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ABSTRACT

Uncertainty quantification and its propagation across multi-scale model/experiment chains are

key elements of decision-based materials design in the framework of Integrated Computational

Materials Engineering. In this context, understanding the sources of uncertainty and their quan-

tification can provide a confidence for the applicability of models for decision making in materials

design, which is generally overlooked in the field of materials science.

Based on the above mentioned motivation, different case studies are considered in this work

to indicate how Bayesian inverse uncertainty quantification and forward uncertainty propagation

approaches operate in various applications and procedure conditions. In this dissertation, inverse

uncertainty quantification of model parameters is performed through a Markov Chain Monte Carlo

approach; and all propagation of uncertainties from model parameters to model responses are ac-

complished through the first order second moment approach and/or the forward model analysis

of parameters sampled from the posterior probability distribution after the parameter probabilistic

calibrations. Moreover, different information fusion approaches are proposed here to smartly com-

bine the probabilistic information obtained from different sources of information for more precise

probabilistic predictions of physical systems behaviors.

This dissertation starts with the importance of uncertainty quantification for product design

and engineering. This is followed by some fundamentals about different sources of uncertain-

ties, different statistical views and approaches for uncertainty quantification and propagation in

computational modeling, and the previous work in literature for uncertainty quantification and

propagation in materials science problems. Then, uncertainties are evaluated in the case of plastic

flow behavior modeling of transformation induced plasticity steels using two different procedures

of data training, including sequential training with each experimental data as independent evidence

and simultaneous training of all data together as overall evidence. A multi-objective probabilistic

calibration of an Ni-Ti precipitation model in MatCalc c© are also performed against all experimen-

tal data simultaneously to quantify the uncertainties of resulting micro-structural features from the
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model. It should be noted that an empirical relationship for matrix/precipitate inter-facial energy

in terms of aging temperature and nominal composition have also been introduced according to

the values of inter-facial energy obtained from the model calibration with each given experimental

data individually. However, large discrepancies and uncertainties obtained for model results are

important reasons to apply co-kriging surrogate modeling for more precise prediction of precipi-

tation behavior and its uncertainty based on the establishment of a linear correlation between the

experimental responses and the fitted surrogate model over the results of the precipitation model.

In addition, a constrained probabilistic calibration is carried out for a thermo-mechanical model

using a distance based comparison metric of transformation strain-temperature curves. In this

case, a design of experiment followed by a variance-based sensitivity analysis are also performed

to identify the most influential model parameters before the calibration. Uncertainty quantification

in the calculation of Hf-Si binary phase diagram are also discussed in this dissertation. In this

case, Bayesian model averaging and an error correlation-based model fusion are also applied to

combine all the results obtained from randomly generated models together to make the calculation

of phase diagrams more objective rather than being subjective to the expert opinions for the model

selection. In the end, the major efforts for uncertainty quantification of thermodynamic properties

and phase diagrams are reviewed.

For future work, the probabilistic calibration of the influential parameters in expensive models

(such as phase field models) can be performed through the efficient global optimization approach.

In these cases, the uncertainty propagation of parameters to the model responses through an effi-

cient method is also very important. Moreover, the proposed information fusion approaches can be

applied to combine the model and experimental results for the efficient optimization cases (such

as efficient global optimization or knowledge gradient) since the fused responses can be more ben-

eficial than just physical models/simulations in solving the inverse problems in materials design

under the Integrated Computational Materials Engineering framework.
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1. INTRODUCTION

uncertainty quantification (UQ) is all about the determination of bounds on the behavioral pre-

dictions of the system of interest, which can provide confidence for decision making in the context

of robust or reliability-based design. UQ in modeling play and important role in materials design

under the framework of Integrated Computational Materials Engineering (ICME) where computa-

tional models/simulations and experiments that are applied to close the process-structure-property-

performance loop are systematically combined together in order to obtain the alloy and processing

specifications required for the desirable performance in a system. Generally, UQ incorporates the

detection of uncertainty sources and the development of corresponding appropriate mathematical

approaches to calculate the error bounds for any quantity of interest in models [1, 2].

Traditionally, predictions in computational modeling in the field of materials science and engi-

neering are deterministic, which result from the application of the deterministic approaches, such

as least squares, for the parameter calibrations. In these approaches, a single estimate is obtained

for each model parameter based on the available data for the system of interest. However, in

practice, different combinations of the parameter values may result in similar values of the model

predictions, which can have the chances to be the optimum parameter values in the probabilistic

point of view. Since just one of these combinations are introduced in the deterministic approaches

and the rest are ignored, the corresponding predictions cannot provide useful information for ro-

bust or reliability-based design due to the absence of uncertainty bounds on the model predictions.

However, the probabilistic approaches can find a group of possible parameter combinations in the

form of probability distributions which can be translated into the probability distributions for the

model predictions through the propagation of uncertainty. The probabilistic evaluation of models

can provide some useful information for robust materials design where the predictions should be

independent of the parameter/input variable variations in the system. Therefore, the values of the

design parameters/input variables are selected such that their noises have very small influences on

the system responses (predictions). In addition, the importance of UQ for reliable designs can be
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comprehended through the schematic illustrations in Figure 1.1. As can be observed in this figure,

the reliable design region (green region) in the total design input/output space is determined by

finding the furthest region from the boundaries for the allowable design regions (red line) or from

the uncertainty bounds around these boundaries in the deterministic or probabilistic point of view,

respectively. For instance, the allowable design region can be defined as a region in the multi-

dimensional space of temperature-time-heating and cooling rate for the heat treatment of a given

alloy that allows or prevents the formation of specific micro-structural phases. In probabilistic

view, the reliable design region is not necessarily in the center of the allowable design region as

it is in the deterministic way, since the confidence intervals can change across the boundaries, as

shown in Figure 1.1(b). Therefore, the region proposed by the deterministic view may intersect

the uncertainty bounds around the boundaries which implies the possibility of having the design

outside of the allowable region.

Figure 1.1: The schematic illustrations of reliable designs in deterministic and probabilistic point
of view

The importance of UQ can be discussed in the context of safety factor in design which is one

of the major design factors to prevent the failure of the system. In deterministic approaches, the

safety factors are usually determined based on the degree of concern about the detrimental effects

of the system failure; however, very high values are usually selected for this factor that might not
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be always necessary in design. On the other hand, the generation of confidence bounds in prob-

abilistic approaches can provide better estimations of the safety factors that can generally lead to

cost reduction in design. For more clarification, the deterministic and probabilistic approaches to

determine the safety factor for a load-bearing material/structure have been shown in Figure 1.2. As

can be observed in Figure 1.2(a), safety factors that have been standardized based on the degree of

concern in design are considered for both calculated load and strength (resistance) in the determin-

istic methods in order to find final design load and resistance. If the final design resistance is larger

than the final design load, the safety requirements in design are fulfilled; otherwise, the strength of

the material/structure must increase further. However, the considerations of load and resistance as

the random variables in the form of the probability distributions can be very useful for better esti-

mation of the safety factor. In this probabilistic scheme, less intersection area (blue hatched area

in Figure 1.2(b)) is equivalent to safer design since the probability of failure, i.e. resistance < load,

reduces. Therefore, the safety factor can be determined by defining a maximum allowable inter-

section area based on the degree of concern in design. As a result, the probabilistic approaches can

provide more precise and less conservative safety factor compared to the deterministic approaches

which can reduce the design cost.

Before proceeding our discussion of UQ in computational modelling of materials, it is also

important to know what are the sources of uncertainties. The sources of uncertainty are generally

classified in different ways; however, there are two broad categories for uncertainty based on the

capability for uncertainty reduction, known as aleatoric and epistemic uncertainty [1]. Aleatoric

uncertainty refers to the inherent random error in a system that results in a frequency (probabil-

ity) distribution for the response of the system. This type of uncertainty is measurable, but not

reducible by the current available technologies. on the other hand, epistemic uncertainty describes

the controllable and reducible errors in the system that result from the lack and/or inaccuracy of

information. This discussion about aleatoric and epistemic uncertainty can become more clear in

their analogy to accuracy and precision in target shooting. As shown in Figure 1.3, the devia-

tions of the shots from the target center and the amounts of their dispersion indicate aleatoric and
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Figure 1.2: The comparison between the deterministic and probabilistic approaches in the deter-
mination of the safety factor in materials or structural design
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epistemic uncertainty, respectively. It can be observed that these two sources of uncertainty can

have different contributions (small or large) to the overall uncertainty. It should also be noted that

the epistemic uncertainties shown in the figure can be identified and reduced by aiming the point

symmetry of the center of the shots on target rather than the target center; in contrast, aleatoric un-

certainties are measurable, but not reducible (see Section 6.3 for more explanations about aleatoric

and epistemic sources of uncertainty).

Figure 1.3: The analogy between precision/accuracy and aleatoric/epistemic uncertainty.
Reprinted with permission from [2].

It is worth noting that the sources of uncertainty in computational modeling can be classified

in more details as: 1) natural uncertainty (NU) that is again the the inherent random error in the

system, 2) model parameter uncertainty (MPU) that is the error corresponding to the incomplete

or inaccurate knowledge about the model parameters, 3) propagated uncertainty (PU) that refers to

the error propagating in a chain of multi-scale models, and 4) model structure uncertainty (MSU)
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that results from the lack of knowledge about the underlying physics of the system, simplifications,

inaccurate assumptions, and/or numerical errors [3].

The main goal of UQ in the computational modeling is to determine the uncertainties asso-

ciated with models and their predictions. In this regard, the quantification process of the over-

all uncertainties reflected on model parameters and predictions are known as inverse uncertainty

quantification and forward uncertainty propagation that will be referred as UQ and UP in this dis-

sertation, respectively. The inverse UQ of the model parameters given data can be evaluated in

two different statistical perspectives, i.e. Frequentist and Bayesian, which are explained in detail

in Section 6.3.2. However, it can be briefly stated that the Frequentist view defines the probabil-

ity as the rate of occurrence (frequency) of an event during a long-term observation or numerous

replications of a particular measurement, while the Bayesian prospective describes the probability

based on the degree of belief about the occurrence of an event which can be determined through

the combination of the prior knowledge and any new data about the event. Based on these defi-

nitions, data is considered a random variable while the parameters are fixed (with noises) in the

Frequentist methods. An opposite view is taken into account for the Bayesian approaches, i.e.

fixed data coupled with parameters as random variables. The consideration of prior knowledge

in the context of Bayes’ theorem differentiates the Bayesian statistical view from its Frequen-

tist counterpart. The presence of prior makes the Bayesian inference subjective that is the main

criticism from the Frequentist point of view since wrong prior knowledge can be misleading in

statistical inference. However, The true definition of prior probability distribution in Bayesian ap-

proaches can be beneficial in statistical inference. The focus of this dissertation is mostly on the

Bayesian UQ in materials computational science. Among Bayesian approaches, Markov Chain

Monte Carlo (MCMC) algorithms are the powerful techniques that are increasingly applied in UQ

of different science and engineering problems nowadays due to the advent of faster computing

capabilities [4]. In contrast to conventional numerical and analytical methods, MCMC sampling

techniques can be more simple and robust in solving high-dimensional intractable integrals [5, 6].

MCMC techniques also have the ability to sample from very complicated multi-variate distribu-
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tions which is very difficult to do using the traditional sampling approaches, such as rejection or

inversion sampling [6]. There are two commonly used MCMC approaches known as Gibbs sam-

pling and Metropolis-Hastings whose similarities and differences are discussed in Sections 3.2 and

6.3.2.2. In this dissertation, a Metropolis-Hastings algorithm has been used for the probabilistic

calibrations of a plastic flow behavior model for transformation induced plasticity (TRIP) steels,

an Ni-Ti precipitation model in MatCalc c©, a thermo-mechanical model for the strain-temperature

hysteresis loop in Ni-Ti shape memory alloys (SMAs) and CALPHAD models against their cor-

responding experimental or calculated data. The details of the applied method has been explained

thoroughly in Sections 2.3.3, 3.3.2.1, 4.5.1 and 5.4.1. UP from model parameters to outcomes or

across a chain of multi-level models in the ICME framework is also an important task for UQ of

model predictions, which can generally be performed through analytical or numerical approaches,

which are discussed in Section 6.3.1. Briefly, analytical approaches take advantage of surrogate

models to propagate the uncertainties, such as first order second moment (FOSM) and second order

second moment (SOSM) of the approximated model through Taylor expansion (see Section 4.5.2),

Polynomial Chaos Expansion (PCE) and Gaussian process (GP) regression (see Section 3.3.3). On

the other hand, numerical approaches, e.g. Monte Carlo simulations, propagate the uncertainties

through the model predictions at discrete sampled points in the parameter space. Generally, an-

alytical approaches are cheaper and faster but not as precise as numerical approaches, which are

often applied in the case of expensive models.

It is also important to state that the application of MCMC sampling approaches in inverse UQ

is usually very costly, especially when a high-dimensional parameter space exists. Therefore, a

systematic reduction in the number of the model parameters can considerably increase the effi-

ciency of the MCMC sampling approaches. For this reason, a parameter sensitivity analysis (SA)

can be performed before MCMC sampling in order to find the most influential model parameters

whose variations have the highest impacts on the total variations of the model predictions [7].

The most common used approach for the process of finding the most influential model parameters

is known as Design of experiments (DOE) that includes a description of experiments (e.g. com-
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plete/fractional factorial design (CFD/FFD)) followed by an analysis of the experiments (e.g., anal-

ysis Of variance (ANOVA)). CFD/FFD which was pioneered by Fisher [8] (see Section 4.4.1 for

more detailed explanation) is used to consider the model predictions associated with all/fractional

combinations of the levels assigned for the parameters in the subsequent ANOVA hypothesis test-

ing for sensitivity analysis. ANOVA is a powerful variance based sensitivity analysis (VBSA) with

no limitations in the number of parameters/factors, which performs the sensitivity testings based

on the contributions of the individual parameters and their interactions to the total uncertainties of

the model predictions (see Section 4.4.2 and Appendix A for more detailed explanation).

Another important discussion in this dissertation is how to fuse different sources of informa-

tion (models) together to not lose any useful information about the system in the case that several

competing models or models with different fidelities and costs are available to describe the same

physical phenomenon. Generally, it is difficult and sometimes expensive to decide about which

model should be applied in our design problems such that a reasonable balance between precision

and cost is obtained. However, if the probabilistic information is appropriately gained from these

models (considering the design budget) and smartly combined together, the fused model can proba-

bly provide more robust or accurate information for decision making in materials design compared

to just using one of the models. The reason is the fact that all the physically reasonable models

potentially have useful information to some extent which can contribute to better behavioral pre-

dictions of the given system [9–11]. It should be noted that the probabilistic information can be

gained through various probabilistic calibration approaches, such as the mentioned MCMC meth-

ods or kriging/Gaussian process (GP) surrogate modeling in the presence of expensive physical

models/simulations. Among information fusion approaches, Bayesian model averaging (BMA),

co-kriging and error correlation based approaches are the focus of this dissertation which are briefly

discussed here. Co-kriging approach was proposed by Kennedy and O’Hagan [12] in 2000, which

is an extension of Gaussian Process surrogate modeling where a stochastic process is fitted to the

existing data points based on a distance-based correlation between the errors associated with these

data points. In this information fusion approach, any two consecutive models in fidelity order are
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correlated through a linear relationship. In this context, the response of the model with higher

fidelity is estimated through the multiplication of a constant linear coefficient by the response of

a GP fitted over the data points of the model with lower fidelity, plus a constant term (the error or

discrepancy terms) that is defined by another GP surrogate model. It should be noted that the linear

coefficient is optimized with the other hyper-parameters during the co-kriging process [3, 13]. In

the end, the statistical combination of the two GP models results in a co-kriging model over the data

points of the model with higher fidelity. In this combination, a co-variance matrix is constructed

from the correlation between the errors of the low- and high-fidelity data points and their inter-

actions which leads to a more precise surrogate model with less uncertainties compared to a GP

surrogate model [12, 13]. More detailed explanations can be found in Section 3.3.3 about kriging

and co-kriging surrogate modeling. BMA is a weighted average approach based on Bayes’ factor

proposed by Jeffreys [14] that shows the evidence in favor of each given hypothesis or model. In

this approach, the weight of each model is the posterior of that model given the existing data, i.e.,

P (M |D), which can be calculated using the Bayes’ factor (see Section 5.4.2 for more details). Be-

sides building a new model by taking the weighted average of all given models, BMA can provide

larger confidence bounds around the average predictions which can be useful for the safety-critical

applications where a highly conservative robust design is required. However, the models in BMA

are assumed to be statistically independent from each other that is not always the case. Therefore,

an information fusion approach that considers some sorts of correlations between models can be

beneficial in the presence of correlated models. In this regard, Allaire and Willcox [10] developed

an error correlation based model fusion (CMF) that constructs a fused model using the correla-

tion between the discrepancies (errors) of models in the form of a co-variance matrix (see Section

5.4.3). The error correlations in this information fusion approach yields a fused model with less

uncertainties (more precision) compared to any applied individual model.

In spite of the importance of UQ/UP in materials design under the ICME framework, there

are very few UQ works in materials science and engineering so far which have been reviewed

by Chernatynskiy et al. [2] in two different scales, i.e., UQ in electronic/atomic-level and multi-
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level simulations. These efforts are briefly described in Section 5.2. Few existing UQ works in

literature specifically about thermo-mechnical modeling of SMAs are also mentioned in Section

4.2. In addition, the important efforts associated with UQ in CALPHAD are thoroughly reviewed

in Chapter 6 and Section 5.2.

In this dissertation, a complete systematic analysis of UQ/UP is demonstrated using various

computational models in materials science and engineering. Different information fusion ap-

proaches are also introduced to the community, which is very useful in most of the computational

materials problems since there are usually different models/simulations with different fidelities and

costs that try to explain the same physical phenomenon.
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2. USING BAYESIAN FRAMEWORK TO CALIBRATE A PHYSICALLY BASED MODEL

DESCRIBING STRAIN-STRESS BEHAVIOR OF TRIP STEELS ∗

2.1 Overview

Often times, the development of physical models of materials behavior is hindered not only

by the incompleteness of the theoretical approach, but also by uncertainties that arise from limi-

tations in the experimental observations used to validate and calibrate these models. In this work,

we present a Bayesian framework for both the calibration of physical models as well as the quan-

tification of likely uncertainty in experimental observations and apply it to a model for the plastic

response of multi-phase Transformation Induced Plasticity (TRIP) steels. The model is based on

a formulation of irreversible thermodynamics of plastic deformation and accounts for the pres-

ence of multiple phases through homogenization theories based on the iso-work approximation.

Bayesian calibration through Metropolis-Hastings Markov Chain Monte Carlo has been used to

calibrate a subset of the model parameters against experimental data sequentially and simultane-

ously. The calibrated parameters obtained from sequential training were in turn used to assess the

uncertainty in a subset of experimental data-i.e. phase volume fractions-used as input to the models

themselves. The viability of the calibration approach has also been examined using synthetic data

generated from simultaneous calibrated model.

2.2 Introduction

The requirements for better manufacturability, higher safety, and lower fuel consumption in the

automotive industry have led to the development of advanced materials, such as TRIP steels [15–

18]. Generally, TRIP steels are considered as composite steels that contain different phases: ferrite

as the matrix with bainite, retained austenite, and/or martensite inclusions [19,20]. The presence of

retained austenite in the microstructure of these low alloy steels can give an enhanced combination

∗Reprinted with permission from "Using Bayesian framework to calibrate a physically based model describing
strain-stress behavior of TRIP steels" by Pejman Honarmandi, Raymundo Arroyave, 2017. Computational Materials
Science, 129:66-81, Copyright 2017 by Elsevier B.V. or its licensors or contributors
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of strength and fracture toughness. This results from high strain hardening that occurs during

plastic deformation by strain-induced martensitic transformation (SIM) [21–24]. SIM behavior

is directly related to the stability of the retained austenite and mainly influenced by its volume

fraction, grain size, and carbon content [20].

Either to rationalize observations or to assist in the design of novel TRIP steel alloying and

thermo-mechanical processing protocols it is necessary to develop physically motivated models

that account for the effects of phase and chemical constitution on plastic deformation [25]. How-

ever, to date, work to address this challenge is rather limited [26] due to the modeling complexities

that arise when considering the contribution of different phases to the overall mechanical response

of these complex microstructures, in addition to phenomena associated with SIM.

In this regard, Bouquerel et al. [27] proposed a physical micromechanical method based on

Mecking-Kocks theory for plastic flow behavior of each individual microstructural phase, and

combined them using a Gladman-type mixture law. Moreover, they used a modified Olsen-Cohen

approach to model SIM [27]. Perlade et al. [28] also suggested another physically-based model

that considers the effects of morphology and chemical composition of each phase on stress-strain

behavior, and subsequently homogenized the flow behavior of all the phases using the iso-work

hypothesis. A generalized Olsen-Cohen was also applied to treat SIM in that work [28]. In some

other related studies, dual or multi-phase microstructures with phase volume fraction evolutions

have been assumed in the framework of constitutive models [26] or mean field approaches [25,29]

in order to predict stress-strain partitioning within microstructural phases. In addition, there is

a lot of models for describing the mechanical behavior of structural materials undergoing SIM,

pioneered by Zackay et al. [30], Olsen-Cohen [31], and Olson and Azrin [32]. Among recent

studies, Tomita’s constitutive equation in terms of applied stress, strain rate and temperature [33],

Thibaud’s phenomenological approach [34], and Han’s kinetic model [18] based on martensitic

variant selection through the Kurdjumov-Sachs orientation relationship are good examples of SIM

modeling investigations.

The examples of physically motivated mechanical models provided above, as well as many
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others not discussed in this work for lack of space, are always subject to limitations inherent in

the theoretical and simulation frameworks used, as well as in the uncertainty associated with the

experimental observations used to parameterized and/or validate such models. Models are naturally

limited in that it is usually the case that not all relevant physical phenomena are accounted for in

a given formulation. Further limitations arise from the need to compromise between the need

for facile implementation and execution of such models versus the need to accurately represent

the microstructural features ultimately responsible for the mechanical behavior of the systems

under study-i.e., the tension between analytical vs microstructure-sensitive approaches. Further

limitations arise from limitations in the experimental observations themselves, as it is often the case

that a considerable fraction of the inputs to the models are in turn determined by characterization

techniques that are either limited in their accuracy/resolution or that are costly in resources.

Most approaches to model calibration (parameterization)/validation either do not account for

uncertainties in the models and/or experiments and treat the exercise as a purely deterministic one.

While such an approach provides valuable insight into the qualitative response of a physically-

based model, the neglect of uncertainty quantification limits the power of the models as it is not

possible to establish confidence bounds to the estimated response of the system. Furthermore, ne-

glect of UQ makes it harder to determine in a quantitative manner the value derived from specific

experimental observations either based on whether such observations can be used to reduce the

model and/or experimental uncertainty. Additionally, neglect of UQ makes it difficult to deploy

the models in materials design/optimization frameworks that account for uncertainty-e.g. robust

design. Finally, we would like to note that UQ can be used to estimate values for physical fea-

tures/parameters of a system that are difficult to determine experimentally.

In the context of UQ, the relevant uncertainties can result from different sources: (1) inherent

uncertainty of a physical system, (2) model parameter uncertainty due to lack of knowledge/data

about parameters, (3) propagated uncertainty in the case of a sequence of models, and (4) model

structure uncertainty owing to the lack of physics in the models. Among these uncertainties, the

quantification of the model uncertainty is usually the hardest one because of limited knowledge
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about the physical systems and inaccurate experimental data. This uncertainty quantification in-

cludes the model calibrations with data [3], which is often disregarded or performed superficially

in most materials modeling.

It has been found [35] that the Bayesian approach based on Markov Chain Monte Carlo (MCMC)

techniques is highly robust compared to other methods for parameter estimation. In fact, MCMC

methods resolve the issue associated with the parameter calibration of complex non-linear mod-

els, which usually fail using traditional statistical methods [36]. In the case of multi-level mod-

els, Browne and Draper [37] indicated that the MCMC-based Bayesian approaches can provide

better calibration compared to different likelihood-based methods, i.e. maximum likelihood (ML),

marginal quasi-likelihood (MQL), penalized quasi-likelihood (PQL), and restricted maximum like-

lihood (REML).

