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ABSTRACT 

 

          The application of biochar soil amendments has been proposed as a strategy of 

 mitigating global carbon emissions and soil organic carbon loss. Biochar can provide  

additional agronomic benefits to cropping systems, including improved crop yield, soil  

water holding capacity, seed germination, cation exchange capacity (CEC), and soil pH. 

Commercial development of biochar amendments has been limited; however, their 

significant potential impacts emphasize the need for further research. In order to  

maximize beneficial effects of biochar amendments towards the inventory, increase, and  

management of soil organic carbon (SOC) pools, non-destructive methods to identify and 

quantify belowground carbon are necessary. Ground penetrating radar (GPR) is  

potentially one such tool. GPR has been well characterized across geology, archeology, 

engineering, and military applications. While it has been predominantly utilized to detect 

relatively large objects such as rocks, tree roots, groundwater, ice, and peat soils, the 

purpose of this study is to quantify comparatively smaller, particulate sources of soil  

organic carbon. This research uses three different materials as different carbon source,  

biochar, graphite, and activated carbon. Mixing with sand, there are twelve treatments in  

total. GPR attribute analyses, including Pearson correlation, Spearman rank correlation, 

and naïve Bayes predictive models, were utilized in lieu of visualization methods due to  
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the minute sized carbon particles of interest.  Significant correlation coefficients between 

attributes and carbon content were found, and the correlation between attributes and  

moisture level was also significant. The predictive model was able to identify differences 

in both carbon content and carbon structure. 
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CHAPTER I  

INTRODUCTION  

 

It has been decades since climate change became of great concern and started 

debates (Plass, 1956). Climate change can be described as a phenomenon with 

significant potential impacts on global temperature, polar regions, forests, and freshwater 

resources. It similarly disturbs agriculture, including crop productivity, soil health, and 

water resources (Howden et al., 2007, Piao et al., 2010). The resulting risk of decreasing 

crop production further drives the need for increased land use and soil fertilization; 

however, this often occurs at the sacrifice of the soil’s organic carbon (SOC). This cycle 

consequently leads to significant SOC loss. With the ability of SOC carbon sequestration 

and greenhouse gas reduction, loss of SOC eventually leads to less mitigating climate 

change potential (Batjes,1998; Schimel et al., 2001; Lehmann et al., 2006; Singh et al., 

2010). This research addresses the importance of SOC and investigate novel methods to 

detect and quantify the organic carbon in a non-destructive way. Biochar will be utilized 

to simulate SOC.  Biochar has potential to increase soil organic carbon stocks as a soil 

amendment (Sombroek, 1993; Glaser et al., 2001; Lehmann et al., 2006; Fowles, 2007; 

Lehmann, 2007; Laird, 2008; Woolf et al., 2010). Upon detecting and quantifying 

biochar, results from this study can be extended to further research on soil carbon 

directly. Traditionally, soil carbon has been quantified by randomly taking core samples 

from the field to the lab and then analyzing their composition. One of the main goals of 

the proposed research is to quantify soil carbon without disturbing the soil.  Novel, non-
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destructive approaches such as ground penetrating radar (GPR) could provide such a 

tool. Inspired by the study of seismology, GPR can be referred to as radio echo sound 

that projects pulses of electromagnetic signals into the ground and then receives and 

records the signals sent back (Jol, 2007). By analyzing many different characteristics of 

the signal, GPR has been widely applied to explore belowground structures and features 

involving different fields of study. The most common application is to detect 

belowground objects such as rocks, buried ancient sites, roots, and underground storage 

tanks (Butnor et al., 2001; Gader et al., 2001; Stokes et al., 2002; Nicolotti et al., 

2003; Cassidy and Jol, 2008; Le Gall et al., 2008; Ng et al., 2008, Dogan et al., 2016). 

Compared to these applications, fewer studies have investigated smaller subjects such as 

soil organic matter. Therefore, this research explores the possibility of applying GPR on 

quantifying carbon in biochar amended soil with activated carbon and graphite as 

comparative checks possessing structural differences. The model developed will have 

potential for mapping global soil organic carbon. 
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CHAPTER II  

LITERATURE REVIEW 

Significant Role of Carbon 

Severe Soil Organic Carbon Pool Loss 

The transition of global land resources into managed agricultural systems has 

greatly changed the terrestrial carbon balance, and this phenomenon has been 

accelerated in recent decades because of the increase in human population and the 

increase demand for food, feed, fiber, and fuel (Schimel et al., 2001; Amundson et al., 

2015; Montanarella et al., 2016). Land use changes into cropland and grassland systems 

have resulted in a significant loss of SOC, which is the dominant component of soil 

organic matter (SOM). Prior to the Industrial Revolution (ca. 1750), global CO2 

emissions were estimated to be 0.011 Gt (Gt = 1 x 1012 kg = 1trillion kilograms) per year 

(Boden et al., 2011). With the rapid increase of industrial scale fossil-fuel utilization, 

annual CO2 emissions increased to 0.20 Gt by 1850 and to 1.96 Gt by 1900 (Li, 2000; 

Boden et al., 2011). The CO2 emission rate has continued to increase, reaching 24.75 Gt 

in 2000 and 34.84 Gt in 2011(Herzog, 2001; Boden et al., 2011). An estimated 30 to 60 

Pg (Pg = 1 x 1012 kg = 1 trillion metric tons) of SOC has been lost over the past 100 

years (Scharpenseel and Becker-Heidmann, 1994; Lal, 2001), and cumulative historic 

SOC losses of about 230 Pg have been reported (Lal, 2001; Lal, 2011). It has been 

proposed that the reversal of this trend and the future increase of soil carbon stocks can 

significantly benefit terrestrial ecosystems through carbon sequestration and greenhouse 
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gas reduction (Batjes,1998; Schimel et al., 2001; Lehmann et al., 2006; Singh et al., 

2010). 

Strategies to Increase Soil Organic Carbon 

          Due to the importance of SOC in the carbon cycle and its specific capacity for 

CO2 sequestration, novel strategies for increasing the soil organic carbon pool are critical 

(Post and Kwon, 2000; West and Post, 2002; Schlesinger, 2005; De Deyn et al., 2008; 

Crowther et al., 2016). Incorporation of stable, recalcitrant carbon into soils via biochar 

amendments is one potential approach. In one example, 10 t ha-1 and 40 t ha-1 biochar 

amendments applied to rice demonstrated no significant difference in carbon intensity of 

rice production (GHGI) and global warming potential (GWP). Both overall GWP and 

GHGI decreased from 18.7% to 7.1% and 34.8% to 12.4%, respectively, indicating the 

potential of biochar amendment for reducing global warming (Zhang et al., 2012). In 

addition, being highly recalcitrant to decomposition, biochar can significantly slow the 

rate at which photosynthetically fixed carbon (C) is returned to the atmosphere 

(Sombroek, 1993; Glaser et al., 2001; Lehmann et al., 2006; Fowles, 2007; Lehmann, 

2007; Laird, 2008; Woolf et al., 2010). Biochar can further offset other greenhouse gases 

including nitrous oxide and methane (Rondon et al., 2005; Clough et al., 2010; van 

Zwieten et al., 2010; Shackley, 2011). Biochar amendments also have been shown to 

improve plant growth, increase soil water holding capacity, increase nutrient retention 

and availability, and reduce pesticide run-off (Gaunt and Lehmann, 2008; Lenton et al., 

2009; Shackley, 2011; Yu et al., 2017). 
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Biochar Production 

        Pyrolysis, the thermal decomposition of organic materials at elevated temperatures 

in the absence of oxygen, produces biochar and other byproducts (Shackley, 2011). This 

process can be divided into two major types, fast pyrolysis and slow pyrolysis.  

However, these two categories have no precise definitions and are somewhat arbitrary 

(Mohan et al., 2006; Woolf et al., 2010). Slow pyrolysis is applied at low to moderate 

temperatures around 300°C and includes relatively long reaction periods up to several 

days (Onay and Kockar, 2003). The two products produced under these conditions are 

biochar and pyrolysis gas, which includes high yields of char (as much as 40 wt-%) but 

also a relatively low-value pyrolysis gas. In contrast, fast pyrolysis involves higher 

temperatures of approximately 500°C or higher and incubation times as short as 1 to 5 

seconds (Bridgwater et al., 1999). Fast pyrolysis can maximize the production of bio-oil 

with biochar and result in higher energy value products, but the process also has a higher 

energy investment cost (Brown and Brown, 2013). Biochar, made by slow and fast 

pyrolysis, have different physicochemical qualities which provide differentiated effects 

upon the soil environment when applied (Bruun et al., 2012). 

Non-destructive Soil Carbon Assessment 

      To maximize the beneficial effects of biochar amendment applications towards 

global SOC pools, a rapid, non-destructive and inexpensive method to detect and 

quantify belowground carbon is needed. GPR has been proposed as such a tool. In 

contrast, conventional means to detect and quantify soil carbon involve coring, probing, 

and diverse chemical determination assays. During the process of collecting and 
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handling samples, oxidation, volatilization, microbial degradation, and other sampling 

biases often occur (Schumacher, 2002; Hammes et al., 2007; McClellan et al., 2017). 

