Robust 

Competitive Agglomeration (RCA).

5.7 Other Options

The RCF algorithm could be modified to use the Mahalanobis distance 

measure which can be easily computed, and which means the RCF algorithm 

would be capable of identifying elliptical clusters, which is essential for our data.

The ECL algorithm could be modified to use a different classification 

approach instead of the one based on Maximum Likelihood, e.g. Adaptive
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Distances, which consistently produced good clustering solutions with both the

overlapping and non-overlapping data in our data sets.

Also a 'hybrid' algorithm could be explored, either which would use the 

two 'new' algorithms simultaneously or two algorithms in series. Where the 

parallel approach is concerned, the results of the two techniques could be 

merged, by comparing each of the cluster centres in each algorithm, and by 

calculating a point which would effectively be the cluster centre of the 

possible cluster centre values. However, problems could arise if each 

method calculates a different number of clusters. In comparison, the two- 

stage approach could be a method where the 'modified' RCF algorithm could 

be used to determine the optimum number of clusters and the actual cluster 

centres. These cluster centres could then be input as the starting point for 

the RCA and / or URCP algorithm, which would classify the data.
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Appendices 

Appendix 1 - Glossary

AD - Adaptive Distances

AFC - Analytical Flow Cytometry

ANN - Artificial Neural Network

DKLL - Demers, Kim, Legendre, Legendre

ECL - Elliptical Competitive Learning

FKM - Fuzzy K Means

MTV - Minimum Total Volume

RBF - Radial Basis Function

RCA - Robust Competitive Agglomeration

RCF - Regularised Cost Function

RCP - Robust C Prototypes

SAND - Sum of Normalised Determinants

URCP - Unsupervised Robust C Prototypes

RTAC - Real-Time Adaptive Clustering
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Appendix 2 - Web Site Directory

Web 1 : Earth Observatory NASA website
http://earthobservatory.nasa.gov/Librarv/Phvtoplankton/phvtoplankton2.htm 
c/o NASA Headquarters, Washington, DC 20546-0001(202) 358-0000 
Website accessed 13th Oct 2003

Web 2 : SeaWiFS website
http://seawifs.qsfc.nasa.gov/SEAWIFS/sanctuary 4.html
c/o NASA Headquarters, Washington, DC 20546-0001(202) 358-0000
Website accessed 13th Oct 2003

Web 3 : Plankton website
Photograph of Nodularia spumigens bloom, January 2002, in the Gippsland 
Lakes, Victoria, Australia. Photo credit: J.D. Kinnon
httpV/www.whoi.edu/science/B/redtide/rtphotos/rtphotos.html 
Website accessed 13th Oct 2003

Web 4 : Flow Cytometry information
http://www.icnet.uk/axp/facs/davies/flow.html 
Website accessed 6th July 2000

Web 5 : Neural Networks information
http://www.cs.stir.ac.uk/~lss/NNIntro/lnvSlides.htmWalgs

Web 6 : Clustering Algorithm information
http://www.cne.gmu.edu/modules/dau/clustgalgs/clustgalgs frm.html

Web 7 : Maths and Stats information
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap25/sect.htm
Website accessed 13/11/03

Web 8 : Principal Component Analysis information
http://www.fon.hum.uva.nl/praat/manual/Principal component analysis.html 
Website accessed on 3/12/99

Web 9 : Distance Metric information
http://www.galactic.com/Algorithms/discrim mahaldist.htm
Website accessed 2/12/99

Web 10 : Mahalanobis Distance information
http://www-engr.sjsu.edu/~knapp/HCIRQDPR/PR Mahal/PR Mahal.htm 
Website accessed 2/12/99
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Web 11 : Rhodophyceae information
www.ucmp.berkRlev.edu/protista/rhodopyhta.html 
Website accessed 23rd July 2004

Web 12 : Rhodophyceae information
www.ucmp.berkelev.edu/protista/reds/rhodolh.html 
Website accessed 23rd July 2004

Web 13 : Rhodophyceae information
www.ucmp.berkelev.edu/protista/reds/rhodomm.html 
Website accessed 23rd July 2004

Web 14 : Prymnesiophyceae information
http://www.ucmp.berkelev.edu/chromista/prvmnesiophyta.html 
Website accessed 23rd July 2004

