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ABSTRACT 

 

For a concrete pavement, the permeation properties for the surface have a crucial influence 

on its durability. Current practices assess the resistance of the surface to abrasion and 

freeze/thaw cycles based primarily on the compression strength of the concrete. A 

prominent way to enhance the durability of concrete is by use of surface treatments to 

reduce water and chloride penetration. In other words, surface treatments partake in 

protecting concrete surfaces from the ingress of deleterious substances such as salt, 

organic impurities and dust. The objective of this thesis is to investigate the efficiency of 

organic and inorganic surface treatments regarding abrasion, freeze/thaw damage, water 

and chloride penetration. ASTM standards were modified to abbreviate the testing and 

assess the efficiency of different products. Based on the tests performed, organic surface 

treatments remarkably increased the resistance of concrete subjected to freeze/thaw cycles 

by reducing the water intake compared to the inorganic ones. Similar results were 

observed regarding the chloride penetration test leading to an improvement in durability. 

The abrasion resistance of a concrete surface can be improved using inorganic surface 

treatments based on lithium and silicon. A model was proposed to relate the abrasion 

efficiency as a function of load cycles of a treated surface to represent the longevity of a 

concrete pavement. Based on the abrasion coefficient and the texture wavelength which is 

a measurement of the quality of the surface of the pavement, it is shown that the life cycle 

under abrasion of a concrete pavement can be calibrated. As part of the laboratory testing 

program, the untreated concrete specimens were used as the control. Results from the 
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abrasion and freeze/thaw testing of treated specimens indicated a lower level of 

cumulative damage, which confirmed the benefit of using such products relative to the 

extension of the service life of a concrete pavement surface. The results of modeling 

indicated an increase of 14% of the ultimate load application to failure for the treated 

specimens, which indicates an increase in longevity of the pavement. 
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CHAPTER I 

INTRODUCTION  

 

Around the world, concrete is the most used material in civil engineering projects; 

more precisely concrete is the 2nd most consumed element in the world after water. In the 

United States, the concrete industry alone is worth over $35 billion. The reason why 

concrete is used in such massive quantities is purely because it is an extraordinary good 

building material; not just for rudimentary road construction but also for outstanding 

projects. For instance, in Dubai, the construction of Burj Khalifa used almost 239 million 

pounds of concrete, for the Grand Coulee Dam in Washington State, 48 billion pounds of 

concrete were utilized between 1933 and 1942. Due to the massive progress made in 

concrete technology in the past few decades, many applications have emerged. Compared 

to other engineered cementitious materials used on the construction field, the production 

cost of cement concrete is extremely low. Concrete gains its strength at ambient room 

temperature and can be optimized using admixtures. It has the ability to be cast in place, 

it is high temperature resistant and its maintenance cost can be almost negligible. On the 

contrary, concrete is brittle, has low tensile strength and faces durability issues.  

The concrete material has been also used in the transportation field and more 

specifically in pavement design and materials area.  

The first concrete pavement in the world was built in Inverness, Scotland in 1879 

followed by the first U.S. concrete pavement constructed in Bellefontaine, Ohio in 1893. 

At first, concrete mixes were dry-batched, dumped into trucks and mixed on grade in fixed 
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forms. Traveling mixers evolved to provide a better uniform dry-batched concrete mixes. 

The AASHTO Road Test was conceived to study the performance of pavement structures 

under actual traffic at a known magnitude and frequency. Although many efforts were put 

into account to improve the quality of concrete pavements, rigid roads face numerous 

durability problems regarding the deterioration of the top surface and its effect on road 

safety, fuel consumption, tire wear and many others.  

In order to improve the quality of concrete pavements against surface wear, many 

industries manufactured numerous products known as surface treatments that can be 

applied on a concrete surface. According to the manufacture’s specifications, the product 

can reduce water penetration and improve the resistance to wear due to tires and 

freeze/thaw cycles.  

Depending on its properties, the surface treatment shows some benefits that can be 

depicted through laboratory testing. In the following study, many surface treatments 

applied on concrete specimens were studied regarding their efficiency to improve wear 

caused by traffic and resistance to freeze/thaw damage by adopting destructive tests. 

Moreover, a variety of laboratory tests were conducted to study the effectiveness of these 

surface treatments regarding the porosity change of the surface and its effect on abrasion 

and freeze/thaw damage.  

The testing program was to serve as a general overview of concrete durability. All tests 

were performed according to the ASTM standards even though some modifications were 

made to suit the purposes of the test program.  
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CHAPTER II 

LITERATURE REVIEW1 

 

Concrete is a composite material consisting of particles glued together with a 

cementing binder. Portland Cement Concrete (PCC) utilizes the Portland Cement as the 

binder agent. The mixture consists then of Portland Cement, water, aggregates (fine and 

coarse), mineral and chemical admixtures and finally air. Concrete has many advantages; 

it has the ability to be cast, it is durable, fire resistant, energy efficient, etc., but also has 

some disadvantages regarding its low tensile strength and low ductility, its volume 

instability and low strength-to-weight ratio (Mindess, Young, & Darwin, 2002)  

The hydration process of Portland Cement explains many aspects regarding the 

physical behavior of the concrete. The main two hydration products of the cement are the 

Calcium-Silicate-Hydrate (CSH) and the Calcium Hydroxide (CH). In the mixture, CSH 

has a very complex microstructure due to its amorphous character, compositional 

variability and poorly resolved morphology. This product provides important cohesive 

force but is intrinsically weak because of its connected micro-porosity. On the other side, 

CH occupies approximately about 15% of the total volume of a normal Portland Cement 

paste. Calcium Hydroxide is a well-crystallized material with a definite stoichiometry. It 

                                                 

1 Part of the contents in this chapter is reprinted with permission from: 

An approach to characterize the wearability of concrete pavement surface treatments, by Abou Sleiman 

C., Shi X., and Zollinger D., Transportation Research Record: Journal of the Transportation Research 

Board, 2019.   DOI: https://doi.org/10.1177/0361198118821668. 
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contributes to the durability of the concrete by reducing the porosity. By blocking the 

capillary pores, the calcium hydroxide reduces the permeability.  

Understanding the chemistry of the different components of the concrete matrix will 

permit to improve its numerous properties to meet the challenge of the future.  

1. Durability issue 

The durability of a concrete pavement surface and its material wearability or resistance 

over time while exposed to traffic loading and environmental damaging effects has been 

a concern for many years. The abrasion life of a concrete pavement surface is likely a 

function of both repeated tire loading and the number of freeze/thaw cycles in the presence 

of deicer chemicals. 

Wear cycles occur on concrete road surfaces due to tire loadings mainly from heavy 

trucks. The impact-cutting type of wear added to the abrasion action exacerbate the 

deterioration of the pavement. A significant source of wear is due to tire chains and 

studded snow tires that are mainly used in cold regions to increase the grip between the 

tires and the pavement that cause significant damage (ACI.2R-01, 2001). In fact, the 

dynamic impact of the small tungsten carbide tip of the tire studs repeatedly applies a 

shearing stress to the pavement surface under the rolling action of the tire. Studies showed 

that ruts from ¼ to ½ in (6 to 12 mm) deep can appear in just a single winter in regions 

where usually 30% of passenger cars are equipped with studded tires (ACI.2R-01, 2001) 

(Smith & Schonfeld, 1970-1978). This repeated action rapidly deteriorates the surface of 

the pavement, potentially causing roads safety issues. At one point, some effort was aimed 

at developing more wear-resistant types of concrete overlays such as using polymer-
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cement and polymer-fly ash concretes (Keyser, 1971). No affordable concrete surface has 

been yet developed (ACI.2R-01, 2001). Since the abrasion occurs at the surface, the 

quality and strength of the cement paste is one of the main factors. One aspect of quality 

is the amount of calcium hydroxide in the hardened paste, which is directly related to the 

water-cementitious ratio (w/cm) used in the concrete (Scott & Safiuddin, 2015). This 

hydration product tends to be soft and erodible, often leading to microscopic pits in the 

surface of the concrete. Laboratory testing of the abrasion resistance of the concrete shows 

it to depend upon the paste hardness, the type of coarse aggregates and the strength of 

aggregate/paste bond (Scott & Safiuddin, 2015).  

Freeze/thaw resistance is also influenced by the water-cement ratio as it dictates the 

amount of capillary-sized and large pores at the surface. These include gel pores, capillary 

pores and air voids (Harnik, Meier, & Rosli, 1980). Typically, concrete with a low 

permeability (i.e. mainly gel-sized and capillary-sized pores) is able to resist freeze/thaw 

cycles better than a concrete with a greater w/cm. With curing, permeability of the 

concrete decreases due to the hydration process of the cement and a reduction in capillary 

porosity. Other factors affecting freeze/thaw resistance are related to: the type of 

aggregates, the use of air-entrained admixtures and even the finishing method of the fresh 

concrete. During the freezing cycle, the water entrapped in the pores solidifies and turns 

into ice. This phenomenon expands the water by 9% and creates significant tensile stress 

(Yousif, 2015). Scaling due to several freeze/thaw cycles refers to a local flaking of a 

finished surface. This damage or scaling resistance is distinguished by the fracturing of 
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mortar, which leads to a direct exposure of the concrete to moisture penetration as well as 

aggressive salts (Jana, 2007).  

Worldwide, the use of deicer chemicals has been employed in order to improve a 

roadways safety. The effect of a deicer on ice is related to the physical bonds formed 

between the solute which is the deicer and the solvent which is the water. Literature 

showed that the scaling at the surface is intensified in the presence of deicers used for 

pavement maintenance in winter, which is commonly known as salt frost deterioration (J. 