In the current computational work, Rivera [38] and Haidemenopoulos [39] models have been

applied to simulate the plastic flow behavior of multiple phases and SIM within dispersed retained

austenite, respectively, to account for the mechanical deformation of multi-phase TRIP steel. In the

first model, the dislocation density evolution for any individual phase is determined using a thermo-

statistical theory of plasticity, and overall plastic flow behavior has subsequently been estimated

through an iso-work approximation. This approximation realizes the coupling among multiple

phases by assuming that the work of deformation is equally partitioned among all phases in the

microstructure at any strain interval. The model that accounts for SIM in turn can be considered

as a modified Olson-Cohen model for the distribution of nucleation site potency, which predicts

the SIM behavior in terms of austenite particle size, austenite chemical composition, and stress

triaxiality. These models are applied as case studies for the introduction of Bayesian parameter

calibration based on Metropolis-Hastings MCMC algorithm, which is our main direction in this

paper.
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2.3 Models and Methodology

2.3.1 Microstructural evolution during plastic deformation

In this model, shear stress for each microstructural phase (i) is defined in terms of the contri-

bution of the following mechanisms [40]:

τi = τ0 + τs + τb +
√
τ 2
in + τ 2

p (2.1)

where τ0, τs, τb, τin, and τp are Peierls force, solid solution strengthening, long-range back

stress, dislocation strengthening, and precipitation strengthening contributions within phase i, re-

spectively. Here, τ0 and τs are dependent on chemical compositions of each phase through the

existing empirical equations [41–43]. The following relationships have also been proposed for τb

and τp [40]:

τb =
µb

D
n =

µb

D
nmax

(
1− exp(− λ

bnmax
γ)
)

(2.2)

τp ∼= 0.6µb

√
fν
R

(2.3)

In which l is the shear modulus, b is the Burger’s vector magnitude, D is the grain size, n

is the evolution of piled-up dislocations at the grain boundaries in terms of shear strain (γ), n∗

is the maximum possible number of piled-up dislocations, λ is the average spacing between slip

planes at the grain boundaries, fν is the precipitate, volume fraction, and R is the mean radius of

precipitates.

τin is defined by Rivera’s model [38] based on dislocation density evolution of individual

phases during plastic deformation which is described as the difference between the dislocation

generation and annihilation rates according to Kocks and Mecking theory [44]:

dρ(γ)

dγ
=
dρ+(γ)

dγ
− dρ−(γ)

dγ
(2.4)
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The dislocation storage rate is proportional to the mean free path for dislocations which in-

corporates the effects of dislocation-dislocation (Λ−1
pure) and solute atom-dislocation interactions,

including substitutional (Λ−1
subs) and interstitial solute atoms (Λ−1

inter) effects:

dρ+(γ)

dγ
=

1

b
(

1

Λpure

+
1

Λsubs

+
1

Λinter

) (2.5)

Λ−1
pure = K1

√
ρ, Λ−1

subs = Kss
√
ρ, and Λ−1

inter = x
1/3
c Λ−1

pure. µ0 is the shear modulus at 0 K, xi is

the atomic fraction of element i, and ∆Gsys is the free energy of the applied alloy [44].

The dislocation annihilation rate due to dynamic recovery is also expressed as follows:

dρ−(γ)

dγ
= fDRV ρ(γ) (2.6)

where fDRV is the dynamic recovery coefficient. This can be determined by considering the

dislocation annihilation energy barrier ∆G, which contains the formation energy associated with

the annihilating dislocation segment with the length of l, the migration energy of this segment

during slip, the contribution of vacancy energy for the dislocation annihilation (especially at high

temperatures), the energy term associated with dislocation-substitutional solute atom interaction,

and the contribution of statistical entropy that takes account of the number of possible dislocation

migration paths [38, 44], as follows:

∆G(l) =
b

l
(Uform + Umig + Uvac + Uss − T∆S)

=
b

l

[
1

2
µb2l + σYAactb

2l +
Vsys
b3

δ(T )(Ef + kBT ln(cm))

+ Vsys
1

b3

∑
i

xi∆Gsys − kBT ln(Ω)

] (2.7)

where σY , Aact , δ(T ), and Ef are the yield stress, the activation area associated with dis-

location cross slip, a continuum piece-wise function in terms of temperature, and the vacancy

formation energy, respectively. Vsys = bl∗l is the annihilating system volume per dislocation,

which is proportional to the length of dislocation distortion field over the slip plane, l∗. This pa-
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rameter is approximated by 12.5b. cm = exp(
−∆Sform

R
)exp(

−Ef

RTm
) is the vacancy concentration at

melting temperature, where ∆Sform is the vacancy formation entropy. With regards to the entropy

term, dislocation slip and climb are considered to calculate the total number of micro-states in

the microstructure. In pure materials, Ωpure = Ωdis + Ων−d =
(
C
〈ν〉 + Cint

〈ν〉

)N
=
(
ε̇0
ε̇

+ ϑ
ε̇

)N
in which C, Cint, 〈ν〉, ε̇, and ε̇0 are the sound speed in the material, the effect of vacancies on

dislocation annihilation velocity, dislocation average velocity during annihilation process, axial

strain rate, and the maximum possible strain rate in the material, respectively. It should be noted

that Cint = ϑ
bρY

and ε̇0 = CbρY where ρY =
(

σY
0.9µb

)2

is the dislocation density correspond-

ing to the yield point. Moreover, N is associated with the impingement effect resulting from

the overlap of contiguous dislocations strain fields, and ϑ = ϑDexp(−Em

RT
) is the frequency for

vacancy migration in which ϑD = 1013s−1 is Debye frequency and Em is the vacancy migra-

tion energy. Considering the effect of solid solution solute atoms, the above-mentioned equation

for the total number of micro-states can be extended to Ω = Ωpure.Ωsubs.Ωinter. It is found that

Ωsubs = (Ωpure)
Nsubs =

(
ε̇0+ϑ
ε̇

)Nsubs

and Ωsubs = (Ωpure)
x
1/3
C (1+Nsubs) =

(
ε̇0+ϑ
ε̇

)x1/3C (1+Nsubs)

,

where Nsubs =
∑

i xi. Therefore, Ω =
(
ε̇0+ϑ
ε̇

)N (1+x
1/3
C )(1+Nsubs)

[38].

Dislocation average velocity during annihilation process can also be expressed in Arrhenius

form in terms of the annihilation barrier as follows:

( 〈ν〉
C + Cint

)N (1+x
1/3
C )

=
( ε̇

ε̇0 + ϑ

)N (1+x
1/3
C )

= exp
(
− 〈∆G〉

kBT

)
(2.8)

The average length of annihilating dislocation segments that is obtained by substituting Equa-

tion 2.7 in Equation 2.8 is applied to determine the dynamic recovery coefficient:

fDRV =
NA

wa
ρaVsys =

NA

wa
ρabl

∗l

=

NA

wa
ρab

2l∗(1 +Nsubs)(1 + x
1/3
C )kBT ln

(
ε̇0+ϑ
ε̇

)N
1
2
µb3 + σYAactb3 + l∗

b
δ(T )(Ef + kBT ln(cm)) + l∗

b

∑
i xi∆Gsys − (1 + x

1/3
C )kBT ln

(
ε̇0+ϑ
ε̇

)N
(2.9)
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NA, wa, and ρa are the Avogadro’s number, the atomic weight of alloy, and the alloy density,

respectively [38].

A formulation in the form of Kocks and Mecking equation is employed to predict the disloca-

tion density evolution of microstructural phases during plastic deformation:

dρi(γi)

dγi
= A(

K

b
)
√
ρi(γi)−BfDRV ρi(γi) (2.10)

K = (1 + x
1/3
c )K1 + Kss. A and B are structure dependent constants that are considered as 1

for FCC phase (austenite), while they can be calculated for BCC (ferrite/bainite) and BCT phase

(martensite) through the ratio of the number of slip system times coordination number in these

structures to their counterpart in FCC phase [45], as shown in Table 2.1.

Table 2.1: Phase dependent coefficients in Kocks and Mecking formulation

Phase Structure Slip System Number of Slip Systems Coordination Number A B

Austenite FCC {111}〈1̄10〉 12 12 1 1

Ferrite/Bainite BCC {110}〈111〉 12 8 3
8

8
3

{112}〈111〉 12

{123}〈111〉 24

Martensite BCT {101}〈1̄01〉 2 8 9
2

2
9

{1̄01}〈101〉 2

The dislocation density in each individual phase can be obtained as a function of shear strain

by solving Equation 2.10. According to Taylor relation, shear stress during plastic deformation

can also be obtained in terms of shear strain for each microstructural phase as follows:

τi = αMµb
√
ρi(γi) (2.11)

where a is a constant and M is the Taylor factor [46].
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To obtain the stress-strain curve, the iso-work approximation has been taken into account to

homogenize the flow behavior in the entire multi-phase structure, which is achieved by assuming

that every microstructural phase has the same energy dissipation during deformation [40]:

τidγi = τi+1dγi+1 (2.12)

where i and i+ 1 correspond to different microstructural phases.

The values of the model parameters in the literature have been listed for different microstruc-

tural phases in Table 2.2.

Table 2.2: Model parameters in different microstructural phases. Adapted from [40, 45, 47].

Parameter
Phase

Ferrite Austenite Bainite Martensite

µ(MPa) 75,200

µ0(MPa) 85,335

b(m) 2.5E-10

D(m) 20E-6 15E-6 Artificial neural network [48] 0.13E-6

n∗ 4 20 4 4

λ(m) 1.5E-7 1.5E-7 1.5E-8 5.0E-8

R(m) 4.5E-9 50.0E-9 1.5E-8 5.0E-8

α 0.25

M 3.06

τ0(MPa) 18.0

ρ0(m−2) 1E-13 1E-13 (0.7 + 3.5wc)× 1015 10
9.284+ 6880

TBIT−298
− 178060

(TBIT−298)2 [49]

N 2 1 2 2

λss(m) 16,000

δ(T ) T−T0
Tf−T0

χ( J
m2 ) 0.077

l∗(m) 31.25E-10

Ef (eV ) 1.60

Em(eV ) 1.28

∆Sform( J
mol K

) -12.47

ν 0.27

∆Gsys(
kJ
mol

) 16− 0.45T − 1.4× 10−5

σY (MPa) 475 720 475 2,000
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2.3.2 Strain-induced martensitic transformation model

The martensitic transformation response in TRIP steels during deformation is described by

Haidemenopoulos model [39] based on the Olson-Cohen theory for heterogeneous martensitic

nucleation. In this model, a composite microstructure of dispersed retained austenite particles in a

ferritic matrix is assumed in which martensitic nucleus is formed in austenite phase owing to the

dissociation of existing microstructural defects. Generally, there are two types of mechanically-

induced martensitic nucleation, including stress-assisted nucleation on traditional pre-existing sites

(or defects) and strain-induced nucleation on sites produced during plastic deformation. These

sites require a sufficient potency for instantaneous nucleation of martensitic phase. The potency of

nucleation sites are determined by the number of crystal planes ncrys in the fault formed from their

dissociation. Therefore, the sufficient potency corresponding to a critical number of crystal planes

n∗crys can be calculated when the formation energy of the ncrys-plane fault γf (ncrys) becomes zero:

γf (ncrys) = ncrysρ(∆Gch + Estr +Wf ) + 2γs (2.13)

γf (ncrys) = 0→ n∗crys = − 2γs
ρ(∆Gch + Estr +Wf )

(2.14)

where ρ, γs, ∆Gch, Estr , and Wf are the atom density of the fault plane, the interfacial energy

between fault and matrix, the chemical driving force of martensitic nucleation, the elastic energy

at fault/matrix interface, and the frictional work resulting from the movement of fault/matrix inter-

face, respectively.

According to the above-mentioned nucleation mechanisms, the total number of nucleation sites

with sufficient potency per unit austenite volumeNν is the summation of operational stress-assisted

nucleation sites Nσ
ν and operational strain-induced nucleation sites N ε

ν , which are defined as fol-

lows:

Nν(ε) = Nσ
ν +N ε

ν (ε) (2.15)

20



Nσ
ν = Nσ0

ν exp(−aσn∗) (2.16)

N ε
ν (ε) = N ε0

ν (ε)exp(−aεn∗) = N
(
1− exp(−kεm)

)
exp(−aεn∗) (2.17)

where k and m are constants, N is the maximum possible number of strain-induced sites,

aσ and aε are the constants in the above exponential functions called shape factors of stress-

modified and strain-modified potency distribution, respectively. It is assumed that the nucleation

sites formed during plastic deformation possess higher potency compared to the pre-existing nu-

cleation sites, which corresponds to a lower value of aε.

Accordingly, the evolution of martensite volume fraction (f) in terms of plastic strain can be

written as:

f(ε) = 1− exp
(
− νpNν(ε)

)
(2.18)

It is worth noting that the effect of austenite particle size is also taken into account in this

model. In Table 2.3, the parameter values for the applied SIM model have been indicated [39].

2.3.3 Metropolis Hastings algorithm

Metropolis-Hastings algorithm is one of the MCMC techniques to randomly sample from a

multi-dimensional probability distribution. It is usually applied to obtain the statistical character-

istics in the framework of Bayes’ theorem for a given set of variables. Since solving the intractable

integrals associated with the application of Bayesian framework for model calibration through ana-

lytical or numerical approaches is very hard in the high-dimensional cases, MCMC sampling from

a joint posterior probability distribution is considered as a good solution [6].

In this approach, experimental data and prior knowledge including the initial values of param-

eters and their range obtained from literature and/or prior deterministic optimizations are fed to

the Matlab MCMC toolbox [50]. In this work, least square optimization techniques have been em-
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Table 2.3: SIM Model parameters. Adapted from [39].

Parameter Value

vp(m
3) 4.18E-18

γs(
J
m2 ) 0.15

∆Gch(
J
mol

) -3,285

Estr(
J
mol

) 500

Wf (
J
mol

) 1.893E3×X2/3
Mn + 1.310E4×X2/3

C

ρ(mol
m2 ) 3E-5

Nσ0
ν (m−3) 1.5E17

N(m−3) 1.9E19

aσ 0.1

aε 0.03

k 46

m 3.45

ployed to suggest the beginning point in the parameter space (θ0) in order to improve the MCMC

efficiency for parameter convergence to their plausible mean values, which results in a lower com-

putational cost. Non-informative uniform probability density functions (PDFs) have been also

considered as parameter prior distributions since no statistical information has been found for the

given model parameters. MCMC toolbox uses random walk in multi-dimensional parameter space

to generate n parameter samples. A new sample or candidate has been drawn from an arbitrary pro-

posal distribution q. In our research, an adaptive Gaussian distribution is considered as the proposal

density which is centered at the initial or the last accepted parameter with an adaptive variance-

covariance. In each generation step, the adaption takes place using the variance-covariance of

the previously generated samples based on Haario et al. work [51]. Acceptance/rejection of new

sampled candidate is performed by calculating the Metropolis-Hastings ratio:

MH =
π(θcand)

π(θi)

q(θi|θcand)
q(θcand|θi)

=
P (θcand)P (D|θcand)q(θi|θcand)
P (θi)P (D|θi)q(θcand|θi)

(2.19)

where π(θcand)
π(θi)

is the Metropolis ratio that is the joint probability distribution for the new candi-
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date over the previous one, and q(θi|θcand)
q(θcand|θi) is the ratio of proposal density in two different directions,

i.e., jump from θi to θcand and vice versa. The new candidate can be accepted with the minimum

probability between the above ratio and 1. It should be noted that the previous parameter vector is

used as the new sample in the case of rejection. At the end of this process, n samples of parameter

vectors
{
θ(0), ..., θ(n)

}
are produced, which show the posterior PDFs of given parameters. It is

worth noting that the likelihood function is defined as the difference of the model result at θ and

corresponding data values (Modelfun(θ) − D). In this work, the likelihood function is consid-

ered as a Gaussian function that is centered at data; its variance (error of data) is regarded as a

hyper-parameter and updated in the framework of Bayes’ theorem during MCMC sampling. More

details can be found in Gelman et al. [52]. Flow-chart of this Approach has been shown in Figure

2.1.

Figure 2.1: Flow-chart of MCMC Metropolis-Hastings method (RNG: Random Number Genera-
tion)
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2.3.4 Propagation of uncertainty

The mean and covariance of generated samples in MCMC toolbox are used to calculate the

uncertainty of the model result, which is the uncertainty of deformation stress in terms of plastic

strain in our work. This can be performed through propagation of uncertainty as follows:

σ2
S ≈

N∑
i=1

|∂M
∂ai
|
2

σ2
i +

N∑
i=1

N∑
j 6=i

∂M

∂ai

∂M

∂aj
σij (2.20)

where M , ai/j , σ2
i , and σij are the model function, applied model parameters, parameter vari-

ances that is the diagonal elements of variance-covariance matrix, and the covariance of any two

parameters that is the off-diagonal elements of variance-covariance matrix, respectively.

The partial derivatives with respect to the parameters have numerically been calculated using

the following method (∆ai = 10−5) [53]:

∂M(a1, a2, ..., ai, ...)

∂θi
≈
M(a1, a2, ..., ai + ∆ai

2
, ...)−M(a1, a2, ..., ai − ∆ai

2
, ...)

∆ai
(2.21)

2.3.5 Applied experimental data

Experimental data reported by Jacques et al. [54] for stress-strain behavior in multi-phase TRIP

and dual phase steels has been taken into account for the calibration of the models’ parameters.

Nominal chemical composition, volume fraction of phases, carbon weight percentage of phases,

bainitic isothermal transformation (BIT) temperature, tensile deformation temperature (RT ) and

strain rate (6.67E-4 s−1) of these experiments are used as inputs for our models, which are listed

in Table 2.4. It should be noted that inter-critical annealing (IA) temperature and time besides BIT

time are not directly among the model inputs, but their effects will be considered through phase

volume fractions and carbon contents. For instance, in the case of BIT temperature at 370 oC,

prolonged BIT time results in the formation of dual phase ferrite-bainite microstructure, whereas

short BIT time of 0.5, 1, and 3 min for TRIP 4, 5, and 6 causes the formation of multi-phase
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microstructures, which have austenite and/or martensite besides bainite and ferrite.

Table 2.4: Applied Experimental information as model inputs. Adapted from [54].

Alloy
Chemical Composition (wt%) Volume Fraction (%) Carbon Content (wt%)

BIT (oC)

C Si Mn Al Ni Cr Fer Aus Bai Mar Fer Aus Bai Mar

TRIP 1 0.13 1.5 1.42 0.027 0.02 0.013 75 8 15 0 0.014 0.93 0.3 0 410

TRIP 2 60 7.9 30 0 0.01 0.85 0.2 0 360

TRIP 3 60 7.8 30 0 0.01 0.97 0.16 0 410

TRIP 4 0.16 0.38 1.3 0.03 0.027 0.019 75 8.8 9 7 0.02 0.61 0.3 0.97 370

TRIP 5 75 8.1 12 5 0.02 0.68 0.3 1.1

TRIP 6 75 6.1 19 0 0.02 0.73 0.53 0

DP 75 0 25 0 0.02 0 0.58 0

*Fer: ferrite, Bai: bainite, Aus: retained austenite, Mar: martensite, and DP: Dual Phase.

2.4 Results and Discussion

2.4.1 Forward analysis of the models

Using the parameter values in Tables 2.2 and 2.3, stress-strain curves have been estimated in

Figure 2.2 based on different conditions mentioned in Table 2.4. These plots show that there are

significant discrepancies between model results and experimental data, except for dual phase case.

Regardless of inherent uncertainty, these disagreements can be due to three different reasons as

mentioned before: (1) the uncertainty in experiments corresponding to the error of tensile test and

microstructural characterization, (2) the uncertainty in the models due to their lack of physics, and

(3) uncalibrated model parameters.

In order to evaluate the uncertainty of the models, the calibration of the model parameters is

a necessary task. Since MCMC approach is an expensive method for model calibration, the most

sensitive model parameters are selected using model forward analysis. This has been performed

by changing the parameters one by one to identify the sensitivity of model parameters, some of

which are shown in Figure 2.3 for TRIP 4 as examples. In Figures 2.3(a) and (b), high sensitivity

of Taylor constant (alpha) and Peierls stress τ0 (Stress-Fe) is noticeable. It is worth noting that
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Figure 2.2: (a-g) comparison of experimental data with model results for plastic flow behavior in
TRIP (1-6) and DP
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these two parameters mainly affect the initiation of the model response and the curvature remains

unchanged. However, the constants in SIM model, i.e., m-SIM and K-SIM, and n∗ in Equation

2.2 for bainite, ferrite and martensite (n-max(BFM)) change the curvature of the model results

without any variation at initial point, as shown in Figures 2.3(c-e). In other words, these parameters

influence the strain hardening response of the model which is much more significant in the case

of m-SIM. The effect of the variation of n∗ in austenite (n-max(A)) has also been brought in

Figure 2.3(f) in order to show one of the insensitive model parameters that has been disregarded

for calibrations.

After the forward analysis, the eight most sensitive model parameters have been chosen for

calibration, which include four parameters from each model, i.e., microstructural evolution model

and SIM model.

2.4.2 Sequential and simultaneous calibration of model parameters

The model has been sequentially calibrated for the selected parameters with three different

experimental data, including TRIP 2, 1, and 5 in turn. As mentioned in Section 2.3, the param-

eter posteriors obtained from previous calibration are considered as the parameter prior for next

calibration in this approach. The three experimental data are applied all at once during the simul-

taneous calibration as well. Then, the sequentially/simultaneously calibrated parameters are used

to obtain strain-stress curves under other experimental conditions in order to test the validity of the

model. In each one of the sequential or simultaneous calibrations, 10,000 samples are generated.

The mean and covariance of the samples can subsequently be introduced as calibrated parameters

and their uncertainties, as listed in Table 2.5. Histograms of parameter posterior PDFs have also

been plotted for both calibration methods in Figures 2.4 and 2.5. In the case of sequential cali-

bration (Figure 2.4), m-SIM, alpha, n-max, and shear modulus (µ) contain a clear peak in their

posterior distribution unlike aσ (a-stress), aε (a-strain), K-SIM, and Stress-Fe whose histograms

show multiple peaks suggesting equi-finality problem, which is attributed to the presence of too

many parameters for calibration (over-parameterization) and/or the lack of data to constrain the

parameter values [55]. Simultaneous calibration also results in similar trends for parameter poste-
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Figure 2.3: Model forward analysis based on data corresponding to TRIP 4 for evaluation of the
sensitivity of model parameters
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rior distributions as shown in Figure 2.5; however, the posterior PDFs are more defined for K-SIM

and Peierls stress, and the distribution peak of alpha, n-max and shear modulus shift to lower val-

ues compared to their counterparts in sequential calibration. The latter is also confirmed by lower

mean values for alpha, n-max and shear modulus in Table 2.5. It should be noted that the signif-

icant narrow peak in shear modulus posterior distribution is attributed to the acceptance of lots of

candidates between 75,200 and 75,300 MPa in this case.

Table 2.5: Applied parameter values and their uncertainties after sequential and simultaneous cal-
ibrations compared to initial values before calibrations

Parameters
4 SIMT model parameters 4 strain-stress model parameters

aσ aε k m α n−max µ σp

Before Calibration 0.1 0.03 46 3.45 0.25 4 75,200 18

After Sequential Calibration 0.28 ± 0.125 0.056 ± 0.026 50.8 ± 16.54 1.77 ± 0.51 0.256 ± 0.039 6.31 ± 1.52 76,600 ± 2612 20.4 ± 5.85

After Simultaneous Calibration 0.27 ± 0.13 0.051 ± 0.025 49.55 ± 15.2 1.92 ± 0.74 0.176 ± 0.036 4.55 ± 1.80 75,155 ± 1502 23.41 ± 5.20

The parameter posterior distributions can also reflect the correlation between parameters that

are missed in deterministic approaches for parameter calibrations such as least squares. Two di-

mensional graphs can demonstrate the correlation of pair parameters (their joint probability distri-

butions), some of which is shown in Figures 2.6 and 2.7 for sequential and simultaneous calibra-

tion, respectively. The Pearson correlation coefficient is applied to determine the linear correlation

between each two model parameters using the variance-covariance matrix obtained from MCMC

sampling as follows [56]:

ρx,y = Corr(x, y) =
cov(x, y)

σxσy
(2.22)

This can be between -1 and 1. The maximum and minimum values correspond to perfect

correlations and zero means no correlation between parameters. Positive or negative signs indicate

increasing or decreasing change of one parameter by the variation of the other one. It is worth

noting that the slope of the relationships in the graphs is nothing to do with Pearson correlation.
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Figure 2.4: Histograms of posterior PDFs of applied parameters after sequential calibration
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Figure 2.5: Histograms of posterior PDFs of applied parameters after simultaneous calibration
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In fact, the correlation depends on how linear the relationship is. The correlation coefficients are

calculated for each two model parameters in both of the calibration cases, as observed in Tables

2.6 and 2.7.

