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ABSTRACT 

The cosmic-ray neutron sensors (CRNS) are a proximal sensor that can be used to 

estimate spatially averaged soil moisture at hectometer scale. The sensor measures the number 

of thermalized neutrons created by the collision between cosmic rays and atmosphere that 

interact with hydrogen atoms present in the environment and can be used to estimate soil 

moisture. However, extensive in-situ soil moisture measurements are needed to separate the 

signal of soil moisture from all other hydrogen pools such as aboveground biomass and 

atmospheric water content to calibrate the sensor. The objective of this study is to introduce a 

new technique of calibrating the sensor by evaluating water budget closures using CRNS and a 

calibrated sub-surface model Hydrus with minimal ground measurements. We installed CRNS at 

three sites in the Brazos river basin representing different land covers and management 

practices: i) traditional agriculture, ii) native prairie, and iii) managed prairie. The model was 

parameterized by inverting profile soil moisture information from just three locations in each 

land cover using the Shuffled Complex Evolution Algorithm in Hydrus-1D. The hydraulic 

parameters for the entire field were estimated by interpolating between the three locations to 

populate a Hydrus 2D model domain which was used to simulate the soil moisture distribution 

in the field. The CRNS was calibrated against the area average of modeled soil moisture 

distribution in the field. The calibrated dataset was able to capture the soil water budget at all 

the three sites with a water budget closure error of 0.01 m3m-3-0.07 m3m-3. The first part of 

validation was done by evaluating the calibrated output against intensively measured 

gravimetric soil moisture. We achieved acceptable values of RMSE (0.03m3m-3- 0.06 m3m-3).For 

second part of validation we compare the evapotranspiration (ET) derived from Landsat 
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thermal sensors and calibrated CRNS output. The ET from Landsat 8 was derived using METRIC 

algorithm which solves energy balance equation to provide the estimates. The values are 

calibrated against the reference ET acquired using Penman-Monteith equation. ET from CRNS is 

calculated using piecewise linear regression model. CRNS performed better than the Landsat-ET 

and has higher temporal resolution. The method reduces the labor in the regions where 

conducting field campaigns is difficult. Additionally, CRNS presents itself as a viable alternative 

to in-situ electromagnetic sensors in the clayey soil where the performance of these sensors is 

poor due to signal distortion. 
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NOMENCLATURE 

CRNS Cosmic Ray Neutron Sensors 

ET Evapotranspiration 

SWI Soil wetness index 

MISDc Modello Idrologico SemiDistribuito in continuo 

ENVISAT Environmental satellite 

SMOS Soil Moisture and Ocean Salinity 

SMAP Soil Moisture Active Passive 

TDR Time domain reflectometry  

CS Capacitance sensor 

SGP’99 1999 Southern Great Plains Experiment 

SMEX02 Soil Moisture Experiments in 2002 

CAROLS Cooperative Airborne Radiometer for Ocean and Land Studies 

TWO Texas Water Observatory 

SN Soil node 

TFPR TFPR Farm Prairie 

CS650 Campbell Scientific 650  

NED National Elevation Dataset 

EC Electrical conductance 

SCE-UA Shuffled Complex Evolution Algorithm 

NDVI Normalized Difference Vegetation Index 

WSS Web Soil Survey 



 

viii 
 

 

RMSE Root Mean Square Error 

C/S Cross Sectional 

EM-38 Electromagnetic Induction Sensor 

ETDI Evapotranspiration Deficit Index 

SPEI  Standardized Precipitation Evapotranspiration Index 

TIR Thermal Infrared 

VNIR Visible Near-Infrared 

METRIC Mapping ET at high Resolution with Internalized Calibration 

METRIC-ET Evapotranspiration Derived from Landsat using METRIC Algorithm 

TM Thematic Mapper 

DEM Digital Elevation Model 

LAI Leaf Area Index 

LE Latent Energy 

G Ground Heat Flux 

H Sensible Heat Flux 

LAI Leaf Area Index  

SEBAL Surface Energy Balance 

CIMEC Calibration using Inverse Modeling at Extreme Conditions 

CRNS-ET Evapotranspiration Derived from CRNS 
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CHAPTER I 

INTRODUCTION 

1.1 Importance of Soil Moisture at Different Scales 

Soil moisture is a crucial variable for closing the water budget from local to global scales. 

It is critical for diverse applications ranging from climate-change studies, disaster mitigation to 

irrigation scheduling for better farming practices (Henderson-Sellers 1996; Dai et al., 2004; 

Campbell et al., 1982).At continental scales, hydrologic models use estimates of soil moisture to 

partition total water storage into individual components (Hoekstra et al., 2012; Rodell et al., 

2009).  Assessment of large-scale soil moisture deficit is the backbone of various drought 

indices (Narsimhan et al., 2005; Alley 1984). Past studies have suggested a positive correlation 

between negative soil moisture anomalies and severity of extreme events such as heat waves 

(Lorenz et al., 2010; Stefanon et al., 2014). Global soil moisture datasets have been used to 

calibrate rainfall-runoff models (Soorooshian et al., 1993; Hong et al., 2007). At the catchment 

scale, characterization of soil moisture distribution is essential for various hydrological 

applications (Matgenet al., 2012). For example, Soil wetness index (SWI) was developed and 

assimilated in runoff model MISDc (“Modello Idrologico SemiDistribuito in continuo”) and 

validated against the model’s flood prediction capabilities (Brocca et al., 2010). Additionally, soil 

erosion models make use of soil moisture to quantify the soil degradation in a river basin 

(Jetten et al., 1999).  

Catchment scale soil moisture is often validated using in-situ point scale dataset 

(Malbéteauet al., 2016; Montzka et al., 2012). In addition to remotely sensed soil moisture, 
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point scale soil moisture is used in the calibration and validation of several land surface models 

(Crow et al., 2003; Koster et al., 2009).It is used to study the impact of soil texture, topography, 

and vegetation to spatio-temporal variability in soil moisture distribution (Mohanty et al., 

2000a,b; Mohanty and Skaggs, 2001; Joshi et al. 2010). Point scale soil moisture can be used to 

determine field scale moisture. 