Marchand, 1994). The combined effect of freeze/thaw cycles and deicer chemicals on 

scaling potential is greater than when a concrete surface is exposed to freezing alone 

(Harnik, Meier, & Rosli, 1980). The use of deicer chemicals can increase the scaling 

damage at the surface as moisture tends to move towards zones with higher salt 

concentrations via osmosis and accelerates consequently the deterioration of concrete 

durability (Dang, et al., 2014). Indeed, the aqueous solution at the surface causes 

expansive forces inside the concrete microstructure and adds to the normal hydraulic 

pressure. 

2. Assessment of the distresses 

a) Abrasion models 

Several studies resulted in different models of abrasive wear of concrete. E. 

Horszczaruk (Horszczaruk, 2004) presented a theoretical model based on results from 

abrasion-testing of concrete hydraulic structures due to the movement of rubble 

transported by water. The model was based on mechanisms associated with a concrete 

surface being exposed to the flow of an aggregate and water mixture. The study showed 
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that the mass loss in abraded concrete can be expressed as function of work by the abrasive 

aggregate/water mix and a parameter related to the resistance of the concrete. 

Another study that extends the theoretical model developed by E. Horszczaruk 

expresses the material loss as a function of the abrasion effect caused by a rolling wheel 

and the total abrasion time, in addition to the composition of the concrete (Garcia, Castro-

Fresno, Polanco, & Thomas, 2012). The model is based on Maxwell and Boltzmann 

distribution law to predict the volume of abraded pavement material in probabilistic terms. 

In addition to the applied force, the model incorporated the friction coefficient between 

the concrete and the wheel to characterize the abrasion resistance. Knowing these model 

parameters such as friction coefficient and the traffic configuration such as the weight of 

the vehicle on the pavement, a prediction of the concrete pavement service life can be 

obtained (Garcia, Castro-Fresno, Polanco, & Thomas, 2012).  

An aspect of the modeling introduced in this thesis relates a micro-component of 

unevenness of a roadway surface that is generally expressed in terms of texture. Texture 

is not only an important impact regarding many aspects of road safety and comfort but 

also friction, smoothness, rolling resistance and tire wear (Cossale, Elliott, & 

Widyatmoko, 2013). The pavement texture is characterized by texture wavelength, 

ranging from microscopic (sub-millimeter) to long (several centimeters). The categories 

for texture wavelengths include megatexture (50 to 500 mm), macrotexture (0.5 to 50 

mm), and microtexture (< 0.5 mm). The macrotexture is a function of the method of 

finishing used in the construction of the pavement surface. Microtexture is actually a 
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material’s property dependent upon the fine particles in the concrete mix. Usually, the 

texture wavelength is measured using laser-based profilometry. 

b) Freeze/thaw cycles 

 Freeze/thaw damage in concrete is a difficult phenomenon that has been studied for 

decades. Little in the literature has shown an accurate assessment of freeze/thaw damage 

on concrete surfaces; this assessment has been usually evaluated according to the ASTM 

C672 and ASTM C 666 following a visual grading system and not intended to give a 

quantitative measurement of the length of service of a concrete structure (Figure 1).  

 

 

 

 

 

The test method described in the ASTM C 672 (ASTM C 672, 2012) covers the 

determination of the resistance to scaling or flaking of the mortar of a horizontal concrete 

surface exposed to freeze/thaw cycles in the presence of deicing chemicals. This standard 

asserts that the method is “intended for use in evaluating this surface resistance 

qualitatively by visual examination”. 

A visual assessment is a subjective way of evaluation, especially to compare the 

effectiveness of different surface treatments regarding frost damage. As a result, a 

quantitative measurement of the evolution of damage as a function of cycles cannot be 

Figure 1: Visual rating for assessing Freeze/thaw damage (ASTM C 672, 2012) 
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determined. A study done by Liu et al (Liu & Hansen, 2016)  showed the effect of silane 

application on concrete surface exposed to freeze/thaw cycles. The mass loss was 

measured by weighing the specimen and determine its evolution as a function of cycles. 

No mathematical equation was present to predict this evolution according to the collected 

data. In addition, a regression analysis could have been made to determine the efficiency 

of the surface treatment regarding the different phases of freeze/thaw cycles. 

3. Concrete surface treatments 

The use of different surface treatments to protect the concrete surface from abrasion 

due to tire and freeze/thaw cycles in the presence of deicer chemicals has been widely 

elaborated (Pan, Shi, Shi, Ling, & Li, 2017). It is an economical way to protect the surface 

compared with other methods, such as decreasing the water to cement ratio or adding 

admixtures. It is widely acknowledged that a surface treatment has little effect on the 

strength of the concrete since it cannot improve the porosity and quality of the whole 

concrete matrix but only at the surface. The penetration depth of this chemical is often a 

few millimeters or even less (Pan, Shi, Shi, Ling, & Li, 2017).  

The different types of surface treatments are classified according to the chemical 

composition of their active agents: Inorganic and organic treatments. Organic surface 

treatments are commonly used for their protective action on concrete surfaces although 

their application indicated some disadvantages regarding chloride ion penetration and 

long-life performance. Silane, an organic surface treatment, showed a good performance 

in reducing water penetration by making the surface hydrophobic but its capacity to stand 

wear is significantly low or non-existent. The hydrophobicity of a material designates its 
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capability to repulse water which depends on the surface geometry and chemical 

composition (Liu, Chen, & Xin, 2006). In addition, as a designation of the degree of 

hydrophobicity, the contact angle between a drop water or any liquid and the surface is 

usually pointed out. Hydrophobicity is indicated by a contact angle greater than 90˚; as 

this angle decreases (less than 90˚), the surface has the tendency to absorb water as shown 

in figure 2 (I. Flores-Vivian, 2013). 

 

Compared to other hydrophobic agents, silane has smaller molecules which permits 

them to enter small pores, issuing in more effective surface treatments. These agents, in 

addition to their hydrophobic effects on the surface of the concrete, reduce the effect of 

freeze/thaw and minimize the bond between the concrete and the freezing water (Gao, 

Deng, & Yang, 2011). The silane structure is given in Figure 3a. Figure 3b shows the 

global structure of silane derivatives, where R can either be an alkyl, aryl or even any other 

organo-functonial group. OR’ generally designates an alkoxy functional group or a 

hydroxyl group (OH) or salt (ONa). 

 

Figure 2: Contact angle and surface - Reprinted from (I. Flores-Vivian, 2013) 

Figure 3: Silane structure (a), 

General structure of silane 

derivatives (b) 
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Based on sodium silicate, the inorganic surface treatments act as pore-blocking 

components. In contrast to the organic surface treatments, the inorganic treatments are 

more stable and resist aging but do not generate a hydrophobic layer. They are usually 

used to improve the abrasion resistance of the concrete pavement surface exposed to 

repetitive traffic loading. Typical inorganic surface treatment agents embrace potassium 

silicates, sodium silicate solution and fluosilicates (Bertolini, Elsener, Pedeferri, Redaelli, 

& Polder, 2013). The lithium silicate for e.g. reacts chemically with hydrated lime 

(calcium hydroxide), which is available at the surface of the concrete to create Calcium-

Silicate-Hydrate (CSH) gel, an insoluble wear and moisture protective surface. Normally, 

this lime is produced during the hydration of the cement and, in improper curing 

conditions, is suspended in the pore water and deposited on the surface as the water 

evaporates (ACI.2R-01, 2001). As a result of this reaction, the hardness and 

impermeability of the concrete surface layer increase (Thompson, Silsbee, Gill, & 

Scheetz, 1997).  

4. Assessment of the efficiency of concrete surface treatments 

a) Petrographic analysis 

In this dissertation, a qualitative analysis that embraces the assessment of 

interconnected capillary voids, carbonation and cracks will be done to identify the impact 

of a surface treatment on the microstructure of a concrete. 

A petrographic analysis is a study to examine samples of rocks or concrete and 

consequently be able to determine their mineralogical and chemical compositions. The 
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observations are accomplished using a polarizing microscope that requires the use of 

polarized light to scrutinize the optical properties of various specimens. Originally it has 

been used in the domain of geology. When Le Chatelier reported the presence of abundant 

clear colorless tricalcium silicate, dicalcium silicate, calcium alumino-ferrite and 

tricalcium aluminate using the polarizing microscope, this technique introduced a new era 

in the study of Portland Cement Concrete constituents. The petrographic study of concrete 

has a wide history, as depicted by the review published by Mielenz (Mielenz, 1962). The 

ASTM C 856 (ASTM C 856, 2018) outlines the steps for petrographic of samples of 

hardened concrete and how they can be examined and extracted from existent concrete 

structures. In addition, the ASTM C 457 (ASTM C 457, 2016), reports the procedures for 

microscopical determinations of specific surface, void frequency, spacing factor, air 

content and paste-air ratio of the air-void system. An optical microscopic analysis permits 

the investigation on the structure of cement paste, aggregates, micro voids and cracks in 

addition to the carbonation of aggregates (Georgali & Tsakiridis, 2005). In his review, 

W.J. French showed a detailed report of observations made on actual samples in order to 

evaluate quantitative information (French, 1991).  

b) X-Ray fluorescence 

The X-Ray fluorescence (XRF) is a non-destructive elemental analysis technique for 

quantification of nearly any element applied on the surface. This analytical method 

permits to identify and quantify the chemical composition of the materials, which can be 

solid, liquid or powder. Through its high precision, an XRF gun is capable of determining 

the thickness of multiple layers and coatings. Usually, the measurement time depends on 
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the number of elements and the required accuracy. Using a handheld XRF gun, this time 

varies between seconds and 30 minutes. The tool is cost-effective since the cost of well-

conducted testing and quality control is smaller compared to the cost of removing and 

replacing failed concrete structures. In the concrete industry, the XRF has been widely 

used and especially for quality control (QC) related to cement production. This test gives 

an accurate analysis in evaluating the raw materials, estimating the intermediate products 

such as the clinker and gypsum, and checking the required standards for cement 

production according to ASTM.  

