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ABSTRACT 

 

Throughout 2011, the state of Texas, USA, experienced an extreme drought that 

broke statewide temperature and precipitations records, causing extensive tree mortality. 

No study comprehensively examined impacts to the heavily forested and important 

economic and ecologic region of east Texas. This dissertation aimed to fill that 

knowledge gap by: 1) examining tree species mortality responses multiple years post-

drought; 2) evaluating the impacts of management and stand structure on pine species 

mortality; 3) quantifying and describing the dynamics of standing dead trees; and 4) 

refining understanding and estimation of structural volume changes in standing dead 

pine trees using terrestrial light-detection-and-ranging (LiDAR). The first three 

objectives made use of U.S. Forest Service Forest Inventory and Analysis data for east 

Texas. The final objective was accomplished using LiDAR and a novel volume 

calculation algorithm. 

Oak species experienced significant immediate mortality, presumably crossing a 

threshold by which they could not continue transpiring. Pine species mortality was the 

lowest of all examined and did not increase significantly until two years post-drought, 

suggesting pines successfully employed physiological strategies to avoid rapid mortality. 

Planted loblolly pines were generally maintained at lower densities and moderate tree 

sizes than naturally-regenerated loblolly and shortleaf pines. This management effect 

appeared to offer favorable competitive conditions allowing planted loblolly pine to 

resist drought mortality. Standing dead trees experienced high probability of falling 
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within five-years, driven primarily by stem size and decay class. Reconstructed standing 

dead tree volumes derived from LiDAR produced robust allometric models for volume 

estimation and provided for empirical assessment of structural changes across decay 

classes. 

These findings highlight the resistant nature of managed pines to extreme 

drought mortality and the vulnerability of oaks to die-off in future extreme droughts. 

Future work should strive to identify the physiological mechanisms driving drought 

mortality and specific silvicultural targets for mitigating extreme drought mortality. 

Biomass and carbon that transitions to the standing dead wood pool following mortality 

becomes downed dead wood very rapidly in east Texas. Tools developed herein for 

predicting fall rates and quantifying standing dead wood via LiDAR will help to refine 

future understanding of carbon dynamics, wildfire risk, and habitat management. 
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CHAPTER I  

INTRODUCTION 

Globally, forests are expected to experience greater levels of tree mortality with 

increasing temperatures from climate change (Allen et al., 2010) and may already be 

experiencing and responding to such changes (van Mantgem et al., 2009; Woodall et al., 

2009; Peng et al., 2011). A possible effect of climate change could be an increase in the 

extent and severity of future droughts (IPCC 2013). In particular, in 2011, the state of 

Texas experienced the most extreme drought on record with greater than 80% of the land 

area enveloped in the most severe drought classification (Palmer, 1965) and the 

remaining land area in some elevated level of drought (Nielsen-Gammon, 2012). 

Impacts of this far-reaching event were immediately evident with approximately nine-

times greater tree mortality seen statewide than in previous years resulting in 301 million 

dead trees just one year post-drought (Moore et al., 2016). Accurately describing and 

predicting tree and stand response to extreme drought events remains a prominent 

challenge for managers and researchers (Clark et al., 2016; Vose et al., 2016). 

Following mortality, dead wood or woody debris provides an important 

component of terrestrial ecosystems, serving as habitat for wildlife and insects, a source 

and sink of nutrients, and as a modifier of fire dynamics (Harmon et al., 1986). Efforts to 

understand dead wood have increased substantially in recent years (Russell et al., 2015) 

with studies occurring across a range of ecosystems and scales (Laiho and Prescott, 

2004; Harmon et al., 2008; Radtke et al., 2009; Harmon et al., 2011; Oberle et al., 

2018). In particular, the U.S. National Greenhouse Gas Inventory (NGHGI), produced 
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annually by the U.S. Environmental Protection Agency and charged with accounting for 

national carbon (C) emissions and removals, recognizes dead wood as a unique and 

important component of the forest C pool (U.S. Environmental Protection Agency, 

2019). Despite this attention, much is still unknown about the dynamics of this pool and 

estimation techniques for accurately quantifying biomass and C totals contain 

considerable variation (Weiskittel et al., 2015). Moreover, with high prospects of 

widespread and significant disturbances to forests in the face of future climate change 

scenarios (Joyce et al., 2014), forests could see dramatic increases in dead wood and 

fuels representing rapid live-to-dead shifts in biomass and C pools (Breshears and Allen, 

2002). Given this, there is a need to understand which trees are most vulnerable to 

mortality in severe disturbances and the subsequent dynamics of dead wood to 

accurately estimate associated changes in biomass and C for informing future 

management, C cycling, and fire risk. 

Many factors play a role in describing the risk of mortality for any particular tree. 

Under the decline-disease spiral (Manion, 1981), trees are exposed to static predisposing 

factors (e.g., climate, edaphic properties, genetic makeup) making them vulnerable to 

inciting factors (e.g., drought, fire, defoliating insects), followed by contributing factors 

(e.g., bark beetles, fungi, viruses), eventually resulting in mortality. Under this paradigm, 

drought increases tree vulnerability to other agents and the tree eventually dies, however 

this could be reversed such that drought becomes a contributing factor to weakened trees 

(Wang et al., 2012). Franklin et al. (1987) describe a modified version of the decline-

disease spiral highlighting that stand structure (e.g., competition, suppression, 
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dominance, release) can interact with other factors to result in the decline of a tree with 

possible opportunities for recovery. Dense stands undergoing self-thinning may be most 

susceptible to drought conditions given already elevated competition for limited 

available resources (Peet and Christensen, 1987). However, extreme drought events may 

negate the influence of density-dependent mortality causing increased vulnerability in 

trees across a range of densities (Floyd et al., 2009). Mixed-species stands may 

experience lessened tree vulnerability to drought (Klos et al., 2009) as neighboring trees 

of different species may show facilitation more than competition (Pretzsch et al., 2013). 

Furthermore, recent evidence suggests that large, old trees may be most susceptible to 

extreme drought conditions and suffer disproportionate mortality (Lindenmayer et al., 

2012; Bennett et al., 2015; Ryan, 2015). Speculation as to causes of this large tree 

drought mortality include greater hydraulic stress from height (McDowell and Allen, 

2015), increased crown exposure to radiation and evaporative conditions (Roberts et al., 

1990), and preference by bark beetles (Pfeifer et al., 2011). However, all these patterns 

regarding drought-related mortality can be variable and have proven difficult to confirm 

(Floyd et al., 2009; Klos et al., 2009; Ganey and Vojta, 2011). Yet, understanding how 

forest stand structure effects drought-caused mortality has important implications for 

describing which species may be more resistant and adaptable to a changing climate. 

Importantly, this knowledge can inform management objectives, such as thinning, which 

can be effective at mitigating drought effects if employed properly (D'Amato et al., 

2013; Giuggiola et al., 2013). 
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Once a tree dies, whether by drought or other disturbance, it transitions to the 

dead wood pool representing a shift in the biomass and C cycle (Maser et al., 1988). 

There are many pathways of decomposition for newly dead trees including remaining as 

a standing dead tree (SDT or ‘snag’) to snapping or fragmenting and becoming downed 

woody debris (DWD) (Harmon et al., 1986). Collectively, snags and DWD are typically 

termed coarse woody debris (CWD) and include stems and larger branch material. 

Dynamics of this material typically vary with temperature and precipitation (Russell et 

al., 2014; Garbarino et al., 2015; Crecente-Campo et al., 2016; Oberle et al., 2018), 

among other factors (e.g., wind speed, ice storms, etc.) (Foster et al., 1998; Hooper et 

al., 2001; Harcombe et al., 2009), but largely remain unknown for many ecosystems. 

National forest inventory (NFI) guidelines typically include classification systems for 

characterizing CWD decay (USDA Forest Service, 2017). These classifications are 

subjective, yet comprehensive, and make inventory of decaying material more efficient 

(Russell et al., 2015). Many researchers have described CWD dynamics via fall-rates 

and transitions across decay classes using time-since-death data and NFI data, with 

particular focus in northern regions (Kruys et al., 2002; Storaunet and Rolstad, 2004; 

Vanderwel et al., 2006b; Aakala et al., 2008; Aakala, 2010; Aakala, 2011; Angers et al., 

2011; Russell and Weiskittel, 2012; Russell et al., 2013). Despite the availability of such 

tools, studies of CWD dynamics in southern forests have focused primarily on important 

pine species (e.g., Pinus taeda L.) (Radtke et al., 2009; Mobley et al., 2013; Zarnoch et 

al., 2014) and habitat for cavity nesting wildlife (Moorman et al., 1999; Conner and 

Saenz, 2005; Jones et al., 2009; Zarnoch et al., 2013). Given the potential for increased 
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tree mortality from climate change coupled with the prevalence of fire, hurricanes, and 

other disturbances in the south-central U.S. (Klepzig et al., 2014; Guldin et al., 2015), it 

is critical to understand the dynamics of CWD for this region in particluar to inform fire 

risk and fuels management, habitat management, and C implications. 

In the United States, the U.S. Department of Agriculture Forest Service (USFS) 

quantifies dead wood via annual inventory data collected nationally through the Forest 

Inventory and Analysis (FIA) program. Accurate accounting of national forest biomass 

and C pools is necessary to meet stipulations for the U.S. NGHGI which tracks dead 

wood stocks as one of five key components of forest C (U.S. Environmental Protection 

Agency, 2019). However, accurate estimation of dead wood biomass and C remains a 

challenging task due to variability in woody material and scaling issues (Domke et al., 

2011; Weiskittel et al., 2015). The FIA program uses regionally-developed allometric 

equations to calculate live and dead tree biomass (Woodall et al., 2010). While such 

equations work relatively well for live trees, snags and DWD change in density and 

volume as decay progresses requiring correction for these changes (Fraver et al., 2007; 

Harmon et al., 2008; Harmon et al., 2011; Fraver et al., 2013). Density corrections for 

snags have only recently been developed (Harmon et al., 2011) yet volume corrections 

for snags remain a prominent challenge (Weiskittel et al., 2015) subsequently receiving 

little attention (Aakala, 2010; Domke et al., 2011; Russell and Weiskittel, 2012). 

Difficulties in accurately measuring stems and branches in snags coupled with inherent 

differences in growth patterns makes accurate and broad scale assessment of volume in 

snags challenging. For example, conifers and hardwoods differ in their branching 
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structure with the former having a main stem the full length of the tree (excurrent 

structure) and the latter having a main stem that terminates at less than the full height of 

the tree (decurrent structure). Accounting for differences such as these could provide 

better estimates of volume, biomass, and C and improve our understanding of 

decomposition and nutrient cycling in dead wood. 

One tool with potential to efficiently and non-destructively measure volume 

reduction in snags is light-detection-and-ranging or LiDAR. LiDAR is a form of remote 

sensing which produces a three-dimensional spatial grouping of points (i.e., point cloud) 

of an object by transmitting laser pulses which reflect off the object surface and 

subsequently record a point location at the distance and angle of the point of reflection 

(Lefsky et al., 2002). Use of this technology has gained substantial traction in recent 

years for estimating fine- and broad-scale forest metrics via ground, aerial, and 

spaceborne platforms (Dassot et al., 2011; Gobakken et al., 2012; Narine et al., 2019). 

Initial work with ground-based or terrestrial LiDAR (hereafter, terrestrial laser-scanning, 

TLS) has produced effective estimates of live tree volume and biomass (Kankare et al., 

2013; Srinivasan et al., 2014) and subsequent allometric equations (Olagoke et al., 2016; 

Stovall et al., 2018), while some work has looked at estimating branch volume and 

biomass (Hauglin et al., 2013). However, very little work has utilized TLS to quantify 

and explore the dynamics of dead tree volumes and reduction with decay (Putman and 

Popescu, 2018; Putman et al., 2018). Terrestrial laser-scanning could provide an 

efficient and effective means of more accurately describing and accounting for volume, 

biomass, and C changes with decay. Importantly, such tools have strong potential for 
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increasing accuracy of volume, biomass, and C in large-scale forest inventories (e.g., 

FIA) through development of improved allometric equations derived from TLS data. 

The 2011 drought in Texas presents a unique opportunity to address questions 

regarding extreme drought impacts on tree species mortality responses and forest stand 

structure. This event also provides impetus for filling knowledge gaps related to dead 

wood dynamics and accurate estimation of associated volume, biomass, and C. This 

dissertation aims to understand patterns of drought-related tree mortality and subsequent 

SDT dynamics across forests in east Texas through analysis of re-measured FIA plot 

data. Additionally, TLS will be used to develop and assess novel estimates of snag 

volume for improving estimates by understanding and accounting for structural volume 

changes with decay class. 

Specifically, this dissertation addressed the following objectives each comprising an 

individual chapter: 

1) Examine how tree mortality from drought (weather) and insects and diseases 

(pests) varied throughout a four-year period for key species from the four most 

common tree genera in east Texas following the 2011 drought. 

2) Determine which individual tree- and stand-structural factors contributed to 

probability of individual tree mortality across three common pine species groups 

both pre-drought and after exposure to the 2011 drought in east Texas. 

3) Develop models predicting the probability of a tree falling in the five-year 

measurement interval in which it dies and the five-year probability of a snag 
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falling in east Texas forests by examining common endogenous factors (e.g., tree 

and stand attributes) that drive the dynamics of this pool in east Texas. 

4) Quantify and assess empirical volume and structural volume changes in loblolly 

pine SDT by decay class using TLS and a novel volume calculation algorithm, 

TreeVolX from Putman and Popescu (2018). 
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CHAPTER II  

LAGGED MORTALITY AMONG TREE SPECIES FOUR YEARS AFTER AN 

EXCEPTIONAL DROUGHT IN EAST TEXAS* 

 

Synopsis 

In 2011, east Texas experienced the worst drought on record causing extensive 

tree mortality. Initial mortality estimates for 2012 varied among tree genera. A rapid 

damage assessment (RDA) estimated that 65.5 (± 7.3) million trees died as a result of the 

drought in this region one year post-drought. However, this estimate was untested 

against established monitoring networks. Moreover, pests and physiological damage can 

elevate tree mortality multiple years beyond a drought event. Since the RDA was unable 

to quantify multi-year trends, it remained unclear if these drivers caused increased tree 

mortality in east Texas beyond one year post-drought and how different species 

responded over time. To address these questions, we compared total 2012 standing dead 

tree (SDT) estimates (i.e., drought-killed plus all other SDT excluding harvested or 

salvaged trees) derived from the RDA and U.S. Forest Service Forest Inventory and 

Analysis (FIA) data for east Texas. Total SDT estimates did not significantly differ 

between the RDA (120.5 ± 8.5 million) and FIA (108.4 ± 8.7 million). Furthermore, 

total SDT estimates for the four most common genera (Pinus, Quercus, Liquidambar, 

Ulmus), which comprised over 80% of all species, did not significantly differ between 

the RDA and FIA. Additionally, we used logistic regression and FIA data from east 
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Texas for 2011 through four years post-drought (2012-2015) to examine temporal trends 

in plot-level drought- and pest-driven tree mortality of seven key species (Pinus taeda, 

Pinus echinata, Quercus nigra, Quercus stellata, Quercus falcata, Liquidambar 

styraciflua, Ulmus alata) from the four most common genera. At the plot-level, drought-

driven mortality was immediate for the three Quercus species (notably Q. falcata) and L. 

styraciflua which significantly increased in 2012 while P. taeda mortality was delayed, 

not increasing significantly until 2013. Pest-driven mortality increased from 2013-2015 

for all species, with the highest rates observed in Q. falcata and lowest in P. taeda and 

U. alata. This study affirms the validity and value of independent sampling efforts to 

quantify mortality immediately following major disturbance and also demonstrates the 

need for longer term species-level assessments beyond the initial year post-drought to 

account for differential impacts from drought and pests. 

 

Introduction 

Globally, climate change is expected to increase the extent and severity of future 

droughts (IPCC 2013) having widespread ramifications on forested systems (McDowell 

et al., 2018). Recent severe droughts have led to increased tree mortality in forests 

worldwide and are predicted to be more common and impactful in the future (Allen et 

al., 2015). In North America, many forest ecosystems have been affected by these events 

including southwestern U.S. pine forests (Breshears et al., 2005), aspen forests in south-

central Canada (Michaelian et al., 2011), and diverse angiosperm and gymnosperm 

forests of Texas (Moore et al., 2016) and California (Young et al., 2017). It is difficult to 
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generalize about regional vulnerability to extreme events in diverse forests with species 

varying in their strategy for surviving drought and sensitivity to insects and diseases 

(Anderegg et al., 2016; Adams et al., 2017). Moreover, established monitoring networks 

may be slow to capture immediate effects and remote sensing technologies may miss key 

details necessary for differentiating mortality. 

National forest inventories (NFI) such as the U.S. Forest Service Forest 

Inventory and Analysis (FIA) program provide sound, detailed, statistically-defensible 

estimates of forest attributes over time (Bechtold and Patterson, 2005). FIA plots are re-

measured every five to ten years depending on location yet annual subsets of plots 

(panels) can provide valuable documentation of broad disturbances such as droughts in 

forests (Shaw et al., 2005). Despite this, plot measurements and data processing take 

time and must go through the proper channels before being made public (i.e., most 

recently available data is typically one to two years old) (Vogt and Smith, 2017), which 

can limit the ability to immediately assess widespread mortality effects from major 

disturbances. Remote sensing technologies such as airborne or spaceborne imagery and 

LiDAR can document broad-scale forest changes in near ‘real-time’ (McDowell et al., 

2015). However, these technologies are limited in their ability to capture detailed 

inventory measurements such as species, stem diameter, stem density, and understory 

effects (Norman et al., 2016). Rapid, independent, broad-scale sampling initiatives (e.g., 

‘damage assessments’) could provide clarity of immediate mortality effects from 

disturbances such as extreme drought than slower NFIs and remote sensing technologies 

that only capture overstory effects (Hartmann et al., 2018). However, such initiatives are 
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rare given the amount of financial, material, and human resources needed for rapid 

implementation and have not been compared against baseline networks such as the FIA 

program to gauge their effectiveness at capturing the impacts of major mortality events. 

From October 2010 to September 2011, the state of Texas experienced the most 

extreme drought on record with over 80% of the state land area enveloped in exceptional 

drought (Nielsen-Gammon, 2012). Statewide average precipitation for this 12-month 

period was 276 mm, the record driest 12-months for the state of Texas, approximately 

60% less than (410 mm below) the 20th century 12-month average (686 mm) (NOAA 

2018). Temperature increases during the drought were particularly extreme with 

statewide summer average temperature (June-August 2011) at 30.4 °C which was 2.9 °C 

greater than the long term average (i.e., nearly twice the largest deviation from average) 

(Hoerling et al., 2013). This drought is an example of an acute, intense drought which 

could become commonplace in this region in the next few decades. 

In their rapid damage assessment (RDA) of the 2011 drought, Moore et al. 

(2016) noted immediate tree mortality across statewide climate zones, with portions of 

central Texas most affected and the heavily forested east Texas least affected. Another 

comprehensive study of drought effects one to two years after this event utilized novel 

remote sensing methodologies to assess canopy loss as a surrogate for mortality 

(Schwantes et al., 2016). Following this, Schwantes et al. (2017) developed drought-

related canopy loss estimates for 2012 across a statewide climate gradient and noted, 

again, the highest loss in central Texas with east Texas least affected. Localized studies 

within central and western portions of the state highlighted variability in drought-related 
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mortality among species (Kukowski et al., 2013; Poulos, 2014), soil types (Twidwell et 

al., 2014), and elevation (Waring and Schwilk, 2014). However, these studies were 

focused on initial mortality, and used independent stratified or remotely sensed 

estimates, and may have missed the extent of mortality from this event, or later, 

continued mortality from physiological stress or insects and diseases. At the present 

time, multiple years of FIA data have become available since the drought thus, providing 

an important opportunity to validate initial mortality estimates from the RDA and 

examine differential impacts across species, particularly in the heavily forested and 

important economic region of east Texas. 

Many frameworks exist for describing the mechanisms of decline and ultimate 

mortality of trees from drought (Manion, 1981; McDowell et al., 2008; Anderegg et al., 

2013a). Physiologically, trees purportedly respond to water stress along a spectrum of 

isohydry to anisohydry. Under this paradigm, isohydric trees will regulate stomata to 

reduce the risk of xylem cavitation at the cost of reducing carbon intake most likely 

resulting in mortality via carbon starvation while anisohydric trees will maintain 

transpiration and respiration but operate at very small hydraulic safety margins most 

likely resulting in mortality via hydraulic failure (McDowell et al., 2008). Recent 

evidence examining these mechanisms suggests that hydraulic failure is most important 

in driving drought mortality across a range of species with reductions in carbon playing 

a smaller role, more so in gymnosperms than angiosperms (Adams et al., 2017). A 

recent global meta-analysis highlights these trends in that gymnosperms and drought-

tolerant species typically experience long lasting growth declines following a drought 
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event prior to mortality (i.e., carbon starvation) while angiosperms may not show long or 

notable growth declines prior to mortality (i.e., hydraulic failure) (Cailleret et al., 2017). 

Gymnosperms, such as loblolly pine (Pinus taeda L.) which dominates throughout east 

Texas, are capable of employing physiological adaptations to avoid drought stress by 

shedding needles and maintaining high leaf water potentials (Maggard et al., 2016), 

falling more under the isohydric strategy. Angiosperms, such as oaks, are prevalent 

throughout Texas and the south-central U.S. and, oaks in particular, are generally 

drought tolerant having deeper roots, ring-porous xylem anatomy, and operating at 

higher hydraulic safety margins (Abrams, 1990; Hoffmann et al., 2011; Klein, 2014). 

Evidence from recent decline events in the south-central U.S. suggests that white oaks 

(Quercus Section Quercus) are better adapted to drought than red oaks (Quercus Section 

Lobatae; (Fan et al., 2012; Haavik et al., 2012). Moreover, evidence from central Texas 

following the 2011 drought suggests that trees did not follow expected patterns of 

iso/anisohydry in their mortality response (Johnson et al., 2018). Despite growing 

knowledge on mechanisms of drought-related mortality, evidence is still lacking in how 

individual species respond to extreme events such as the 2011 drought. 

Drought often results in elevated tree mortality rates and decreased productivity 

beyond the timeframe of the event (van Mantgem et al., 2009). The duration and timing 

of drought can be important for predicting which trees will die and at what time (Bigler 

et al., 2007; Anderegg et al., 2013a). For example, a shorter, acute drought of high 

intensity may lead to immediate mortality in anisohydric trees via hydraulic failure while 

longer, chronic drought of low intensity might cause lagged mortality in isohydric trees 
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as carbon reserves become depleted (Cailleret et al., 2017). Trees that survive the 

drought event become stressed and ultimately run a higher risk of attack from insects 

and diseases, resulting in lagged or multi-year mortality events (Desprez-Loustau et al., 

2006; Raffa et al., 2008; Anderegg et al., 2015). Drought stressed trees have weakened 

defenses (e.g., reduced or limited carbohydrate reserves, compromised xylem 

conductivity) and become unable to fend off attacking insects and diseases (Gaylord et 

al., 2013). Bark beetles can be particularly virulent following drought events depending 

on a host of interacting factors (Raffa et al., 2008). Limited knowledge exists on the 

impacts of drought on insect and disease populations and how these may interact with 

drought to drive continued mortality (Kolb et al., 2016). Initial estimates of drought-

related impacts (e.g., tree mortality, carbon cycling, economic losses, etc.) could be 

drastically underestimated if lagged mortality and productivity effects are not effectively 

quantified across large regions (McDowell et al., 2018). Evidence of immediate and 

lagged drought mortality could foster future work pinpointing which species are more 

resistant or resilient to extreme events, ultimately informing models predicting future 

forest composition. 

In this paper, we aimed to accomplish two main objectives 1) assess the validity 

of a rapid, independent, broad-scale sampling effort quantifying tree mortality following 

the 2011 drought (i.e., RDA from Moore et al. (2016)) by comparing it to baseline FIA 

results and 2) move beyond initial impacts by examining how tree mortality from 

drought (weather) and insects and diseases (hereafter, pests) varied throughout a four-

year period for key species from the four most common tree genera in east Texas 



 

16 

 

following the 2011 drought. We focused on this region of Texas due to its economic and 

ecological importance, because past findings suggest it suffered relatively modest 

immediate mortality and dieback from the 2011 drought (Moore et al., 2016; Schwantes 

et al., 2017), and because it has received little attention in the literature in regards to 

detailed impacts following the 2011 drought. To our knowledge, this study provides the 

first assessment of a broad-scale, independent, ground-based sampling effort (RDA) 

compared to the well-established, statistically-defensible FIA sampling program for 

quantifying major disturbance effects. 

 

Methods 

Study Area 

The study area includes the eastern portion of Texas, USA (Figure II.1), 

encompassing the western edge of the Western Gulf Coastal Plain and the Pineywoods 

ecoregion extending south to the Gulf of Mexico, bounded approximately by 29° 17’ to 

33° 57’ N and 93° 30’ to 96° 27’ W. This region contains a diversity of tree species and 

is heavily dominated by southern pine, primarily loblolly pine, representing the 

southwestern range limit for many eastern tree species (Burns and Honkala, 1990). 

Climate in this region is characterized by hot, humid summers and short, mild winters. 

An east-to-west decreasing rainfall gradient exists as does a slight north-to-south 

increasing temperature gradient. Mean annual precipitation and temperature typically 

vary between ~990-1600 mm and ~16-23 °C, respectively (USDA NRCS 2006). During 

the drought period from October 2010 to September 2011, average precipitation in east 
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Texas was 619 mm, a record driest in this region, approximately 47% less than the 20th 

century average for this 12-month period (1159 mm) (NOAA 2018). Summer average 

temperature (June-August) in east Texas was also the record warmest at 30.7 °C which 

was 3.1 °C greater than the 20th century average for this summer period (27.6 °C) 

(NOAA 2018). During the study period of 2011-2015 in east Texas, mean annual 

(January - December) temperatures were 19.9, 20.1, 18.7, 18.1, and 19.3 °C (20th century 

average of 18.6 °C), respectively, and annual precipitation was 769, 1161, 1199, 1067, 

and 1737 mm (20th century average of 1162 mm), respectively (NOAA 2018). 

Topography in this region changes gradually with the highest upland areas 

approximately 200 m above sea level. Soils predominantly consist of well-drained to 

poorly-drained Alfisols and Ultisols with loamy to clayey textures (USDA NRCS 2006). 
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Figure II.1 State of Texas with (a) study area (east Texas) as inset and (b) FIA plot 

locations having presence of each of the four most common genera in 2011. Reprinted 

with permission from Klockow et al., (2018). 

 

 

Data 

We examined data from FIA plots located throughout east Texas (Figure II.1). 