Point or catchment scale data are used to determine field scale soil moisture estimates 

(Martínez-Fernández et al., 2005; Wang et al., 2015; Merlin et al., 2008).Strong correlation is 

observed between field scale and spatially dominant hydrological processes (Western et al., 

2004; Kirkby et al., 1996). Accurate estimation of field scale soil moisture also has large 

economic implications in precision agriculture (Cai et al., 2003; Münier et al., 2004). Starr 

(2005), observed higher yields by maintaining temporally stable soil moisture conditions by 

comparing various irrigation practices. Muñoz-Carpena et al., (2015) observed a reduction of 

50% in water usage after switching to soil moisture-based irrigation scheduling.  

1.2 Motivation: Measuring Soil Moisture at Multiple Scales 

Remote sensing of soil moisture uses microwave frequency bands and contrasting 

dielectric properties of soil and water.  Coarse-scale data, obtained from satellites such as 

Environmental Satellite(ENVISAT) , Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture 

Active Passive (SMAP) can provide soil moisture estimates at high temporal resolution (2-5 

days) but low spatial resolution (25-50km) (Mohanty et al., 2017), that may perform reasonably 

for large-scale hydrological studies but cannot capture the heterogeneity at a field scale.  
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Historically, in-situ measurements have adequately captured small-scale spatial and 

temporal variability in soil moisture distribution (Mohanty et al., 2000a,b; Jacobs et al., 2004). 

At point support, gravimetric soil moisture determined using oven drying method is still the 

most accurate (and only direct method) used to calibrate and compare soil moisture obtained 

from indirect methods(Huisman et al., 2001; Leib et al., 2003). The indirect methods use soil 

dielectric or thermal properties combined with empirical equations to determine soil water 

content. Mittelbach et al.,(2012), studied indirect methods such as time domain reflectometry 

(TDR), capacitance (CS) and frequency domain reflectometry-based probes and found high 

errors in soils with high clay contents. Datta et al., (2018), found overestimation of field 

capacity and wilting point by TDR and CS probes in soils with high clay contents.  

At a field scale, soil moisture observations from airborne microwave sensors are 

available through intensive field campaigns such as the1999 Southern Great Plains Experiment 

(SGP’99) in Oklahoma, Soil Moisture Experiments in 2002(SMEX02) in Iowa, and Cooperative 

Airborne Radiometer for Ocean and Land Studies in Valencia, Spain(CAROLS) (Njoku et al., 2002 

; McCabe et al.,2005; Albergel et al.,2011). However, conducting such campaigns is expensive 

and therefore cannot be used on an operational scale. 

Thus, to get better estimates of soil moisture at the field scale, top-down (downscaling) 

or bottom-up scaling (upscaling) approaches are employed using satellite or in-situ datasets. 

Downscaling of satellite data can be done by fusing active and passive satellite observation 

(Njoku et al., 2002; Narayan et al., 2006; Das et al., 2006). Downscaling can be performed using 

land surface models. Deterministic or stochastic models are used to transfer parameters across 

scales by manipulating input variables and calibrating the models comparing the outputs and 
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observations (Wu et al., 2006, Shin et al., 2013). Upscaling can be performed by aggregating 

temporally stable in-situ soil moisture measurement to a coarser scale (Cosh et al., 2004, 2006; 

Wang et al. 2008). However, the accuracy of the input observations dictates the performance of 

these models.  

Hydrological models such as HYDRUS (Simunek et al., 1999) and SWAP (van Dam et al., 

1997) can be used to address the issue of spatio-temporal discontinuity in the data across 

different observation scales and obtain reliable soil moisture estimates at the intermediate 

(field) scale. However, setting up the boundary conditions demands skills and in-depth 

knowledge of the existing hydroclimatic variables, topography, and material distribution. At fine 

scales, validation of these models is done by expensive and laborious in-situ measurements and 

field campaigns. Therefore, the motivation of this study is to address the scale gap in the 

catchment scale and point scale soil moisture by providing continuous field scale soil moisture 

measurements at a hectometer scale.  

1.3 Objective: Resolving the Gap in Soil Moisture Measurement 

Use of CRNS is a novel method to bridge the scale gap between satellite and point scale 

dataset. The CRNS works on the principle of energy transfer loss due to the inelastic collisions 

between fast-moving neutrons and the nuclei of hydrogen atoms (Zreda et al., 2008). In nature, 

hydrogen is most abundant in water molecules consisting of two hydrogen atoms. These atoms 

reduce the intensity of fast-moving cosmic neutrons through collisions. The difference between 

no. of incoming and outgoing fast neutrons which is measured by the CRNS sensor provides the 

no. of slow moving neutrons generated due to inelastic collisions. These measurements are 
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used to calculate soil moisture in the region. CRNS has performed well across the world in 

different hydroclimates we find in USA (Zreda et al.; 2012, Franz et al., 2012), Australia 

(Hawdon et al., 2015), Germany (Baatz et al., 2015) and Italy (Ragab et al., 2017).  

The CRNS sensor provides the average soil moisture for a circular area within an 

approximately 300 m radius which closely mimics the extent of an average agricultural field in 

Texas. However, the instrument is sensitive to all the hydrogen pools present near the surface, 

and therefore corrections are required to filter out slow neutron count contributed by soil 

moisture, from other sources such as near-surface atmospheric moisture (Rosolem et al., 2013), 

biomass water(Tian et al., 2016), and water present in the soil lattice(Desilets et al., 2010).    

The calibration of the CRNS sensor requires upscaling of in-situ data (Baatz et al., 2012; 

Hawdon et al., 2014). The spatial extent of in–situ samples required for satisfactory calibration 

depends on the sensitivity of CRNS to measure soil moisture which is inversely proportional 

distance from the sensor (Baroni et al., 2018) and vegetation cover. A weighting scheme is used 

to account for this loss of sensitivity (Coopersmith et al., 2014). The existing soil moisture 

conditions govern the vertical support of a CRNS measurement (10 cm in wet soil to 70 cm in 

dry soil). However, as it is difficult to pre-ascertain the soil moisture conditions at a site, a strict 

calibration procedure is employed across the regions. However, as mentioned earlier if the site 

has high clay content that introduces considerable instrument biases (fig. 2), calibration done 

using statistical models is unreliable (Mittelbach et al.,2012; Datta et al.,2018). 

Neutron counts for the dry soil are used to determine the calibration curve for a site 

using a texture independent calibration function (Desilets et al., 2010). Generally, radial or 
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stratified sampling of soil at different depths accompanied by vegetation sampling is carried out 

during different seasons to capture the entire relationship between soil type and neutron 

count. Multiple field campaigns pose a challenge if the sites are far apart or have a rigid soil 

matrix to make any digging and in situ data collection possible.  