Moreover, the XRF technique is able to assess the proportions of concrete mixtures 

and cementitious materials (Taylor, Yurdakul, & Ceylan, 2012) . Researchers used this 

device to study the properties of new concrete structures with recycled concrete aggregate 

(RCA) to compare the chemical composition between the RCA and natural aggregates 

(M.C.Limbachiya, E.Marrocchino, & A.Koulouris, 2007). Durability concerns have been 

treated by evaluating the initiation time to corrosion in reinforced concrete structures due 

to chloride penetration and estimating the remaining time. This has been done by 

characterizing the depth of penetration of the chloride ions using the XRF (Proverbio & 

Carassiti, 1997). In the study reported herein, the XRF gun is used to determine the 

different elements at the surface of a concrete specimen treated with a chemical and their 

depth of penetration. In order to determine the concentration of intended elements, the test 

is required to be implemented at depth intervals since only the atoms within the analysis 

depth are analyzed.  
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c) Water sorptivity index 

The deterioration of concrete pavements is usually affected by the transport of 

detrimental elements such as sulfate ions, chloride and water into the concrete. Although, 

permeability is an indicator of a concrete pavement’s capacity to carry water, oxygen or 

carbon dioxide, two mechanisms actually control the absorption and transport of water. 

Permeability, an indicator of the flow of water under pressure in a saturated porous 

material, and Sorptivity, which characterizes the material's potential to absorb and transmit 

water through it by capillary suction (Sabir, Wild, & O'Farrell, 1998). The sorptivity can 

be defined then as the rate of movement of water through a porous material under capillary 

action. This phenomenon has been studied by many researchers in order to come up with 

models and computational tools to predict the service life of concrete pavements (Bentz, 

Ehlen, Ferraris, & Garboczi, 2001). There are different methods to evaluate the absorption 

of mortar specimens and although these methods are very efficient, little in the literature 

has shown their application to evaluate a surface treatment’s ability to repel water or 

decrease the absorption capacity of a concrete surface. After conditioning, only the top 

surface of the specimen will be in contact with water and all the other sides sealed. 

Consequently, the absorption rate is a function of the change in specimen mass, the 

exposed area of the specimen and the density of water according to the following equation: 

𝐼 =  
𝑚𝑡

𝑎 ∗ 𝑑
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Where: 

𝐼 = The absorption, 

𝑚𝑡 = The change in specimen mass in grams, at the time t, 

𝑎 = The exposed area of the specimen in mm2, 

𝑑 = The density of the water in g/mm2.  

 

 

 

 

 

 

d) Rapid chloride penetration 

Chloride penetration is one of the main factors affecting the durability of reinforced 

concrete structures due to corrosion of the steel reinforcement. For corrosion to take place, 

four conditions must be met: High chloride concentration at the level of the rebar, presence 

of moisture, presence of oxygen and high electrical conductivity. Due to the high 𝑝𝐻 of 

the hydration products, the steel is usually protected from corrosion and the level of 

Figure 4: Schematic of the procedure (ASTM C 1585, 2011) 
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corrosion is therefore negligible. The penetration of chloride ions appears either through 

the capillary pores or through the cracks by capillary suction, diffusion or simply by 

permeation (Hilsdorf & Kropp, 1995). The diffusion of the chloride ions in the concrete 

decreases the 𝑝𝐻 to a level at which the oxidation reaction for corrosion can occur (𝑝𝐻 <

9). The oxidation that takes place within the concrete structure has dual adverse effects. 

The first effect is the reduction of steel cross section that may cause to uneven areas of 

steel required for carrying applied load. In addition, the rust occurred due to this oxidation 

will have notably higher volume than the original steel which leads to an increase of the 

internal stresses on the surrounding concrete causing it to crack and spall. One of the 

methods to identify the chloride penetration depth is by spraying 0.1 N silver nitrate 

aqueous solution on a cross section of split concrete (Otsuki, Nagataki, & Nakashita, 

1992). It has been shown that a good quality of concrete has a lower chloride penetration 

and the penetration depth increases with the length of exposure (Meck & Sirivivatnanon, 

2003). Moreover, Costa et al showed that the surface chloride content is not influenced by 

the concrete quality but it is greatly affected by the exposure conditions (Costa & 

Appleton, 1999).  

Other than the use of a solution of silver nitrate to identify the chloride presence, the 

ASTM C 1202 (ASTM C 1202, 2017), depicts a method that covers the determination of 

the electrical conductance of concrete to provide an indication of its resistance to chloride 

ions penetration. This test has proven to be an efficient test method for different types of 

concrete. Elsalamawy studied the efficiency of different surface treatments and 

crystallization materials in reducing chloride ions ingress in concrete (Elsalamawy, 
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Mohamed, & Abosen, 2017). It has been shown that the most effectiveness of the 

crystallization coating materials was only determined with old concrete specimens (3-4 

months).  

In the study reported herein, the surface treatments used are organic and inorganic 

treatments. A correlation of their different effectiveness will be established according to 

the rapid chloride penetration test. 
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CHAPTER III 

LABORATORY TESTING 

1. Overview 

The following test program aims to present an overview of the durability of the surface of 

concrete and mortar specimens regarding abrasion and freeze/thaw cycles. It introduces 

different laboratory testing to assess the efficiency of organic and inorganic surface 

treatments. A total of 6 mixture designs were assigned; two of them are concrete mixture 

proportions and 4 mortars. The different types of surface treatments used throughout the 

test program are explained in the following section. 

2. Surface treatments and applications 

A combination of surface treatments was provided by the manufacturer and are detailed 

in the following table (Table 1). 

Table 1: Surface treatments and type 

Name Type 

TRANSIL 5561/PLUS Inorganic 

TRANSIL 5560 Inorganic 

TRANSIL 6400 Unknown 

SILANE Z-6341 Organic 

SILANE 6595 Organic 
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The TRANSIL 5561/PLUS is a surface treatment clear, penetrating, breathable, 

surface-applied liquid treatment which strengthens, protects and hardens concrete 

pavements in cold climates subjected to freeze-thaw cycling, studded tires, and deicers. It 

is a concrete wear resistant surface hardener with anti-scale protection that is a low 

viscosity surface treatment that penetrates the wear layer of concrete. It is an inorganic 

surface treatment that combines lithium silicate chemistry with reactive silicon catalysts. 

Mostly water-based, this chemical combination forms an extremely hard and abrasion 

resistant compound which provides both increased abrasion resistance and moisture 

protection, making concrete more durable and less prone to scaling, spalling and 

deterioration from traffic wear. 

The TRANSIL 5560 protects and hardens concrete pavements. Its high performance 

to maximize durability and longevity of tined, diamond ground, grooved, milled and shot-

blasted makes the surface less prone to rutting and early wear. TRANSIL 5560 penetrates 

the wear layer of concrete, where it reacts with the free lime to form calcium silicate 

hydrate and consequently leads to an insoluble wear and moisture protective surface. 

Apparently, the only difference between this surface treatment and the TRANSIL 

5561/PLUS is that it has low effect on protecting the concrete pavement against 

freeze/thaw cycles.  

Concerning the TRANSIL 6400, its chemical composition is based on silicon and 

will be used as a post product applied on the top of a surface treatment. The Silane Z-

6341 and Silane 6595 are both organic treatments and perform well in reducing water 

penetration by making the surface hydrophobic. 
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3. Concrete and mortar constituents, mix designs, and curing 

a) Concrete mixture proportion  

Two concrete mix designs were utilized for this study. An ASTM specification C 150-

07 (ASTM C 150-07, 2007) Type I/II Portland cement was used. Two types of coarse 

aggregates were present with a maximum size of 25mm. The fine aggregates consisted of 

natural, clean silica sand with a maximum size of 4.75mm. Class C fly ash was added as 

a 40% cement replacement (ASTM C 618, 2008). The aggregates’ specifications were 

determined according to the ASTM C 127 (ASTM C 127, 2004) and ASTM C 128 (ASTM 

C 128, 2004). The mix proportion of concrete is summarized in Table 2. 

Table 2: Concrete Mixture Proportions vs. TRANSIL 5561/PLUS 

Mixture Component Quantities lbs./yd3 

Mix design 1 Mix design 2 

Cement 395 395 

Fly Ash 169 169 

River Gravel 1765 0 

Limestone 0 1763 

Sand 1243 1167 

Net Water 224 231 
 

w/c = 0.44 

Coarse Aggregate Factor = 0.68 

No air entraining and admixtures 

 

The coarse aggregates were washed to remove all dirt and then were added to the sand in 

the mixing container. The cement and fly ash were added to the mixture. When a 
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homogenous mix was obtained, the water was finally added. The batch was remixed 

periodically until the concrete was homogenous and reached the desired consistency 

according to the ASTM C 192 (ASTM C 192, 2007). As recommended for any freeze/thaw 

test, the designed air content for the two mix designs was fixed at 6.0%. For each mix, the 

concrete specimens were cast in plastic squares (6 × 6 in.) and in cylinder molds (4 × 8 

in.). 

b) Mortar mixture proportion  

Concerning the mortar mixture procedure, the ASTM C 305 (ASTM C 305, 2014) 

was adopted and the four mix designs are showed in the following tables (Table 3-4).  