Plot measurements and re-measurements were carried out on a five year panel inventory 

as described in Bechtold and Patterson (2005). Due to logistical constraints, a small 

proportion of plots were measured just prior to or just following the scheduled inventory 
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year (~15% measured in the year before and ~1% measured in the year after inventory 

year for 2011-2015 data). Thus, inventory year refers to the scheduled panel year in 

which a plot is supposed to be measured and measurement year reflects the actual year in 

which the plot was measured. These typically coincide, but the operational schedule of 

the inventory has the measurements of a selected inventory year beginning in the latter 

months of the preceding year. For both objectives, trees were defined following FIA 

protocols as being ≥ 12.7 cm diameter at breast height (DBH) and located in forested 

plot conditions. Standing dead trees (SDT) had an unbroken height ≥ 1.37 m and a lean 

angle from vertical < 45 degrees. All harvested or salvaged trees were excluded from 

calculations. The four most common genera in the study area were Pinus, Quercus, 

Liquidambar, and Ulmus, representing over 80% of all live individuals (52%, 18%, 9%, 

and 4%, respectively). The predominant species from each of the four most abundant 

genera were analyzed separately to provide more resolution on species-specific effects of 

the drought. This included those species which together comprised approximately two-

thirds of the total stem count in each genus for the years 2011-2015 (i.e., Pinus taeda 

(loblolly pine) - 89%, Pinus echinata (shortleaf pine) - 8%; Quercus nigra (water oak) - 

28%, Quercus stellata (post oak) - 24%, Quercus falcata (southern red oak) - 15%; 

Liquidambar styraciflua (sweetgum) - 100%; Ulmus alata (winged elm) - 68%). Agents 

of mortality (weather, pests) as determined by field crews were used for assessment of 

trends in the causes of SDT mortality. Data uploaded to the FIA DataMart on December 

14, 2017 were used for all analyses. 

 



 

20 

 

Analyses 

In order to address our first objective, we used 2012 tree mortality data from the 

RDA reported in Moore et al. (2016) and SDT population estimates from FIA inventory 

years 2011 and 2012 for the study region. The RDA employed design-based estimation. 

East Texas was divided into four strata and within each stratum a two-stage unequal 

probability sample with replacement was conducted. Primary sample units (10 km x 10 

km areas) were selected with probability proportional to forest area. In each primary 

sample unit, seven secondary sample units (0.16-ha circular plots) were randomly 

selected. A total of 238 plots were established in the study and tallies of drought-killed 

trees were made with genus and diameter at breast height (DBH) recorded. FIA 

definitions of trees (qualifying species and size at least 12.7 cm DBH) were used in the 

RDA. The reader is referred to Lohr (1999) for more information on the general design 

and estimation and Moore et al. (2016) for specific application of the design in the RDA. 

FIA also employs design-based estimation in the national forest inventory, 

although the specific design is considerably different from that employed in the RDA. 

FIA is an annual inventory and in east Texas 20 percent of the plots are measured each 

year such that a complete inventory cycle is completed every five years (i.e., as 

described above). At the core of FIA is a quasi-systematic grid of plots at spatial 

resolution of one plot per 2400 ha. FIA uses stratification, which was also employed in 

the RDA. Within strata, the sample is assumed to be a simple random sample. An FIA 

plot consists of a cluster of four subplots each 7.31 m in radius. One subplot forms the 

center point of the plot and the remaining three subplots are located at azimuths of 0, 
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120, and 240 degrees and 36.58 m distance from the central subplot center point. 

Bechtold and Patterson (2005) document the FIA survey design and estimation 

procedures. The 2011 and 2012 FIA data included 797 and 791 plots, respectively, 

considerably more than the 238 plots measured in the RDA. The difference between the 

two surveys was not as large as it appears because the RDA plot was 2.4 times the size 

of the FIA plot and the FIA plot counts included all plots, forested and non-forested. 

Total forest area measured in the RDA was about 38 ha and in FIA was 29.9 ha in 2011 

and 29.5 ha in 2012. 

The post-stratified estimation approach used by FIA (Bechtold and Patterson, 

2005) was employed for calculating estimates of our first objective in this study. 

Estimates were calculated using data for individual inventory years of 2011 and 2012, 

which differs from FIA’s standard approach of combining data across multiple inventory 

years when producing population estimates. Estimates for these individual inventory 

years were expected to provide more temporal resolution but at the cost of reduced 

sample size and thus higher standard errors when compared to the standard FIA 

approach. Population estimates for the RDA and FIA were compared using two-tailed Z-

tests since they both represented independent samples of the study area. Significant 

differences were assessed at the α = 0.05 level. 

In order to inform our second objective, plot-level mortality estimates by species 

and agent of mortality were calculated across measurement years spanning 2011-2015 

using plot stem counts from FIA data. Thus, plot-level mortality estimates represented 

an annual proportion of total SDT mortality across the study region in a given year and 
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not a rate. Plot-level mortality estimates comprised total SDT stem count for a particular 

species and agent divided by total (i.e., live and standing dead) stems for that same 

species in a given plot and measurement year (excluding harvested or salvaged trees). A 

total of 1882 plots were used for determining plot-level mortality estimates. 

We employed generalized linear fixed effects modeling to determine differences 

in plot-level mortality estimates across measurement years and species. Specifically, we 

assumed that our data followed a binomial distribution such that total live and standing 

dead trees of each species in each plot represented n individual trials with probability of 

mortality p for each agent of mortality (i.e., weather, pests) and the number of SDT y for 

each agent in each plot represented trial ‘successes’. For example, if a plot contained ten 

loblolly pines (i.e., ten trials) and three were denoted as killed by weather (i.e., three 

weather-related ‘successes’) and two were killed by pests (i.e., two pest-related 

‘successes’), their observed probabilities of mortality would be 0.3 and 0.2 respectively. 

Following this, we modeled the probability of mortality p with fixed effects of species 

and measurement year using a logistic regression approach and maximum likelihood 

estimation. 

 𝑦𝑖𝑗  ~ 𝐵𝑖𝑛𝑜𝑚(𝑛𝑖𝑗 , 𝑝𝑖𝑗) (II.1) 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝑆𝑃𝑃𝑖𝑗 + 𝑌𝐸𝐴𝑅𝑖𝑗 + 𝑆𝑃𝑃𝑖𝑗 × 𝑌𝐸𝐴𝑅𝑖𝑗 (II.2) 

Where, i is plot, j is species, SPP is the fixed effect for species, and YEAR is fixed effect 

for year (n, p, and y are explained above). Individual plots were not re-measured on an 

annual basis (i.e., five year re-measurements per FIA protocol) thus, these data did not 

represent repeated measurements and, subsequently, measurement year was treated as a 
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fixed effect. Two models were built and assessed, one for weather-related mortality and 

the other for pest-related mortality. Main effects of species and measurement year and 

their interaction were tested for significance using likelihood ratio tests. If the p-value 

for a term was < 0.05, the term was deemed significant and included in the model. 

Overall goodness-of-fit was assessed using likelihood ratio tests between the final model 

and a null model and by examining the log likelihood and McFadden’s pseudo-R2 

(Agresti, 2013). Meaningful post hoc contrasts between levels of each fixed effect were 

carried out using Tukey tests assessed at the α = 0.05 level. All calculations and analyses 

of mortality estimates were conducted using R 3.3.1 software (R Core Team, 2016). 

 

Results 

Population estimates of SDT were compared between 2012 FIA data and the 

RDA conducted in 2012 by (Moore et al., 2016) which used an independent survey to 

provide a rapid initial estimate of drought-killed SDT in 2012 (Table II.1). Both surveys 

included estimates of SDT of all species in east Texas. The RDA produced an estimate 

of 65.5 (± 7.3) million SDT in 2012, which pertained to drought-killed stems only (Table 

II.1). Thus, it was combined with the 2011 FIA SDT estimate of 55.0 (± 4.4) million to 

account for all other SDT existing on the landscape (Table II.1). This was done under the 

assumption that changes in SDT between 2011 and 2012 FIA data primarily consisted of 

drought-killed trees with some natural attrition of older SDT and sampling error. This 

resulted in an RDA (+ 2011 FIA) estimate of 120.5 ± 8.5 million total SDT from all 

causes (except harvest or salvaged stems) in 2012 (Table II.1). Forest land area has 
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remained fairly constant in east Texas at about 4.9 million ha producing a per unit area 

estimate of 24.7 ± 1.7 SDT ha-1. The 2012 FIA estimate was 108.4 ± 8.7 million total 

SDT (Table II.1) from all causes (except harvest or salvaged stems) and 22.2 ± 1.8 SDT 

ha-1. The estimates of FIA and RDA total SDT in 2012 did not significantly differ from 

each other (p-value = 0.318) having a difference of 12.2 ± 12.2 million SDT (Table II.1). 

In addition to the all-species estimates, comparisons of FIA and RDA total SDT 

estimates in 2012 for the four most common genera (Pinus, Quercus, Liquidambar, and 

Ulmus) produced no significant differences (p-value = 0.155, 0.270, 0.507, 0.398, 

respectively) having differences of 9.7 ± 6.8, 7.4 ± 6.7, 1.9 ± 2.8, 1.9 ± 2.3 million SDT 

for Pinus, Quercus, Liquidambar, and Ulmus, respectively (Table II.1). This suggests 

that the RDA conducted by Moore et al. (2016) provided a reasonable initial estimate of 

drought-killed trees in east Texas. 
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Table II.1 Standing dead tree (SDT) population estimates and standard errors (in parentheses) based on U.S. Forest Service 

Forest Inventory and Analysis (FIA) data from 2011 and 2012 and rapid damage assessment (RDA) data collected in 2012 

from Moore et al. (2016). Reprinted with permission from Klockow et al., (2018). 

 

Genus 

Pre-drought 

2011 

(2011 FIA) 

Drought-killed 

2012 

(RDA) 

Post-drought 

2012 

(2011 FIA+RDA) 

Post-drought 

2012 

(2012 FIA) 

Difference Z-score p-value 

Pinus 18.4 (2.4) 16.4 (5.0) 34.8 (5.5) 25.1 (3.9) 9.7 (6.8) 1.422 0.155 

Quercus 20.6 (3.2) 24.8 (3.9) 45.4 (5.0) 38.0 (4.5) 7.4 (6.7) 1.103 0.270 

Liquidambar 4.3 (1.0) 6.3 (1.7) 10.6 (2.0) 12.5 (2.0) -1.9 (2.8) -0.663 0.507 

Ulmus 1.1 (0.5) 5.2 (1.8) 6.3 (1.9) 4.4 (1.2) 1.9 (2.3) 0.845 0.398 

All spp. 55.0 (4.4) 65.5 (7.3) 120.5 (8.5) 108.4 (8.7) 12.2 (12.2) 0.999 0.318 

 

Notes: SDT population estimates are listed as number of stems times 106. No significant differences were observed based on Z-

tests between independent samples of post-drought 2012 estimates (i.e., 2011 FIA + RDA vs. 2012 FIA). 
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Plot-level mortality models showed variability among species and measurement 

years highlighting differing species responses to the drought and pests over time 

(Figures II.2 and II.3, Appendix A: Tables A.1 and A.2). In particular, weather mortality 

showed a significant interaction between species and measurement year based on results 

of the likelihood ratio tests (χ2 = 92.41 with 24 degrees of freedom, p-value = << 0.001). 

Pest mortality did not show a significant interaction (χ2 = 35.40 with 24 degrees of 

freedom, p-value = 0.063) suggesting the main effects-only model was sufficient. 

However, the low p-value for this interaction term suggests potentially weak interaction 

between species and measurement year for pest mortality. Overall goodness-of-fit via 

the likelihood ratio test for each model was far superior to its respective null model 

(weather mortality model: deviance = 700.69 with 34 degrees of freedom, p-value = << 

0.001; pest mortality model: deviance = 261.94 with 10 degrees of freedom, p-value = 

<< 0.001). McFadden’s pseudo-R2 values for each model suggest moderate and 

reasonably low explanatory power (R2 = 0.144 and 0.089) for the weather model and 

pest model, respectively. 

Noteworthy post hoc comparisons of species and measurement year mortality 

predictions are presented in Figures II.2 and II.3. All coefficient estimates are listed fully 

in the supplementary material (Appendix A: Tables A.1 and A.2) along with observed 

vs. predicted mortality estimates (Appendix A: Figures A.1 and A.2). In general, weather 

mortality was highest in oaks and lowest in loblolly pine (Figure II.2). All oaks and 

sweetgum experienced significant immediate weather mortality in 2012 while loblolly 

pine mortality was delayed, significantly increasing in 2013 (Figure II.2). Sweetgum 
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showed continued mortality into 2013, also suggesting some delayed mortality, but this 

effect was not significant (Figure II.2). Both shortleaf pine and winged elm showed 

increases in weather mortality in 2013, suggesting some delayed mortality, but 

ultimately had no significant changes in mortality across all years (Figure II.2). Pest 

mortality was delayed, increasing significantly in 2013 and continuing a general 

increasing (but not significantly differing) trend into 2014 and 2015 for all species 

analyzed (Figure II.3). Pest mortality was highest in southern red oak and lowest in 

loblolly pine and winged elm (Figure II.3). 
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Figure II.2 Mean annual predicted probability of weather mortality in a plot for each 

species and measurement year across east Texas derived from logistic regression results. 

Bars denote standard errors for each estimate. Different letters above each bar denote 

significant differences (p < 0.05) derived from post hoc comparisons using Tukey tests. 

Letters to the left of commas correspond to differences among years for each individual 

species (i.e., read in rows, left-to-right). Letters to the right of commas correspond to 

differences among species within each year (i.e., read in columns, top-to-bottom). Species 

codes are as follows: PITA = Pinus taeda, PIEC = Pinus echinata, QUNI = Quercus nigra, 

QUST = Quercus stellata, QUFA = Quercus falcata, LIST = Liquidambar styraciflua, 

ULAL = Ulmus alata. Reprinted with permission from Klockow et al., (2018). 
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Figure II.3 Mean annual predicted probability of pest mortality in a plot with standard 

errors for each species and measurement year across east Texas derived from logistic 

regression results. Different letters along the x- and y-axes denote significant differences 

(p < 0.05) from post hoc comparisons using Tukey tests. Letters along the x-axis 

correspond to differences among years across all species while, letters along the y-axis 

correspond to differences among species across all years. Species codes are as follows: 

PITA = Pinus taeda, PIEC = Pinus echinata, QUNI = Quercus nigra, QUST = Quercus 

stellata, QUFA = Quercus falcata, LIST = Liquidambar styraciflua, ULAL = Ulmus alata. 

Reprinted with permission from Klockow et al., (2018). 
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Discussion 

To our knowledge, this study is the first comparison between a rapid, 

independent sampling effort (RDA) and a baseline, established inventory such as FIA for 

quantifying mortality from a major disturbance event. The rapidity and effectiveness of 

the RDA, aided by an established agency in the Texas A&M Forest Service which had 

the infrastructure and personnel to carry out the sampling, provided crucial knowledge 

about the initial impacts of an extreme drought on tree mortality approximately nine 

months before the first post-drought data from FIA were available, ultimately 

influencing forest management and policy decision-making. This comparison to FIA 

provides assurance that those decisions were grounded on correct information. The 

sampling schemes for the RDA and FIA differ in significant areas yet both adhere to 

sound theory and ultimately provide viable quantification of tree mortality in east Texas. 

Differences in the designs of the two surveys can be traced back to their primary 

purpose. Monitoring of trends over time is a major objective of FIA and the design is set 

up for re-measurement of plots and efficient estimation of change. The purpose of the 

RDA was to estimate the number of drought-killed trees at one point in time, i.e., 

monitoring over time and re-measurement were not considered as survey objectives. As 

a one-point-in-time survey, the RDA was able to utilize design features for the purpose 

of achieving variance reduction (i.e., stratification, unequal probability sampling) and 

cost savings (i.e., two-stage sampling) without consideration for implications on change 

estimation. Where resources permit, independent sampling efforts based on sound 

sampling theory aimed at rapidly quantifying disturbances can provide an effective 
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critical first look into how forests and ecosystems respond to a changing climate. Interest 

has necessarily shifted with time from the initial impacts of the drought to longer-term 

trends and forest response, and for that the FIA data is ideally suited. 

Making appropriate use of FIA data, here we moved beyond initial estimates and 

examined temporal and species-level mortality impacts in east Texas following the 2011 

drought. Models of predicted weather and pest mortality showed that species differed 

quite widely in their response to the drought. Generally speaking, the models provide 

decent predictions of plot-level mortality yet certain species and years matched 

observations more closely than others. For the most part, results follow observed trends 

but may under- or over-estimate mortality in some cases (Appendix A: Figures A.1 and 

A.2). The impact of the drought on SDT in east Texas was plainly apparent in the FIA 

data, specifically in the weather mortality model predictions. Clear increases in mortality 

were evident in 2012, one year post-drought, and even into 2013. Increases in mortality 

from one year to the next generally correlate well with disturbance events given the 

nature of the observations (i.e., proportion of SDT in a plot in a year). However, if 

mortality does not change or drops from one year to the next, it is difficult to assess how 

much new mortality has occurred in that time span. This is because these mortality 

estimates represent net effect of mortality (e.g., disturbance) and decomposition (e.g., 

falling of trees). Thus, no change in mortality between years suggests that any new 

mortality and the falling of SDT are roughly similar whereas a decrease in mortality 

suggests that the falling of SDT has exceeded any new mortality. Interestingly, all 

species showed fairly rapid turnover of SDT within the timeframe examined ultimately 
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returning to pre-drought (2011) mortality levels within three or four years. In particular, 

oaks experienced significant decreases in mortality on an annual basis indicating rapid 

decomposition for this genus. Trees in east Texas tend to decompose rapidly (Conner 

and Saenz, 2005; Putman et al., 2018) given the hot, humid, and moist conditions that 

generally persist year round (USDA NRCS 2006). Moreover, unlike other parts of the 

U.S., east Texas has termite populations as part of the biotic decomposer community that 

greatly increase decomposition (Zhang et al., 2016). In tandem, these abiotic and biotic 

factors create a prime scenario for rapid turnover of dead wood. This observation has 

important implications for carbon accounting as massive mortality events such as the 

2011 drought could drastically alter carbon budgets by turning forests into a carbon 

source rather than sink. 

We observed that loblolly pine, the predominant tree species in east Texas, 

suffered very little weather mortality from the 2011 drought, as past studies have 

suggested (Moore et al., 2016; Schwantes et al., 2017). Loblolly pine maintained the 

lowest predicted weather mortality from 2011 to 2015 of all species analyzed. One 

caveat to this is that mean predicted loblolly weather mortality was consistently 

underestimated each year (i.e., observations were 29-66% greater than predictions across 

all years; Appendix A: Figure A.1). Despite this, observed mean loblolly pine weather 

mortality and standard errors were consistently lower than other species. Thus, 

predictions are underestimates but still highlight general trends for this species. Shortleaf 

pine also maintained low weather mortality but remained consistently higher than 

loblolly pine. Both pine species experienced immediate but small increases in weather 
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mortality which continued increasing into 2013 (significantly so for loblolly), two years 

post-drought, suggesting that mortality for pines was lagged. However, the lack of any 

significant difference in shortleaf pine weather mortality is likely due to the small 

numbers of this species on the landscape reflected by the high variability in mortality 

estimates. These general trends in pines could relate to both the widespread, active 

management of loblolly pine and the ability of this species to thrive in a wide range of 

conditions (Fox et al., 2007). Extensive and intensive actions such as thinning, 

fertilizing, prescribed burning, and other means of competition-control may have 

provided favorable conditions for pine allowing it to resist drought more effectively. 

Recent tree-ring studies of pine species across the U.S. highlight the effectiveness of 

thinning and reduced stand densities at mitigating water stress (D'Amato et al., 2013; 

Bottero et al., 2017; Gleason et al., 2017) lending support to our observations in east 

Texas. At a finer scale, loblolly pine employs morphological water conservation 

strategies under moderate drought by reducing leaf area and maintaining leaf water 

potential high enough to avoid mortality (Maggard et al., 2016), representing an 

isohydric water conservation strategy. These physiological strategies also may have 

allowed many pines to avoid immediate mortality under the severe 2011 drought 

conditions. However, given the continued increase in mortality for pines into 2013, it 

seems plausible that the intense, acute drought conditions may have been severe enough 

to cause terminal hydraulic damage or deplete carbon stores to the point that eventual 

recovery was not possible, particularly for trees suffering from low vigor prior to the 

drought (Anderegg et al., 2013b; Berdanier and Clark, 2016). 
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Oaks appeared most vulnerable to extreme drought given the combination of the 

initial sharp increase in predicted weather mortality in 2012 and the generally higher 

predicted weather mortality relative to other species. It was clear that all oak species 

analyzed in this study experienced significant, immediate drought mortality. Not 

surprisingly, the red oak species (i.e., water oak and, in particular, southern red oak) had 

higher mortality in 2012, one year post drought, than post oak (i.e., a white oak species). 

When not under stress, red oaks can experience mortality rates three to six times that of 

other species (Fan et al., 2006). Yet, in the south-central U.S., red oaks have been 

particularly vulnerable to decline events driven by multiple stressors including drought 

and pests (Fan et al., 2012; Haavik et al., 2012). Oaks, in general, tend to maintain 

stomatal conductance and transpiration even under very dry conditions (Pataki and Oren, 

2003; Will et al., 2013) and operate with very small hydraulic safety margins 

(Rodríguez-Calcerrada et al., 2017) thus, following an anisohydric strategy. It appears 

the 2011 drought conditions may have surpassed a threshold by which sustained 

transpiration and increasingly negative water potentials could not be maintained 

resulting in rapid onset of mortality via hydraulic failure for the three oak species 

analyzed here, falling in line with global observations of anisohydric trees under drought 

(Adams et al., 2017; Cailleret et al., 2017). This finding has important implications for 

predicting future forest composition if severe droughts like that which occurred in 2011 

become more frequent in the future. Oaks in general may suffer disproportionate loss of 

mature individuals in addition to regenerating seedlings and saplings under future 
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extreme droughts via immediate hydraulic failure and subsequent decline and dieback 

(Rodríguez-Calcerrada et al., 2017). 

Sweetgum and winged elm appeared to show lagged drought-related mortality 

ultimately reaching their peak predicted mortality by 2013. Interestingly, sweetgum 

experienced significant immediate mortality in 2012 which continued increasing into 

2013 albeit not significantly. Winged elm weather mortality was highly variable 

resulting in the lack of significantly different mortality estimates across years, despite 

the notable increase in 2013. These two species are widespread in east Texas primarily 

occurring as intermediate or suppressed trees in the pine forests that dominate this region 

(Burns and Honkala, 1990). It is possible that competition for resources (i.e., light and 

water) with more dominant pines was exacerbated for sweetgum during the drought thus, 

resulting in significant initial mortality, likely via hydraulic failure. Physiologically, 

sweetgum will reduce stomatal conductance quite rapidly allowing it to avoid leaf 

desiccation (Pezeshki and Chambers, 1986) and may also undergo leaf senescence and 

abscission quite rapidly under water stress (Pataki and Oren, 2003; Esperon-Rodriguez 

and Barradas, 2015), generally following an isohydric strategy. It is possible that those 

more vigorous sweetgum successfully employed this strategy to avoid the initial drought 

effect but eventually sustained notable, but not significant, increased mortality two years 

post drought through potential carbon depletion and compromised xylem conductance. 

While weather was the greatest factor attributed to tree mortality in the years 

following the drought, pests also contributed. As expected, mortality from pests was 

delayed following the drought, significantly increasing in 2013 with continued smaller 
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increases through 2014 and 2015. Pest-driven mortality following drought events are 

poorly understood and often depend on many factors including the extent and severity of 

a drought, tree species in the affected region, insect and disease species in the affected 

region, and interactions among these factors (Anderegg et al., 2015; Kolb et al., 2016). 

The acute, exceptional nature of the 2011 drought was broad and severe enough that 

many tree species remained physiologically weakened, making them susceptible to 

various pests. Regionally prevalent insects such as Ips beetle (Ips grandicollis, I. 

avulsus, and I. calligraphus) and diseases including hypoxylon canker (Biscogniauxia 

atropunctatum) and oak wilt (Ceratocystis fagacearum) appeared to facilitate continued 

tree mortality by attacking drought-stressed trees multiple years post-drought (Texas 

A&M Forest Service, U.S. Forest Service, Forest Health Highlights for Texas, 2012-

2014). Notably, the southern pine beetle (Dendroctonus frontalis) had a minimal impact 

and did not erupt following the drought event (Asaro et al., 2017) falling in line with a 

synthesis of past evidence (Kolb et al., 2016). In fact, loblolly pine maintained the 

lowest predicted pest mortality through all years of all species analyzed. This is likely 

due in part to the non-effect of southern pine beetle and, as mentioned previously, the 

extensive management of loblolly pine in this region providing a favorable competitive 

environment (Fox et al., 2007). The high predicted pest mortality in southern red oak 

follows observations from recent decline events further north in Arkansas and Missouri 

which resulted in substantial mortality in red oak species from red oak borer outbreaks 

following periodic drought events (Fan et al., 2008; Fan et al., 2012; Haavik et al., 
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2012). Overall, pest mortality clearly added to the broader effect of the 2011 drought yet 

was relatively more muted than weather mortality. 

 

Conclusions 

The historically unprecedented drought event in 2011 caused immediate shifts in 

live-to-dead tree numbers and increased mortality up to three years after the event in east 

Texas. Species differed in immediate or delayed drought mortality impacts suggesting 

fundamental differences in sensitivity to drought. Specifically, oaks showed a near 

immediate drought mortality response in 2012 while pines, and somewhat for sweetgum 

and winged elm, had a delayed mortality response. The initial RDA of drought mortality 

in 2012 is supported by new estimates computed from 2012 FIA data highlighting the 

effectiveness of rapid, independent sampling efforts for quantifying the impacts of major 

disturbance events and informing management and policy decisions. Ultimately, the 

drought and subsequent pest effect on angiosperms was likely more severe than previous 

estimates in part because of continued mortality beyond 2012. This lagged effect in 

angiosperms may also affect efforts to remotely sense drought impacts because many of 

these species are found in the lower canopy while the more common overstory pines 

were relatively unaffected. Insect and disease characteristics played a role in driving 

differing and lagged responses among species two and three years beyond the drought 

event. Additionally, broad-scale factors such as active management of loblolly pine 

likely created favorable competitive environments which muted any substantial mortality 

impacts in this species. Future work should aim to identify the drivers of immediate 
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mortality in oaks (i.e., whether they crossed a physiological threshold of climate-related 

mortality) and the strategies or conditions that allowed pines to remain relatively 

unaffected (e.g., morphological adaptations, stand structure). 
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CHAPTER III  

SOUTHERN PINE MANAGEMENT REINFORCES RESISTANCE TO EXTREME 

DROUGHT MORTALITY AT THE WESTERN EDGE OF ITS RANGE 

 

Synopsis 

Tree mortality is expected to increase as future droughts become more extensive 

and severe. Forest managers must cope with the effects of extreme droughts while 

continuing to provide valuable ecosystem services. In 2011, the state of Texas 

experienced an exceptional drought covering all forested areas, breaking statewide and 

regional temperature and precipitation records. In the eastern region of Texas, pine 

species are economically and ecologically important and are often managed, providing 

an opportunity to examine whether silvicultural strategies could mitigate extreme 

drought mortality. We used U.S. Forest Service Forest Inventory and Analysis data to 

construct Bayesian, logistic, mixed effects regression models describing individual tree 

mortality of three major pine groups (planted and naturally-regenerated loblolly pine, 

Pinus taeda (PL and NL, respectively), and shortleaf pine, Pinus echinata, (SL)) under 

pre-drought and drought periods for east Texas. Additionally, we built similar models 

for these pine groups and periods to assess how stand structure (i.e., tree size, relative 

density, and species dominance) affected individual tree mortality. Surprisingly, pine 

mortality did not increase significantly from pre-drought to drought periods but the 

group mortality rates did differ from one another as well as in response to stand 

structural characteristics. Planted loblolly was least affected as mortality increased 9.8% 
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between periods. In contrast, NL and SL pine mortality rates were significantly higher 

than PL but were relatively similar to each other, increasing 26.3% and 20.0%, 

respectively. Somewhat surprisingly, stand structure did not explain mortality in SL in 

either period. However, tree size and relative density were key factors explaining 

mortality in loblolly pine. The smallest and largest stems experienced elevated mortality, 

particularly for PL under extreme drought. As expected, loblolly pine in dense stands 

were more susceptible to drought mortality. Notably for NL, greater overstory diversity 

reduced the probability of pine mortality under extreme drought. Our results suggest that 

current practices in PL that manage relative density and tree size confers some resistance 

to extreme drought. In NL stands, drought resistance could be increased from thinning 

and management that encourages tree diversity. 