In both methods of calibration, there are no/low correlation coefficients between applied pa-

rameters, except for alpha, that show some correlations with m-SIM, Peierls stress, and n-max;

although, some correlations are also observable between alpha and shear modulus as well as m-

SIM and K-SIM in the case of sequential calibration. These can be also evaluated through the

correlation graphs in Figures 2.6 and 2.7. In these graphs, red regions indicate the convergence

regions of the generated MCMC samples that include the plausible optimal values for the model

parameters. The density of samples in 2D parameter spaces decreases from red to blue regions,

so the dispersion of points and their linearity in each case can be visually analyzed and verified

with the correlation coefficients obtained by Equation 2.22. In fact, more scattering of sample

points and less linearity (corresponding to a wider ellipsoid and more circular shape) lead to lower

correlation coefficient. Another important feature of these graphs is that the equifinality problem

is easily distinguishable. For instance, several density peaks are noticeable in Figures 2.6(a) and

(d). However, this feature cannot be seen in Figures 2.7(a) and (d) anymore, which suggests less

equifinality problem and more defined posterior PDFs in the case of simultaneous calibration.

Based on the information in Table 2.5 about the calibrated parameter values and their uncer-

tainties and considering the propagation of uncertainty, stress-strain curves and their uncertainty

bands after sequential and simultaneous calibration have been demonstrated for all experimental

conditions in Figures 2.8 and 2.9. The black lines correspond to the plausible mean parameter

values obtained after calibrations, and the blue and (blue + green) shaded areas are related to 68%

and 95% Bayesian confidence intervals of the model predictions, respectively, i.e., σ(ε) ± σs(ε)

and σ(ε) ± 2 × σs(ε) in which rs can be determined by Equation 2.20 at any strain. According

to these plots, it can be mentioned that the model gives fairly close results to experimental data in

the cases of TRIP 1, 5, 6, and 7 after sequential calibration, and 1, 3, 6, and 7 after simultaneous

calibration. The outcomes of the model imply a requirement for improvement of the model; al-
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Figure 2.6: 2D correlation graphs with normalized color bars for some of pair model parameters
in the case of sequential calibration

Table 2.6: Pearson correlation coefficients between model parameters in the case of sequential
calibration

aσ aε k m α n−max µ(MPa) σp(MPa)

aσ 1 0.11 -0.04 -0.06 -0.11 -0.03 0.01 0.14

aε 0.11 1 0.035 -0.14 -0.08 0.08 0.095 0.01

k -0.04 0.035 1 0.23 0.03 -0.055 0.07 -0.03

m -0.06 -0.14 0.23 1 0.52 -0.12 -0.15 0.04

α -0.11 -0.08 0.03 0.52 1 -0.39 -0.40 -0.57

n−max -0.03 0.08 -0.055 -0.12 -0.39 1 0.11 0.08

µ(MPa) 0.01 0.095 0.07 -0.15 -0.40 0.11 1 0.01

σp(MPa) 0.14 0.01 -0.03 0.04 -0.57 0.08 0.01 1
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Figure 2.7: 2D correlation graphs with normalized color bars for some of pair model parameters
in the case of simultaneous calibration

Table 2.7: Pearson correlation coefficients between model parameters in the case of simultaneous
calibration

aσ aε k m α n−max µ(MPa) σp(MPa)

aσ 1 -0.04 0.002 -0.115 -0.05 0.025 0.075 -0.02

aε -0.04 1 0.09 -0.02 0.06 -0.006 0.04 -0.06

k 0.002 0.09 1 0.05 -0.015 0.025 0.09 0.0002

m -0.115 -0.02 0.05 1 0.27 0.09 -0.001 -0.09

α -0.05 0.06 -0.015 0.27 1 -0.685 -0.13 -0.495

n−max 0.025 -0.006 0.025 0.09 -0.685 1 -0.05 -0.003

µ(MPa) 0.075 0.04 0.09 -0.001 -0.13 -0.05 1 0.085

σp(MPa) -0.02 -0.06 0.0002 -0.09 -0.495 -0.003 0.085 1
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though the discrepancies between model and experiments cannot only be attributed to the model

deficiency and the effect of experimental errors should also be considered. Therefore, the volume

fractions of microstructural phases are estimated in Section 2.4.3 due to high uncertainty in their

experimental measurement.

2.4.3 Estimation of phase volume fractions using sequentially calibrated parameters

Generally, the determination of phase volume fractions in steels using image analysis is a hard

task and coupled with a lot of uncertainties, especially for ferrite, bainite, and martensite which

possess similar crystal structures but different dislocation densities. Therefore, the disagreement

between model results and experimental data can be partly related to the experimental uncertainty

of phase volume fractions. Assuming the uncertainty of the model is zero and the model is phys-

ically correct and complete, the sequentially calibrated parameters have selected for the model to

estimate the phase volume fractions by our MCMC approach. Similar to the calibrated param-

eters in Section 2.4.2, these values and their uncertainties (listed in Table 2.8) can be applied to

plot stress-strain curves and their uncertainty bands, as shown in Figure 2.10. It can be observed

that the correction of phase volume fractions either results in a very good agreement between the

model prediction and corresponding experimental data or at least brings the experimental data to

95% Bayesian confidence intervals of the model predictions. These estimations can similarly be

performed using simultaneously calibrated parameters.

2.4.4 Accuracy evaluation of the MCMC calibration using generated synthetic data

Regarding the disagreement between model and experimental results, some can state that the

uncertainty may result from the inaccuracy of the calibration approach. In order to prove that our

approach is reliable for model calibration, the model parameters are simultaneously recalibrated

using three synthetic datasets for TRIP 1, 2, and 3, which are generated from the model with

simultaneously calibrated parameters in Section 2.8 and experimental conditions in Table 2.4. In

fact, the reproducibility of the calibration method is examined by synthetic datasets. As observed

in Figure 2.11(a), the model with initial parameter values in Tables 2.2 and 2.3 leads to the stress-
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Figure 2.8: Model prediction of strain-stress curves and their uncertainty bands after sequential
calibration in different experimental conditions: (a-g) TRIP (1-6) and DP, BCI: Bayesian Confi-
dence Interval
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Figure 2.9: Model prediction of strain-stress curves and their uncertainty bands after simultaneous
calibration in different experimental conditions: (a-g) TRIP (1-6) and DP, BCI: Bayesian Confi-
dence Interval
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Figure 2.10: Model prediction of strain-stress curves and their uncertainty bands after the estima-
tion of phase volume fractions using sequentially calibrated parameters in different experimental
conditions: (a-g) TRIP (1-6) and DP, BCI: Bayesian Confidence Interval
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Table 2.8: Applied parameter values and their uncertainties after sequential and simultaneous cal-
ibrations compared to initial values before calibrations

Alloy
Volume Fraction (%)

Ferrite Bainite Austenite Martensite

TRIP 1 74.8±0.62 3.6±0.63 10.5±0.54 11.1±1.51

TRIP 2 76.6±2.24 6.5±1.06 16.9±1.82 0.0

TRIP 3 73.8±0.26 18.3±0.35 1.2±0.44 6.7±0.58

TRIP 4 75.0±5.43 4.6±2.18 20.4±2.98 0.0

TRIP 5 75.6±5.56 5.8±2.22 18.6±2.62 0.0

TRIP 6 75.9±4.06 11.3±1.97 10.9±1.78 1.9±0.58

DP 80.0±1.96 20.0±0.28 0.0 0.0

strain results being very far from the synthetic datasets. However, excellent fits between model

results and the synthetic data with very low uncertainties in Figure 2.11(b) show that simultaneous

recalibration delivers the same parameters used for dataset generations. This confirms a high

reproducibility of the introduced MCMC approach. The same scenario is believed to happen in

the case of considering sequentially calibrated parameters to generate datasets. This means any

discrepancy between model and experimental results can only be attributed to the uncertainty of

model and/or experiments, not the applied calibration approach.

2.5 Summary and Conclusion

In this work, plastic flow behavior of TRIP steels is predicted through a novel physical-based

model that considers different hardening mechanisms, especially dislocation strengthening grains

based on RiveraâĂŹs work, which are considered for each microstructural phase and then ho-

mogenized for the entire microstructure by an iso-work approximation. Strain-induced martensitic

transformation is also incorporated in the model through Haidemenopoulos approach.

The major point of current work is the introduction of Bayesian calibration based on Metropolis-

Hastings MCMC using the abovementioned models as case studies. After finding eight sensitive

parameters through forward analysis of models, two different techniques, i.e., sequential and simul-
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Figure 2.11: Model prediction of strain-stress curves (a) before and (b) after simultaneous recal-
ibration with synthetic datasets generated using simultaneously calibrated parameters and experi-
mental conditions corresponding to TRIP 1, 2, and 3

taneous experimental training have been applied to calibrate these parameters. Obtained posterior

PDFs and 2D correlation graphs from both calibration methods show a clear peak for m-SIM, al-

pha, n-max, and shear modulus although the distribution peak of alpha, n-max and shear modulus

are lower in the case of simultaneous calibration. For the other four parameters, sequential calibra-

tion leads to multiple peak or equifinality problems, which is less distinguishable in the results of

simultaneous calibration. It should be noted that simultaneous calibration produces a more defined

shape of parameter posterior distribution compared to sequential calibration. In both calibration

approaches, some of the stress-strain curves resulting from the models with calibrated parameters

show disagreements with experimental data; however, the results are better than ones obtained

from uncalibrated models overall.

Considering high experimental uncertainties in determination of phase volume fractions and

assuming a high accuracy in physics of the models, Bayesian estimation of volume fractions using

the calibrated model causes the stress-strain predictions to either fit or be close to experimental

results in a way that all data points at least fall in 95% Bayesian confidence intervals. In order to

prove that the uncertainties result from the models and/or experiments and not from our calibration

approaches, the models have simultaneously been recalibrated with synthetic datasets generated
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from the models with simultaneously calibrated parameters. Excellent agreement between model

results and synthetic datasets after recalibration imply a high reproducibility of the applied MCMC

method.

To close the present discussion, we would like to note that while the present work is rather spe-

cific in the system under study (TRIP steels) and the selected model (irreversible-thermodynamics

of dislocation evolution + iso-work approximation + SIM), the framework presented here is highly

generalizable to many other computational materials science problems that require rigorous uncer-

tainty quantification (UQ). In fact, we believe that current emphasis on the use of computational

approaches to accelerate the development/design of materials require UQ in order to provide a

measure of robustness to the results of materials simulations. Moreover, UQ can also be used to

assess the uncertainty in experimental observations and to determine parameters difficult to ob-

serve experimentally. While Bayesian methods have been amply used in other fields, they—with

some notable exceptions—have not been widely used in computational materials science but their

increased use is warranted by the needs of the field.
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3. BAYESIAN PROBABILISTIC CALIBRATION OF NI-TI PRECIPITATION MODEL IN

MATCALC SOFTWARE USED IN AN INFORMATION FUSION APPROACH FOR

MORE PRECISE PREDICTION OF PRECIPITATION BEHAVIOR

3.1 Overview

Ni-Ti alloys are the most popular shape memory alloys in different industrial applications due

to their capability for precipitation of second phases. Therefore, precipitation modelling and as-

sociated model calibration coupled with the uncertainty estimations seem to be crucial. In this

work, the calibration and uncertainty quantification of influential model parameters have been

performed using a Bayesian approach based on Markov Chain Monte Carlo-Metropolis Hastings

algorithm. Then, the resulting parameters’ uncertainties have been propagated to the uncertainty of

model results. An empirical relationship for matrix/precipitate interfacial energy in terms of aging

temperature and nominal composition has been introduced according to the values of interfacial

energy obtained from the model calibration with each given experimental data individually. Us-

ing this equation for interfacial energy in the model, all experimental data has been used together

to calibrate the other four model parameters. The results of the probabilistic calibration showed

some discrepancies between the model responses and the experimental data that are the important

reasons to apply co-kriging surrogate modelling for more precise prediction of experimental pre-

cipitation behavior in this system through an error correlation-based fusion of the model results

and the experimental data.

3.2 Introduction

Over last decades, Ni-Ti shape memory alloys (SMAs) have been in the center of attention for

different engineering and medical applications due to their excellent combination of mechanical

properties and shape memory behaviors [57, 58]. Among the SMAs, Ni-Ti alloys are more attrac-

tive due to the tailorability of transformation temperature (MS) resulting from a change in matrix

composition through precipitation of second phases [58, 59]. In these alloys, different thermo-
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mechanical processings can result in the formation of various types of (meta)stable precipitates,

among which coherent Ni4Ti3 phase has been studied more because of its significant effects on

transformation temperature, phase constitution, and cyclic fatigue resistance [60]. Despite the

recent experimental studies of the Ni4Ti3 precipitates influence on multi-stage martensitic trans-

formation path [58, 61, 62] and shape memory behavior (temperature hysteresis) [63, 64], there

are few studies with regards to modelling of precipitation hardening for Ni-Ti alloys. In this re-

gard, there are some phase field studies, including the determination of the precipitate equilibrium

shape and its surrounding concentration in addition to the effects of stress field on the subsequent

martensitic transformation response [65], the homogeneity assessment of precipitate distribution

across the microstructure during stress-free and stress-assisted aging heat treatment [66], and the

investigation of the precipitate morphology and growth during stress-assisted aging heat treatment

in a porous Ni-Ti system [67]. Another important work with the purpose of connecting chemistry

and processing to microstructure under Integrated Computational Materials Engineering (ICME)

framework is the evaluation of Ni4Ti3 precipitation kinetics through the Kampmann-Wagner Nu-

merical (KWN) [68] model in MatCalc c© package [60].

Generally, model calibration and associate uncertainty quantification (UQ) is one of the most

required tasks for a robust and/or reliability based design, which is usually ignored in materials

modeling. Among the few UQ works in computational materials science, our previous studies

on the uncertainty analyses of mechanical properties in TRIP steels [69] and UQ in calculation

of phase diagrams (CALPHAD) model [70] are examples of thorough probabilistic assessments

of the models’ parameters and their predicting responses. It is worth noting that the modeling

uncertainties can result from different sources: 1) Natural uncertainty (NU), 2) Model parameter

uncertainty (MPU), 3) Propagated uncertainty (PU), and 4) Model structure uncertainty (MSU) [3].

Simplification assumptions, numerical approximations, and lack of knowledge in physical models

result in MSU where the uncertainty quantification is more complex and challenging compared to

the other types of uncertainties. In this regard, it should be noted that model calibration is the first

task to do before the quantification of MSU.
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In the context of Bayesian statistics, the estimation of parameters’ values and their uncertainties

incorporate multi-dimensional intractable integrals with respect to parameter vector (θ), which is

hard or sometimes impossible to solve via the conventional numerical approaches. Markov Chain

Monte Carlo (MCMC) techniques have already been introduced as an efficient sampling tool to ap-

proximate these integrations [5]. It should be stated that MCMCs are considered as highly robust

non-linear techniques for the calibration of model parameters. They can provide qualitative infor-

mation about the correlation between the parameters, the shape of parameter posterior probability

density functions (PDFs) in addition to the quantitative information about plausible optimal values

and uncertainties of the parameters [35]. In the case of multi-level models, it has been shown [37]

that MCMC approaches can provide better data fitting compared to other likelihood-based meth-

ods in the model probabilistic calibrations [37]. Generally, Metropolis-Hasting (MH) algorithm

and Gibbs sampling are two common MCMC approaches for Bayesian calibration of models. Al-

though 100% acceptance rate makes Gibbs sampling faster than MH algorithm where samples

may also be rejected, Gibbs sampling shows restrictions in some cases: 1) when the conditional

distributions, which are used for sampling, are difficult to be obtained from the joint distributions,

2) when inversion sampling from the conditional distribution is either very hard or sometimes

impossible due to its uncommon distribution shape, and/or 3) in the case that sampling from the

conditional distribution may get stuck in a low probability region of the posterior density for a long

time that slows down the process of the parameter convergence towards the center of this density.

Under these conditions, MH algorithm works more efficient [6].

After the model calibration, MSU can be quantified by assuming that the available experimen-

tal data are true. Kennedy and O’Hagan work [12] was one of the pioneers in this regard, where

co-kriging surrogate modelling based on a kriging/gaussian process (GP)-based technique has been

introduced. In this approach, a linear relationship is assumed between the high-fidelity experimen-

tal responses and the fitted GP surrogate model over the low-fidelity model results. Here, the

linear regression coefficient is optimized during the process and the regression constant term (the

error terms) is estimated through another GP model [3,13]. The discrepancy between the obtained

44



response for experimental behavior and the model results can be recognizes as MSU.

Continuing the work in our group [60], the calibration and uncertainty quantification of the

precipitation model parameters in MatCalc c© have been carried out in the present work by a rigor-

ous Bayesian approach in the context of Markov Chain Monte Carlo (MCMC). This model is then

used as a low-fidelity model in Kennedy and O’Hagan co-kriging approach to cover the discrep-

ancy between model and data (i.e., MSU) for more precise prediction of precipitation behavior

in this system. This approach is very helpful in order to reduce the uncertainties in design un-

der ICME framework since the precipitation model is one of the important puzzle pieces in the

process-structures-properties-performance that connects processing to microstructure.

3.3 Model Description and Methodology

3.3.1 Precipitation model

A precipitation model implemented in MatCalc c© version 5.61 has been used in this work.

This model includes thermodynamic and kinetics assessment of Ni4Ti3 precipitation in binary Ni-

Ti system. In this numerical model, all the calculations are performed in a time loop. In each time

iteration, the equilibrium calculations are carried out first in the thermodynamics module for the

evaluation of the phases’ stability. These calculations are based on the minimization of total Gibbs

free energy of the system as follows:

∆G = Σif
i.Gi = Minimum (3.1)

where i and f i are the index and volume fractions of each individual phase in the system, andG

andGi are the molar Gibbs free energy of the system and each one of the phases, respectively [71].

Here, Gi is calculated using the sub-lattice model, offered by Hillert and Staffansson [72], which

applies the thermodynamic parameters obtained from available commercial database for Ni-Ti sys-

tem. In the thermodynamics module, the equilibrium composition of phases and thermodynamic

driving force for nucleation are also determined for subsequent kinetics calculations. The calcula-

tions continue for precipitation evolution if the driving force for precipitation is positive; otherwise,
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the calculations stop and go to the next time iteration [71].

In the case that precipitation is thermodynamically favorable, the precipitation driving force

obtained from the thermodynamics module besides the information related to the diffusion coeffi-

cients of the diffusing elements in the system obtained from the mobility database in the software

package DICTRA are transferred to the MatCalc c© kinetics module. In this module, the calcula-

tions corresponding to nucleation, growth, and coarsening of the second phase (i.e., Ni4Ti3) are

concurrently carried out in each time step, based on the KWN model in the framework of classical

nucleation and growth theory. Generally, the precipitation evolution occurs in a way that the total

Gibbs free energy dissipation is maximum [73], which is equivalent to the maximization of total

entropy of the system [74]. In MatCalc c© KWN model, precipitates are assumed to nucleate spher-

ically. The critical nucleation size (r∗), the required critical work to overcome nucleation energy

barrier (∆G∗), and the nucleation rate (J) are determined through the consideration of total Gibbs

free energy change in the system due to the competition between the effects of volumetric Gibbs

free energy (∆Gv), free interfacial energy (γα/β), and elastic strain energy in the case of coherent

precipitation (∆Gε), as follows:

r∗ =
2γα/β

∆Gv −∆Gε

(3.2)

∆G∗ =
16πγ3

α/β

3(∆Gv −∆Gε)2
(3.3)

J =
dN

dt
= N0ZB

∗exp(−∆G∗

kT
)exp(−τ

t
) (3.4)

where N0, Z, B∗, and τ are the number of nucleation sites per unit volume, the Zeldovich

factor (≈ 0.05), the join rate of solute atoms from matrix to nucleus, and the nucleation incubation

time, respectively. In the case of heterogeneous nucleation, Equations 3.3 and 3.4 are modified by

a function in terms of θ, the wetting angle between the second phase nucleus and its heterogeneous

nucleation site [75].
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In KWN model implemented in MatCalc c©, precipitate growth rate (v) is governed by the

following relationship in the case of spherical diffusion fields:

v =
dr

dt
= (

c̄− cα/β
cβ − cα/β

)
Di

r
(3.5)

where Di is the diffusion coefficient of the diffusing element and r is the particle size. In

addition, c̄, cα/β , and cβ are the concentrations of solute atom in the matrix, at matrix/precipitate

interface, and in precipitate, respectively. It should be noted that c̄ and cα/β are time dependent

while cβ is assumed constant during precipitate growth. Generally, the concentration at the inter-

face cα/β is different than the equilibrium solute concentration in matrix (ce) due to the effect of

the matrix/precipitate interface curvature known as Gibbs-Thomson effect. Therefore, the change

in cα/β results from the variation of the interface curvature as the precipitates grow further. For a

spherical growing particle, this change is expressed in terms of the particle radius (r) as follows:

cα/β = ceexp(
2γα/βVβ
rRT

) (3.6)

Here, Vβ is the molar volume of the second phase [76]. In the case of non-spherical precipitate

growth, a symmetric cylinder has been considered with an equivalent spherical volume but different

interfacial area. In this case, Equations 3.5 and 3.6 are modified using shape parameters that are

defined as a function of the cylindrical aspect ratio, H = h(height)
d(diameter)

.

The average matrix composition (c̄) can also be obtained during precipitate growth by solving

the mass conservation equation [75, 77], as shown in the following:

c̄ =
Vdomainc0 −

∑N
i=1

4
3
πr̄3

iNicβ

Vdomain −
∑N

i=1
4
3
πr̄3

iNi

(3.7)

where Vdomain, c0, r̄i, and Ni are the initial volume of the matrix, the nominal composition

of solute atoms in the matrix, the average radius of the equivalent sphere corresponding to ith

precipitate size class and the total number of particles in ith size class, respectively.

In MatCalc c©, the number of formed nuclei and the radius change in the equivalent spherical
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particles are calculated in each time step up to the end of aging time. These changes in the number

and the size of particles appear in the form of changes in the particle number of each size class/size

interval, [Rj, Rj+1]. The number and size of particles may also alter by the occurrence of coarsen-

ing. Since R∗ increases during precipitation process owing to the solute concentration decline in

the matrix, the radius of the smallest particles may become smaller than R∗ after a while. At this

moment, these thermodynamically unstable particles start to dissolve that result in the coarsening

of the remaining precipitates [71].

These calculations lead to a histogram for particle size which can be obtained after each time

step and eventually at the end of the aging process. These can be utilized for the determination of

the precipitation kinetics evolution during heat treatment and the final results for the average solute

concentration in the matrix, volume fraction of precipitates, average precipitate size, total number

of precipitates, etc.

3.3.2 Uncertainty quantification of model parameters and outcomes

Calibration and uncertainty quantification (UQ) of model parameters have always been an im-

portant concern for computational modeling in the context of robust or reliability-based designs,

which can provide confidence in product design. Deterministic approaches (such as least squares

fitting) are commonly applied for model calibrations, but no uncertainties are quantified in these

approaches. Generally, the significance of UQ results from common high uncertainties in the

experimental measurements of physical parameters and/or model outcomes in addition to the in-

complete physics or the assumptions in models. MCMC techniques in the framework of Bayesian

statistics are strong tools for UQ that incorporate all the above mentioned uncertainties into the

parameter prior PDFs and likelihood function. During MCMC calibrations against experimental

data, prior PDFs for model parameters (prior knowledge) are updated into their posterior PDFs in

order to find the plausible optimum values for the parameters and reduce their uncertainties. In

robust design where the system responses should be insensitive to the variation of the design vari-

ables/parameters, it is very important to find the uncertainties of model responses resulting from

the parameters uncertainties. For this reason, the uncertainties are propagated from the parameters
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to the model responses through a model forward analysis of MCMC parameter samples in this

work.

3.3.2.1 Markov Chain Monte Carlo: Metropolis-Hastings algorithm

In the case of multi-dimensional calibration problems, there are multi-dimensional intractable

integrals that should be solved to determine the statistical characteristics of model parameters such

as parameters’ mean (optimum) values and their variance-covariance matrix. Monte Carlo (MC)

method can be a plausible way for the estimation of the above-mentioned integrals which are

numerically difficult or sometimes impossible to be calculated. However, MC requires a large

number of samples from parameters posterior PDF for the integral estimations. MH is one of

the efficient approaches for random sampling from a proposal (arbitrary) PDF for the parameters’

posterior which continues until the convergence of Markov chain to a stationary PDF [78].