A simple water budget or numerical model can be used for calibration (Lv et al., 2014; 

Schreiner-McGraw et al., 2016).Use of Hydrus 1D for calibration has shown significant 

improvements in the sensor performance (Lv et al., 2014). However, it must be noted that in 

numerical modeling at a continuous timescale, vegetation water content is no longer a constant 

hydrogen pool and should be considered in the calibration studies. Moreover, Hydrus 1D 

ignores the effect of topography and land surface material distribution which contributes to the 

movement of water in the system and should be studied if a continuous calibration procedure 

is adopted. Schreiner-McGraw et al.(2016) calibrated the CRNS sensors using water budget 

equation. They compared CRNS and in-situ TDR probes by showing improvements in 

evaporative fluxes obtained using a piecewise linear regression model which uses soil moisture 

measurements as inputs (Rodríguez-Iturbe et al., 2007).Eddy Covariance Towers, which are a 

non-invasive instrument to determine evapotranspiration (ET), can be used for validation of 

different ET products (Jia et al., 2012; Saadi et al., 2018). Since, the in-situ measurements are 

not performing well(Fig. 2), we can use satellite ET to set a baseline for performance evaluation 

of CRNS derived ET (CRNS-ET).Therefore, in this study: 

i) We use a 2-dimensional sub-surface model, Hydrus2D, to incorporate the effect of 

topography and spatially distributed soil properties in the calibration of CRNS sensors. The 

sensors were calibrated under different vegetation covers and management practices using 
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effective soil hydraulic parameters for different months to account for seasonality and 

different vegetation conditions.  

ii) We validate the (calibrated) soil moisture values against two independent variables – 1) 

gravimetric soil moisture from field campaigns and 2) ET from eddy covariance towers and 

Landsat 8 thermal sensors. Validation using a state variable and an atmospheric forcing is 

done to diminish the possible bias introduced by invasive in-situ soil moisture data 

collection.  
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CHAPTER II 

CALIBRATION OF CRNS USING MODEL BASED APPROACH 

In this chapter we discuss the calibration the CRNS in mixed land use/land cover by 

using Hydrus 1D and Hydrus 2D simulations in Southeastern Texas. The chapter addresses the 

difficulty in measurement of in-situ dataset for calibration of CRNS in compacted soils with high 

clay content. 

2.1 Study Area 

As part of Texas Water Observatory (TWO) initiative, CRNS sensors were installed at 

three sites with different land covers in the Brazos River Basin (Figure 1). The first site is part of 

a USDA facility located near Riesel, Texas (31°28'09.6"N 96°53'11.2"W). The site is a 

traditionally managed agriculture field at an elevation of approximately 173m and slope of 

about 1.2o.  The total annual rainfall at the site is 914 mm and mean maximum and minimum 

temperature 25.1°C and 12.8°C respectively (Mohanty et al., 2015).  The primary crop planted is 

corn, and it covers an area 5.82 hectares. Three soil nodes (SN1, SN2, and SN3) with five 

electromagnetic reflectometry-based probes each at different depths (5, 15, 20, 75, 100 cm) 

are installed at the site (Table 1). The CRNS is in the middle of the field at node SN1. The major 

soil types are Houston Black clay and Heiden clay. 

The second site located near Thrall, Texas and is a part of Stiles Farm Foundation 

(30°37'03.5"N 97°17'37.8"W). The site represents unmanaged prairie with an area of about 203 

hectares and a gentle slope of 1.2o.  The site’s elevation is approximately 157 m and it receives 

a total annual rainfall of about 889 mm. The mean annual maximum and minimum temperature 
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at the site is 25.6oC and 13.3oC respectively (Mohanty et al., 2015). This site has two soil nodes 

with electromagnetic probes at 5 similar depths as the Riesel site. The CRNS is installed at one 

of soil nodes at the site. The significant soils present in the study area are Houston Black clay, 

Heiden clay, and Altoga silty clay loam. 

 

 

Figure 1 a) location of three sites i.e. Riesel traditional farm, TFPR and Stiles Farm in the Lower Brazos River basin 
b) Circular footprint of CRNS sensor c) CRNS sensors at the sites 
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The third site, Texas A&M Prairie Farm (TFPR) is part of the Texas A&M research farm 

(TFPR) (30°33'07.7"N 96°25'32.2"W). It is a managed prairie site with an elevation of about 73m 

and has a flat terrain. Total annual rainfall is 991mm, and the average temperature is range is 

26.0°C - 13.9°C (Mohanty et al., 2015). The CRNS is installed on the only soil node present at the 

site. The major soils at the site are Weswood silty clay loam, Weswood silt loam, Yahola very 

fine sandy loam, Belk clay, and Rotex clay. 

All sites are identically instrumented (Table 1) notably with eddy covariance towers, soil 

nodes, tipping bucket rain gauges and phenocams to monitor atmospheric variables and 

vegetation growth. For Stiles we collected additional rainfall dataset using a USGS raingauge 

nearby. 
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Table 1  List of TWO Instruments used in the present study 

 

 

 

As discussed earlier, the higher clay content distorted the signals from the 

electromagnetic probes (Fig. 2). At Riesel, two soil nodes (SN) and at stiles farm one soil node 

has overestimated soil water contents during the drying period. At TFPR, one of the five sensors 

has shown lower soil moisture variability throughout the study period.   
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Figure 2 Uncalibrated CS 655 signal at a) Riesel SN1 b) Riesel SN2 c) Stiles SN1 d) TFPR SN. The values are overestimated due to 
high clay content 

 

 

The sites have different weather conditions contributing towards varying CRNS’ 

response. Therefore, we corrected the raw neutron count coming from the sensors to remove 

the effect of different hydroclimates.  

2.2 Raw Neutron Count Correction 

The atmospheric water vapor influences the neutron count of a CRNS system. Rosolem 

et al.(2013)proposed a correction factor (Cwv, eq. 1) which considers the relative 

humidity, temperature, air pressure, and near-surface moisture.  
(1) 
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𝐶𝑤𝑣 = 1 + 0.0054 △ 𝑝𝑣0     

Where △ pv0 = (pv0 − pv0
ref) is the difference between absolute humidity and the 

absolute relative humidity in (gm-3).Changes in atmospheric pressure can cause the attenuation 

of cosmic ray flux since the air mass is changing (Bogena et al., 2013). Therefore, we perform a 

correction(Cp, eq. 2) for the changes in near-surface air pressure. 