Web 15 : Neural Network Information
http://www.aee-sf.org/editor.html
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Appendix 3 - Conferences, Posters and Publications 

Conference Proceedings:

Poster:
Sam Hardy, Malcolm Wilkins, Lynne Boddy, Colin Morris
Comparison of Six Clustering Algorithms to Classify Phytoplankton from Flow
Cytometry (AFC) Data
I SAC XX Conference 2000
Published in Cytometry Supplement 10 (2000)

CARDIFF
UNIVERSITY

PRIFYSGOL

Comparison of Six Clustering Algorithms to Classify fs+*y 
Phytoplankton from Flow Cytometry (AFC) Data \\f "

Sam Hardy- Malcolm Wilkins', Lynne Boddy 1 , Colin Morris2
'School ol Biosoences Cardiff University PC Box 915 Cardiff CF10 3TL. UK 

^School of Computing. University of Glamorgan, Pontypndd CF37 10L, UK

Why Clustering Algorithms?

Row cytometef data oflert contains distinct clusters of 
data points corresponding to different types of particle 
in the sample Trie muUivanate rature of Ihe data 
makes detection of rnese dusters drfticut using taw 
dimensional protections (e g. 2D scattefptots) 
Recourse is often made to a computational algorithm 
capable of exploiting ifie full data dimensionality; 
however the large data set sizes {> 10* pants) and 
non-sphencal nature of Ihe dusters pose problems to 
many algorithms In thrs work we compare the 
performance of SB clustering algorithms using two 
artrficjalry constructed marine AFC data sets

Two mam data sets used - ine with discrete clusters 
one with some overlapping dusters each wrth ten 
species

AimsNei 13] software was used to run eacfi algorithm 5 
times using 6 10 and 14 clusters and for each data set

The different number ol miJiat clusters and different data 
sets were used lo test for refiabilny Each algorithm was 
run several times to test for repegtabiily. and trie results 
were compared with a 'gold standard" set of results |ie 
where each cluster found by Ihe algorithm would contain 
data points from only one speaes)

Minimum Total • Sum of Nomu 
Volume (MTV) 111 • DetemiinanU (SND) [11

Oveilao •ho Overlap Owrlarj •NoOverJjp OveilJp •No OvfiUp OveilJp • No Ovpibp Ovcrljp •No Overlap Over

ADconselently produced good clustering solutions on both data sets ctoseiy followed by OKLL FKM dlso performed reasonably well .n bclh cases but ML ofion grouped together several dtscrete 

clusters into one WTV frequently fiiiled to converge to a solulion, and SND did not perform wel with Ihe overlapping data

AO and QKLLweie considered further lo investigate ttie effect of specifying Inc 'wrong' number ot clusters

K MejnMDKLL

•iMHI
Overljo Overt

Four of Ihe algorithms either tended lo group together discrete 
dusters (eg MU or failed to converge to a solution ieg MTV] 
9oth I tie AO and OKLL .ifgoirthms perforTed consistently well or 
Ihese data sets, and it is not possible to choose one ol these 
algorithms over Ihe other on the basis ot these resuRs alone

All so algorithms requre the number of dusters to be specified at 
the start, rhrs <s not usually known m advance it would be 
preferable lor the number of clusters to be determined Oy the 
akjorthm liom Ihe

'fl-um carterse

ConiaclEM.id SHARDYflGLAM.AC.UK
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Posters;

Sam Hardy, Malcolm Wilkins, Lynne Boddy, Colin Morris
Comparison of Six Clustering Algorithms to Classify Phytoplankton from Flow
Cytometric Data
Submitted to Pont Dysgu (2001), annual doctoral seminar at University of
Glamorgan.

I won a Highly Commended certificate for this poster.