In this work, MCMC-MH toolbox in Matlab has been applied to calibrate the most influential

parameters of MatCalc c© precipitation model for Ni−Ti system. The first step is the introduction

of parameters’ prior knowledge to the toolbox, including their initial values (θ(0)), probability

distributions, and value ranges. Here, the lack of prior knowledge about the precipitation model

parameters resulted in the consideration of an uniform (non-informative) prior PDF for the model

parameters. In this toolbox, the parameters (candidates) sampled from a proposal PDF are accepted

or rejected based on the calculated value for Metropolis-Hastings ratio in each iteration:

MH =
P (θcand)P (D|θcand)
P (θi)P (D|θi)

q(θi|θcand)
q(θcand|θi)

(3.8)

where θ is the parameters’ vector, and D is the experimental data vector which includes matrix

Ni content (Ni%), precipitate volume fraction (Vf ), and average precipitate size (d), explained in

details in section 3.3.4. Therefore, a multi-objective calibration is carried out in this work to reduce

the risk of equi-finality where there are more than one response for the parameter values after

calibration. For instance, multiple combinations of the parameter values may result in the same

response for precipitate volume fraction if it is considered as the only objective in this problem.
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In Equation 3.8, the first fraction is Metropolis ratio that is the product of prior (P (θ)) and

likelihood (P (D|θ)) for new candidate (θcand) over its counterpart for the last accepted parameters

(θi), and the second fraction is Hastings ratio that compares the probability of a jump from θi to

θcand with the probability of the reverse jump. Generally, the new candidate is accepted in the

case that MH is greater than 1; however, the new candidate can still be accepted with a probability

of MH × 100 percent in the case of a MH value less than 1. If rejection happens, the previous

accepted θ is repeated again as the new sample. At the end, there will be n samples of parameters{
θ(0), ..., θ(n)

}
which represents a multivariate posterior PDF for parameters. The mean values of

these n samples and the square root of diagonal terms in their corresponding variance-covariance

matrix can be introduced as the plausible calibrated values and uncertainties of model parameters,

respectively.

It is worth noting that likelihood function in this work is a Gaussian distribution centered at D.

Here, the likelihood variance is considered as an unknown hyper-parameter and updated against

the experimental data, similar to other parameters in the model. In addition, the proposal PDF

is defined as an adaptive multivariate Gaussian distribution where its mean is set at the initial or

the last accepted θ and its variance-covariance matrix is adapted during sampling in terms of the

variance-covariance matrix of all the previous generated samples, as proposed by Haario et al [51].

3.3.2.2 Uncertainty propagation

The propagation of the parameters’ uncertainties obtained from MCMC sampling to the re-

sponses of the model is an important task in the context of materials design. This can be achieved

for any non-linear function using a forward model analysis of the MCMC samples after parame-

ters’ convergence. In this approach, the total or a part of samples after MCMC convergence are

used in a forward analysis scheme to obtain the corresponding samples for model responses. Then,

95% Bayesian confidence intervals can be determined through the removal of 2.5% of samples

from the upper and lower limits of the resulting samples for the model responses.
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3.3.3 Gaussian process-based surrogate modelling

In the recent years, the development of surrogate models have been the center of attention due

to their vital applications for the efficient optimization of expensive models. In fact, the surrogate

models provide an approximation for expensive models throughout the entire design space [79].

Generally, surrogate models can be built through two major fitting approaches, ordinary regression

analyses and stochastic process (e.g., Bayesian non-parametric GP [80]). The main issues with the

regression approaches are the assumption of a known form of regressor to the model function and

the consideration of independent errors between points in the design space. On the other hand, the

stochastic GP (or kriging in the context of geology literature) emphasizes the correlation between

errors instead of the indication of regressor formulation, so that the regressor can reduce to just a

constant term [81], as follows:

y(X(i)) = µ+ ε(X(i)) , i = (1, ..., n) (3.9)

where
{
X(i) = (x

(i)
1 , ..., x

(i)
k ),y(i) = y(X(i))

}
are n sampled data points and their correspond-

ing model function responses. Here, A free noise condition with zero uncertainty is assumed for

data points. µ is the average of the stochastic model and ε(X(i)) is the error term defined as a

normal distribution with mean zero and the variance σ2, i.e., N (0, σ2). In this fitting approach,

the correlation between the errors of data points are obtained by a weighted distance function

expressed as:

d(X(i), X(j)) =
k∑
l=1

θl|x(i)
l − x

(j)
l |

pl
(3.10)

corr
[
ε(X(i)), ε(X(j))

]
= exp

[
− d(X(i), X(j))

]
(3.11)

where θl and pl indicate the importance or sensitivity of variable l and the smoothness of the

correlation function along the coordinate direction l, respectively. It is worth noting that less

51



distance between points means a correlation closer to 1. These correlation values between the

errors of different data points can produce a n× n correlation matrix (R) [81].

In our work, a radial basis function is considered for the correlation function, where pl = 2

in Equation 3.10. However, the optimal values of the other hyper-parameters µ̂, σ̂2 and θ̂s are

obtained via a Maximum Likelihood Estimation (MLS). These hyper-parameters and R are used

to derive the mean value and the mean squared error of the surrogate model at any given point in

the design space [81, 82], as the following equations:

ŷ(X) = µ̂+ r(X)TR−1(y − Iµ̂) (3.12)

S2(X) = σ̂2

[
1− rTR−1r +

(1− ITR−1r)2

ITR−1I

]
(3.13)

Here, r(X) is the correlation vector between the errors at the original data points and at any

given spatial point, i.e., r(X) =

[
corr

[
ε(X(i), ε(X))

]]
n×1

. I is also a n × 1 identity vector. It

should be noted that "T" and "-1" denote the transpose and inverse matrix operations.

In the case that there are multi-fidelity simulations and/or experiments with different levels

of accuracy/cost for a real system, co-kriging surrogate modelling is employed to better infer the

behavior of higher fidelity/more expensive models with lower uncertainties through the establish-

ment of an error correlation matrix between their data points and the lower fidelity/cheaper data

points [12]. This is a very cost-efficient way to predict the behavior of the expensive models

with less evaluations. Generally, co-kriging approach is an extension of kriging (GP) surrogate

modelling [83], which was pioneered by Kennedy and O’Hagan [12]. In the current work, the

precipitation model in MatCalc c© and experimental behavior (observations) are considered as the

low-fidelity/cheap and high-fidelity/expensive models, respectively. In such cases, a linear rela-

tionship is defined between the observation (Γ) and the low-fidelity model result (M) at any given

spatial design point based on Kennedy and O’Hagan approach, as follows:
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Γ(X) = Ψ(X) + e(X) = ρM(X, θ) + δ(X) + e(X) (3.14)

where Ψ is the real response of the system, ρ is a constant regression parameter, δ is a model

discrepancy function that is independent of the low-fidelity model response, and e is the observa-

tion error [13]. In this context, two Gaussian Processes are constructed over the low fidelity model

M(Xi, θ) responses and the error terms δ(Xi) + e(Xi) and statistically combined together in order

to predict the behavior of the high-fidelity model Γ(X) within an uncertainty band.

Considering
{
Xc = (x1

c , ..., x
nc
c ),yc = (y1

c , ..., y
nc
c )
}

and
{
Xe = (x1

e, ..., x
ne
e ),ye = (y1

e , ..., y
ne
e )
}

data points for low- and high-fidelity models, Yc and Ye are two mentioned GP surrogate models

which are built over
{
Xc,yc

}
and

{
Xe,yd =ye − ρM(Xe, θ)

}
, according to Equations 3.12 and

3.13. The resulting co-kriging surrogate model is expressed as:

Ye(X) = Kα + φ(X)TΦ−1(y − Fα) (3.15)

S2(X) = ρ̂2σ̂2
c + σ̂2

d − φTΦ−1φ (3.16)

where,

K =

[
ρ̂ 1

]
, α =

 µ̂c

µ̂d

 , F =

 I 0

ρ̂.I I

 , y =

 yc

ye

 (3.17)

φ(X) =

 ρ̂σ̂2
crc(X)

ρ̂2σ̂2
crc(X,Xe) + σ̂2

drd(X)

 (3.18)

Φ(X) =

 σ̂2
cRc ρ̂σ̂2

cRc(Xc, Xe)

ρ̂σ̂2
cRc(Xe, Xc) ρ̂2σ̂2

cRc(Xe, Xe) + σ̂2
dRd

 (3.19)

Again, it is worth noting that the hyper-parameters of both the above mentioned GPs (kriging
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models), including µ̂c, µ̂d, σ̂2
c , σ̂2

d, θ̂c s, and θ̂d s, in addition to the correlation linear scale ρ̂

are estimated through MLEs approach [79, 84]. To perform the co-kriging surrogate modelling,

ooDace package in Matlab has been utilized in this work [85].

In Figure 3.1, an 1-D mathematical example is shown for the sake of comparing the ordinary

kriging and co-krigigng results over the high-fidelity simulation data points with the true behavior

of this expensive simulation. As observed in this figure, the co-kriging surrogate model provides

much more precise results using the existing features in the low-fidelity model [84].

Figure 3.1: Ordinary kriging versus co-kriging surrogate responses over the high-fidelity simula-
tion data points in a 1-D mathematical example. Adapted from [84, 85].

3.3.4 Experimental data

The experiments performed by Panchenko et al [64] have been utilized in this work to calibrate

the precipitate model and to build the subsequent co-kriging surrogate model. These experiments

are chosen due to the use of single crystal materials where the absence of grain boundaries results
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in homogeneous distribution of precipitates in the micro-structures after aging process. Therefore,

the complexities associated with the heterogeneous nucleation at grain boundaries are avoided in

experimental characterization and precipitation modelling. These experiments were carried out

at 9 combinations of 4 initial nominal compositions (50.7, 50.8, 51 and 51.5 at% Ni), 3 aging

temperatures (400, 500 and 550 oC), and 2 different aging times (1 and 1.5 hour(s)), as shown

in Table 3.1. In this work [64], an transmission electron microscope (TEM) was applied for the

micro-structural characterization which includes the precipitate inter-distance (λ̄) and geometry

(i.e., average size (d̄) and thickness (t̄)). These measurements were used to calculate the average

Ni concentration in the aged matrix (c̄
′
Ni%) [64] and volume fraction of precipitates (Vf%) [58]

by the following equations:

c̄
′

Ni =
c̄Ni − AVf

1− Vf
(3.20)

Vf =
t̄

λ̄+ t̄
(3.21)

where c̄Ni is the initial nominal Ni content and A ≈ 56.0 is the approximate Ni atomic percent

in Ni4Ti3 phase. It should be noted that the uncertainties of all experimental data are reported

in [64], except for the uncertainties of matrix Ni contents. Therefore, Equation 3.20 has been used

to propagate uncertainty from volume fraction to Ni content according to the approach mentioned

in Section 3.3.2.2. The results have been shown in Table 3.1.

3.4 Results and Discussion

3.4.1 Prior knowledge about the model parameters

The influential parameters for calibration have been recognized using the forward analysis of

the MatCalc c© model, which are matrix/precipitate interfacial energy (γ), diffusion correction (χ),

nucleation site density (N0), nucleation constant (ξ), and precipitate aspect ratio (H). High co-

herency between NiTi matrix and Ni4Ti3 precipitates results in a low value of the interfacial energy.

This parameter is one of the most influential parameters in the model since the nucleation rate al-
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Table 3.1: Experimental Results and their uncertainties. Adapted from [64].

Experimental Conditions Experimental Results

# c̄Ni(%) T (oC) t(s) c̄
′
Ni(%) l̄(nm) Vf (%) d̄(nm)

1 50.7 400 5400 50.50±0.029 100±10 3.6±0.5 35±5

2 50.7 500 3600 50.49±0.029 220±20 3.8±0.5 100±10

3 50.7 550 5400 50.48±0.029 550±20 4±0.5 400±20

4 50.8 550 5400 50.53±0.029 510±20 5±0.5 360±20

5 51 400 3600 50.48±0.030 35±5 9.4±0.5 25±5

6 51 400 5400 50.49±0.030 45±5 9.3±0.5 35±5

7 51 500 3600 50.50±0.030 100±10 9.1±0.5 100±10

8 51 550 5400 50.51±0.030 400±20 9±0.5 400±20

9 51.5 550 5400 50.64±0.032 400±20 16±0.5 400±20

ters exponentially with the cube of the interfacial energy. Diffusion correction is an unknown value

to modify Ni diffusivity for the real conditions. For example, there are probably some quenched-in

excess vacancies in the micro-structure that might show a significant enhancement in the diffusiv-

ity. Moreover, the number of potential nucleation sites are calculated based on the micro-structural

pictures captured in Panchenko’s work [64]. In this regard, the inter-distance between precipitates

can determine the number of nucleation sites per unit volume as ( 1
λ̄
)3 with the assumption of a ho-

mogeneous precipitate distribution. The calculated value is not precise and should be modified due

to the likely presence of some small undetectable particles or some inactivated nucleation sites. As

a result, the parameter range has been extended to the larger values. Nucleation constant is a pa-

rameter in the nucleation rate equation of the MatCalc c© model that is considered as a fine-tuning

parameter for the modification of the nucleation rate based on the experimental data. Regarding the

aspect ratio parameter, it is worth noting that the formed Ni4Ti3 precipitates resemble a disk-like

shape, thus its value should be less than 1 for the cylindrical precipitate assumption implemented in

the model. The initial values and the range of the model parameters applied for the model calibra-

tion are listed in Table 3.2. In addition, a non-informative (uniform) PDF has been suggested for
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the prior distribution of the model parameters in this work due to the lack of statistical information

about the mentioned model parameters.

Table 3.2: Initial value and range of the applied model parameters

γ(J/m2) χ N0(1/m3)(×1018) ξ H

θ(0) 0.0505 [60] 1 1-20000 [64] 1 0.24 [60][
θmin-θmax

]
0.01-0.1 0.01-10.0 1-100000 0.01-10.0 0.01-1

3.4.2 Bayesian calibration of the precipitation model

For the model calibration, a 1 × 5 parameter vector based on Table 3.2 is considered as the

initial point (θ
(0)
1×5) in the parameter space, and then new parameter vectors are randomly sampled

from a posterior proposal distribution and selected using the defined criterion based on MH ratio

in Section 3.3.2.1. First, all the above mentioned model parameters have been calibrated with each

experimental data in Table 3.1 individually to find the plausible optimum value for the interfacial

energy in each experimental case. These calibrations have been performed as a result of author’s

intuitions about the variation of interfacial energy with aging temperature and nominal composi-

tion. It should be noted that the other parameters are also taken into account in the calibrations

because of probable correlations between interfacial energy and other applied parameters that can

affect the plausible optimal value of interfacial energy in each calibration case. As a matter of

illustration, the results of one of these calibrations is discussed in details as follows.

All the calibrations have been performed for 20000 generations. Here, calibration against ex-

periment 1 from Table 3.1 has been selected as an example to show how the calibration approach

works. After MCMC generations, the posterior PDFs of the parameters can be evaluated through

their joint and marginal (posterior) frequency distributions. In Figure 3.2(a-e), the accepted pa-

rameters during MCMC can be observed which clearly differentiate the convergence region from

the "burn-in period" using the red dotted lines. In this regard, it should be noted that the MCMC
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convergence is identified as fluctuations around a constant mean value rather than just a straight

horizontal line with a constant value. Moreover, the burn-in period is some of the generated param-

eter vectors at the beginning of MCMC sampling (before the convergence region), which should

be removed for the further evaluations of the model parameters [6]. Figure 3.3(a-l) demonstrates

the joint frequency distributions for each two model parameters. In these plots, colors are rep-

resenting different density of MCMC sampled points in the parameter space that increases from

blue to red color spectrum. Therefore, the red regions can indicate the convergence regions for

the model parameters. In addition, the linear correlation between parameters can be qualitatively

evaluated by the linearity of the ellipsoidal features in the plots. In this context, higher ratio of ma-

jor to minor axis (the longest over the shortest diameter) corresponds to higher linear correlation

between the given pair of parameters; on the other hand, being closer to a circular shape where

the diameters are less different means lower linear correlation. In the case that one of the axis is

the density of nucleation sites (Figure 3.3(b), 3.3-e, 3.3-h, and 3.3-k), two dominant sharp regions

can be observed in the sampling space. It seems the smaller one which is around the initial value

for this parameter (1021 1
m3 ) corresponds to the the burn-in period. This can be also distinguished

as two horizontal lines without any considerable fluctuations in Figure 3.2(c) which are separated

by a small transition region from about 7000th to 8000th generated samples. In addition, the pro-

jections of 3D joint distributions of the color plots in Figure 3.3 (where z axes is the frequency

or number of samples) on xz and yz planes result in the marginal frequency distributions for each

given parameter.

The marginal frequency distributions can also be obtained directly from the MCMC samples

for each model parameter, as shown in Figure 3.4(a-e). The discussion about two sampling regions

is more clear in Figure 3.3, not only for the density of nucleation sites but also for interfacial energy

which is not detectable through the MCMC accepted sample and joint distribution plots in Figure

3.2(a) and 3.3, respectively. As observed in these figures, it seems MCMC sampling has been

trapped around the initial values of these two parameters for a while as indicated by red arrows,

and then suddenly moves toward their optimal value ranges as shown with blue arrows. It should be
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Figure 3.2: MCMC accepted parameters during calibration (the left side of the dashed lines indi-
cate the burn-in period in the parameter space)
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Figure 3.3: 2D Joint frequency distribution of each two model parameters with normalized color
bars
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noted that the second small peak for aspect ratio (Figure 3.4(e)) results from random noises during

the convergence of this parameter and nothing to do with burn-in period in this case. This can be

also observed in Figure 3.2(e) where a sudden drop in the sample values occurs close to the end

of process, i.e., between 17000th and 19000th generated samples. This MCMC acceptance trend

implies that aspect ratio probably has lower sensitivity compared to the other model parameters

since its alteration shows less effects on the model results. Continuing sampling probably fixes

this issue by generating more samples around the dominant peak that might annihilate the small

peak.

Cumulative mean distribution of parameters are usually used to find the number of MCMC

parameter generations that belongs to the burn-in period [6]. The cumulative mean plots in Figure

3.5(a-e) demonstrate a transition from noisy trends at the beginning to smooth changes towards

constant values after 8000 parameter generations. Therefore, the first 8000 parameter generations

are considered as the burn-in period and discarded from the total samples before further analysis of

parameters. This period can also be determined through the trace plots in Figure 3.2 in this specific

calibration case. Here, the small fluctuations around the mean value after parameters’ convergence

result in a distinct transition between the burn-in periods and the convergence regions, which is not

always the case.

After the removal of the burn-in period, all the samples outside of the optimal value ranges

of the parameters disappeared in their posterior frequency distributions, according to Figure 3.6.

In other words, no second peak is observed in the case of interfacial energy and the density of

nucleation sites. At this point, the remaining 12000 samples are used to calculate the mean values

and variance-covariance matrix of the model parameters. The mean values and the square root of

the matrix’ diagonal elements can be introduces as the parameters’ plausible optimal values and

their uncertainties, respectively.

This calibration process have been performed exactly the same for the other individual ex-

perimental data as well. The results for calibrated parameters and their uncertainties have been

listed in Table 3.3 for each experimental case. Using these calibrated parameters, the three model
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Figure 3.4: Marginal posterior frequency distributions of the model parameters after MCMC sam-
pling
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Figure 3.5: Cumulative mean distributions of the model parameters after MCMC sampling
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Figure 3.6: Marginal posterior frequency distributions of the model parameters after the removal
of the burn-in period from MCMC generated samples
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outputs have been calculated and compared with their corresponding experimental data in each

case. Moreover, the parameters’ uncertainties are also propagated to the model results using the

propagation of uncertainty method introduced in Section 3.3.2.2. As can be observed in Table 3.4,

there are very good agreements between the mean values of the model results and the experimental

data in each calibration case, or at least the 95% Bayesian confidence intervals of the data show

noticeable overlaps with the 95% Bayesian confidence intervals of the model results, where 95%

Bayesian confidence intervals are defined as the mean values of data/model results plus/minus two

times their corresponding standard deviations (D/M ± 2σD/M ).

Table 3.3: MCMC Calibrated values and uncertainties of the model parameters obtained for each
experimental condition

Experimental Condition Model Parameter

# c̄Ni(%) T (oC) t(s) γ(J/m2) χ N0(1/m3)(×1018) ξ H

1 50.7 400 5400 0.016±0.0024 1.1±0.104 1592.87±13.815 1.15±0.491 0.80 ±0.107

2 50.7 500 3600 0.035±0.0013 0.37±0.095 87.27±2.763 5.17±1.768 0.65±0.210

3 50.7 550 5400 0.032±0.0009 0.95±0.215 8.75±3.368 3.50±2.385 0.71±0.228

4 50.8 550 5400 0.019±0.0016 0.29±0.014 1.75±0.172 8.42±0.528 0.35±0.019

5 51 400 3600 0.041±0.0017 1.28±0.400 19999.88±0.182 1.13±0.562 0.63±0.248

6 51 400 5400 0.045±0.0011 1.68±0.419 10456.18±638.232 4.54±2.728 0.68±0.239

7 51 500 3600 0.039±0.0003 0.36±0.042 1001.10±0.056 2.99±0.791 0.80±0.138

8 51 550 5400 0.035±0.0002 0.80±0.063 19.18±0.381 1.85±0.375 0.82±0.101

9 51.5 550 5400 0.023±0.0035 0.54±0.524 4.26±3.605 4.29±1.258 0.87±0.156

As mentioned at the beginning of this section, the goal for the model calibration against each

experimental data is to find any possible relationship for interfacial energy in terms of nominal

chemical composition and aging temperature, which is very complex and expensive to be deter-

mined experimentally. For this reason, the calibrated interfacial energy values have been plotted

in terms of aging temperature, T(oC), and nominal Ni content, Ni(at%), and then a polynomial

surface has been fitted over the data points, as shown in Figure 3.7. The corresponding fitting

equation is:
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Table 3.4: Comparison of model results and experimental data obtained after MCMC calibration
against each experimental data individually

Model Input Model Output Experiment

# c̄Ni(%) T (oC) t(s) c̄
′
Ni(%) Vf (%) d̄(nm) c̄

′
Ni(%) Vf (%) d̄(nm)

1 50.7 400 5400 50.50±0.000 3.6±0.0 35.0±0.0 50.50±0.029 3.6±0.5 35.0±5.0

2 50.7 500 3600 50.50±0.023 3.4±0.5 99.8±2.3 50.49±0.029 3.8±0.5 100.0 Âś 10.0

3 50.7 550 5400 50.50±0.036 3.1±0.7 399.9±3.8 50.48±0.029 4.0±0.5 400.0±20.0

4 50.8 550 5400 50.50±0.016 4.3±0.4 359.9±1.8 50.53±0.029 5.0±0.5 360.0±20.0

5 51 400 3600 50.50±0.035 7.6±0.6 25.1±2.3 50.48±0.030 9.4±0.5 25.0±5.0

6 51 400 5400 50.50±0.018 7.7±0.5 34.8±1.8 50.49±0.030 9.3±0.5 35.0±5.0

7 51 500 3600 50.50±0.010 7.9±0.4 99.8±1.3 50.50±0.030 9.1±0.5 100.0±10.0

8 51 550 5400 50.50±0.031 7.7±0.6 400.2±2.8 50.51±0.030 9.0±0.5 400.0±20.0

9 51.5 550 5400 50.61±0.101 13.6±1.4 399.2±12.0 50.64±0.032 16.0±0.5 400.0±20.0

γα/β = 8.051532780404465 + 0.026548307462029.T + 22.565282846398304.Ni

− 11.341568269633328.Ni2 − 0.000522121579171.T.Ni

+ 0.016910379084767.Ni3 − 1.157795038899461.Ni4

− 0.000001076437280.Ni6

(3.22)

After inserting this equation in the model, the other four model parameters have been cali-

brated with all nine experimental data together, based on the same approach mentioned earlier.

The results for calibrated parameters and the corresponding model outputs for all the experimental

cases have been reported in Tables 3.5 and 3.6, respectively. As can be observed, there are some

discrepancies between the model responses and experimental data due to very high uncertainties

in this problem. These large uncertainties probably result from very high influences of the applied

parameters on model responses, missing physics in the precipitation model, and high uncertainties

in the experimental measurements. For example, model shows very high sensitivity to interfacial

energy according to Equation 3.3 since the nucleation rate exponentially changes with the cube

of this parameter’s value. Therefore, a slight change in interfacial energy can considerably alter
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Figure 3.7: The relationship of the interfacial energy with nominal Ni Composition and aging
temperature

the model responses. Moreover, as mentioned in Section 3.3.1, the precipitation model is based

on classical theory of nucleation and growth that includes many simplification assumptions and

incomplete physics. Significant amount of experimental uncertainties also result from the TEM

analysis since it is restricted to a very small 2-D image as a representative of the whole bulk mate-

rial. Moreover, very small particles may not be completely visible in the microscopic images that

can considerably affect the reported mean precipitate sizes unlike the precipitate volume fractions

and the matrix chemical compositions. The reproducibility of the applied MCMC approach has

also been checked against the synthetic data obtained from the calibrated model (results in Table

3.6) in order to ensure that no noticeable uncertainties result from the calibration approach in this

case study.

