
An Eventually Perfect Failure
Detector in a High-Availability

Scenario

Henrique Sousa Pinheiro

Dissertation presented to the School of Technology and Management of Polytechnic

Institute of Bragança to obtain the Master Degree in Information Systems. In the scope

of double degree with the Federal University of Technology - Paraná.

Work advised by:

Prof. Rui Pedro Lopes

Prof. Rodrigo Campiolo

Bragança

2018–2019

ii

An Eventually Perfect Failure
Detector in a High-Availability

Scenario

Henrique Sousa Pinheiro

Dissertation presented to the School of Technology and Management of Polytechnic

Institute of Bragança to obtain the Master Degree in Information Systems. In the scope

of double degree with the Federal University of Technology - Paraná.

Work advised by:

Prof. Rui Pedro Lopes

Prof. Rodrigo Campiolo

Bragança

2018–2019

iv

Dedication

Foremost I dedicate this work to my family Joilma, Carminho and Felipe who always

supported me until this day. I also would like to dedicate this work to my friends Andressa,

Bruno, Daniel, Jonathan, Juliana, Sávio, and Vitório for their friendship and for always

encouraging me to learn new things.

v

Acknowledgments

The realization of this work counted on a lot of support and incentives that made this

possible.

I’m grateful for Professor Rui Pedro Lopes for guiding me through this project and

sharing his knowledge, time and passion for this beautiful country. I’m grateful for Profes-

sor Rodrigo Campiolo for his great classes, his opinions, and guidance. Finally, I extend

my gratefulness for both institutions UTFPR and IPB, for giving me this singular oppor-

tunity to learn new things while experiencing a different culture of which I will always

care an affection.

vi

Abstract

Modern-day distributed systems have been increasing in complexity and dynamism due

to the heterogeneity of the system execution environment, different network technologies,

online repairs, frequent updates and upgrades, and the addition or removal of system

components. Such complexity has elevated the operational and maintenance costs and

triggered efforts to reduce it while improving its reliability.

Availability is the ratio of uptime to total time of a system. A High Available system,

or systems with at least 99.999% of Availability, imposes a challenge to maintain such

levels of uptime. Prior work shows that by using system state monitoring and fault

management with failure detectors it is possible to increase system availability.

The main objective of this work is to develop an Eventually Perfect Failure Detector to

improve a database system Availability through fault-tolerance methods. Such a system

was developed and tested in a proposed High-Availability database access infrastructure.

Final results have shown that is possible to achieve performance and availability im-

provements by using, respectively, replication and a failure detector.

Keywords: Distributed systems, failure detection, high availability

vii

Resumo

Os Sistemas distribuídos modernos têm aumentando em dinamismo e complexidade dev-

ido à heterogeneidade do ambiente de execução, diferentes tecnologias de rede, manutenção

online, atualizações frequentes e a adição ou remoção de componentes do sistema. Esta

complexidade tem elevado os custos operacionais e de manutenção, incentivando o desen-

volvimento de soluções para reduzir a manutenção dos sistemas enquanto melhora sua

confiabilidade.

Disponibilidade é a razão do tempo de atividade sobre um intervalo de tempo to-

tal. Sistemas de Alta Disponibilidade, ou seja, que possuem pelo menos 99.9999% de

Disponibilidade, representam um grande desafio para manter tais níveis de operacionali-

dade. Trabalhos anteriores mostram que é possível melhorar a Disponibilidade do sistema

utilizando o monitoramento de estados do sistema e o gerenciamento de falhas com de-

tectores.

O objetivo principal deste trabalho é desenvolver um Detector de Falhas Eventual-

mente Perfeito que pode melhorar a Disponibilidade de um sistema de base de dados

através de uma arquitetura de Alta Disponibilidade.

Os resultados finais mostram que é possível ter ganhos de desempenho e disponibili-

dade utilizando, respectivamente, métodos como replicação e detecção de falhas.

Palavras-chave: Sistemas Distribuídos, detecção de falhas, alta disponibilidade

viii

Contents

1 Introduction 1

1.1 Theoretical framework . 1

1.2 Objectives . 2

1.3 Document Structure . 2

2 Context and Concepts 3

2.1 Fault-Tolerant Systems . 3

2.2 Failure Classification . 4

2.3 Reliability, Availability and Serviceability (RAS) 5

2.4 Failure Detectors . 7

2.4.1 Propagation of Failure Information 9

2.5 Tools . 10

2.5.1 TCP . 10

2.5.2 UDP . 11

2.5.3 Message Queues . 12

2.5.4 Group Communication . 13

2.5.5 Middleware . 14

3 High-Availability Architecture and Benchmarks 15

3.1 Architecture Overview . 15

3.1.1 Apache ShardingSphere . 16

3.1.2 MariaDB . 17

ix

3.2 Replication Methods . 17

3.2.1 Proxy replication . 18

3.2.2 Database replication . 18

3.3 Benchmarks . 20

3.3.1 TPC Benchmark C . 21

3.3.2 OLTPBenchmark . 22

3.3.3 Test Scenarios . 22

3.3.4 Database configurations . 25

3.3.5 Running the Benchmarks . 26

3.4 Results . 26

3.5 Threats to Validity . 27

4 Implementation of an Eventually Perfect Failure Detector 29

4.1 Build and Implementation Tools . 29

4.1.1 Java Programming Language . 30

4.1.2 Gradle . 30

4.1.3 JFrog Artifactory . 30

4.1.4 Apache ActiveMQ . 31

4.2 Design . 31

4.3 Implementation details . 32

4.3.1 Failure Detector . 32

4.3.2 Channel . 36

4.3.3 Probes . 38

4.3.4 Curator . 39

4.4 Architecture with Failure Detector . 40

5 Conclusion and Future work 43

A Configuration Files A1

A.1 OLTPBenchmark configuration file for TPCC A1

x

A.2 Mariadb . A2

xi

List of Tables

2.1 Availability classes . 6

2.2 Types of Failure Detectors according to its level of completeness and accuracy . 8

xii

List of Figures

3.1 High-Available Architecture . 16

3.2 Replication types (Adapted from MariaDB [17]) 19

3.3 Virtual Machines infrastructure . 23

3.4 Test scenario using JDBC directly to a database 24

3.5 Test scenario using a proxy with one database 24

3.6 Test scenario using a proxy with one master and one replica 25

3.7 Test scenario using a proxy with 2 masters and 2 replicas 25

3.8 Benchmark results . 26

4.1 Failure detector block diagram . 32

4.2 Failure detector class diagram . 33

4.3 Heartbeat class diagram . 35

4.4 Timeout class diagram . 36

4.5 Channel class diagram . 37

4.6 Probe class diagram . 38

4.7 Curator class diagram . 39

4.8 The architecture with Failure Detector . 40

xiii

Acronyms

API Application Programming Interface. 10, 20, 30–32, 35

DAG Directed Acyclic Graph. 30

DNS Domain Name System. 18

FIFO First-In-First-Out. 12

IP Internet Protocol. 10, 11, 13, 18, 37

IPC Inter-Process Communication. 12

JDBC Java Database Connectivity. 16

JVM Java Virtual Machine. 30

MoM Message Oriented Middleware. 31

MTBF Mean Time Between Failure. 6

MTTF Mean Time to Failure. 5

MTTR Mean Time to Repair. 6

OLTP Online Transaction Processing. 21

RDBMS Relational Database Management System. 16, 17

xiv

RMI Remote Method Invocation. 14

RPC Remote Procedure Call. 14

SQL Structured Query Language. 17, 41

SSL Secure Sockets Layer. 13

TCP Transmission Control Protocol. 10–12

TPCC TPC Benchmark C. 20–22

tpmC Transactions per minute-C. 21, 26

UDP User Datagram Protocol. 11, 12, 31, 37

VM Virtual Machine. 22, 23, 27

WORA Write Once, Run Anywhere. 30

WSREP Write-Set Replication. 20

XML Extensible Markup Language. 22

xv

xvi

Chapter 1

Introduction

A distributed system can be viewed as a set of hardware or software components, located

at networked computers, that communicate and coordinate their action only by exchang-

ing messages. From this definition one can derive three main characteristics of distributed

systems, namely: (i) components concurrency; (ii) lack of global clock; (iii) independent

components failures [1].