𝐶𝑝 = 𝑒
(
𝑃𝑖−𝑃𝑜

𝐿
) 

Where Pi is the current air pressure and Po is the reference air pressure at the site. L is 

the attenuation length of neutrons (gcm-2) at the site.  

Additionally, the neutron count is corrected for incoming neutron flux(CI, eq. 3) to filter 

out the signals from neutrons unaffected by the hydrogen molecules (Simpson et al., 2000; 

Hawdon et al., 2014).  Data for neutron flux intensity is obtained from the closest neutron 

monitoring station located in the MOISST Oklahoma site. 

𝐶𝐼 =
𝐼𝑚
𝐼𝑟𝑒𝑓

 

Here Imis the current neutron counting rate whereas Iref reference neutron counting 

rate at the Oklahoma Site. There were gaps and inconsistencies in the dataset which were 

interpolated using the cubic spline function. While performing corrections, the cutoff rigidity CS 

based on the geomagnetic latitude is also considered (Smart and Shea 2001).The corrections 

are applied to determine the corrected neutron count N (eq. 4) using the raw neutron count 

from the sensor Nraw, 

(2) 

(3) 
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𝑁 = 𝑁𝑟𝑎𝑤
𝐶𝑃𝐶𝑤𝑣
𝐶𝐼𝐶𝑆

 

N obtained from equation 4 must be translated to soil moisture either using in-situ 

measurements or numerically modeled soil moisture.   

2.3 Area Average Soil Moisture Content using Numerical Modeling  

For numerical simulation of soil moisture dynamics in the system, we used the 

Hydrus_2D model (Simunek et al., 1999). It uses two-dimensional Richard’s equation to 

simulate soil moisture movement in the unsaturated zone (eq 5). 

∂𝜃

∂𝑡
=
∂

∂𝑥
[𝐾(ℎ)

∂ℎ

∂𝑥
] +

∂

∂𝑧
[𝐾(ℎ)

∂ℎ

∂𝑧
+ 𝐾(ℎ)] − 𝑆 

Where θ is soil moisture, K(h) is the unsaturated hydraulic conductivity function with 

respect to pressure head h and S is a sink term. van Genuchten-Maulem curve(van Genuchten, 

1985) was used to determine the soil hydraulic retention function (eq. 6),  

𝑆𝑒(ℎ) =
𝜃ℎ − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= {
[1 + (∣ 𝛼ℎ ∣)𝑛]−𝑚 ℎ < 0

1 ℎ ≥ 0
 

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]2 

WhereSe(h) is effective saturation, θs is saturated moisture content, θr is residual 

moisture content,  Ks is saturated hydraulic conductivity, α is the inverse of air entry pressure, 

n and m are shape parameters. 

 

 

(4) 

(5) 

(6) 
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2.3.1 Inverse Modeling of Soil Hydraulic Parameters using Hydrus 1D 

First, we performed inverse modeling at the soil nodes (SN) to determine soil hydraulic 

parameters for each individual site/location using Hydrus1D. We used shuffled complex 

evolution algorithm (SCE-UA) to carry out global optimization of the parameters (Duanet et al., 

1993). SCE-UA has been widely used for inverse modeling of soil hydraulic parameters (Guo et 

al., 2013; Durner et al., 2008). Using the algorithm, we maximized the coefficient of 

determination (R2) at each soil node by adjusting the parameters. In accordance with CRNS’ 

penetration depth (eq. 8), simulation was carried out for top 250-300 mm soil profile.  

Root water uptake was simulated through Feddes Curve parameters (Feddes et al., 

1974). We used Landsat 7’sNormalized Difference Vegetation Index (NDVI) as a proxy for 

vegetation water content because of its high spatial resolution (30 m) and good temporal 

resolution (16 days).  We calculated two sets of parameters for low and high vegetation water 

content at each soil node. The availability of auxiliary dataset determined the period of 

simulation at each location, and the timestep was 30 min. It may be noted that we calculated 

three sets of parameters (Bare soil, Low Vegetation, High Vegetation) for each soil node at 

Riesel. 

We fixed the surface boundary conditions as atmospheric with surface runoff, using the 

ET data from the eddy covariance towers and precipitation from the rain gauges. We 

partitioned ET using suggested E/ET ratio (Kool et al., 2014). Since the water table is much 

deeper than the soil profile in all the locations, we kept free drainage as the bottom boundary 

condition. We kept the profile discretization at a single node every three 3cm. We calculated 
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van Genuchten-Maulem parameters for the months March, May, and July at Riesel, March, and 

May at Stiles farm and, May and July at TFPR (Table 2) accounting for any soil structural 

changes due to changing vegetation cover. 

We also determined soil hydraulic parameters using ROSETTA (Schaap et al. 2001). We 

obtained the soil textural classification from National Cooperative Soil Survey Characterization 

Data using ROSETTA. 

Table 2 Soil Hydraulic parameters from ROSETTA 

 

 

2.3.2 Simulation of Soil Moisture Content using Hydrus 2D   

To simulate soil moisture conditions in a cross section of the CRNS footprint, we cut a 

transect of length 600mthrough the field (Fig. 3) such that it included all soil nodes in the study 

area. The simulation was carried at a timestep of 360 min in a 600 m long and 0.3 m deep soil 

profile. We calculated the average slope utilizing a digital elevation model (~30m spatial 

resolution) prepared from National Elevation Dataset (NED) 2013. We distributed the material 

in the profile according to the electrical conductance (EC) dataset from the field campaigns (Fig. 

4).We considered atmospheric boundary conditions on the surface and free drainage along the 

bottom and sides of the profile.  
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Figure 3. Top view of profile and 3D elevation of a) Riesel, b) Stiles Farm and c) TFPR. Green Transect represents the cross 
section where the soil moisture is simulated 
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To set up the initial conditions, we assumed a linear distribution of soil moisture 

according to the depth, with top and bottom soil moisture contents obtained from the in-situ 

probes. We simulated the soil moisture content in the months of March, May, and July at 

Riesel, March, and May at Stiles farm and, May and July at TFPR (Fig. 14). After obtaining the 

soil moisture distribution across the transect cross section, we determined the profile average 

soil moisture θv in the CRNS footprint. The θv is then used to calibrate the CRNS. 

2.4 Calibration of CRNS 

The final neutron count is calibrated to soil moisture using the modified calibration 

function given by equation 7(Franz et al., 2013; Hawdon et al., 2014). 