3.4.3 Co-kriging surrogate modelling for precipitate volume fraction

Remarkable differences between the obtained model results and the experimental data has been

an important reason to use co-kriging technique for more precise prediction of the experimental

precipitation responses (as the high-fidelity model) throughout the entire design space of the pre-
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Table 3.5: Optimal values of the model parameters and their uncertainties after MCMC calibration
against all the experimental data together

χ N0(1/m3)(×1018) ξ H

2.179±1.293 39238.286±29309.092 0.491±0.298 4.058±3.018

Table 3.6: Comparison of model results and experimental data obtained through MCMC calibra-
tion of four model parameters against all the experimental data together after using the interfacial
energy equation in the model

Model Input Model Output Experiment

# c̄Ni(%) T (oC) t(s) c̄
′
Ni(%) Vf (%) d̄(nm) c̄

′
Ni(%) Vf (%) d̄(nm)

1 50.7 400 5400 50.27±0.177 6.2±2.32 18.4±12.8 50.50±0.029 3.6±0.50 35.0±5.0

2 50.7 500 3600 50.10±0.005 8.7±0.09 32.0±18.1 50.49±0.029 3.8±0.50 100.0±10.0

3 50.7 550 5400 50.17±0.047 7.9±0.07 93.6±44.7 50.48±0.029 4.0±0.50 400.0±20.0

4 50.8 550 5400 50.17±0.046 9.3±0.03 59.9±25.6 50.53±0.029 5±0.50 360.0±20.0

5 51 400 3600 50.38±0.300 9.0±3.96 33.2±15.8 50.48±0.030 9.4±0.50 25.0±5.0

6 51 400 5400 50.15±0.188 12.1±2.35 38.8±19.0 50.49±0.030 9.3±0.50 35.0±5.0

7 51 500 3600 50.10±0.002 13.0±0.06 51.0±26.4 50.50±0.030 9.1±0.50 100.0±10.0

8 51 550 5400 50.17±0.044 12.1±0.05 82.7±36.1 50.51±0.030 9±0.50 400.0±20.0

9 51.5 550 5400 50.17±0.046 19.3±0.03 59.7±27.8 50.64±0.032 16±0.50 400.0±20.0

cipitation process in Ni-Ti SMAs. As mentioned in Section 3.3.3, this is performed by building a

co-kriging surrogate model on the experimental data points based on the Kennedy and O’Hagan

approach [12]. In this approach, a linear correlation between low- and high-fidelity models is con-

sidered to take advantage of the physics included in the precipitation model for better predictions

of experimental behavior.

This method can be applied for all the three precipitation model results in this work; however,

precipitate volume fraction has been selected as an example in this section to show the correspond-

ing co-kriging prediction. According to the information observed in Table 3.6, nine data points for

each low- and high-fidelity models have been utilized to create the 4-D co-kriging surrogate model

in terms of Nominal Ni composition and heat treatment temperature and time. For better visualiza-

tion, the mean response of the co-kriging surrogate model (Blue surfaces) and this response plus
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95% confidence interval borders (green surfaces) have been projected in 3-D space for each two

model inputs in Figures 3.8(a-c) and 3.8(d-f), respectively. Consequently, it can be stated that the

experimental precipitate volume fractions are situated between the borders shown in 3.8(d-f) with

95% probability, which is a very important finding to reduce the cost in robust design of SMAs

precipitation hardening.

3.5 Summary and Conclusion

In this work, the NKW precipitation model in MatCalc c© for Ni-Ti SMAs has been proba-

bilistically calibrated against experimental data [64] for three model objectives, including mean

precipitate size, precipitate volume fraction, and average Ni content in matrix. A MCMC approach

in the context of Bayesian statistics has been applied for this multi-objective problem to calibrate

the influential parameters in this model and quantify their uncertainties.

First, the model parameters have been calibrated against each experimental data individually

in order to find a relationship for interfacial energy in terms of nominal Ni composition and aging

temperature, which is very difficult to do experimentally. After inserting the obtained polynomial

equation for interfacial energy in the model, the other influential parameters have been calibrated

with all available experimental data together. After the uncertainty propagation from the param-

eters to the model results, some discrepancies have been observed between the model results and

the corresponding experimental data due to high uncertainties in both the model structure and the

data. For more precise prediction of precipitation behavior, the co-kriging surrogate modelling

in the framework of Kennedy and O’Hagan approach [12] has been applied in this work. As a

manner of illustration, the experimental precipitate volume fractions and their uncertainties have

been predicted through the construction of a co-kriging surrogate model in terms of nominal Ni

composition and heat treatment temperature and time in a 4-D design space. This result is very

important in the case of robust design since the response of the high-fidelity experimental behavior

which is very close to the real response of the system can be identified with 95% confidence.
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Figure 3.8: a-c) the mean response of the co-kriging surrogate model (Blue surfaces) and d-f) mean
response besides 95% confidence interval borders (green surfaces)
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4. UNCERTAINTY QUANTIFICATION OF THE PARAMETERS AND PREDICTIONS OF

A PHENOMENOLOGICAL CONSTITUTIVE MODEL FOR THERMALLY INDUCED

PHASE TRANSFORMATION IN NI-TI SHAPE MEMORY ALLOYS ∗

4.1 Overview

In this work, a probabilistic calibration approach has been adopted to quantify the uncertainties

of the parameters and predictions of a phenomenological Shape Memory Alloys (SMAs) consti-

tutive model which has been used to predict the thermally induced phase transformation of Ni-Ti

SMAs. Furthermore, the impact of the adopted calibration method, which enables the determi-

nation of the uncertainty bounds of the model predictions, on the design of robust engineering

applications has been discussed. To this end prior to the probabilistic model calibration, a design

of experiments (DOE) has been performed in order to identify the most influential parameters on

the response of the system and thus reduce the dimensionality of the problem. Subsequently, un-

certainty quantiïňĄcation (UQ) of the influential parameters has been carried out through Bayesian

Markov Chain Monte Carlo (MCMC). The assessed uncertainties in the model parameters has been

then propagated to the model predictions using an approximate approach based on the variance-

covariance matrix of the MCMC-calibrated model parameters and then an explicit propagation of

uncertainty through MCMC-based sampling. The determined 95% Bayesian confidence intervals

of the model predictions, by the latter methods, has been demonstrated and compared. Addition-

ally, good agreement between the experimentally measured and model predicted SMA hystere-

sis loops has been observed where the experimental data are situated within the predicted 95%

Bayesian confidence intervals. Finally, the application of the MCMC-based UQ/UP approach in

decision making for experimental design has also been shown by comparing the information that

can be gained by performing multiple repetitive experiments under identical thermo-mechanical

∗Republished with permission of IOP Publishing, from "Uncertainty quantification of the parameters and predic-
tions of a phenomenological constitutive model for thermally induced phase transformation in Ni-Ti shape memory
alloys", Pejman Honarmandi, Alex Solomou, Raymundo Arroyave, Dimitris Lagoudas, 27, 3, 2019; permission con-
veyed through Copyright Clearance Center, Inc.
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conditions versus experiments under different conditions.

4.2 Introduction

Nickel-Titanium (Ni-Ti) alloys are one of the most common shape memory alloys (SMAs),

which are widely used in different engineering applications, such as biomedical devices and im-

plants, microelectromechanical systems, sensors and actuators, seismic protection tools, and aerospace

products and structures [86, 87]. Such applications are enabled by either the shape memory effect

or super-elasticity, which in turn are the result of a reversible thermoelastic martensitic transfor-

mation that is triggered by applying thermal and/or mechanical loads [88, 89].

The macroscopic thermal actuation response of SMAs enables actuators with high specific

weight ratio compared to the conventional alternatives [90,91]. Thermal actuation can occur during

thermal cycles under iso-baric condition where inelastic strain is recovered through the forward and

reverse martensitic phase transformation induced during cooling and heating [92]. However, the

forward and reverse transformations take place at different temperatures due to energy dissipation

during this cyclic thermal process [93], which results in a hysteresis loop in strain-temperature

space.

Under the framework of Integrated Computational Materials Engineering, completing the loop

along the process-structure-property-performance chain through multiscale modeling is a neces-

sary (albeit not sufficient) condition for the efficient and robust design of materials for specific

applications. In the case of Ni-Ti SMAs, different thermodynamics and kinetics modeling are

usually applied to connect process and structure, such as CALculation of PHAse Diagram (CAL-

PHAD) [59, 94], precipitation of secondary phases [60, 95], and phase field models [66, 67, 96].

In regard to the structure-property linkages, a number of constitutive models have been proposed

over the recent decades to predict the thermo-mechanical response of Ni-Ti SMAs. These mod-

els can be categorized into phenomenological [87–89, 97–103] or micromechanical-based mod-

els [92, 104–107] which have been reviewed thoroughly by Patoor et al. [93] and Lagoudas et

al. [108]. Generally, micro-mechanical models are high-fidelity and expensive models that use mi-

crostructural information to predict the macroscopic behavior of SMAs while phenomenological
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models are cheap and fast since the free energy associated with a non-microscopic homogenized

material volume is taken into account for the prediction of the macroscopic responses [99].

Despite a substantial number of constitutive models for the response of SMAs, there are a very

few studies associated with analysis, calibration, and uncertainty quantification (UQ) of the model

parameters and subsequent uncertainty propagation (UP) from these parameters to the model re-

sponses. In this regard, the sensitivity of the design outputs to the uncertainty of the design input

variables has been evaluated for SMA morphing structures by Oehler et al [109] through an iter-

ative procedure based on a quasi-Monte Carlo simulation. Martowicz et al [110] also performed

some preliminary work on the sensitivity analysis and uncertainty quantification of a finite element

based numerical model aided by meta-modeling which predicts the phase transformation response

of a SMA bumper due to external thermal and mechanical stimuli. In this work, the influential

input variables and the uncertainty of the output variables have been determined using central fi-

nite difference approach and Monte Carlo simulation, respectively. In another work, Enemerk et

al [111] have applied an adaptive Markov Chain Monte Carlo (MCMC) approach to quantify the

parameter uncertainties and correlations of a thermo-mechanical model which predicts the cyclic

response of helical springs made of pseudo-elastic SMAs. Generally, it should be noted that lack

of thorough sensitivity and uncertainty analysis in computational modeling is a general issue in

different areas of materials science and engineering. For this reason, our developed UQ and UP

frameworks have been applied for plastic flow behavior in TRIP steels [69] as well as calculation

of phase diagrams (CALPHAD) modeling [70] to spread the use of these frameworks and show

their importance in computational materials design.

Generally, uncertainties can result from different sources, including natural uncertainty (NU)

from the random nature of the system, model parameter uncertainty (MPU) due to lack of knowl-

edge and data about the model parameters, and Model structure uncertainty (MSU) as a result

of incomplete or simplified physics in the model [3]. For example, the cyclic thermomechanical

responses of an SMA material with the same chemistry and processing history can be slightly dif-

ferent during exact replications of an iso-baric experiment due to the inherent randomness (NU)
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in the system. In addition, there are different physical parameters in the phenomenological- or

micromechanical-based models, such as transformation temperatures, which have some uncer-

tainties (MPU) in their experimental measurements. It should be noted that physical models are

usually incomplete and unable to capture all the physics in the system, including the existing

thermo-mechanical models. For example, MSU in most of these models can be attributed to the

absence of smooth phase transformations at austenite/martensite start and finish temperatures, in-

dependency of the applied stress to the maximum transformation strain at low stress levels and/or

independency of the transformation hysteresis area to the applied stress in the prediction of the

cyclic thermo-mechanical behavior of SMAs. Although the thermo-mechanical model in the cur-

rent work (described in section 2) addresses the above-mentioned modeling deficiencies, the model

assumptions can still result in some MSU. The consideration of the quadratic dependency of Gibbs

free energy of phases to the applied stress and linear relationship between the applied stress and

transformation temperatures and between the rates of martensitic volume fraction and the trans-

formation strain are some of the main assumptions in this model. The importance of UQ and UP,

which tend to be ignored in deterministic approaches towards model parameterization, is notice-

ably highlighted in the case of robust design where it is sought that the system response be rela-

tively independent of the uncertainties of its variables/parameters under the operating conditions.

These inverse and forward uncertainty analyses are discussed in more detail as follows.

The estimation of model parameters in order the model outputs to predict the available (exper-

imental) data, is an inverse problem, which can be solved through deterministic or probabilistic

approaches [112]. Deterministic calibration such as the least squares approach yields a single best

estimate based on the minimization of the squared difference between the model results and data,

while probabilistic calibration provides probability distributions and uncertainty bounds for the

model parameters. It is worth noting that in some cases different combinations of the model pa-

rameters usually lead to similar model outputs, but, by definition, deterministic calibration only

arrives at one best estimate. Probabilistic calibration, on the other hand, provides an ensemble of

possible combinations of model parameter values in the form of probability distributions [113].
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In different engineering fields, deterministic approaches have commonly been used to cali-

brate the model parameters leading to deterministic model predictions. However, it is widely

recognized that probabilistic calibration approaches can result in more informative predictions be-

cause they enable the quantification of the uncertainties of the model parameters which can be

subsequently propagated to the model results, thus offering model predictions with defined un-

certainty/confidence bounds [114].To this end, provided the design requirements of a particular

application, the latter models can be used to perform robust design by designing the components

associated with the application such that they meet the design requirements despite the variability

on the model predictions due to the uncertainties of the model parameters. On the other hand, the

deterministic models cannot lead to robust designs due to the lack of information regarding the

uncertainties of their parameters and predictions.

Among probabilistic approaches, Bayesian-based MCMC algorithms have become the most

commonly used tools due to the fast development in computing capabilities [4]. These sam-

pling techniques are more robust and simpler compared to the traditional analytic and numeri-

cal approaches to solve high-dimensional intractable integrals in the probabilistic calibration pro-

cess [5, 6]. In addition, MCMC methods can be used to sample from complex multivariate distri-

butions that are usually very hard to sample using other sampling techniques such as inversion or

rejection sampling [6].

MCMC sampling, however, is an expensive method, particularly in high-dimensional cases

where the parameter convergence in the calibration process can be very time-consuming. A re-

duction in the dimensionality of the parameter space through sensitivity analysis (SA), however,

can significantly improve the MCMC calibration efficiency. Sensitivity analysis (SA) is often

applied to determine the impact of the parameters’ variability/uncertainty on the total variabil-

ity/uncertainty of the model results [7] in order to find the insensitive model parameters that can be

eliminated from the calibration process. In this regard, design of experiments (DOE) is the most

common approach, which requires a description of experiments (such as complete factorial design

(CFD) offered by Fisher [8] or fractional factorial design (FFD) to consider possible combina-
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tions of pre-defined parameters’ levels) besides a subsequent analysis of the experiments (such as

ANalysis Of VAriance, ANOVA).

In robust design, the final results of the model and their corresponding uncertainties are the

main interest. Therefore, a UP technique should be applied by considering the trade-off between

cost and information loss to propagate uncertainties from the model parameters to the model out-

puts [115]. This forward problem can approximately be solved through different methods with

different cost and precision, e.g., forward model analysis of the parameters’ optimal combinations,

statistical second moment methods, polynomial chaos expansion, etc.

In the present work, the parameter SA and MCMC calibration have been performed for the

phenomenological constitutive model proposed by Lagoudas et al. [99]. This model has been se-

lected due to the consideration of three important features in SMAs which are usually ignored in

this type of modeling: 1) the smooth transitions in thermo-mechanical responses of SMAs during

forward and reverse phase transformations that take place in a range of temperatures and/or me-

chanical loadings, 2) the dependency of maximum transformation strain after full transformation

on the magnitude of the applied stress, and 3) the definition of a critical driving force in terms

of the magnitude of the applied stress and the transformation direction [99]. In section 2, this

thermo-mechanical model is described thoroughly. In section 3, parameter SA using the com-

bination of CFD and ANOVA are explained in details and subsequently utilized to perform the

sensitivity assessment of the model parameters. In section 4, the applied MCMC sampling algo-

rithm is described and used to probabilistically calibrate the influential model parameters, and then

the parameter uncertainties are propagated to the model outcomes using different UP approaches.

In section 5, the information gain of two experimental designs are compared together using the

relative entropies obtained after the sequential MCMC training of the model parameters with two

different synthetic data-sets. This is followed by the summary and conclusion in section 6.

4.3 Description of the Constitutive Thermo-Mechanical Model

In this section, the phenomenological SMA constitutive model proposed by Lagoudas et al. [99]

is described in detail. The capability to predict the thermo-mechanical responses under general
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temperature-loading paths for wide ranges of SMAs with different processing histories makes this

model powerful and usable for different applications. In the previous models [100, 116, 117], this

capability could be achieved by high modeling cost due to increased complexity or parameter

numbers.

In this model, a total Gibbs free energy is defined for the SMA material during the phase

transformation in terms of the thermos-elastic contributions of austenite (GA), martensite (GM )

and their interaction (Gmix) as follows,

G(σ, T, εt, ξ, gt) = (1− ξ)GA(σ, T ) + ξGM(σ, T ) +Gmix(σ, εt, gt) (4.1)

where, the external state variables σ and T are the applied stress tensor and the absolute temper-

ature, and the internal state variables εt, ξ, and gt account for the inelastic strain produced during

forward/reverse martensitic transformation, the total volume fraction of martensite which accounts

for all martensitic variants, and the transformation hardening energy, respectively. Moreover, GA,

GM , and Gmix according to Lagoudas et al. [99] can be written as follows,

GA/M = − 1

2ρ
σ : SA/Mσ − 1

ρ
σ : α(T − T0)

+ cA/M

[
(T − T0)− T ln

( T
T0

)]
− sA/M0 T + u

A/M
0

(4.2)

Gmix(σ, εt, gt) = −1

ρ
σ : εt +

1

ρ
gt (4.3)

The constant parameters ρ and α are the alloy density and the thermal extension tensor, and

the phase-dependent parameters S, c, s0, and u0 corresponds to the compliance tensor, specific

heat, specific entropy, and specific internal energy, respectively. It should be noted that the super-

scripts A and M denote quantities corresponding to the austenitic and martensitic phases while the

notation (. : .) shows the inner product of two second-order tensors.

The present phenomenological SMA model captures the effective response of the SMA mate-

rial without considering the detailed microscale behavior of the martensitic variants. Hence any
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change in the microstructural state of the material is depicted macroscopically by the change of

the scalar quantity ξ. To this end the evolution equations of internal state variables εt and gt are

defined in terms of rate of ξ.The evolution equation of εt is given as [99],

ε̇t = Λtξ̇ , Λt =

{
Λt
fwd , ξ̇ > 0

Λt
rev , ξ̇ < 0

(4.4)

where, Λt represents the transformation direction tensor, which is expressed for both directions

as,

Λt
fwd =

3

2
Hcur

(σ′
σ̄

)
, Λt

rev =
εt

ξ
(4.5)

σ̄ =
√

(3/2)σ′ : σ′ is the effective stress where σ′ is the deviatoric stress, and Hcur is the

maximum transformation strain after full martensitic transformation as a function of the effective

stress,

Hcur(σ̄) = Hsat(1− e−kσ̄) (4.6)

where, Hsat is a saturated value for the maximum transformation strain at sufficiently high value

of the effective stress, and the parameter k determines the exponential rate of Hcur variation from

0 to Hsat [92, 99].

In the same manner, the evolution equation of gt is given as,

ġt = f tξ̇ , f t =

{
f tfwd , ξ̇ > 0

f trev , ξ̇ < 0
(4.7)

where, f t is a direction-dependent hardening function, which has been introduced in this model

in order to capture the smooth transitions from the elastic to transformation regimes and vice versa.

The expression of f t for the forward and reverse transformation is given as follows,
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{
f tfwd(ξ) = 1

2
a1(1 + ξn1 − (1− ξ)n2) + a3

f trev(ξ) = 1
2
a2(1 + ξn3 − (1− ξ)n4)− a3

(4.8)

where, ni can take values in the range of (0, 1]. The value of ni closer to zero corresponds to

more smooth transition at the beginning or the end of the forward phase transformation (in the case

of i = 1 or 2, i.e., n1 or n2) or their counterparts for the reverse phase transformation (in the case

of i = 3 or 4, i.e., n3 or n4).

Provided Equations 4.1 to 4.8, the first and second law of thermodynamics can be utilized to

derive the remaining model equations. Hence, at a local point in the material, the conservation of

energy or first law of thermodynamics can be expressed as,

ρu̇ = σ : ε̇− div(q) + ρr (4.9)

where, u̇, q, and r denote the internal energy rate, the heat flux vector, and the internal heat

generation rate, respectively. In the same manner, the second law of thermodynamics at this local

point can also be written as the Clausius-Planck inequality [118],

ρṡ+
1

T
div(q)− ρr

T
≥ 0 (4.10)

By multiplying the two sides of the inequality 4.10 by T and substituting div(q) by its equiva-

lent obtained from Equation 4.9, the following inequality can be obtained,

ρṡT + σ : ε̇− ρu̇ ≥ 0 (4.11)

It should be noted that Gibbs free energy can be defined in terms of internal energy using the

Legendre transformation, as follows,

G = u− 1

ρ
σ : ε− sT (4.12)
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Hence by differentiating Equation 4.12 in respect to time and substitute the obtained expression

of ρṡT in Equation 4.11 the following thermodynamic constraint is derived,

− ρĠ− σ̇ : ε− ρsṪ ≥ 0 (4.13)

Using the chain rule, the second law of thermodynamics can turn into,

− ρ
(
∂σG : σ̇ + ∂TG : Ṫ + ∂εtG : ε̇t + ∂ξG : ξ̇ + ∂gtG : ġt

)
− σ̇ : ε− ρsṪ ≥ 0 (4.14)

In inequality 4.14, −ρ∂ξG = p, −ρ∂εtG = σ, and −ρ∂gtG = −1 are three generalized

thermodynamic forces. Following the Coleman and Noll approach [119] which states that the

inequality 4.14 must hold true for every thermodynamic path, including the paths where all the

variables are fixed in time except one, which is evolving, the total infinitesimal strain and entropy

can be calculated and expressed,respectively as follows,

ε = −ρ∂σG = Sσ + α(T − T0) + εt (4.15)

s = −∂TG =
1

ρ
α : σ + c ln

( T
T0

)
+ s0 (4.16)

From the same process, the following inequality can be obtained,

pξ̇ + σ : ε̇t − ġt ≥ 0 (4.17)

where, the generalized thermodynamic force p can be obtained by taking derivative of total G

in Equation 4.1 with respect to ξ,

p = −ρ∂ξG = GM(σ, T )−GA(σ, T )

=
1

2
σ : ∆Sσ + σ : ∆α(T − T0)− ρ∆c

[
(T − T0)− T ln

( T
T0

)]
+ ρ∆s0T − ρ∆u0

(4.18)
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As observed in this equation, p is proportional to G = GM −GA, that is the difference between

the Gibbs free energy of pure martensite and pure austenite phase.Substituting Equations 4.4 and

4.7 into Equation 4.17 results in,

(σ : Λt + p− f t)ξ̇ = πtξ̇ ≥ 0 (4.19)

where, πt is the total thermodynamic force which must be positive during the forward trans-

formation (when ξ̇ > 0) and negative during the reverse transformation to hold the second law

of thermodynamics (when ξ̇ < 0). In this model, this thermodynamic driving force must reach

a stress-dependent critical thermodynamic driving force (Y t) in order to start and continue the

phase transformation. Different values of Y t for forward and reverse phase transformation lead to

a hyper-surface for each transformation direction, as follows,

Φt(σ, T, ξ) = 0 , Φt(σ, T, ξ) =

{
Φt
fwd = πtfwd − Y t

fwd , ξ̇ > 0

Φt
rev = −πtrev − Y t

rev , ξ̇ < 0
(4.20)

where,

Y t(σ) =

{
Y t
fwd = Y t

0 +Dσ : Λt
fwd , ξ̇ > 0

Y t
rev = Y t

0 +Dσ : Λt
rev , ξ̇ < 0

(4.21)

In Equation 4.21, Y t
0 is a constant, and the model parameter D indicates the dependency of the

critical value for driving force on the applied stress.