Previous applications of GPR across diverse scientific fields have focused on relatively 

large-scale objects such as ancient cites, land mines, rocks, tree roots, ice, and 

groundwater (Butnor et al., 2001; Gader et al., 2001; Stokes et al., 2002; Nicolotti et al., 

2003; Cassidy and Jol, 2008; Le Gall et al., 2008; Ng et al., 2008, Dogan et al., 2016). 

Former GPR Application 

       It has been proposed that soil organic carbon density can be estimated using GPR 

(Li et al., 2015). Depending on the objectives of previous studies, GPR has been utilized 

with varied operating conditions. For instance, as the size of the targeted subject-matter 

decreases, the frequency of GPR required for detection has tended to increase (Benedetto 

and Tosti, 2013; Feng et al., 2015; Li et al., 2015; McClellan et al., 2017). Other 

research has further shown that water impacts dielectric properties and increasing water 

content results in decreasing radar velocity and increasing attenuation (Topp et al., 1980; 

Olhoeft, 1987; Li et al., 2015).  Despite these challenges, researchers have successfully 

used GPR to estimate carbon stocks in wetlands (McClellan et al., 2017). Peat soils also 

have been evaluated with GPR for morphology, volume, and thickness (Parsekian et al., 

2012; Loisel et al., 2013). These examples provide a rationale and framework to develop 

novel GPR methods for biochar and SOC quantification across major soil types 

worldwide (Jol and Smith, 1995; Iryanti, 2013; Comas et al., 2015).  
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Promising Strategies Considering Material Identification  

          Much of the previous GPR research has focused on material identification 

spanning civil engineering and archaeology (El-Mahallawy and Hashim, 2013; Solla, 

2014; Anbazhagan et al., 2016). Relying on time and frequency domain of the signals, 

wavelet transformation can visualize signal changes and further identify materials. Since 

in this study, only silicon sand and different carbon sources would be the materials, 

some methodologies have the potential to analyze the GPR data collected. However, the 

soil organic carbon particle size is vastly smaller than typical experimental objects 

targeted in civil engineering and archaeological studies. Visualization of such minute 

objects is debatable; therefore, a quantification tool is needed (Butnor et al., 2001; Gader 

et al., 2001; Stokes et al., 2002; Nicolotti et al., 2003; Cassidy and Jol, 2008; Le Gall et 

al., 2008; Ng et al., 2008, Dogan et al., 2016). Wavelet analysis and attribute analysis 

were selected to analyze collected data, and a naïve Bayes predictive model was applied 

to train collected data. 

Wavelet Analysis 

          Wavelet analysis is based on signal data collected by a variety of sensors, and for 

GPR, it is effective at filtering noise and analyzing signals (Lee and Yamamoto, 1994; 

Zhu et al, 2009; Javadi and Ghasemzadeh, 2017). With wavelet transformation of 

signals, their time and frequency domain change corresponding to the scale chosen. With 

control of the scales, different scales of wavelets will pass through the data collected 

while generating a coefficient (Lee and Yamamoto, 1994). There are two types of 

wavelet transforms, continuous wavelet transforms and discrete wavelet transform. 
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Continuous wavelet transform allows the translating and scale parameter of wavelets to 

vary continuously, and discrete wavelet transform allows wavelets vary discretely (Heil, 

1989). Application of wavelet analysis on GPR data and plotting time-frequency domain 

can visualize the signal change. By changing the scale of the wavelet, different time-

frequency plot can be generated (Lee and Yamamoto, 1994). With visualization of the 

signal change and the coefficient generated by different scale, different carbon 

percentages could possibly be visualized. 

Attribute Analysis 

          Attribute analysis was introduced by the seismic industry whereby they displayed 

certain functions of the GPR signal reflection and then applied the signal to color 

rendering (Jol, 2007). Extracting certain features from the received signal, multi-attribute 

analysis and multi-dimensional attribute analysis provide tools to better interpret 2-D 

and 3-D GPR data (Marfurt et al., 1998; Schmalz et al., 2002; Gao, 2003; Chopra and 

Alexeev, 2006; Cassidy, 2007; Wenke Zhao, 2012). An entire data set is called a B-scan, 

and the columns of the data is called an A-scan. In some cases, an A-scan also is referred 

to as a trace. Generally, analysis conducted on A-scan wise can be referred as attribute 

analysis. Some attributes such as instantaneous amplitude, phase, and frequency, were 

initially used in seismology (Chen and Sidney, 1997; Yilmaz, 2001). Moreover, when 

applying attribute analysis on GPR data, more attributes such as relative reflectivity, 

phase relationships, complex trace attributes, and amplitude variation with offset (AVO) 

are introduced to fit the character of GPR data (Annan, 1993; Chopra and Marfurt, 2007; 

Morris and Glisic, 2017). Numerous research studies have successfully applied attribute 
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analysis. However, many of the studies were conducted on relatively homogeneous 

environments (Falak, 1998; Goodman et al., 1998; Lui and Oristaglio, 1998; De´robert 

and Abraham, 2000; McClymont et al., 2008; Bradford et al., 2010; Forte et al., 2012). 

GPR data also can provide some information for material properties like moisture 

content, and some empirical or theoretical models were previously developed (Brovelli 

and Cassiani, 1980; Kowalsky et al., 2005; Van Dam, 2014). Attribute analysis is a good 

quantification method targeting subtle object GPR frequency change such as organic 

carbon because its size is difficult to visualize using GPR.  For this study, maximum 

amplitude, intensity, energy, and area of the GPR data on A-scan base were chosen to 

conduct attribute analysis. 

Naïve Bayes Predictive Model 

          Naïve Bayes classifier applies Bayes’ theorem with the assumption that all 

features are strongly independent (McCallum and Nigam, 1998; Rennie et al., 2003). 

There was some discussion over the assumption of independence, and given that features 

are computed individually, they should not cause multi-collinearity (McCallum and 

Nigam, 1998; Rish, 2001). It is a simple probabilistic classifier applied in predictive 

model or machine learning (Pang et al., 2002). Assigning training and validation data 

sets, a predictive model could predict soil carbon content using GPR data. 
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Objectives 

Objective 1  Use ground penetrating radar to detect underground biochar amended soil 

carbon content. 

Objective 2  Compare performance of GPR across materials with different structures 

of carbon. 

Objective 3  Compare performance of GPR across different soil moisture levels. 

Objective 4  Develop novel GPR analysis methods to quantify carbon. 
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CHAPTER III  

MATERIALS AND METHODS 

Material Preparation 

          Biochar was produced from torrefied napiergrass (Pennisetum purpureum 

Schumach) biomass. Another carbon source was coconut (Cocos nucifera L.) shell 

granular activated carbon (psc 1240, Prominent Systems INC). Activated carbon and 

graphite were included pure and mixed 1:1 with sand. Biochar: sand treatments were 

prepared with 8 biochar percentages, 0%, 2%, 4%, 6%, 8%, 10%, 50%, and 100%. 

Percentages less than 10% were included because they represent approximately the 

average belowground organic carbon percentages, and 50% and 100% were chosen to 

compare the GPR performance on aggregated carbon with activated carbon and graphite. 

Different percentage mixtures were made by mixing the corresponding amount of 

materials with pure sand by weight and then filling the mixture into sample containers. 

Each percentage level was called a treatment; therefore, there were 12 treatments in 

total, including biochar, activated carbon, and graphite. Three replications of each 

treatment were included.  

      The sample containers were silicon sandwich bags 19.05 cm x 17.78 cm x 2.54 cm. 

A hole was punched in the bottom left corner of each bag to allow a 6 cm soft silicon 

tube to be attached and a silicon ring to secure the tube. This modification provided 

access to add water without opening the bag multiple times. The volume of the sample 

container was 580 ml, so different moisture levels could be measured. Adding an 

additional 58 ml of water created a 10% moisture level, and adding 58 ml more water 
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creates a 20% moisture level. A water holding capacity experiment was performed to 

determine the maximum moisture level to be added to all the samples during data 

collection. 