Availability is defined as the probability that a system is operating satisfactory at any

point in time under stated conditions or the ratio of up time to total time [2]. A High

Available system is one that can deliver at least 99.999% of Availability, bounded to a

maximum of 5 minutes of downtime when considering a whole year of system activity [3].

1.1 Theoretical framework

Modern-day distributed systems have been increasing in complexity and dynamism due

to the heterogeneity of the system execution environment, different network technologies,

online repairs, frequent updates and upgrades, and the addition or removal of system

components. Such complexity has elevated the operational and maintenance costs and

triggered efforts to reduce the system maintenance time and costs while improving its

reliability, also referred as Availability [2][4].

1

Prior work was done to increase system Availability through system state monitoring

and fault management with failure detectors, applying counter measures that could help

guarantee that the system properly provides its services [4].

1.2 Objectives

The main objective of this work is to develop an Eventually Perfect Failure Detector and

test it in a High-Available infrastructure. Starting from the main objective the following

specific objectives were derived:

• Introduce and set up and high available architecture for database access.

• Explore the architecture in order to verify its performance with different layouts

and identify its limitations in terms of failure detection.

• Implement a failure detection module and add it to the architecture in order to

mitigate possible unwanted events by using failure detection.

1.3 Document Structure

After the introduction, this document is structured as follows: Chapter 2 introduces

the fundamental concepts behind failure detection, types of failures, failure detectors

and provides a background overview of the communication methods used in this project;

Chapter 3 introduces a high available architecture and discusses its performance and

limitation in terms of failure detection; Chapter 4 explores the implementation details of

an eventually perfect failure detector and its integration with a database proxy; Chapter 5

presents the final conclusions and future works of this project.

2

Chapter 2

Context and Concepts

This chapter introduces the fundamental theories behind failure detection by presenting

the concept of a fault-tolerant system on Section 2.1, classifying types of failures on

Section 2.2 and discussing metrics for how a system operational state can be measured

on Section 2.3. On Section 2.4 it is presented the concept of an unreliable failure detector

along with its different types, and at Section 2.5 the network communication tools used

on this project are discussed.

2.1 Fault-Tolerant Systems

A distributed system can be viewed as a set of hardware or software components, located

at networked computers, that communicate and coordinate their action only by exchang-

ing messages [1]. Such components could be subject to individual failures. Thus it is

necessary that system designers have ways to express and properly handle such behavior.

A system is said to be fault-tolerant when, in case of a component failure, it exhibits

a well-defined failure behavior or the system masks component failures to users [5]. De-

signing fault-tolerant systems can be a difficult task as it is necessary to understand and

control all of the individual components aspects when they are properly functioning as

well, in some more complex case, when there is a probability of a component failure.

3

Thus, to design a fault-tolerant system it is necessary to have a good definition of

how the system and its components could depend on different components or even on

different systems, and to have a model for expressing such dependencies and behavior on

its architecture.

A model introduced by Cristian [5] states that systems architectures can be explained

in terms of service, server and a depends upon relation. A specification defines what

operations a component is able to do and a component that provides a set of operations,

i.e. a service, through a given input, is called a server. A server u depends upon a server

r if the correctness of u behavior depends on the correctness of r behavior. In this case,

the server u is said to be an user, (i.e. a client), of r, while r is said to be a resource

of u. It is important to point out that such depends upon relation is not about flow of

execution but dependency on the correctness of the server component. This abstraction

in terms of services, servers and clients can be extensible to both software and hardware

domains [5].

2.2 Failure Classification

A fault (or failure) can be either a hardware defect or a software/programming mistake

(bug) whereas an error is a manifestation of the fault/failure/bug. Both failure and

error can spread through the system and potentially propagate itself as other components

could depend directly, or indirectly, on the output or even on the proper functional state

of another component [6].

In order to mitigate and limit error and failure propagation, systems designers incor-

porate fault containment zones into the system. A fault containment zone is a concept

by which components prone to error or failure can be isolated in order to prevent direct

dependency of another component for proper functioning. Fault containment zones are

implemented by using component redundancy and some agreement based on the output

of other components [5][6].

4

Failures can be classified according to several aspects. To start with, they may be

hardware or software related. In the context of this work, only software failures are

considered.

Regarding their duration, failures can be classified into permanent, transient, or in-

termittent [6]. A permanent failure reflects the permanent absence or malfunctioning of

a component. A transient failure is one that causes a component to malfunction for some

arbitrary period of time and after such period the functionally is restored again. An in-

termittent failure is one that it never goes away but it oscillates on being active, when a

component malfunctions, or inactive, when a component is working properly.

Concerning their behavior, failures can be classified as: timing failure when, although

correct, the output fails to come in the specified time interval; response failure when

the component output, or its state, is incorrect; omission failure when the component

somehow omits response to an input; crash failure when the component is unable to

respond until it is restarted [5].

A failure can also be categorized as benign or malicious. A benign failure causes a

component to go dead and, by consequence, could be easier to detect and deal with.

A malicious (or Byzantine) failure causes a component, although looking functional, to

produce erroneous output to the system and propagating the failure [6].

2.3 Reliability, Availability and Serviceability (RAS)

To get a view of the system life-cycle it is necessary to collect data about the system

state and to have ways for categorization and comparison. Availability, Reliability and

Serviceability are metrics that represent an effort to quantify how a system is expected to

function over some period of time.

Reliability, denoted as R(t), is the probability of a system being up, continuously, in

the time interval [0, t]. This measure is suitable for systems in which even a momentary

disruption can prove costly [6]. Related to reliability there are Mean Time to Failure

5

(MTTF), Mean Time to Repair (MTTR) and Mean Time Between Failure (MTBF),

where the latter is derived from MTBF = MTTF + MTTR.

Availability, denoted by A(t) and calculated by A = MTTF ÷MTBF, is the average

fraction, often presented as a percentage, of time over the interval [0, t] that the system is

up. This measure is appropriate for applications in which continuous performance is not

vital but where it would be expensive to have the system down for a significant amount

of time [6].

A High-Available system is one that can deliver 99.999% of Availability. As shown

on Table 2.1, for a system to be considered High-Available, there is a need for fewer

failures and fast repair time as the downtime decreases in orders of magnitude from a

class to another [3].

System Type Downtime (min/year) Availability Class
unmanaged 50,000 90% 1
managed 5,000 99% 2
well-managed 500 99,9% 3
fault-tolerant 50 99,99% 4
high-availability 5 99,999% 5
very-high-availability .5 99,9999% 6
ultra-availability .05 99,99999% 7

Table 2.1: Availability classes

Serviceability refers to the ease of performing diagnosis and repair of a system. It

is also referred to as the maintainability of a system. In a more broader definition,

maintainability accounts for the probability of a successful corrective maintenance action

within a specified period of time and also taking into consideration all of the technical

know-how, and human resources (if necessary), needed in the action as a whole [7].

Systems, or even components, can be composed of multiple elements. Thus it can be

hard to calculate the discussed metrics and to define whether a system, or component, has

failed when one of its parts has failed or when all of its parts has failed. Some threshold

6

could be applied but, still, there is not a consensus about how such threshold should be

effectively calculated.

2.4 Failure Detectors

As coordination happens by passing messages over a network, and there is no physical

global clock, distributed systems have an intrinsic asynchronous behavior. Thus, the

global state of a distributed computation is derived from the state of all processes and

communication channels involved [8].

This asynchronous characteristic, as proved by Fischer, Lynch, and Paterson [9], im-

poses an impossible solution for consensus and atomic broadcast problems, with the former

being a problem where reliable processes over a distributed network must agree on the

same value or state, and the latter a problem where all correct processes receive the same

set of messages in the same sequence. Such impossibility, in a totally asynchronous model

of computation, happens due to the difficulties in determining whether a process has

crashed, i.e. is unreliable, or it is only taking a considerable amount of time to respond.

To tackle this problem, Chandra and Toueg [10] augmented the asynchronous model

of computation by recognizing its limitations and allowing mistakes to be made by an

external failure detector mechanism. Such augmentation introduced the concept of a

unreliable failure detector model where each process of the distributed system has access

to a local failure detector module. The failure detector module works by maintaining a list

of suspected crashed processes and by later removing them from the list in case it believes

that the suspecting was a mistake.