 

Introduction 

Future climate is predicted to become hotter and increase the extent and severity 

of future droughts worldwide (IPCC 2013). Forests may already be responding to 

climatic changes (van Mantgem et al., 2009; Peng et al., 2011) in part through increases 

in drought-related tree mortality (Allen et al., 2015). Elevated mortality could have 

profound ramifications on forested systems (Anderegg et al., 2013a) and represent a 

major challenge to resource managers tasked with maintaining healthy, productive 

forests in an uncertain future (Clark et al., 2016; Vose et al., 2016). Manipulating stand 

structure and composition through silvicultural practices could mitigate stressful 

conditions from future disturbances (Puettmann, 2011). However, it remains unclear as 
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to whether such tools could be effective under future extreme droughts. Knowledge of 

forest stand response to extreme drought is critical for guiding and adapting future 

management strategies aimed at mitigating the impacts of a changing climate on forests. 

From October 2010 to September 2011, the state of Texas experienced the most 

extreme drought on record with over 80% of the land area under the most severe drought 

classification (Nielsen-Gammon, 2012). The heavily forested region of east Texas 

followed temperature and precipitation patterns seen statewide during the drought, 

having the hottest summer temperature deviation (+3.1 C) and lowest 12-month 

precipitation (619 mm; 47% lower than 20th century average of 1162 mm) (NOAA 

2018). Regarding tree mortality within east Texas, Pinus fared better than other common 

genera such as Quercus and Liquidambar (Moore et al., 2016; Klockow et al., 2018). 

Given their economic importance and the high proportion of planted pine in the region, 

the drought provides an opportunity to assess which pines were most affected and to 

identify specific sources of vulnerability to be addressed by improved management 

practices that further mitigate risks of mortality from extreme drought. 

Nearly 20% of all pine-dominated forest in the southeastern U.S. is comprised of 

intensively managed plantations (Chen et al., 2017) often receiving competition control, 

fertilization, and planting of genetically improved seedlings at calculated densities (Fox 

et al., 2007). In east Texas, loblolly pine (Pinus taeda L.) is an important economic 

species with large proportions of both heavily managed planted pine and unmanaged or 

minimally-managed, naturally-regenerated pine (Texas A&M Forest Service, Annual 

Forest Report 2017). This dichotomy in loblolly pine condition has led to questions 
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about the functionality of plantations compared to naturally-regenerated stands of this 

species under drought. Evidence from a comparison of physiological characteristics (i.e. 

root hydraulic conductivity, root:shoot ratios) suggested that plantation loblolly pine 

should be more drought-sensitive than naturally-regenerated pine in terms of 

productivity (Domec et al., 2015) possibly driven by fertilization inputs affecting 

transpiration and root production (Ward et al., 2015). However, fertilized plantation pine 

at the western edge of its range increased water use efficiency and sustained productivity 

under water-limited conditions (Maggard et al., 2017; Bracho et al., 2018) suggesting 

intensively managed pine could better cope with drought. Still, there has been no study 

contrasting planted and naturally-regenerated pine, particularly under extreme drought, 

informing whether their perceived differences translate into differential mortality 

response. 

Species selection for planting may also play a role in the overall mortality 

response of regional pine to drought. Shortleaf pine (Pinus echinata) has a perceived 

potential to withstand drought given its historical occurrence across a range of site 

conditions including xeric sites and rocky outcrops (Mattoon, 1915). Under non-drought 

conditions, mature shortleaf pine sustained higher mortality and lower productivity than 

loblolly pine in southeastern Oklahoma (Dipesh et al., 2015) yet, it remains unclear how 

they compare under extreme drought conditions. Shortleaf pine has seen drastically 

reduced dominance because of logging and subsequent fire suppression (Barrett, 1995) 

leading to widespread restoration initiatives to increase its prevalence in the southeastern 

U.S. (e.g., Shortleaf Pine Initiative). East Texas is one region in which this species could 
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be targeted for restoration efforts. Yet, limited information on growth and mortality 

responses to drought hinder management efforts aimed at successfully restoring this 

declining species, particularly in the face of an uncertain climate future. 

Stand structure (e.g., tree size, stem density, and species composition) represents 

one set of conditions most easily manipulated by managers for mitigating negative 

drought effects (Clark et al., 2016). It is well-documented that the smallest and largest 

trees tend to experience higher mortality rates, often termed ‘U-shaped’ or ‘J-shaped’ 

mortality curves (Lines et al., 2010; Dietze and Moorcroft, 2011). Small stems typically 

comprise the regenerating component of early-successional forests and elevated drought 

mortality in this group could alter future forest composition (Thrippleton et al., 2018). 

Large trees play important ecological roles in forested ecosystems (Lindenmayer et al., 

2012) yet, recent evidence suggests that they may be most susceptible to extreme 

drought and are suffering disproportionate mortality worldwide (Lindenmayer et al., 

2012; Bennett et al., 2015). However, these patterns in large tree drought mortality can 

be variable and difficult to confirm (Floyd et al., 2009; Klos et al., 2009; Ganey and 

Vojta, 2011). Additionally, alleviating competition for limited resources by reducing 

stand density and basal area (cross-sectional stem area at 1.37 m height) has long been 

utilized by practitioners to improve growth and productivity. Reducing competition 

through silvicultural thinning has improved growth response to water stress (D'Amato et 

al., 2013; Bottero et al., 2017; Gleason et al., 2017). However, extreme drought 

conditions that drive very low soil water potentials may negate any benefits gained from 

reduced competition resulting in increased tree mortality across a range of densities 
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(Floyd et al., 2009). Finally, stand species composition can be an important factor in 

affecting drought mortality (Klos et al., 2009; Cavin et al., 2013) as interactions with 

water and nutrient pools may differ among species (Forrester, 2014). Neighboring trees 

of different species may show facilitation via hydraulic lift more than competition 

(Pretzsch et al., 2013) or access different resource pools alleviating stressful conditions 

(Kramer and Holscher, 2010) which may be exacerbated in single-species-dominated 

stands. 

The magnitude and widespread nature of the 2011 drought in east Texas 

provided a unique opportunity to address questions related to the mortality of pine 

species and associated stand structure in this region. Using national forest inventory 

(NFI) plots with complete and systematic coverage of east Texas, we addressed the 

following objectives, 1) compare mortality rates of three common pine species groups 

(i.e., planted loblolly pine, naturally-regenerated loblolly pine, and shortleaf pine) under 

exceptional drought conditions and pre-drought conditions, 2) determine how stand 

structure (i.e., tree size, stem density, and species composition) affected individual tree 

mortality in the same pine species groups under exceptional drought conditions and pre-

drought conditions, and 3) provide targeted management suggestions based on predicted 

mortality trends for mitigating extreme drought mortality in southern pine. We address 

these objectives at the individual tree scale using extensive re-measurements of pine. 

For objective 1, we hypothesize that pre-drought group mortality rates will be 

lowest in planted loblolly pine, given the extensive competition control and management 

actions in this group, and highest in the shortleaf pine group, given past evidence from 
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Dipesh et al. (2015) under non-drought conditions. Regarding objective 2, we 

hypothesize for each group that, under pre-drought conditions, smaller trees will have 

higher mortality given their limited rooting depth and access to deeper water. Larger 

trees will have higher mortality potentially due to greater hydraulic stress, increased 

crown exposure, and preference by bark beetles (Bennett et al., 2015). Furthermore, 

under pre-drought conditions, the highest stem densities will show higher mortality 

following expected patterns of competition and the lowest stem densities will show 

higher mortality due to possible increased individual tree risk from maintenance of 

greater leaf area and root systems (Clark et al., 2016). Finally, pure species mixtures will 

show higher mortality possibly through increased intra-specific competition (Klos et al., 

2009). We generally expect that mortality increased from pre-drought to drought period 

for each group and each stand structure factor given the extreme nature of the drought. 

 

Methods 

Study Area 

Our study was located in eastern Texas (29° 17’ to 33° 57’ N and 93° 30’ to 96° 

27’ W; Figure III.1), comprising the western extent of West Gulf Coastal Plain forests. 

Forests in this region are composed of a diverse species mix yet are heavily dominated 

by pine species, namely loblolly pine (Pinus taeda L.) followed by shortleaf pine (Pinus 

echinata). Hardwood species tend to comprise much of the mid- and under-story and 

include a diverse mix of oaks (e.g., Quercus stellata, Quercus nigra, etc.), sweetgum 

(Liquidambar styraciflua), and elm species (e.g., Ulmus alata). Climate is generally 
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humid sub-tropical with hot, humid summers and mild, wet winters. During the study 

period (2003-2016), mean annual precipitation and temperature ranged between 769-

1737 mm and 18.1-20.1 °C, respectively (20th century averages of 1162 mm and 18.6 

°C, respectively) with the lowest precipitation (769 mm) and second highest temperature 

(19.9 °C) during this period occurring in 2011 (NOAA 2018). Variation in topography is 

minimal with flat to rolling elevation changes ranging from sea-level near the coast to 

nearly 200 m above sea level. Soils are variable, ranging from poorly-drained to well-

drained conditions predominantly comprised of loamy to clayey Alfisols and Ultisols 

(USDA NRCS 2006). 
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Figure III.1 State of Texas map with (a) study area (east Texas) as inset and (b) Forest 

Inventory and Analysis plot locations used for each pine group. 

 

 

Dataset 

Data were taken from the U.S. Forest Service Forest Inventory and Analysis 

(FIA) program for east Texas. The full dataset consisted of 1,640 forested (> 10% tree 

cover) plots. A plot consists of four subplots each covering 168.1 m2 (~672.5 m2 total 

plot area) with one central subplot and the three remaining subplots oriented ~36.6 m 

distance (central subplot-center to outer subplot-center) at 0, 120, and 240 degrees. Trees 

were classified as stems ≥ 2.54 cm diameter at breast height (DBH; 1.37 m stem height). 

Trees with DBH ≥ 2.54 cm and < 12.7 cm were measured on four microplots (13.5 m2 
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each, ~54.0 m2 total) located within subplots while trees with DBH ≥ 12.7 cm were 

measured on each full subplot. Species, DBH, status (live or dead) were all recorded at 

each plot measurement and used in this study. 

We categorized trees within the dataset as planted loblolly pine (PL), naturally-

regenerated loblolly pine (NL), and shortleaf pine (SL). Planted loblolly was identified 

by selecting plots originating from planted seedlings of loblolly pine and NL was 

identified by selecting plots of non-planted origin. There existed a few instances where a 

plot straddled both PL and NL conditions. We excluded these plots from our dataset to 

avoid the confounding effects of active or non-management at the interface of PL and 

NL conditions. Given the rare occurrence of shortleaf pine plantations coupled with their 

relatively low numbers in the dataset, shortleaf pine was categorized as one group. All 

harvested/salvaged trees were excluded from the dataset to avoid confounding effects of 

silvicultural activity on mortality. 

We classified trees into two measurement periods, pre-drought and drought. The 

pre-drought period consisted of trees initially measured as being alive and subsequently 

re-measured as alive or dead prior to 2011 (i.e., 2003-2010). Thus, the mortality 

response of pre-drought trees was not affected by the 2011 drought. Drought period trees 

were initially measured as alive prior to 2011 and subsequently re-measured as alive or 

dead after 2011 (i.e., 2012-2016). Thus, the mortality response of drought period trees 

reflect exposure to the 2011 drought assuming any individual tree did not die after initial 

measurement and prior to the onset of the drought. All plots were re-measured over 

approximately a five-year period. 
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We selected and calculated stand structural variables prior to any analysis, 

including DBH, plot relative density (RD; after Ducey and Knapp (2010)), and plot 

species group dominance (SPD; basal area of a focal species group in a plot divided by 

total basal area of the plot). Variable selections were chosen based on their importance in 

describing individual tree size/age and local inter- and intra-specific competitive 

interactions. Moreover, the variables included in our analyses represent common metrics 

used by managers for manipulating forest conditions. All data were summarized and 

presented in Table III.1. 
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Table III.1 Summary information for the pine groups analyzed in the study. Pre-drought period (Pre) refers to trees measured 

prior to the 2011 drought and drought period (Drought) refers to trees initially measured prior to 2011 and re-measured after 

2011. Diameter at breast height (DBH) is summarized across individual trees while relative density and species dominance are 

plot-level metrics. Median values and 2.5th and 97.5th quantiles are presented in parentheses. 

 

Pine Group Period 
Plot 

Count 

Tree 

Count 

DBH 

(cm) 

Relative 

Density 

Species 

Dominance 

Planted 

Loblolly 

Pre 173 3347 
17.0 

(4.6, 31.6) 

0.37 

(0.03, 0.95) 

0.88 

(0.16, 1.00) 

Drought 282 5855 
17.3 

(4.8, 32.8) 

0.38 

(0.03, 1.00) 

0.87 

(0.11, 1.00) 

Naturally-regenerated 

Loblolly 

Pre 444 3992 
18.0 

(3.3, 54.6) 

0.53 

(0.03, 1.09) 

0.40 

(0.03, 0.95) 

Drought 612 5489 
19.8 

(3.3, 58.9) 

0.57 

(0.07 1.10) 

0.40 

(0.02, 0.96) 

Shortleaf 

Pre 231 871 
22.6 

(5.1, 50.0) 

0.58 

(0.14, 0.98) 

0.12 

(0.01, 0.69) 

Drought 316 1175 
24.9 

(6.9, 53.2) 

0.59 

(0.11, 1.10) 

0.12 

(0.01, 0.71) 
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Analysis 

We analyzed the data for each objective using Bayesian logistic mixed-effects 

models. In all cases, the response variable was binary tree status (live = 1, dead = 0) 

modeled as a Bernoulli-distributed variable constrained by a probability of survival. 

 𝑦𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑆𝑖𝑗) (III.1) 

Where, yij is the response for tree i in plot j and pSij is the probability of survival for tree i 

in plot j. To account for variability in plot re-measurement time, we used an approach 

first presented by Hamilton Jr. and Edwards (1976) and incorporated a random effect 

component. 

 𝑝𝑆𝑖𝑗 = [
1

1+ 𝑒
−(𝑋𝑖𝑗

𝑇 𝛽𝑘+𝜇𝑗)
]

𝐿𝑗

 (III.2) 

Where, pSij is the same as described in equation 1, XT
ij is the transposed matrix of 

covariates for tree i in plot j, βk is the vector of length k of parameters to be estimated, uj 

is the random effect of plot j, and Lj is the re-measurement interval for plot j. Using this 

approach, the estimated βk’s describe the annual log odds of survival for each tree as 

opposed to the log odds of survival for the specific re-measurement interval Lj. We 

included the random effect in each model to account for plot-level variability from site 

differences. Random effects were modeled as a normally-distributed variable with mean 

of zero and common variance. 

 𝜇𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) (III.3) 

Where, μj is the mean effect in log odds for plot j and σ2 is the variance of the 

distribution of plot mean effects. For objective 1, a single model was constructed and 
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explanatory variables included the three pine groups (PG: PL, NL, SL), two 

measurement periods (MP: pre-drought, drought), and their interaction. 

 𝑋 =  𝑃𝐺 + 𝑀𝑃 + 𝑃𝐺 ∗ 𝑀𝑃 (III.4) 

Where, X is the matrix of covariates from equation III.2. For objective 2, separate 

models were constructed for each pine group and measurement period (six total). 

Explanatory variables for each model included the three stand structural variables of 

DBH, RD, and SPD. All the explanatory variables were modeled as having a quadratic 

effect on predicted survival response. 

 𝑋 =  𝐷𝐵𝐻 + 𝐷𝐵𝐻2 + 𝑅𝐷 +  𝑅𝐷2 +  𝑆𝑃𝐷 +  𝑆𝑃𝐷2 (III.5) 

Where, X is the matrix of covariates from equation III.2. Variables for objective 2 were 

mean-centered and standardized to allow for more meaningful comparison of the effect 

sizes of each variable on predicted mortality within each model. For the presentation of 

results, we converted survival probabilities to mortality probabilities via 𝑝𝑀𝑖𝑗 = 1 −

 𝑝𝑆𝑖𝑗. 

All models were fit using Hamiltonian Monte Carlo simulations implemented in 

the RStan package (Stan Development Team, 2017) accessed via R software (R Core 

Team, 2016). Vague priors were chosen for the estimated parameters. Specifically, 

priors for βk followed a normal distribution of mean zero and standard deviation of 104 

and μj followed a uniform distribution with mean zero and range 104. Use of vague 

priors meant that results of these analyses should be close to estimations from a 

maximum likelihood analysis. Chains were run for 100k iterations with a 50k warm-up 

and were thinned by 1/20 to reduce autocorrelation. Chain convergence to the posterior 
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distribution was assessed visually using traceplots and by the R-hat statistic (Gelman and 

Rubin, 1992). To evaluate the performance of our models, we used a mixed posterior 

predictive assessment as developed by Green et al. (2009) and employed by Masuda and 

Stone (2015). Broadly, posterior predictive model checking involves simulating 

replicated data under its modeled distribution using each MCMC simulated value of the 

estimated model parameters and comparing these new data with the observed data set 

(Hobbs and Hooten, 2015). In particular, the mixed posterior predictive assessment 

provides a more conservative assessment of model performance, being similar to the 

widely-accepted cross-validation technique, than a full posterior predictive assessment, 

particularly for hierarchical models (e.g., containing a random effect) (Green et al., 

2009). This is accomplished by first drawing a new random effect for each group from 

its modeled distribution, adding the new mean effect to the estimated linear model 

component, and using the resulting value to draw a new observation from its modeled 

distribution. In contrast, the fixed posterior predictive assessment uses the estimated 

random effect rather than drawing a new one which consistently results in a deceptively 

better fit between observed data and replicated data (Green et al., 2009). 

We used common management metrics to produce mortality curves from our 

resulting models and identified particular areas where management actions could be 

implemented when extreme drought is a concern. Specifically, we produced mortality 

curves for 35% and 65% relative densities, which represent the range of fully-stocked 

stands, and for merchantable stem diameters of 15, 25, and 35 cm, representing common 
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pulpwood, small sawtimber, and large sawtimber stem sizes, respectively, in the study 

area. 

 

Results 

Pine Group Mortality 

Drought mortality increased relative to pre-drought mortality for all pine groups 

by 9.8%, 20.0%, and 26.3% for PL, SL, and NL, respectively, yet, none differed 

significantly from its pre-drought period (Figure III.2, Appendix B: Table B.1). Planted 

loblolly pine had the lowest overall group mortality for both periods being significantly 

lower than NL and SL. Shortleaf pine had the highest overall mortality for both periods 

and had the greatest variability. Naturally-regenerated loblolly pine had the greatest 

increase in mortality between periods suggesting it was the most sensitive to the drought 

conditions. 
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Figure III.2 Mortality probabilities for each pine group and measurement period with 

95% credible intervals (blue = pre-drought, orange = drought). The R2 for the mixed 

predictive assessment was 0.09. Prediction accuracy of live and dead trees was 0.999 and 

0.132 for observed vs. predicted responses and 0.916 and 0.097 for replicated vs. predicted 

responses, respectively. 

 

 

Stand Structure 

Stand structure was most important for describing mortality in loblolly pine with 

differing effects across PL, NL, and measurement periods (Table III.2). Interestingly, 

stand structure did not describe mortality in SL under either period. Diameter at breast 

height followed the familiar ‘U-shaped’ or ‘J-shaped’ pattern, reflecting higher mortality 

in the smallest and largest stems, when examined in relation to mortality for both PL and 

NL in both periods (Table III.2). Drought accentuated this effect in the smallest and 
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largest stems of PL more so than in NL. Plot relative density significantly affected 

mortality in loblolly pine primarily causing greater mortality with increasing density, 

which was most pronounced in PL under drought (Table III.2). The effects of relative 

density on pre-drought NL mortality leveled off at the highest densities but, under 

drought, continued increasing at higher densities. Plot species dominance affected 

mortality among pre-drought PL causing lower mortality under more pure mixtures 

while drought-period NL experienced higher mortality with increasing NL dominance 

(Table III.2). 
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Table III.2 Model results for the effects of stand structure on pine group mortality for each measurement period with 95% 

credible intervals (DBH = diameter at breast height, RD = plot relative density, SPD = plot species dominance, Plot RE SD = 

estimated standard deviation from the random effect of plots). Bold estimates, intercepts, and Plot RE SDs are significantly 

different from zero. The bottom three rows provide metrics from model assessment including, proportion of explained variance 

from the mixed predictive assessment on observed vs. replicated data (R2 MPA), accuracy of observed vs. predicted live and 

dead trees and, accuracy of replicated vs. predicted live and dead trees. 

 
Estimated Parameters Planted Loblolly Naturally-regenerated Loblolly Shortleaf 

Log Odds Mortality Pre Drought Pre Drought Pre Drought 

Intercept 
-5.617 

(-6.183, -5.127) 

-5.947 

(-6.450, -5.498) 

-4.924 

(-5.291, -4.591) 

-4.716 

(-5.020, -4.417) 

-4.848 

(-5.789, -4.080) 

-4.133 

(-4.601, -3.705) 

DBH 
-0.958 

(-1.178, -0.748) 

-1.082 

(-1.234, -0.936) 

-1.421 

(-1.617, -1.239) 

-1.130 

(-1.272, -0.990) 

-0.422 

(-0.756, -0.098) 

-0.040 

(-0.246, 0.173) 

DBH2 
0.188 

(0.124, 0.249) 

0.330 

(0.274, 0.384) 

0.451 

(0.384, 0.517) 

0.396 

(0.341, 0.452) 

0.145 

(-0.009, 0.286) 

0.089 

(-0.022, 0.192) 

RD 
0.350 

(0.031, 0.678) 

0.831 

(0.521, 1.169) 

0.449 

(0.251, 0.650) 

0.233 

(0.057, 0.414) 

0.257 

(-0.096, 0.643) 

0.098 

(-0.106, 0.309) 

RD2 
-0.128 

(-0.357, 0.103) 

0.017 

(-0.191, 0.221) 
-0.160 

(-0.312, -0.014) 

-0.037 

(-0.161, 0.078) 

0.024 

(-0.260, 0.273) 

0.075 

(-0.037, 0.187) 

SPD 
-0.587 

(-1.075, -0.107) 

-0.071 

(-0.520, 0.379) 

0.130 

(-0.064, 0.328) 
0.266 

(0.074, 0.464) 

-0.094 

(-0.567, 0.382) 

0.061 

(-0.186, 0.317) 

SPD2 
-0.221 

(-0.439, -0.025) 

-0.176 

(-0.383, 0.005) 

0.006 

(-0.162, 0.168) 

-0.066 

(-0.221, 0.086) 

-0.016 

(-0.484, 0.410) 

0.037 

(-0.231, 0.302) 

Plot RE SD 
-1.352 

(-1.755, -1.016) 

-1.715 

(-2.087, -1.399) 

-1.008 

(-1.279, -0.762) 

-1.458 

(-1.657, -1.273) 

-1.813 

(-2.594, -1.205) 

-1.067 

(-1.417, -0.761) 

R2 MPA 0.38 0.25 0.71 0.20 0.07 0.07 

Observed Pred. Acc. 

(live / dead) 
0.999 / 0.014 0.997 / 0.330 0.996 / 0.144 0.991 / 0.315 1 / 0.144 0.997 / 0.070 

Replicated Pred. Acc. 

(live / dead) 
0.953 / 0.111 0.925 / 0.211 0.902 / 0.262 0.858 / 0.226 0.870 / 0.145 0.851 / 0.156 
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Management-Based Mortality Curves 

Planted loblolly mortality curves for DBH highlight the vulnerability of the 

smallest and largest stem sizes under drought conditions (DBH of < 20 cm and > 40 cm; 

Figures III.3a, b). This effect was most pronounced in the largest stems at higher 

densities (65% RD; Figure III.3b). Merchantable stems of PL had very low mortality 

with very low variability regardless of period (Figures III.3a, b). Interestingly, smaller 

stems under pre-drought conditions did not significantly differ in mortality at 35% or 

65% RD (Figure III.3c). However, smaller stems under extreme drought had 

significantly higher mortality at 65% RD than at 35% RD (Figure III.3d). 
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Figure III.3 Mortality curves (solid lines) for planted loblolly and diameter at breast 

height with 95% credible intervals (dashed lines). Relative density is held constant at the 

lower (35%) and upper (65%) limits of fully-stocked conditions while species dominance 

is held constant at its median values (~90%, see Table III.1). Dotted vertical lines highlight 

merchantable size classes (15, 25, and 35 cm DBH). Panels a) and b) show mortality 

curves across the full range of DBH values (panels a and b: blue = pre-drought, orange = 

drought) while panels c) and d) display notable differences which occur at smaller DBH 

values (panels c and d: 35% RD = dark blue, dark orange; 65% RD = light blue, light 

orange). 
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Naturally-regenerated loblolly pine had higher mortality in the smallest and 

largest stems but this effect did not differ between pre-drought and drought periods 

(Figures III.4a, b). As with PL, merchantable stems of NL had very low mortality with 

very low variability (Figures III.4a, b). However, merchantable stem mortality was 

significantly higher under extreme drought at 35% RD (Figure III.4c) whereas, at 65% 

RD, mortality did not differ between periods but was higher overall than at 35% RD 

(Figure III.4d). Interestingly, SPD mortality curves for NL indicated that drought 

mortality was significantly higher than pre-drought above ~50% loblolly dominance for 

all merchantable stem sizes (Figures III.5a, b, c). However, mortality was lower overall 

and did not differ significantly below ~50% loblolly dominance (Figures III.5a, b, c). 
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Figure III.4 Mortality curves (solid lines) for naturally-regenerated loblolly and diameter 

at breast height with 95% credible intervals (dashed lines) (blue = pre-drought, orange = 

drought). Relative density is held constant at the lower (35%) and upper (65%) limits of 

fully-stocked conditions while species dominance is held constant at its median values 

(~60%, see Table III.1). Dotted lines highlight merchantable size classes (15, 25, and 35 

cm DBH). Panels a) and b) show mortality curves across the full range of DBH values in 

the dataset while panels c) and d) display notable differences which occur at small and 

mid-range DBH values. 
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Figure III.5 Mortality curves (solid lines) for naturally-regenerated loblolly and species dominance with 95% credible intervals 

(dashed lines) (blue = pre-drought, orange = drought). Diameter at breast height is held constant at merchantable size classes 

(15, 25, and 35 cm) while relative density is held constant at the lower limit of fully-stocked conditions (35%). Dotted vertical 

lines highlight 50% dominance by naturally-regenerated loblolly. 
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Model Assessment 

The mixed predictive assessment for the model based on equation 4 (i.e., pine 

groups and measurement periods) suggested that live trees were predicted accurately and 

mortality responses were not predicted well (Table III.2). This is likely attributable to the 

limited number of dead trees in the dataset for PL as it had low mortality during both 

periods and may also be attributable to the similarity in mortality estimates for NL and 

SL making differentiation between groups difficult. The mixed predictive assessment for 

the models based on equation 5 (i.e., stand structure) show that the PL and NL models 

performed fairly well while the SL models performed poorly (Table III.2). In all cases, 

live trees were predicted well while dead trees were predicted fairly (NL, PL) to poorly 

(SL). Since essentially none of the stand structural variables for SL significantly differed 

from zero and most were different from zero for PL and NL, it is not surprising that the 

SL models performed poorly and the PL and NL models provided better explanatory 

power for describing mortality. 