Water Holding Capacity 

       The water holding capacity experiment used the same material made during material 

preparation described above. Three replications in completely randomized design were 

performed. Twelve flasks, 12 Whatman ® filter papers with a 12 cm diameter, and 12 

glass funnels were the primary equipment used. The first step was to dampen the folded 

conical filter paper with distilled water and record the net weight. Next, put the dampen 

filter paper into the funnel and place the base of the funnel into a flask. Then add 

approximately 10 g of material on the filter paper-funnel. The last step was to pour 100 

ml of distilled water into the funnel and let the water drip for 24 hours. After 24 hours, 

the total weight of the filter paper, material, and water was determined. Since the filter 

paper and material weight had been recorded, the amount of water in the material was 

determined by subtracting the total weight by the previously determined weight of the 

moistened filter paper and material. The water holding capacity was estimated using the 

formula:  

𝑀 = 𝑊$ −𝑊& −𝑊' 

Where M denotes the water weight held by the material, and WT denotes the total weight 

of material, filter paper and water after 24 hours, and WP denotes the weight of dampen 

filter paper, and WM denotes the weight of the dry material. Based on the average water 

holding capacity of each treatment, moisture levels for testing were determined. 
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On-Site GPR Data Collection  

  Data collection was conducted at the Texas A&M University farm on a 20 m x 

2.75 m x 1.5 m aboveground trough filled with dry pure garden sand. Three replications 

were assigned in a randomized complete block design. Every treatment was buried under 

100% sand at a depth of 5.08 cm and spaced 25.4 cm apart along a single, medial line in 

the trough. To investigate radar orientation, two different angles (vertical 0° and off-axis 

15°) of seven channels were applied under every moisture level. Each angle was scanned 

three times. The GPR transmitter frequency was 1.8 GHz. Within the radar antenna were 

four transmitters and four signal receivers coded into seven channels, and each channel 

will generate one B scan after one scan. Transmitter 1 and receiver 1 consisted of 

channel 1, transmitter 2 and receiver 1 consisted of channel 2, transmitter 2 and receiver 

2 consisted of channel 3, transmitter 3 and receiver 2 consisted of channel 4, transmitter 

3 and receiver 3 consisted of channel 5, transmitter 4 and receiver 3 consisted of channel 

6, and transmitter 4 and receiver 4 consisted of channel 7. 

Data Analysis 

Pre-processing the Data 

          The raw data filename extension was transferred from private type (.dt) into open 

source type (.dat) by Matlab® script. Raw data was further transformed into numpy 

array, which was a grid of stored values, and the data was ready for pre-processing. GPR 

data pre-processing steps included surface removal, fast forward transfer bandpass 

filtering, and change the signal into voltage. Surface removal was conducted by 

implemented Python surface detection function, which removes the noise of the data 
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above the sand surface, and then subset the bottom of B-scan by adding 50 rows from 

the sand surface. Bandpass function was conducted after the data passed the surface 

removal, and the forward transfer bandpass filter set the lower band frequency at 1.0 

GHz and higher band frequency at 3.2 GHz. The bandpass filter blocked signals out of 

the selected frequency range. In this study, the signal returned ranged from 0.9 GHz and 

3.6 GHz because the central frequency of the radar was 1.8 GHz. Data signals were 

further transferred to voltage and then passed through attribute analysis, which was 

based on analyzing attributes of the entire A-scans.   

Wavelet Analysis 

          The continuous wavelets analysis was conducted on the data. Wavelet analysis 

was conducted on a script based on Python v. 3.6.5 (Python Software Foundation, 2018), 

and the script was implemented by research associate Iliyana Debrova. There were 150 

scales (from one to 150) that were passed to PyWavelets (Lee et al., 2018) package. 

Each treatment would have 150 wavelet coefficients corresponding to the 150 scales, 

and the p-value for each coefficient also was calculated.  

Attribute Analysis  

          After pre-processing, the attribute analysis was performed in a Python script that I 

developed, and the maximum amplitude, intensity, energy, and area were calculated 

based on these self-written functions. All of the attributes were transformations of the 

signals’ amplitude on A-scan wise. Maximum amplitude was estimated by finding the 

maximum value of the A-scan amplitude. Intensity was calculated by finding the 

maximum value of the squared amplitude on A-scan while energy was computed by 
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finding the maximum value of the integrated amplitude on A-scan. Lastly, area was 

estimated by finding the maximum value of the integrated squared amplitude. These 

estimated values formed a subset with specific A-scans corresponding with the buried 

treatments. 

           After completing this workflow, the dataset was exported to spreadsheet for 

statistical analyses. All statistical analyses were conducted using RStudio v.3.5.2 

(RStudio team, 2016). 

Statistical Analyses 

          Differences between the seven channels, antenna angles, moisture levels, and 

treatments were analyzed based on the attributes. In addition, a naïve Bayes predictive 

model was trained and validated based on the entire data set. To determine the 

performance of the seven channels, analysis of variance (ANOVA) was first conducted, 

then Tukey’s HSD test was conducted when the p-value of ANOVA test was significant. 

The Boxplots of the channels against each attribute was performed to visualize the 

differences of the seven channels. ANOVA and boxplots were also performed to 

determine antenna angle difference. The ANOVA and Spearman rank correlation test 

were performed to obtain the moisture level differences. As for treatment differences, 

the ANOVA, Tukey’s HSD test, and Pearson correlation test were conducted. All 

analyses were completed on RStudio v.3.5.2, and naïve Bayes predictive model was 

performed on JMP Pro v. 14.0.0 (SAS Institute, 2019). 
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CHAPTER IV  

RESULTS AND DISCUSSIONS 

Water Holding Capacity Experiment 

The 12 treatments had variable water holding capacity (Table 1). Only three moisture 

levels (0%,10%, and 20% percent) were selected because each treatment held different water 

holding capacity. The 100% biochar held as much as 380% water on average, while 100% 

graphite held only 10% of water from its weight. With 16.72% and 11.03% water holding 

capacity at 50% graphite and 100% graphite, respectively, the moisture level of the treatment 

should not reach over 20%. Thus, only 10% and 20% of moisture level were selected based on 

the variation of water holding capacity. Adding more water can only cause water sinking under 

the sample container.  
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Table 1. Mean water holding capacity of 12 treatments. 
Treatment Replication 1 Replication 2 Replication 3 Mean  (%) 

0% biochar 9.95% 24.11% 17.34% 17.13% 

2% biochar 30.19% 21.42% 39.32% 30.31% 

4% biochar 40.81% 40.81% 45.59% 42.40% 

6% biochar 36.72% 43.77% 39.77% 40.09% 

8% biochar 44.89% 44.47% 46.10% 45.15% 

10% biochar 75.51% 62.58% 72.22% 70.10% 

50% biochar 211.47% 209.62% 214.63% 211.91% 

100% biochar 372.97% 388.53% 384.32% 381.94% 

50% activated carbon 82.13% 70.77% 70.10% 74.33% 

100% activated carbon 110.17% 113.79% 104.68% 109.55% 

50% graphite 20.59% 6.26% 23.31% 16.72% 

100% graphite 5.52% 17.51% 10.07% 11.03% 

 

Wavelet Analysis 

According to the p-value calculated for each wavelet coefficient, no significant 

wavelet coefficients were found on the entire data set. This indicates that none of the 150 

wavelet length scales were able to match the size of the carbon. 

Attribute Analysis 

Channel Differences 

There were 3,868 samples collected and these were used in the analysis.  The 

ANOVA for four attributes in seven channels showed that, the p-values of their channel 

means were significantly different (Table 2), which indicates that some channels might 
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be more useful than other channels. The p-values of ANOVA for all the attributes 

showed significance, indicating that the attributes have the potential to correlate with 

carbon content. 

Table 2. Summary ANOVA tests across channel for all attributes. 
Source DF Sum Sq Mean Sq F-value Pr(>F) 

Maximum 
amplitude 

Degree 6 130 22 82 3.70e-97*** 
Residuals 3900 1000 0.27   

Intensity Degree 6 160 27 79 6.20e-94*** 
Residuals 3900 1300 0.34   

Energy Degree 6 9300 1600 66 6.50e-78*** 
Residuals 3900 92000 24   

Area Degree 6 5600 930 170 2.40e-192*** 
Residuals 3900 21000 5.5   

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
       

          From the demonstration of the antenna (Figures 1and 2), seven channels were 

coded and combined by four transmitters and four receivers. The broader channels were 

closest to the antenna container edge; therefore, the signals were affected the and more 

signal noise was greater than the middle channels. Outlier count with three interquartile 

range (Table 3) and boxplots of the attributes distribution across seven channels (Figures 

3-6) showed channels 1, 6 and 7 were the poorest performers. Channel 6 data was 

decided to be kept because it was in the middle of the antenna, so less noise was 

generated than channel 1 and 7, and exclude another channel would reduce sample size 

more significantly. Because channel 1 and channel 7 collected less informative data, and 

their border physical composition, their data were excluded from the entire dataset. All 

of the following analyses were conducted using only channels 2, 3, 4, 5, and 6.  
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Table 3. Outlier count with three interquartile range for each antenna channel with 
all attributes 
 Channel1 Channel 

2 
Channel 
3 

Channel 
4 

Channel 
5 

Channel 
6 

Channel 
7 

Maximum 
Amplitude 

0 0 0 0 0 1 0 

Intensity 
 

3 0 1 4 3 9 12 

Energy 
 

5 1 2 2 4 6 14 

Area 
 

1 0 0 0 0 2 2 

 

 

 

Figure 1. Internal transmitters and receivers of one antenna on degree 0. Orange 

triangle denotes transmitter; blue rectangle denotes receiver. 
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Figure 2. Internal transmitters and receivers of one antenna on degree 15. Orange 

triangle denotes transmitter; blue rectangle denotes receiver. 
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Figure 3. Boxplot of treatment maximum amplitude distribution across seven 

channels at three moisture levels with three interquartile range. 
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Figure 4. Boxplot of treatment intensity distribution across seven channels at three 

moisture levels with three interquartile range.  
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Figure 5. Boxplot of treatment energy distribution across seven channels at three 

moisture levels with three interquartile range.  