Chandra and Toueg [10] characterized eight different classes of failure detectors in

respect to its completeness and accuracy. Completeness requires that a failure detector

eventually must suspect every process that crashed. Accuracy restricts the flexibility that

the failure detector has to make mistakes (e.g. when a correct process suspects another

correct process).

In respect to Completeness, there are two types:

7

• Strong: where every crashed processes is, eventually, permanently suspected by

every correct processes.

• Weak: where every crashed processes is, eventually, permanently suspected by some

correct processes.

Supplementary to Completeness there is Accuracy and this can be of four types:

• Strong: where correct processes are never suspected by any correct processes.

• Weak: where some correct processes are never suspected by any correct processes.

• Eventual Strong: where there is a time after which correct processes are not sus-

pected by any correct processes.

• Eventual Weak: where there is a time after which some correct processes are not

suspected by any correct processes.

In summary, with Chandra and Toueg [10] classification based on accuracy and com-

pleteness, failure detectors can be one of the categories shown on Table 2.2.

Types of Failure Detectors Completeness Accuracy

Perfect (P) Strong Strong
Eventually Perfect (�P) Strong Eventually Strong
Strong (S) Strong Weak
Eventually Strong (�S) Strong Eventually Weak
Weak (W) Weak Weak
Eventually Weak (�W) Weak Eventually Weak
Quasi-Perfect (ϑ) Weak Strong
Eventually Quasi-Perfect (�ϑ) Weak Eventually Strong

Table 2.2: Types of Failure Detectors according to its level of completeness and accuracy

Chandra and Toueg [10] also defined how failure detectors can be equivalent with each

other by exploring the concept of reducibility, where a failure detector D′ is reducible to a

failure detector D if there is a distributed algorithm that can transform D into D′ which,

in that case, D′ is said to be weaker than D. Thus, with reduction, anything that can

8

be done using the failure detector D′ can also be accomplished by using the D failure

detector.

Dwork, Lynch, and Stockmeyer [11] introduced the concept of partially synchronous

failure detector model, relaxing the asynchronous assumptions of the failure detector

model and allowing a common notion of time between processes through the use of time-

outs where one could assume that failed processes would trigger the algorithm about its

failure given enough time.

2.4.1 Propagation of Failure Information

Acknowledging the implementation difficulties of a partially synchronous model, Felber,

Défago, Guerraoui, et al. [12] identified how information about failure of a component is

propagated through the system, i.e flow policy, and defined protocols such as push model,

pull model and push-pull model.

In the push model protocol, monitorable objects, i.e. parameters than can be monitored,

are active and periodically send heartbeat messages to inform that they are still alive. If

a monitor, i.e. a failure detector, fails to receive any heartbeat from a monitorable object

within a specific time bound, then it starts to suspect that the object has failed. After

receiving a message from an observable, the monitor sets a timer that should trigger in

case the next messages are not received. In this model only one-way messages are sent in

the system and multicast can be used in case there are multiple monitors [12].

In the pull model protocol, monitor objects send liveness requests to monitored ob-

jects. When a liveness request is received, monitorable objects should reply informing the

monitor that they are still alive [12].

In the push-pull model protocol, or dual model, the protocol has two phases. In the

first phase, the monitor assumes that all of the monitored objects are using the push

model, so it expects to receive heartbeat messages. On the second phase, the monitor

switches the model for processes that didn’t send heartbeat messages and assumes that

such processes are using the pull model so they must be expecting for liveness request in

9

order to respond to the monitor. If no responses are sent to the monitor then the process

is suspected [12].

2.5 Tools

Process communication through networks relies on datagram and streaming Application

Programming Interfaces (APIs) and provides the base for building different communica-

tion protocols and higher-level communication systems. Following is an overview of the

fundamental network communication methods that are present, whether indirectly, when

they area abstracted by some other high level application, (such as the proxy or database

layer), or directly, when there is as need to handle low-level details (such as timeouts,

Internet Protocol (IP) addresses and port numbers).

2.5.1 TCP

The Transmission Control Protocol (TCP) is a communication protocol used for stream

sockets. TCP provides a sophisticated transport service by supplying a reliable, connection-

oriented, bidirectional, byte-stream communication channel and stream-based program-

ming abstraction between two endpoints. A TCP endpoint is represented by the infor-

mation maintained by the operating system for one end of a TCP connection as well as

the send and receive buffers and the state information used to synchronize the operation

between the two connected endpoints [13].

As TCP is connection-oriented, before any data transfer begins, the sending and re-

ceiving process need to establish a bidirectional reliable communication channel. Through

this channel the processes can read and write to each other any time during the connec-

tion period, and intermediate nodes are aware of the TCP connections even though the

IP packets carrying the data could follow different routes to its destination [1].

To guarantee that bytes sent by the sender process arrive without errors, and are

assembled in the original order, TCP has error-detection and sequencing features. In

order to handle errors, the data is broken into segments with a checksum so that the

10

receiver process can check if there is any error at some specific segment. When checking

for segment errors the receiver endpoint must acknowledge when data is fine or discard it

otherwise. If the sender endpoint does not receive any acknowledgement for a particular

segment, due to errors or a timeout, then it must send that same segment again until it

receives the acknowledgment.

To ensure the order of segments over a TCP connection, each segment is assigned

a logical sequence number indicating the position of that segment in the data stream

for the connection. With the sequence number, the receiver is able to assemble the TCP

segments in the correct order and pass them as a byte stream to the application layer. The

sequence number is also used as an acknowledgment to the sender so that both endpoints

know exactly which segments have failed and needs to be sent again. TCP also has flow

and congestion controls to prevent that the number of drop segments or segment re-sends

increases due to the heterogeneity of the underlying network [13].

In conclusion, TCP is a reliable way of transmitting data between two endpoints.

Due to TCP built-in error checking and resend of failed segments, it is a good tool for

applications such as file transfer and games.

2.5.2 UDP

User Datagram Protocol (UDP) is a communication protocol used for datagram sockets.

UDP is neither connection-oriented nor offers any kind of reliability. Thus the message

could be corrupted or may not ever arrive at the destination. With UDP, if reliability is

needed, it must be implemented at the application level [13].

To send or receive UDP messages a process must create a datagram socket bound

to an IP address and a local port. When working as a server the process must bind its

socket to a local port (i.e., select a particular port) where it could listen for some client

messages sent to the server. A Client binds its socket to any free local port (i.e. ephemeral

port) and every exchanged messages contains the IP address and port number, of both

11

the sender and the receiver, so that the transport-layer is aware of the communication

endpoints and the client can reply to the server whenever needed [1].

Despite UDP intrinsic unreliability, there are some characteristics that makes it a valid

option depending on the application domain:

• As UDP does not need to neither establish nor close a connection, it can be faster

than TCP. When some error occurs UDP will not try to resend the invalid messages

as in TCP [13].

• With UDP sockets is possible to use broadcast and multicast addressing methods.

Broadcast permits a sender to transmit a datagram, to the same destination port,

on every host of a connected network. Multicast allows a sender to transmit a

datagram, to the same destination port, on a specified group (i.e. set of hosts) [13].

• Applications that can accept the loss or corruption of some messages such as audio

and video streaming can be implemented with UDP.

2.5.3 Message Queues

Message Queue is an Inter-Process Communication (IPC) that provides a point-to-point

service using the concept of a queue in which processes can consume messages, (e.g.

allowing a processes to exchange data in the form of messages), and with that achieving

space and time decoupling. A producer process can send message to a determined queue

and some consumer process can read messages from this queue. Queues normally work

on an First-In-First-Out (FIFO) order, but message queues implementations can support

other policies such as priority, where higher-priority messages are delivered first [1]. With

regard to client processes, the reading of a message from a queue can follow different

styles:

• Blocking Receive: block until a message is available.

12

• Non-Blocking Receive: also referred as polling operation, constantly checks the sta-

tus of the queue returning a message if available or some kind of unavailable indi-

cation otherwise.

• Notify Operation: an event is issued whenever a message is available for consumption

on a queue.