 

Table 3: Mortar mixture proportions 3&4 

 

 

 

Mixture Component Quantities lbs./yd3 

Mix design 3 Mix design 4 

Cement 923 974 

Fly ash 277 292 

Sand 2521 2661 

Net Water 315 239 

w/c  0.48 0.38 
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Table 4: Mortar mixture proportions 5&6 

 

4. Test program 

The test program exposed in the following section consists of testing different 

combinations of surface treatments regarding their efficiency to improve the resistance to 

abrasion and freeze/thaw cycles of the concrete mixtures (Mix 1&2) and mortar specimens 

(Mix 3&4). Mix 5 & 6 will be used to assess the effect of the surface treatments on the 

porosity of surface.  

a) Specimen preparation 

Table 5 summarizes the specimens used in this study for Mix 1&2. All specimens 

cured in a controlled room at 20˚C and 100% Relative Humidity for 28 days. The 

specimens with river gravel reached a compressive strength of 4,900 psi. The specimens 

with limestone had a compressive strength of 5,900 psi at 28 days. Mix 3 (w/c = 0.48) had 

a compressive strength of 3,789 psi and Mix 4 (w/c = 0.38) a compressive strength of 

4,816 psi. A dike about 25 mm wide and 20 mm high was placed along the perimeter of 

Mixture Component Quantities lbs./yd3 

Mix design 5 Mix design 6 

Cement 1080 1123 

Sand 2145 2230 

Net Water 535 438 

w/c  0.48 0.42 
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the surface of the specimens subjected to the freeze/thaw test in order to prevent any 

possible deicer solution leaks. This dike was adhered to the edge of the specimens by using 

a waterproof epoxy. 

Table 5: Specimens Mix 1&2 

 

 

 

 

Specimens Shape Dimensions 

(in2) 

ID Number of 

specimens 

Type of test 

Control Square 6 × 6 CN/F 1 Abrasion 

Square 6 × 6 CF(15) 1 15 cycles Freeze/thaw 

Treated Square 6 × 6 TN/F 2 Abrasion 

Square 6 × 6 TF(15) 2 15 cycles Freeze/thaw 

Figure 5: Specimens 

cylinder 

Figure 6: Specimens shape and 

preparation 
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b) Surface treatments applications  

After 28 days, the specimens were exposed at 23 +/- 2˚C and 50% relative humidity 

for 24h. The surface treatment was applied at a rate of 175 ft2/gallon to the top surface of 

the specimens, followed by a 24h drying period. The control specimen has not been 

treated. The following table exposes the different types of surface treatments used.  

 

Table 6: Specimens and surface treatments 

Mixture Surface Treatment ID Test performed 

1 & 2 TRANSIL 5561/PLUS Refer to Table 5 Refer to Table 5 

 

 

 

3 (w/c = 0.38) 

TRANSIL 5560 + 

TRANSIL 6400 

T5560/6400  

 

 

Abrasion 

TRANSIL 5561 + 

TRANSIL 6400 

T5561/6400 

TRANSIL 5561/PLUS T5561 

Silane Z-6341 S6341 

Silane 6595 S6595 

 

 

 

4 (w/c = 0.48) 

TRANSIL 5560 + 

TRANSIL 6400 

T5560/6400  

 

 

Freeze/Thaw 

TRANSIL 5561 + 

TRANSIL 6400 

T5561/6400 

TRANSIL 5561/PLUS T5561 

Silane Z-6341 S6341 

Silane 6595 S6595 

 

 

5 & 6 

100 % Silane Z -6341 100%Z6341  

 

Refer to table 7 

40 % Silane Z-6341 40%Z6341 

TRANSIL 5561/PLUS T5561 

TRANSIL 5561  + 

TRANSIL 6400 

T5561/6400 

1 - 6 None Control (C) All tests 
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Table 7: Test program Mix 5&6 

Test Specimen 

Shape 

Dimensions 

(in) 

 

Standard 

Water sorptivity index test Cylinder 4×2 ASTM C1585 

Rapid chloride migration test 

(RCMT) 

 

Cylinder 4×2 ASTM C1202 

Microscopical analysis Slide 2×3 ASTM C856 

X-ray fluorescent (XRF) Cylinder 4×4 ASTM D5381 

 

c) Abrasion test 

The abrasion test was based on the ASTM C 944 (ASTM C 944, 2006) as a means to 

simulate the effects of wear on roads under the action of chains and metal wheels. This 

test consists of a drill press with a chuck capable of holding and rotating the abrading 

cutter at a speed of 200 rpm and exerting a force of a normal load of 44 ± 0.4lbf. In this 

study, a constant load is used during 3 cycles of 2, 4 and 6 minutes. At the end of every 

cycle, a high-pressure air blower was used for cleaning up the loose dust to prepare the 

specimen to be weighed. The cumulative mass loss was consequently determined. 

Figure 8: Typical rotating cutter (ASTM 

C 944) Figure 7: Abrasion machine 
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d) Salt scaling test 

An abbreviated method of the ASTM C 672 (ASTM C 672, 2012) was used to perform 

this test. After 28 days, 6 mm of a solution of a 4 wt. % deicer calcium chloride was added 

at the surface of the specimens. The specimens were alternately placed in a freezing 

environment at -18˚C for 16h then allowed to thaw at 23˚C for +/- 8h which corresponds 

to a single cycle. Unlike the ASTM C 672 that uses a visual rating system, a modified 

approach recommended by the Strategic Highway Research Program (SHRP) and 

Canadian Standards Association (CSA) was performed. Water was added between each 

cycle to maintain the proper depth of solution. After every five cycles, a visual assessment 

was made and the specimens were flushed with tap water. The eroded aggregates and paste 

were washed into a funnel with a filter paper inserted. The filter paper was dried at 38˚C 

overnight and the weight was recorded. The cumulative weight loss from the exposed 

aggregate surface is considered to be an indication of the severity of the deicer chemical 

and the efficiency of the surface treatment used. The test was conducted for 15 cycles. 

 

 

 

 

 

 

 

Figure 10: Environmental 

machine 

Figure 9: Specimens in the 

environmental chamber 
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The objective of the following tests done on the specimens from Mix 5&6 is to examine 

microscopically different combination of surface treatments (Table 6) with respect to: 

1. The chemical elements at the surface using an X-ray fluorescence analyzer (XRF) 

2. Their capacity to repel water or reduce the size of the pores by performing the 

water sorptivity test.  

3. Their efficiency regarding the chloride ions penetration in the concrete sample 

through the surface.  

4. A qualitative analysis of the interconnected capillary voids, the bleeding channels 

and carbonation. In addition to a study of the area and density of the voids by 

performing a petrographic analysis on thin section of the concrete samples.  

A subjective correlation between the results of each assessment should enhance the 

understanding of the function of these surface treatments and their capacity to improve 

abrasion and freeze/thaw damage.  

e) Water sorptivity test 

After curing, the 4×8 (in) cylinders were reduced to 4×2 (in). The objective of this test 

is to determine the susceptibility of an unsaturated concrete to the water penetration 

following the ASTM C 1585 (ASTM C 1585, 2011) procedure. This method differs from 

the test depicted in the ASTM C 642 (ASTM C 642, 2013) where the specimens are 

completely immersed in the water after being oven dried. In this test method, only the 

surface is exposed to water at room temperature while the other surfaces unexposed are 

sealed. The absorption is consequently unidirectional. The test started by conditioning the 

samples. After curing, every sample is put separately in a desiccator connected to a pump 
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in order to remove all the air from the voids for a duration of 30mins (Figure 11). 

Consequently, the surface of the specimen will have a higher pressure than the pores’ and 

this will allow a direct suction of the water at the surface of the concrete specimen. 

Following that, all the sides of each specimen were sealed with duct tape and the mass of 

the conditioned specimen recorded in addition to the area of the specimen in contact with 

the surface of the water. 

  

A support device was built at the bottom of the pan after it has been filled with water (1 

to 3mm above the top of the support device). The specimens were put upside down on the 

support device and whenever in contact with the water (no more than 2mm), the timing 

device started. Every time intervals, the specimen were removed from the pan, the timing 

device stopped and a dry towel was used to tap the surface and remove the excess of water. 

Following that, the specimen’s mass was determined using an electronic scale. After the 

mass was recorded, the specimens were immediately put again in the pan. The test lasted 

Figure 11: Desiccator for conditioning Figure 12: Samples in the pan 
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for 10 days. The following figures (Figure 13-15) show the contact angle of a drop of 

water at the surface of the treated and untreated specimens. 

 

 

 

Figure 13: Drop of water at the surface of two specimens at t = 0mins 

Figure 15: Same drop of water after t = 5mins 

Figure 14: Upper view of the two specimens 

after t = 10mins 
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f) X-Ray fluorescence analyzer test 

The XRF is a non-destructive elemental analysis technique for quantification of nearly 

any element applied on the surface. This analytical method permits to identify and quantify 

the chemical composition of the materials, which can be solid, liquid or powder. The 

purpose of the test performed in this section is to assess the chemical composition at the 

top of the treated surface and try to quantify the permeation of the surface treatment by 

identifying the elements at a certain depth. The specimens tested were reduced to a height 

of 2-3in after they have been treated with the designated product. The test was based on 

the ASTM D 5381 (ASTM D 5381) and following the instructions provided by the 

manufacturer of this instrument.  

Before the test, the instrument was calibrated using a stainless steel #316 discs to check 

the operation of the XRF instrument. The test started first by isolating the solid supported 

by briquettes on a table. The first attempt was the application of the XRF directly at the 

surface of the specimen followed by several attempts made at different depth intervals 

(every 2mm) (Figure 16). Once the test was performed, the data was visible on the screen 

of the analyzer with the different chemical elements and their associate percentages. The 

analyzer was connected to a computer in order to collect all the data after the test.  