𝜃𝑉 = (
0.808

(
𝑁

𝑁𝑜
) − 0.372

− 0.115 − 𝑤𝑙𝑡 − 𝑤𝑠𝑜𝑚)𝜌𝑏𝑑 

Where θv (m3/m3)is the volumetric soil moisture,ρbdis bulk density,N is corrected 

neutron count, No is the site specific neutron count for completely dried soil, wlt is the lattice 

water contained and wsom is water present in organic matter.Avery et al., (2013), has provided 

thewlt distribution for contiguous United States. We used Web Soil Survey (WSS) to 

gatherρbdand wsomdatafor all the sites. The penetration depth, z (cm) of the CRNS is given by 

Franz et al., 2013 (eq. 8). 

z =
5.8

𝜌𝑏𝑑
𝜌𝑤

(𝑤𝑙𝑡+𝑤𝑠𝑜𝑐)+𝜃𝑣+0.0829
 

We optimized the value of No by minimizing the least square error between numerically 

modeled soil moisture and the soil moisture obtained from the calibration function. In addition 

(7) 

(8) 
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to regular value of No, we subsetted the data using NDVI as a proxy for vegetation water 

content and calculated individual No for the high and low NDVI scenario (Table 3).   

2.5 Results 

2.5.1 Correction of Neutron Count 

Figure 4&5 shows the atmospheric, pressure and neutron intensity corrections for the 

three sites. The average neutron count rates increased in all three sites after application of the 

neutron correction factor (Fig. 6). Figure7 illustrates the reduction in uncertainty in all the three 

sites. The average corrected neutron count rate at Riesel, Stiles and TFPR is 768 Ch-1, 726 Ch-1 

and 795 is Ch-1 respectively whereas raw neutron count rate at the sites are 788 Ch-1, 707 Ch-1 

and 658 Ch-1.   

 

Figure 4 Cosmic ray intensity correction factor at MOISST, Oklahoma site 

 

 



 

20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Time series of a) atmospheric pressure correction (Cp) b) water vapor correction (Cwv) and c) raw neutron count (Nr) at the three sites
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Figure 6 Time series of corrected neutron Count (Nc) 

 

 

Figure 7 Comparison between corrected neutron count rate and raw neutron count rate in a) Riesel b) Stiles farm and c) TFPR 

 

 

2.5.2 Numerical Modeling of Soil Moisture Distribution  

Table 2 shows the optimized soil hydraulic parameters for the different vegetation 

covers as obtained from inverse modeling. For the ease of computation, we calculated effective 
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parameters for the whole soil profile without considering the changes in material as we go 

down the profile. Figure 8 shows the simulation results for different months.   

 

 

 

 

Figure 8 Comparison between simulated soil moisture and observed soil moisture during different time periods in a) Riesel b) 
Stiles farm and c) TFPR 
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Figure 8 Continued. 

 

As discussed earlier (Fig. 2), there seems to be an overestimation of field observed data 

in most of the soil nodes due to high clay content. Therefore, compared to ROSETTA 

parameters (Table 2) we noted higher than expected estimates of θs and θr (Table 3). Except for 

summer months in Riesel we ran the model for long periods of time at a small timestep of 30 
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min. As we had dataset for few months, to capture temporally short weather events, we kept 

the timestep small and did not average the values to a daily timescale. Hydrus 1D is less 

suitable for modeling transpiration driven long term fluctuation (Chen et al., 2014).Therefore, 

the results could not capture the peak values but adequately simulated the recession limb (Fig. 

8).  However, the low Root Mean Square Error (RMSE) values (Table 3) suggest that the model 

was able to account for the total water balance during the simulation run. At Stiles, the 

precipitation values may have not been reflected in the simulation run as they were obtained 

from the Raingauge at a different site. The optimization algorithm SCE-UA was driven by the R2 

values between observed and the simulated dataset. We got acceptable R2 for SN3 in Riesel and 

SN2 in Stiles, where the performance of the TDR probes is seemingly not affected by the clay 

content. We have calculated effective parameters only for the calibration of CRNS dataset. 

Generally, the value of soil hydraulic parameters does not change with time. Hence, values 

obtained in this study should not be used for long term hydrological studies in the region.   
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Table 3 Effective soil hydraulic parameters for the three sites during different months 

 

 

Figure 9 shows the water content in the cross section. We use the information to 

calculate the average value of volumetric water content in the cross section during the 

simulation period. Slope in the profile and root zone distribution, ensured that the model was 

driven by topography, ET and root water uptake in Riesel and Stiles (Fig. 9). Therefore, we can 

see considerable variation in soil moisture as the time progresses. Fig. 9 shows Riesel and Stiles 

with distinct wetting fronts. At Stiles there is a substantial difference between the soil hydraulic 

parameters. SN2 at Stiles is at a higher elevation and the soil moisture drawdown is high. 

Therefore, the profile looks different and we can see a transition zone in the middle. TFPR had a 

flat profile and only ET, root water uptake and drainage was responsible for water loss in TFPR. 

Therefore, the spatial variability seems to be conserved in TFPR for long periods of time. Like 

the inverse solution, Hydrus 2D simulations were unable to capture the peak values but could 

simulate the recession limb. 
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Figure 9 Soil Moisture distribution in the profile cross section(c/s) at a) Riesel, b) Stiles and c) TFPR obtained using Hydrus 2D 
simulations. TFPR has a straight profile as the slope is 0o. 
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Figure 9 Continued. 
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Figure 9 Continued.  
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2.5.3 Calibration of CRNS 

We optimized the value of the calibration parameter No for different values of NDVI at 

all the three sites by minimizing the RMSE between profile average volumetric soil moisture 

and soil moisture simulated using equation 7 (Fig. 10). Table 4 illustrates the performance of 

calibration and validation. The RMSE for calibration was slightly better than the validation. We 

observed low RMSE of (0.04-0.06 m3m-3) for calibration conducted during high NDVI scenario. 

At Riesel, for the bare soil or low vegetation scenario, the model-based calibration approach 

produced poorer results (RMSE=0.12 m3m-3). This may be due to the tillage performed before 

seeding which disrupted the topsoil matrix, hence increasing Ks (Reynolds et al., 1995). 