 

 

Figure 6. Boxplot of treatment area distribution across seven channels at three 

moisture levels with three interquartile range.  
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Antenna Angle  

          The data sets were divided into two groups. One was collected at degree 0 
antenna angle, and the other was collected at the degree 15 antenna angle. Running 
an ANOVA between the two groups with four attributes individually, maximum 
amplitude, energy, and intensity showed significant mean differences for antenna 
angle. Mean difference of treatment area, in contrast, showed no significant 
differences between the two antenna angles (Table 4). 
 

Table 4. Summary of the ANOVA tests of the mean attribute differences across 
antennae angle for all attributes. 
  

Source DF Sum Sq Mean Sq F-value Pr(>F) 
Maximum 
amplitude 

Antenna 1 23 23 120 2.50e-28*** 
Residuals 2800 500 0.18   

Intensity Antenna 1 21 21 150 8.00e-34*** 
Residuals 2800 380 0.14   

Energy Antenna 1 1600 1600 140 2.70e-32*** 
Residuals 2800 31000 11   

Area Antenna 1 10 10 1.7 2.00e-1 
Residuals 2800 17000 6.2   

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 

          In the boxplots of the attributes across different antenna angles with three moisture 

levels (Figures 7-10), showed the maximum amplitude for 0 degree was higher than the 

degree 15 for all three moisture levels, and intensity and energy showed the same trend. 

With higher moisture level, the mean maximum amplitude, intensity and energy 

increased in both angles. In comparing the area under two angles (0° and 15°), at 0% and 

10% moisture levels, the mean of the area for degree 15 was higher than the 0 degree 

and at 20% moisture level, the mean of area for degree 15 was lower than 0 degree. The 

ANOVA test showed non-significant p-value, indicating that the degree 15 and degree 0 

of treatment area were statistically the same. This maybe caused by the nature of the area 
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since it was calculated by integrating the squared amplitude and the estimated maximum 

area over the trace.  

 

Figure 7. Boxplot of maximum amplitude distribution across 2 antenna angles at 

three moisture levels.  
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Figure 8. Boxplot of intensity distribution across 2 antenna angles at three moisture 

levels.  
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Figure 9. Boxplot of energy distribution across 2 antenna angles at three moisture 

levels.  
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Figure 10. Boxplot of area distribution across 2 antenna angles at three moisture 

levels.  

Moisture Levels  

          The mean differences for moisture levels were significant (Table 5). This indicates 

that the variance in the attributes can be used to built a correlation between moisture 

level and the four attributes individually.  
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Table 5. Summary of ANOVA tests of the mean attribute differences across 
moisture levels for all attributes. 
  

Source DF Sum Sq Mean Sq F-value Pr(>F) 
Maximum 
amplitude 

Moisture 2 17.2 8.581 46.53 <2e-16*** 
Residuals 2764 509.8 0.184   

Intensity Moisture 2 8.7 4.355 30.74 6.28e-14*** 
Residuals 2764 391.6 0.142   

Energy Moisture 2 493 240.60 21.4 5.97e-10*** 
Residuals 2764 31846 11.52   

Area Moisture 2 870 435.1 74.02 <2e-16*** 
Residuals 2764 16245 5.9   

 Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 
          Since moisture level was a categorical variable and attributes were continuous 

variables, Spearman rank correlation analysis was conducted. Spearman rank correlation 

coefficient assessed the relationship between two variables using a monotonic function.     

The Spearman correlation plots (Figures 11-14), showed the direction of association 

between the moisture level and attributes. With a positive correlation coefficient, the 

attribute increased when the moisture level increased. When the attribute and moisture 

level associated monotonically, the coefficient became 1. All the coefficients were 

positive but generally low, and all the p-values were significant. The correlation 

coefficients were low because the data was derived from 12 treatments for each moisture 

level. The upper bar plot was the distribution of moisture levels, and the bar plot on the 

right is the distribution of the attributes. Therefore, for all attributes, they increased when 

the moisture level increased, which indicates that GPR is performing better at a higher 

moisture level. This can be explained by carbon aggregation. Since water and carbon 
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aggregates, the target object became larger at higher moisture level, which made it easier 

for GPR to detect. 

 

 

Figure 11. Spearman correlation plot of treatment moisture level with maximum 

amplitude.  
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Figure 12. Spearman correlation plot of treatment moisture level with intensity.  
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Figure 13. Spearman correlation plot of treatment moisture level with energy.  
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Figure 14. Spearman correlation plot of treatment moisture level with area.  

 

Treatment Differences 

          All the treatments represented different percentages of carbon. It has 55%, 100%, 

and 80% carbon for pure biochar, pure graphite, and activated carbon, respectively. 

There were significant differences in the ANOVA tests for all the attributes across all the 

treatments (Table 6). Pearson correlation analysis indicated very limited relationships 

between treatments and attributes.  
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Table 6. Summary of the ANOVA tests of the mean attribute differences across 
treatments for all attributes.  
 

Source DF Sum Sq Mean Sq F-value Pr(>F) 
Maximum 
amplitude 

Treatments 11 37.6 3.419 19.25 <2e-16*** 
Residuals 2755 489.3 0.178   

Intensity Treatments 11 26.4 2.3996 17.68 <2e-16*** 
Residuals 2755 373.9 0.1357   

Energy Treatments 11 2894 263.13 24.62 <2e-16*** 
Residuals 2755 29445 10.69   

Area Treatments 11 1471 133.74 23.55 <2e-16*** 
Residuals 2755 15644 5.68   

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 

          The correlation coefficients between attributes and all treatments were non-

significant except for area (Table 7) which had a negative correlation coefficient of -

0.0815. This indicated the area decreased when the carbon content increased., This 

correlation is very small, but sub-group, the treatment might return higher correlation. 

 
Table 7. Pearson correlation coefficient between attributes and all treatments.  

 Pearson correlation coefficient P-value 
Maximum amplitude -0.0121 0.5238 
Intensity -0.0063 0.7407 
Energy 0.0140 0.4628 
Area -0.0815 1.79e-05*** 

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 

          To determine which mean treatment was significantly different from another 

treatment, Tukey’s HSD test was completed (Tables 8-11).  Distinct groupings were 

noted in the series of tables. For example, 50% and 100% graphite, and pure sand were 

grouped together for all the attributes. For maximum amplitude, 50% and 100% 
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activated carbon, and 2%, 6%, 8%, and 50% biochar were grouped while for intensity, 

50% and 100% activated carbon, and 2%, 6%, 8%, and 50% biochar were grouped. For 

energy, 50% and 100% activated carbon and 2% and 50% biochar were grouped. For 

area, 50% and100% activated carbon and 2%, 6%, 8%, 50%, and 100% biochar were 

grouped. Moreover, 50% and 100% activated carbon with pure sand were grouped and 

all percentages of biochar with pure sand were grouped as well.  
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Table 8. Tukey’s HSD test results for maximum amplitude across each treatment.  

 

Ordered Differences Report
Level
8% Biochar
8% Biochar
8% Biochar
8% Biochar
100% Graphite
2% Biochar
100% Graphite
2% Biochar
50% Biochar
8% Biochar
8% Biochar
100% Graphite
50% Biochar
2% Biochar
100% Graphite
6% Biochar
8% Biochar
2% Biochar
50% Biochar
6% Biochar
50% Biochar
100% Graphite
100% Graphite
2% Biochar
4% Biochar
8% Biochar
6% Biochar
2% Biochar
4% Biochar
50% Biochar
6% Biochar
100% Graphite
50% Graphite
50% Biochar
2% Biochar
100% Biochar
8% Biochar
4% Biochar
50% Graphite
6% Biochar
100% Biochar
50% Biochar
8% Biochar
4% Biochar
6% Biochar
100% Graphite
8% Biochar
50% Graphite
50% Activated C
2% Biochar
100% Biochar
50% Graphite
100% Activated C
50% Activated C
6% Biochar
4% Biochar
50% Biochar
100% Biochar
100% Graphite
4% Biochar
100% Activated C
2% Biochar
0% Biochar
50% Activated C
100% Graphite
50% Graphite

- Level
10% Biochar
0% Biochar
100% Activated C
50% Activated C
10% Biochar
10% Biochar
0% Biochar
0% Biochar
10% Biochar
100% Biochar
50% Graphite
100% Activated C
0% Biochar
100% Activated C
50% Activated C
10% Biochar
4% Biochar
50% Activated C
100% Activated C
0% Biochar
50% Activated C
100% Biochar
50% Graphite
100% Biochar
10% Biochar
6% Biochar
100% Activated C
50% Graphite
0% Biochar
100% Biochar
50% Activated C
4% Biochar
10% Biochar
50% Graphite
4% Biochar
10% Biochar
50% Biochar
100% Activated C
0% Biochar
100% Biochar
0% Biochar
4% Biochar
2% Biochar
50% Activated C
50% Graphite
6% Biochar
100% Graphite
100% Activated C
10% Biochar
6% Biochar
100% Activated C
50% Activated C
10% Biochar
0% Biochar
4% Biochar
100% Biochar
6% Biochar
50% Activated C
50% Biochar
50% Graphite
0% Biochar
50% Biochar
10% Biochar
100% Activated C
2% Biochar
100% Biochar