Messages are persistent until its consumption, thus asserting that messages will, even-

tually, be delivered, although it is not possible to make assumptions about the precise

time. Message Queue can also provide functionality such as: (i) transactions: where a

message could be part of a set of steps that needs to be fully completed in an atomic

fashion; (ii) transformations: where messages could be transformed to some other format

and with that deal with heterogeneity of data representations; (iii) security: where im-

plementations could offer support for authentication and confidentiality through Secure

Sockets Layer (SSL) [1].

2.5.4 Group Communication

Group communication is a type of an indirect communication paradigm. Indirect com-

munication represents a communication between a sender entity and a set of receivers

through an intermediary element that avoids direct coupling by providing space and/or

time uncoupling. With space uncoupling, as sender and receivers do not have each other

identity, the system is flexible enough to support changes, update replications and migra-

tion of data. With time uncoupling neither sender nor receiver need to share the same life

cycle, giving the system the ability to deal with entities that can be active or inactive.

Time coupling generally means that messages should be persisted until the receiver (s)

are ready to receive the messages [1].

In a Group Communication service, messages are sent to a named group and later

are delivered to all members of the specified group. A group is an abstraction, generally

implemented over IP multicast, where the sender does not need to know any receiver

identity. Different implementations may have different group management policies, group

13

membership services and failure detection according to the system needs [1]. The group

membership service has to deal with four main tasks:

• Group changes: provides an interface to create or destroy a group and also do add

or remove processes from groups.

• Failure Detection: monitoring of group members when they crash but also when

there is some communication failure; can mark a process as Suspected or Unsuspected

whenever there is a communication failure.

• Notification: notify group members whenever there is some some change in the

current state of the group (e.g. the group view has changed).

• Address Expansion: given a message and a group identifier, coordinates the multi-

cast delivery of the message to all of the group members.

As groups work over multicast communication, only one send operation is needed by

the application in order for the message to be sent to all the group members. This provides

better usage of bandwidth and relieve system designers from the burden to have to deal

with it [1].

2.5.5 Middleware

A Middleware is a software layer that provides a programming abstraction and masking

of the heterogeneity characteristics of underlying layers such as networks, hardware, oper-

ating systems and programming languages, by providing a uniform programming model,

such as Remote Procedure Call (RPC), Remote Method Invocation (RMI) among others,

that can be used by both servers and distributed applications designers in a more homo-

geneous environment where different systems can interact with each other even if their

underlying hardware and software characteristics are different [1].

14

Chapter 3

High-Availability Architecture and

Benchmarks

This chapter introduces a high-availability architecture for database access that optimizes

performance and replication between databases. Such architecture was conceived taking

into account the possibility to replicate it in a real environment with available resources.

Section 3.1 describes the architecture’s individual elements. In Section 3.2, the different

types of component replication are discussed. Section 3.3 discusses the benchmark, the

underlying infrastructure and what software tools were used to collect performance metrics

from the system. Section 3.4 presents the benchmark results and threats to the validity

of the approach.

3.1 Architecture Overview

A high availability system architecture was conceived to gain insight into the implications

of such a system in a real scenario.

In the proposed architecture, shown in Figure 3.1, some application needs to access a

persistence layer and connects to it through a proxy layer, eliminating the need for it to

know about the internal topology of the persistence layer and/or its writable or readable

replicas.

15

The data storage layer, in the context of this work, is made of four individual instances

of the MariaDB Relational Database Management System (RDBMS). The proxy layer,

with its two Apache Sharding Sphere instances, acts as a load balancer and failover layer

where, in case of a primary proxy failure, the secondary proxy could assume its role until

the primary becomes available again.

Database

Galera Cluster Replicatiion

Database 0 Database 1 Database 2

Proxy 0 Proxy 1

Application

Proxy Layer

Database 3

Figure 3.1: High-Available Architecture

3.1.1 Apache ShardingSphere

Apache ShardingSphere is an open-source project that consist of a set of distributed

database middleware solutions namely: Sharding-JDBC, Sharding-Proxy and Sharding-

Sidecar. The goal of the ShardingSphere project is to provide functions for data shard-

ing, distributed transactions an database orchestration. Sharding-JDBC is an enhanced

Java Database Connectivity (JDBC) that is focused on high performance while main-

taining compatibility with all JDBC drivers frameworks. Sharding-Proxy is a transparent

database proxy, that provides a database server that encapsulates database binary pro-

tocols in order to support heterogeneous languages. It is possible to configure sharding

16

without the need to apply vendor specific configurations to server databases. Sharding-

Sidecar, while still under development, is a cloud native database agent responsible for all

access to database in the form of a DaemonSet (Kubernets) for container platforms. It

provides a decentralized mesh layer that interacts with databases, i.e. a Database Mesh

or database grid [14].

Other proxy softwares were considered for this projects such as ProxySQL [15], de-

veloped in the C++ programming language; but, as the failure detector is developed in

Java programming language, the adoption of ProxySQL would require more complexity

on its integration with the failure detector as they are from distinct ecosystems. Apache

ShardingSphere was then chosen to reduce technical complexity by maintaining a single

development ecosystem as both the failure detector and the ShardingSphere proxy are

developed in Java programming language.

3.1.2 MariaDB

MariaDB is an open source RDBMS written in C and C++. It began as a fork of MySQL

after it was acquired by Oracle. As other RDBMS, MariaDB permits the creation and

management of relational databases by using Structured Query Language (SQL) queries

directly or by integration with some external applications. MariaDB has built-in support

for disaster recovering and high availability through fail-over and replication features. On

the security aspect MariaDB offers support for data encryption and even data obfuscation

for anonymization [16].

3.2 Replication Methods

By analyzing the architecture shown in Figure 3.1, when it comes to the application

communicating to the persistence layer, it is possible to note that all components have

replicas and there is not a single point of failure. Albeit this seems to suffice for a high-

available system there is also the need for a well defined course of action in case of a

17

component failure. Such failure detection and response behavior is discussed in more

details for each layer below.

3.2.1 Proxy replication

The proxy layer is composed of Apache Sharding Sphere instances that need to be aware

of the persistence layer and each database instance. One individual proxy instance, orig-

inally, is not aware of other proxy instances and failure detection and response measures

needs to be done through multiple Domain Name System (DNS) records or virtual IP.

Without the failure detector, proxy instances are unable to detect database failures

causing the system to crash in subsequent accesses to a failed database. To mitigate such

problem, the failure detector module was later added to the proxy and databases in a way

that in the event of a database failure, the proxies, or even the other databases, could

dynamically activate or deactivate the failed database instances until it becomes func-

tioning again. This approach, albeit not perfect, contributes to the overall reliability and

availability of the system by reducing the impact and propagation of a failed component

as long as there are the minimum resources needed to guarantee the system functionality.

3.2.2 Database replication

At the persistence layer there are three different methods to achieve redundancy, namely

the asynchronous method, the semi-synchronous method and the synchronous

method.

On the asynchronous method only one database, the master, receive write statements

while it commits its changes to a binary log that later is read by the other databases

working as replicas. Such method, shown in Figure 3.2 (a), is good for read operations, as

adding new replicas does not add load to the whole system, but it is prone to information

loss in case the master fails and the replicas failed to complete the syncing process. With

the asynchronous method there is not failover and in case of a failure of the master another

master must be chosen manually from the set of replicas.

18

slave slave slave

master

slave slave slave

master

slave slave

master

Synchronous

(multi-master clustering)
Semi-synchronous

(master/slave replication)

Asynchronous

(master/slave replication)

(a) (b) (c)

Figure 3.2: Replication types (Adapted from MariaDB [17])

On the semi-synchronous method, a transaction is considered committed only after

it is committed in, at least, one of the replicas. Such method, shown in Figure 3.2 (b),

reduces the probability of data loss. In case of a failure, there still lacks an automatic

failover mechanism, so it is necessary to manually intervene, with the difference that only

the replicas synced with the master should be able to become the new master. This adds

more complexity to the maintainability of the system as there are 3 states to handle:

master, replica and semi-master.