 

Table 4 NDVI dependent CRNS Calibration Parameter, No at the three sites 
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Figure 10  Relationship between Neutron Counting rate N in the CRNS (ch-1) and Soil moisture (θv) for a) Riesel, b) Stile and c) 
TFPR. Here i) N-θv relationship from the NDVI independent estimation of calibration parameter No ii) is the Time series of NDVI 

and iii) N-θv relationship from the NDVI dependent estimation of calibration parameter No 

 

 

 

a) 

 

 

 

i) 

iii) 

ii) 
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Figure 10 Continued.  

b) 

 

 

i) 

ii) 

iii) 
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Figure 10 Continued.  

 

 

 Figure 11 shows the vertical support of CRNS calculated using equation 8. As we can see 

due to perennially high moisture content, the vertical support depths at the three sites is 

between 10 cm – 15 cm (Fig. 11). As the mean modeled soil moisture is high at the three sites, 

c) 

 

i) 

ii) 

iii) 
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the sensing depth is shallow. Therefore, for calibration of the CRNS in similar soils, running the 

model at shallower depths is sufficient. 

 

Figure 11 Vertical support of CRNS at the three sites during the study period 
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As we can see from the Figure 12, even though the model was unable to capture the 

peak values, the calibrated sensors demonstrated higher variability in soil moisture estimation.  

The mean modeled soil moisture for the study period at Riesel is 0.47 m3m-3, Stiles is 0.42 m3m-

3and TFPR is 0.34 m3m-3. The mean CRNS derived soil moisture (θCRNS) using the NDVI 

independent No(eq. 7) for Riesel is 0.44 m3m-3,Stiles is 0.43 m3m-3 and TFPR is 0.33 m3m-3. Mean 

θCRNS obtained using the NDVI dependent estimate of No for Riesel, Stiles and TFPR is 0.43 m3m-

3, 0.4 m3m-3 and 0.32 m3m-3 respectively which is less than the θCRNS for all the sites when the 

NDVI is not considered. The difference in the values may be due to the additional signals from 

the vegetation water content that have not been considered during optimization of parameters 

without considering the NDVI changes.  

 

 

Figure 12 Comparison between Modeled Soil moisture, CRNS derived soil moisture using the regular raw neutron count (No) 
and CRNS derived soil moisture using NDVI dependent No 
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CHAPTER III  

VALIDATION OF CALIBRATED CRNS USING GRAVIMETRIC SOIL MOISTURE AND 

EVAPOTRANSPIRATION ESTIMATES 

In this chapter we discuss the validation of calibrated CRNS soil moisture products. 

Generally, gravimetric soil moisture calculated during different seasons is used for validation 

(Zreda et al., 2008; Hawdon et al., 2014). However, the process is particularly arduous in highly 

compacted clay soils. It is extremely, difficult to capture the complete range of soil moisture 

variation in these conditions. Therefore, exploiting the relationship between soil moisture and 

evapotranspiration (ET), we used ET products from eddy covariance towers and satellite 

measurements to validate our CNRS soil moisture products and cement the utility of our 

calibration procedure.  

3.1 Validation using Gravimetric Soil Moisture Measurements 

3.1.1 Field Campaigns 

We measured the electrical conductivity of soil at Riesel and Stiles using an 

electromagnetic induction sensor, EM-38 (Fig. 13). The spatial distribution of electrical 

conductivity was assumed to correlate with the water holding capacity of the soil due to high 

clay content (Williams et al., 1987; Grisso et al., 2005). The location of the permanent soil 

moisture nodes (Table 1) were determined based on their spatial distribution. As there is only 

one soil node at the TFPR, electrical conductivity analysis was not performed.  
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Figure 13  Electrical conductivity maps for (left) Riesel and (right) Stiles Farm for stratified sampling (TWO data repository). 
Higher conductance value corresponds to higher clay content in the soil 

 

 

To determine gravimetric soil moisture at all the sites two field campaigns were 

conducted at each site. We performed stratified random sampling at depths of 5 cm, 10 cm, 

and 15 cm using the soil electrical conductivity map in Riesel and Stiles. We collected soil and 

vegetation samples at 8-10 locations during each visit.  At TFPR we used radial sampling 

approach due to the absence of conductivity dataset. Therefore, we collected 14 samples at 3 

depths each in 6 radial directions. The gravimetric soil moisture was obtained by oven drying 

for 2 days at a temperature of 110oC.  
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3.2 Validation using ET from Satellite and Eddy Covariance Towers 

3.2.1 Background 

ET is a crucial component of the water cycle and the water budget equation. 

Quantification of ET is essential for irrigation water management, reservoir storage calculation, 

climate modeling, and disaster management. At field scale, better estimates are required to 

calculate crop water stress (Kirda et al., 2002, Rana et al., 1997). Agricultural drought 

monitoring is achieved using different ET based indices such as Evapotranspiration Deficit Index 

(ETDI) and Standardized Precipitation Evapotranspiration Index (SPEI) (Narsimhan et al., 2005; 

Vicente-Serrano et al., 2010). In urban areas where urban agriculture is gaining support, ET is 

used to determine the urban temperature changes (Qiu et al., 2013).  

The precise measurement of ET is a challenge. Generally, reference crop ET is 

determined using the crop coefficient (Kc) (Kashyap et al., 2001; Djaman et al., 2012). But 

significant uncertainties have been observed in the ET estimates using Kc (Allen et al., 2005).  

Instruments such as Lysimeters and eddy covariance towers have been used to estimate the 

real-time actual ET. However, these instruments are expensive and their installation of posits a 

challenge. Indirect methods such as energy balance method, water budget method and 

empirical relationship between soil moisture and ET can produce reliable dataset (Xu et al., 

2005; Allen et al. 2005; Allen et al. 2007). 

Land surface models are used to determine ET by conserving energy or water balance by 

combining various meteorological and hydrological variables (Wang et al., 2012). Remote 
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sensing using thermal infrared (TIR) and visible-near infrared (VNIR) bands, and ground-based 

sensors can determine these variables at continuous timescales (Mu et al., 2007; Mu et al., 

2011). Recently, energy-based Mapping ET at high Resolution with Internalized Calibration 

(METRIC) model which uses Landsat Thematic Mapper (TM) with weather station dataset can 

produce high-resolution estimates (Allen et al., 2007, Morton et al., 2013, Paco et al., 2014). 

Additionally, several algorithms have been developed using Moderate Resolution 

Spectroradiometer on Terra and Aqua (MODIS) satellites to prepare a repository of ET 

estimates at finer temporal resolution (Mu et al., 2007; Nagler et al., 2005;Mu et al., 2011). 