Difference
0.3816293
0.3590647
0.3260215
0.3060849
0.3040194
0.2870420
0.2814548
0.2644774
0.2635385
0.2629401
0.2497421
0.2484116
0.2409739
0.2314342
0.2284750
0.2183940
0.2133883
0.2114976
0.2079307
0.1958294
0.1879941
0.1853301
0.1721322
0.1683528
0.1682410
0.1632354
0.1627861
0.1551548
0.1456764
0.1448493
0.1428496
0.1357784
0.1318872
0.1316513
0.1188010
0.1186892
0.1180908
0.1126332
0.1093226
0.0997047
0.0961246
0.0952975
0.0945873
0.0926966
0.0865068
0.0856254
0.0776099
0.0762794
0.0755444
0.0686480
0.0630814
0.0563428
0.0556078
0.0529798
0.0501529
0.0495518
0.0451446
0.0431449
0.0404809
0.0363538
0.0330432
0.0235035
0.0225646
0.0199366
0.0169774
0.0131979

Std Err Dif
0.0424364
0.0381555
0.0381169
0.0383129
0.0424011
0.0423312
0.0381162
0.0380385
0.0425078
0.0381555
0.0382336
0.0380776
0.0382349
0.0379998
0.0382738
0.0464712
0.0381944
0.0381964
0.0381964
0.0425978
0.0383919
0.0381162
0.0381944
0.0380385
0.0424011
0.0426677
0.0425632
0.0381169
0.0381162
0.0382349
0.0427388
0.0381552
0.0424364
0.0383129
0.0380776
0.0423660
0.0383129
0.0380776
0.0381555
0.0425978
0.0380773
0.0382738
0.0381169
0.0382738
0.0426677
0.0426326
0.0381944
0.0381169
0.0425078
0.0425632
0.0380385
0.0383129
0.0423312
0.0382349
0.0426326
0.0381162
0.0427388
0.0382349
0.0382738
0.0381944
0.0380385
0.0381964
0.0423660
0.0381964
0.0380776
0.0381555

Lower CL
0.242827
0.234264
0.201347
0.180770
0.165332
0.148583
0.156783
0.140059
0.124502
0.138139
0.124686
0.123866
0.115914
0.107143
0.103288
0.066394
0.088460
0.086563
0.082996
0.056499
0.062420
0.060658
0.047204
0.043935
0.029554
0.023676
0.023569
0.030480
0.021004
0.019789
0.003058
0.010979

-0.006915
0.006336

-0.005745
-0.019883
-0.007225
-0.011913
-0.015478
-0.039626
-0.028420
-0.029890
-0.030087
-0.032491
-0.053053
-0.053819
-0.047318
-0.048395
-0.063492
-0.070569
-0.061337
-0.068973
-0.082851
-0.072081
-0.089292
-0.075120
-0.094647
-0.081916
-0.084707
-0.088574
-0.091375
-0.101431
-0.116008
-0.104998
-0.107568
-0.111603

Upper CL
0.5204320
0.4838654
0.4506958
0.4314003
0.4427065
0.4255007
0.4061270
0.3888955
0.4025747
0.3877408
0.3747983
0.3729573
0.3660343
0.3557255
0.3536624
0.3703939
0.3383163
0.3364319
0.3328650
0.3351600
0.3135682
0.3100024
0.2970602
0.2927708
0.3069282
0.3027948
0.3020036
0.2798291
0.2703486
0.2699097
0.2826414
0.2605780
0.2706898
0.2569667
0.2433467
0.2572618
0.2434062
0.2371789
0.2341233
0.2390353
0.2206693
0.2204849
0.2192616
0.2178841
0.2260663
0.2250700
0.2025379
0.2009537
0.2145806
0.2078655
0.1874995
0.1816582
0.1940665
0.1780402
0.1895976
0.1742240
0.1849363
0.1682053
0.1656683
0.1612818
0.1574613
0.1484378
0.1611371
0.1448709
0.1415231
0.1379986

p-Value
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0002*
<.0001*
<.0001*
<.0001*
0.0003*
<.0001*
<.0001*
0.0004*
0.0006*
0.0043*
0.0074*
0.0074*
0.0028*
0.0075*
0.0085*
0.0400*
0.0195*
0.0809
0.0295*
0.0782
0.1797
0.0870
0.1218
0.1541
0.4477
0.3249
0.3466
0.3520
0.3913
0.6746
0.6878
0.6714
0.6928
0.8306
0.9047
0.8867
0.9485
0.9775
0.9664
0.9907
0.9793
0.9963
0.9934
0.9962
0.9985
0.9994
1.0000
1.0000
1.0000
1.0000
1.0000
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Table 9. Tukey’s HSD test results for intensity across each treatment. 

 

 

Ordered Differences Report
Level
8% Biochar
8% Biochar
8% Biochar
8% Biochar
100% Graphite
2% Biochar
8% Biochar
100% Graphite
2% Biochar
50% Biochar
50% Biochar
8% Biochar
8% Biochar
100% Graphite
2% Biochar
6% Biochar
100% Graphite
2% Biochar
6% Biochar
50% Biochar
50% Biochar
100% Graphite
2% Biochar
8% Biochar
4% Biochar
6% Biochar
50% Graphite
50% Biochar
100% Graphite
4% Biochar
6% Biochar
100% Graphite
2% Biochar
50% Graphite
2% Biochar
8% Biochar
100% Biochar
50% Biochar
6% Biochar
50% Biochar
8% Biochar
8% Biochar
100% Biochar
4% Biochar
50% Graphite
100% Activated C
4% Biochar
100% Graphite
50% Graphite
2% Biochar
6% Biochar
100% Activated C
50% Activated C
6% Biochar
100% Biochar
50% Activated C
4% Biochar
50% Biochar
50% Graphite
100% Biochar
100% Graphite
2% Biochar
100% Activated C
0% Biochar
100% Graphite
4% Biochar

- Level
10% Biochar
0% Biochar
50% Activated C
100% Activated C
10% Biochar
10% Biochar
100% Biochar
0% Biochar
0% Biochar
10% Biochar
0% Biochar
50% Graphite
4% Biochar
50% Activated C
50% Activated C
10% Biochar
100% Activated C
100% Activated C
0% Biochar
50% Activated C
100% Activated C
100% Biochar
100% Biochar
6% Biochar
10% Biochar
50% Activated C
10% Biochar
100% Biochar
50% Graphite
0% Biochar
100% Activated C
4% Biochar
50% Graphite
0% Biochar
4% Biochar
50% Biochar
10% Biochar
50% Graphite
100% Biochar
4% Biochar
2% Biochar
100% Graphite
0% Biochar
50% Activated C
50% Activated C
10% Biochar
100% Activated C
6% Biochar
100% Activated C
6% Biochar
50% Graphite
0% Biochar
10% Biochar
4% Biochar
50% Activated C
0% Biochar
100% Biochar
6% Biochar
100% Biochar
100% Activated C
50% Biochar
50% Biochar
50% Activated C
10% Biochar
2% Biochar
50% Graphite

Difference
0.3290276
0.3150763
0.2751570
0.2598785
0.2457353
0.2411895
0.2330821
0.2317839
0.2272382
0.2195225
0.2055711
0.2019872
0.1975735
0.1918647
0.1873189
0.1840609
0.1765861
0.1720403
0.1701096
0.1656519
0.1503733
0.1497898
0.1452440
0.1449667
0.1314541
0.1301903
0.1270404
0.1235770
0.1186949
0.1175028
0.1149118
0.1142812
0.1141491
0.1130890
0.1097354
0.1095051
0.0959455
0.0924821
0.0881154
0.0880684
0.0878381
0.0832923
0.0819942
0.0775835
0.0731698
0.0691492
0.0623049
0.0616743
0.0578912
0.0571286
0.0570205
0.0551978
0.0538706
0.0526068
0.0420749
0.0399193
0.0355086
0.0354615
0.0310949
0.0267963
0.0262128
0.0216670
0.0152785
0.0139513
0.0045458
0.0044137

Std Err Dif
0.0370962
0.0333540
0.0334916
0.0333203
0.0370653
0.0370043
0.0333540
0.0333197
0.0332518
0.0371586
0.0334235
0.0334223
0.0333881
0.0334574
0.0333898
0.0406233
0.0332859
0.0332179
0.0372373
0.0335607
0.0333898
0.0333197
0.0332518
0.0372985
0.0370653
0.0373605
0.0370962
0.0334235
0.0333881
0.0333197
0.0372070
0.0333538
0.0333203
0.0333540
0.0332859
0.0334916
0.0370347
0.0334916
0.0372373
0.0334574
0.0333203
0.0333881
0.0332856
0.0334574
0.0334916
0.0370043
0.0332859
0.0372678
0.0333203
0.0372070
0.0372985
0.0332518
0.0371586
0.0372678
0.0334235
0.0334235
0.0333197
0.0373605
0.0333540
0.0332518
0.0334574
0.0333898
0.0333898
0.0370347
0.0332859
0.0333881