Finally, on the synchronous method, all databases work as a master and there is no

need to transfer logs. In this project, such was achieved by, Galera Cluster [17] was used

to manage the synchronous replication throughout MariaDB nodes. The synchronization

happens by propagating changes, such as locks and data that needs to be replicated, as

they come, to other nodes through a dedicated communication channel. Galera Cluster,

shown in Figure 3.2 (c), uses a quorum-based failure detection system, and in order to

work properly and mitigate data inconsistency, it needs at least 3 nodes. That way,

Galera Cluster failure detection mechanism can apply the quorum-based state voting and

re-sync with other nodes as needed. This method is good for write and reading scaling

as is possible to use all of the nodes without the need to manually choose between node

roles.

19

Galera Cluster

Galera Cluster [17], developed by Codeship, is a clustering solution for MySQL and Mari-

aDB databases. Galera Cluster offers support to synchronous multi-master database

replication based on InnoDB storage Engine. Multi-master clustering allows writes to

happen to any server that is part of the cluster without the need to deal with distributed

locking and shared resources management.

In practice a Galera Cluster consists in several database instances, (MySQL or Mari-

aDB) with the Galera Replication Plugin installed. This plugin implements the Write-Set

Replication (WSREP) API, which provides a certification-based replication as a trans-

action for replication, i.e. write-set, with rows to replicate and locks that were held by

database, sent between the nodes in the cluster. Each node certificates that the write-set

was replicated to other nodes and, at this is stage, the transaction is considered commit-

ted. In a scalability perspective the Galera Cluster also helps to boost performance by

allowing writes to every node in the cluster at the same time, as all nodes holds the same

data [17][18].

3.3 Benchmarks

Benchmarks makes possible to validate and collect metrics of a system performance. A

benchmark tool provides an environment that is stable, controlled and repeatable while

being flexible enough to handle different sets of configurations. This can help to ana-

lyze systems behavior, and potential bottlenecks, when subjected to different kinds of

workload.

To better understand the limitations and performance of the infrastructure the ar-

chitecture introduced on Figure 3.1 has been benchmarked with the TPC Benchmark C

(TPCC) [19].

20

3.3.1 TPC Benchmark C

TPCC generates and evaluates an Online Transaction Processing (OLTP) workload. It is

a mixture of read-only and update intensive transactions that simulate the activities found

in complex OLTP application environments such as e-commerce. It does so by exercising

all of system components associated with such environments, which are characterized by:

• The simultaneous execution of multiple transaction types that explore different com-

plexities.

• On-line and deferred transaction execution modes.

• Multiple on-line terminal sessions.

• Moderate system and application execution time.

• Significant disk input/output.

• Transaction integrity (ACID properties).

• Non-uniform distribution of data access through primary and secondary key.

• Databases consisting of many tables with a wide variety of sizes, attributes, and

relationships.

• Contention on data access and update.

The performance metric reported by TPCC is a “business throughput” measuring the

number of orders processed per minute. Multiple transactions are used to simulate the

business activity of processing an order, and each transaction is subject to a response

time constraint. The performance metric for this benchmark is expressed in Transactions

per minute-C (tpmC).

21

3.3.2 OLTPBenchmark

OLTPBenchmark is a multi-threaded load generator framework. The framework is de-

signed to be able to produce a variable mixture load against any JDBC-enabled relational

database. The framework also provides data collection features, e.g., per-transaction-

type latency and throughput logs [20]. The OLTPBenchmark tool was chosen to run the

benchmarks due to its configuration flexibility, implementation of the TPCC Benchmark

and also for being database agnostic.

OLTPBenchmark has built-in support for the following benchmarks: TPCC,Wikipedia,

Synthetic Resource Stresser, Twitter, Epinions.com, TATP, AuctionMark, SEATS, YCSB,

JPAB (Hibernate), CH-benchmark, Voter, SIBench (Snapshot Isolation), SmallBank,

LinkBench.

Each benchmark can be parameterized through an Extensible Markup Language (XML)

file. On Appendix 1, the configuration used for the tests in this project is shown, with the

first 7 tags being for driver and connection specification as well as the level of transaction

isolation that database sessions should be open and following remaining tags being TPCC

specific. The <scalefactor> tag controls the size of the database. The <terminals>

tag controls the workload, or the number of clients, that would be generating traffic in the

system. The <works> tag is used to describe different types of tests that OLTPBench-

mark would perform by configuring the transaction rate (1000 in this case), the warm up

time before any metrics is done (100 in this case), and the time that the test should be

measured (200 in this case).

3.3.3 Test Scenarios

The test infrastructure is composed of 7 Virtual Machines (VMs) with 3.85 GB of RAM,

63 GB of SSD and 4 cores AMD EPYC 2.4 GHz processors each running Debian GNU/Linux

9 (stretch) as the operational system. Each machine has one specific service or has one

specific role and they were distributed as follow:

22

• 4 VMs to compose the persistence layer by running instances of MariaDB Version

15.1 Distrib 10.1.37-MariaDB.

• 2 VMs to compose the proxy layer and dedicated to run Sharding Sphere proxy

instances.

• 1 VM is dedicated to generate the workload of the system through OLTPBenchmark.

All VMs were part of the same dedicated logical network (a specific VLAN) and were

interconnected by a single switch, as shown in Figure 3.3. Ping time of 0.529ms, 0.793ms,

1.784ms and 0.220ms for minimal, average, maximum and deviation, respectively, were

measured between each VM.

db-0

db-1

db-2

db-3

switch

proxy-0

application

proxy-1

Figure 3.3: Virtual Machines infrastructure

The goal of the benchmarks on the high available architecture, introduced on Fig-

ure 3.1, is to get an overview of the its performance behaviour while exploring different

database layouts, by varying how many instances could be written or read from. Such

layouts are discussed in more details below.

Application connects directly to a database

The purpose of this layout, where an application bypasses the proxy by connecting directly

to a database, as shown on Figure 3.4, was to later be able to compare a direct connection

with a connection behind the proxy and spot any performance drawbacks.

23

db-0 (master)

switch

application

Figure 3.4: Test scenario using JDBC directly to a database

Application connects to a proxy with single database

The purpose of this second test scenario, shown in Figure 3.5, was to verify the per-

formance drawbacks that could exist by using a proxy as a middle layer between the

application and the database layer with a single database to write and read from.

db-0 (master)

switch

application

proxy-1

Figure 3.5: Test scenario using a proxy with one database

Application and Proxy with one master and one read replica

This third test scenario, as shown in Figure 3.6, was proposed to test how the system

could perform when writing to a single database instance (master) while being able to

read from two instances (one master and one replica).

Application with Proxy with two masters and two read replicas

This test scenario, shown in Figure 3.7, was proposed to test how the system could

perform when writing to two database instances (multi-masters) while being able to read

from other two database instances (replicas).

24

db-0 (master)

db-1 (replica)

switch

proxy-0

application

proxy-1

Figure 3.6: Test scenario using a proxy with one master and one replica

db-0 (master)

db-1 (master)

db-2 (replica)

db-3 (replica)

switch

proxy-0

application

proxy-1

Figure 3.7: Test scenario using a proxy with 2 masters and 2 replicas

3.3.4 Database configurations

Besides changing the layout of the architecture to test different behavior of the system

according to the use of database resources, by benchmarking it was identified that with

default configurations, MariaDB databases were not being stressed to its full capacity on

each machine. Such behavior negatively affected the initial tests as instances ended up

limiting and decreasing performance due to poor database configuration. To increase per-

formance some adjustments were made on parameters such as the number of connections;

transaction and statements timeout; concurrency handling; buffer and cache size of the

data storage engine. The final configuration file can be verified at Appendix 2.

25

3.3.5 Running the Benchmarks

To analyze the architecture with different workloads the benchmarks were run by varying

the number of concurrent clients starting with 1, 2 and 4 threads and from that up to 128

threads, with 4 thread steps.

3.4 Results

After running the benchmarks with each of the different scenarios and varying the work-

load, the tpmC were collected and plotted on the graph shown on Figure 3.8. The

horizontal axis, named Terminals, represents the number of concurrent clients and, the

vertical axis, named Throughput, represents the number of transactions. Each line of

the graph represents the throughput achieved by a different configuration layout for a

different number of active concurrently clients (terminals).