 

Discussion 

Pine Group Mortality 

In this study, we provide a unique assessment of extreme drought mortality 

among both planted and naturally-regenerated pines. The effects of widespread and often 

intensive management actions in PL stands appears to play a critical role in mitigating 

mortality from extreme drought. Planted loblolly mortality was lowest of the three pine 

groups for both pre-drought and drought conditions, providing support for our 
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hypothesis for pre-drought PL. Interestingly, extreme drought exposure did not result in 

disproportionate vulnerability to drought in PL as has been hypothesized (Domec et al., 

2015). Klos et al. (2009) observed higher drought sensitivity (growth and mortality) in 

pine species of Alabama, Georgia, and Virginia; however, they did not separate out PL 

from NL. Also, pines in the Klos et al. (2009) study occur in the central reaches of their 

geographical distribution, whereas east Texas represents the western range margin of 

loblolly pine. It is possible loblolly pine genotypes in Texas are better adapted to drier, 

more variable climate than those further east (McNulty et al., 2014; Rehm et al., 2015). 

Recent examination of PL growth in the West Gulf Coastal Plain suggests that, even 

under water-limited conditions (albeit not as extreme as the 2011 drought), trees 

remained productive particularly when given fertilizer inputs (Maggard et al., 2017), 

suggesting positive response of water-stressed PL under management. However, 

Maggard et al. (2017) addressed growth and not mortality response of PL. Critically, it 

appears the management actions associated with PL likely allowed these stands to 

endure the harsh water stress of the 2011 drought. 

Of the groups examined, NL appeared the most vulnerable to extreme drought 

having the highest increase in mortality (26.3% increase). A challenge with examining 

this group as a whole across the region of east Texas is disentangling the multiple factors 

driving this mortality response. Often, NL stands remain unmanaged until harvest, 

however, many stands of NL still have active competition control to improve 

productivity (Nelson and Bragg, 2016) providing an advantage when exposed to water 

stress. The existence of some management activity in a portion of NL stands may have 
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muted the mortality response of unmanaged stands. Regardless, our data highlight that 

NL stands, as a whole, typically have higher densities across east Texas than PL (Table 

III.1) suggesting that density-dependent competition may be driving the higher mortality 

in this group. 

Shortleaf pine maintained the highest group mortality rates under both 

measurement periods, providing some support for the hypothesis that this species 

experiences the highest pre-drought mortality of the pine groups examined. This agrees 

with a recent study conducted in forests of southeastern Oklahoma, which reported 

higher mortality in SL compared to PL (Dipesh et al., 2015). The high variability in 

mortality estimates for SL can be attributed to the relatively small sample size in our 

dataset. Ultimately, SL is a relatively minor component of east Texas forests (~3% of all 

species measured by FIA) possibly occurring on sites less suitable for loblolly 

production. Thus, these high mortality rates may be more reflective of inherent site 

conditions than any particular physiological adaptations suited for drought. 

 

Stand Structure 

It is evident from our data that stand structure, particularly tree size and relative 

density, played an important role in driving mortality in loblolly pine. Our hypothesis of 

‘U-shaped’ or ‘J-shaped’ tree size mortality was supported in both PL and NL 

confirming the vulnerability of the smallest and largest trees. Higher mortality in smaller 

stems is most likely driven by inter- and intra-specific competitive effects before 

reaching maturity. Increased mortality in larger stems could be driven by multiple effects 
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including senescence, preference by pests (Pfeifer et al., 2011), windthrow (Harcombe et 

al., 2009), and increased susceptibility to hydraulic failure (Zhang et al., 2009). 

Interestingly, tree size appeared to have a greater effect on drought period mortality in 

the smallest and largest PL stems than NL. D'Amato et al. (2013) found that pine stands 

thinned at a young age and maintained at a low density exhibited lower growth 

resistance and resilience to drought at later ages likely due to difficulty maintaining high 

leaf area-to-sapwood ratios developed over time in the low-density conditions. It is 

possible this effect is occurring in intensively managed loblolly pine stands in east Texas 

which were thinned and maintained at low densities and slated for harvest beyond a 

typical rotation age (e.g., > 25 years) but were later abandoned. 

Density-dependent mortality in PL and NL followed expected trends of 

increasing mortality with increasing density (linear trend) yet did not show increasing 

mortality at lower densities (quadratic trend). A growing body of literature has found 

density-dependent mortality occurs in pine species under increasingly water-limited 

conditions across temperature and precipitation gradients (D'Amato et al., 2013; Bottero 

et al., 2017; Gleason et al., 2017). Resources inherently become limited as the number of 

trees occupying the potential growing space in a stand increases and this appeared to be 

exacerbated under extreme drought conditions for PL. Naturally-regenerated loblolly 

trees growing at low densities may have greater canopy area and root architecture than 

denser stands, given the increased growing space and access to resources (D'Amato et 

al., 2013), and may be more prone to hydraulic failure possibly causing the elevated 

drought mortality in low density NL stands compared to pre-drought. 
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Under extreme drought, species dominance became a significant factor in 

describing NL mortality but did not play a substantial role in PL mortality. Planted 

loblolly predominantly occurs in monocultures and ~85% of all PL plots had > 50% of 

basal area as PL. In fact, mortality decreased as PL dominance increased under pre-

drought conditions. This likely reflects that, as PL dominance reaches 100%, these plots 

occur in the most intensively managed plantations where competition control is most 

prevalent. Thus, pure stands of PL may be more buffered against mortality if they are 

primarily occurring in active plantations. Interestingly, intra-specific competition 

significantly increased mortality in NL-dominated stands under extreme drought, 

suggesting that more overstory diversity in NL stands allows for resource partitioning or 

facilitative effects between mature pine and other species, an effect also noted by Klos et 

al. (2009). 

 

Management Implications 

A critical finding of this study was that, broadly, the inherent management of PL 

stands appeared to play a key role in mitigating extreme drought stress. In general, PL 

stands were maintained at lower densities (i.e., within the range of fully-stocked 

conditions) and at smaller stem sizes compared to NL. These basic management-related 

effects may have provided the important buffer needed to keep mortality low in PL. 

Management suggestions for NL stands are comparable to those for PL with density of 

NL stems being a key driver of mortality risk. Maintaining stands in fully-stocked 

conditions and even understocked conditions could reduce overall mortality, particularly 
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from extreme drought. Importantly, promoting other species, ≤ 50% NL basal area, 

could provide a key advantage for reducing extreme drought mortality in NL stands, 

particularly at lower densities. Finally, it remains unclear as to what management 

strategies could benefit SL under extreme drought conditions. The general suggestions 

presented here are based on broad-scale modeling results from West Gulf Coastal Plain 

forests. Reduction of mortality risk depends on local conditions and, critically, 

overarching management objectives. However, these suggestions provide 

straightforward management actions that potentially could be implemented by resource 

managers concerned about extreme drought mortality. 
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CHAPTER IV  

TREE- AND SNAG-FALL DYNAMICS IN WEST GULF COASTAL PLAIN 

FORESTS OF EAST TEXAS 

 

Introduction 

Standing dead trees, often termed ‘snags’, are an important structural component 

of forested ecosystems. Snags influence carbon and nutrient cycling (Mobley et al., 

2013), provide habitat for myriad wildlife species and other saproxylic organisms (Jones 

et al., 2009), and impact fuel loads and wildland fire behavior (Collins et al., 2012; 

Schoennagel et al., 2012). Populations of snags within forested systems fluctuate based 

on the processes driving their creation (i.e., tree mortality) and transition (i.e., falling) to 

the downed wood pool (Harmon et al., 1986; Vanderwel et al., 2006b). In particular, 

large-scale disturbances can result in major shifts of biomass and carbon from the live 

tree pool to the dead wood pool (Breshears et al., 2005; Moore et al., 2016; Young et al., 

2017). Hurricane winds can snap and uproot large swaths of trees causing rapid 

transition from standing to downed dead wood or cause sufficient damage to kill trees 

that remain standing (Harcombe et al., 2009; Edgar et al., 2019). Future climate 

projections indicate that many regions will become hotter and drier within just a few 

decades, potentially increasing the number of snags in forested ecosystems via drought 

mortality (Allen et al., 2015). As an example, the U.S. state of Texas experienced the 

worst drought on record from October 2010 to September 2011 resulting in 301 million 

newly dead trees statewide in just one year (Moore et al., 2016) with more trees dying in 
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subsequent years (Klockow et al., 2018). Understanding the dynamics of snags is 

therefore crucial for building quantitative tools to constrain carbon dynamics models as 

well as informing management objectives aimed at providing wildlife habitat and 

reducing wildland fire risk. 

Climate and wood durability are key drivers of the decomposition and transition 

of snags to the downed wood pool (Oberle et al., 2018). Many studies have examined 

the dynamics of snags in forested systems with particular emphasis in boreal and 

northern temperate forests where snags often persist for many decades (Cline et al., 

1980; Morrison and Raphael, 1993; Lee, 1998; Kruys et al., 2002; Aakala et al., 2008; 

Aakala, 2010; Angers et al., 2012; Russell and Weiskittel, 2012; Yatskov et al., 2019).  

In humid temperate forests of the southeastern U.S., dead wood studies are less common 

and tend to focus on dynamics of snags in relation to wildlife habitat, as many cavity-

nesting species exist in this region (Jones et al., 2009). However, the climate of this 

region and the unique decomposer community (i.e., presence of termites) (Zhang et al., 

2016) can make the longevity of snags quite ephemeral, often falling within 5-10 years 

(Moorman et al., 1999; Conner and Saenz, 2005; Zarnoch et al., 2013). Moreover, 

intensive management practices have been shown to reduce snag populations (Moorman 

et al., 1999; Zarnoch et al., 2014) making this resource more scarce on portions of the 

landscape. Smaller stems have generally been reported to fall faster than larger stems 

(Cain, 1996; Zarnoch et al., 2013). However, some studies have reported no effect of 

stem size on fall rate (Moorman et al., 1999; Radtke et al., 2009). Stand density can 

influence fall rates, presumably by shielding trees from wind under increasingly greater 
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stem densities, yet, closely spaced stems could have a domino-effect, knocking over 

many stems despite only a few actually being blown over (Oberle et al., 2018). In 

general, hardwood material tends to decay faster than softwood material when in contact 

with the ground (Weedon et al., 2009; Zell et al., 2009). However, limited studies have 

directly compared fall rates of wood types (i.e., hardwoods vs. softwoods) and tend to 

focus more on local species-level differences (Moorman et al., 1999; Conner and Saenz, 

2005). West Gulf Coastal Plain forests have received limited attention in regards to snag 

dynamics (Cain, 1996; Conner and Saenz, 2005). This region is characterized by 

intensive forest management, a warmer and more humid climate than other portions of 

the southeastern U.S., presence of termites, and potential for frequent large-scale 

disturbances, all of which impact snag dynamics. Subsequently, understanding snag 

dynamics in this region will provide the necessary tools for informing management of 

standing dead wood resources. 

Transition of live trees to the downed wood pool follows relatively 

straightforward pathways. Specifically, live trees either die and fall simultaneously or 

they die and eventually fall after experiencing some level of decomposition (Vanderwel 

et al. (2006b), see their Figure 1, points A and B). Snags that remain standing continue 

to decompose and transition through decay classifications until eventually falling (Kruys 

et al., 2002; Vanderwel et al., 2006b). These scenarios continually iterate over time and 

have some probability of occurrence based on the time step between inventory re-

measurements, often five-years (Kruys et al., 2002; Vanderwel et al., 2006a; Aakala et 

al., 2008; Russell and Weiskittel, 2012). Many methods exist for representing the 
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dynamics of tree- and snag-fall (Storaunet and Rolstad, 2004), however, since these 

dynamics are a binary process (e.g., a stem either is standing or fallen at measurement), 

logistic regression methods provide a useful means for examining the probability of 

falling within a re-measurement period. Ultimately, these models can provide important 

utility by linking with models of tree mortality and snag decay class transitions to reveal 

patterns and drivers of biomass and carbon dynamics subsequently informing nutrient 

models and management objectives. 

The goal of this study was to develop models predicting the probability of a tree 

falling in the five-year measurement interval in which it dies and the five-year 

probability of a snag falling in east Texas forests. Probabilities of tree- and snag- fall are 

delineated by examining common inventory metrics of size, stem density, height, wood 

type (i.e., hardwood, softwood) and decay class (i.e., for snags). Results from this study 

serve the purpose of better constraining models of decomposition and carbon dynamics 

in a region with rapid decay and potential for major future disturbances causing large-

scale shifts in live-to-dead wood pools (e.g., hurricanes, extreme droughts). The specific 

objectives were to 1) develop models predicting five-year tree-fall and snag-fall 

probabilities for hardwood and softwood species in east Texas and 2) examine and 

assess differences in tree-fall and snag-fall processes by sizes, stem density, height, 

wood types, and decay classes. As a simple example of snag-fall model utility, Monte 

Carlo simulations were calculated representing the five-year transition of carbon in snags 

to downed dead wood following the 2011 Texas drought using models of snag-fall 

probability from objective 1. 
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Methods 

Study Area 

The focal study area was the eastern region of the state of Texas (Figure IV.1) 

which encompasses the western range margin of West Gulf Coastal Plain forests (29°17’ 

to 33°57’ N and 93°30’ to 96°27’ W). Climate in this region is generally hot and humid 

during the summer with mild and wet conditions during the winter. Temperature and 

precipitation have annual means of approximately 18.6°C and 1162 mm, respectively 

(NOAA 2019). Topography is flat to rolling with elevation ranging from sea-level up to 

around 200 m above sea level. Soils generally consist of the orders Alfisols and Ultisols 

with loamy to clayey textures (USDA NRCS 2006). This region encompasses the 

Pineywoods ecoregion which contains forests very similar to those throughout the Lower 

Coastal Plain of the southeastern U.S. Loblolly pine (Pinus taeda L.) is the dominant 

tree and dominant conifer, prevalent in both managed (e.g., plantations) and naturally-

regenerated stands. Shortleaf pine (Pinus echinata) is the second most prevalent pine 

species and mostly occurs as naturally regenerated forests. Hardwood species are diverse 

and occur throughout the entire region in upland and lowland habitats. Oaks are most 

prevalent, particularly post oak (Quercus stellata) and water oak (Quercus nigra) 

followed by sweetgum (Liquidambar styraciflua) and winged elm (Ulmus alata). The 

region is characterized by a variety of disturbances at both small and large scales. Recent 

notable major disturbances have included hurricane Rita in September 2005, hurricane 

Ike in September 2008, and the worst drought on record from October 2010 to 
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September 2011 (Hoerling et al., 2013) all of which resulted in substantial tree mortality 

in this region (Moore et al., 2016; Klockow et al., 2018; Edgar et al., 2019). 
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Figure IV.1 Study area of a) east Texas region within state of Texas with b) plot 

locations containing at least one hardwood or softwood stem in each of the tree-fall and 

snag-fall datasets. 
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Data 

Data used in this study were queried from the U.S. Forest Service Forest 

Inventory and Analysis (FIA) program database for the years 2004-2016 within the 

region of east Texas. The FIA program measures a systematic grid of plots each 

approximately 0.07 ha in area and representing approximately 2400 ha of the landscape 

(Bechtold and Patterson, 2005). Plots are laid out with one central and three radially-

oriented circular subplots at 0, 120, and 240 degrees and 36.58 m distance relative to the 

central subplot center point each with a 7.31 m radius. Plots are organized into a series 

of five panels with each panel measured annually and representing a random sample of 

20% of all plots. Plots are then re-measured starting with the first panel after all five 

panels have been completed. The years chosen for analyses in this study represent the 

first year the five panel inventory began (2004) and the most recently available data 

(2016). Data were downloaded from the FIA DataMart on February 15, 2018. 

Trees and snags were selected from plots containing at least one forested 

condition within the plot. FIA defines forestland to have at least 10% canopy cover of 

live trees within an area approximately 0.40 ha and at least 36.58 m wide. Trees and 

snags ≥ 12.7 cm diameter at breast height (DBH) tallied on forested portions of plots 

were selected for analyses. The tree-fall dataset was defined such that trees were alive at 

the initial measurement and dead at re-measurement, approximately five years later. 

Status of dead trees at re-measurement was either as a SDT, defined as ≥ 1.37 m in 

height and leaning ≤ 45 degrees from vertical, or downed which did not meet these 

criteria. The snag-fall dataset was defined such that all stems were classified as SDT at 
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initial measurement and either SDT or downed at re-measurement. Tree-fall and snag-

fall datasets were further split by wood type class (i.e., hardwoods and softwoods) as 

assigned by FIA based on field-assigned species. All harvested stems and ingrowth (i.e., 

a stem which first appeared as a dead tree in the dataset with no previous measurement 

as alive) were excluded from both datasets. A small portion of snag-fall stems (n = 168) 

reverted decay classes during re-measurement period, i.e., re-measurement decay class 

was a less-decayed status than the initial decay class, and were excluded from analyses. 

An even smaller portion of trees and snags (n = 10) were assigned different wood type 

classes (i.e., hardwood or softwood) at initial measurement and re-measurement. 

Subsequently, the initial wood type class assignment was used for classification given 

that it was likely more discernible at the earlier measurement than after some amount of 

decay at re-measurement. 

While the two datasets, tree-fall and snag-fall, categorically represent distinct 

groups, we acknowledge that there is likely overlap between the processes occurring for 

either group. For example, a tree in the tree-fall dataset was measured as alive and may 

die one year later and spend the remaining four years as a SDT and either fall or remain 

standing before the next measurement. Likewise, a SDT in the snag-fall dataset may 

have been alive one year prior to initial measurement in which it was dead and be of 

very similar status to the previously described example tree in the tree-fall dataset. We 

were unable to discern and account for this perceived overlap in the two datasets which 

has been similarly analyzed in a previous study using five-year inventory data 

(Vanderwel et al., 2006a). However, these categories represent an inherent challenge 
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with defining mortality processes in forest inventories that often utilize multi-year re-

measurement intervals. Importantly, the tree-fall dataset accounts for two key processes, 

that being a tree that dies and falls simultaneously or a newly dead tree that spends a 

short time as a SDT and either remains standing or falls five years later. Whereas, the 

snag-fall dataset represents one general process in which SDT at various levels of decay 

either remain standing or fall after five years. 

Common tree- and stand-level covariates were used in analyses for 

understanding the probability of tree- or snag-fall over a five-year period. These 

covariates included DBH (cm), height (m), and plot live stem density (stems/ha) and are 

often key parameters measured during an inventory and thus, readily available in most 

datasets. Values used in analyses pertained to those collected during the initial 

measurement representing the last known conditions of the tree or snag prior to re-

measurement. Plot live stem density was calculated using all live stems for the entire 

plot (i.e., four subplots whether in FIA-defined forested or non-forested conditions). For 

the snag-fall dataset, decay class was included as a fixed effect to account for the general 

stage of decay of a particular stem at initial measurement. Variability in plot conditions 

as well as autocorrelation between stems in the same plot was accounted for by 

including plot as a random effect (Penner et al., 1995). An additional random effect of 

physiographic class was also included to account for explicit differences in site 

conditions. FIA measures various subcategories of physiographic class conditions at 

each plot which are part of three major categories, xeric, mesic, and hydric conditions. 

For the tree-fall and snag-fall datasets, over 95% of the stems in each dataset occurred in 
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mesic class conditions. Following this, class groups were reassigned to aggregate some 

group sizes and help with interpretability. Specifically, all xeric conditions were grouped 

together into one class and all hydric conditions were grouped together into one class. 

Mesic subcategories were grouped into uplands, flatwoods, and bottomlands, generally 

representing a gradient of dry-to-wet conditions within the mesic category plus a fourth 

mesic category labeled ‘other’ which represented <1% of stems. 

When FIA field crews encounter a newly dead tree during an inventory, they 

assign a perceived agent of mortality and estimated year of mortality. All stems in the 

tree-fall dataset were assigned such agents and an estimated mortality year given that 

they were newly dead trees. These classifications were used to discern unique processes 

occurring within the tree-fall dataset. Preliminary examination of these data revealed 

increased numbers of standing and downed trees for the years corresponding to 

hurricanes Rita (2005), Ike (2008), and the 2011 drought (2011 and 2012) (Appendix C: 

Figure C.1) which are described in further detail in Edgar et al. (2019). For this study, 

size of standing or fallen dead stems was examined further under different major 

disturbance events based on assigned agent of mortality and mortality year to provide 

further insight into the processes by which trees transition to downed dead wood. 

Weather-killed stems were classified into three groups, ‘Hurricane’ which contained all 

stems with estimated years of mortality in 2005 and 2008; ‘2011 Drought’ which 

contained all stems with estimated years of mortality in 2011 and 2012, and ‘Other 

Weather’ which contained all remaining weather-killed stems. All other stems deemed 

killed by other agents excluding harvested stems were grouped into ‘Non-Weather’. 
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Analyses 

Generalized linear mixed models were built to predict five-year probabilities of 

both tree- and snag-fall for hardwood species and softwood species separately resulting 

in four separate models. Specifically, logistic regression was used with a binary response 

of ‘success’ being the tree or snag fell at re-measurement (fallen = 1, standing = 0). 

Fixed effects of size, live stem density, height, and decay class (for snag-fall stems) and 

random effects of plot and physiographic class were considered as covariates for each 

model. Re-measurement intervals generally occurred over a five-year period however, 

due to unforeseen logistical constraints (e.g., access) some plots were unable to be 

measured at exactly five-year intervals. This variability in re-measurement interval was 

accounted for by exponentiating the logistic model form by the re-measurement interval 

in years and dividing by five to constrain model parameters and predictions to a five year 

probability, generally following the compound interest formula (Flewelling and 

Monserud, 2002; Vanderwel et al., 2006a). 

 

 𝑝𝐹𝑖𝑗 = [
1

1+ 𝑒
−(𝑋𝑖𝑗

𝑇 𝛽𝑘+𝜇𝑗+ 𝜏𝑙)
]

(
𝑡𝑗

5
⁄ )

 (IV.1) 

 

Where, pFij = five-year probability of falling, XT
ij = the transposed matrix of covariates 

for stem i in plot j, βk is the vector of length k of parameters to be estimated, uj is the 

random effect of plot j, τl is the random effect of physiographic class l, and tj is the re-
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measurement interval for plot j. Using this approach, the estimated βk’s describe the five-

year log odds of falling for each stem as opposed to the log odds of falling for the 

specific re-measurement interval tj. Random effects were assumed to follow a normal 

distribution with mean of zero and common variance, σ2, for each of the plot and 

physiographic class random effects. 

Fixed and random effects were selected for each model by comparing iterations 

of nested models via likelihood ratio tests. Additional variables were added or excluded 

depending on whether they significantly contributed more explanatory power than a 

simpler model (p < 0.05). Model assessment was conducted by comparing the most 

parsimonious model to the null model (intercept plus random effect) via likelihood ratio 

tests (p < 0.05). 

Average tree sizes (DBH) were calculated for standing and downed hardwood 

and softwood trees grouped into weather-killed (‘Hurricane’, ‘2011 Drought’, and 

‘Other Weather’) and non-weather-killed (‘Non-Weather’) groups in the tree-fall dataset. 

Differences between standing and downed dead tree mean DBH were analyzed by 

means of Welch’s two-sample t-test on natural log-transformed data. Significant 

differences in mean tree sizes were denoted by p < 0.05. 

All data manipulations and analyses were conducted using R software version 

3.5.1 (R Core Team, 2018) with mixed modeling conducted using the ‘lme4’ package 

version 1.1.19 (Bates et al., 2015). 
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Carbon Transition Simulations 

Monte Carlo simulations were conducted in order to demonstrate the utility of 

models for predicting the five-year probability of snag-fall as a simple example. The 

2011 drought in Texas killed millions of trees across the state resulting in a rapid transfer 

of carbon from the live tree pool to the SDT pool, roughly 24-30 Tg C in just one year 

(Moore et al., 2016). To understand how quickly SDT carbon will transition from 

standing to downed dead wood in east Texas, all SDT (DBH ≥ 12.7 cm) were selected 

from the FIA database and the year 2012 for the region of east Texas. Models developed 

for objective 1 for hardwood and softwood snag-fall were applied to the SDT drought 

dataset to determine predicted probabilities of falling in five years. Monte Carlo 

simulations were subsequently carried out to determine whether each tree in the SDT 

drought dataset remained standing or fell after five years based on its predicted 

probability. Specifically, a random number was drawn from a uniform distribution 

ranging from 0 to 1 and assigned to each SDT. If the predicted probability of the SDT 

falling in five years was less than or equal to the random number, the SDT remained 

standing. If the predicted probability of the SDT falling in five years was greater than the 

random number, the SDT fell over. This scenario was repeated 1000 times and resulting 

metrics were summarized using these samples. 

The FIA program calculates biomass of SDT using the Component Ratio Method 

(CRM) (Woodall et al., 2010) adjusting for changes in density and structural reduction 

by decay class (Domke et al., 2011) and assuming that carbon mass is half of the 

biomass. Using the carbon estimates for each SDT in the FIA dataset and the Monte 
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Carlo simulation results, the amount of carbon in measured SDT hardwoods and 

softwoods was calculated and summarized by decay class for the SDT drought dataset in 

2012 (initial year post-drought) and as predicted five years later (2017) on a per-ha basis. 

All data manipulations and analyses for carbon transition simulations were conducted 

using R software version 3.5.1 (R Core Team, 2018). 

 

Results 

The tree-fall dataset contained 7116 stems in total measured across 2529 plots 

while the snag-fall dataset contained about half as many stems, 3722 in total, measured 

across 1950 plots (Table IV.1). Hardwoods were more numerous than softwoods in both 

datasets, being nearly double in both cases. Of the trees that were alive and subsequently 

died after five years (i.e., tree-fall dataset), approximately 50.2% of hardwood stems fell 

and 54.6% of softwood stems fell at re-measurement.  Of the trees that were dead at 

initial measurement (i.e., snag-fall dataset), approximately 74.1% of hardwood stems fell 

and 81.4% of softwood stems fell at re-measurement. 
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Table IV.1 Summary of tree-fall and snag-fall datasets used for analyses (DBH = diameter at breast height). DBH, height, and 

plot live density are median values with 2.5th and 97.5th percentiles in parentheses. 