Lower CL
0.207692
0.205980
0.165611
0.150893
0.124500
0.120154
0.123986
0.122800
0.118477
0.097983
0.096248
0.092668
0.088366
0.082431
0.078106
0.051189
0.067713
0.063390
0.048312
0.055880
0.041161
0.040806
0.036483
0.022969
0.010219
0.007990
0.005705
0.014254
0.009488
0.008519

-0.006787
0.005186
0.005164
0.003993
0.000862

-0.000041
-0.025189
-0.017064
-0.033682
-0.021366
-0.021147
-0.025915
-0.026878
-0.031850
-0.036376
-0.051886
-0.046568
-0.060223
-0.051094
-0.064570
-0.064977
-0.053564
-0.067669
-0.069290
-0.067248
-0.069404
-0.073475
-0.086739
-0.078001
-0.081965
-0.083221
-0.087546
-0.093934
-0.107183
-0.104327
-0.104793

Upper CL
0.4503634
0.4241721
0.3847027
0.3688638
0.3669701
0.3622246
0.3421779
0.3407675
0.3359995
0.3410624
0.3148940
0.3113064
0.3067806
0.3012986
0.2965315
0.3169333
0.2854591
0.2806909
0.2919069
0.2754237
0.2595859
0.2587733
0.2540054
0.2669641
0.2526889
0.2523908
0.2483762
0.2328998
0.2279020
0.2264863
0.2366101
0.2233761
0.2231345
0.2221849
0.2186084
0.2190509
0.2170801
0.2020278
0.2099127
0.1975023
0.1968235
0.1924994
0.1908662
0.1870174
0.1827155
0.1901843
0.1711779
0.1835713
0.1668766
0.1788269
0.1790179
0.1639592
0.1754106
0.1745038
0.1513978
0.1492421
0.1444921
0.1576620
0.1401907
0.1355577
0.1356467
0.1308796
0.1244912
0.1350860
0.1134187
0.1136208

p-Value
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0004*
<.0001*
<.0001*
0.0003*
<.0001*
0.0004*
0.0004*
0.0008*
0.0059*
0.0203*
0.0251*
0.0307*
0.0119*
0.0198*
0.0218*
0.0855
0.0305*
0.0305*
0.0343*
0.0462*
0.0502
0.2853
0.1974
0.4296
0.2620
0.2598
0.3435
0.3638
0.4632
0.5610
0.7787
0.7768
0.8882
0.8508
0.9308
0.9328
0.8860
0.9534
0.9615
0.9839
0.9895
0.9960
0.9986
0.9988
0.9997
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
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Table 10. Tukey’s HSD test results for energy across each treatment.  

 

Ordered Differences Report
Level
8% Biochar
8% Biochar
8% Biochar
8% Biochar
100% Graphite
100% Graphite
2% Biochar
100% Graphite
8% Biochar
2% Biochar
8% Biochar
100% Graphite
8% Biochar
8% Biochar
2% Biochar
50% Biochar
2% Biochar
50% Biochar
8% Biochar
100% Graphite
100% Graphite
100% Graphite
50% Biochar
4% Biochar
100% Graphite
6% Biochar
50% Graphite
50% Biochar
100% Biochar
4% Biochar
2% Biochar
2% Biochar
6% Biochar
2% Biochar
50% Graphite
8% Biochar
100% Biochar
2% Biochar
4% Biochar
100% Graphite
6% Biochar
50% Graphite
100% Biochar
4% Biochar
6% Biochar
8% Biochar
50% Graphite
50% Biochar
100% Activated C
100% Biochar
50% Biochar
2% Biochar
50% Biochar
50% Biochar
50% Activated C
100% Activated C
100% Graphite
50% Activated C
0% Biochar
100% Activated C
4% Biochar
4% Biochar
6% Biochar
6% Biochar
4% Biochar
50% Graphite

- Level
10% Biochar
0% Biochar
50% Activated C
100% Activated C
10% Biochar
0% Biochar
10% Biochar
50% Activated C
100% Biochar
0% Biochar
50% Graphite
100% Activated C
6% Biochar
4% Biochar
50% Activated C
10% Biochar
100% Activated C
0% Biochar
50% Biochar
100% Biochar
50% Graphite
6% Biochar
50% Activated C
10% Biochar
4% Biochar
10% Biochar
10% Biochar
100% Activated C
10% Biochar
0% Biochar
100% Biochar
50% Graphite
0% Biochar
6% Biochar
0% Biochar
2% Biochar
0% Biochar
4% Biochar
50% Activated C
50% Biochar
50% Activated C
50% Activated C
50% Activated C
100% Activated C
100% Activated C
100% Graphite
100% Activated C
100% Biochar
10% Biochar
100% Activated C
50% Graphite
50% Biochar
6% Biochar
4% Biochar
10% Biochar
0% Biochar
2% Biochar
0% Biochar
10% Biochar
50% Activated C
100% Biochar
50% Graphite
100% Biochar
50% Graphite
6% Biochar
100% Biochar

Difference
3.492827
3.268876
3.036593
2.859006
2.822861
2.598909
2.437171
2.366626
2.238717
2.213220
2.195800
2.189039
2.133296
2.076034
1.980937
1.896281
1.803350
1.672330
1.596546
1.568750
1.525833
1.463329
1.440047
1.416793
1.406067
1.359532
1.297028
1.262460
1.254110
1.192842
1.183061
1.140144
1.135580
1.077640
1.073076
1.055656
1.030159
1.020378
0.960559
0.926579
0.903297
0.840793
0.797876
0.782972
0.725710
0.669967
0.663206
0.642171
0.633821
0.620289
0.599254
0.540890
0.536750
0.479488
0.456234
0.409870
0.385689
0.232283
0.223951
0.177587
0.162683
0.119766
0.105421
0.062504
0.057261
0.042917

Std Err Dif
0.3291903
0.2959827
0.2972033
0.2956830
0.3289164
0.2956780
0.3283746
0.2968999
0.2959827
0.2950752
0.2965886
0.2953780
0.3309852
0.2962845
0.2962995
0.3297442
0.2947746
0.2965986
0.2972033
0.2956780
0.2962845
0.3307128
0.2978167
0.3289164
0.2959802
0.3604895
0.3291903
0.2962995
0.3286445
0.2956780
0.2950752
0.2956830
0.3304424
0.3301740
0.2959827
0.2956830
0.2953755
0.2953780
0.2968999
0.2968999
0.3315362
0.2972033
0.2965986
0.2953780
0.3301740
0.2962845
0.2956830
0.2965986
0.3283746
0.2950752
0.2972033
0.2962995
0.3315362
0.2968999
0.3297442
0.2950752
0.2953780
0.2965986
0.3286445
0.2962995
0.2956780
0.2962845
0.3304424
0.3309852
0.3307128
0.2959827

Lower CL
2.41610
2.30076
2.06449
1.89187
1.74703
1.63179
1.36311
1.39551
1.27060
1.24808
1.22571
1.22290
1.05070
1.10693
1.01179
0.81774
0.83919
0.70220
0.62444
0.60163
0.55673
0.38162
0.46594
0.34096
0.43796
0.18043
0.22030
0.29331
0.17917
0.22573
0.21792
0.17301
0.05476

-0.00231
0.10496
0.08852
0.06403
0.05424

-0.01055
-0.04453
-0.18111
-0.13131
-0.17225
-0.18316
-0.35424
-0.29913
-0.30393
-0.32796
-0.44024
-0.34486
-0.37285
-0.42826
-0.54765
-0.49162
-0.62231
-0.55527
-0.58045
-0.73784
-0.85099
-0.79156
-0.80443
-0.84933
-0.97540
-1.02010
-1.02445
-0.92520

Upper CL
4.569557
4.236989
4.008698
3.826138
3.898694
3.566026
3.511233
3.337739
3.206830
3.178365
3.165894
3.155174
3.215896
3.045134
2.950086
2.974823
2.767511
2.642458
2.568651
2.535867
2.494933
2.545038
2.414159
2.492627
2.374172
2.538636
2.373757
2.231609
2.329055
2.159958
2.148206
2.107276
2.216406
2.157587
2.041189
2.022789
1.996286
1.986513
1.931672
1.897692
1.987700
1.812898
1.768003
1.749107
1.805657
1.639067
1.630339
1.612299
1.707883
1.585433
1.571359
1.510039
1.621152
1.450601
1.534776
1.375015
1.351824
1.202410
1.298896
1.146736
1.129799
1.088866
1.186247
1.145105
1.138971
1.011030

p-Value
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0006*
<.0001*
0.0010*
0.0001*
0.0091*
0.0048*
0.0013*
0.0077*
0.0033*
0.0036*
0.0066*
0.0295*
0.0511
0.0154*
0.0187*
0.0249*
0.0278*
0.0557
0.0780
0.2145
0.1683
0.2316
0.2520
0.5512
0.5049
0.5182
0.5754
0.7402
0.6213
0.6823
0.8041
0.9024
0.9039
0.9667
0.9658
0.9785
0.9998
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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Table 11. Tukey’s HSD test results for area across each treatment.  