0 20 40 60 80 100 120
Terminals

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (t

x/
s)

Benchmark TPCC JDBC

Direct JDBC
Proxy JDBC
Proxy JDBC Master-Secondary
Proxy JDBC Sharding-Master-Secondary

Figure 3.8: Benchmark results

By observing the Figure 3.8 is possible to see that for the Direct JDBC line, which rep-

resents the configuration where the application connects directly to a single database thus

ignoring the proxy, the throughput reached its peak around 430 tx/s, and by comparing

with the Proxy JDBC line is possible to see that, in fact, the proxy adds a considerable

overhead (twice approximately) to the structure and had its throughput peak around 200

tx/s.

Comparing with other lines, Proxy JDBCMaster-Secondary and Proxy JDBC Sharding-

Master-Secondary, it is possible to see how the proxy could help with performance by

26

increasing the number of write and read instances. With Proxy JDBC Master-Secondary

writes happens exclusively at one database instance and reads happens exclusive on the

other database instance reaching its throughput around 1600 tx/s. Though, on Proxy

JDBC Sharding-Master-Secondary, when reading from 2 instances and writing to other

two instances the throughput reaches its peak at 7520 tx/s.

3.5 Threats to Validity

Although databases were configured in a production fashion and the environment was

controlled to its best, there are some important considerations about the results:

• All VM were sharing the same storage through a unique ZFS+NAS partition that

was later subdivided for each individual virtual machine.

• All VMs shared a dedicated a 128 GB RAM for cache. Such amount would be more

than enough to hold all the data from tables used on the benchmark. This could

had a significant impact in the final results as the need for round trips to the disk

would be reduced or even eliminated.

• Each node has a network transmission capacity of 1 Gbit/s and were in the same

environment. On a considerable more physically distributed environment database

synchronization and access could have a more unstable response time.

Such observations are relevant as they could have had a considerable impact on the

performance gains seen by increasing the number simultaneous reading and writing in-

stances.

27

28

Chapter 4

Implementation of an Eventually

Perfect Failure Detector

As discussed on Chapter 2, the asynchronous characteristics of distributed systems poses a

challenge to software design and implementation due to the lack of global timing between

components which makes impossible to determine if a process has crashed (failed) or if

it is taking a considerable amount of time to process some input. With this problems in

mind, Chandra and Toueg [10], presented the concept of unreliable failure detectors that

permit some degrees of mistake in order to eventually reach synchrony.

This chapter presents the design and implementation details of a Eventually Perfect

Failure Detector using the Java Programming Language as well as the difficulties found

during the implementation.

4.1 Build and Implementation Tools

This section presents an overview of the tools used to control the artifacts generated

during the implementation of this project.

29

4.1.1 Java Programming Language

Java is an object-oriented, general-purpose programming language [21]. It was designed

based on the concept of Write Once, Run Anywhere (WORA) by adding a dependency

of the Java Virtual Machine (JVM). Java code is compiled to a Bytecode format that

can run on any JVM regardless of the underlying computer architecture and/or operating

system.

The failure detector was implemented in Java due to its complete network API and

vast libraries that provides different distributed systems programming models through an

object-oriented programming abstraction.

4.1.2 Gradle

Gradle is an Open Source build automation tool focused on flexibility, by offering support

to expand itself, and performance by avoiding unnecessary work, running only tasks when

their inputs or outputs have changed. As Gradle runs on JVM it is possible to take

advantage of the whole Java API and run Gradle on a variety of platforms due to Java

extensive compatibility.

The Gradle building model is based on a set of tasks, or units of work, connected by

a Directed Acyclic Graph (DAG) that describes all of the dependencies and the order of

execution. Tasks can be classified as: Actions: for works such as copying or compiling

files; Inputs: values, files and directories that actions use or operate on; Outputs: files

and directories that the actions modify or generate [22].

4.1.3 JFrog Artifactory

Artifactory is a JFrog product created to work as a binary repository manager [23]. A bi-

nary repository optimizes the software building process by storing the artifacts generated,

often on a binary format, by the building process. Artifactory centralizes this manage-

ment process and provides resources to better search, by adding meta-data to binaries

30

and guarantee reliability of such artifacts by proving replication and security measures

such as authentication and encryption.

4.1.4 Apache ActiveMQ

Apache ActiveMQ is an open source software to build a multi-protocol, embedded, very

high performance, clustered, asynchronous messaging system. Apache ActiveMQ is an

example of Message Oriented Middleware (MoM), i.e. messaging system [24]. Messag-

ing system helps to reduce the heterogeneity between different systems on the network,

and to provide reliable, high available and an asynchronous messaging system. With its

configuration flexibility, Apache ActiveMQ has support for transport protocols namely:

OpenWire, Stomp, MQTT, AMQP, REST and WebSockets.

4.2 Design

Figure 4.1 represents a high level overview of the failure detector architecture and exposes

its internal logical units as individual blocks. At the base level there is the Failure

detector block which represents an unit of a failure detector process. A failure detector

process should be able to communicate to other failure detector processes in order to

build the knowledge about the system health as a whole and keep track of their individual

process health status, i.e. to know if a process has crashed or it is just taking some time

doing some computations.

Above the failure detector block there are the Channel and Probes blocks. The

Channel should provide a common API and serve as a conduit through which failure

detector processes can exchange messages, e.g. heartbeat messages, by using any kind

of communication method that can comply with the channel API. As an example there

is the UDP block in which processes communicate through UDP sockets, and there is

the ActiveMQ block in which processes exchange messages through message queues

(ActiveMQ in this case).

31

Failure Detector

Channel Probes

UDP ActiveMQ DNS PING TCP

Figure 4.1: Failure detector block diagram

The Probes block should provide a common API for monitoring performance and

checking the health status of other system components by sending probe tests through

an end-to-end communication. A Probe test could be an e-mail message to test a mail

service; a web request to test a web server; a database query; ping or traceroute to test

network availability for example. By using test probes, the system can diagnosis the

root-cause of a performance degradation and take some necessary action.

4.3 Implementation details

The block diagram gave a high level overview of the individual logical units and its

responsibilities identified on the design phase. In this section the implementation aspects

are discussed in a more practical view, by presenting class diagrams and snippets of code,

for each logical unit, whenever necessary.

4.3.1 Failure Detector

The failure detector logical unit represents all of the essential features and behaviors of

a failure detector. By extracting those common features and behaviors, a class diagram,

as shown in Figure 4.2, was created. This diagram represents how the failure detector

module was implemented in this project.

32

Figure 4.2: Failure detector class diagram

The fundamental functionalities of a failure detectors are represented by the Failure-

Detector interface. Its methods are:

• start and stop: methods to start and stop, respectively, the failure detector as well

as its internal services.

• startHeartbeat and stopHeartbeat: methods responsible for starting and stoping,

respectively, the heartbeat service of the failure detector.

• addSuspectListener and removeSuspectListener : methods responsible, respectively,

for adding or removing an object from the list of processes to be notified in case there

is an update of the suspects by the failure detector. Whenever this event is fired all

33

of the SuspectListener objects receive, from the failure detector, the updated set of

the currently suspected processes.

• isSuspect: method to check if a given process is being suspected by the failure

detector.

• getLastHeartbeatFor : get a Date object representing when was the last heartbeat

of a given process.

• getSuspects: get the set of currently suspected processes.

• getProcess: get the process that represents the instance of the failure detector. Each

failure detector has a unique process representation.

• forceFail: method to force the failure detector to enter a failure state by broadcasting

a FailMessage to all peers listening on the channel. Each failure detector that

receives such message should add the source process into the set of suspected process.

• ressurect: method for the failure detector to inform that it is working correctly

by broadcasting a RessurectMessage to all peers listening on the channel. Each

failure detector that receives such message should remove the source process from

the set of suspected process.

The responsibility of maintaining the suspects list, and notify other failure detector

processes about failures, is taken by the abstract class AbstractFailureDetector. This

class also maintains a reference to a ProbeSampler object that handles the probes

activity. The class AbstractFailureDetector also provides a way to better control the

construction process of the object through the Builder pattern.

Heartbeat

Following the push model described by Felber, Défago, Guerraoui, et al. [12], this im-

plementation of an Eventually Perfect Failure Detector (�P) uses heartbeats to inform

about the functioning state. At some specified amount of time, the failure detector should

34

broadcast heartbeat messages to other failure detector processes. In case of omission of

those messages, other failure detectors will start to suspect that the process has failed.