 

 

 

 

 

Figure 16: XRF Test 
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g) Petrographic analysis test 

A petrographic analysis is a study accomplished using a microscope to examine 

samples of rocks or concrete and consequently be able to determine their mineralogical 

and chemical compositions (Figure 17). The microscopical analysis is a very useful 

technique to provide useful data on the analysis of the cement, concrete and other 

construction materials. Microscopy is a convenient method in order to understand the 

mechanism of the concrete structure by combining complementary techniques like 

electron microscopy and chemical analysis.  

The test was performed on 10 sections (5 samples from each mix design). The concrete 

specimens were sent to National Petrographic Service, Inc. in Rosenberg in order to make 

the thin sections. The procedure for the petrographic examination of the samples of 

hardened concrete was done according to ASTM C 856 (ASTM C 856, 2018). Many 

features can be made regarding the materials coherence, the air voids, the nature of the 

external surface, the coarse aggregate type, the nature of the different types, the size range 

and distribution of the voids etc. For this study, we were interested in making a qualitative 

analysis of the interconnected capillary voids, the bleeding channels and the carbonation 

rate. Consequently, we would be able to understand the effect on a microscopic scale of 

the different combination of surface treatments applied on the surface of the cured concrete 

samples. In addition, the results obtained during this test will be correlated to the other 

results of previous test in this phase of this study. 
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h) Rapid chloride penetration test 

The objective of this test is to determine the electrical conductance of concrete samples 

in order to provide a rapid indication of its resistance to the penetration of chloride ions. 

This penetration occurs through the capillary pores, the cracks by permeation, the 

diffusion and also the capillary suction. The experiment consists of controlling the amount 

of electrical current passed through 50mm thick slices of 100mm nominal diameter 

cylinder according to ASTM C 1202 (ASTM C1202, 2017).  

The main materials used are the following: Specimen-Cell Sealant, Sodium Chloride 

Solution – 3.0%, Sodium Hydroxide Solution – 0.3 N, an applied voltage Cell, a data 

Readout Apparatus.  

 

Figure 17: Petrographic microscope 
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Conditioning  

Since ingress of chloride ions into concrete only takes place when the pores of the 

specimen are fully or partially filled with water, conditioning is an important phase of the 

experience. All specimens (treated or not) cured for 56 days before testing. The specimens 

were put in a vacuum desiccator with both end faces exposed. Using a pump, the pressure 

inside the desiccator decreased to less than 50mm Hg for 3 hours (Figure 18). While the 

vacuum pump was still running, water was added to the container. Once the pump was 

turned off, the specimens were let soaked in the water for 18 hours.  

Procedure 

The specimens were removed from the container, mounted on the two cells and sealed 

with epoxy. One side was filled with 3.0% NaCl and the other with 0.3 N NaOH. Electrical 

connections were made to voltage application and data readout apparatus. Once everything 

was set, the power supply was turned on and set to 60 V. Every 30mins, a reading of the 

data was made for a total of 6 hours (Figure 19-20). 

 

 

 

 

 

 

 

 
Figure 18: Pump connected to a 

desiccator 
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Figure 19: Specimens sealed to the cells 

Figure 20: Readings obtained during 

the test 
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CHAPTER IV 

RESULTS, ANALYSIS AND DISCUSSION2 

1. Test results  

a) Abrasion of concrete  

The abrasion resistance of surface-treated concrete is an indicator of the longevity of the 

surface treatment under repetitive traffic loading. However, when the surface is 

completely worn away, the abrasion resistance depends on many other factors such as the 

abrasion resistance of the aggregates, their shape and sizes. During the entire test, the 

surface treatment used showed a significant impact on improving the abrasion resistance 

of the concrete surface (Figure 21). For the mix with river gravel, the surface treatment 

performed well during the whole test and especially during the first 4 minutes where only 

the surface was abraded. By contrast, the control limestone mixture showed more damage 

during the first 2 minutes. Following that, the results were mixed. The limestone 

demonstrated an anisotropic behavior during the test, which illustrates a lack of 

homogeneity underneath the abraded layer. It was predicted that the samples with 

limestone would exhibit less loss damage since they had a higher compressive strength 

than the samples with river gravel. As the compressive strength increases, the resistance 

to abrasion increases and consequently leads to a lower mass loss. Moreover, the coarse 

                                                 

2 Part of the contents in this chapter is reprinted with permission from: 

An approach to characterize the wearability of concrete pavement surface treatments, by Abou Sleiman 

C., Shi X., and Zollinger D., Transportation Research Record: Journal of the Transportation Research 

Board, 2019. DOI: https://doi.org/10.1177/0361198118821668. 
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aggregate factor had a major role regardless of the type of aggregates used. The wear 

resistance of concrete pavement depends on the proportion of coarse aggregates adopted; 

a concrete specimen with a high coarse aggregate factor will exhibit less loss damage due 

to abrasion. In addition, the downward pressure applied during the test had a significant 

impact in the mass loss results. The chemistry of this specific surface treatment based on 

reactive lithium and silicon enhanced the bonding with calcium hydroxide to lead to a 

better quality and tougher concrete surface. 

 

b) Abrasion of mortar 

In order to prevent the effect of the choice of aggregates on the abrasion resistance, 

the abrasion test was performed on mortar specimens. The abrasion resistance of a 

concrete pavement surface is related to the quality of the surface whenever it is eroded, 

permeable or soft. As described by the manufacture, the two types of TRANSIL 

Figure 21: Cumulative mass loss for Mix 1&2 
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(TRANSIL 5561/PLUS and TRANSIL 5560) which are inorganic surface treatments 

maximize the longevity of a concrete pavement surface under abrasion due to tires. Results 

from the abrasion test are presented in the following figure (Figure 22). The TRANSIL, 

regardless its type, showed less cumulative mass loss than the control and Silane 

specimens. In addition, the post treatment TRANSIL 6400 increased the resistance to 

abrasion if a comparison between the T5561/T6400 and T5561 is made. 

By comparing the T5560/T6400 and T5561/T6400, it is clear that the T5560 doesn’t 

have the same effect as the T5561 regarding its capacity to protect from abrasion. 

Moreover, the specimens treated with Silane (S6341 and S6595) – organic surface 

treatment showed an equivalent cumulative mass loss compared to the control specimen. 

 

 

 

Figure 22: Cumulative mass loss due to abrasion Mix 3 
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c) Scaling resistance of concrete exposed to freeze/thaw and deicer chemical 

Every 5 cycles, the surface of the specimens was washed and the cumulative weight loss 

was measured. This mass loss is an indicator of the longevity of the surface treatment. 

During the 15 cycles and for the two mix designs, the untreated specimens showed a 

significant mass loss compared to the treated concrete specimens (Figure 23). The mass 

loss was more significant during the 15 cycles for the specimens with river gravel than for 

the ones with limestone (Figure 23 - 25). This additional result asserts that the aggregate 

characteristics control the frost damage. The gravel aggregates were larger than the 

limestone aggregates. Under freezing conditions, the unfrozen water in smaller aggregate 

particles is expelled quickly without developing damaging pressure within the structure of 

the concrete. Pore structure (i.e., pore size, pore shape and pore distribution) is also an 

indicator of the performance of an aggregate under freeze/thaw cycles. 

 
Figure 23: Cumulative mass loss for Mix 1&2 
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d) Scaling resistance of mortar exposed to freeze/thaw and deicer chemical 

The freeze/thaw test was conducted on concrete specimens with a w/c = 0.48 for a period 

of 20 cycles. According to the results (Figure 26), the two types of Silane (S6595, S6341) 

and the T5560/T6400 showed no cumulative mass loss during the whole test. The 

TRANSIL 5561/PLUS (T5561) showed more mass loss than the TRANSIL 5561/PLUS 

with the post surface treatment TRANSIL 6400 (T5561/T6400) (Figure 27-29). The post 

Figure 24: Results for the mix with river gravel after 15 cycles 

Figure 25: Results for the mix with limestone after 15 cycles 
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treatment increased the resistance to freeze/thaw. The untreated specimen had a higher 

cumulative mass loss than all the other specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Cumulative mass loss due to freeze/thaw for Mix 4 

Figure 27: Control specimen and TRANSIL 

5561/PLUS 
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Figure 28: T5560/T6400 and T5561/T6400 

Figure 29: S6595 and S6341 
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e) Freeze/thaw test on abraded mortar specimens from Mix 3 

The following test was performed on the specimens subjected earlier to the abrasion test. 

These specimens have a w/c = 0.38. This procedure simulates the action of the metal 

wheels on the concrete pavement and its exposure to freezing and thawing conditions. The 

test was conducted for 20 cycles. The results appear in the following figures (Figure 30-

31). 

 

 

 

 

 

 

 

Figure 30: Cumulative mass loss due to freeze/thaw on abraded specimens 

Figure 31: Visual assessment of Freeze/thaw damage and mass loss 

collection 
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The control specimen showed more mass loss due to freeze/thaw cycles than all the other 

specimens. According to the results obtained, the surface treatments were not totally worn 

away due to the abrasion test since the resistance to freeze/thaw of the specimens can still 

be remarkable. During the abrasion test, the specimens treated with the Silane showed an 

equivalent mass loss compared to the untreated specimen. During the salt scaling test, the 

difference between these two mass losses increased significantly. This is an indicator that 

the silane could have entered the pores of the concrete where its efficiency was noticeable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Fitting curve of the cumulative mass loss 
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f) Water sorptivity test 

At a given time-intervals, the change in mass of each specimen was recorded in order to 

calculate the absorption, I, given by the following equation.  