 

 Class Type # Plots # Stems # Standing # Downed 
DBH 

(cm) 

Height 

(m) 

Plot Live 

Density 

(stems/ha) 

Tree-Fall 

Hardwoods 1960 4772 2377 2395 
19.1 

(12.9, 54.8) 

13.7 

(4.9, 26.8) 

297 

(59, 669) 

Softwoods 1008 2344 1065 1279 
20.1 

(13.0, 57.3) 

17.1 

(7.9, 32.6) 

372 

(104, 976) 

Total 2529 7116 3442 3674 
19.3 

(13.0, 55.9) 

14.6 

(5.8, 29.9) 

312 

(59, 818) 

Snag-Fall 

Hardwoods 1354 2355 610 1745 
20.3 

(13.0, 54.1) 

8.2 

(2.1, 20.4) 

297 

(59, 654) 

Softwoods 802 1367 254 1113 
20.1 

(13.0, 52.2) 

11.0 

(1.8, 28.0) 

342 

(60, 936) 

Total 1950 3722 864 2858 
20.3 

(13.0, 54.1) 

8.8 

(2.1, 24.4) 

297 

(59, 788) 
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Variable selection for each of the developed models was conducted using 

likelihood ratio tests with associated parameter estimates based on log odds displayed in 

Table IV.2. Likelihood ratio tests indicated that the fixed effect of DBH was the best 

predictor of the five-year probability of falling for hardwoods in the tree-fall dataset 

(Table IV.2). For softwood tree-fall, both DBH and plot live stem density together 

produced the best model for predicting the five-year probability of tree-fall (Table IV.2). 

In addition, the random effect of plot contributed significantly to both the hardwood and 

softwood tree-fall models while the random effect of physiographic class contributed 

significantly only to the hardwood tree-fall model. The best-fit tree-fall models provided 

significantly more explanatory power for both hardwoods (χ2 = 61.682 with 1 degree of 

freedom, p << 0.001) and softwoods (χ2 = 105.46 with 2 degrees of freedom, p << 

0.001) than the null models. For snag-fall hardwoods, DBH and decay class were the 

best predictors of the five-year probability of falling while, DBH, stem height, and decay 

class together were the best predictors of the five-year probability of falling for 

softwoods. Of the two random effects examined, only plot contributed significantly to 

explaining further variation in the data for both hardwood and softwood snag-fall 

models. The best-fit snag-fall models provided significantly more explanatory power for 

both hardwoods (χ2 = 149.46 with 5 degrees of freedom, p << 0.001) and softwoods (χ2 

= 72.84 with 6 degrees of freedom, p << 0.001) than the null models. 
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Table IV.2 Summary of parameter estimates with standard errors from chosen models 

based on standardized covariates for log odds responses. Note that RE and SD refer to 

random effect and standard deviation, respectively. 

 

Parameter 
Tree-Fall Snag-Fall 

Hardwoods Softwoods Hardwoods Softwoods 

Intercept 
0.059 

(0.137) 

0.065 

(0.072) 
na na 

DBH 
-0.304 

(0.040) 

-0.633 

(0.069) 

-0.854 

(0.093) 

-1.132 

(0.170) 

Height ns ns ns 
0.422 

(0.160) 

Plot Density ns 
-0.178 

(0.084) 
ns ns 

Decay Class 1 na na 
1.022 

(0.236) 

2.388 

(0.419) 

Decay Class 2 na na 
1.366 

(0.201) 

2.406 

(0.365) 

Decay Class 3 na na 
1.922 

(0.200) 

2.860 

(0.395) 

Decay Class 4 na na 
2.125 

(0.207) 

3.601 

(0.491) 

Decay Class 5 na na 
3.431 

(0.345) 

3.637 

(0.644) 

Plot RE SD 1.240 1.238 2.525 2.945 

Phys. Class RE SD 0.245 ns ns ns 

AIC 6321.7 3047.2 2685.7 1273.4 

Deviance 6313.7 3039.2 2671.7 1257.4 

*na = not applicable to specific model 

*ns = variable tested but no significant effect added to model via likelihood ratio tests (p > 0.05) 

 

 

Trends for the selected variables in the tree-fall models are shown in Figures 

IV.2 and IV.3. For the tree-fall dataset, the probability of a tree falling in the five-year 

interval in which it dies was greatest for the smallest stems and decreased with 

increasing size for both hardwoods and softwoods (after holding plot live stem density 

constant at its median value for softwoods; Figure IV.2). These probabilities ranged 
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between approximately 0.5 to 0.75 for the smallest stems and dropped below 0.25 for the 

largest stems. In general, hardwoods had a higher probability of falling than did 

softwoods with the exception of the smallest softwoods, which tended to have a higher 

probability of falling than hardwoods. The significant effect of physiographic class on 

probability of tree-fall in hardwoods was relatively slight, ranging between roughly 0.43 

to 0.54 (Figure IV.3). The mean effects of each physiographic class group representing 

the probability of falling in five years generally increased along a gradient of dry-to-

moist sites for the mesic group. In particular, the most notable effects were in mesic 

uplands (lowest mean probability of falling in five years) and mesic bottomlands 

(highest mean probability of falling in five years). 
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Figure IV.2 Predicted probability of tree-fall in five years vs. tree size for hardwoods 

(solid line) and softwoods (dashed line). Probabilities for softwoods were calculated 

with plot density held constant at the median value. 
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Figure IV.3 Physiographic class mean effects with standard deviation for hardwood 

tree-fall dataset converted from log odds to probabilities. Xeric and hydric groups 

encompass all subclassifications for that group. Asterisks above mean effects indicate 

that effect is different from 0.5 (i.e., log odds is different from 0). Vertical dotted lines 

separate xeric, mesic, and hydric groups. 
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Trends for the selected variables in the snag-fall models are shown in Figure 

IV.4. The probability of a snag falling in five years generally increased with increasing 

decay class for both hardwoods and softwoods (holding stem height constant at its 

median value for softwoods; Figure IV.4A, B). This was most evident for hardwoods but 

slightly less strong for softwoods. Decay class one and two softwoods followed the same 

pattern having the lowest probabilities with decay classes four and five following similar 

patterns and having the highest probabilities. Five-year probabilities of falling for decay 

class three softwoods were intermediate relative to the other decay classes. Regarding 

size, the probability of falling in five years followed similar patterns as in the tree-fall 

models, smaller stems were much more likely to fall than larger stems across all decay 

classes and for both hardwoods and softwoods (holding stem height constant at its 

median value for softwoods; Figure IV.4A, B). Smaller softwood stems were more likely 

to fall than hardwood stems in decay classes one, two, four, and somewhat for three 

(Appendix C: Figure C.3). Large stems in decay class five hardwoods were more likely 

to fall after five years than for softwoods (Appendix C: Figure C.3). Large hardwood 

and softwood stems followed similar patterns for all other decay classes. 
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Figure IV.4 Predicted probability of snag-fall in five years vs. snag size for A) hardwoods and B) softwoods by decay class. 

Probabilities were calculated with snag height held constant at the median value. 
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Further examination of DBH for standing and fallen dead tree-fall stems by agent 

of mortality and estimated year of mortality revealed unique patterns (Figure IV.5A, B). 

Non-Weather, Other Weather, and 2011 Drought groups all showed that stems 

remaining standing tended to be significantly larger than fallen stems (p < 0.05), 

indicating that on average smaller stems tended to fall if killed by these agents. 

However, no significant difference (p > 0.05) was found between standing and fallen 

tree-fall stems in the Hurricane group, indicating that on average there was no difference 

in the size of stems that fell or remained standing.  
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Figure IV.5 Mean DBH with standard errors for standing dead and fallen A) hardwoods and B) softwoods from the tree-fall 

dataset. Groups are based on FIA field crew-assigned agent of mortality and estimated year of mortality. ‘Other Weather’, 

‘2011 Drought’, and ‘Hurricane’ all correspond to weather-related mortality whereas ‘Non-Weather’ group corresponds to all 

other agents excluding harvesting (i.e., insects, diseases, fire, animals, competition, etc.). ‘2011 Drought’ group are all tree-fall 

stems deemed killed by weather in 2011 and 2012. ‘Hurricane’ group are all tree-fall stems deemed killed by weather in 2005 

and 2008, corresponding to hurricanes Rita and Ike, respectively. Asterisks (*) above bars denote significant differences (p < 

0.05) between standing and fallen dead tree average DBH for that specific group based on Welch’s two-sample t-tests. 
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Datasets for the carbon transition simulations contained 455 hardwood snags and 

197 softwood snags in total. Results from the Monte Carlo simulations provide predicted 

estimates of carbon which transitioned from SDT to downed dead wood with initial 

standing carbon (2012) and remaining standing carbon (2017) shown in Figure IV.6A, 

B. Simulations indicated that 59.5 and 67.1% of carbon in measured hardwoods and 

softwoods transitioned from SDT to downed dead wood in five years, respectively 

(Table IV.3). After aggregating by decay class, between 52.3 and 79.3% of carbon in 

hardwoods transitioned from standing to downed dead wood (Table IV.3). For 

softwoods, between 51.6 and 83.4% of carbon transitioned from standing to downed 

dead wood after accounting for decay class (Table IV.3). 
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Figure IV.6 Carbon (Mg/ha) contained in standing dead trees inventoried in 2012 (i.e., one year after the 2011 drought) in east 

Texas (dark gray) and carbon (Mg/ha) contained in those same SDT predicted to remain standing after five years (light gray) 

with standard deviations, split by A) hardwood and B) softwood species and aggregated by decay class. 
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Table IV.3 Carbon (Mg/ha) in hardwood and softwood standing snags for inventory 

year 2012 plus carbon (Mg/ha) in previously standing snags that were predicted to fall in 

five years based on Monte Carlo simulations with proportion of carbon in fallen stems. 

Values in parentheses are standard deviations from Monte Carlo simulations. 

 

 
Standing 2012 

Carbon (Mg/ha) 

Fallen 2017 

Carbon (Mg/ha) 
% Fallen 

Decay Class Hardwoods Softwoods Hardwoods Softwoods Hardwoods Softwoods 

1 0.468 0.406 
0.265 

(0.030) 

0.274 

(0.047) 

56.7 

(6.4) 

67.5 

(11.6) 

2 0.166 0.111 
0.087 

(0.011) 

0.075 

(0.014) 

52.3 

(6.7) 

67.5 

(12.7) 

3 0.059 0.099 
0.047 

(0.006) 

0.072 

(0.021) 

79.3 

(10.2) 

73.0 

(21.6) 

4 0.111 0.069 
0.068 

(0.011) 

0.036 

(0.010) 

61.0 

(10.0) 

51.6 

(15.1) 

5 0.068 0.015 
0.051 

(0.014) 

0.013 

(0.004) 

75.6 

(20.7) 

83.4 

(23.5) 

Total 0.871 0.700 
0.518 

(0.036) 

0.470 

(0.052) 

59.5 

(4.1) 

67.1 

(7.5) 
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Discussion 

Tree-Fall 

Tree-fall trends were similar to patterns found by Vanderwel et al. (2006a) and 

other studies focused on snags (Oberle et al., 2018). In particular, tree size as measured 

by DBH appeared to be the strongest factor of those examined governing five-year fall 

probabilities. Smaller stems tended to have the greatest probability of falling in five 

years, which decreased as stem size increased. Considering trees that died while standing 

and eventually fell after five years, the effect of stem size has been shown to be a 

common driver of snag fall in many forest types, including those in the southeastern U.S. 

(Conner and Saenz, 2005; Zarnoch et al., 2013) generally relating to wood mechanical 

strength (Oberle et al., 2018). Plot live stem density was an additionally important factor 

for softwood species. Specifically, five-year probability of tree fall decreased under 

increasing live tree stem densities. Closely spaced trees have been shown to reduce fall 

rates and damage (Oberle et al., 2018), presumably by shielding trees and snags from the 

breaking or uprooting forces of wind (Gardiner et al., 2016). In east Texas, loblolly pine 

occurs largely in even-aged stands whether as managed plantations or in naturally-

regenerated conditions (Edgar and Zehnder, 2015). Subsequently, the canopies of such 

stands can be relatively uniform and continuous under increasing stem densities 

potentially helping to buffer against wind damage by reducing the exposure of canopy 

surface area (i.e., sides of canopies) to wind forces. 

Differences in tree fall probabilities between hardwoods and softwoods were 

evident but relatively slight. Small stems of both wood type classes had similar 
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probabilities of falling, with softwoods being just slightly greater when held at their 

median density. However, medium-to-large sized hardwoods appeared to have a greater 

probability of falling than softwoods under the same scenario. Trees that died and fell at 

the same time, although undiscernible here, likely do so by two means, snapping along 

the stem or tipping over at the base/roots. Trees that snap along the main stem 

experience failure as a result of weak wood mechanical properties. On the other hand, 

trees that tip over at the base/roots, fail to remain standing as a result of poor rooting 

ability and weak soil structure. Tree-fall hardwoods tended to follow an increasing trend 

of fall probability from mesic upland sites to mesic bottomland sites, suggesting weak 

soil structure and poor rooting may be a potential driver affecting falling of hardwoods. 

Moorman et al. (1999) noted that snags in upland hardwood forests tended to have the 

greatest longevity at their sites in South Carolina. Moreover, data from the FIA mortality 

agent and year classifications highlights that hurricanes tend to select for larger fallen 

trees presumably via wind than trees killed by the other mortality agents, which likely 

fall after experiencing some decomposition. In fact, Harcombe et al. (2009) found that 

large hardwood species tended to have higher probabilities of damage and death at 

wetter sites than softwood species following hurricane Rita in east Texas, generally 

falling in line with our results. They also mention that their results may be confounded 

slightly by the spatial location of plots relative to the track of the storm. Yet, at a 

regional scale, wind has been estimated as the second largest driver of carbon turnover 

behind harvesting within southeastern U.S. forests (Harris et al., 2016). Regardless, 

results shown here suggest that large hardwoods on wetter sites may be more prone to 
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falling than those occurring on drier, upland sites in this region, ultimately highlighting a 

potentially unique process by which particular trees fall over than by typical 

decomposition agents (e.g., fungi, microbes, insects) that weaken wood. 

 

Snag-Fall 

Snag-fall trends generally followed expected patterns as found in studies across 

multiple regions. As with the tree-fall dataset, snag size as measured by DBH appeared 

to be a crucial factor governing five-year fall probabilities, similar to other studies 

(Oberle et al. 2018, Zarnoch et al. 2013, Conner and Saenz 2005). Moreover, decay class 

also was an important factor describing the probability of snag fall, particularly for 

hardwoods. Smaller stems in both datasets tended to have the greatest probability of 

falling in five years (i.e., > 0.75 for the smallest stems) which decreased substantially as 

stem size increased. The lowest risk of falling in five years was among the least decayed 

snags and risk increased as decay progressed. Larger diameter trees tend to have greater 

proportions of decay-resistant heartwood providing stronger structural properties than 

smaller trees (Conner et al., 1994; Sellin, 1994). It is well documented that wood density 

in SDT decreases with increasing decay class ultimately reducing structural strength 

(Harmon et al., 2011). Bark beetles can carry multiple species of fungi which can 

inoculate the trees and expedite wood decomposition (Barras, 1970; Klepzig and 

Wilkens, 1997). Moreover, termites are an important part of the biotic decomposer 

community in east Texas (Zhang et al. 2016), unlike northern and western regions of the 

U.S., further accelerating decay. In general, hardwood material tends to decay more 
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quickly than softwood material when in contact with the ground (Weedon et al., 2009; 

Zell et al., 2009) and this might partially explain the stronger effect of decay class in 

hardwood snags than softwood snags despite the material being elevated off the ground. 

Snag stem height was an additionally important factor describing five-year fall 

probabilities for softwoods but not hardwoods. Specifically, the five-year probability of 

softwood snag-fall increased as height increased. This effect in softwoods may relate to 

the excurrent growth form prevalent in softwoods which have a central apical leader and 

main stem the full length of the tree. Hardwoods, on the other hand, tend to have a 

decurrent growth form with a weak apical leader which terminates at a fraction of the 

total tree height. Given this, softwoods would tend to have a higher center of gravity 

which may increase the susceptibility to falling as the stem weakens with decay 

(Gardiner et al., 2016). 

 

Carbon Transition Simulations 

Quantifying decomposition rates and understanding carbon dynamics in east 

Texas remains a critical area of research particularly given the frequency of major 

disturbances in this region over the last few decades (e.g., hurricanes Rita, Ike, and 

Harvey; 2011 drought) along with the continued threat of similar disturbances. Models 

produced herein provide critical tools for understanding the turnover of carbon in the 

SDT pool. Specifically, after applying snag-fall probability predictions to a simple 

Monte Carlo simulation it was evident that snag-fall decomposition occurs rapidly in 

east Texas. While the results pertain simply to a single five-year period, over half of the 
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carbon transitioned from standing dead wood to downed dead wood for both hardwoods 

and softwoods in five years. Softwoods had a greater proportion of carbon fall within 

five years, falling in line with other work from this region (Putman et al., 2018). The 

majority of the carbon was from decay class one SDT which fell after five years. 

However, nearly all the carbon in the remaining decay classes (i.e., two through five) 

transitioned to the downed pool after a single five-year period, primarily for softwood 

species. Results generally align with those from other studies in southeastern U.S. forests 

which also highlight rapid turnover of snags to downed wood after 4-6 years. Cain 

(1996) found that hardwoods in Arkansas fell in under 10 years and were fastest for the 

smallest stems. Moorman et al. (1999) found that 95% of all snags measured at their 

sites in South Carolina fell within six years. Another study in South Carolina found that 

smaller snags fell faster (4.4-6.9 years) than larger snags (6.0-9.4 years) (Zarnoch et al., 

2013). Conner and Saenz (2005) tracked large pine snags (i.e., mean DBH of 49.0 cm) 

over multiple decades in east Texas and noted loblolly pine had the shortest longevity at 

six years. Snag fall rates are largely driven by climate factors which speed 

decomposition (Oberle et al. 2018). The persistent warm, humid conditions in east Texas 

coupled with a unique biotic decomposer community (i.e., presence of termites) resulted 

in the rapid turnover of both hardwood and softwood snags after five years. Models and 

results from this study provide the added understanding of snag-fall dynamics by decay 

class, which is a commonly used system for classifying decayed stems in forest 

inventories (Burrill et al., 2018). Future work could model predicted probabilities of 

SDT remaining standing after five years and their transitions to subsequent decay classes 
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(e.g., Vanderwel et al., 2006b; Russell et al., 2013) to extend temporal utility of the 

snag-fall models. 

While these results display a simple application, further use of these models 

could include improving parameterization of dynamic carbon cycle and vegetation 

models for predicting the effects of future disturbances on regional carbon budgets. 

Specifically, these models could be coupled with growth-and-yield, mortality rate, and 

downed dead wood decomposition models under varying silvicultural scenarios and 

analyzed via simulation to derive decomposition constants and turnover rates of carbon 

in SDT. Recent studies have employed such methods for other regions (Vanderwel et al., 

2006a) and for other dead wood pools (i.e., downed dead wood) (Russell et al., 2013; 

Russell et al., 2014). Beyond carbon budgets, results can better constrain models 

predicting fuel loads for understanding wildland fire behavior and risk or inform 

management activities focused on providing wildlife habitat for cavity-nesting species 

and reducing falling tree hazards in forests. 
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CHAPTER V  

ALLOMETRY AND STRUCTURAL VOLUME CHANGE OF STANDING DEAD 

SOUTHERN PINE TREES USING NON-DESTRUCTIVE TERRESTRIAL LIDAR 

 

Introduction 

Standing dead trees (SDT) represent a key component of the dead wood pool in 

forests worldwide (Harmon et al., 1986; Russell et al., 2015). Standing dead trees 

influence biomass and carbon dynamics (Mobley et al., 2013; Oberle et al., 2018), fuel 

loads and wildland fire dynamics (Collins et al., 2012; Schoennagel et al., 2012), 

provide habitat for many wildlife and insect species (Lindhe et al., 2005; Jones et al., 

2009), and add to forest structural complexity (Harmon et al., 1986). The National 

Greenhouse Gas Inventory (NGHGI) administered by the U.S. Environmental Protection 

Agency classifies dead wood and SDT as a key component of the carbon budget and 

important for carbon accounting (U.S. EPA 2019). Moreover, the threat of increased 

large-scale disturbances such as droughts and tree die-off events under a changing 

climate can cause massive shifts from live-to-dead tree pools (Allen et al., 2015; Young 

et al., 2017). For example, the state of Texas experienced the worst drought on record in 

2011 with approximately 301 million trees killed by 2012 equating to roughly 30 Tg C 

added to the SDT pool in one year (Moore et al., 2016) with additional trees continuing 

to die multiple years following the drought (Klockow et al., 2018). Thus, accurately 

estimating the quantity of SDT at multiple scales is critical for effectively describing 
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biomass and carbon dynamics, fuel loads, wildlife habitat, falling tree hazards, and forest 

stand complexity. 

Typically, development of individual tree biomass and volume estimates requires 

laborious destructive sampling of trees in representative sizes and demographics, making 

development of species and region-specific estimates time-consuming but necessary to 

achieve appropriate estimates (Weiskittel et al., 2015). Light-detection-and-ranging 

(LiDAR) is a remote sensing technology with the potential for efficiently estimating tree 

volume and biomass. LiDAR sensors emit laser pulses from a measuring device and 

record the distance at which the laser pulses were reflected as well as the subsequent 

return intensity of the reflected pulses to create three-dimensional representations of 

objects in space (Lefsky et al., 2002). LiDAR technology has been used and tested 

successfully via spaceborne, airborne, and ground-based (terrestrial) platforms to 

develop nondestructive estimates of live tree volume, biomass, and associated inventory 

metrics at multiple scales (Popescu et al., 2011; Srinivasan et al., 2014; Sheridan et al., 

2015; Narine et al., 2019). Terrestrial LiDAR (hereafter, terrestrial laser scanning or 

TLS) in particular is well-suited for accurately and non-destructively quantifying SDT 

volume given its ability to scan individual trees within and below the forest canopy at 

high point densities thus capturing finer morphological attributes of stems and branches 

without the need for laborious and dangerous destructive sampling (Raumonen et al., 

2013; Putman and Popescu, 2018). Many successful efforts have been employed for 

developing estimates of live tree volume and biomass using TLS approaches (Srinivasan 

et al., 2014; Stovall et al., 2018). However, only recently has TLS been used to quantify 



 

105 

 

volume of individual SDT (Putman and Popescu, 2018; Putman et al., 2018). These 

efforts have shown that TLS along with volume calculation algorithms allow for 

relatively rapid field data collection and robust volume estimation of SDT in dense and 

enclosed canopy conditions. Further exploration of these technologies and techniques is 

necessary to progressively improve estimation and understanding of SDT volume and 

biomass. 

Allometric models statistically relate commonly measured tree parameters such 

as diameter-at-breast-height (DBH) and tree height to volume or biomass of whole trees 

and component parts for use in predicting volume and biomass of non-destructively 

sampled trees. These models are essential for estimating tree volume and biomass at 

increasingly larger scales beyond the individual tree and remain critical for national 

forest inventories (NFI) tasked with accurately accounting forest biomass and carbon 

(U.S. EPA 2019). The NFI for the U.S., the U.S. Forest Service Forest Inventory and 

Analysis (FIA) program, historically used live tree allometric equations from Jenkins et 

al. (2003) to predict SDT biomass without accounting for density or structural changes 

inherent in decay classifications (Woudenberg et al., 2010), thus overestimating biomass 

and carbon (Domke et al., 2011). More recently, correction factors have been created 

and applied to live tree biomass estimates to account for density and structural changes 

inherent across decay classes (Harmon et al., 2008; Woodall et al., 2010; Domke et al., 

2011; Harmon et al., 2011). Given the plethora of resources developed around reference 

live tree estimates (e.g., Raile (1982); Jenkins et al. (2003); Miles and Smith (2009); 

Woodall et al. (2010)), it is not surprising that allometric equations specifically for SDT 
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have not been explored more fully. However, if shown to provide strong predictive 

power, such equations could become efficient tools for estimating volume and biomass 

of SDT by inherently accounting for structural and density changes across decay classes. 

Accounting for density and structural change are critical for accurately predicting 

SDT volume and biomass as dead wood generally decreases in wood density and volume 

over time via decomposition (Harmon et al., 2008; Aakala, 2010; Harmon et al., 2011; 

Fraver et al., 2013). Qualitative descriptions of density and structural changes have been 

used to define decay classifications often assigned to SDT and downed woody debris 

(DWD) representing the progression of decomposition for dead wood in many NFI 

(USDA Forest Service, 2017). Comprehensive studies have been conducted to quantify 

density reduction by decay class for both DWD and SDT generally showing that density 

decreases with each successive decay class (Harmon et al., 2008; Harmon et al., 2011). 

Empirical studies of structural reduction in DWD have shown collectively that large 

pieces (i.e., logs) generally collapse along the vertical axis in later decay stages, 

ultimately following a systematic trend in structural reduction across species and forest 

types (Fraver et al., 2013). For SDT, structural reduction with decay has received very 

little attention but has been suggested to follow a sigmoidal trend with little change in 

early decay stages and much greater loss of structural volume in later decay stages 

(Aakala, 2010). Domke et al. (2011) devised theoretical proportions describing the 

remaining volume of SDT components based on qualitative decay class criteria with the 

goal of using these proportions to ‘correct’ live tree volume and biomass estimates to 

more accurately represent SDT form. Russell et al. (2015) noted from a sensitivity 
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analysis for SDT that density reductions could account for ~20% of carbon change while 

structural reductions could account for ~60% highlighting the need for empirically-

derived understanding of SDT structural change. However, no study has empirically 

measured SDT volume to examine the proportion of remaining volume in SDT by decay 

class. Development of estimates of these proportions could be used to verify theoretical 

estimates and to build further understanding of structural change by decay class in SDT. 

Pinus species are common across much of the U.S. and generally have similar 

morphological growth forms (e.g., excurrent branching structure) amongst themselves 

and other conifers. Moreover, the decay classification system employed by the U.S. NFI 

was developed on criteria derived from conifer decay patterns (Cline et al., 1980). 

Loblolly pine (Pinus taeda L.) in particular is an important commercial and ecological 

species throughout the southeastern United States and east Texas (i.e., focal study area). 

Thus, loblolly pine is an ideal candidate for developing widely applicable allometric 

models of SDT volume across decay classes. Following this, the main goal of this study 

was to quantify and assess empirical volume and structural volume changes in loblolly 

pine SDT by decay class using TLS and a novel volume calculation algorithm, 

TreeVolX, from Putman and Popescu (2018). To meet this goal, we addressed three 

specific objectives, 1) construct empirical volume estimates of SDT by decay class using 

TLS and the TreeVolX volume calculation algorithm, 2) develop novel allometric 

relationships of aboveground SDT component volumes by decay class and assess error 

in models and predictions, and 3) quantify empirical proportion-remaining volume of 
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SDT TLS-derived components relative to reference live tree predicted component 

volumes and compare against theoretically-derived estimates from FIA. 

 

Methods 

Study Location 

Standing dead trees for this study were sampled within the western extent of the 

Sam Houston National Forest (Figure V.1). The Sam Houston National Forest is located 

in east Texas approximately 80 km north of the city of Houston, Texas and covers 

65,979 ha with flat to gently rolling topography and approximately 70-120 m elevation 

above sea level. Climate around the national forest consists of hot, humid summers and 

mild, wet winters. Mean summer (June, July, August) temperature and precipitation is 

typically 28°C and 277 mm and mean winter (December, January, February) 

temperature and precipitation is typically 11°C and 284 mm (NOAA 2019). Loblolly 

pine (Pinus taeda L.) is the dominant tree species in the national forest followed by post 

and water oaks (Quercus stellata and Quercus nigra, respectively), sweetgum 

(Liquidambar styraciflua), and winged elm (Ulmus alata). The understory is composed 

of many shrubs, often very densely with yaupon (Ilex vomitoria). 
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Figure V.1 Sampling area denoted by black star in Sam Houston National Forest, Texas. 