In the case where the model is used to capture the response of an SMA subjected to one ther-

mal cycle under iso-baric conditions (σ=cons), Equation 4.15 is utilized. Hence, for the considered

iso-baric conditions for any specific T , the value of the developed total strain is obtained by cal-

culating the value of εt and ξ during the phase transformations. That is achieved by solving the

ordinary differential Equation 4.4 while considering that during the phase transformations, the

thermo-mechanical state of the material should stay on the surface defined by Equation 4.20. To

this end for a full thermal cycle where the temperature ranges from Af to Mf and vice versa, the
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hysteresis loop of the material can be obtained.

It is worth noting that the model parameters ∆S, ∆α, ∆c, Hsat, k, n1, n2, n3, n4, ρ∆s0, ρ∆u0,

a1, a2, a3, Y t
0 , and D can be considered for calibration. Among these parameters, ∆S are obtained

by EA/M and νA/M ; and the materials properties ρ∆s0, ρ∆u0, a1, a2, a3, Y t
0 , and D are associ-

ated with EA/M , Ms, Mf , As, Af , CA/M , and Hsat through relations reported in [99]. Note that

EA/M and νA/M denote the Young’s modulus and Poisson’s ratios of austenite/martensite phases

respectively while CA/M denote the slopes of the lines that define the austenitic/martensitic trans-

formation temperatures (As/f/Ms/f ) in the stress-temperature phase diagram [92, 99]. Therefore,

assuming ∆α and ∆c as fixed parameters, EA/M , Ms, Mf , As, Af , CA/M , Hsat, k, n1, n2, n3, and

n4 are the candidates for the model calibration against the existing experimental data.

4.4 Sensitivity Analysis of the Model Parameters

Before model calibration, SA is usually required to reduce the dimensionality of the parameter

space with minimum possible loss of information about the model outcome in order to save cali-

bration time and cost as a result of faster convergence of the model parameters. In this work, we

carried a DOE based on a complete factorial design (CFD) coupled to ANOVA in order to identify

the parameters most highly correlated to the output of the model.

4.4.1 Complete factorial design

CFD is an experimental design method that considers all possible combinations of R prede-

fined levels for N factors (parameters in the case of parameter sensitivity analysis) in a given

system/model, which is equivalent to RN level-factor combinations. In the case of parameter ex-

perimental design, model response should be obtained for each level-parameter combination for

the sake of sensitivity assessment.

Based on the expert’s intuition, 14 parameters have been considered as candidates for model

calibration. Two plausible values have been selected for each parameter as lower and upper levels

in the context of two-level CFD. These levels are considered as the applied initial values ±10% of

the range of the parameters in order to hold the following temperature constraints for their design
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combinations,

Mf < Ms < As < Af (4.22)

Therefore, 214 = 16384 level-parameter combinations can be constructed during CFD whose

responses are determined through the difference between the hysteresis loop obtained from running

the model with each parameter combination and a reference hysteresis loop obtained using the

average value of lower and upper levels of the parameters. It is worth noting that any reference

curve can be applied in so far as it is consistent for all the responses. Tschopp et al. [120] has

evaluated various approaches to determine the similarity/difference of two images by comparing

two vectors which represent the image features. In our case, these vectors were constructed based

on the coordinate of spatial points on the resulting hysteresis loops,

dSE =
∑
i

(Xi − Yi)2 (4.23)

Now, the CFD results can be applied for SA of the given model parameters through ANOVA.

4.4.2 Analysis of variance

A 14-way ANOVA has been performed in this work using "anovan" function in Matlab Ma-

chine Learning toolbox, where N is the number of independent Model Parameters–see Appendix

A.

ANOVA is a statistical hypothesis testing technique based on the deviation associated with

each individual level of each factor or each level combination of each interaction between factors

in the system from the overall mean of responses. The resulting response for each one of 214 fac-

torial design combinations has been used in the 14-way ANOVA to evaluate the sensitivity of 14

model parameters introduced in Section 4.3. The ANOVA results associated with each parame-

ter are shown in Table 4.1. In this table, the model parameters have been ranked based on their

corresponding p-values in descending order, which indicate the parameters from the highest to the

lowest sensitivity. According to the significance level 0.05, the first eight parameters have been
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selected for further uncertainty analysis in order to reduce the computational cost for the model

calibration that will be discussed in Section 4.5.1.It is worth noting that the values considered as

upper and lower levels in the ANOVA process, should be chosen carefully before the initiation

of the process, since they may affect the estimated sensitivity of the model to some of these pa-

rameters. For example, it seems that the selected lower values of the levels for the parameter CM

result in a much lower influence of this parameter on the model results compared to the param-

eter CA. Furthermore, another aspect which may affect the results of the sensitivity analysis are

the loading conditions under which the considered model is evaluated during this process. In the

current example, the model sensitivity has been determined using iso-baric loading paths. In these

conditions, the sensitivity of the model on the value of the EM and EA is minimized since the

response of the model under the selected conditions is dictated mainly due the thermally induced

phase transformation. In the current work, we selected the iso-baric loading path due to the focus

on the uncertainty quantification of the thermal phase transformation related model parameters.

4.5 Bayesian Uncertainty Quantification and Propagation of the Model Parameters

4.5.1 Parameter estimation and uncertainty quantification using Markov Chain Monte Carlo-

Metropolis Hastings algorithm

In order to sample the parameter space, one can use MCMC sampling approaches [6]. Among

these approaches, Metropolis-Hastings (M-H) sampling is one of the most common applied tools

to probabilistically solve the inverse problem associated to the probabilistic parameter calibration

given experimental data. In the case of model calibration, this technique updates the existing prior

knowledge about the parameters to their posterior information based on the available data from the

model responses.

In the present work, MCMC toolbox in Matlab has been used to probabilistically calibrate the

eight sensitive model parameters identified in Section 4.4.2. First, the prior parameter information,

including the initial values (θ0), valid ranges, and probability density functions (PDFs) for the

parameters are considered. Then, a new parameter vector/candidate θcand is randomly sampled
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Table 4.1: ANOVA table results showing the model parameters ranked based on their p-values in
descending order

Source Sum sq. d.f. Mean sq. F Prob>F

Hsat 0.65941 1 0.65941 800.62 5.3041e-172

Af (K) 0.33278 1 0.33278 404.05 8.5195e-89

Ms(K) 0.08907 1 0.08907 108.14 3.0049e-25

Mf (K) 0.04402 1 0.04402 53.45 2.7735e-13

CA(MPa/K) 0.03488 1 0.03488 42.35 7.8628e-11

k(MPa−1) 0.02462 1 0.02462 29.90 4.6223e-08

EM(GPa) 0.01029 1 0.01029 12.50 4.0821e-04

As(K) 0.00323 1 0.00323 3.93 0.0476

EA(GPa) 0.00018 1 0.00018 0.21 0.6443

CM(MPa/K) 0.00008 1 0.00008 0.09 0.7612

n1 0 1 0 0 1

n2 0 1 0 0 1

n3 0 1 0 0 1

n4 0 1 0 0 1

Error 13.4819 16369 0.00082

Total 14.6805 16383

from a proposal posterior PDF (q) which is defined as a multivariate Gaussian distribution in the

toolbox with a mean value at θ0 and an arbitrary variance-covariance matrix. The candidate is

accepted/rejected using a probabilistic criterion defined based on the M-H ratio that is expressed

as follows,

MH =
P (θcand)P (D|θcand)
P (θ0)P (D|θ0)

q(θ0|θcand)
q(θcand|θ0)

(4.24)

In this equation, the first ratio is called Metropolis ratio which is the ratio of the posterior

probability of θcand to θ0 given data (D). In the context of the Bayes’ theorem, the posterior

probabilities are proportional to the prior probability times the likelihood—probability of the data

given model results evaluated with the candidate model parameters—for each case. We considered

the likelihood to be a Gaussian distribution centered at the data whose error is considered as the

distribution variance. In the case of multiple data sets, it should be noted that the product of the
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likelihoods obtained from each data set can yield the total likelihood if data sets are assumed to be

conditionally independent.

The Metropolis ratio can be applied for the acceptance/rejection of the candidate when the

proposal distribution is symmetric; however, this is not usually the case since the probability of

moving from θ0 to θcand is not necessarily equal to the probability of the reverse move. For this

reason, Hastings introduced the second ratio in Equation 4.24 to involve the above-mentioned non-

symmetric property of the proposal distribution [6,121]. Now, min(MH×100, 100) is considered

as the acceptance probability of the candidate [121]. According to this criterion, If the candidate

is accepted, then θ1 = θcand; otherwise, θ1 = θ0. The sampling of the new candidate and its

acceptance/rejection process are sequentially repeated n times by finding the M-H ratio using the

new sampled candidate and the previous accepted parameter during each iteration. At the end

of the procedure, n samples of the parameter vector (
{
θ0, ..., θn

}
) are generated to represent a

multivariate posterior distribution for the model parameters.

Before the convergence of the parameter samples, samples generated during the "burn-in pe-

riod" — in which the different samples are causally correlated — must be removed before further

analysis of the parameters. After the removal of the burn-in period, the mean values and the square

root of diagonal elements in variance-covariance matrix of the remaining samples in the conver-

gence region can be introduced as the plausible optimal values and uncertainties of the model

parameters.

In our calibration work, initial values and their ranges have been determined based on the

expert’s beliefs, and an uniform (non-informative) probability distribution has been selected for

each model parameter due to the absence of knowledge about the parameters’ PDF. In addition,

three experimental datasets for transformation strain-temperature hysteresis loop under different

iso-baric conditions have simultaneously been utilized together to calibrate the model. It is worth

noting that the experimental iso-baric response of SMAs has been obtained using SMA dog-bone

specimens. The specimens were uniaxially loaded at the stress levels under iso-thermal conditions

above the Af temperature. Subsequently, they have been thermally cycled between a temperature
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below the Mf and a temperature above the Af at a constant stress [122]. The calibration has been

performed through the calculation of the difference between various iso-baric hysteresis curves

obtained from each parameter sample and the corresponding experimental data using equation

4.23. For the sake of the parameter calibration, these differences (discrepancies) resulting from

three given iso-baric conditions ([M(θ)]1×3) are simultaneously compared with a zero vector (D =

[0 0 0]) in the likelihood function.

In this work, the likelihood variance σ2 (the squared error of the distances between model and

experimental hysteresis curves from zero) is set as an unknown hyper-parameter in the calibration

process and updated in parallel with the other model parameters during MCMC sampling. The

only difference is that an inverse-gamma distribution is defined as the non-informative prior PDF

for this hyper-parameter, which yields the same form of distribution for the posterior PDF after

applying the Bayes’ theorem since the inverse-gamma distribution is the corresponding conjugate

prior density for exponential likelihood functions. Therefore, σ2 is sampled from an inverse gamma

posterior distribution during MCMC process [52]. In addition, it should be noted that an adaptive

proposal distribution has been employed in this calibration work. In this scheme, an arbitrary

positive covariance (V0) is selected in the beginning of MCMC sampling, and then it is adapted

in each next iteration using the covariance obtained from the ensemble of previous samples in the

MCMC chain [51, 123].

In this work, a constrained MCMC approach has also been developed in order to consider the

constraints for the transformation temperatures mentioned in Equation 4.22. For this purpose, the

likelihood is penalized by assigning an infinitely high value for the distance between model and

experimental hysteresis curves in the cases that the constraints for the parameters are not satisfied.

In these cases, the induced penalty results in a likelihood close to zero, which in turn results in

an infinitesimally small acceptance probability for new model parameter candidates that violate

constraints.

In the calibration of the sensitive model parameters, high number of samples (i.e., 200,000) are

generated to ensure the convergence of the parameters and the uniqueness of the optimal response
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in the parameter space. The multi-variate posterior distribution after MCMC sampling can be

assessed through joint and marginal frequency distributions. In Figure 4.1, some of the parameter

joint distributions have been shown in 2D color graphs as examples, where the colors represent

different density of samples in the parameter space, increasing from blue to red spectra. These

types of graphs can also demonstrate the correlation between each pair of parameters qualitatively.

For instance, negative/positive linear correlations can be inferred from the negative/positive slopes

of the elliptical shapes in the graphs. The linearity of the sample distribution in the parameter

space can be determined quantitatively through Pearson correlation coefficient (−1 < ρ < 1) that

is expressed as,

ρX,Y = Corr(X, Y ) =
cov(X, Y )

σXσY
(4.25)

where, σX and σY are the standard deviations for parameters X and Y , respectively, which

equal the square root of the corresponding diagonal elements in 8× 8 variance-covariance matrix.

cov(X, Y ) is also the covariance of X and Y obtained from the corresponding non-diagonal el-

ement in the variance-covariance matrix. Generally, a value of ρ closer to either -1 or 1 implies

a higher linear correlation between X and Y , whereas a value closer to zero suggests their lower

linear correlation. The negative or positive sign refers to the negative or positive linear correlation.

The linear coefficients for all pairs of parameters in the thermo-mechanical model have been listed

in Table 4.2. As can be observed in this table, most of the pair parameters are linearly uncorrelated

although 6 out of 28 parameter pairs show some weak or moderate correlations with |ρ| greater

than 0.2. In addition, the parameters CA and Af (Figure 4.1(d)) and the parameters EM and CA

(Figure 4.1(f)) show the highest and the lowest linear correlation, respectively, regardless of the

correlation signs.

As mentioned above, the burn-in period at the beginning of MCMC sampling must be removed

before the calibration and UQ of the model parameters, which can be found using the cumulative

mean distributions for the parameters, as shown in Figure 4.2. In these figures, there are some noisy

trends at the beginning of MCMC sampling for the cumulative mean values of all the parameters,
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Figure 4.1: Joint frequency distributions for some of the pair model parameters in the form of 2D
color graphs with normalized color bars
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Table 4.2: Linear correlation coefficient for each pair of model parameters

As(K) Af (K) Ms(K) Mf (K) CA(MPa/K) EM(GPa) Hsat k(MPa−1)

As(K) 1 -0.0721 0.2948 -0.1080 0.3813 -0.0167 -0.1330 -0.0378

Af (K) -0.0721 1 -0.0150 -0.0822 0.5836 -0.0553 0.0249 -0.0672

Ms(K) 0.2948 -0.0150 1 -0.4628 0.1156 -0.0547 -0.0465 -0.0415

Mf (K) -0.1080 -0.0822 -0.4628 1 -0.1280 -0.0289 -0.1355 0.0160

CA(MPa/K) 0.3813 0.5836 0.1156 -0.1280 1 -0.0015 0.0476 -0.0405

EM(GPa) -0.0167 -0.0553 -0.0547 -0.0289 -0.0015 1 0.2771 0.0091

Hsat -0.1330 0.0249 -0.0465 -0.1355 0.0476 0.2771 1 -0.2103

k(MPa−1) -0.0378 -0.0672 -0.0415 0.0160 -0.0405 0.0091 -0.2103 1

but they reach almost plateaus after about 63,000 generations that show the convergence values

(mean values) for the parameters. Therefore, the first 63,000 samples are extracted from the total

MCMC sample collection before further analysis. The mean and the square root of the diagonal

elements in the variance-covariance matrix of the remaining samples in the convergence region can

be introduced as the plausible optimal values and the uncertainty of the model parameters, which

are listed in Table 4.3.

Table 4.3: Plausible optimal values and uncertainties (standard deviations) of the model parameters
after MCMC calibration besides their initial values

As(K) Af (K) Ms(K) Mf (K) CA(MPa/K) EM(GPa) Hsat k(MPa−1)

Initial Values 307.0 318.0 300.0 270.0 9.0 40.0 0.034 0.02

After MCMC Calibration 296.6±8.5 322.6±11.3 280.4±6.6 259.9±8.5 11.8±4.1 35.6±8.6 0.0517±0.0044 0.0595±0.0237

After removal of the burn-in period, the marginal posterior frequency distribution of the param-

eters can be plotted using the remaining MCMC samples as observed in Figure 4.3. These plots

suggest truncated skewed Gaussian distributions for the marginal posterior frequency distributions;

although they are flatter in the case of the parameters EM , k and CA, and more close to a Gaussian

distribution for the parameter Hsat.
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Figure 4.2: Cumulative mean distribution plot for each model parameter after MCMC sampling
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Figure 4.3: marginal posterior frequency distribution plot for each model parameter after the re-
moval of the burn-in period from MCMC samples
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4.5.2 Uncertainty propagation from the model parameters to the model outcomes

As mentioned earlier, only the final results of the model and the corresponding uncertainties

are considered important in the context of the robust design. The reason is that such informa-

tion can help the designers to reduce the influence of the system performance by the existing

uncertainties in the outcomes, regardless of how many variables and models have been involved.

Therefore, an appropriate UP technique is essential to propagate uncertainties from the model pa-

rameters/input variables to the outputs with a relatively high efficiency and a minimum or at least

quantifiable loss of information [115]. Among different UP methods, first/second order second

moment (FOSM/SOSM) approaches are probably the most common approximation procedures in

engineering [124]. In this work, FOSM approach has been used to perform non-linear propagation

of the variance-covariance matrix of the model parameters.

Let θ and θ̄ vectors denote the optimal MCMC samples for the parameters (after removal of the

burn-in period) and their mean values, respectively, and M(θ) denote the model objective (output)

function. If the objective function is estimated by a first order Taylor expansion at θ̄,

M(θ) ≈M(θ̄) +
N∑
i=1

∂M(θ)

∂θi
(θi − θ̄i) (4.26)

The expected values associated with first and second moment of the above first order Taylor

expansion approximates the mean value (M̄ ) and variance (σ2
M ) of the objective function M [124]

as follows,

M̄ = E[M(θ)] ≈M(θ̄) (4.27)

σ2
M = E[(M(θ)− M̄)2] ≈

N∑
i=1

|∂M(θ)

∂θi
|
2

σ2
i +

N∑
i=1

N∑
j 6=i

∂M(θ)

∂θi

∂M(θ)

∂θj
σij (4.28)

where, σ2
i and σij are the variance of the parameter θi and the covariance between the param-

eters θi and θj , respectively. The approximations in Equations 4.27 and 4.28 have been derived
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thoroughly by Kriegesmann [125]. It is worth noting that Equation 4.28 can also be expressed in

terms of the variance-covariance matrix of the model parameters (V ) [53] as follows,

σ2
M ≈ gTV g (4.29)

where, g is a column vector which consists of all partial derivative elements, i.e.,

g = (
∂M(θ)

∂θ1

, ...,
∂M(θ)

∂θN
)T (4.30)

The uncertainties of parameters reported in Table 4.3 have been propagated to the uncertainty

of the transformation strain along the hysteresis curves by applying the variance-covariance matrix

obtained from the optimal MCMC samples (without burn-in period) in the above-mentioned FOSM

approach. The results have been shown in Figure 4.4 for different iso-baric conditions. In these

figures, the blue/red solid and dashed lines correspond to the model results during cooling/heating

process (forward/reverse martensitic transformation) and their experimental counterparts, respec-

tively. In addition, the blue/red shaded regions indicate 95% Bayesian confidence interval (95%

BCI) for model results during cooling/heating. It should be noted that the interval is equivalent to

εt(T )±2σεt , where εt(T ) and σεt can be calculated through Equations 4.27 and 4.28, respectively.

The average Euclidean distances between the mean strain values of the hysteresis curves ob-

tained from the model (solid lines in Figure 4.4) and their corresponding experimental values

(dashed lines in Figure 4.4) have been calculated as 0.0083, 0.0059 and 0.0032 for the iso-baric

conditions 100, 150 and 200 MPa, respectively. As can be observed, these results show small dis-

crepancies (good agreements) between the model and experimental hysteresis loops, or at least the

experimental data are located inside the 95% BCIs based on Figure 4.4. Although it seems that the

given thermo-mechanical model underestimates the slope of the curves during forward and reverse

transformation and their convergence temperatures (where cooling and heating curves meet each

other), there are no discrepancies between model results and experimental data for the maximum

transformation strain (Hcur) in each iso-baric condition. The difference in the curves’ slopes can
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Figure 4.4: 95% BCIs for the model hysteresis curves obtained from the FOSM approach for differ-
ent iso-baric conditions, a) 100, b) 150, and c) 200 MPa, besides their corresponding experimental
counterparts
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be attributed to the slight effects of other parameters that are not considered in the calibration, the

missing physics in the model, and the uncertainties in the experimental data all together.

Another important feature in theses graphs are the unrealistic humps around the transforma-

tion temperatures, which can be related to the deficiency of the partial derivatives in the applied

UP approach (Equation 4.28) at where the changes are sudden. For this reason, a direct UP has

been performed using the model forward analysis of optimal MCMC samples to find more rational

regions for 95% BCIs. After running the model for all the optimal samples, 2.5% of the result-

ing hysteresis curves have been eliminated from each one of the top and down margins to obtain

the mentioned intervals. As shown in Figure 4.5, this approach yields smoother and more precise

boundaries for 95% BCIs with no humps. Assuming the 95% Bayesian confidence intervals ob-

tained from the direct UP as the ground truth, the average relative error of the FOSM approach

has been calculated around 21%; which is based on an average of the relative differences between

the corresponding upper and lower bounds of Bayesian confidence intervals obtained in Figures

4.4 and 4.5 at different temperatures and iso-baric conditions. However, these UP approaches are

different in cost. The cost of the direct UP approach depends on the applied number of parame-

ter samples which can slightly influence the accuracy of uncertainty bands obtained. Despite the

wide range of cost for the direct UP approach, it can be stated this approach costs at least 30 times

more than the FOSM approach in most applications. Therefore, there is a trade-off between cost

and accuracy for the application of these UP approaches. The expensive direct UP approach is

required in the case that the accuracy of the quantified uncertainty is highly important; otherwise,

the FOSM method can be applied to reduce the UP cost.

4.6 MCMC Application in Decision Making for Experimental Design

In this section, the goal is to respond the experimentalists’ question about which experimental

design can gain more knowledge about the system: performing experiments at the same conditions

or at different conditions in design input space. For this purpose, it is assumed that the proba-

bilistically calibrated model in Section 4.5.1 can yield the ground truth and its natural uncertainty

bounds at any design condition (i.e., any iso-baric condition). According to this assumption, two
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Figure 4.5: 95% BCIs for the model hysteresis curves obtained from the direct UP approach for
different iso-baric conditions, a) 100, b) 150, and c) 200 MPa, besides their corresponding experi-
mental counterparts
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different synthetic experimental sets are designed through sampling the hysteresis curves from the

model uncertainty bounds obtained at any iso-baric condition of interest. The first set contains

three random samples (replicas) from the same experimental condition (i.e., σ = 150 MPa), while

the second set considers three random samples from three different conditions (i.e., σ = 175, 250,

and 300 MPa). After the generation of synthetic data sets, the calibrated results obtained in Ta-

ble 4.3 for the influential parameters are considered as the parameter priors which are separately

updated against each set of synthetic data using the MCMC technique in a sequential way of data

training. In this way of training, the parameter posterior distribution obtained after each training

is considered as the prior distribution for the next training. The relative entropy (Kullback-Leibler

(K-L) divergence) is calculated to find how diverged the probability distributions are relatively, i.e.,

what is the distance between the prior and final posterior probability distributions of the parame-

ters after the three sequential MCMC calibrations in each case. The calculated K-L divergence can

be introduced as a comparison measure for the amount of information gained from each synthetic

experimental sets. Generally, K-L divergence for continuous probability distributions P and Q is

defined as,

DKL(P ||Q) =

∫ +∞

−∞
p(x)log(

p(x)

q(x)
)dx (4.31)

where, p(x) and q(x) are the densities of P and Q at any given random point x, respectively.

In the case of multivariate Gaussian distribution, the integration in Equation 4.31 can be obtained

as follows,

DKL(N1||N2) =
1

2

[
ln(
|Σ2|
|Σ1|

)− d+ tr(Σ−1
2 Σ1) + (µ2 − µ1)TΣ−1

2 (µ2 − µ1)
]

(4.32)

The equivalent normal distributions obtained for parameter prior and posterior distributions

are compared for each set of experimental design using Equation 4.32. The K-L divergence val-

ues for synthetic experimental sets 1 and 2 are calculated around 3.8 and 4.4, respectively. The
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higher value of the K-L divergence for synthetic experimental set 2 indicates a greater difference

between prior and final posterior distributions in this case, which implies that the consideration of

different conditions in experimental design can gain more information about the system rather than

experimental replicas in the same condition.