Where: 

Where: 

𝐼 = The absorption, 

𝑚𝑡 = The change in specimen mass in grams, at the time t, 

𝑎 = The exposed area of the specimen in mm2, 

𝑑 = The density of the water in g/mm2.  

The initial absorption rate of water (mm/s1/2) can be determined as the slope of the line 

that is the best fit to I plotted as a function of the square root of time (s1/2) using a regression 

analysis from 1min to 6h. If the data doesn’t show a linear relationship, the initial rate 

cannot be determined.  

The secondary absorption rate of water (mm/s1/2) can be determined as the slope of the 

line that is the best fit to I for the data between 1 to 7 days.  

Both absorption rate can be used to evaluate the connectivity of the pore network. The 

following figure (Figure 33) shows the result for the control specimen of the mix design 

with w/c = 0.48. All other graphs are in the Appendix A.  

𝐼 =  
𝑚𝑡

𝑎 ∗ 𝑑
 

(1) 
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The following figures (Figures 34-37) summarize both initial and secondary rate of 

absorption for each sample and for each mix design. 

 

 

 

 

 

 

 

 

 

 

Figure 33: Absorption of the Control sample (w/c=0.48) 
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Figure 34: Initial rate of absorption - Mix design 0.48 

Figure 35: Secondary rate of absorption - Mix design 0.48 
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Figure 36: Initial rate of absorption - Mix design 0.42 

Figure 37: Secondary rate of absorption - Mix design 0.42 
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By comparing each mix design apart, the initial rate of absorption of the control specimen 

was higher than the initial rate of all the other specimens. The specimens treated with 

silane either diluted or not, showed a low rate of water absorption. The result is an 

indicator that the organic treatment decreases the amount of water sucked in the concrete 

pores. Moreover, the post treatment (TRANSIL 6400) shows an efficiency in reducing the 

water absorption. It is also remarkable that the TRANSIL 5561 (inorganic surface 

treatment) doesn’t decrease the rate of absorption. As the secondary absorption rate 

occurs, an increase of the absorption rate related to the treated specimens an increase of 

the absorption rate is noticeable and this is an indicator of the long term effect of the 

product applied. For the control specimens, this rate decreases since from the beginning 

the pores have been filled with water and the specimen is consequently saturated.  

By comparing the result with the initial rate of absorption of the two control samples, the 

specimen with a w/c=0.48 showed a higher absorption rate than the one from the mix with 

w/c=0.42. Indeed, the higher the w/c ratio, the larger are the pores and the larger the 

absorption volume.  

g) Petrographic analysis 

The petrographic study was performed on 10 thin sections (2 × 4 in) (5 for each mix design 

and one per sample). The information was provided for each observation and related to: 

carbonation rate, the capillary voids, the voids and the cracks. The following tables 

summarize the findings. 
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Table 8: Petrographic analysis results for mix design w/c =0.48 

 

 

All figures are presented in the Appendix B.  

It should be noted that all specimens cured following the same method as depicted earlier 

and during the same time.   

 

 

 

 

 

 

 

Sample ID w/c Carbonation Capillary pores Voids Cracks 

C 0.48 - Sample 

completely 

carbonated 

- High amount 

of capillary 

pores 

- Important 

bleeding 

channels 

- No 

information 

provided 

40%Z6341 0.48 - Intense at the 

top layer 

-Isolated and 

relatively low 

- Normal 

distribution 

- No voids 

at the 

surface 

- Normal 

micro-

cracks 

100%Z6341 0.48 - Same as 

sample 

40%Z6341 

- Normal 

distribution 

- Low voids 

distribution 

- Some 

vertical 

cracks. 

T5561/PLUS 0.48 - Intense at the 

surface but 

going deeper 

- Some 

capillary pore. 

- Normal 

voids 

distribution 

- Normal 

shrinkage 

cracks 

T5561/T6400 0.48 - Similar type 

as all the other 

samples at the 

top thin layer 

- Low capillary 

pores. 

- Normal 

entrapped 

voids. 

- Normal 

micro-

cracks 
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Table 9: Petrographic analysis results for mix design w/c =0.42 

 

 

h) X-Ray fluorescence test 

The X-Ray Test was performed on all the treated and untreated specimens at the top 

surface and at a depth of 2, 4 and 6 mm in order to identify and quantify the chemical 

composition of the surface treatment. Knowing the chemical composition of the surface 

treatments, there trace can be identified on the specimens.  

Sample ID w/c Carbonation Capillary 

pores 

Voids Cracks 

C 0.42 -Huge  

carbonated 

- Capillary 

voids 

relatively 

high 

- Entrapped 

voids 

- Cracks 

visible at 

top 

40%Z6341 0.42 - low compared 

to the 

40%Z6341(0.48) 

 

- Normal 

distribution 

- No voids 

at the 

surface 

- Normal 

micro-

cracks 

100%Z6341 0.42 - Intense 

carbonation at 

the surface 

missing. 

- Normal 

distribution 

- Normal 

voids 

distribution 

- No 

information 

provided 

T5561/PLUS 0.42 - Normal 

carbonation at 

the top thin layer 

(higher than the 

T5661/T6400) 

- Low 

capillary 

pores 

- Normal 

entrapped 

voids 

- Some 

cracks 

T5561/T6400 0.42 - Intense at the 

top layer 

 

- Low 

capillary 

pores and no 

bleeding 

channels. 

- Normal 

entrapped 

voids. 

- Normal 

micro-

cracks 
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According to the manufacture’s information the chemical composition of the different 

surface treatments used for this test is summarized in the following table: 

Table 10: Surface Treatments chemical composition 

 

The results of the X-ray on the specimens are the following: 

Table 11: X-Ray Results for w/c=0.48 

 

Surface 

Treatment 

Chemical Composition 

TRANSIL 

5561/PLUS 

Si Cl K As Li H2O 

Silane 6341 Si K Al Ge   H2O 

TRANSIL 6400 Si Cl K Ca Ge H2O 

w/c = 0.48 Ca (%) K (%) S (%) Al(%) Si(%) Cl(%) 

C 20.92 1.35 0.06 0.68 18.62 0.00 

40% Z6341 

surface 

21.80 1.58 0.04 1.00 15.88 0.00 

40% Z6341 

Average 

23.18 0.83 0.79 0.78 21.55 0.02 

100%Z6341 

surface 

18.98 1.58 0.04 0.74 21.88 0.00 

100%Z6341 

Average 

23.74 0.93 0.75 1.00 20.95 0.02 

T5561/PLUS 

Surface 

18.98 1.58 0.04 0.74 21.88 0.00 

T5561/PLUS 

Average 

21.36 0.79 0.82 0.81 21.58 0.01 

T5561/T6400 

surface 

17.56 1.67 0.00 0.61 22.59 0.00 

T5561/T6400 

average 

23.14 0.82 0.68 0.79 22.64 0.00 
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Table 12: X-Ray Results for w/c=0.42 

 

The “Average” value represents the percentage average of each chemical element between 

2 to 6mm depth. The X-Ray gun was not able to identify the lithium since it is a light 

element. Since the Si and S are also present in the mortar due to the sand, no valuable 

results can be interpreted using the data provided by the XRF.  

 

 

 

 

 

 

Sample 0.42 Ca (%) K (%) S (%) Al(%) Si(%) Cl(%) 

C 22.22 1.41 0.04 0.64 16.34 0.00 

40% Z6341 

surface 

22.57 1.45 0.04 0.62 13.60 0.00 

40% Z6341 

Average 

19.50 1.02 0.75 0.76 24.43 0.02 

100%Z6341 

surface 

21.59 1.49 0.04 0.56 13.89 0.00 

100%Z6341 

Average 

20.85 1.28 0.65 0.89 22.96 0.01 

T5561/PLUS 

Surface 

18.52 1.75 0.04 0.55 24.96 0.02 

T5561/PLUS 

Average 

20.58 0.99 0.71 0.65 21.22 0.01 

T5561/T6400 

surface 

18.46 1.58 0.04 0.59 22.32 0.01 

T5561/T6400 

average 

20.89 1.07 0.58 0.92 23.91 0.01 
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i) Rapid chloride penetration test 

This test method is based on measuring the electric conductivity through the specimen 

as a mean to determine the permeability of the chloride ions as a function of time. The 

more permeable the concrete is, the more chloride ions will migrate through the specimen, 

and a higher current will be measured by a device connected to it. The test was conducted 

for 6 hours after the specimens were soaked in water for 24 hours. The PROOVE’it system 

applies an electrical potential across the test in accordance to the ASTM C 1202 and will 

give a direct measurement of the current.  

The test was performed on the 5 specimens for each mix design (w/c = 0.48 and 0.42) 

and the results are depicted in Appendix C. It is noted that the blue line designates the 

evolution of the heat during the 6 hours’ test.  

For each mix design, according to the results obtained, the untreated specimen showed a 

high penetration to chloride ions. By comparing the Transil 5561/PLUS and the Transil 

5561/PLUS and TRANSIL 6400, the T5561/T6400 showed a lower permeability for the 

two mix designs. The permeability of the chloride ions is significantly lowered when using 

the Silane Z6341. The higher the percentage of silane, the better resistance to chloride 

penetration. In general, it has been shown that the lower the w/c ratio is the more resistant 

the specimen to chloride penetration will be. 

Following the test, the specimens were transversely cut and a solution a silver nitrate 

AgNO3 was added to identify the presence of chloride ions in the specimen (Figure 38). 

The intensity of the change of color is an indicator of the intensity of the chloride ions in 

the specimen. 
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2. Analysis of the results  

The data of the variation of the cumulative mass loss of the specimen treated with Silane 

Z-6341 was used to determine the fitting curve by using a regression analysis and 

SOLVER on Excel (Figure 32). The equation of the variation of the mass loss as a function 

of the number of cycles is: 

Where,  

m = cumulative mass loss  

N = Number of cycles 

x0 , A and α are fitting coefficient.  