Figure 4.3 presents a class diagram of the classes involved on the failure detector heartbeat

activity.

Figure 4.3: Heartbeat class diagram

As shown on Figure 4.3, by implementing the Heartbeat interface and notifying the

HearbeatListeners, and by using the builder pattern, the abstract class Abstract-

Heartbeat makes it easy to implement different kinds of heartbeat behaviour.

The FixedPeriodHeartbeat, for example, implements the heartbeat behavior with

a fixed period of timeout. A ScheduledExecutorService, from Java 8 and java.utils

API, schedule the call of the notifyHeartbeatListeners method from AbstractHeart-

beat with a fix period of time. Whenever aHeartbeatListener receives such notification

it should fire its timeout (e: HeartbeatEvent) method, causing the failure detector to

broadcast instances of the class HeartbeatMessages to all of its known failure detector

processes, thus indicating that it is still alive.

Timeout

This implementation of the failure detector starts suspecting a process in a case a given

period of time has passed with no heartbeat message received from the given process. To

35

better control how the failure detector would handle such scenario the timeout classes, as

shown on Figure 4.4, were implemented.

Figure 4.4: Timeout class diagram

By implementing the TimeoutGenerator interface and relying on the Builder pat-

tern the AbstractTimeoutGenerator abstract class provides a flexible way to imple-

ment different timeout policies that could, for example, be based on the mean time of

heartbeat messages, the longest timeout seen and so on. Failure detectors call the get-

Timeout () of a class whenever it needs a timeout value to trigger a new suspicion.

The FixedTimeoutGenerator class, uses a fixed timeout value passed through the

timeout (int timeout) method of the Builder. The final timeout, that will actually

be used, is then calculated by timeout = 2 ∗ timeout + 1.

4.3.2 Channel

The FailureDetector interface extends the ChannelListener interface in order to be

able to receive messages from the channel through the receive method. The Figure 4.5

gives a better view of the responsibilities of the channel as well as the types of messages

that could be exchanged on the channel.

The channel interface is responsible to provide a common way to start and stop a

communication channel, as well as to provide the ability to interact with it by sending

36

Figure 4.5: Channel class diagram

messages and registering other objects that implements the ChannelListener interface, to

listen when new messages arrive on the channel. The abstract class AbstractChannel

is responsible to maintain the set of channel listeners and notify whenever there are new

messages. This class also provides a Builder inner class so that concrete implementations,

such as the DatagramChannel have more control over the building process. The Data-

gramChannel inherits the AbstractChannel and provides a communication channel

over UDP sockets. Other processes are added to the channel at the building phase and

the the channel keeps a map data structure with each process mapped to its IP address

and port number.

As shown in Figure 4.5, there are three types of messages, all of which inherits the

Message class, namely FailMessage, ResurrectMessage and HeartbeatMessage.

The FailMessage is used by a failure detector to force its failure, signalizing that it should

be considered to be failed by other failure detectors. The ResurrectMessage is used

by a failure detector to signal that its process should be considered alive by other failure

detectors and removed from the set of suspected processes. The HeartbeatMessage is

used by a failure detector to signal that its process is still alive. In case of omission then

the failure detectors starts to suspect the missing heartbeat process.

37

4.3.3 Probes

The Probes block should provide a common API for checking, i.e. probing, the liveness

of other system components. Such components could be a Domain Name System (DNS)

resolution, test reachability of a host through ping commands, and TCP connection es-

tablishment capabilities, for example. The liveness is a metric to let the system know the

health status of a system component by certifying that the given output is as expected

to be.

Figure 4.6: Probe class diagram

Figure 4.6 represents the class diagram of how the probe logic was implemented.

The common attributes and methods that a Probe should have are described by the

AbstractProbe class and the Probe interface.

38

A concrete implementation of an AbstractProbe abstract class, needs to implement

the following methods:

• getId to get an identifier for the probe.

• addProbeListener and removeProbeListener : to register, or remove, an object to

receive a notification whenever a ProbeEvent is generated due to liveness update.

• getSamplingPeriod gets the period in which the probe do its sampling activity.

• sample defines what would be the probe sampling behaviour. It’s necessary that at

the end of the sampling the probe update the liveness status of the component or

aspect sampled. The values range from {0, 1} where 0 represents a fail during the

sampling and 1 represents a successful sample.

• liveness gets the currently liveness status from the probe. As said, is a value that

ranges from {0, 1}.

4.3.4 Curator

The curator class, as shown in Figure 4.7, was created to control what data sources are

available to be written or read by interacting with Apache Zookeeper and dynamically

change proxy configurations. Its dataSourcePaths and schemaName attributes holds

information about the proxy and its known data sources. Bellow is an overview of the

methods from Curator class:

Figure 4.7: Curator class diagram

39

• stop and start: methods to start and stop the communication with Apache Zookeeper.

• createNode: creates a persistent node on Zookeeper on the given path.

• getData: get the data associated with the given path.

• getChildren: get all the children nodes of the parent node located at the given path.

• checkExists: checks if a given path exists on the Zookeeper.

• setData: associate data to a given path.

4.4 Architecture with Failure Detector

Database

Galera Cluster Replicatiion

Database 0 Database 1 Database 2 Database 3

Proxy 0 Proxy 1

Application

Proxy Layer

DetectorDetectorDetectorDetector

Detector Detector

Figure 4.8: The architecture with Failure Detector

Figure 4.8 shows the final architecture but with the failure detector operating to-

gether on the database and proxy instances. Each failure detector instance is aware of

40

all instances and are constantly sending heartbeats and suspecting processes accordingly.

Whenever some database unit is suspected, the failure detector deactivates its datasource

until the process is being suspected.

With future implementation of SQL probes, it would be possible to remove failure

detector instances from the database and decide if it has failed based on diagnosis of

probe samples.

41

42

Chapter 5

Conclusion and Future work

This work introduced an implementation of an Eventually Perfect Failure Detector for a

High Available system based on the fundamental theories and its integration with a proxy

and database instances.

The initial effort was put in the conception of a High Available architecture for database

access through a proxy. First benchmarks on the proposed architecture had shown that,

by using a proxy, the performance could increase with the number of dedicated primaries

(write) and secondaries (read) databases and paralelization of client transactions.

Implementation of the failure detector had a modular design, aiming to facilitate later

addition of different kinds of communication channels, probes and timeout strategies for

the heartbeat and suspicion phase.

Further testing had shown that the failure detector, when added to the architecture,

increased the availability of the systems as failed nodes were dynamically removed or

added in case of becoming functional again, thus masking, when possible, a database

failure to the application accessing it.

In conclusion, by running the initial benchmarks and integrating the failure detector

to it shows evidence that (i) performance could be considerably improved by replicating

the number of database instances to read and write from, and (ii) using a failure detector

helps with the availability in case of database failures.

43

For future work, besides refactoring and simplifying the failure detector source code,

the replication logic could be also implemented by the proxy layer through a cache mech-

anism and more tests should be done with sharding databases in order to check if consis-

tency and performance improvements happens in such complex cases as well.

44

Bibliography

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems, 5 edi-

tion. Pearson, May 2011, isbn: 978-0-13-214301-1.

[2] C. H. Lie, C. L. Hwang, and F. A. Tillman, “Availability of maintained systems: A

state-of-the-art survey”,AIIE Transactions, Jul. 2007. doi: 10.1080/05695557708975153.

[Online]. Available: https://www.tandfonline.com/doi/pdf/10.1080/05695557708975153?

needAccess=true.

[3] J. Gray and D. Siewiorek, “High-availability computer systems”, Computer, vol. 24,

no. 9, pp. 39–48, Sep. 1991, issn: 0018-9162. doi: 10.1109/2.84898.

[4] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction methods”,

ACM Comput. Surv., vol. 42, no. 3, 10:1–10:42, Mar. 2010, issn: 0360-0300. doi:

10.1145/1670679.1670680.

[5] F. Cristian, “Understanding fault-tolerant distributed systems”, Commun. ACM,

vol. 34, no. 2, pp. 56–78, Feb. 1991, issn: 0001-0782. doi: 10.1145/102792.102801.