Comparison of Six Clustering Algorithms to 
Classify Phytoplankton from Flow Cytometry Data

Sam Hardy2 Malcolm Wilkins 1 , Lynne Boddy 1 , Colin Morris2
'School of Bwsciences. Cardiff University PO Box 915 Cardiff CF10 3Tl, UK 

^School of Computing. University of Glamorgan Pontyprtdd CF37 10L UK

Background
Pnytoplankton fro* cylomefierdala often cent
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Journal Publications:

Comparison of Five Clustering Algorithms to Classify 
Phytoplankton From Flow Cytometry Data
Malcolm F. Wilkins, 1 Sam A. Hardy,2 Lynne Boddy, 1 * and Colin W. Morris2

'Cardiff School of Biosciences, Cardiff, United Kingdom 
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Background: Artificial neural networks (ANNs) have 
been shown to be valuable in the analysis of analytical 
flow cytometric (AFC) data in aquatic ecology. Automated 
extraction of clusters is an important first stage in deriving 
ANN training data from field samples, but AFC data pose a 
number of challenges for many types of clustering algo­ 
rithm. The fuzzy k-means algorithm recently has been 
extended to address nonspherical clusters with the use of 
scatter matrices. Four variants were proposed, each opti­ 
mizing a different measure of clustering "goodness." 
Methods: With AFC data obtained from marine phyto- 
plankton species in culture, the four fuzzy k-means algo­ 
rithm variants were compared with each other and with 
another multivariate clustering algorithm based on critical 
distances currently used in flow cytometry.

Results: One of the algorithm variants (adaptive dis­ 
tances, also known as the Gustafson-Kessel algorithm) 
was found to be robust and reliable, whereas the others 
showed various problems.
Conclusions: The adaptive distances algorithm was supe­ 
rior in use to the clustering algorithms against •which it was 
tested, but the problem of automatic determination of the 
number of clusters remains to be addressed. Cytometry 44: 
210-217, 2001. © 2001 Wiley-Uss, Inc.

Key terms: automatic cluster extraction; clustering algo­ 
rithms; phytoplankton; neural networks

Analytical flow cytometry (AFC) is a proven tool in 
aquatic ecology for the rapid analysis of •water samples for 
detecting and quantifying microorganisms including phy­ 
toplankton and bacteria (1-3). The various light scatter, 
diffraction, and fluorescence parameters measured by AFC 
can provide characteristic "signatures" for each microbial 
cell, which allow taxa to be discriminated with the use of 
pattern-recognition techniques such as artificial neural 
networks (ANNs) (4 -9). More than 70 species have been 
identified successfully by ANNs trained on AFC data ob­ 
tained from pure cultures of marine microalgae grown 
under controlled conditions in the laboratory (6). How­ 
ever, species growing in the field are likely to show 
greater variability in size, shape, and pigmentation due to 
a multitude of environmental factors (10), thus producing 
a corresponding increase in the variability of the AFC 
signatures. ANNs require training on a representative sam­ 
ple of each species that is to be recognized, and, unless 
the training data reflect such biological variation, ANN 
analysis of field samples will not be reliable. There is 
therefore a need for a procedure for extracting ANN 
training data from field samples. The first step in such a 
method is to separate the AFC data obtained from field 
samples into their constituent clusters, e.g., for cell sort­ 
ing with subsequent microscopic identification. Aside

from obtaining ANN training data, discerning clusters is 
the first step in the interpretation of AFC data.

The large data sets generated by AFC pose a number of 
challenges for analysis. The data sets are often multidimen­ 
sional, making visual analysis by two-dimensional or three- 
dimensional scatter plots difficult, even with the use of 
dimensionality reduction techniques such as principal 
component analysis (11). Recourse is generally made to 
some form of clustering algorithm capable of exploiting 
the full multivariate nature of the data. However, the 
typical size of AFC data sets (>104 patterns) precludes 
application of many standard clustering algorithms such as 
pair-group methods that rely on calculation of distances 
between pairs of points. AFC clusters are frequently 
highly elongated, and the variance- covariance structure 
can differ considerably between clusters. Some clusters 
are large and sparse, whereas others are compact and 
dense and perhaps even degenerate (possessing zero vari­ 
ance in one or more dimensions and therefore zero vol-
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ume). Demers et al. (12) proposed an iterative cluster 
analysis algorithm for AFC data capable of modeling the 
heterogeneous nature of typical AFC clusters, but it was 
not always successful (see below). The current study com­ 
pares the performance of the algorithm of Demers et al. 
(12) with four others (apparently not previously applied 
to AFC data) and with manual cluster extraction using 
two-dimensional and three-dimensional scatter plots with 
the use of artificially constructed marine phytoplankton 
AFC data sets.