 

m =  e
[ln(x0)−(

A
N

)
α

]
 

(2) 

Figure 38: Identification of chloride ions in the 

specimens 
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In this section of this project, the efficiency of organic surface treatments as Silane and 

inorganic products as Transil was studied regarding abrasion and freeze/thaw cycles tested 

on mortar specimens to avoid the impact of the aggregate properties on the results. It has 

been shown that the organic surface treatments have a poor effect on increasing the wear 

resistance of the surface. In opposition, the inorganic surface treatments showed a 

significant improvement of the surface resistance to wear. Regarding the salt scaling test, 

the organic surface treatments performed well compared to the inorganic ones. It has been 

shown too that the use of a post surface treatment such as the TRANSIL 6400 in this case 

can improve the properties of inorganic surface treatments with respect to frost resistance. 

Moreover, tests showed that the abrasion test has little effect on the surface treatments 

used since the resistance to frost damage is still remarkable after the specimens have been 

abraded.  

In addition, by analyzing the results from the mortar mix design (Mix 5) with a w/c= 

0.48, it was demonstrated that the Silane (40%Z6341 and 100%Z6341) and the Transil 

5561/PLUS with the TRANSIL 6400 decrease the carbonation with depth even though 

this carbonation is present at the surface. By comparing the efficiency of the TRANSIL 

5561/PLUS and T5561/T6400, the post treatment decreased the carbonation rate. In 

addition, important amount of capillary pores and voids were identified in the control 

sample. No voids were found at the surface of the specimens treated with Silane. 

Regarding the results obtained from the mix design (Mix 6) with w/c = 0.42, the 

carbonation is still important in the whole untreated specimen. According to the results 

from the other samples, the same conclusions can be made. As the water to cement ratio 
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decreases, the carbonation rate decreases by comparing the carbonation of the specimen 

treated with 40% Silane for the mix design with w/c=0.48 and w/c=0.42.  
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CHAPTER V 

AN APPROACH TO CHARACTERIZE THE WEARABILITY OF CONCRETE 

PAVEMENT SURFACE TREATMENTS 3 

 

The following method can be used as an approach to predict the concrete pavement’s life 

under dry erosion damage regardless of the type of abrasion test used to evaluate the 

efficiency of a surface treatment. 

1. Analytical approach 

During the abrasion test, the abrading cutter generated a circular wear path on the 

concrete surface. An effective shear stress term, τ, is proposed to quantify the average 

stress level on the abrading zone of concrete specimen (Figure 39). This shear stress will 

evoke a mass loss gradually resulting to a wear depth.  

 

 

 

 

 

 

                                                 

3 Part of the contents in this chapter is reprinted with permission from: 

An approach to characterize the wearability of concrete pavement surface treatments, by Abou Sleiman 

C., Shi X., and Zollinger D., Transportation Research Record: Journal of the Transportation Research 

Board, 2019. DOI: https://doi.org/10.1177/0361198118821668. 

 

Effective shear stress,τ

Concrete sample 

Wear path

Figure 39: Effective shear stress 
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The averaged abrasion depth, D, is computed: 

 
 

D =
∆V

A
 

       (3) 

 

 

∆V= Volume of material loss during the test (m3),       

 

 
∆V =

 ∆m

ρ
 

(4) 

 

∆m  =  mass loss.                                                   

A =  cutter contact area (m2), which equals to the area of wear path.  

ρ  = density of concrete.  

 

A term, the abrasion coefficient (c), is further defined to account for the velocity of the 

abrading surface. This coefficient is then converted to a dimensionless term using the 

depth of wear.   

 

 

 

c =
D

vt
 

 

(5) 

V = 200rpm = 0.9299m/s = The velocity of the abrading cutter (m/s) 

T = 6 minutes = 360 s  = test time (s) 

Table 13 summarizes the results for each mix obtained during the abrasion of the 

specimens from Mix 1&2. 
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Table 13: Abrasion coefficient and Averaged depth of wear 

Mix 

design 

Specimen 

Type 

ID ΔV (m3) × 10-6 D (m) Abrasion 

coefficient × 10-7 

River 

Gravel 

Control CN/F 2.78 0.000488 14.56 

Treated 

Specimens 

T1N/F 2.34 0.000410 12.25 

T2N/F 2.45 0.000429 12.82 

Limestone Control CN/F 1.72 0.000302 9.02 

Treated 

Specimens 

T1N/F 1.89 0.000332 9.91 

T2N/F 1.89 0.000332 9.91 

The abrasion coefficient can also be determined using its relationship with the strength of 

the material and the shear stresses induced by the tire. A large abrasion coefficient implies 

a more abraded surface since the average abrasion depth D is important. The 

stress/strength, R, of the concrete is obtained: 

 𝑅 =  
𝜏

𝑓𝜏
 

(6) 

 

 

Where, 𝑓𝜏 = the shear strength of the material and 𝜏 = the shear stress. 

It is assumed that the relationship between the abrasion coefficient, c, and the 

stress/strength, R, can be correlated linearly as (X., 2019): 

 𝑐 = 𝑚𝑅 + 𝑛 

 

(7) 

Where m and n are fitting coefficients.  

The value R can be determined knowing the shear stress on the pavement and the shear 

strength of the material. Following that, the linearity between R and the abrasion 

coefficient, c, will lead to determine the exact value of this abrasion coefficient.  
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The allowable abrasion coefficient is given by: 

 
c(R) =

Df

vt
 

 

(8) 

Df =  The allowable abrasion depth. 

V         =The traffic speed. 

T = The traffic load application time. 

The allowable number of load repetitions 𝑁𝑓 can be expressed as a function of the traffic 

speed, time and pavement’s texture wavelength λ. An increase in the texture wavelength 

is an indicator of an increase in roughness.  

The following equation can simulate the allowable number of load repetitions: 

 
𝑁𝑓 =  

𝑣𝑡

λ
𝛽 

(9) 

 

Where 𝛽 is a fitting coefficient and λ is the texture wavelength.  

 

Therefore,  

 
𝑁𝑓 =  

Df

𝑐(𝑅) ∗ λ
𝛽 

(10) 

This model is limited to a specific range of pavement textures, λ (i.e. values between 1 to 

10 mm). The imposed range of  λ prevents a bad rolling resistance (λ ≥ 10 mm), ride 

quality (λ ≥ 100mm), vehicle wear (100 𝑚𝑚 ≤ λ ≤ 5 m),  and tire wear (1 µ𝑚 ≤ λ ≤

1 mm).  
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2. Load Stresses 

As it was stated earlier, the number of load repetitions is a function of the abrasion 

coefficient. This coefficient is determined according to the magnitude of the shear 

stresses applied on the specimen and depends on the nature of the load.  

From the torque generated in the abrasion testing, the shear stress can be determined as 

follow: 

 

 
𝑇 =  ∫ 2𝜏𝜋𝑟2𝑑𝑟

𝑟2

𝑟1

 
(11) 

 

Upon rearrangement, this expression yields: 

 
𝜏 =

3𝑇

2𝜋(𝑟2
3 − 𝑟1

3) 
 

(12) 

Where, 

𝑟1 = inner radius of the wear path 

𝑟2 = outer radius of the wear path 

The shear stresses under a moving truck tire exist in both transverse and longitudinal 

directions. In order to adopt the proposed model, the magnitude of the shear stresses must 

be determined.  In a study by Tielking and Abraham (Tielking, 1994) a load pin array 

developed by the Precision Measurement Company of Ann Arbor, Michigan was used to 

measure the tire-pavement shear pressures (Figure 40 - 41). The load pin signal would 

respond to dynamic tire contact pressure. 
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The study was focused on measuring the footprint pressures in order to accurately predict 

pavement damage.  

 

  

 

3. Field Data 

The skid resistance is defined as the force developed when a tire is prevented from rotating 

along the pavement surface. This parameter changes over time and depends on a pavement 

surface’s microtexture and macrotexture and thus is related to the texture wavelength 

(Hou, 2018). The larger λ is, the greater the loss of skid resistance will be. At the same 

time, it is not preferable to have a very low texture wavelength (microtexture) even though 

the grip of the tire will be important since it will affect the tire wear. The shotblasting 

method has been used to increase the skid resistance but it was demonstrated that a 

chemical densifier lithium silicate is more advantageous when the chemical is applied to 

porous pavement surface. In a 3-year study by the Oklahoma Department of 

Figure 40: Wire based tire - 

Reprinted from (Tielking, 1994) 

Figure 41: Contact plate and load pin array 

- Reprinted from (Tielking, 1994) 
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Transportation, a section of concrete pavement on State Highway 77 consisted of a 

“densifier-over-shotblasting” (DOS). The field tests included different pavement 

preservation treatments. The average daily traffic on the road tested was around 14,000 

vehicles. The study took monthly measurements of skid numbers for 33 months (Riemer, 

2012). 

 

 

 

 

 

 

 

 

According to figure 42, the DOS section retained its skid number for 26 months at an 

average of 44 (Haworth, 2011). 

Another field study by Haworth (Haworth, 2011), sponsored by California’s Department 

of Transportation, CALTRANS, was conducted on a test site on Interstate Highway 80 

over Donner Pass in the Sierra Mountains. The study evaluated DOS applied to rigid 

pavements and determined the surface wear over 12 months. For a shotblasted surface, the 

wear depth was equal to 5.29 mm compared to 2.12 mm for a DOS. It was concluded that 

the lithium silicate densifier over shotblasting treated specimens have about half the wear 

of untreated section.  