 

 

Sample Data 

Standing dead pine trees were selected for scanning across five decay classes 

(Table V.1) and a range of diameters (Table V.2) to represent the full range of decay and 

minimum tree size (i.e., approximately ≥ 12.7 cm) as defined in FIA protocols. Selected 

SDT were located in pine-dominated stands in both managed and unmanaged conditions. 

Care was taken to avoid sampling SDT that did not clearly fit into a decay classification 

(e.g., wind-snapped or substantially fire damaged trees). Field measurements for each 

tree included DBH, height, genus, percent-remaining bark (estimated visually), and bark 

thickness at breast height. Scanned SDT (deemed safe to fell) were felled by Texas 
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A&M Forest Service personnel and wood samples were collected for future, follow up 

studies on wood density and biomass but were not directly used in results for this 

chapter. See Appendix D for further details on wood sample collection. Field 

measurements and sampling, including scanning (discussed in further detail below), took 

place from December 2016 to May 2017. 
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Table V.1 Summary of standing dead tree decay classification criteria as outlined by USDA Forest Service (2017). 

 
Decay Class Description 

1 Limbs and branches all present, top pointed, all bark remaining, sapwood intact, heartwood sound, hard, original color 

2 
Few limbs and no fine branches present, top may be broken, bark variable, sapwood sloughing, heartwood sound at 

base, incipient decay in outer edge of upper bole, hard, light-to-reddish brown 

3 
Branches absent with only limb stubs, top broken, bark variable, sapwood sloughing, heartwood with incipient decay 

at base, advanced decay throughout upper bole, fibrous to cubical, soft, dark, reddish brown 

4 
Branches absent with few or no stubs, top broken, bark variable, sapwood sloughing, heartwood with advanced decay 

at base, sloughing from upper bole, fibrous to cubical, soft, dark, reddish brown 

5 
No limbs or branches, top broken, bark less than 20 percent, sapwood gone, heartwood sloughing, cubical, soft, dark 

brown, or fibrous, very soft, dark reddish brown, encased in hardened shell 
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Table V.2 Summary of field data for scanned pine trees (TAS = total above-stump, SB = 

stem plus bark, TB = tops and branches, and DBH = diameter at breast height). Sample 

sizes (n) were lower for TB components since many decay class four and all decay class 

five stems did not have TB material remaining. Stem bark remaining pertains to visually 

estimated percentage of bark remaining relative to existing upright stem portion (i.e., not 

original full height of tree). Stem bark remaining is shown as means with standard errors 

in parentheses. 

 

Decay 

Class 

n 

(TAS and SB) 

n 

(TB) 

DBH 

(cm) 

Height 

(m) 

Stem Bark 

Remaining (%) 

1 10 10 12.5 - 60.1 16.0 - 26.4 67.8 (10.7) 

2 10 10 12.7 - 57.2 11.0 - 25.3 53.8 (11.0) 

3 10 10 16.6 - 59.4 13.2 - 24.4 40.0 (13.1) 

4 12 6 14.8 - 68.0 3.3 - 18.6 62.3 (8.2) 

5 7 0 11.9 - 28.6 1.5 - 3.1 82.9 (2.6) 

Total 49 36 11.9 - 68.0 1.5 - 26.4 60.1 (4.8) 

 

 

Scanning 

Standing dead pine trees were scanned using a FARO Focus3D X 330 laser 

scanner (FARO Technologies, Inc., Lake Mary, Florida, USA). The FARO scanner uses 

phase-based scanning to create a three-dimensional point cloud of objects and operates 

with relatively fast setup and scanning times. Prior to scanning, the FARO scanner was 

mounted on a carbon fiber tripod and leveled using the onboard inclinometer. Scanning 

resolution was set to 3.068 mm at 10 m range (i.e., ½ resolution according to FARO 

nomenclature) and a quality setting of 2×. Focal SDT or clusters of SDT were scanned 

from two to seven positions to obtain the most complete point cloud representation 

possible with minimal occlusion. Additionally, five spherical laser scanning targets (139 

mm diameter) were placed on tripods and located around focal SDT for co-registering 

multiple scans into a single, complete point cloud. Scanning positions were generally 
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located at equidistant azimuths (e.g., for four scanning positions, scanner locations were 

~90° apart with focal SDT as center point or for two positions, scanner locations were 

~180° apart) to minimize occlusion of SDT and targets from surrounding vegetation. In 

some instances, surrounding brush and shrubs which obscured scanning lanes were 

cleared to provide as clear a view to focal SDT as possible. 

 

Preprocessing and Volume Estimation 

Individual scans around focal SDT were co-registered using FARO SCENE 

software (FARO Scene, 2015) to create a single comprehensive point cloud. Focal SDT 

were subsequently extracted from each co-registered point cloud using CloudCompare 

point cloud processing software (Girardeau-Montaut, 2017) such that each extracted 

point cloud contained only each individual focal SDT (i.e., from base of stump at ground 

level to branches or stem top) and no ground or neighboring tree points. Extracted 

individual SDT point clouds contained considerable noise points, a common challenge 

with phase-based TLS scanners (Aschoff et al., 2004; Pueschel, 2013), particularly in 

the crooks between branches. Noise points were removed via manual clipping of SDT 

point clouds as well as through a filtering program, as described in Putman and Popescu 

(2018), which consisted of a nearest-neighbor point filter and k-means intensity cluster 

filter. In some cases, the k-means cluster intensity filter was too aggressive resulting in 

excessive artificial occlusion, typically at the stem top where return intensity was lower, 

as compared to the nearest-neighbor filter. Point clouds were examined visually for any 

gross reductions in points, particularly at the stem top. In total, 28 SDT point clouds 
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used the nearest-neighbor point filter only and 21 SDT point clouds used both the 

neareast-neighbor point filter and the k-means cluster intensity filter to create the final 

cleaned point clouds. 

The volume calculation algorithm, TreeVolX (Putman and Popescu, 2018), was 

used to convert filtered and cleaned SDT point clouds into three-dimensional, 

reconstructed tree models (RTM) using voxels (i.e., virtual cubes of equal side lengths). 

Briefly, the algorithm accepts a point cloud, voxelizes it into a sparse voxel model, 

iteratively segments horizontal slices (i.e., of one voxel height) into individual branch 

and stem segments, and estimates the perimeter of each segment using least-squares 

ellipse fitting before filling the interior of each segment with remaining voxels. The 

result is a solid, three-dimensional RTM of each SDT composed of voxels where the 

volume is simply the number of voxels times the voxel volume (i.e., voxel side-length 

cubed). 

Options are available in TreeVolX for improving the segmentation procedure and 

the final volume estimate in heavily-occluded point clouds. For segmentation, a 

proximity-based segmentation method can be used for high quality and high point 

density point clouds while an incremental ellipse fitting segmentation method can be 

used for lower quality and lower point density point clouds. Moreover, heavily-occluded 

point clouds can employ a vertical point cloud resampling (VPCR) technique discussed 

in full detail in Putman and Popescu (2018). Briefly, the VPCR technique accepts a user-

defined voxel side length (i.e., a multiple of 5 mm that is > 5 mm) and, within each 

horizontal slice of this user-defined side length, condenses the points into a single planar 



 

115 

 

surface and subsequently voxelizes the condensed layer of points into a slice of 5 mm 

side-length voxels before expanding the new 5 mm slice vertically to fill the original 

horizontal slice of user-defined side length with similar layers of 5 mm voxels. Thus, the 

resulting effect allows for occluded sections of stem and branches to be filled in with 

voxels based on surrounding point occurrences. 

TreeVolX was validated and errors were discussed in detail in Putman and 

Popescu (2018) generally showing that large branch/stem and fine branch RMSE were 

8.45% and 75.92%, respectively (i.e., for incremental ellipse segmentation method). We 

generally expect similar error in volume estimation given that the trees used in this study 

were scanned under similar parameters and within the same forest as in Putman and 

Popescu (2018). For the purposes of this study, the incremental ellipse fitting 

segmentation was used for all point clouds under the assumption that the quality of fine 

branches in the upper canopies of less-decayed SDT point clouds was relatively low, 

precluding the use of the distance-only segmentation method. Moreover, later-decay 

stage SDT with minimal-to-no branches would not see appreciable change in volume 

estimates as they were primarily composed of large branch and stem sections which 

showed similar error under both segmentation methods as discussed in Putman and 

Popescu (2018). Finally, all SDT volumes were developed using one of two methods, 1) 

no VPCR with 5 mm voxel side lengths and 2) 1 cm VPCR for comparison. The first 

method does not account for occlusion while the second accounts for minimal occlusion 

without producing substantially more error than larger (2 cm - 5 cm) VPCR distances 

(Putman and Popescu, 2018). Following volume estimation, all SDT RTM were clipped 



 

116 

 

at approximately 30 cm height to exclude the stump portion and comprise total above-

stump volume (TAS). Many stump sections of RTM contained substantial occlusion due 

to presence of ground-level vegetation and debris that could not always be removed for 

clear scanning. Where applicable (e.g., early decay stage SDT), TAS sections were 

further clipped into two main components, 1) main stem plus bark (SB) and 2) tops and 

branches (TB). All branches were clipped flush with the main stem and tops were 

clipped from main stems at approximately 10 cm diameter. By definition, TB are most 

prevalent in early decay class SDT (i.e., decay classes one through three) while later 

decay class SDT (i.e., decay classes four and five) contain very few-to-none of this 

material. For all decay class five SDT, TAS volume was equal to SB volume and TB 

volume was equal to zero. 

 

Data Analysis 

Initial examination of DBH as a function of SDT volume suggested that each 

component generally followed the power model form common to allometric 

relationships for biomass and volume in live trees. Subsequently, all allometric 

relationships for TAS, SB, and TB volume estimates were developed using the power 

model form, 

 𝑉𝑜𝑙 = 𝑎 ∗ 𝑋𝑏 (V.1) 

where, Vol = the response variable volume, X = the matrix of covariates (i.e., DBH, 

height, etc.) and a and b are the intercept and scaling coefficient parameters to estimate, 
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respectively. To simplify parameter estimation, the power equation was transformed 

using the natural logarithm resulting in the log-linear relationship, 

 ln 𝑉𝑜𝑙 = ln 𝑎 + 𝑏 ∗ ln 𝑋 (V.2) 

which can be evaluated simply using least squares estimation for linear regression while 

also accounting for heteroscedasticity common in biomass and volume data. Models 

were developed using two continuous covariates, DBH and DBH2*HT, while also 

accounting for the effect of decay class. These covariates were selected as they are 

commonly measured in forest inventories, typically provide strong explanatory power, 

and are comparable to commonly used live tree allometric relationships in the literature. 

Decay class was included as a categorical covariate in model development and 

likelihood ratio tests were used to compare the interaction model (i.e., unequal slopes 

and intercepts), additive model (i.e., equal slopes and unequal intercepts) and the base 

model (i.e., single covariate and no effect of decay class) to determine the importance of 

decay class in predicting volume. Given the three SDT components (TAS, SB, and TB), 

two voxel sizes (5 mm voxels and 1 cm VPCR), and two main covariates (DBH and 

DBH2*HT, a total of 12 allometric models were considered in analyses. Resulting 

models were evaluated using the coefficient of determination (adjusted R2), root mean 

square error (RMSE) as in Stovall et al. (2018), and Akaike’s Information Criterion 

(AIC) on log-linear model forms. 

Log-linear model forms must be back-transformed to the original power model 

form to make predictions in desired units of volume and biomass. However, when back-

transforming log-linear equations, a correction factor must often be applied to account 
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for bias when transforming the error term from an additive format to a multiplicative 

format (Baskerville, 1972). Many correction factors (CF) have been proposed and the 

importance of each discussed extensively (Clifford et al., 2013) with the suggested 

method being the ‘MM’ technique developed by Shen and Zhu (2008), which varies by 

covariate value as opposed to being constant for all covariate values, as the best CF for 

back-transforming log-linear model forms. Thus, for this study, the MM correction 

factor was applied when back-transforming calculated predictions of SDT volume from 

developed allometric relationships. TLS allometry volume predictions were compared to 

TLS-derived volumes and assessed using RMSE (as described above) and bias as in 

Stovall et al. (2018). 

 

Proportion-Remaining Volume 

Proportion-remaining volume was calculated for each decay class and component 

by dividing TLS allometry volume and TLS-derived volumes of SDT by a reference live 

tree volume of the same DBH. Reference live tree volumes were predicted using 

comprehensive national and regional biomass allometric equations from Jenkins et al. 

(2003) and Gonzalez-Benecke et al. (2014), respectively. Jenkins et al. (2003) equations 

were developed using a similar log-linear model form and predictions from these 

equations were similarly corrected using the MM technique (Shen and Zhu, 2008) as 

applied to TLS allometry volume predictions. Gonzalez-Benecke et al. (2014) equations 

were modeled using nonlinear regression and, thus, did not require correction. Since the 

reference live tree equations were developed for biomass, biomass estimates were 
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converted to volume by dividing by national estimates of component wood density. Stem 

wood and bark density estimates were taken from Miles and Smith (2009) and converted 

based on their formulae into a single estimate for combined stem wood and bark. Tops 

and branches wood density values were taken from Harmon et al. (2008) for undecayed 

fine woody debris and converted to an average, equally-weighted density estimate for all 

fine woody debris size classes. Finally, for TAS estimates, SB and TB density estimates 

were combined into a single density estimate by weighting the SB portion as 80% and 

TB portion as 20% (Jenkins et al., 2003) and summing. Proportion-remaining volumes 

for TLS allometry volume and TLS-derived volume of SDT and Jenkins et al. (2003) 

and Gonzalez-Benecke et al. (2014) reference live tree volumes were summarized by 

component and decay class and were compared to theoretically-derived proportions from 

Domke et al. (2011) as developed for FIA SDT estimates. 

 

Results 

Volume estimates for 49 SDT across five decay classes were successfully 

developed using TLS point cloud data and the TreeVolX volume calculation algorithm. 

Between 7-12 SDT were scanned in each decay class with decay class five having the 

lowest (nDC5 = 7) and decay class four having the most (nDC4 = 12) stems (Table V.2). 

TAS and SB sample numbers were the same as for the total number of SDT scanned in 

each decay class while TB sample numbers were fewer for decay classes four and five 

(nTB_DC4 = 6 and nTB_DC5 = 0) (Table V.2). Diameters and heights of scanned SDT ranged 

from 11.9 cm to 68.0 cm and 1.5 m to 26.4 m, respectively (Table V.2). Decay class five 
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SDT covered the narrowest range of sizes while the four preceding decay classes all 

covered similar ranges for DBH and height (Table V.2). 

Volume estimates for the different voxel sizes varied by component and were 

consistently greater in 1 cm VPCR estimates (Table V.3). SB component volumes 

differed the least (1.6%), followed closely by TAS (3.9%), with TB component volumes 

differing the most (29.2%) between the two voxel sizes overall. Differences between 

volume estimates by voxel sizes were greatest for decay class one and generally declined 

being least in decay class four (i.e., for TB) and decay class five (i.e., for TAS and SB). 

Percent volume differences between voxel sizes ranged between 0.8-2.2%, 0.8-10.7%, 

and 17.4-53.1% for SB, TAS, and TB, respectively. By far, SB components comprised 

the greatest proportion of TAS volumes representing approximately 83% for 5 mm 

voxels and 77% for 1 cm VPCR of TAS in decay class one and increased to 100% for 

decay class five. TB components represented roughly 17% for 5 mm voxels and 22% for 

1 cm VPCR of TAS volumes in decay class one, the greatest such amount, and 

decreased in subsequent decay classes to approximately 1% of TAS volume by decay 

class four, where TB components were still measurable. 
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Table V.3 Means with standard errors in parentheses for point cloud and volume data for scanned pine trees (TAS = total above-

stump, SB = stem plus bark, TB = tops and branches, and DBH = diameter at breast height). NN distance is nearest neighbor 

distance for points in preprocessed (i.e., registered, filtered) point clouds for total aboveground portion of SDT (i.e., all 

components including stump portion). Absolute difference values (m3) are average differences between resampled (1 cm VPCR) 

and non-resampled (5 mm voxels) volumes. Percent difference values are the percentage increase from resampled (1 cm VPCR) 

to non-resampled (5 mm voxels) volumes relative to non-resampled volumes. 

 
 Point Cloud TAS SB TB 

Decay 

Class 

NN 

Distance 

(cm) 

Difference 

(m3) 

Difference 

% 

Difference 

(m3) 

Difference 

% 

Proportion 

Relative to 

TAS 

(5 mm) 

Proportion 

Relative to 

TAS 

(1 cm VPCR) 

Difference 

(m3) 

Difference 

% 

Proportion 

Relative to 

TAS 

(5 mm) 

Proportion 

Relative to 

TAS 

(1 cm VPCR) 

1 
0.2029 

(0.0185) 

0.0670 

(0.0171) 

10.7 

(2.2) 

0.0241 

(0.0105) 

2.2 

(0.8) 

0.829 

(0.044) 

0.773 

(0.050) 

0.0429 

(0.0088) 

53.1 

(5.9) 

0.171 

(0.044) 

0.227 

(0.050) 

2 
0.1903 

(0.0250) 

0.0341 

(0.0127) 

4.0 

(0.7) 

0.0216 

(0.0096) 

1.8 

(0.3) 

0.902 

(0.049) 

0.886 

(0.051) 

0.0122 

(0.0034) 

40.3 

(9.2) 

0.098 

(0.049) 

0.113 

(0.052) 

3 
0.1535 

(0.0162) 

0.0336 

(0.0170) 

2.6 

(0.5) 

0.0279 

(0.0167) 

1.8 

(0.6) 

0.942 

(0.030) 

0.935 

(0.030) 

0.0056 

(0.0012) 

28.9 

(5.1) 

0.058 

(0.030) 

0.065 

(0.030) 

4 
0.1618 

(0.0107) 

0.0154 

(0.0084) 

1.1 

(0.3) 

0.0148 

(0.0082) 

1.1 

(0.3) 

0.986 

(0.013) 

0.986 

(0.013) 

0.0006 

(0.0004) 

17.4 

(8.5) 

0.014 

(0.013) 

0.014 

(0.013) 

5 
0.1194 

(0.0165) 

0.0004 

(0.0002) 

0.8 

(0.2) 

0.0004 

(0.0002) 

0.8 

(0.2) 

1.000 

(0.000) 

1.000 

(0.000) 
- - - - 

Total 
0.1683 

(0.0086) 

0.0313 

(0.0065) 

3.9 

(0.7) 

0.0187 

(0.0049) 

1.6 

(0.2) 

0.930 

(0.017) 

0.914 

(0.019) 

0.0125 

(0.0030) 

29.2 

(4.0) 

0.070 

(0.017) 

0.086 

(0.019) 
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A total of 12 allometric models were developed across all SDT component parts 

(TAS, SB, and TB), each main covariate (DBH and DBH2*HT) and both voxel sizes (5 

mm voxels and 1 cm VPCR) (Table V.4). For all cases, the interaction between the main 

covariate and decay class did not result in a significantly better model fit than the 

additive model (p > 0.05). For 10 of the 12 allometric models developed, the additive 

model provided a significantly improved fit over the covariate only model (p < 0.05). 

Notably, the inclusion of height in the main covariate (i.e., DBH2*HT) for both TAS 

models provided an improved fit over when decay class was also included. Differences 

between model parameters and model fits for the two voxel sizes were very minimal at 

each component and covariate (Table V.4, Figure V.2 and V.3, Appendix D: Figure 

D.1). Overall, the inclusion of height in the main covariate resulted in improved fits for 

all TAS and SB models (i.e., higher adjusted R2, lower RMSE, and lower AIC) but not 

for TB models. Allometric models for TB contained considerably more variability as 

adjusted R2 values were slightly more than half, RMSE values were nearly three-times 

greater, and AIC values were an order of magnitude greater than those in TAS and SB 

models (Table V.4). Plots of log-linear models using DBH as the only main covariate 

showed stratification between each decay class, particularly for decay classes four and 

five (Figure V.2). The inclusion of height in the main covariate accounted for much of 

the variability between decay classes resulting in less evident stratification between 

plotted trends, particularly in TAS and SB models (Figure V.3). 
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Table V.4 Allometric equation results for log-linear relationships of total and component volumes (TAS = total above-stump, 

SB = stem plus bark, TB = tops and branches, and SE = standard error). All values and units correspond to log-linear model 

form: ln(Volume m3) = a + b*ln(IV), where IV = independent variable. Sample size (n) for TAS and SB included the full dataset, 

n = 49 while for TB, n = 36 since many decay class four and all decay class five SDT did not have TB material remaining. 

 

Component Voxel Size IV Decay Class a (SE) b (SE) Adj. R2 
RMSE 

(log units) 
AIC 

TAS 

5 mm DBH 

1 -7.8164 (0.3184) 

2.2738 (0.0963) 0.9510 0.2821 29.0512 

2 -7.9948 (0.3262) 

3 -8.0500 (0.3386) 

4 -8.4606 (0.3244) 

5 -9.5476 (0.3002) 

1 cm DBH 

1 -7.6789 (0.31847) 

2.2620 (0.0963) 0.9513 0.2822 29.0731 

2 -7.9179 (0.3263) 

3 -7.9847 (0.3387) 

4 -8.4116 (0.3245) 

5 -9.5056 (0.3003) 

5 mm DBH2*HT All -8.8971 (0.1714) 0.8903 (0.0191) 0.9784 0.1960 -14.6656 

1 cm DBH2*HT All -8.9007 (0.1624) 0.8950 (0.0181) 0.9807 0.1857 -19.9598 

SB 

5 mm DBH 

1 -8.4750 (0.3700) 

2.4180 (0.1118) 0.9372 0.3278 43.7629 

2 -8.5851 (0.3791) 

3 -8.6016 (0.3935) 

4 -8.9442 (0.3769) 

5 -9.9640 (0.3489) 

1 cm DBH 

1 -8.4979 (0.3708) 

2.4320 (0.1121) 0.9376 0.3286 43.9958 

2 -8.6123 (0.3800) 

3 -8.6315 (0.3944) 

4 -8.9792 (0.3778) 

5 -9.9963 (0.3497) 
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Table V.4 (Continued) 

 

Component Voxel Size IV Decay Class a (SE) b (SE) Adj. R2 
RMSE 

(log units) 
AIC 

SB 

(cont.) 

5 mm DBH2*HT 

1 -9.9100 (0.3354) 

0.9710 (0.0347) 0.9612 0.2576 20.1480 

2 -9.8047 (0.3351) 

3 -9.7653 (0.3444) 

4 -9.5514 (0.3124) 

5 -9.3711 (0.2507) 

1 cm DBH2*HT 

1 -9.9433 (0.3341) 

0.9769 (0.0346) 0.9619 0.2566 19.7592 

2 -9.8410 (0.3338) 

3 -9.8040 (0.3430) 

4 -9.5918 (0.3112) 

5 -9.4015 (0.2497) 

TB 

5 mm DBH 

1 -5.8388 (1.2314) 

1.0106 (0.3749) 0.5194 0.9989 114.0875 
2 -6.8714 (1.2621) 

3 -7.3906 (1.3107) 

4 -9.3846 (1.3707) 

1 cm DBH 

1 -5.2730 (1.1323) 

0.9641 (0.3447) 0.5815 0.9186 108.0518 
2 -6.4002 (1.1606) 

3 -6.9868 (1.2053) 

4 -8.9496 (1.2605) 

5 mm DBH2*HT 

1 -6.6585 (1.5081) 

0.4294 (0.1573) 0.5217 0.9966 113.9190 
2 -7.6008 (1.5067) 

3 -8.1032 (1.5492) 

4 -10.0032 (1.5717) 

1 cm DBH2*HT 

1 -6.0876 (1.3835) 

0.4131 (0.1443) 0.5854 0.9143 107.7104 
2 -7.1287 (1.3822) 

3 -7.7002 (1.4212) 

4 -9.5733 (1.4418) 

 



125 

 
 

Figure V.2 Allometric relationships of natural logarithm transformed volume (m3) for A) 

TAS-5 mm, B) TAS 1-cm VPCR, C) SB-5 mm, D) SB-1 cm VPCR, E) TB-5 mm, and F) 

TB-1cm VPCR plotted against natural logarithm transformed DBH (cm) by decay class 

(TAS = total above-stump, SB = stem plus bark, TB = top and branches). Dashed and 

dotted black lines represent predicted live tree volumes of similar components derived 

from Gonzalez-Benecke et al. (2014) and Jenkins et al. (2003), respectively. 
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Figure V.3 Allometric relationships of natural logarithm transformed volume (m3) for A) 

TAS-5 mm, B) TAS-1 cm VPCR, C) SB-5 mm, D) SB-1 cm VPCR, E) TB-5 mm, and F) 

TB-1 cm VPCR plotted against natural logarithm transformed DBH2*HT (cm2*m) by 

decay class (TAS = total above-stump, SB = stem plus bark, TB = tops and branches). 

Predicted live tree component volumes from Gonzalez-Benecke et al. (2014) and Jenkins 

et al. (2003) were not plotted as they used different model forms for height or did not use 

height at all, respectively. 
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TLS allometry volume predictions were back-transformed and corrected from log 

to original units (volume, m3) and compared to TLS-derived volume estimates (Figure 

V.4). Comparisons were made for 5 mm voxel size models only given the similarity 

between models of both voxel sizes. Predicted TAS TLS allometry volumes matched 

TLS-derived volumes quite closely for both DBH only and DBH2*HT models (bias = 

0.009 m3 and -0.0111 m3, respectively) while SB models tended to slightly overpredict 

volume (bias = 0.0285 m3 and 0.0232 m3, respectively) (Figure V.4). The inclusion of 

height in the main covariate for TAS and SB models also improved predictions as 

RMSE was approximately 0.074 and 0.052 m3 less, respectively, compared to DBH-only 

models (Figure V.4). Height did not appear to improve allometric model predictions for 

TB volumes as they compared very similarly to TLS-derived volumes (RMSE ≈ 0.0297 

m3 for both), generally tending to be over predicted (bias ≈ 0.0076 m3 for both) (Figure 

V.4). 
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Figure V.4 TLS allometry volume (m3) from allometric equations vs. TLS-derived volume for A) TAS, B) SB, and C) TB 

predicted from DBH (cm) and D) TAS, E) SB, and F) TB predicted using DBH2*HT (cm2*m). Black lines are fitted regression 

lines and gray dashed lines are 1:1 lines. TLS allometry volumes were back transformed and corrected from natural logarithm 

units using the MM correction factor from Shen and Zhu (2008). 
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Proportion-remaining volume was calculated for each component (TAS, SB, and 

TB) using both TLS allometry volumes and TLS-derived volumes of SDT while live tree 

reference values were calculated using allometric models from Gonzalez-Benecke et al. 

(2014) for loblolly pine (Pinus taeda) and from Jenkins et al. (2003) for Pinus (Figure 

V.5, Appendix D: Table D.1). Proportions were calculated and presented for 5 mm voxel 

size estimates only given the strong similarity with 1 cm VPCR voxel size estimates. 

Broadly, proportion-remaining volumes suggest that SDT volume estimates were 

overpredicted relative to generalized national and regional equations for similar species 

as many proportions are greater than one (Figure V.5, Appendix D: Table D.1), 

particularly in early decay classes. Both TAS and SB followed nearly identical trends 

given that TB volumes were the only difference between the two and, ultimately, 

comprised a much smaller fraction of TAS than the SB material. Proportions for decay 

class one TB showed considerable variability which stabilized or decreased substantially 

in the subsequent remaining decay classes (Figure V.5, Appendix D: Table D.1). For 

TAS and SB, Gonzalez-Benecke et al. (2014)- and Jenkins et al. (2003)-derived 

proportions in TAS and SB were similar within each decay class while Jenkins et al. 