THE ALGORITHMS
The algorithm of Demers et al. (12) (Appendix 1), 

henceforth denoted as DKLL, was based on an extension 
of the classic k-means algorithm (13) to allow for non- 
spherical clusters through the use of variance- covariance 
matrices (scatter matrices) to model the data distribution 
around each cluster center. A common problem with such 
iterative algorithms is that, over the course of several 
iterations, one cluster tends to expand to include all the 
data at the expense of the other clusters. The DKLL 
algorithm incorporated the use of threshold "critical dis­ 
tances" to prevent this. At each step of the algorithm, only 
those points within the critical distance of the cluster 
center were used in calculating the corresponding scatter 
matrix. The critical distances were increased gradually 
during successive iterations under the assumption that the 
clustering progressively -would become more reliable. In 
practice, however, that approach was not ideal: there are 
no guidelines as to how rapidly the critical distances 
should be increased, and the number of data points -within 
the critical distance of the cluster center may -well fall to 
zero during the course of the algorithm, leaving the clus­ 
ter scatter matrix undefined. Furthermore, the algorithm 
frequently fails to converge to an optimal clustering solu­ 
tion, requiring user intervention to reject inadequate re­ 
sults (12).

Fuzzy k-means clustering (14,15) might overcome these 
problems. It is a variant of classic k-means clustering that 
allows data points to become associated to some degree 
with all clusters and not just the closest cluster, thereby 
reflecting the inherent uncertainty in allocating a data 
point to a single cluster -where there are several potential 
candidates. The algorithm is in practice stable and robust 
and less likely than the classic k-means algorithm to pro­ 
duce inadequate clustering solutions. The algorithm has 
been extended by different investigators to include the 
use of scatter matrices, thereby allowing modeling of data 
with nonspherical clusters. Rousseeuw et al. (16) unified 
that work by proposing four variants of a generic fuzzy 
k-means algorithm: adaptive distances (AD), maximum 
likelihood (ML), minimum total volume (MTV), and sum 
of all normalized determinants (SAND; Appendix 2). Each 
variant was designed to minimize a different objective 
criterion (measure of clustering "goodness"). The AD al­ 
gorithm, also known as the Gustafson-Kessel algorithm 
(16), seeks to minimize the fuzzy sum of squared gener­ 
alized distances of the data patterns to the cluster centers, 
subject to the constraint that the determinant of the scat­

ter matrices (a measure of cluster volume) can be fixed in 
advance. The ML algorithm assumes that each cluster 
represents a multivartate normal probability distribution 
and attempts to find a clustering solution that maximizes 
the overall likelihood of the data set over all clusters and 
data items; this method tends to seek cluster solutions 
where all clusters have similar volumes (16). The MTV 
algorithm minimizes the total cluster volume and is biased 
toward finding clustering solutions where the clusters 
have similar densities rather than similar volumes. The 
SAND algorithm attempts to reduce this bias by normaliz­ 
ing the cluster volumes by dimensionality.

MATERIALS AND METHODS 
Data Sets

A large set of 7-parameter FACScan flow cytometric data 
for 63 marine phytoplankton species, each grown in pure 
culture (6), was used. The data sets -were examined visu­ 
ally using three-dimensional principal component analysis 
scatter plots to determine -which species had data distri­ 
butions that overlapped and which did not. Two artificial 
data sets, A and B, respectively, each of 10 species, were 
constructed from the plots to produce a data set compris­ 
ing species for which the corresponding AFC clusters did 
not overlap appreciably (Fig. la) and a data set comprising 
species for which the corresponding AFC clusters over­ 
lapped considerably (Fig. Ib). Data sets were constructed 
by randomly selecting 103 data patterns for each of these 
species. Both data sets thus contained a total of 104 data 
patterns.