To predict ET from soil moisture estimates, relationships have been developed between 

the two variables (Wetzel et al., 1987, Vivoni et al., 2008, Rodríguez-Iturbe et al., 2007). Soil 

moisture is relatively easier to monitor using point scale instruments and therefore, can be 

used to produce ET dataset at high temporal resolution.  

3.2.2 METRIC Algorithm to Derive ET from Landsat-8 Thermal Sensors 

METRIC algorithm uses Surface Energy Balance (SEBAL) and calibrates it using ground-

based weather station dataset (Allen et al., 2007). The energy balance model SEBAL uses a near 

surface energy gradient (Bastiaanssen et al., 1995). ET can be calculated as the latent energy in 

the energy budget equation (eq. 9). 

LE = Rn – G – H  

Where LE = latent energy, Rn = net radiation, G = ground heat flux and H = sensible heat 

flux. METRIC prepares input for energy balance by combining ground based meteorological 

(9) 
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dataset (wind speed, relative humidity, temperature and net incoming radiation), with satellite 

derived parameters (DEM, NDVI etc.).  

 

 

Figure 14 Net radiation Rn at Riesel on 7/21/18 

 

 

3.2.2.1 Net Radiation 

Rn (Fig. 14) is calculated by subtracting incoming radiation from the outgoing radiation 

(eq. 10).  

Rn = RSi − αRSi + RLi − RLo − (1 − εo) RLi 

Where RS and RL are shortwave and longwave radiation, where i and j denotes incoming 

and outgoing radiation. εo is surface emissivity and α is surface albedo (Fig. 15). The ground-

based eddy covariance towers provide the incoming radiation data. Outgoing longwave 

(10) 

(11)

 

) 
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radiation is given by Stefan-Boltzman equation (eq. 11) 

RL= εo σTs4 

Ts is surface temperature calculated using landsat images (Markham and Barker 1986) 

and σ is Stefan Boltzman constant (5.67 X 10-8 Wm-2K-4). Tasumi (2003) provides an empirical 

equation to determine εo by Leaf Area Index, LAI (Fig. 17) (eq. 12). 

𝜀𝑜 = {
0.95 + 0.01𝐿𝐴𝐼, 𝐿𝐴𝐼 < 3

0.98         , 𝐿𝐴𝐼 ≥ 3
 

 

 Tasumi et al., (2007) provides calculation of surface albedo by integrating satellite 

reflectance from Landsat image with elevation from SRTM and humidity from the ground-based 

sensor (EWRI 2002).  

 

 

Figure 15 albedo, α at Riesel on 7/21/18 

 

(12) 
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3.2.2.2 Ground Heat Flux 

Bastiaanssen et al., (2000) developed an empirical equation to determine Ground heat 

flux, G (Fig. 16) using previously calculated Rn, Ts, α  and Landsat based NDVI (eq. 13). 

G = Ts (0.0038 + 0.0074α)(1 − 0.98NDVI4)Rn 

NDVI is calculated using Landsat Near Infra-Red (NIR) and Red Bands. It is a measure of 

greenness of plants which can be used as a proxy for vegetation cover (eq. 14).   

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

In Landsat 8, Band 4 and Band 3 corresponds to NIR and Red bands respectively. 

3.2.2.3 Sensible Heat Flux 

One-dimensional aerodynamic function is used to calculate sensible heat flux(H) (Tasumi 

et al., 2005) (eq. 15) 

𝐻 =
𝜌𝑎𝑖𝑟𝑐𝑝(𝑎 + 𝑏𝑇𝑠)

𝑟𝑎ℎ
 

 

(13) 

(14) 

(15) 
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Figure 16 Ground heat flux, G at Riesel on 7/21/18 

 

 

Where ρair is air density, cp is the specific heat capacity (1004 Jkg-1K-1) and rah is 

aerodynamic resistance to heat transport. a and b are image based empirical coefficients that 

can be calculated using hot and cold pixels where temperature difference is calculated using 

CIMEC (Calibration using Inverse Modeling at Extreme Conditions) procedure (Allen et al., 

2011). The cold pixel has high vegetation cover and hot pixels are the ones with dry bare soil. 

rah is a function of surface roughness, wind speed and vegetation height. We iteratively found 

the optimum no. of hot and cold pixels and (Bastiaanssen et al., 2000) which are then used to 

determine the sensible heat.  
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Figure 17 Leaf Area Index, LAI at Riesel on 7/21/18 

 

 

We compute LE using Rn, H and G using equation 1. The ET is calculated in mm/day at 

the satellite overpass by dividing the LE value by latent heat of vaporization (λ). For illustration 

purpose Figure 14, 15, 16, and 17 shows the calculation for Riesel during the satellite overpass 

on 21stJuly 2018. 

3.2.3 ET Derived from CRNS Measurements 

Rodriguez – Iturbe et al., (2007) developed a piecewise linear relationship between soil 

moisture and ET (eq. 17). 

 

𝐸𝑇(𝜃) =

{
  
 

  
 

0 0 < 𝜃 ≤ 𝜃ℎ

𝐸𝑤
𝜃 − 𝜃ℎ
𝜃𝑤 − 𝜃ℎ

𝜃ℎ < 𝜃 ≤ 𝜃𝑤

𝐸𝑤 + (𝐸𝑇𝑚𝑎𝑥 − 𝐸𝑤)
𝜃 − 𝜃ℎ
𝜃∗ − 𝜃𝑤

𝜃𝑤 < 𝜃 ≤ 𝜃∗

𝐸𝑇𝑚𝑎𝑥 𝜃∗ < 𝜃 ≤ 𝜃𝑝

 (16) 
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Where θh , θw, and θ* are hygroscopic, wilting point and plant water stress inflection 

point for respectively, Ew is soil evaporation, ETmax is maximum ET and 𝜃𝑝is pore water capacity 

of the soil which was assumed to be equal to saturated water content 𝜃𝑠obtained from inverse 

modelling calculations.We optimized the parameters in eq. 15 using SCE-UA (Duan et al., 1993). 

We minimized the RMSE between observed ET from Eddy covariance and simulated values (eq. 

16).We ran the simulation on daily timestep for better computational efficiency.  Although, 

SCE-UA is a single objective optimization algorithm, we gathered the variance of the simulated 

values, after each evolution cycle to make an informed decision regarding the parameters. The 

time period of simulation was set according to the availability of eddy covariance and CRNS 

dataset. 