(2003)-derived values tended to be lower within each decay class for TB material 

(Figure V.5, Appendix D: Table D.1). In all cases, proportions decreased as decay class 

increased with proportions in TB decay class five being zero for both empirical estimates 

and for theoretical estimates from Domke et al. (2011). Notably, empirical TB 

proportion estimates were greater but, generally, match closely with theoretical 
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proportions from Domke et al. (2011), particularly using Jenkins et al. (2003)-derived 

reference live tree values (Figure V.5, Appendix D: Table D.1). 

 



131 

 

Figure V.5 Proportion-remaining volume (m3/m3) based on 5 mm non-resampled voxels by decay class, live tree reference 

volume source, and component (TAS = total above-stump, SB = stem and bark, TB = tops and branches) with FIA theoretical 

values from Domke et al. (2011) as black triangles for TB.The top three figures use TLS-derived volumes for A) TAS, B) SB, 

and C) TB in the numerator (i.e., black points are outliers) while the bottom three figures use TLS allometry volumes for D) 

TAS, E) SB, and F) TB in the numerator. TLS allometry volumes and Jenkins et al. (2003) predictions were back transformed 

from natural logarithm units and corrected using the MM correction factor from Shen and Zhu (2008). Gonzalez-Benecke et al. 

(2014) predictions did not require correction since models were developed using non-linear regression. Dotted lines represent 

proportion-remaining volume = 1 where SDT and live tree reference volumes are equal. Decay class five TB are zero for 

empirical estimates from this study and similarly for theoretical estimates from Domke et al. (2011).  
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Figure V.5 (continued) 
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Discussion 

Terrestrial LiDAR remote sensing coupled with the TreeVolX volume 

calculation algorithm allowed for rapid production of loblolly pine SDT component 

volume estimates across decay classes. Subsequently, these estimates contributed to 

producing robust allometric models of the same component volumes using commonly 

measured metrics of DBH, height, and decay class which directly estimate volume of 

SDT while accounting for volume changes with decay class. Moreover, empirically-

derived proportion-remaining volumes of SDT were produced by decay class and 

component parts using both TLS-derived volumes and TLS allometry volumes. To the 

authors’ knowledge, this is the first such study that produced allometric models of SDT 

volume using decay class as a covariate as well as calculating empirically-derived 

proportion-remaining volume of SDT by decay class based on TLS measured volumes. 

Other studies have, in part, addressed portions of these topics and provided important 

insight for framing aspects of this study (Aakala, 2010; Domke et al., 2011; Russell and 

Weiskittel, 2012). Models and results produced herein serve as an attempt to fill a much 

needed gap in the literature on accurately estimating SDT volume and understanding 

structural changes in SDT decomposition by employing novel methodologies for 

estimation. Models can be used to directly estimate volume of SDT by decay class for 

pine trees in east Texas with possible application in other southern pines in the 

southeastern U.S. 
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Volume Estimates and Allometric Relationships 

The voxel sizes examined (5mm voxels and 1 cm VPCR) did not appear to result 

in noticeable differences in volume estimates or allometric model parameters, 

particularly for TAS and SB components. Differences in TAS volume estimates of 

similar SDT for the two voxel sizes were all very low (i.e., less than 5% greater in 1 cm 

VPCR) with the exception of decay class one volumes which were 10.7% greater (Table 

V.3). Furthermore, model assessment metrics of adjusted R2, RMSE, and AIC were 

nearly identical for the two voxel sizes in TAS and SB models of similar covariates. The 

lack of difference between voxel size estimates and parameters is not surprising for SB 

components where occlusion tended to be minimal or non-existent. Likewise, the lack of 

difference might also reflect that choosing 1 cm voxel side lengths for resampling may 

not have been sufficient to fill in substantial portions of occlusion in SB components. 

Volume differences between voxel sizes for TAS, for the most part, were of similar 

magnitude as SB given that greater than 80% of TAS volumes were comprised of SB 

(Table V.3). However, it was clear the additional tops and branches resulted in greater 

differences in decay classes one through three compared to SB. In fact, the effect of 

resampling on TB components alone, even at just 1 cm VPCR, resulted in volume 

increases of an order of magnitude for all decay classes (i.e., approximately 17-53% 

greater TB volume, Table V.3) compared to non-resampled 5 mm voxels. Subsequently, 

these percentages would only increase with larger voxel resampling sizes. This effect of 

greater differences in TB component volumes with increasing voxel sizes most likely 

stems from using the incremental ellipse segmentation method for all SDT volume 
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estimates coupled with occlusion and sparse point densities in the canopy. Putman and 

Popescu (2018) noted that the incremental ellipse segmentation method could result in 

up to approximately 75% RMSE of volume estimates in small branches. Erroneous 

ellipse fitting between sparse points among fine branches likely created artificially 

increased volumes in TB components at both voxel sizes and was further compounded 

by resampling. 

Allometric models for SDT all followed the power model form commonly used 

for live tree allometric relationships. In allometric model development, it is important to 

have a strong relationship between the covariate(s) and response variable. Models 

produced here, particularly for TAS and SB, highlight that SDT still generally 

maintained a strong positive exponential relationship with increasing DBH size. In fact, 

adjusted R2 values were strong for TAS and SB ranging between approximately 0.93-

0.98, comparable to live tree allometric power models of similar species (Gonzalez-

Benecke et al., 2014) or those produced via TLS-derived volumes (Olagoke et al., 2016; 

Stovall et al., 2018), granted these other studies estimated biomass. Decay class five 

SDT tend to occur rarely on the landscape and this was reflected in the limited DBH size 

range (11.9-28.6 cm) and sample size for decay class five SDT in our dataset (nDC5 = 7). 

Given this, it is difficult to say whether the remaining volume for samples in decay class 

five would best follow the power model or perhaps a linear model may be more 

appropriate. Decay class five SDT typically have substantially reduced height, no 

branches, and little or no remaining bark relative to its past live tree form based on 

classification criteria (Table V.1). Thus, volume of this decay class is contingent upon 
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the quantity of any of these remaining attributes. Nevertheless, allometric models of 

SDT volume appear to follow similar model form and offer similar accuracy as models 

for live trees. 

Inclusion of height as a covariate slightly improved model fits for TAS and SB 

but not so for TB models. Adjusted R2 values increased roughly 3% from DBH-only 

models for TAS and SB while they increased <1% from DBH-only models for TB. 

Notably, inclusion of height as a covariate in TAS models accounted for the variation 

across decay classes ultimately by providing a better fit than the model which explicitly 

included decay class as a factor. However, including both decay class and height 

together in SB models provided a better fit than excluding either one. These results make 

logical sense given the general criteria differentiating decay classes in the five-class 

system employed by FIA, which was used in this study (Table V.1). Remaining canopy 

volume represents a substantial part of the total volume of a SDT and, following decay 

class descriptions, generally decreases in volume systematically with increasing decay 

class. For example, the form of decay class one SDT very closely reflects the form of 

live trees and by decay classes two and three most of the branches are gone with the top 

likely broken by decay class three or four. For SB components, bark and the very tops of 

stems are the portions that can be lost with increasing decay class representing a more 

gradual reduction in volume than for TAS, especially for decay classes one through three 

where relatively little change is defined as compared to TAS (Table V.1). Hence, both 

height and decay class remained important for predicting volume in SB by accounting 

for changes in height and subtle changes in bark loss. Importantly, these results highlight 
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that measuring height in inventory situations can provide strong estimation of SDT TAS 

volume in cases where a decay class was not assigned or a different decay classification 

system was used, ultimately increasing the applicability and further highlighting the 

value of SDT allometric equations. 

In contrast to TAS and SB components, allometric models of TB provided 

weaker relationships with DBH, height, and decay class. Approximately 40% less 

variation was explained via adjusted R2 values in TB volumes using DBH, height, and 

decay class than for TAS and SB components (i.e., adjusted R2 for TB were ~0.52-0.58). 

Moreover, inclusion of height added no perceivable improvement in model fit than for 

models with DBH only (i.e., <1% increase in adjusted R2). This weaker relationship for 

TB components likely stems in part from the variability in volume estimates produced 

from the chosen techniques and parameters applied when using TreeVolX, as discussed 

previously. For example, the TreeVolX algorithm and chosen parameters for volume 

calculation (i.e., incremental ellipse segmentation method) occasionally will segment 

sparse points from multiple smaller branches into one segment creating an erroneous 

overestimate of volume in TB material (e.g., see Putman and Popescu (2018) Figures 19 

and 20) which can be compounded by use of resampling. In addition, the weaker 

relationships for TB component allometric models may also stem in part from the 

inherent variability in remaining canopy branches with decay class. Decay classifications 

describing the amount of remaining branches are ambiguous but generally imply that 

fine branches are lost early in the decay process, followed eventually by medium and 

large branches in addition to tops (Table V.1). Literature remains sparse on the size-class 
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proportions of branch material within live or SDT canopies. The reconstructed SDT 

models derived from TLS point clouds produced herein did not provide sufficient 

accuracy to consistently and reliably separate branch components by commonly-defined 

branch size classes. Regardless of branch size class, a SDT in any particular decay class 

could have variable amounts of branch material remaining yet could still be assigned the 

same decay classification. For example, a decay class one tree could have all branches 

intact or could be missing some proportion of branches and yet still potentially be 

classified as decay class one. Subsequently, inherent variability in the amount of branch 

material remaining in the canopy for any particular decay class was also compounded at 

times by the erroneous segmentation and clustering of smaller branch components into 

overestimates of volume. 

 

Proportion-Remaining Volume 

Structural changes in SDT as measured by proportion-remaining volume 

generally followed expected decreasing patterns with each successive decay class. 

However, the calculated proportions reflect the large amount of variability in volume 

estimates of SDT sampled in this study. Moreover, the volume estimates produced 

herein appear to be overpredicted compared to reference live tree volumes from Jenkins 

et al. (2003) and Gonzalez-Benecke et al. (2014). Conceptually, SDT volumes should be 

less than their respective live tree reference volumes given density and structural losses 

with decomposition (Domke et al., 2011). Proportions of remaining volume for TAS and 

SB in decay classes one through three were all greater than or equal to one, indicating 
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that SDT volume was consistently greater than reference live tree volumes. Despite this, 

proportions for TB material generally followed the same pattern as devised by Domke et 

al. (2011) and nearly matched their values when using Jenkins et al. (2003) for reference 

values. This trend generally makes sense given the systematic description of changes to 

tops and branches described in the FIA decay classification criteria (Table V.1). 

Consequently, the theoretical quantities derived from these criteria by Domke et al. 

(2011) appear to be well founded, particularly for pine species with excurrent branching 

structure (i.e., dominant apical leader with cone-shaped branching structure). It is worth 

noting that the reference live tree volumes were derived from biomass estimates and 

required assumptions about the wood density and proportion of material within a single 

tree (i.e., proportion of TB or SB to TAS and proportion of branches by size class in 

TB). Variability in these assumptions also likely affected the variability of proportion-

remaining volume estimates. 

 

Conclusions and Applications 

TLS provides an effective, rapid, non-destructive means to quantify volume of 

SDT in field-based, dense or closed canopy forest conditions. This is possible through 

application of the TreeVolX volume calculation algorithm and the available options for 

creating reconstructed models of SDT. Importantly, robust allometric models using SDT 

volumes were produced from these novel, TLS-derived volume estimates using common 

methods of allometric model development as for live tree volume or biomass. Allometric 

models of SDT volume generally differed by decay class in intercept only and not slope. 



 

140 

 

Inclusion of height as a covariate in SDT allometric models for TAS precluded the need 

for including decay class as an additional covariate. Importantly, this means that TAS 

volume estimates can still be derived for SDT measured in forest inventories with 

dissimilar decay classification schemes or where no decay class was assigned. The 

choice of the incremental ellipse segmentation method in TreeVolX volume 

reconstruction created large amounts of variability and erroneous estimates of volume 

among fine branches of early decay class SDT. The choice of 1 cm VPCR increased 

volume estimates relative to non-resampled 5 mm voxel sizes yet did not substantially 

differ in estimates for TAS and SB and in allometric models. Given this, it is 

recommended to use the allometric models developed with non-resampled 5 mm voxels 

for predicting volume of SDT loblolly pine. Empirically-derived proportion-remaining 

volume by SDT component showed expected decreasing trends as decay class increased 

and, for TB material, appeared to match theoretically-derived estimates fairly closely. 

Further refining of volume reconstruction options will be necessary to reduce error in 

associated estimates, particularly TB material. Future work should include development 

of allometric relationships for more species and growth forms (e.g., trees with decurrent 

growth structure). 

Application of allometric models developed herein could include for direct 

estimation of SDT southern pine volume in east Texas and possibly in other regions 

where loblolly pine occurs, notably, without the need to account for volume reduction 

with decay. Specifically, estimates could directly determine volume of SDT as wildlife 

habitat, volume of standing fuels for wildfire or prescribed fire or falling tree risk 
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assessment, as well as volume of SDT following major disturbance. Models could be 

coupled with component wood density and carbon/nutrient estimates to produce above 

stump and component biomass or carbon/nutrient estimates of SDT where needed. 

Direct prediction of SDT resources and improved understanding of volume change with 

decay class remain critical areas of research with the continued threat of future 

disturbances and need for accurately quantifying forest resources for a variety of 

ecosystem services. 
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CHAPTER VI  

SUMMARY AND CONCLUSIONS 

 

East Texas is unique within the south-central U.S. in that it is important both 

ecologically and economically in regards to its forests. This region comprises the 

western range margin of West Gulf Coastal Plain forests and the southwestern extent of 

many eastern tree species, both angiosperms and gymnosperms. In particular, east Texas 

is a notable producer of timber and wood products with substantial proportions of the 

landscape comprised of intensively managed plantations. Four national forests are 

located in this region, managed for multiple uses including wildlife habitat, recreation, 

threatened and endangered species, and grazing among others. Moreover, many forested 

hectares are owned by small-scale, private landowners seeking to make a small profit 

from wood products or provide habitat and healthy forests for future generations. 

As climate changes globally, the impacts of future disturbances on forest 

ecosystems will become increasingly apparent. The extreme and record drought that 

occurred in east Texas and the south-central U.S. in 2011 is one example of a potential 

extreme disturbance that could become more common in the next few decades. The 

effects of extreme drought could have far-reaching implications on the forest ecosystem 

services and local communities in east Texas. However, little is known about the impacts 

of extreme droughts in forests especially with regard to species mortality responses, 

management, and dead wood dynamics. Subsequently, this dissertation aimed to address 

the following questions: What was the temporal mortality response of different species 
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in east Texas multiple years after the 2011 drought and did pests play a role in driving 

lagged mortality? What impact did management have on the mortality response of 

important southern pine species following the 2011 drought? What are the dynamics of 

trees and snags transitioning from the standing dead pool to the downed pool in a region 

characterized by rapid decomposition? Finally, how effective are estimates of SDT 

volume, derived from non-destructive LiDAR measurements, at quantifying and 

characterizing structural volume changes in standing dead pines across decay classes? 

Tree species showed variation in their mortality response and ability to tolerate 

water stress under the extreme, acute drought conditions throughout 2011. Oaks were 

most negatively affected and endured immediate and substantial mortality. The 2011 

drought appeared to surpass a threshold by which oak species could not continue 

transpiration. Pine species, on the other hand, appeared to tolerate the drought conditions 

quite well having the lowest mortality of all species examined. Albeit, mortality did 

increase two years post-drought suggesting that pines were not completely immune to 

the water stress. Tree species employ differing strategies for coping with water stress 

including deep rooting, regulating stomata, and leaf abcission, among others. The ability 

of trees to successfully employ these strategies depends also on the nature of the water 

stress such as timing, intensity, and duration. It appears that, despite the intense and 

acute nature of the extreme 2011 drought, some tree species in east Texas, such as pines, 

were able to utilize their strategies to overcome mortality. Put another way, the extreme 

drought conditions did not result in indiscriminate and substantial mortality regardless of 

species. Pests also appeared to play a role in driving continued mortality beyond the 
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drought event yet were not as substantial a driver as the drought conditions alone. Pest 

mortality trends were similar as with drought-specific mortality for pines (lower 

mortality) and oaks (greater mortality). In particular, southern red oak was most affected 

by pest mortality falling in line with trends seen in red oak species affected by the red 

oak borer in Arkansas and Missouri. 

A critical finding from this dissertation was that pines in east Texas were 

inherently resistant to mortality from the extreme drought conditions. In particular, the 

effect of management appeared to play an important role in reducing mortality in 

loblolly pine. Specifically, planted loblolly pine increased in mortality rate by only 10% 

under extreme drought conditions whereas, drought exposed naturally-regenerated 

loblolly pine and shortleaf pine increased mortality rates by >20%. Common 

management practices that maintain stands at low densities to reduce competition and 

harvesting moderate tree sizes were important for reducing the risk of drought mortality 

in planted pines. Interestingly, greater overstory species diversity in naturally-

regenerated loblolly stands appeared to be an important factor for reducing drought 

mortality. Unfortunately, little information was gleaned for shortleaf pine response to 

extreme drought. As expected, shortleaf pine mortality was generally greater than 

loblolly pine yet the limited sample size in the dataset precluded any meaningful 

management recommendations. Importantly, maintenance of loblolly pine within 

common management targets for stand density and stem size appeared to be sufficient 

for avoiding excessive mortality from extreme drought. 
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Following mortality, decomposition generally governs the rate at which SDT 

transition to downed dead wood. This dissertation has shown that the rate at which trees 

and snags transition from standing to downed is rapid in east Texas. Two separate 

groups of standing trees were defined based on inherent processes and nuances of 

inventory re-measurements, tree-fall and snag-fall. The tree-fall group included live trees 

which died and fell at the same time or died, remained standing for a short period, and 

fell within five years. The snag-fall group included SDT which fell after five years. As 

expected for both groups, stem size was a critical factor determining the probability of 

falling in a five-year period. Stem size generally correlates positively with wood 

durability and, subsequently, larger stems require greater forces to snap and take longer 

to decompose. For trees that die and fall simultaneously, large hardwoods on wet sites 

had a slightly greater chance of falling. This result highlights a unique process by which 

bottomland species may be more susceptible to wind disturbance such as hurricanes. 

Ultimately, models produced in this dissertation for predicting tree- and snag-fall 

probabilities provide key quantitative tools for managers and modelers seeking to 

provide appropriate wildlife habitat, predict falling tree hazards, understand wildland fire 

behavior and risk, and parameterize carbon models. 

Understanding structural volume changes in SDT remains an important area of 

development for improving volume, biomass, and carbon estimates across multiple 

scales. Terrestrial LiDAR and the TreeVolX volume calculation algorithm were shown 

to be effective tools for efficient, non-destructive estimation of standing dead pine tree 

volumes. Most notably, these estimates produced robust allometric models for predicting 



 

146 

 

SDT volume by decay class, a first such attempt. These allometric models directly and 

inherently account for structural volume changes with progressive decay. In fact, models 

appeared to differ in intercept and not slope suggesting uniform differences between 

decay classes regardless of the predictive covariates of DBH or height. Moreover, the 

addition of height precluded the need for decay class as a predictor altogether for total 

above-stump volume estimates. These results highlight that, while decay classifications 

are subjective, quantitative and systematic trends can be gleaned from their use for 

improving biomass and carbon estimates of SDT. Further refinement of volume 

estimates is needed, however, for reducing overestimation of volume in remaining 

canopy materials (i.e., tops and branches). Volume estimates of SDT provided an 

opportunity to examine trends in proportion of remaining volume relative to reference 

live tree estimates by decay class, another first such attempt using TLS-derived SDT 

volumes. Estimated proportions of remaining volume followed expected decreasing 

trends with decay class, however, further refinement of volume estimates for both SDT 

and reference live trees will subsequently enhance understanding of these structural 

changes. 

Overall, this dissertation provided a regional scale assessment of the impacts of 

extreme drought and subsequent decomposition dynamics in West Gulf Coastal Plain 

forests, a uniquely situated region characterized by both managed and unmanaged 

forests at the western extent of their range. Pine forests, particularly managed pine 

forests, appeared resistant to the record heat and water stress imposed by the 2011 

drought. On the other hand, oak species appeared quite vulnerable to the drought and, if 
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similar drought conditions become more frequent, as climate predictions suggest, some 

species may not be able to persist into the future. Future work should continue to 

examine the specific management techniques and physiological traits by which pines and 

oaks survive and succumb to extreme water stress. Subsequent decomposition of SDT in 

these forests was found to be quite rapid with nuances in regards to stem size, wood 

type, and stage of decay. In general, the rapid fall-rate of SDT is largely due to the 

warm, moist climate and unique decomposer community that includes termites. As 

future disturbances are predicted to become more frequent and severe, managers and 

scientists will require the quantitative tools for tree- and snag-fall and SDT volume 

prediction developed herein to ensure they provide sufficient habitat for cavity-nesting 

species, quantify and predict fuel loads and fire risk, and accurately constrain biomass 

and carbon models for accounting and inventory. Continued refinement of these tools 

will improve estimation and, ultimately, enhance management actions and advance 

modeling efforts for predicting future impacts of extreme disturbances. 

An implied goal of this dissertation was to inform understanding of future 

extreme droughts with an application to forest resources of east Texas. The findings 

summarized above provide a broad perspective to the impacts of extreme drought. 

Management-oriented objectives will still need to be devised by local managers and 

stakeholders for the specific forested stands which they oversee. However, the broad-

scale findings and tools produced here can provide an important starting point for 

devising these objectives where, previously, little was known about response of east 

Texas forests to extreme drought. Importantly, basic management actions such as 
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thinning could go a long way toward reducing mortality risk of loblolly pine. Planting 

young loblolly at lower densities could help reduce mortality as the stand initiates. 

Moderate stem sizes had very low mortality thus, harvesting stems at merchantable sizes 

before they reach large size classes could help provide economic returns and reduce 

losses from drought mortality. If managing stands of naturally-regenerated loblolly pine, 

it may be worthwhile to reduce loblolly densities and allow other hardwoods to 

establish. In this scenario, objectives may need to shift from pure loblolly-focused 

economic returns to multiple objectives providing merchantable hardwoods or 

improving wildlife habitat. 

In terms of dead wood resources, the tools developed in this dissertation can help 

managers better understand and manipulate dead wood on their land base. As carbon 

markets develop, the SDT allometric models could simplify estimation of dead wood 

pools and, coupled with the tree- and snag-fall models, could be used to predict turnover 

of dead wood resources over time. Beyond carbon, these tools could be used in a similar 

manner to better estimate and predict fuel amounts and dynamics where prescribed fire 

or wildfire is a major focal point. Similarly, tree- and snag-fall models can be applied to 

SDT which pose a falling risk to humans allowing managers to predict when SDT might 

fall and target those for removal. Finally, these models can, once again, be applied to 

better estimate SDT resources to provide sufficient habitat for cavity-nesting species on 

a particular land base. The utility of results and tools from this dissertation is broad yet, 

offers a key starting point for managers concerned about future extreme droughts and 

managing dead wood resources. 
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APPENDIX A 

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER II 

Table A.1. Coefficient estimates from logistic regression of weather mortality in plots 

across east Texas. Reprinted with permission from Klockow et al., (2018). 

 
Coefficient Estimate SE p-value 95% CI 

Intercept 

(PITA:2011) 
-5.2601 0.2047 <<0.001*** (-5.6897, -4.8839) 

PIEC 0.7253 0.4940 0.1420 (-0.3668, 1.6121) 

QUST -0.5978 1.0215 0.5584 (-3.4829, 0.9602) 

QUNI 2.2365 0.2958 <<0.001*** (1.6519, 2.8188) 

QUFA 0.6384 0.6152 0.2994 (-0.8025, 1.6966) 

LIST 0.2307 0.4579 0.6143 (-0.7646, 1.0637) 

ULAL 1.1911 0.5442 0.0286* (-0.0395, 2.1517) 

2012 0.3295 0.2896 0.2551 (-0.2418, 0.9008) 

2013 0.9832 0.2408 <<0.001*** (0.5255, 1.4739) 

2014 0.6273 0.2644 0.0177* (0.1150, 1.1574) 

2015 0.1764 0.2895 0.5424 (-0.3948, 0.7475) 

PIEC:2012 -0.1078 0.7898 0.8914 (-1.7866, 1.4142) 

QUST:2012 2.9758 1.0624 0.0051** (1.2947, 5.9006) 

QUNI:2012 0.3184 0.4088 0.4361 (-0.4826, 1.1248) 

QUFA:2012 2.9906 0.6725 <<0.001*** (1.7962, 4.5131) 

LIST:2012 1.2803 0.5559 0.0213* (0.2302, 2.4362) 

ULAL:2012 -0.6973 0.9187 0.4479 (-2.7481, 1.0426) 

PIEC:2013 0.3958 0.5670 0.4851 (-0.6629, 1.5998) 

QUST:2013 2.0613 1.0506 0.0498* (0.4126, 4.9744) 

QUNI:2013 -0.5123 0.3632 0.1584 (-1.2279, 0.2005) 

QUFA:2013 1.5502 0.6593 0.0187* (0.3823, 3.0520) 

LIST:2013 1.0959 0.4991 0.0281* (0.1708, 2.1574) 

ULAL:2013 0.2119 0.6119 0.7291 (-0.9124, 1.5419) 

PIEC:2014 0.6266 0.6131 0.3068 (-0.5442, 1.9012) 

QUST:2014 2.0699 1.0644 0.0518 (0.3792, 4.9963) 

QUNI:2014 -0.1968 0.3824 0.6069 (-0.9480, 0.5555) 

QUFA:2014 1.3252 0.6949 0.0565 (0.0676, 2.8766) 

LIST:2014 0.9119 0.5297 0.0852 (-0.0814, 2.0235) 

ULAL:2014 0.5096 0.6366 0.4234 (-0.6735, 1.8770) 

PIEC:2015 0.7000 0.6233 0.2615 (-0.4902, 1.9935) 

QUST:2015 2.7504 1.0668 0.0099** (1.0551, 5.6794) 

QUNI:2015 -1.2730 0.5240 0.0151* (-2.3546, 0.2801) 

QUFA:2015 1.3913 0.7247 0.0549 (0.0591, 2.9849) 

LIST:2015 0.1778 0.6146 0.7723 (-1.0231, 1.4218) 

ULAL:2015 -0.2970 0.7693 0.6995 (-1.8496, 1.2556) 

 

Notes: Covariates included species, measurement year, and their interaction. SE refers to 

the standard error and CI refers to the 95% confidence interval for each estimate. Deviance 

and Akaike Information Criterion (AIC) metrics for this model were 3511.6 (on 5192 

degrees of freedom) and 4223, respectively. Species codes are as follows: PITA = Pinus 

taeda, PIEC = Pinus echinata, QUST = Quercus stellata, QUNI = Quercus nigra, QUFA 

= Quercus falcata, LIST = Liquidambar styraciflua, ULAL = Ulmus alata.; *p < 0.05, **p 

< 0.01, ***p < 0.001 
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Table A.2. Coefficient estimates from logistic regression of pest mortality in plots across 

east Texas. Reprinted with permission from Klockow et al., (2018). 