 

 

          The correlation coefficients and corresponding p-values between attributes and C 

source and subgroups of C source are shown in Tables 12-15. 

Ordered Differences Report
Level
0% Biochar
50% Graphite
50% Activated C
0% Biochar
50% Graphite
50% Activated C
10% Biochar
100% Activated C
0% Biochar
4% Biochar
10% Biochar
50% Graphite
50% Activated C
100% Activated C
4% Biochar
0% Biochar
50% Biochar
6% Biochar
10% Biochar
50% Graphite
100% Activated C
50% Activated C
0% Biochar
4% Biochar
50% Biochar
0% Biochar
2% Biochar
6% Biochar
50% Graphite
50% Activated C
50% Graphite
50% Activated C
10% Biochar
2% Biochar
100% Activated C
50% Biochar
0% Biochar
6% Biochar
4% Biochar
100% Biochar
0% Biochar
10% Biochar
0% Biochar
10% Biochar
50% Graphite
50% Activated C
100% Activated C
100% Activated C
50% Graphite
2% Biochar
50% Activated C
4% Biochar
4% Biochar
100% Biochar
50% Graphite
50% Activated C
50% Biochar
8% Biochar
6% Biochar
0% Biochar
0% Biochar
10% Biochar
10% Biochar
100% Activated C
50% Biochar
50% Graphite

- Level
100% Graphite
100% Graphite
100% Graphite
8% Biochar
8% Biochar
8% Biochar
100% Graphite
100% Graphite
100% Biochar
100% Graphite
8% Biochar
100% Biochar
100% Biochar
8% Biochar
8% Biochar
2% Biochar
100% Graphite
100% Graphite
100% Biochar
2% Biochar
100% Biochar
2% Biochar
6% Biochar
100% Biochar
8% Biochar
50% Biochar
100% Graphite
8% Biochar
6% Biochar
6% Biochar
50% Biochar
50% Biochar
2% Biochar
8% Biochar
2% Biochar
100% Biochar
4% Biochar
100% Biochar
2% Biochar
100% Graphite
100% Activated C
6% Biochar
10% Biochar
50% Biochar
4% Biochar
4% Biochar
6% Biochar
50% Biochar
100% Activated C
100% Biochar
100% Activated C
6% Biochar
50% Biochar
8% Biochar
10% Biochar
10% Biochar
2% Biochar
100% Graphite
2% Biochar
50% Activated C
50% Graphite
4% Biochar
100% Activated C
4% Biochar
6% Biochar
50% Activated C

Difference
2.301760
2.115780
2.097252
2.019861
1.833882
1.815354
1.795064
1.709037
1.696579
1.624045
1.513165
1.510600
1.492072
1.427139
1.342146
1.304361
1.297153
1.261032
1.189884
1.118381
1.103857
1.099853
1.040728
1.018864
1.015254
1.004607
0.997399
0.979133
0.854748
0.836220
0.818627
0.800099
0.797665
0.715500
0.711638
0.691972
0.677715
0.655852
0.626646
0.605181
0.592723
0.534032
0.506696
0.497911
0.491735
0.473207
0.448005
0.411884
0.406743
0.392219
0.388215
0.363013
0.326892
0.323282
0.320716
0.302188
0.299754
0.281899
0.263633
0.204508
0.185980
0.171019
0.086027
0.084992
0.036121
0.018528

Std Err Dif
0.2155219
0.2159640
0.2164125
0.2157440
0.2161856
0.2166337
0.2397496
0.2153032
0.2153014
0.2157422
0.2399493
0.2157440
0.2161929
0.2155255
0.2159640
0.2150825
0.2164125
0.2410590
0.2395514
0.2155255
0.2150825
0.2159749
0.2408619
0.2155219
0.2166337
0.2161929
0.2153032
0.2412576
0.2412576
0.2416592
0.2166337
0.2170808
0.2393547
0.2155255
0.2148634
0.2161929
0.2155219
0.2408619
0.2153032
0.2155219
0.2150825
0.2627635
0.2395514
0.2403530
0.2159640
0.2164125
0.2406663
0.2159749
0.2155255
0.2150825
0.2159749
0.2410590
0.2164125
0.2157440
0.2399493
0.2403530
0.2159749
0.2159640
0.2406663
0.2161929
0.2157440
0.2397496
0.2393547
0.2153032
0.2416592
0.2166337

Lower CL
1.59682
1.40940
1.38940
1.31420
1.12677
1.10678
1.01088
1.00481
0.99236
0.91839
0.72833
0.80494
0.78494
0.72219
0.63576
0.60086
0.58930
0.47257
0.40635
0.41343
0.40036
0.39343
0.25291
0.31393
0.30668
0.29747
0.29318
0.19002
0.06563
0.04579
0.11005
0.09006
0.01477
0.01055
0.00885

-0.01516
-0.02722
-0.13197
-0.07758
-0.09976
-0.11078
-0.32543
-0.27684
-0.28825
-0.21465
-0.23464
-0.33918
-0.29454
-0.29821
-0.31128
-0.31821
-0.42545
-0.38096
-0.38238
-0.46412
-0.48397
-0.40667
-0.42449
-0.52355
-0.50263
-0.51968
-0.61316
-0.69686
-0.61923
-0.75431
-0.69005

Upper CL
3.006698
2.822165
2.805104
2.725526
2.540991
2.523928
2.579247
2.413260
2.400796
2.329704
2.298002
2.216264
2.199205
2.132089
2.048531
2.007862
2.005004
2.049498
1.973419
1.823331
1.807358
1.806273
1.828549
1.723803
1.723829
1.711740
1.701622
1.768249
1.643864
1.626649
1.527202
1.510137
1.580556
1.420450
1.414422
1.399105
1.382653
1.443673
1.330869
1.310119
1.296224
1.393490
1.290231
1.284068
1.198120
1.181059
1.235187
1.118304
1.111693
1.095720
1.094635
1.151479
1.034743
1.028946
1.105552
1.088345
1.006174
0.988283
1.050815
0.911641
0.891644
0.955202
0.868918
0.789215
0.826550
0.727103

p-Value
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0010*
0.0002*
0.0002*
0.0002*
0.0002*
0.0030*
0.0206*
0.0273*
0.0088*
0.0124*
0.0413*
0.0429*
0.0440*
0.0618
0.0729
0.2153
0.1376
0.1770
0.1999
0.6711
0.6118
0.6433
0.4934
0.5596
0.7830
0.7550
0.7674
0.8052
0.8197
0.9393
0.9380
0.9413
0.9743
0.9840
0.9660
0.9786
0.9949
0.9986
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000



 

40 

 

          The Pearson correlation coefficients between biochar carbon content and attributes 

indicated that only area had a significant linear correlation with biochar at 0.1% level. 

Considering the integrated squared amplitude, the area was able to be detected by a 

subtler signal changes than the other three attributes. Since the correlation coefficient is 

negative 0.1047, the area will decrease when the biochar carbon content increases. 

Table 12. Pearson correlation between attributes and biochar carbon content. 

 Pearson correlation coefficient P-value 
Maximum amplitude -0.0259 0.2722 
Intensity -0.0266 0.2607 
Energy -0.0146 0.5361 
Area -0.1047 8.81e-06*** 

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 

          Similar to biochar, the Pearson correlation coefficients between activated carbon 

carbon content and attributes indicated that only area had significant linear correlation 

with activated carbon at 0.1% level (Table 13). The correlation coefficient, being 

negative, (-0.1075), indicates that the area will decrease when the activated carbon 

content increases. 

 

Table 13. Pearson correlation between attributes and activated carbon carbon 
content 

 Pearson correlation coefficient P-value 
Maximum amplitude 0.0344 0.3522 
Intensity 0.0713 0.0538 
Energy 0.0596 0.107 
Area -0.1075 0.0036** 

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
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The Pearson correlation coefficients between graphite carbon content and 

attributes indicated all attributes had significant linear correlations with graphite at 0.1% 

level (Table 14). The correlation coefficients between the three attributes (maximum 

amplitude, intensity, and energy) and graphite carbon content were all positive, 

indicating the value of these three attributes increases when graphite carbon content 

increases. As for area, the correlation coefficient with graphite carbon content was 

negative, (-0.1075); therefore, so the area decreases when activated carbon content 

increases. The negative relationship could be caused by the method of calculating the 

area. The area was estimated from a different strength of the signal amplitude. First, the 

amplitude was squared and then integrated along the x axis. Therefore, area contained 

more information than the other three attributes, Moreover, the area would carry more 

unnecessary information than the others. Morris and Glisic (2017) conducted a similar 

analysis using concrete and bricks. The correlation coefficient between the mass of the 

samples and the area was the highest among the other attributes, similar to the results in 

this research. 