3.3 Results 

3.3.1 Validation using In-Situ Gravimetric Samples  

We performed validation for Riesel on two days in the month of March and July while 

collecting and analyzing at least 8 samples during each visit. The RMSE between CRNS soil 

moisture (θCRNS) and water content of the oven dried soil (θd) is 0.04 approximately. At Stiles we 

collected the 6 samples in March and July each. The RMSE of validation for stiles is 0.035m3m-3.  

We collected 14 samples in TFPR in April (Fig. 23) and June each and found the RMSE to be 

approximately 0.04m3m-3. The value of soil moisture is overestimated by the CRNS in all cases. 

Results indicate the importance of including vegetation water content (here NDVI) in the 

model-based approach where calibration is performed on a continuous timescale.  
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Figure 18 The gravimetric soil samples being prepared for oven drying at 110 oC 

 

 

3.3.2 Validation using Satellite and Eddy Covariance based ET 

3.3.2.1 Calculation of Landsat based ET using METRIC algorithm 

Figure 19 illustrates the METRIC-ET in Riesel, TFPR and Stiles farm. The spatially 

averaged ET at Riesel, TFPR and Stiles farm was compared against the ET from Eddy Covariance 

towers present at the three sites. The RMSE at Riesel, Stiles and TFPR is 2.67 mm/day, 2.36 

mm/day and 2.6 mm/day respectively (Table5). The values are slightly higher than the previous 

studies which were conducted in different hydroclimates (Numata et al., 2007; Wagle et al., 

2017).  The highest values ET were calculated during the summer months when the 

temperature is highest at the three sites.  
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Figure 19 Landsat 8 ET estimates derived using METRIC algorithm at a) Riesel, b) Stiles, and c) TFPR 
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METRIC performed well during the spring and autumn season. The algorithm 

overestimated the values during summer months of May, June and July at all sites (Fig. 20). We 

observed low values of ET (0.31 mm/day on 6 March in Riesel, 0.4 mm/day on 19 June in TFPR) 

on some days, which may be have occurred due to the cloudy conditions during the satellite 

overpass. The accuracy of the model is subjected to the performance of meteorological sensors 

present at the site.  

 

 

Figure 20 Comparison between METRIC-ET and ET from eddy covariance towers at a) Riesel, b) Stiles, c) TFPR 

 

 

3.3.2.2 Comparison between CRNS-ET and METRIC ET 

Table 5 shows the optimized regression parameters used in the validation studies. Due 

to the soil texture the values were higher than expected. RMSE between the observed and 

simulated values at Riesel, Stiles and TFPR are slightly higher than in the previous studies 

(Vivoni et al., 2008; Schreiner-McGraw et al., 2016). Comparatively, Stiles had the lowest overall 

ET, consistent with low θCRNS values at the site. It must be noted that the values are only to 

validate the performance of the sensors as the regression model is developed for point scale 

dataset (Rodriguez-Iturbe et al2007). Figure 21 illustrates the comparison between the three ET 
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estimates. The CRNS-ET replicated EC-ET better than the METRIC-ET. In figure 21 we see fewer 

values of METRIC ET in Stiles and TFPR due to limited availability of corrected CRNS dataset. But 

we compared the complete METRIC-ET and CRNS-ET dataset (Table 6) irrespective of time 

period to test the efficacy of CRNS using ET as a proxy.  

Table 5 Regression Parameters for nonlinear piecewise relationship between θCRNS and ET from eddy covariance stations at the 
three sites 

 

Table 6 shows the comparison between CRNS-ET and METRIC ET.  We observe a 

reduction of 30-50% in RMSE at all three sites cementing the utility of CRNS for improving the 

estimates. Therefore, the performance of CRNS-ET at all three sites is better than the METRIC-

ET. The better estimates prove the validity of our model-based calibration approach for CRNS.  

Table 6 Comparison between CRNS-ET and METRIC-ET 
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Figure 21 ET at a) Riesel, b) Stiles and c) TFPR  from EC Towers, derived from CRNS using piecewise linear regression and Landsat using METRIC algorithm 
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CHAPTER IV 

SUMMARY AND CONCLUSION 

In this study, we calibrated the CRNS for mixed land use/landcover in Lower Brazos River 

Basin by numerical simulation of soil moisture dynamics in Hydrus 2D framework. We used SCE-

UA to optimize vegetation based effective soil hydraulic parameters by minimizing the 

difference between numerically simulated and observed soil moisture from the soil moisture 

probes at the site. We calculated vegetation-based calibration parameter No to determine 

θCRNS. We observed a higher variability in θCRNS compared to the θModel. Thus, the complete 

distribution of soil moisture in the study period was captured by CRNS.  We validated the values 

making use of a state variable, θ and atmospheric forcing, ET. We compared θCRNS with in-situ 

soil moisture from various field campaigns and found satisfactory results. We derived ET, CRNS 

estimates using piecewise linear regression (eq. 16) and validated it against the ET estimates 

from Landsat 8 gathered by using METRIC algorithm. The CRNS improved the results 

considerably proving the utility of our calibration approach.  Traditional validation using 

gravimetric soil moisture performed well in TFPR (Managed Prairie) and Stiles (Traditional 

Prairie) with RMSE ranging from 0.039m3m-3-0.044 m3m-3. The method did not produce 

satisfactory results at Riesel (Traditional Agriculture) further necessitating the study on the 

effects of vegetation on the CRNS signals.  

 In addition to that, we calculated the time series of the penetration depth of the CRNS 

using which can serve as a platform for future calibration studies on similar soils and land 
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use/land cover types. We were able to achieve our objective to cut short the laborious process 

involved in the in-situ calibration of CRNS.   

In Texas, recent prolonged drought periods have compelled farmers to switch to sensor 

driven agriculture (Weiser 2015). Real time estimation of soil moisture is an important part of 

this change. However, poor performance of the in-situ soil moisture sensors in soils with high 

clay content can be a challenge contributing towards bad farm practices. Satellite estimates 

have a coarse resolution and continuous estimation is a challenge. Therefore, CRNS presents 

itself as a novel method to non-invasively determine soil moisture at a farm support scale. 

Model based and vegetation dependent calibration approach has proven that its usefulness in 

providing good observations. We have shown, even if our model is not up to the mark, if we can 

make an educated guess regarding the calibration parameters, we can achieve reliable 

estimates of soil moisture from the sensors. But there is still, a lot of room for improvement. 

The vegetation water content which contributes significantly towards the signal should be 

characterized and removed for better performance of CRNS.  
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