 

Coefficient Estimate SE p-value 95% CI 

Intercept 

(PITA:2011) 
-5.6346 0.1549 <<0.001*** (-5.9482, -5.3403) 

PIEC 1.7164 0.1797 <<0.001*** (1.3564, 2.0627) 

QUST 1.5830 0.1822 <<0.001*** (1.2175, 1.9334) 

QUNI 1.3090 0.1877 <<0.001*** (0.9311, 1.6691) 

QUFA 2.3780 0.1690 <<0.001*** (2.0418, 2.7057) 

LIST 1.1805 0.1621 <<0.001*** (0.8588, 1.4954) 

ULAL 0.7450 0.2968 0.0121* (0.1155, 1.2892) 

2012 -0.1430 0.2113 0.4986 (-0.5659, 0.2652) 

2013 0.4109 0.1664 0.0135* (0.0874, 0.7409) 

2014 0.4837 0.1699 0.0044** (0.1526, 0.8199) 

2015 0.5492 0.1658 0.0009*** (0.2270, 0.8782) 

 

Notes: Covariates included species and measurement year. The interaction between 

species and measurement year did not add significantly to the model (p < 0.05, likelihood 

ratio test). SE refers to the standard error and CI refers to the 95% confidence interval for 

each estimate. Deviance and Akaike Information Criterion (AIC) metrics for this model 

were 2237.7 (on 5192 degrees of freedom) and 2672.4, respectively. Species codes are as 

follows: PITA = Pinus taeda, PIEC = Pinus echinata, QUST = Quercus stellata, QUNI = 

Quercus nigra, QUFA = Quercus falcata, LIST = Liquidambar styraciflua, ULAL = Ulmus 

alata.; *p < 0.05, **p < 0.01, ***p < 0.001 
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Figure A.1. Predicted vs. observed mean annual probability of weather mortality in a plot 

for each species and measurement year across east Texas derived from logistic regression 

results. Vertical and horizontal bars at each point denote standard errors for each estimate. 

The solid black, diagonal line represents a 1:1 line. Species codes are as follows: PITA = 

Pinus taeda, PIEC = Pinus echinata, QUNI = Quercus nigra, QUST = Quercus stellata, 

QUFA = Quercus falcata, LIST = Liquidambar styraciflua, ULAL = Ulmus alata. 

Reprinted with permission from Klockow et al., (2018). 

  



 

174 

 

 
 

Figure A.2. Predicted vs. observed mean annual probability of pest mortality in a plot for 

each species and measurement year across east Texas derived from logistic regression 

results. Vertical and horizontal bars at each point denote standard errors for each estimate. 

The solid black, diagonal line represents a 1:1 line. Species codes are as follows: PITA = 

Pinus taeda, PIEC = Pinus echinata, QUNI = Quercus nigra, QUST = Quercus stellata, 

QUFA = Quercus falcata, LIST = Liquidambar styraciflua, ULAL = Ulmus alata. 

Reprinted with permission from Klockow et al., (2018). 
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APPENDIX B 

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER III 

 

Table B.1. Model results pertaining to pine group mortality rates for each measurement 

period presented as log odds of mortality and converted to probability of mortality. Plot 

RE SD is the estimated standard deviation due to the random effect of plots. Different 

letters next to estimates indicate significant differences (i.e., 95% credible intervals do not 

overlap). The R2 for the mixed predictive assessment was 0.09. Prediction accuracy of live 

and dead trees was 0.999 and 0.132 for observed vs. predicted responses and 0.916 and 

0.097 for replicated vs. predicted responses, respectively. 

 

Pine Group Period 
Mortality 

(Log Odds) 

Mortality 

(Probability) 

Planted 

Loblolly 

Pre 
-5.231a 

(-5.521, -4.954) 

0.00532a 

(0.00399, 0.00701) 

Drought 
-5.138a 

(-5.361, -4.926) 

0.00584a 

(0.00468, 0.00720) 

Naturally-regenerated 

Loblolly 

Pre 
-4.487b 

(-4.679, -4.299) 

0.01113b 

(0.00920, 0.01340) 

Drought 
-4.250bc 

(-4.413, -4.101) 

0.01406bc 

(0.01197, 0.01628) 

Shortleaf 

Pre 
-4.138bc 

(-4.448, -3.847) 

0.01570bc 

(0.01156, 0.02089) 

Drought 
-3.953c 

(-4.196, -3.708) 

0.01884c 

(0.01483, 0.02394) 

Plot RE SD - 
-1.132 

(-1.227, -1.042) 

0.244 

(0.227, 0.261) 
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Figure B.1. Predicted annual mortality probability curves (solid lines) for planted loblolly 

and relative density (RD) with 95% credible intervals (dashed lines). Diameter at breast 

height (DBH) is held constant at merchantable size classes (15 cm = light blue, light 

orange; 25 cm = medium blue, medium orange; and 35 cm = dark blue, dark orange) while 

species dominance is held constant at its median values (~90%, see Table III.1). Dotted 

lines highlight lower (35%) and upper (65%) limits of fully-stocked conditions. 
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Figure B.2. Predicted annual mortality probability curves (solid lines) for naturally-regenerated loblolly and relative density 

(RD) with 95% credible intervals (dashed lines) (blue = pre-drought, orange = drought). Diameter at breast height (DBH) is held 

constant at merchantable size classes (15, 25, and 35 cm) while species dominance is held constant at its median values (~60%, 

see Table III.1). Dotted lines highlight lower (35%) and upper (65%) limits of fully-stocked conditions. 
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APPENDIX C 

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER IV 

 

Table C.1. Summary of parameter estimates from chosen models based on covariates in 

original units (i.e., non-standardized). 

 

Parameter 
Tree-Fall Snag-Fall 

Hardwoods Softwoods Hardwoods Softwoods 

Intercept 0.645 1.667 na na 

DBH -0.025 -0.053 -0.073 -0.102 

Height ns ns ns 0.059 

Plot Density ns -0.001 ns ns 

Decay Class 1 na na 2.788 4.125 

Decay Class 2 na na 3.132 4.143 

Decay Class 3 na na 3.687 4.597 

Decay Class 4 na na 3.890 5.338 

Decay Class 5 na na 5.196 5.374 
 

*na = not applicable to specific model 

*ns = variable tested but no significant effect added to model via likelihood ratio tests (p > 0.05) 
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Figure C.1. Histogram of dead stems in the tree-fall dataset with field-crew-estimated 

year of mortality. 
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Figure C.2. Predicted probability of tree-fall in five years vs. plot live tree density for 

softwoods by decay class. Probabilities were calculated with diameter-at-breast-height 

(DBH) held constant at the median value (solid line), 10th percentile of DBH (short 

dashed line), and 90th percentile of DBH (long dashed line). 
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Figure C.3. Predicted probability of snag-fall in five years vs. snag size for hardwoods 

(solid line) and softwoods (dashed line) by decay class (DC). Predicted probabilities for 

softwood were calculated with tree height held constant at the median value. 
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Figure C.4. Predicted probability of snag-fall in five years vs. stem height for softwoods 

by decay class. Probabilities were calculated with diameter-at-breast-height (DBH) held 

constant at the median value. 
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APPENDIX D 

SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER V 

 

Following scanning of SDT for volume estimation, the same SDT which were 

scanned were subsequently felled by Texas A&M Forest Service personnel such that 

wood samples could be collected for future analyses of wood density and biomass 

estimation. Only 41 of the 49 scanned trees were deemed safe to fell and were 

subsequently sampled for wood discs. SDT were felled just above breast height. 

Between 1-3 wood discs were collected for each SDT depending on the length between 

breast height and a ~10 cm top. All stems had a wood disc cut at ~1.5 m height (just 

above the fell cut point; BASE). A second, top wood disc was cut at ~10 cm diameter for 

stems which were still in tact and tapered to this diameter (TOP). If the distance between 

the base disc and top disc was > 10 m in length, a third wood disc was cut from the mid-

point between the base and top discs (MID). The position of the top and mid-point discs 

were recorded and corrected to height values by adding 1.5 m (height of stem below 

base wood disc) and are presented as ‘Bole Sample Height (m)’ in table D.2. 

After felling, branches were harvested from those SDT which still retained 

branches. Branches were collected from SDT in decay classes 1-3 and split according to 

three different size classes of fine woody debris (FWD) as defined in FIA protocols (i.e., 

<7.62 to ≥2.54 cm (LARGE), <2.54 to ≥0.63 cm (MEDIUM), and <0.63 cm (SMALL) 

diameters). Branches were sampled along the stem where they were still present and 

sufficient to fill up to one large paper grocery bag for each size class which was still 

present along the stem. 
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All wood samples were returned to the laboratory after collection in the field. 

Wood disc sample dimensions were measured immediately prior to placing in the drying 

oven. Specifically, diameters and thicknesses were measured at four approximately 

equidistant locations along the circumference of each end of the discs. The four diameter 

measurements at each end and the four thickness measurements around the 

circumference were averaged to determine mean values for each of the two end 

diameters and overall thickness of each disc. From these mean values, volume of each 

disc was calculated using the formula for a truncated cone and is presented as ‘Bole 

Sample Volume (cm3)’ in table D.2. After measurements were collected for each wood 

disc, the samples were placed in a drying oven at 65°C and weighed periodically until a 

constant mass was reached. The constant oven-dried mass was then recorded and is 

presented as ‘Bole Sample Weight (g)’ in table D.2. Wood density of wood disc samples 

was calculated by dividing Bole Sample Weight (g) by Bole Sample Volume (cm3) and 

is presented as ‘Bole Sample Density (g cm-3)’ in table D.2. 

Branch samples were placed in drying ovens upon arrival in the laboratory and 

dried similarly to wood disc samples. Once a constant mass was reached, this value was 

recorded and is presented as ‘Branch Sample Weight (g)’ in table D.3. Branch volumes 

were determined using volumetric displacement in water following methods outlined in 

(Fasth et al., 2010). Very briefly, each oven-dried sample was soaked in water for 15 

minutes prior to volume displacement measurements. Soaked samples were placed in an 

empty plastic bucket of known volume (i.e., either 2 or 5 gallons) and sealed with a lid. 

A similar bucket of equal volume was filled with water to the top and subsequently 
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siphoned into the bucket containing the branch samples until it was filled to the same 

level. The remaining water in the non-branch sample bucket was weighed and converted 

to volume using the specific gravity of room temperature and atmospheric pressure 

water. The resulting volume was presumed to be the volume of the branch sample. This 

procedure was repeated three times in immediate succession for each branch sample. For 

six branch samples (5 smallest size class and 1 medium size class of FWD), only a small 

amount of sample could be collected resulting in just a few grams of branches (i.e., <40 

g). For these six samples, volume was determined by soaking each sample for 15 

minutes and subsequently placing the soaked sample into a graduated cylinder with 

known volume of water and immersing the branch samples into the cylinder. The 

resulting difference in water volume measurement (after correcting for a lid/bung which 

allowed for complete immersion of the sample) produced the volume of the branch 

sample. This procedure was conducted once for each of the six branch samples. For 

branch samples measured three times, the three branch volume measurements for each 

sample were averaged to determine a mean volume. All branch sample volumes are 

presented as ‘Branch Sample Mean Volume (cm3)’ in table D.3. Wood density of each 

branch sample was subsequently calculated by dividing Branch Sample Weight (g) by 

Branch Sample Mean Volume (cm3) and is presented as ‘Branch Sample Density (g cm-

3)’ in table D.3. 
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Table D.1. Proportion-remaining volume (m3/m3) calculated from TLS-derived volumes 

using 5 mm non-resampled voxels and reference live tree volumes from Gonzalez-

Benecke et al. (2014) (i.e., GB) and Jenkins et al. (2003) (i.e, Jenkins). Theoretical values 

from Domke et al. (2011) (i.e., Domke) are listed for TB material. 

 

 TAS SB TB 

Decay 

Class 
GB Jenkins GB Jenkins GB Jenkins Domke 

1 
1.61 

(0.25) 

1.54 

(0.19) 

1.55 

(0.28) 

1.58 

(0.24) 

3.15 

(0.38) 

1.29 

(0.27) 
1.00 

2 
1.23 

(0.10) 

1.22 

(0.08) 

1.29 

(0.14) 

1.36 

(0.13) 

1.39 

(0.36) 

0.55 

(0.23) 
0.50 

3 
1.12 

(0.12) 

1.14 

(0.08) 

1.21 

(0.13) 

1.30 

(0.10) 

0.92 

(0.35) 

0.36 

(0.18) 
0.20 

4 
0.80 

(0.09) 

0.81 

(0.08) 

0.91 

(0.10) 

0.97 

(0.0999) 

0.32 

(0.24) 

0.14 

(0.12) 
0.10 

5 
0.32 

(0.05) 

0.29 

(0.04) 

0.38 

(0.06) 

0.36 

(0.05) 
0.00 0.00 0.00 
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Table D.2. Bole sample volumes, weights, and calculated wood densities. 

 
Tree ID Decay 

Class 

Bole 

Location 

DBH 

(cm) 

Total 

Tree 

Height 

(m) 

Bole 

Sample 

Height 

(m) 

Bole 

Sample 

Weight 

(g) 

Bole 

Sample 

Volume 

(cm3) 

Bole 

Sample 

Density 

(g cm-3) 

1095 1 BASE 12.5 16.0 1.5 247.4 528.5 0.4681 

1167 1 BASE 15.2 17.6 1.5 569.2 1307.1 0.4355 

1195 1 BASE 15.7 17.4 1.5 502.9 1066.8 0.4714 

1074 1 BASE 16.6 19.6 1.5 486.6 938.2 0.5186 

1207 1 BASE 18.5 17.9 1.5 453.5 1195.1 0.3795 

1062 1 BASE 24.8 22.3 1.5 1210.0 2581.3 0.4688 

1216 1 BASE 34.2 24.7 1.5 3120.0 6672.6 0.4676 

1127 1 BASE 41.2 24.9 1.5 4700.0 11642.1 0.4037 

1123 1 BASE 60.1 26.4 1.5 9080.0 19158.8 0.4739 

1095 1 MID 12.5 16.0 5.0 468.9 1266.8 0.3701 

1167 1 MID 15.2 17.6 8.0 276.7 698.4 0.3962 

1195 1 MID 15.7 17.4 9.0 277.8 598.0 0.4645 

1074 1 MID 16.6 19.6 9.0 228.8 463.0 0.4942 

1207 1 MID 18.5 17.9 5.5 416.3 1232.5 0.3378 

1062 1 MID 24.8 22.3 9.0 669.0 1556.2 0.4299 

1216 1 MID 34.2 24.7 12.0 1740.0 4198.8 0.4144 

1127 1 MID 41.2 24.9 11.5 2220.0 6208.9 0.3575 

1123 1 MID 60.1 26.4 12.5 4280.0 10286.9 0.4161 

1095 1 TOP 12.5 16.0 8.5 362.6 719.5 0.5039 

1167 1 TOP 15.2 17.6 13.0 197.2 469.6 0.4199 

1195 1 TOP 15.7 17.4 13.0 211.5 424.8 0.4979 

1074 1 TOP 16.6 19.6 15.5 720.1 1653.3 0.4356 

1207 1 TOP 18.5 17.9 11.5 369.2 934.9 0.3949 

1062 1 TOP 24.8 22.3 18.0 186.3 536.1 0.3475 

1216 1 TOP 34.2 24.7 23.0 403.2 1128.5 0.3573 

1127 1 TOP 41.2 24.9 22.5 540.8 1480.7 0.3652 

1123 1 TOP 60.1 26.4 27.2 295.1 802.6 0.3677 

1211 2 BASE 12.7 11.0 1.5 526.4 1063.8 0.4948 

1187 2 BASE 17.7 17.5 1.5 880.0 2049.9 0.4293 

1199 2 BASE 18.1 15.6 1.5 611.2 1781.0 0.3432 

1175 2 BASE 20.5 16.5 1.5 1110.0 2451.2 0.4528 

1131 2 BASE 20.6 13.1 1.5 728.1 2290.0 0.3179 

1191 2 BASE 25.4 17.1 1.5 990.0 2544.4 0.3891 

1078 2 BASE 28.4 18.2 1.5 2330.0 7465.8 0.3121 

1018 2 BASE 35.9 19.1 1.5 1670.0 4783.4 0.3491 

1054 2 BASE 47.2 23.3 1.5 5500.0 14168.5 0.3882 

1187 2 MID 17.7 17.5 10.0 368.5 991.3 0.3717 

1199 2 MID 18.1 15.6 8.0 360.2 1141.0 0.3157 

1175 2 MID 20.5 16.5 9.0 667.9 1600.0 0.4174 

1131 2 MID 20.6 13.1 6.5 508.2 1867.4 0.2721 

1191 2 MID 25.4 17.1 7.5 470.0 1563.7 0.3006 

1078 2 MID 28.4 18.2 8.0 693.8 2745.6 0.2527 

1018 2 MID 35.9 19.1 7.0 950.0 3960.7 0.2399 

1054 2 MID 47.2 23.3 12.0 3040.0 8932.6 0.3403 

1211 2 TOP 12.7 11.0 7.0 149.9 476.7 0.3145 

1187 2 TOP 17.7 17.5 16.0 181.5 787.9 0.2304 

1199 2 TOP 18.1 15.6 14.0 219.6 506.0 0.4340 

1175 2 TOP 20.5 16.5 17.0 110.5 497.5 0.2221 

1131 2 TOP 20.6 13.1 13.0 245.3 933.0 0.2629 
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Table D.2. (continued) 

 

Tree ID 
Decay 

Class 

Bole 

Location 

DBH 

(cm) 

Total 

Tree 

Height 

(m) 

Bole 

Sample 

Height 

(m) 

Bole 

Sample 

Weight 

(g) 

Bole 

Sample 

Volume 

(cm3) 

Bole 

Sample 

Density 

(g cm-3) 

1191 2 TOP 25.4 17.1 14.0 183.8 748.7 0.2455 

1078 2 TOP 28.4 18.2 17.5 190.0 774.4 0.2454 

1018 2 TOP 35.9 19.1 14.0 249.7 1110.8 0.2248 

1054 2 TOP 47.2 23.3 21.0 830.0 3765.5 0.2204 

1163 3 BASE 16.6 13.7 1.5 830.0 1503.5 0.5520 

1203 3 BASE 17.3 16.0 1.5 700.2 1553.7 0.4507 

1135 3 BASE 19.1 13.2 1.5 770.0 1607.4 0.4790 

1179 3 BASE 19.8 15.8 1.5 820.0 1925.9 0.4258 

1038 3 BASE 25.6 16.4 1.5 1120.0 3073.0 0.3645 

1058 3 BASE 45.1 14.9 1.5 5740.0 13172.7 0.4357 

1163 3 MID 16.6 13.7 5.0 420.9 1329.8 0.3165 

1203 3 MID 17.3 16.0 10.0 312.5 1029.3 0.3036 

1135 3 MID 19.1 13.2 7.0 408.3 1318.6 0.3097 

1038 3 MID 25.6 16.4 8.0 734.7 2074.4 0.3542 

1058 3 MID 45.1 14.9 8.0 3740.0 10130.2 0.3692 

1163 3 TOP 16.6 13.7 11.0 141.3 396.9 0.3560 

1203 3 TOP 17.3 16.0 18.0 111.8 593.3 0.1884 

1135 3 TOP 19.1 13.2 14.0 150.8 604.9 0.2493 

1179 3 TOP 19.8 15.8 4.0 497.5 1647.8 0.3019 

1038 3 TOP 25.6 16.4 15.5 187.3 676.6 0.2768 

1058 3 TOP 45.1 14.9 11.0 4300.0 13784.3 0.3119 

1147 4 BASE 14.8 3.7 1.5 860.0 2596.1 0.3313 

1171 4 BASE 15.5 3.3 1.5 711.5 1914.2 0.3717 

1087 4 BASE 16.1 11.1 1.5 261.4 917.4 0.2849 

1091 4 BASE 16.7 12.2 1.5 356.9 1151.3 0.3100 

1151 4 BASE 22.1 10.5 1.5 940.0 2333.6 0.4028 

1183 4 BASE 22.1 4.2 1.5 1110.0 2232.4 0.4972 

1103 4 BASE 25.8 13.4 1.5 890.0 3349.6 0.2657 

1155 4 BASE 26.3 9.2 1.5 1790.0 4032.6 0.4439 

1022 4 BASE 26.8 8.2 1.5 1110.0 2863.5 0.3876 

1046 4 BASE 44.7 14.6 1.5 2680.0 7419.4 0.3612 

1087 4 MID 16.1 11.1 6.0 274.0 874.2 0.3134 

1091 4 MID 16.7 12.2 6.0 596.5 2013.2 0.2963 

1151 4 MID 22.1 10.5 5.5 940.0 3155.7 0.2979 

1183 4 MID 22.1 4.2 9.0 644.9 1445.7 0.4461 

1103 4 MID 25.8 13.4 7.1 780.5 3601.2 0.2167 

1046 4 MID 44.7 14.6 7.5 2600.0 6381.6 0.4074 

1171 4 TOP 15.5 3.3 3.3 221.8 1212.7 0.1829 

1087 4 TOP 16.1 11.1 12.0 229.1 832.0 0.2754 

1091 4 TOP 16.7 12.2 12.0 180.0 1139.0 0.1580 

1151 4 TOP 22.1 10.5 11.0 391.0 2264.8 0.1726 

1183 4 TOP 22.1 4.2 15.0 138.9 658.5 0.2109 

1103 4 TOP 25.8 13.4 14.6 436.8 2239.7 0.1950 

1022 4 TOP 26.8 8.2 10.0 486.2 2395.2 0.2030 

1046 4 TOP 44.7 14.6 14.5 1470.0 5673.6 0.2591 

1083 5 BASE 11.9 2.1 1.5 586.8 1816.9 0.3230 

1139 5 BASE 12.3 3.1 1.5 565.7 1788.9 0.3162 

1143 5 BASE 16.5 2.3 1.5 850.0 3006.2 0.2827 

1099 5 BASE 16.7 1.8 1.5 306.0 997.5 0.3068 
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Table D.2 (continued) 

 

Tree ID 
Decay 

Class 

Bole 

Location 

DBH 

(cm) 

Total 

Tree 

Height 

(m) 

Bole 

Sample 

Height 

(m) 

Bole 

Sample 

Weight 

(g) 

Bole 

Sample 

Volume 

(cm3) 

Bole 

Sample 

Density 

(g cm-3) 

1159 5 BASE 21.8 3.0 1.5 1490.0 3803.7 0.3917 

1107 5 BASE 23.7 2.3 1.5 2380.0 6148.8 0.3871 

1034 5 BASE 28.6 1.5 1.5 723.2 3649.0 0.1982 
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Table D.3. Branch sample volumes, weights, and calculated wood densities. 

 

Tree 

ID 

Decay 

Class 

Branch 

Size Class 

DBH 

(cm) 

Total Tree 

Height (m) 

Branch 

Sample 

Weight (g) 

Branch Sample 

Mean Volume 

(cm3) 

Branch Sample 

Density (g cm-3) 

1095 1 LARGE 12.5 16.0 840.0 1960.0 0.4286 

1167 1 LARGE 15.2 17.6 2220.0 5160.0 0.4302 

1195 1 LARGE 15.7 17.4 1451.0 3203.3 0.4530 

1074 1 LARGE 16.6 19.6 2610.0 6396.6 0.4080 

1207 1 LARGE 18.5 17.9 1720.0 4780.0 0.3598 

1062 1 LARGE 24.8 22.3 1350.0 3400.0 0.3971 

1216 1 LARGE 34.2 24.7 2160.0 5676.6 0.3805 

1127 1 LARGE 41.2 24.9 2360.0 6233.3 0.3786 

1123 1 LARGE 60.1 26.4 2250.0 5503.3 0.4088 

1095 1 MEDIUM 12.5 16.0 840.0 1835.3 0.4577 

1167 1 MEDIUM 15.2 17.6 678.4 1392.0 0.4873 

1195 1 MEDIUM 15.7 17.4 1150.0 2308.6 0.4981 

1074 1 MEDIUM 16.6 19.6 520.6 1255.4 0.4147 

1207 1 MEDIUM 18.5 17.9 719.9 1865.4 0.3859 

1062 1 MEDIUM 24.8 22.3 621.8 1485.3 0.4186 

1216 1 MEDIUM 34.2 24.7 738.6 1868.6 0.3953 

1127 1 MEDIUM 41.2 24.9 551.1 1492.0 0.3694 

1123 1 MEDIUM 60.1 26.4 1040.0 2335.3 0.4453 

1095 1 SMALL 12.5 16.0 160.5 355.2 0.4519 

1167 1 SMALL 15.2 17.6 12.6 20.0 0.6300 

1195 1 SMALL 15.7 17.4 186.2 391.9 0.4752 

1074 1 SMALL 16.6 19.6 42.4 113.51 0.3735 

1207 1 SMALL 18.5 17.9 34.4 70.0 0.4914 

1062 1 SMALL 24.8 22.3 96.8 255.2 0.3793 

1216 1 SMALL 34.2 24.7 245.8 581.9 0.4224 

1127 1 SMALL 41.2 24.9 26.5 65.0 0.4077 

1123 1 SMALL 60.1 26.4 138.0 325.2 0.4244 

1211 2 LARGE 12.7 11.0 810.0 3676.6 0.2203 

1187 2 LARGE 17.7 17.5 450.4 1540.0 0.2925 

1199 2 LARGE 18.1 15.6 510.9 1750.0 0.2920 

1175 2 LARGE 20.5 16.5 288.1 1000.0 0.2881 

1131 2 LARGE 20.6 13.1 672.4 2443.3 0.2752 

1191 2 LARGE 25.4 17.1 1023.0 4496.6 0.2275 

1078 2 LARGE 28.4 18.2 810.0 3310.0 0.2447 

1018 2 LARGE 35.9 19.1 1590.0 4763.3 0.3338 

1054 2 LARGE 47.2 23.3 2470.0 7363.3 0.3354 

1211 2 MEDIUM 12.7 11.0 621.2 2215.4 0.2804 

1187 2 MEDIUM 17.7 17.5 434.6 1095.4 0.3968 

1199 2 MEDIUM 18.1 15.6 88.7 348.6 0.2544 

1175 2 MEDIUM 20.5 16.5 153.0 432.0 0.3541 

1131 2 MEDIUM 20.6 13.1 41.7 158.6 0.2629 

1191 2 MEDIUM 25.4 17.1 625.8 2095.2 0.2987 

1078 2 MEDIUM 28.4 18.2 98.7 348.6 0.2831 

1018 2 MEDIUM 35.9 19.1 328.0 912.0 0.3597 

1078 2 SMALL 28.4 18.2 5.0 10.0 0.5000 

1163 3 LARGE 16.6 13.7 536.0 2043.3 0.2623 

1179 3 LARGE 19.8 15.8 344.2 1166.6 0.2950 

1038 3 LARGE 25.6 16.4 495.1 1350.0 0.3667 

1038 3 MEDIUM 25.6 16.4 26.9 95.0 0.2832 
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Figure D.1. Allometric model parameter estimates and 95% confidence intervals for log-

linear relationships of A and B) TAS, C and D) SB, and E and F) TB total and component 

volumes (TAS = total above-stump, SB = stem plus bark, and TB = tops and branches). 

Labels along the y-axes correspond to the parameter estimate for the corresponding label 

where DC# refers to intercepts for decay classes 1-5 and ‘Intercept’ refers to the single, 

common intercept for TAS-DBH2*HT models. 

 