Figure 42: Oklahoma DOT Study Results of Skid Number Change 

over Time - Reprinted from (Haworth, 2011) 
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4. Determination of the fitting coefficient β 

Abrasion related performance can be calibrated from the above model using the field 

results obtained by Haworth. 

In general,  

 

The fitting coefficient 𝛽 can be determined according to the following method: 

 
𝐷 = (𝑐(𝑅) ∗

λ

𝛽
) ∗ 𝑁 

(14) 

Further studies are warranted to determine the relationship between the abrasion depth and 

the number of load repetitions. To simplify the approach, this relationship is considered 

linear and thus (𝑐(𝑅) ∗
λ

𝛽
) is the slope of the line, 𝐷 and 𝑁 are the two variables.  

The value of 𝛽 can be calculated by determining the slope of the line and calculating the 

abrasion coefficient according to the shear stress induced by the tires (De Beer, 1997). The 

value of the texture wavelength can be established from field measurements using a laser-

based profilometry.  

The equivalent single axle load (ESAL) can be considered as a damage factor to 

characterize the number of load repetitions based on, for instance, the AASHTO Road 

Test equivalency tables. In case of the Interstate Highway 80, the average daily traffic is 

considered equal to 25,000 which leads to an ESAL of 395,569. This value is not a precise 

one due to the lack of data at the time of the test. After 12 months, the wear depth recorded 

 
𝑁𝑖 =  

𝐷𝑖

𝑐(𝑅) ∗ λ
𝛽 

(13) 
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is equal to 2.12mm using the densifier-over-shotblasting method according to the Caltrans 

Study. More data is required to draw the actual evolution of the depth wear as a function 

of the shear stress associated with the applied wheel load. Following this, either the fitting 

coefficient  𝛽 or any number of load repetitions in regard of a specific designated 

allowable depth of wear can be determined. Figure 43 shows the variation of the depth of 

wear as a function of the number of ESALs. 

 

 

 

 

 

 

 

 

The approach to predict the allowable number of load repetitions is related to two 

parameters: The abrasion coefficient which is a function of the material mass loss due to 

the abrasion test and the pavement’s texture wavelength. The abrasion coefficient can be 

determined using the assumed linearity between this coefficient and the stress/strength 

ratio according to the magnitude of the shear stress induced on the pavement by the tires. 

From the field results obtained by Oklahoma DOT, it was demonstrated that the surface 

treatment applied helped maintaining a skid number over 26 months. In addition, the 

surface treatment significantly reduced the wear depth after 12 months according to the 

Figure 43: Evolution of the depth of wear with the number of 

ESALs 
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referenced Caltrans study. The data collected can be used to calibrate the β coefficient by 

relating it to the number of allowable repetitions. Applying this model to the surface 

treatment used, it was deduced that the allowable number of load repetitions increased by 

14%. 

The concrete pavement life can be predicted by following the steps as below: 

1. Execute the abrasion test according to the ASTM standards. 

2. Develop the correlation between the abrasion coefficient, c, and the 

stress/strength, R using the testing data. 

3. Numerically compute the induced stress/strength Rj for the traffic load 

classification j. 

4. Determine the abrasion coefficient c. 

5. Determine the value of the texture wavelength using a laser-based profilometry. 

6. Set an allowable depth of wear and calculate consequently the allowable number 

of load repetitions.   
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In this study, the results from the laboratory testing depict the efficiency of specific 

chemical surface treatments regarding durability of a concrete pavement surface. Even 

though the ASTM test procedures were not fully executed, the common thread of porosity 

that passed through the test results attest to their validity with respect to resistance to 

abrasion, impact, freeze/thaw cycles, and permeability. Consequently, all the test results 

are related and are useful to either justify or support the results of the other testing to be 

carried out beyond this study. For instance, the abrasion resistance of the surface is related 

to the strength of the concrete and also to the porosity of the surface (which was varied by 

changing the w/cm of the prepared mixtures). The freeze/thaw resistance is associated to 

the size of the pores in the concrete matrix and the size of the aggregates used.       

Furthermore, the results are well distinctive with regard to the nature of the surface 

treatments whether they were organic such as silane or inorganic such as lithium. 

Part of this study showed that the use of an inorganic surface treatment (such as 

TRANSIL®5561/PLUS) increases the resistance to abrasion and freeze/thaw cycles. This 

resistance was also attributed to the compressive strength of the mix as well as the type of 

aggregates used. The test results indicated a positive correlation between an increase in 

the resistance to abrasion with an increase of the concrete compressive strength. The role 

of aggregate size was manifest by lower resistance to freeze/thaw damage with an increase 

in size. From this phase of work, it was evident that the use of an inorganic surface 
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treatment resulted in the increase in abrasion and freeze/thaw resistance due to a change 

in the porosity of the specimen. 

To isolate the effect of aggregates on abrasion and freeze/thaw durability, the second 

phase of testing consisted of preparing abrasion and freeze/thaw mortar specimens treated 

with inorganic and organic surface treatments.  Test results showed a lower cumulative 

mass loss which also assert a change of porosity of the concrete surface due to the 

treatments. The specimens treated with organic products did not show any mass loss. 

In order to further identify the effect of porosity on performance, several laboratory tests 

were performed including the water sorptivity, chloride penetration and petrographic 

analysis. The petrographic analysis showed lower capillary-sized porosity for specimens 

treated with inorganic surface treatments (such as TRANSIL 5561/T6400, TRANSIL 

5561). While specimens treated with organic products (such as Silane Z 6341 and Silane 

Z 6595), manifest a greater amount of capillary porosity. These observations were further 

validated from water sorptivity and chloride penetration tests of inorganic and organic 

treatments where a reduction in the ingress of water and chloride ions was the result. Better 

results related to the specimens treated with organic products were obtained.   

The tests result also revealed the mechanism of how organic and inorganic surface 

treatments affect the surface porosity which dictates resistance to abrasion and freeze/thaw 

damage. Inorganic products decrease the size of the pores by reacting with the lime at the 

surface and organic treatments consist of small particles which enter the pores of the 

concrete matrix to form a water repellent lining on the pore walls without changing the 

size of the pores.  
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Finally, a mathematical approach was elaborated in order to predict the life of a 

pavement under dry erosion due to traffic. This approach is a function of the allowable 

number of load repetitions, the abrasion coefficient and a limited range of a pavement’s 

surface texture wavelength. This model predicts for inorganic surface treatments that the 

allowable number of load repetitions increased by 14%. In addition, the model can be used 

by the transportation community to predict the service-life of a concrete pavement surface 

based on material and traffic characteristics. 

The limitations of this test program organized in this thesis along with the future studies 

are depicted in Appendix D. 
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APPENDIX A: WATER SORPTIVITY RESULTS 

 

 

 

 

A 1: Absorption of the 40% Silane (w/c=0.48) 

A 2: Absorption of the 100% Silane (w/c=0.48) 
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A 3: Absorption of the TRANSIL 5561/PLUS (w/c=0.48) 

A 4: Absorption of the TRANSIL 5561/PLUS with TRANSIL 

6400 (w/c=0.48) 
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A 5: Absorption of the Control sample (w/c=0.42) 

A 6: Absorption of the 40% Silane (w/c=0.42) 
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A 7: Absorption of the 100% Silane (w/c=0.42) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 8: Absorption of the TRANSIL 5561/PLUS (w/c=0.42) 
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A 9: Absorption of the TRANSIL 5561/PLUS with TRANSIL 6400 

(w/c=0.42) 
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APPENDIX B: PETROGRAPHIC ANALYSIS RESULTS 
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APPENDIX C: RAPID CHLORIDE PENETRATION RESULTS 

 

 

 

 

 

 

 

C 1: Sample C 0.48 

C 2: Sample TRANSIL 5561/PLUS 0.48 

C 3: Sample TRANSIL 5661/T6400 0.48 
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C 4: Sample 40% Z6341 0.48 

C 5: Sample 100% Z6341 0.48 

C 6: Sample C 0.42 
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C 7: Sample TRANSIL 5561/PLUS 0.42 

C 8: Sample TRANSIL 5661/T6400 0.42 

C 9: Sample 40% Z6341 0.42 
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C 10: Sample 100% Z6341 0.42 
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APPENDIX D: LIMITATIONS AND FUTURE STUDIES 

 

In the elaborated project reported in the thesis, all experiments followed the ASTM 

Standards. However, additional tests should be done in order to develop the test program.  

1. Freeze/thaw test: 

In the accelerated study done, 20-25 cycles of freeze/thaw were performed to evaluate the 

efficiency of the Silane and Transil (organic vs inorganic surface treatment) regarding the 

resistance of the concrete surface to frost damage in the presence of deicer chemical. More 

cycles should be performed according to the ASTM Standards – 50 to 100 cycles.  

2. Rapid Chloride Penetration Test: 

This test has been performed on mortar treated specimens. This test could be eventually 

performed on reinforced concrete specimens treated with Silane to study the corrosion of 

the rebars as a function of time and exposure to chloride ions. 

3. Abrasion Test: 

Consider the gradation of the aggregates at the surface of the specimen and determine the 

best gradation that suits the Silane application or any other surface treatment. 

More samples treated with the same surface treatments should be abraded in order to 

identify the standard deviation at the end of the test.  
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4. Lithium penetration: 

Since the XRF test was not able to identify the Lithium penetration, other direct/indirect 

tests should be performed. This element shouldn’t go deeper than 2-4mm from the 

concrete surface. Its concentration can reveal the degree of resistance to abrasion and 

consequently find the optimum rate of application of the surface treatment as a function 

of time, load application and degree of damage acceptable for a concrete pavement.  

 

 

 

 

 

 