[6] I. Koren and C. M. Krishna, Fault-tolerant systems - 1st edition. [Online]. Available:

https://www.elsevier.com/books/fault-tolerant-systems/koren/978-0-

12-088525-1.

[7] A. M. Johnson and M. Malek, “Survey of software tools for evaluating reliability,

availability, and serviceability”, ACM Computing Surveys, vol. 20, no. 4, pp. 227–

269, Sep. 1988, issn: 03600300. doi: 10.1145/50020.50062.

45

https://doi.org/10.1080/05695557708975153
https://www.tandfonline.com/doi/pdf/10.1080/05695557708975153?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/05695557708975153?needAccess=true
https://doi.org/10.1109/2.84898
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1145/102792.102801
https://www.elsevier.com/books/fault-tolerant-systems/koren/978-0-12-088525-1
https://www.elsevier.com/books/fault-tolerant-systems/koren/978-0-12-088525-1
https://doi.org/10.1145/50020.50062

[8] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles, Algorithms,

and Systems, 1st ed. Cambridge University Press, 2008, isbn: 978-0-521-87634-6.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed con-

sensus with one faulty process”, J. ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985,

issn: 0004-5411. doi: 10.1145/3149.214121. [Online]. Available: http://doi.

acm.org/10.1145/3149.214121.

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed

systems”, J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996, issn: 0004-5411. doi:

10.1145/226643.226647.

[11] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial

synchrony”, Journal of the ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988, issn:

00045411. doi: 10.1145/42282.42283.

[12] P. Felber, X. Défago, R. Guerraoui, and P. Oser, “Failure detectors as first class

objects”, Feb. 1999, pp. 132–141, isbn: 978-0-7695-0182-6. doi: 10 . 1109 / DOA .

1999.794001.

[13] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System Program-

ming Handbook, 1 edition. No Starch Press, Oct. 2010, isbn: 978-1-59327-220-3.

[14] Overview | shardingsphere. [Online]. Available: https://shardingsphere.apache.

org/document/current/en/overview/.

[15] [Online]. Available: https://proxysql.com.

[16] [Online]. Available: https://mariadb.com/kb/en/library/whitepapers/.

[17] MariaDB, “Mariadb and mysql clustering with galera - mariadb white paper”, p. 5,

[18] B. Aditya and T. Juhana, “A high availability (ha) mariadb galera cluster across

data center with optimized wrr scheduling algorithm of lvs - tun”, in 2015 9th

International Conference on Telecommunication Systems Services and Applications

(TSSA), Nov. 2015, pp. 1–5. doi: 10.1109/TSSA.2015.7440452.

[19] T. P. P. Council, “Tpc benchmark c (revision 5.11)”, Feb. 2010.

46

https://doi.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/DOA.1999.794001
https://doi.org/10.1109/DOA.1999.794001
https://shardingsphere.apache.org/document/current/en/overview/
https://shardingsphere.apache.org/document/current/en/overview/
https://proxysql.com
https://mariadb.com/kb/en/library/whitepapers/
https://doi.org/10.1109/TSSA.2015.7440452

[20] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-bench: An ex-

tensible testbed for benchmarking relational databases”, Proceedings of the VLDB

Endowment, vol. 7, no. 4, pp. 277–288, Dec. 2013, issn: 21508097. doi: 10.14778/

2732240.2732246.

[21] Java programming language. [Online]. Available: https : / / docs . oracle . com /

javase/7/docs/technotes/guides/language/index.html.

[22] Gradle, “Gradle user manual: Version 5.4.1”, p. 1112,

[23] Jfrog artifactory. [Online]. Available: https://jfrog.com/artifactory/.

[24] Introduction | activemq artemis documentation. [Online]. Available: https://activemq.

apache.org/components/artemis/documentation/1.0.0/.

47

https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://docs.oracle.com/javase/7/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/index.html
https://jfrog.com/artifactory/
https://activemq.apache.org/components/artemis/documentation/1.0.0/
https://activemq.apache.org/components/artemis/documentation/1.0.0/

Appendix A

Configuration Files

This appendix presents all the relevant configuration files that were used on the software

tools used through the lifetime of this project.

A.1 OLTPBenchmark configuration file for TPCC
<?xml version="1.0"?>
<parameters>

<!-- Connection details -->
<dbtype>mysql</dbtype>
<driver>com.mysql.jdbc.Driver</driver>
<DBUrl>jdbc:mysql://172.31.5.103:3307/tpcc</DBUrl>
<username>root</username>
<password>mypass</password>
<isolation>TRANSACTION_READ_COMMITTED</isolation>

<!-- Scale factor is the number of warehouses in TPCC -->
<scalefactor>100</scalefactor>

<!-- The workload -->
<terminals>16</terminals>
<works>

<work>
<weights>45,43,4,4,4</weights>
<rate>10000</rate>
<time>200</time>
<warmup>100</warmup>

A1

</work>
</works>

<!-- TPCC specific -->
<transactiontypes>

<transactiontype>
<name>NewOrder</name>

</transactiontype>
<transactiontype>

<name>Payment</name>
</transactiontype>
<transactiontype>

<name>OrderStatus</name>
</transactiontype>
<transactiontype>

<name>Delivery</name>
</transactiontype>
<transactiontype>

<name>StockLevel</name>
</transactiontype>

</transactiontypes>
</parameters>

Listing 1: OLTPBenchmark configuration file for TPCC Benchmark

A.2 Mariadb
[mysqld]
datadir = /mnt/sdb/mysql
skip-external-locking
skip_name_resolve = 1

listen on all interfaces
bind-address = 0.0.0.0

InnoDB
default-storage-engine = InnoDB
innodb_buffer_pool_instances = 3 # Use 1 instance per 1GB of InnoDB pool size
innodb_buffer_pool_size = 3G # Up to 70-80% of RAM & vm.swappiness = 0
innodb_file_per_table = 1
innodb_flush_log_at_trx_commit = 0
innodb_flush_method = O_DIRECT
innodb_log_buffer_size = 16M
innodb_log_file_size = 1G

A2

innodb_stats_on_metadata = 0
innodb_thread_concurrency = 0
innodb_read_io_threads = 64
innodb_write_io_threads = 64

low_priority_updates = 1
concurrent_insert = 2

back_log = 512
thread_cache_size = 100
thread_stack = 192K

interactive_timeout = 28800
wait_timeout = 28800
connect_timeout = 30

Buffer Settings
join_buffer_size = 4M
read_buffer_size = 3M
read_rnd_buffer_size = 4M
sort_buffer_size = 4M
max_heap_table_size = 128M
tmp_table_size = 128M

Fine Tuning
key_buffer_size = 16M
max_allowed_packet = 64M
thread_stack = 192K
thread_cache_size = 8

max_connections = 1000
table_cache = 64
thread_concurrency = 10
thread_handling = pool-of-threads

Query Cache Configuration
query_cache_limit = 1M
query_cache_size = 16M
query_cache_type = 1

Prepared statements
max_prepared_stmt_count = 1048576

Listing 2: MariaDB server configuration file

A3

	Introduction
	Theoretical framework
	Objectives
	Document Structure

	Context and Concepts
	Fault-Tolerant Systems
	Failure Classification
	Reliability, Availability and Serviceability (RAS)
	Failure Detectors
	Propagation of Failure Information

	Tools
	TCP
	UDP
	Message Queues
	Group Communication
	Middleware

	High-Availability Architecture and Benchmarks
	Architecture Overview
	Apache ShardingSphere
	MariaDB

	Replication Methods
	Proxy replication
	Database replication

	Benchmarks
	TPC Benchmark C
	OLTPBenchmark
	Test Scenarios
	Database configurations
	Running the Benchmarks

	Results
	Threats to Validity

	Implementation of an Eventually Perfect Failure Detector
	Build and Implementation Tools
	Java Programming Language
	Gradle
	JFrog Artifactory
	Apache ActiveMQ

	Design
	Implementation details
	Failure Detector
	Channel
	Probes
	Curator

	Architecture with Failure Detector

	Conclusion and Future work
	Configuration Files
	OLTPBenchmark configuration file for TPCC
	Mariadb