It is also important for experimentalists to know how much information they gain by adding

each experiment. In our work, the K-L divergences obtained after each training sequence are 1.65,

0.64 and 0.60 for synthetic experimental set 1 and 3.65, 0.80 and 0.67 for synthetic experimental

set 2. It is worth noting that the addition of these K-L divergences should not necessarily equal

the overall K-L divergence already obtained for each set since the random generated data can not

only diverges, but also converges the parameter mean values to the mean values of the parameter

prior probability used in the beginning of the trainings. As can be observed in both synthetic

experimental designs, the K-L divergence reduces as the training continues with more synthetic

data. This trend can be attributed to a dramatic decrease in the rate of the parameter uncertainty

reduction from the prior to the posterior distributions during the sequential MCMC training. This

decreasing rate has the main contribution in the reduction of the prior distribution divergence from

the posterior distribution as the trainings proceed. Moreover, the difference in the mean values of

the prior and posterior distribution also influences the K-L divergence after each training, as shown

in Equation 4.32. Although this difference is directly affected by how far the randomly generated

data are from each other in the sequence, it generally tends to reduce by adding more synthetic

data. The reason being the prior distributions become more peaked and thus more dominant than

likelihood during the MCMC sampling which result in less changes in the parameter mean values

after each training.

4.7 Summary and Conclusion

In this work, the calibration and UQ of the sensitive parameters in a thermo-mechanical model

have been performed against three different iso-baric experimental data simultaneously using a

constrained MCMC-MH algorithm in the context of Bayesian statistics. Compared to the few

prior preliminary works for sensitivity and uncertainty assessment of SMAs thermo-mechanical
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models through central finite difference, Monte Carlo and MCMC approaches, this work proposes

a global variance-based sensitivity analysis known as ANOVA as well as a thorough MCMC anal-

ysis of the uncertainty for model parameters and its propagation to model responses. It should

be noted that the applied model is able to predict the thermo-mechanical responses of SMAs with

various chemistries and processing histories under general temperature-loading paths. Besides the

generality of this model in the prediction of SMA thermo-mechanical responses, it is less com-

plex with the least possible number of parameters compared to the previous similar models, which

makes the model calibration process less expensive. However, it should be noted that just the

iso-baric conditions with cyclic varying temperatures are considered in this work to calibrate the

model that makes its accurate predictions limited to the mentioned conditions. In order to general-

ize the application and predictability of this model, the parameter calibrations should be performed

with much more experimental data obtained from different thermo-mechanical conditions, such as

the iso-thermal conditions with cyclic varying stresses or the conditions where applied stresses

and temperatures are both changing. In this work, the iso-baric conditions are used as examples

to propose a UQ framework that can be applied to provide probability distributions in the form

of uncertainty bands for the thermo-mechanical responses of the applied Ni-Ti SMA using the

propagation of uncertainties from the probabilistically calibrated model parameters. This is very

important since predicting probablistically rather than deterministically can provide confidences in

the robust design of these SMAs for their specified applications.

Eight sensitive parameters have been found before the calibration using a DOE approach which

includes CFD and N-way ANOVA. After MCMC sampling of these eight parameters, their con-

vergence have been checked by the joint frequency distributions and the cumulative mean plots,

which have also been utilized to identify the qualitative correlation of each pair parameters and the

burn-in period, respectively. In addition, the linear correlation between each two parameters has

been calculated through Pearson coefficient. These coefficients suggest that most pair parameters

are linearly uncorrelated, although a few of them show weak or moderate linear correlations.

After removal of the samples belonging to the burn-in period, skewed Gaussian distributions

100



have been obtained for the marginal posterior frequency distributions of the model parameters,

which are truncated in the range defined for each parameter. Moreover, it should be noted that the

mean and square root of the diagonal elements in the variance-covariance matrix of the remaining

optimal samples after the elimination of the burn-in period provide the plausible optimal values

and uncertainties of the selected parameters, respectively.

At the end, the parameters’ uncertainties have been propagated to the uncertainties of the trans-

formation strain along the hysteresis curves using two various UP techniques in order to find 95%

BCIs during cooling/heating process. In this regard, FOSM approach results in some unrealistic

humps around the transformation temperatures. For this reason, a direct UP technique has been

performed through the forward analysis of optimal MCMC samples in order to achieve more ra-

tional and precise uncertainty bands that are very important in the context of robust design. The

hysteresis curves obtained from the mean values of the parameters are in good agreements with

their experimental counterparts for different given iso-baric conditions, or at least it can be stated

that the experimental data are situated in 95% BCIs. Although the slopes and the convergence

temperatures of the forward and reverse transformation curves are not predicted precisely which

can be the deficiencies of the applied model, the maximum transformation strain associated with

each iso-baric condition is very close to its corresponding data.

In this work, It has been also shown that the Markov Chain Monte Carlo approach can be

applied for decision making in experimental design. Assuming the calibrated model can predict

the ground truth and the natural uncertainties in different experimental conditions, two synthetic

experimental sets have been sampled from the model response uncertainty bounds obtained at the

same and different iso-baric conditions, respectively. After sequential MCMC updates of param-

eters’ posterior distributions with each set, their information gains are compared together through

the calculation of K-L divergence for each case which indicate the difference between prior and

final posterior distributions of the model parameters. A higher information gain has been obtained

from the synthetic experimental set 2 that are sampled from different experimental conditions (dif-

ferent iso-baric conditions). It has also been shown that the K-L divergence and its rate reduce as
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the sequential training proceeds in both synthetic experimental designs.

Generally, this work introduces a complete framework for UQ of model parameters and subse-

quent UP from model parameters to outputs as a guideline for material design.
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5. BAYESIAN UNCERTAINTY QUANTIFICATION AND INFORMATION FUSION IN

CALPHAD-BASED THERMODYNAMIC MODELING∗

5.1 Overview

Calculation of phase diagrams is one of the fundamental tools in alloy design—more specifi-

cally under the framework of Integrated Computational Materials Engineering. Uncertainty quan-

tification of phase diagrams is the first step required to provide confidence for decision making

in property- or performance-based design. As a manner of illustration, a thorough probabilistic

assessment of the CALPHAD model parameters is performed against the available data for a Hf-Si

binary case study using a Markov Chain Monte Carlo sampling approach. The plausible optimum

values and uncertainties of the parameters are thus obtained, which can be propagated to the re-

sulting phase diagram. Using the parameter values obtained from deterministic optimization in a

computational thermodynamic assessment tool (in this case Thermo-Calc) as the prior information

for the parameter values and ranges in the sampling process is often necessary to achieve a rea-

sonable cost for uncertainty quantification. This brings up the problem of finding an appropriate

CALPHAD model with high-level of confidence which is a very hard and costly task that requires

considerable expert skill. A Bayesian hypothesis testing based on Bayes’ factors is proposed to

fulfill the need of model selection in this case, which is applied to compare four recommended

models for the Hf-Si system. However, it is demonstrated that information fusion approaches, i.e.,

Bayesian model averaging and an error correlation-based model fusion, can be used to combine the

useful information existing in all the given models rather than just using the best selected model,

which may lack some information about the system being modelled.

∗Reprinted with permission from "Bayesian uncertainty quantification and information fusion in CALPHAD-
based thermodynamic modeling" by Pejman Honarmandi, Thien Duong, Seyede Fatemeh Ghoreishi, Douglas Allaire,
Raymundo Arroyave, 2019. Acta Materialia, 164:636-647, Copyright 2019 by Elsevier B.V. or its licensors or con-
tributors
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5.2 Introduction

Uncertainty quantification (UQ) and its propagation (UP) across multi-scale model/experiment

chains are key elements of decision-based materials design in the framework of Integrated Com-

putational Materials Engineering (ICME), where databases, multi-scale modeling and simulation

tools, and experiments are integrated with the aim of time reduction in design and manufacturing

of materials/products [126]. In this context, the understanding and quantification of uncertainties

can provide a confidence measure for the applicability of models for decision making in materials

design.

Generally, UQ incorporates the detection of uncertainty sources and the development of cor-

responding appropriate mathematical approaches to calculate the error bounds for any quantity of

interest in models [1, 2, 127]. The uncertainty can arise from different sources, which are catego-

rized as natural uncertainty (NU) due to the random nature of a physical system, model parameter

uncertainty (MPU) resulting from the lack of sufficient and/or accurate data for model parameters,

propagated uncertainty (PU) in the case of multi-scale modeling, and model structure uncertainty

(MSU) owing to any simplifications, assumptions, and/or incomplete physics in the model [3].

UP also refers to the determination of model output uncertainties based on the uncertainties of its

input variables for either individual or multi-scale models [1, 128, 129].

Despite the importance of UQ/UP, there are comparably few works applied to problems in

(computational) materials science. Chernatynskiy et al. [2] have reviewed these efforts, focusing

on UQ problems related to atomic-scale as well as multi-scale simulations. For over a decade,

at the electronic/atomic scale, probabilistic parameterization in first principles calculations based

on density function theory (DFT) [130, 131] remains as some of the most significant works on

UQ applied to materials problems. Aldegunde et al. [132] have recently used a machine learning-

informed Bayesian approach to quantify uncertainties associated to the prediction, via cluster ex-

pansions, of the thermodynamic properties of alloys. In that work, the resulting uncertainties are

associated to the model parameters as well as the structure of the models themselves, which results

from poorly converged cluster expansions due to lack of training data. In another work, the diffu-
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sivity error in molecular dynamic simulations of a Ni/Al nano-laminate bilayer has been assessed

using a Markov Chain Monte Carlo (MCMC) method in the context of Bayesian statistics [133].

In regard to UQ in multi-scale simulations, Volker et al. [134] have used DFT results for a phase

field model to provide a connection between atomic- and meso-scale descriptions of ferro-electric

materials, and also applied a sensitivity analysis to identify the most significant parameters of the

free energy functional and to quantify the uncertainties in the simulations. Moreover, Liu et al.

[135] have utilized a Bayesian stochastic approach for probabilistic parameter calibration and a

stochastic projection with polynomial chaos expansions for the propagation of their uncertainties

across multi-scale constitutive models that link the microstructure, property, and performance of

random heterogeneous composite materials. It is worth mentioning that there is also some UQ

work for multi-scale modeling of plasticity (deformation) in poly-crystalline materials [136–138].

While there are emerging several efforts centered on UQ/UP applied to materials simulations,

UQ applied to CALculation of PHAse Diagrams (CALPHAD) methodologies remains poorly ex-

plored. This is unfortunate as CALPHAD-based thermodynamic descriptions are the foundation

of most proposed ICME/alloy design frameworks. UQ in the calculation of equilibrium of phase

diagrams is crucial since any small variations in chemical composition and/or temperature due to

their uncertainties can alter the (predicted) stability, volume fraction, and chemical composition of

microstructural phases and may affect the materials properties considerably. For example, if the

stability of a phase should be suppressed in the design to prohibit its detrimental effects on the final

product, the design space for this particular materials system should lie outside the boundaries rep-

resenting the onset of stability of such detrimental phases but also out of their uncertainty bounds

in order to have more confidence in the design.

Focused work on UQ applied to CALPHAD-based thermodynamic assessments remains scarce

[5, 139–143]. However, Stan and Reardon [144] and Otis and Liu [145] have recently proposed

approaches that constitute increasingly sophisticated approaches to UQ applied to CALPHAD. In

the former study [144], a fuzzy logic weighted genetic algorithm (GA) was applied as a sampling

tool in a Bayesian-based framework to find the free energy parameters’ posterior probability dis-
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tribution given some uncertain thermodynamic data, and then the parameters’ uncertainties were

propagated to the resulting phase diagram by sampling from the posterior probability distribu-

tion. In the later work [145], an ICME-directed multi-scale (or rather multi-level) modeling has

been introduced that links high-throughput first-principles calculations to CALPHAD modeling.

The most relevant parameters in the sublattice-based CALPHAD modeling of that work were de-

termined using both Akaike Information Criterion (AIC) and F-test, and a Markov chain Monte

Carlo (MCMC) sampler was used to quantify the parameters’ posterior probability distribution.

Furthermore, Duong et al. [146] have analyzed the uncertainties in the case of a multi-scale

modeling for pseudo-binary Ti2AlC-Cr2AlC MAX phases, which links first principles calculations

and the CALPHAD method. In that study, the overall uncertainties have been reflected on the

calibrated thermodynamic parameters through an MCMC approach, and then propagated to the

quasi-binary phase diagram. Earlier, Duong et al. [70] employed UQ to investigate the effect of

uncertainties in the phase stability of the U-Nb system. However, a detailed and thorough analysis

of uncertainty and selection of models with appropriate parameters is still lacking in CALPHAD

modeling.

In this work, a thorough evaluation of the uncertainty is performed for not only CALPHAD

model parameters, but also for their resulting phase stability diagrams using the Hf-Si binary

system as a case study. It should be noted that calculation of Hf-Si binary phase diagram and

its uncertainties is of great importance since adding Hafnium to Niobium silicide based alloys

(as promising turbine airfoil materials with high operating temperature) increases their strength,

fracture toughness, and oxidation resistance significantly [147–149]. In this regard, an MCMC-

Metropolis Hastings algorithm and a forward analysis of parameters’ posterior samples are applied

for the quantification of the parameters’ uncertainties and their propagation to resulting phase di-

agrams, respectively. In this paper, it is also shown how to select the most relevant CALPHAD

model given experimental data for a system based on Bayesian hypothesis testing. For this analy-

sis, four independently generated CALPHAD models for the Hf-Si system are considered.

Since finding the appropriate number of parameters in CALPHAD models—or rather, the ap-
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propriate model parameter set—is a hard and skillful task, it is necessary to propose systematic ap-

proaches that can provide sufficiently reliable results with no need for the manual identification of

the best predicting model.While we do not claim that the search for improved CALPHAD models

as new experiments/simulations or model-forms become available is render no longer necessary,

the proposed information fusion framework provides a robust strategy to continuously improve

CALPHAD descriptions without necessarily completely discarding previous assessments.

In our work, Bayesian model averaging (BMA) and an error correlation-based model fusion

(CMF) approach are used to combine all the given model results together in different ways with

their own specific purposes. In BMA, each model has some probability of being true and the fused

estimate is a weighted average of the models. This method is extremely useful in the case of model-

building process based on a weighted average over the models’ responses, and/or less risk (more

confidence) in design based on broader uncertainty bands provided by a weighted average over

the uncertainties of the models’ responses. On the other hand, the information fusion technique

based on the correlations between the model deviations is applied for the purpose of acquiring

more precise estimations and lower uncertainties compared to results obtained from each applied

individual model.

5.3 CALPHAD Model Description

Four sets of models describing Gibbs free energies of the binary system are considered in

the current work. Here we consider a family of models that have been carefully assessed/fitted

to available data to avoid artifacts that are not to be expected in this system, such as inverted

miscibility gaps. In each of these sets, the intermetallic compounds are described using the line-

compound formalism [150], which reads:

GHfkSil =
k

k + l
0GHCP

Hf +
l

k + l
0GDiamond

Si + a+ bT (5.1)

where k and l are the compound numbers, 0GHCP
Hf and 0GDiamond

Si are the chosen energy refer-

ences corresponding to the energies of pure HCP-Hf and diamond-Si as given in the SGTE database
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[151], a and b are model parameters, and T is temperature (in Kelvin).

The liquid phase is described using the sub-regular solid solution model as follows:

GLiq =
N∑
i=1

xi
0GLiq

i +RT
N∑
i=1

xi lnxi +
N∑
i=1

xi

N∑
j 6=i

xj

M∑
n=0

nLij(xi − xj)n (5.2)

where xi is the mole fraction of the constituent i (either Si or Hf), 0Gliq
i is the constituent energy

taken, again, from the SGTE database [151], T is temperature (in Kelvin), R is the gas constant,

and nLij is given as:

νLij = νaij + νbijT (5.3)

where νaij and νbij are model parameters, which describe the interactions between the con-

stituents beyond those of ideal mixing.

The terminal phases, namely HCP-Hf and diamond-Si, are described by either the line-compound

formalism [150] or the sub-regular solid solution model.

In the current work, four models with 17, 20, 28, and 30 parameters identified as models 1

through 4 are chosen for Hf-Si binary system by expert opinion to show how the model selection

and model fusion approaches work in this case study. The parameters associated with the liquid,

intermetallic compounds and the end members are listed in Table 5.1 for all the given models.

5.4 Uncertainty Quantification Methodology

5.4.1 Markov Chain Monte Carlo-Metropolis Hastings algorithm

In our work, the MCMC Metropolis Hastings toolbox in Matlab has been utilized for proba-

bilistic calibration of the parameters in the applied CALPHAD models. After the introduction of

prior knowledge for parameters (initial values (vector θ0), lower and upper bounds, and probability

density functions (PDFs) in this algorithm, parameter vectors are randomly sampled from a non-

stationary proposal posterior probability distribution, which is an arbitrary multivariate Gaussian

distribution with a mean value at θ0 for the first sampling or the last accepted parameter vector dur-
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Table 5.1: The parameters of each given model that describe the Gibbs free energy of the phases
in the system (G and L denote the parameters for the line-compound and the sub-regular solid
solution models, respectively)

Model Phase Parameter Specification Model Phase Parameter Specification

1

HCP −Hf 0LHCPHf,Si : 0aHCPHf,Si

2

HCP −Hf 0GHCP
Hf,Si : 0aHCPHf,Si − 0bHCPHf,SiT

BCC −Hf 0LBCCHf,Si : 0aBCCHf,Si BCC −Hf 0GBCC
Hf,Si : 0aBCCHf,Si − 0bBCCHf,SiT

Hf2Si
0GHf2Si

Hf,Si : 0aHf2SiHf,Si − 0bHf2SiHf,SiT Hf2Si
0GHf2Si

Hf,Si : 0aHf2SiHf,Si − 0bHf2SiHf,SiT

Hf3Si2
0GHf3Si2

Hf,Si : 0aHf3Si2Hf,Si − 0bHf3Si2Hf,Si T Hf3Si2
0GHf3Si2

Hf,Si : 0aHf3Si2Hf,Si − 0bHf3Si2Hf,Si T

Hf5Si3
0GHf5Si3

Hf,Si : 0aHf5Si3Hf,Si − 0bHf5Si3Hf,Si T Hf5Si3
0GHf5Si3

Hf,Si : 0aHf5Si3Hf,Si − 0bHf5Si3Hf,Si T

Hf5Si4
0GHf5Si4

Hf,Si : 0aHf5Si4Hf,Si − 0bHf5Si4Hf,Si T Hf5Si4
0GHf5Si4

Hf,Si : 0aHf5Si4Hf,Si − 0bHf5Si4Hf,Si T

HfSi 0GHfSi
Hf,Si : 0aHfSiHf,Si − 0bHfSiHf,SiT HfSi 0GHfSi

Hf,Si : 0aHfSiHf,Si − 0bHfSiHf,SiT

HfSi2
0GHfSi2

Hf,Si : 0aHfSi2Hf,Si − 0bHfSi2Hf,Si T HfSi2
0GHfSi2

Hf,Si : 0aHfSi2Hf,Si − 0bHfSi2Hf,Si T

liquid 0LliqHf,Si : 0aliqHf,Si − 0bliqHf,SiT liquid 0LliqHf,Si : 0aliqHf,Si − 0bliqHf,SiT

Si 0LSiHf,Si : 0aSiHf,Si Si 0GSi
Hf,Si : 0aSiHf,Si − 0bSiHf,SiT

3

HCP −Hf
0LHCPHf,Si : 0aHCPHf,Si − 0bHCPHf,SiT

4

HCP −Hf
0LHCPHf,Si : 0aHCPHf,Si − 0bHCPHf,SiT

1LHCPHf,Si : 1aHCPHf,Si − 1bHCPHf,SiT
1LHCPHf,Si : 1aHCPHf,Si − 1bHCPHf,SiT

BCC −Hf
0LBCCHf,Si : 0aBCCHf,Si − 0bBCCHf,SiT BCC −Hf

0LBCCHf,Si : 0aBCCHf,Si − 0bBCCHf,SiT
1LBCCHf,Si : 1aBCCHf,Si − 1bBCCHf,SiT

1LBCCHf,Si : 1aBCCHf,Si − 1bBCCHf,SiT

Hf2Si
0GHf2Si

Hf,Si : 0aHf2SiHf,Si − 0bHf2SiHf,SiT Hf2Si
0GHf2Si

Hf,Si : 0aHf2SiHf,Si − 0bHf2SiHf,SiT

Hf3Si2
0GHf3Si2

Hf,Si : 0aHf3Si2Hf,Si − 0bHf3Si2Hf,Si T Hf3Si2
0GHf3Si2

Hf,Si : 0aHf3Si2Hf,Si − 0bHf3Si2Hf,Si T

Hf5Si3
0GHf5Si3

Hf,Si : 0aHf5Si3Hf,Si − 0bHf5Si3Hf,Si T Hf5Si3
0GHf5Si3

Hf,Si : 0aHf5Si3Hf,Si − 0bHf5Si3Hf,Si T

Hf5Si4
0GHf5Si4

Hf,Si : 0aHf5Si4Hf,Si − 0bHf5Si4Hf,Si T Hf5Si4
0GHf5Si4

Hf,Si : 0aHf5Si4Hf,Si − 0bHf5Si4Hf,Si T

HfSi 0GHfSi
Hf,Si : 0aHfSiHf,Si − 0bHfSiHf,SiT HfSi 0GHfSi

Hf,Si : 0aHfSiHf,Si − 0bHfSiHf,SiT

HfSi2
0GHfSi2

Hf,Si : 0aHfSi2Hf,Si − 0bHfSi2Hf,Si T HfSi2
0GHfSi2

Hf,Si : 0aHfSi2Hf,Si − 0bHfSi2Hf,Si T

liquid
0LliqHf,Si : 0aliqHf,Si − 0bliqHf,SiT

liquid

0LliqHf,Si : 0aliqHf,Si − 0bliqHf,SiT
1LliqHf,Si : 1aliqHf,Si − 1bliqHf,SiT

1LliqHf,Si : 1aliqHf,Si − 1bliqHf,SiT

Si
0LSiHf,Si : 0aSiHf,Si − 0bSiHf,SiT

2LliqHf,Si : 2aliqHf,Si − 2bliqHf,SiT
1LSiHf,Si : 1aSiHf,Si − 1bSiHf,SiT Si

0LSiHf,Si : 0aSiHf,Si − 0bSiHf,SiT
1LSiHf,Si : 1aSiHf,Si − 1bSiHf,SiT
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ing the next parameter sampling. The sampled parameter vector in each iteration can be accepted

or rejected through a criterion in the context of the Bayesian statistic, known as the Metropolis

Hastings (M-H) ratio:

M-H =
P (θcand)P (D|θcand)
P (θi)P (D|θi)

q(θi|θcand)
q(θcand|θi)

(5.4)

where θi, θcand, and D are the last accepted sample of parameter vector, the new sample of

parameter vector as a candidate, and the given data, respectively. It should be noted that some

synthetic data sampled from the Hf-Si calculated phase diagram in [147] has been used as D in

this work.

Based on Bayes’ theorem, the joint (posterior) probability in each case is proportional to the

prior probability times the likelihood, P (θ)P (D|θ). The likelihood is the conditional probability of

the data, D, given the parameter vector, θ, and in this work is considered as a Gaussian distribution

centered at the data, D, with variances, σ2, determined by the data errors. Here, the variances are

assumed to be the same for all the data and updated as a hyper-parameter during MCMC sampling

since the data error is unknown. In this case, the variance samples are generated from an inverse

gamma posterior PDF resulting from the introduction of a non-informative inverse gamma prior

PDF for the variance σ2 [52, 70]. The second ratio in Equation 5.4 is the Hastings ratio, which

considers the asymmetric effect of the proposal probability distribution in the acceptance/rejection

criterion of the parameter vector.

After the calculation of the M-H ratio for each sampling iteration, if min{M-H, 1} × 100 is

greater than 1, the candidate for the parameter vector is accepted as the new sample; otherwise,

the candidate may still be accepted with a probability of min{M-H, 1} × 100 [121]. In the case

of the candidate rejection, the last accepted parameter vector is repeated in the MCMC chain as

the new sample. At the end of the MCMC sampling process, a chain of the parameter vectors

is obtained as
{
θ0, ..., θN

}
whose mean values and variance-covariance matrix after removal of

"burn-in period" demonstrate the plausible optimum values of the parameters and their overall

reflected uncertainties, respectively. It should be noted that the parameters’ convergence during
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MCMC sampling algorithm is defined as the convergence of the parameters’ cumulative mean

values towards almost constant values, which is equivalent to the fluctuation of the parameters’

samples around their mean values across MCMC sampling [6].