Comparing the Performances of the 
Five Algorithms

Each algorithm was run five times on the nonoverlap- 
ping (A) and overlapping (B) data sets for k = 6, k = 10, 
and k = 14 clusters. Two criteria -were used for evaluating 
performance: (i) consistency of results between multiple 
replicate runs of the algorithm for the same value of k and 
(ii) performance of the algorithm in comparison with a 
"gold standard" clustering scheme (corresponding to the 
actual identity of the data patterns, which for this problem 
was known in advance). Consistency between multiple 
algoridim runs was assessed by averaging a similarity mea­ 
sure (see next section) between clustering schemes from 
pairs of replicates. Consistency with the gold standard 
was assessed by averaging the similarity measure between 
the clustering schemes from five replicate results obtained 
with k = 10 and the gold standard clustering scheme. For 
the nonoverlapping data set, each algorithm was evalu­ 
ated with both criteria; for the overlapping data set, only 
criterion (i) was used, because the gold standard is taken 
as the known identity of a particular cluster: for the 
nonoverlapping data, each species represents a distinct 
cluster, but this is not the case for die overlapping data 
set. By using traditional taxonomic characters, the 10 
species in data set B would form distinct clusters, but this 
was not the case with the seven flow cytometric param­ 
eters measured in the present study, which resulted in
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FIG. 1. Plots illustrating the distributions of the 10 species in data sets A (a; nonoverlapping clusters) and B (b; overlapping clusters) projected in each 
case onto the plane of the first two principal components. For data set A, all 10 clusters are clearly resolved in three-dimensional plots of principal 
components analysis (not presented).

overlapping distributions. Hence, in the case of data set B, 
we do not know what the "gold standard" should be.

A Similarity Measure for Comparing the Results 
of Two Clusterings

A good clustering algorithm should produce results that 
are similar to the clusters that can be noted visually in the 
data (where these are clearly defined) and are consistent, 
i.e., similar over several replicate runs of the algorithm on 
the same data. The result of running a clustering algorithm 
on a set of data is a partitioning of the data space into 
regions; applying this partition to the data set (by assign­ 
ing each data point an identity based on the region in 
•which it resides) results in a "clustering scheme" for the 
data. A clustering scheme also can be denned manually by 
visual inspection of the data with the use of scatter plots. 
An objective method is thus required for quantifying the 
similarity between two clustering schemes. Given two 
clustering schemes, C and D, the proposed measure of 
similarity between them, m(C,D), is defined as the a priori 
probability that two randomly selected points drawn from 
the data set will be clustered in the same way under both 
clustering schemes; i.e., that both clustering schemes will 
assign both points to the same cluster or both clustering 
schemes will assign them to separate clusters. By letting c 
be the event "both points are assigned to the same cluster 
under C" and d be the event "both points are assigned to 
the same cluster under D," we can write m(C,D) = 
p(c)p(d|c) + p(c')p(d'|c')- The characteristics of this sim­ 
ilarity measure are: (i) if C and D are identical (perfect 
correlation), p(dc) = p(d'|c') = 1.0, thus m(C,D) = 1.0; 
(ii) if C and D are independent (no correlation), p(d|c) =

p(d) and p(d'|c') = p(d'), thus m(C,D) = p(c)p(d) + 
p(c')p(d'); and (iii) it is commutative; i.e., m(C,D) = 
m(D,C).

Because of the large size of typical AFC data sets, deter­ 
mining m(C,D) by exhaustive enumeration of all possible 
pairs of data points is computationally unfeasible; how­ 
ever, the proportion can be estimated to a desired level of 
accuracy, and confidence bounds placed on the value are 
obtained by repeatedly, randomly drawing a large number 
n of pairs of data points and finding the proportion p of 
such trials for -which the two schemes agree. The sam­ 
pling standard deviation of p, a measure of the size of the 
uncertainty in the value of p as an estimator of m(C,D), is 
given by q = (np[l - p])1/2/n = (ptl - p]/n)1/2. All 
similarity measures reported in this paper were evaluated 
from n = 107 pairs of data points.

Computer Software
All experiments used AimsNet software running on a PC 

under Microsoft Windows NT (http://www.cf.ac.uk/ 
biosi/staff/wilkins/aimsnet), a computer package devel­ 
oped as part of AIMS, a CEC-funded project (grant MAS3- 
CT97-0080).