Table 14.Pearson correlation between attributes and graphite carbon content. 
 Pearson correlation coefficient P-value 
Maximum amplitude 0.2650 3.13e-13*** 
Intensity 0.2528 3.87e-12*** 
Energy 0.3131 <2.20e-16*** 
Area -0.3735 <2.20e-16*** 

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
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          The criteria for grouping biochar and activated carbon was based on the 

significance of the Tukey’s HSD test between each treatment. For each attribute, the 

biochar treatment was selected when it was significantly different from 50% and 100% 

activated carbon. A reason why some biochar treatment attributes were not significantly 

different from another treatment is that the carbon content of the biochar used was very 

low. GPR was not be able to detect the difference among signals. Thus, the attributes 

were reflecting the signals from the silicon sample bag or the sand. The Pearson 

correlation coefficients between the sub-group (activated carbon and biochar carbon 

content) and the four attributes revealed that all the attributes have a significant linear 

correlation at 0.1% level (Table 15). The correlation coefficient between maximum 

amplitude and graphite carbon content was -0.2178. This shows the maximum amplitude 

decreases when the graphite carbon content increases. The correlation coefficient 

between intensity and graphite carbon content was -0.1913, indicating the intensity 

decreases as the graphite carbon content increases. The correlation coefficient between 

energy and graphite carbon content was -0.1937, showing that energy decreases when 

the graphite carbon content increases. As for area, the correlation coefficient with 

graphite carbon content was 0.1029, indicating the area increases when activated carbon 

content increases. Note the correlation coefficients changed between single (biochar 

alone, activated carbon alone) and the combined as a sub-group. The values strengthen 

the negative correlation for the three attributes but reverses the relationship for area.  

The reversal might come from error during data collection or the fact that subgroup 

treatments based on Tukey’s HSD test would bring the most potentially different 
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combination which resulted in the most significant and precise correlation. Moreover, 

since area was transformed the most from the original data, it carries some unwanted 

data which could bring more information, thereby affecting the results. But for biochar 

and activated carbon, area was the only attribute that had significant correlation, 

indicating that area could be a useful predictor as long as possibly redundant data is 

removed. Among all the correlation coefficients, the coefficient between graphite carbon 

content and area was the highest. This indicates the area of GPR data responded stronger 

to pure sand than graphite. Moreover, graphite was easier for GPR to identify than 

biochar and activated carbon. 

Table 15. Pearson correlation between attributes and biochar and activated 
subgroup carbon content. 

 Pearson correlation coefficient P-value 
Maximum amplitude -0.2178 2.79e-16*** 
Intensity -0.1913 7.69e-13*** 
Energy -0.1937 1.11e-09*** 
Area 0.1029 3.22e-05*** 

Note: *, **, and *** denotes significance at 0.05, 0.01, and 0.001 level of probability, 
respectively. 
 
  

Naïve Bayes Predictive Model 

To further assess the ability of GPR to identify different carbon contents and 

carbon structures, two naïve Bayes predictive models were constructed. Naïve bayes 

modeling uses Bayes’ theorem with independence assumption between features to 

construct a classifier. The predictive model can develop a baseline for different 

percentages of carbon and different structures of carbon. With additional data collected, 

its accuracy is expected to be higher. 
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To classify the different carbon contents, the classifications of the model were: 

2%, 4%, 6%, 8%, 10%, 50%, and 100% biochar, 50% and 100% activated carbon, and 

50% and 100% graphite. The parameters used to build the model were maximum 

amplitude, intensity, energy, and area. To validate the accuracy of the model, the data 

was split into 75/25 ratio as training and validation set. This ratio was used because the 

data set sample size was not large enough to support a 50/50 ratio for 12 treatments as 

classifiers. 

The AUC-ROC curve was used to estimate the ability of the model to distinguish 

different classes. AUC represents Area Under the Curve and ROC represents Receiver 

Operating Characteristics. With higher AUC, the better the model predicted classes. The 

accuracy remained above 50 to 60 percent for each treatment (Table 15). The highest 

AUC of validation from the carbon content predictive model was 70% (0.6944), which 

predicted 8% of the biochar.  
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Table 16. Naïve Bayes predictive model for carbon content.  
 

Carbon percentage AUC of Training AUC of Validation 
0% biochar 0.6548 0.6268 
2% biochar 0.5672 0.5677 
4% biochar 0.5322 0.5649 
6% biochar 0.5745 0.5791 
8% biochar 0.6565 0.6944 
10% biochar 0.6281 0.6572 
50% biochar 0.5364 0.6341 
100% biochar 0.5737 0.6370 

50% activated carbon 0.6225 0.6716 
100% activated carbon 0.5845 0.5657 

50% graphite 0.5762 0.5289 
100% graphite 0.6924 0.6162 

 

To classify the different carbon structures, the parameters used to construct the 

model included all the four attributes, and the classification was sand, biochar, graphite, 

and activated carbon. The data also was split with 75/25 ratio as training and validation 

set similar as above for carbon content. Except for graphite, AUC for biochar, activated 

carbon, and sand are all more than 0.6000 (Table 16). This indicates that within each 

group with the carbon content being different the attributes are still capable of 

identifying different carbon structures. 

Table 17. Naïve Bayes predictive model for carbon structure and sand.  
 

Structure AUC of Training AUC of Validation 
Biochar     0.5980 0.6230 

Activated carbon 0.5716 0.6014 
Graphite 0.5714 0.4933 

Sand 0.6501 0.6240 
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CHAPTER V  

CONCLUSION 

 

          There were four objectives of this research: (1) Use ground penetrating radar to 

detect underground biochar amended soil carbon content; (2) Compare the performance 

of GPR across materials with different structures of carbon; (3) Compare the 

performance of GPR across different soil moisture levels; (4) Develop novel GPR 

analysis methods to quantify carbon. For the first objective, the naïve Bayes predictive 

model for carbon content demonstrated that at approximately 0.6944 accuracy, the GPR 

was able to detect biochar amended soil. The second objective was well supported by the 

naïve Bayes predictive model for carbon structure, with only the graphite prediction 

accuracy was as low as 0.4933, the other two carbon structures maintained an AUC over 

0.6000. The Spearman rank correlation tests across three moisture levels for all attributes 

were significant, indicating the ability of detecting soil moisture level of the GPR. Since 

all the coefficients were positive, indicating that higher moisture level was easier to be 

detected. Therefore, they well support the third objective. Moreover, the highest 

correlation coefficient was 0.1990 between area and moisture level. All correlation 

coefficients were positive, so with higher moisture level the attribute was higher as well. 

The last objective was backed by the Pearson correlation coefficients between attributes 

and carbon content. Unlike the correlation with moisture level, the correlation 

coefficients between attributes and carbon content were mostly negative, showing that 

quantification of carbon content is difficult at varying water content using GPR. All 
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correlation coefficients between graphite carbon content and attributes were significant, 

and for activated carbon and biochar carbon content, their correlations with area were 

significant. Grouping activated carbon and biochar together, the correlation coefficients 

were significant with attributes. This was observed because the structure difference, and 

random interfere during data collection. A replication of this research for the next year 

can further validate the inconsistency of the correlation coefficient. As for the predictive 

model, the results indicate that more sampling data is needed. During this study, 3868 

samples were collected and after excluding two boarder channels, the number of samples 

were reduced to 2767, and each classification were assigned to around 240 samples. 

Although the data set for each classification was not large enough, the accuracy obtained 

were still remained about 50%, indicating the great potential of the naïve Bayes 

predictive model in classifying different carbon content. The further research could 

focus on collecting more data and applying more appropriate attributes and perfecting 

naïve Bayes predictive model to increase the prediction accuracy. 
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APPENDIX A 

 

Figure 15. Scatterplot of all treatments area against carbon content with 

correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between all treatments area and carbon content was -0.0815.  
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Figure 16. Scatterplot of biochar area against carbon content with correlation 

coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between biochar area and carbon content was -0.1047.  
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Figure 17. Scatterplot of activated carbon area against carbon content with 

correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between activated carbon area and carbon content was -

0.1075. 
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Figure 18. Scatterplot of graphite maximum amplitude against carbon content with 

correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between graphite maximum amplitude and carbon content 

was 0.2650. 
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Figure 19. Scatterplot of graphite intensity against carbon content with correlation 

coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between graphite intensity and carbon content was 0.2528. 
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Figure 20. Scatterplot of graphite intensity against carbon content with correlation 

coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between graphite energy and carbon content was 0.3131. 
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Figure 21. Scatterplot of graphite area against carbon content with correlation 

coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between graphite area and carbon content was -0.3753. 
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Figure 22. Scatterplot of biochar and activated carbon maximum amplitude against 

carbon content with correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between biochar and activated carbon maximum amplitude 

and carbon content was -0.2178. 



 

67 

 

 

Figure 23. Scatterplot of biochar and activated carbon intensity against carbon 

content with correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between biochar and activated carbon intensity and carbon 

content was -0.1913. 
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Figure 24. Scatterplot of biochar and activated carbon energy against carbon 

content with correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between biochar and activated carbon energy and carbon 

content was -0.1937. 
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Figure 25. Scatterplot of biochar and activated carbon area against carbon content 

with correlation coefficient. 

The color of red represented how the points dense together, and the Pearson 

correlation coefficient between biochar and activated carbon area and carbon 

content was 0.1029. 

 

 

 