RESULTS AND DISCUSSION 
Data Set A (Nonoverlapping Clusters)

With k = 10 clusters, AD produced clustering schemes 
in which each cluster -was dominated by data patterns 
from a single species (Fig. 2); it had the highest consis­ 
tency (i.e., lowest variability) between replicates and per­ 
formed best in comparison with the gold standard (Table
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ters by algorithms for adaptive distances 
(AD), Demers (DKIX), sum of all normalized 
determinants (SAND), and maximum likeli­ 
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the data set associated with each cluster and 
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each cluster in terms of the 10 constituent 
species.
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1). DKLL performed marginally less well, being less con­ 
sistent between replicates and occasionally finding "com­ 
posite" clusters containing two species, resulting in 
poorer performance in comparison with the gold stan­ 
dard. SAND performed slightly less well in terms of con­ 
sistency between replicates, producing a higher proper-

Table 1
Comparison of Algorithms for Data Set A 

(Nonoverlapping Clusters)

Number of 
clusters
ADb 
DKLL 
ML 
MTV 
SAND

Consistency of results 
Consistency between compared with "gold 

replicates* standard"

6
0.906 
0.921 
0.857

C

0.866

10
0.962 
0.947 
0.890

c

0.939

14
0.991 
0.965 
0.929

C

0.955

10
0.963 
0.948 
0.843

C

0.939

"Proportion of trials for which two schemes agree. Values 
range between 0 and 1.0 for no agreement to complete agree­ 
ment. Standard deviation of the proportion can be derived from 
the equation given in the text.

bAD, adaptive distances; DKLL, from Demers et al. (12); ML, 
maximum likelihood; MTV, minimum total volume; SAND, sum 
of all normalized determinants.

cDid not converge to a solution.

tion of composite clusters. MTV frequently failed to 
converge to a solution, particularly when the number of 
clusters specified differed from the optimal, or "natural," 
number of clusters (further investigation showed that it 
tended to become trapped cycling between two cluster­ 
ing solutions). ML frequently produced a large aggregate 
cluster comprising patterns from eight or more species, 
resulting from the unusual way in which it partitioned the 
data space: it tended to generate small regions (represent­ 
ing the densely populated clusters) enclosed by a single 
large region (representing the remainder of the space). All 
the other algorithms produced partitions in which the 
regions were adjoining but continuous (i.e., in which no 
region was contained within another).

The effect of decreasing and increasing the specified 
number of clusters on the clustering solutions was inves­ 
tigated. Decreasing the number of clusters specified had 
the effect of combining some species within a cluster and 
splitting some species between clusters (Fig. 3). Under- 
specifying the number of clusters in comparison with the 
"natural" number resulted in the results of the AD algo­ 
rithm becoming less consistent (i.e., more variable) be­ 
tween replicates than DKLL (Table 1). Overspecifying the 
number of clusters usually resulted in splitting species 
between clusters, with most clusters representing only a 
single species; under those circumstances, the results of
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FIG. 3. Typical partitioning of data set A 
(nonoverlapping clusters) between 6 and 14 
clusters by algorithms for adaptive distances 
(AD) and Demers (DKLL); symbols and data 
as in Figure 2.

the AD algorithm were much more consistent between 
replicates than DKLL.

Data Set B (Overlapping Clusters)
All algorithms converged when 10 clusters were spec­ 

ified, although MTV failed to do so when other numbers of 
clusters were specified. AD performed significantly more 
consistently than the DKLL or SAND for k = 10 and k = 
14, although not for k = 6 (Table 2). The results for SAND 
(Fig. 4) appeared to produce closer agreement with the 
visually defined clusters (Fig. Ib).

Defining the Number of Clusters

In the present study, the number of clusters k was 
specified beforehand, based, e.g., on preliminary visual 
inspection of the data or prior knowledge of the problem 
domain. AD performed the most consistently with both 
data sets, provided that the number of clusters specified

Table 2
Comparison of Algorithms for Data Set B 

(Overlapping Clusters)

Consistency between

clusters
ADb
DKLL
ML
MTV
SAND

6
0.878
0.938
0.764

C

0.877

replicates"
10

0.971
0.923
0.880
0.954
0.923

14
0.973
0.930
0.876

C

0.959

"As in Table 1.
bAD, adaptive distances; DKLL, from Demers et al. (12); ML, 

maximum likelihood; MTV, minimum total volume; SAND, sum 
of all normalized determinants.

cDid not converge to a solution.

was the same as or greater than the actual number of 
clusters present in the data. DKLL was almost as good, and 
both are worth further investigation. SAND -was more 
variable, ML was consistently poor, and MTV was prone to 
nonconvergence, making these algorithms unsuitable for 
the type of clustering application described in this study.

In general, no prior information is available on the 
number of clusters in a data set, and trying to decide on 
the number of clusters is the classic problem in cluster 
analysis (e.g., 17). The view has been taken that number 
of clusters has to be decided subjectively and that this 
necessitates the involvement of a biologist expert in the 
field. A trial-and-error approach often is adopted to depict 
the data structure appropriately (e.g., 18). Because com­ 
puters have become fast and efficient, this is not a serious 
disadvantage because a -wide range of potential numbers 
of clusters can be tried. It can be cogently argued that 
nonhierarchical clustering approaches do not stand well 
on their own and, in many cases, should be used with 
other complementary methods of exploratory data analy­ 
sis, which -will give further insight into numbers of clus­ 
ters (18).

Many techniques for automatically determining the 
number of clusters from the data have been proposed, 
with most of the early ones incorporating sums of squares 
and having a geometric or statistical interpretation (19). 
Interesting, recent developments have used minimization 
of a cost function and/or persistence of clusters at differ­ 
ent length scales (20-22). However, that method may not 
yield the number of clusters expected or noted visually.

There are some clustering approaches that do not re­ 
quire the number of clusters to be specified in advance, 
e.g., density clustering (23) and adaptive clustering (24). 
Density clustering is a nonparametric, noniterative statis­ 
tical method that essentially examines the local event
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by algorithms for adaptive distances (AD), 
demers (DKLL), sum of all normalized deter­ 
minants (SAND), and maximum likelihood 
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density (based on histogram counts) to determine modes, 
and then regions of monotonically decreasing density 
around each of these are grouped into a cluster (23). 
However, a user-specified threshold determines the size of 
clusters, which is subjective. Real-time adaptive clustering 
is an ANN approach in which the data pattern for each cell 
is presented to the network and then allocated to a cluster 
of similar patterns (24). When a pattern is not similar to 
any existing cluster, it is allocated to a new cluster. The 
ANN is trained to classify events according to a predefined 
similarity measure, but this similarity measure is subjec­ 
tively determined. Thus, although these approaches have 
the advantage of not requiring the number of clusters to 
be specified in advance, they are not entirely objective.

CONCLUSIONS AND FUTURE RESEARCH
The AD algorithm was superior in use to the algorithms 

against which it was tested. Moreover, it is widely appli­ 
cable and likely to be of use with other very large data 
sets, such as might be produced by other high-technology 
equipment with rapid processing capabilities. This is 
clearly a big step forward but its potential cannot be fully 
realized until a suitable objective method for determining 
the number of clusters in a data set has been developed, to 
allow completely automatic clustering. Nonetheless, even 
if subjective decisions (with or without the help of ex­ 
ploratory data analysis methods) are made about the num­

ber of clusters, using the AD algorithm to extract data sets 
that can subsequently be used for training ANNs will be 
extremely valuable. Ultimately, clustering software could 
be used to drive cytometer cell-sorting facilities, which 
will enable the operator to examine cells clustered to­ 
gether on the basis of their flow cytometric signatures 
with the use of other biological or physicochemical anal­ 
yses. Cell sorting also -would allow the user to check 
whether clusters contain single or several cell types. 
Therefore, it would be invaluable if the next generation of 
flow cytometers has the ability to interface custom-written 
software with, e.g., the cell-sorting facility.

In future research, it -would be valuable to compare AD 
•with other clustering approaches that have been used 
with flow cytometric data including density clustering 
(23), real-time adaptive clustering (24), and Kohonen self- 
organizing maps (SOMs) (25-27). The first two ap­ 
proaches are important because they do not require spec­ 
ification of the number of clusters. SOMs are worth 
comparing because they result in a low-dimensional, to­ 
pology-preserving representation of the data set. They are 
an ANN approach in -which high-dimensional data are 
mapped onto a two-dimensional (usually) lattice of nodes, 
each of which competes to represent the data presented 
to the network. Patterns represented by nodes that are 
close to each other in the lattice typically are similar to 
each other. This approach is alluring although methods of
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separating clusters have not been fully developed, and 
there is still the problem of deciding on the number of 
clusters.
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APPENDIX 1: DKLL ALGORITHM
The DKLL algorithm described by Demers et al. (12) can 

be summarized as follows:

1. For each cluster t, initialize p,t to a randomly selected 
data pattern and initialize St to the identity matrix.

2. Assign each data pattern x, to closest cluster t, i.e., 
for which dit = mink d^.

3. For each cluster t, update fit to the mean of the set 
of patterns assigned to cluster t.

4. For each cluster t, calculate the critical distance, i.e., 
the Euclidean distance to the closest neighboring cluster 
center: ct = mink ^ t ||u,k - ^t \\.

5. For each cluster t, update S, to the covariance matrix 
of the set of patterns assigned to cluster t and falling 
within a distance c,z of the cluster center.

6. Calculate the objective criterion F = ^ d,2 , where
i

d, is the generalized distance between pattern i and the 
centroid of the cluster to which it has been assigned.

7. Repeat steps 2-6 until F attains a minimum value.

The quantity z is initially small (around 0.25); this is 
designed to exclude patterns for -which the cluster iden­ 
tity is uncertain from influencing the calculation of the 
scatter matrices. As the algorithm progresses, the cluster 
assignments are supposed to become more reliable and z 
is increased accordingly. In the implementation used 
here, z is increased by 0.005 at each iteration, up to a 
maximum value of 0.5. Any cluster with less than 3p data 
patterns assigned to it after step 2 (where p is the data 
dimensionality) is deemed to be irrelevant and is deleted.

APPENDLX 2: AD, ML, MTV, AND SAND 
ALGORITHMS

The four algorithms proposed by Rousseeuw et al. (16) 
are variant forms of one generic fuzzy clustering algo­ 
rithm, summarized below. In this algorithm, each of the k 
clusters is characterized completely by the position of its 
center, m, and a scatter matrix, St . The distance dit be­ 
tween the i-tli data pattern x( and the cluster center is 
defined by the Mahalanobis generalized distance metric 
dit2 = (Xj - Ht)1" (S,)" 1 (Xj - p.,). Each data pattern is 
associated to some extent with all the clusters, not just the 
closest; the extent of this association is given by uit , the 
fuzzy cluster membership of the i-th data pattern to cluster 
t. The cluster memberships range from 0 (no association) 
to 1 (complete association) and are subject to the
constraint that X uu = 1; in other words, for any data

i
pattern, the sum of its cluster memberships over all clus­ 
ters is 1. Constraining uit strictly to the values 0 and 1 
produces a "crisp" clustering, for which each data pattern 
is associated exclusively -with only one cluster. Allowing
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uit to take intermediate values between 0 and 1 results in 
a fuzzy clustering.

The generic algorithm described by Rousseeuw et al. 
(16) can be summarized as follows:

1. For each cluster t, initialize m to a randomly selected 
data pattern and initialize St to the identity matrix.

2. For each cluster t, calculate coefficients At and Bt (as 
below).

3. Calculate memberships for each data pattern Xj: 
i. Initialize T, to an empty set. 

ii. For each cluster t, calculate Blt <— Btdit2 . 
iii. For each cluster t, calculate

B«
•-A,

rtT,

u, ( ^-0, ?er,
iv. If any uit < 0, add t to set T£ and repeat step (iii) 

4. For each cluster t, update j«. t and St as follows:

1 uj/x, -

s,

5. If no membership uit changed by more than a small 
value e during the previous iteration, stop; otherwise 
return to step 2.

The different variants are obtained by changing the 
manner of calculating the quantities \ and Bt. For the 
algorithms AD, MTV, and SAND:

B< =

where p is the data dimensionality, nt = ^ u,,, and the
i

parameters (3 and T are given by P = l/p, T = 0 (AD), (3 = 
1/2, T = />/2 (MTV), and (3 = l/p, T = 1 (SAND). For these 
three variants, a reasonable a priori assumption is that all 
clusters should start with the same volume, i.e., 6, = 1 for 
all t.

For the ML algorithm, which minimizes a different type 
of objective function,

A,= -

For all four algorithms, the value of e, indicating conver 
gence, was taken to be 0.01.
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