5.4.2 Bayesian model selection/averaging

Jeffreys [14] proposed a hypothesis testing method in the context of Bayesian statistics that

evaluates the evidence in favor of a scientific theory or hypothesis. Models are considered as

hypotheses in the case of Bayesian model selection (BMS). In BMS, non-nested models (models

with at least one uncommon parameter) can also be compared together, which is very difficult or

sometimes impossible through frequentist approaches [152]. Generally, models/hypotheses with

greater posteriors are more favored by the evidence and considered as better models/hypotheses.

Accordingly, the Bayesian comparison criterion for models/hypotheses is defined as the posterior

odds of each two applied models/hypotheses given data. For instance, posterior odds of model one

(M1) to model two (M2) given the data (D) is expressed as follows:

P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)

P (M1)

P (M2)
= B12λ12 (5.5)

Bayes’ factor is the ratio of the marginal likelihoods and usually suggests which model/hypothesis

is more favored by the evidence (data):

P (D|Mk) =

∫
P (D|θk,Mk)P (θk|Mk)dθk (5.6)

where θk is the parameter vector under Mk. Therefore, the key element in BMS is the cal-

culation of the marginal likelihoods offered by Equation 5.6, which is challenging in the case

of high dimensional θk. There are different methods to approximate these integrals, which in-

clude Laplace’s method, the Schwarz criterion, simple Monte Carlo, importance sampling, adap-

tive Gaussian quadrature, and simulating approaches from the parameters’ posterior [152]. In our

work, the MCMC sampling method is used to simulate from the parameters’ posterior for the

integral estimation.
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In the Monte Carlo method, the integral in Equation 5.6 is approximated as:

P (D|Mk) ≈
1

N

N∑
i=1

P (D|θ(i)
k ,Mk) (5.7)

where θ(i)
k s are samples from the parameters’ prior P (θk|Mk). This approximation is equivalent

to the average of the likelihood values obtained from the sampled parameters. However, this ap-

proach can be fairly inefficient in the case of a more concentrated posterior distribution compared

to the prior distribution since the likelihood values for most of the sampled θ(i)
k will be very small

and the approximation result will be considerably weighted by a few samples with large likelihood

values. For this reason, importance sampling techniques are usually applied [152]:

P (D|Mk) ≈
1

N

N∑
i=1

P (D|θ(i)
k ,Mk)P (θ

(i)
k |Mk)

P ∗(θ
(i)
k )

(5.8)

P (D|Mk) ≈
1

N

N∑
i=1

P (D|θ(i)
k ,Mk)w

(i)
k

w
(i)
k

(5.9)

where P ∗(θk) is a suitable distribution that enables the sampling of the important parameter

values for the sake of more efficient sampling. In Equation 5.9,w(i)
k =

P (θ
(i)
k |Mk)

P ∗(θ
(i)
k )

, which can provide

a weighted average of likelihood values obtained using the sampled parameters from P ∗(θk).

In the case that the importance sampling function is proportional to the posterior probability

density function of the parameters in model k, i.e., P ∗(θk) = P (D|θk,Mk)P (θk|Mk), Equation

5.9 is turned into:

P (D|Mk) ≈

{
1

N

N∑
i=1

P (D|θ(i)
k ,Mk)

−1

}−1

(5.10)

MCMC is usually used to sample θ(i)
k s from (P ∗(θk)). Equation 5.10 shows a harmonic mean

of likelihood values obtained from the MCMC sampled parameters after the removal of the burn-in

period.

In addition to model selection, Bayes’ factors can be used to determine the posterior probability
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distribution of the competing models given data, which can be defined as their associated weight

in the context of Bayesian model averaging (BMA). Generally, BMA can provide a combined

inference from all the competing models that can be very useful for model-building process or less

risky predictions in design. In this approach, the posterior density (weight) associated with each

model can be obtained as follows:

P (Mk|D) =
P (D|Mk)P (Mk)∑K
i=1 P (D|Mi)P (Mi)

=
Bk1λk1∑K
i=1Bi1λi1

=
Bk1∑K
i=1 Bi1

(5.11)

where K is the total number of models. In this equation, M1 is considered as reference for the

calculation of all the Bayes’ factors, and all the prior odds are also 1. The posterior densities of

any quantity of interest (∆) existing in all the competing models can be combined together through

BMA as [152–154]:

P (∆|D) =
K∑
i=1

P (∆|D,Mi)P (Mi|D) (5.12)

5.4.3 Applied error correlation-based model fusion

In the case of multiple uncertain sources of information (e.g., different models for the same

problem), there is a need to integrate all the sources to produce more reliable results [9]. In

practice, there are several approaches for fusing information from multiple models. BMA is a

model fusion technique that has some benefits in robust design. Other available techniques are

fusion under known correlation [155–158], and the covariance intersection method [159]. The

key distinction of BMA over other model fusion approaches is the assumption of statistical inde-

pendence among models, which may be incorrect in some cases and can lead to potentially serious

misconceptions regarding confidence in quantity of interest estimates.

A fundamental claim in this work is that any model can provide potentially useful information

to a given task. We thus seek to take into account all potential information any given model may

provide and fuse unique information from the available models. Our fusion goal then is to identify

dependencies, via estimated correlations, among the model discrepancies. With these estimated
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correlations, the models are fused following standard practice for the fusion of normally distributed

data.

Under the case of known correlations between the discrepancies of models, the fused mean and

variance at a design point, x, are shown to be [157]

E[f̂(x)] =
e>Σ̃(x)−1µ(x)

e>Σ̃(x)−1e
(5.13)

Var
(
f̂(x)

)
=

1

e>Σ̃(x)−1e
(5.14)

where e = [1, . . . , 1]>, µ(x) = [µ1(x), . . . , µS(x)]> is the vector of mean values given S

models, and Σ̃(x)−1 is the inverse of the covariance matrix between the models given as

Σ̃ =



σ2
1 ρ12 σ1σ2 · · · ρ1S σ1σS

ρ12 σ1σ2 σ2
2 · · · ρ2S σ2σS

...
... . . . ...

ρ1S σ1σS ρ2S σ2σS · · · σ2
S


(5.15)

where ρij is the correlation coefficient between the deviations of models i and j at point x, and

σ2
i is the variance of model i at point x.

To estimate the correlations between the model deviations in the case that they are unknown,

we use the reification process defined in [10, 11], which refers to the process of treating each

model, in turn, as ground truth. This means that we assume the data generated by the reified model

represents the true quantity of interest. These data are used to estimate the correlation between the

errors of the different models. The process is repeated for each model. The detailed process of

estimating the correlation between the errors of two models can be found in [10, 11].

Following Thomison et al. [11], assuming model i is chosen to reify, the correlation coefficients

between the models i and j, for j = 1, . . . , i− 1, i+ 1, . . . , S, are given as:
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ρij(x) =
σ2
i (x)

σi(x)σj(x)
=

σi(x)√
(µi(x)− µj(x))2 + σ2

i (x)
(5.16)

where µi(x) and µj(x) are the mean values of models i and j respectively at design point x, and

σ2
i (x) and σ2

j (x) are the variances at point x. The first subscript under the correlation coefficient

denotes which model has been reified. Since the only information we have regarding which model

we believe to be more realistic is the variance of each, in addition to reifying model i to estimate

the correlation, we also reify information source j and estimate ρji(x). We then estimate the

correlation between the errors as the variance-weighted average of the two correlation coefficients

as follows:

ρ̄ij(x) =
σ2
j (x)

σ2
i (x) + σ2

j (x)
ρij(x) +

σ2
i (x)

σ2
i (x) + σ2

j (x)
ρji(x) (5.17)

These correlations can then be used to estimate the mean and variance of the fused estimate

from Equations 5.13 and 5.14.

5.5 Results and Discussion

In CALPHAD modeling, it is a hard task, even for CALPHAD experts, to know what formal-

ism should be used to describe the Gibbs free energy of each phase in the system and to what

order the polynomial term in Equation 5.2 should be expanded in the case of the sub-regular solid

solution model consideration in order to obtain the closest phase diagram to the available data af-

ter parameter optimization. For this reason, different models may be suggested for a system with

different formalisms for the Gibbs free energy description of the phases and different orders of

polynomial expansions for the sub-regular solid solution models. In the context of Bayesian statis-

tics, the best model among the selected candidates according to the available data can be identified

through the calculation of the Bayes’ factor based on Equation 5.5.

Each of the models are probabilisticly calibrated against the available calculated data for the

phase diagram using one million MCMC samples of the parameter vectors. For each model, the de-

terministically optimized values of the parameters obtained from the PARROT module in Themo-
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Calc software (through least squares) and ± 3 times these values are considered as the initial

values (θ0) and the ranges of the parameters, respectively. This prior information enables much

faster convergence of the model parameters during MCMC sampling. However, it is assumed that

the deterministic optimization in Thermo-Calc is global, which is not necessarily true as we discuss

later. It should be noted that the compositions of stable phases estimated from the convex hull of

the phase Gibbs energies at any given temperature are compared with the corresponding available

data through the likelihood during the sampling process. Here, the results obtained for model 2

are discussed in detail to show how MCMC is used in this work for probabilistic calibration of

the model parameters. The same approach is applied for the calibration of the other three model

parameter sets.

During MCMC sampling, there are some homogeneous fluctuations around plausible optimum

values of parameters after convergence. However, this means the cumulative means of parameter

samples should converge to constant values. Therefore, plotting cumulative mean distributions of

parameters can help identify the convergence regions. As examples, two of these plots are shown

in Figure 5.1. According to this figure, smooth changes towards constant values are observed for

both parameters after 30,000 parameter generations, which correspond to the parameter conver-

gence regions. Therefore, the first 30,000 generated samples are considered as the burn-in period

(red shaded regions) and discarded from the total number of parameter samples. Since all the pa-

rameters generally converge at the same time, the burn-in period is assumed to be the same for the

other model parameters (the other 18 parameters in model 2). To show that the parameters in other

models also converge to their optimum values, the cumulative means of parameter aliq are plotted

for the other models as dotted lines in Figure 5.1(a).

After the removal of the burn-in period, the mean values of the remaining parameter samples

(970,000 samples) and the diagonal terms of their variance-covariance matrix are considered as the

optimal plausible mean values and the overall reflected uncertainties (variances) for the model pa-

rameters, respectively. The initial values of the model parameters obtained through a deterministic

optimization and their probabilistic values after MCMC calibration are listed in Table 5.2.
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Figure 5.1: Cumulative mean plots of the parameters a) aliq and b) bSi in model 2. The red shaded
regions show the number of parameters belonging to the burn-in period

Table 5.2: Initial values for the parameters in model 2 and their plausible optimum values and
overall uncertainties after MCMC calibration

Phase Parameter Specification Deterministically Calibrated Initial Values Probabilistically Calibrated Values after MCMC

HCP −Hf 0GHCP
Hf,Si : 0aHCPHf,Si − 0bHCPHf,SiT

0GHCP
Hf,Si : −455420 + 221.79T 0GHCP

Hf,Si : −29070± 16377 + 15.08± 8.10T

BCC −Hf 0GBCC
Hf,Si : 0aBCCHf,Si − 0bBCCHf,SiT

0GBCC
Hf,Si : −45254 + 18.56T 0GBCC

Hf,Si : 10437± 1845− 6.17± 1.10T

Hf2Si
0GHf2Si

Hf,Si : 0aHf2SiHf,Si − 0bHf2SiHf,SiT
0GHf2Si

Hf,Si : −454090 + 90.46T 0GHf2Si
Hf,Si : −31675± 6672− 3.13± 1.60T

Hf3Si2
0GHf3Si2

Hf,Si : 0aHf3Si2Hf,Si − 0bHf3Si2Hf,Si T
0GHf3Si2

Hf,Si : −481270 + 84.19T 0GHf3Si2
Hf,Si : −32102± 7168− 5.78± 1.61T

Hf5Si3
0GHf5Si3

Hf,Si : 0aHf5Si3Hf,Si − 0bHf5Si3Hf,Si T
0GHf5Si3

Hf,Si : −454950 + 77.55T 0GHf5Si3
Hf,Si : −− 29246± 6805− 6.27± 1.52T

Hf5Si4
0GHf5Si4

Hf,Si : 0aHf5Si4Hf,Si − 0bHf5Si4Hf,Si T
0GHf5Si4

Hf,Si : −522680 + 100.88T 0GHf5Si4
Hf,Si : −33133± 7614− 5.60± 1.80T

HfSi 0GHfSi
Hf,Si : 0aHfSiHf,Si − 0bHfSiHf,SiT

0GHfSi
Hf,Si : −503250 + 98.26T 0GHfSi

Hf,Si : −32910± 7595− 5.47± 1.90T

HfSi2
0GHfSi2

Hf,Si : 0aHfSi2Hf,Si − 0bHfSi2Hf,Si T
0GHfSi2

Hf,Si : −468950 + 132.66T 0GHfSi2
Hf,Si : −32518± 7259 + 0.36± 2.43T

liquid 0LliqHf,Si : 0aliqHf,Si − 0bliqHf,SiT
0LliqHf,Si : −886370− 9.47T 0LliqHf,Si : −119005± 13962 + 16.72± 3.06T

Si 0GSi
Hf,Si : 0aSiHf,Si − 0bSiHf,SiT

0GSi
Hf,Si : −114810 + 68.22T 0GSi

Hf,Si : 6842± 794− 2.72± 0.32T
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The marginal and joint posterior frequency distributions of the parameters can also be plot-

ted to evaluate the convergence and dispersion of samples in the parameter space. Two examples

of marginal posterior frequency histograms for parameters are plotted in Figure 5.2. As can be

observed in this figure, the parameter posteriors are almost in the form of Gaussian distributions.

Since all the parameters show a similar form for their marginal posterior distributions, a distribu-

tion close to a multivariate Gaussian distribution is expected as the joint distribution for all the

model parameters (20 parameters in the case of model 2). Figure 5.3 shows the joint frequency

distributions for two examples of a pair of parameters in model 2. Figure 5.3 can also offer a

qualitative representation of the correlation between the applied two parameters in each case. For

example, the linearity and direction of the red regions show the strength and negativity/positivity

of the correlation between parameters, quantified through the Pearson coefficient [56]:

ρx,y =
cov(x, y)

σxσy
(5.18)

Figure 5.2: Marginal posterior frequency distributions for the parameters a) aliq and b) bSi in model
2

The same MCMC approach is applied to probabilistically calibrate the other three model pa-

rameter sets. Then, the overall uncertainties are propagated from parameters to phase diagram for
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Figure 5.3: Joint frequency distributions between the pair parameters a) (aSi,aliq) and b) (bSi,bliq)
in model 2 besides their linear correlation coefficients and normalized colour bars

each model through the model forward analysis. This process is performed using the forward cal-

culation of the phase diagram by the last 5,000 MCMC parameter samples as an ensemble of the

whole convergence region. To find 95% Bayesian credible intervals (BCI), 2.5% of the resulting

samples associated with liquidus and transformation lines are discarded from above and also below

the total obtained uncertainty band at any specified composition. These results are shown for each

model in Figure 5.4. In this figure, red lines and shaded areas are the results obtained from the

optimum (mean) values of the parameters and 95% BCI for each model, respectively. It should

be noted that these uncertainty bands are not sharp around eutectic points since the eutectic com-

positions are predicted slightly different for each parameter sample. A cross-sectional probability

distribution can be achieved at any specific Si content along the green uncertainty interval, while

there is a fixed (composition independent) cross-sectional probability distribution throughout any

one of the blue or red uncertainty intervals. The red shaded regions in all models show unstable

results with large uncertainties that result from the difficulty to predict the intermediate high tem-

perature Hf5Si3 phase through CALPHAD modeling. Moreover, it is clear in Figure 5.4 that there

is a very good agreement between the results obtained from model 2 and the data with a very small

uncertainty band.

For more clear demonstration of UP in this work, the propagation of uncertainty from the model
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Figure 5.4: Optimum Hf-Si phase diagrams and their 95% BCIs obtained from models 1-4 (a-d)
after uncertainty propagation of the MCMC calibrated parameters in each case
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parameters to the single-phase Gibbs free energies to phase diagram are illustrated in Figure 5.5.

In this figure, two isothermal examples of Gibbs free energy-Si composition curves are plotted for

liquid and two different intermetallic phases in two models (i.e., models 1 and 2) to show how the

uncertainties of single-phase Gibbs free energies and phase diagram can be related together. This

relationship can clearly be observed in Figure 5.5 through the consistency between the 95% BCIs

of the phase equilibria obtained from parameter uncertainty propagations to Gibbs free energy

of the single phases and resulting convex hulls at any specific temperature and their counterparts

obtained from parameter uncertainty propagations to the corresponding phase diagram boundaries.

It is worth noting that the mean responses and uncertainty intervals in the Gibbs free energy

graphs and phase diagrams have probably been affected by MSU. Generally, there are some sta-

tistical approaches such as Kennedy and O’Hagan approach [12] to quantify MSU in the presence

of true data [3]. However, model 2 shows very small uncertainties and close mean value responses

to the data after MCMC calibration that implies a very small MSU in this case. Therefore, larger

models, i.e., models 3 and 4, are expected to have even less MSU due to fitting better to the data in

the case that the global optimum for parameters are obtained during calibration (although the mean

values obtained from models 3 and 4 are not close to the data in some parts of the phase diagrams

due to the inability of the parameter global optimization in Thermo-calc software). For this reason,

the large uncertainties for the phase diagrams obtained from models 3 and 4 are mostly attributed

to MPU.

In the context of BMS/BMA, the weight of each one of the applied models can be obtained

by calculating their corresponding posteriors given data using Equations 5.10 and 5.11. Based

on these calculations, the weights associated with models 1 to 4 are 0.1352, 0.5938, 0.1331, and

0.1379, respectively. Model 2 thus has three times the weight of the other models, which otherwise

have similar Bayesian importance, which is consistent with the phase diagram results in Figure 5.4.

Traditionally, it has been generally expected that a better fit to experimental data can be achieved

by simply increasing the number of parameters of the free energies. However, our results show that

this is not always the case. The results hold, for example, when comparing model 1 to model 2, as
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Figure 5.5: Gibbs free energy-Si composition graphs with their 95% BCIs obtained from the pa-
rameter uncertainty propagation for a) liquid and HfSi intermetallic phases in model 1 at 2250K
and b) liquid and Hf3Si2 intermetallic phases in model 2 at 2650K besides their corresponding
phase diagram regions to show the uncertainty propagation from the parameters to single-phase
Gibbs free energies to phase diagram
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increasing the complexity of the free energy functions clearly results in a much better fit to the data

and a much narrower uncertainty bound. As the complexity of the models are increased, however,

it is apparent that the uncertainty bounds become much worse. In this case, we have found that the

most parsimonious model (i.e., simplest) that still has sufficient freedom to explain all the available

data is clearly superior.

These results, although counter-intuitive to a degree, may be explained by imagining the fitness

landscape of a particular model as a multi-dimensional space, with many local minima correspond-

ing to combinations of parameters that result in a fit with lower error relative to the neighborhood

in model parameter space. Schematically, one can visualize this as shown in Figure 5.6. The sim-

plest model (blue) is depicted as having a relatively simple landscape with a sub-optimal fitness:

the model is too simple to explain all the available data and the large uncertainty bounds are asso-

ciated with the fitness error as a result of (small) variations in the values of individual parameters.

Very complex models (red) have a high number of local minima as there are many combinations

of parameters that result in somewhat-optimal fits. The fitting process, however, can get stuck

in these local minima and since the MCMC results are inevitably biased by the parameter ranges

defined based on the deterministically-attained values—to sample the model space at a reasonable

cost—there is a significant probability that the global minimum is outside the parameter ranges,

which results in an MCMC chain that converges to a sub-optimal region during MCMC sampling.

The large uncertainty bounds in this case could be ascribed to the large sensitivity of such models

to small deviations in the values of the parameters. The best model (green) has the right amount

of complexity to fit all the available data without having too much model parameter uncertainty.

There is thus a valid argument towards model parsimony: to make the model as simple as possible,

but not more.

It must be stated, however, that while there is a clear superiority in model 2 in this case, the

value of the inferior models should not be discounted outright as they may provide valuable infor-

mation that can contribute to a more robust quantification of uncertainty. Based on Equation 5.12,

weighted averages are taken over the cross-sectional probability distributions of all four phase dia-
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Figure 5.6: 2D schematic plots of the discrepancy between model and data in the parameter space
for different model sizes (different number of parameters)

grams in Figure 5.4 at around 1000 Si compositions between 0 and 1 with a step size 0.001 for the

green region and at just one arbitrary composition for each of the blue/red regions (since the cross-

sectional probability distributions are fixed and composition independent along these regions) to

calculate the average model and its uncertainty bands throughout the whole phase diagram, as

shown in Figure 5.7. For each individual model and weighted average model, the cross-sectional

probability distributions obtained through kernel density estimation (KDE) are also demonstrated

for all the transformation line uncertainty bands (the blue shaded regions with composition in-

dependent distributions) labeled from 1 to 8 and at some random compositions for the liquidus

uncertainty band (across the green shaded region) labeled from 9 to 13 in Appendix B for Figure

5.7. As can be observed, 95% BCIs of the average model (black lines in probability distribution

plots) is broader than each one of the applied models and covers all the uncertainty ranges offered

by the models 1 to 4. This is why BMA can provide more confidence in the results in the context

of robust design.

As observed in Figure 5.7, the phase diagram resulting from the mean value of probability
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Figure 5.7: Mean values and 95% BCIs at different compositions/regions in Hf-Si phase diagram
obtained after BMA

distributions at different compositions and regions (red lines) leads to two unrealistic results (in-

dentations) around the eutectic points at approximately XSi = 0.1 and 0.9. According to Figure

5.7, this issue can be attributed to the difference of models in the prediction of eutectic point

compositions, which results in averages of some hypo-eutectic points from model 2 with some

hyper-eutectic points from models 1, 3 and 4 at small composition ranges. In order to solve this

issue, the posterior modes of the probability distributions can be introduced as the optimum phase

diagram rather than their mean values. The result is shown by red lines in Figure 5.8. It is worth

noting that the posterior mode of the probability distributions in the average model exactly corre-

sponds to the posterior modes of the probability distributions in model 2, as indicated by black and

purple lines in distribution plots of Appendix B for Figure 5.7, respectively. Therefore, the best

model results can be considered as the optimum results for the average model, but with broader

uncertainties, contributed by the inferior models.

Generally, the dependency of the model precision to the number of parameters defined for the
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Figure 5.8: Posterior modes and 95% BCIs at different compositions/regions in Hf-Si phase dia-
gram obtained after BMA

existing phases in the system has made CALPHAD modeling a hard task that requires a lot of ex-

perience. Therefore, the lack of a systematic approach towards thermodynamic assessments means

that model search is essentially carried out in a trial-and-error mode or by relying on (considerable)

expert opinion. While the BMA approach already put forward in this work provides a robust esti-

mate of the (weighed) output of a set of models, one drawback is that BMA assumes that models

are statistically independent from each other. In this specific case, since the three suboptimal mod-

els have almost as much weight at the optimal model, the uncertainties carried out by the former

over-estimate (in a very conservative manner) the fused uncertainty. All models (at least in this

case) have some degree of correlation as (i) they are describing the same underlying ground truth;

(ii) have common model structures. We thus propose to exploit the statistical correlations between

models as a strategy to arrive at an improved fused prediction of phase stability.

To perform this model fusion, the equivalent normal distributions at different compositions-

/regions are required to be calculated for each of the four models. Then, three and four models are
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fused based on the CMF approach, whose results are shown in Figure 5.9. It should be noted that

models 1, 3, and 4 with low precision and high uncertainties are first chosen for model fusion to

examine whether the resulting fused model can be closer to the data and reduce the uncertainties.

Figure 5.9(a) shows that the approach can provide a phase diagram in much better agreement with

data and less uncertainties compared to phase diagrams obtained from each one of the applied

models individually. This result implies that random CALPHAD models can be fused together to

find a reasonable estimation for phase diagram instead of trial-and-error to find the best predicting

model. In addition, it is obvious that better predictions can be achieved as shown in Figure 5.9(b) if

model 2 (the best model) is also involved in the model fusion. However, it is very hard to compare

the uncertainty of the fused model and model 2 based on the resulting phase diagrams. For this

reason, the information (Shannon) entropies are calculated to quantify the model uncertainties.

Figure 5.9: Error correlation-based model fusions of a) three models (1, 3, and 4) and b) all four
models

Shannon entropy can be utilized as a measure of uncertainty or missing information, which

is determined as a weighted average (expected value) of information content gained from all the

possible outcomes of an event. The information content obtained from an event outcome i is

defined as the negative logarithm of its probability, −log(pi). In this regard, it should be noted that

event outcomes with lower probabilities convey more information since their occurrence are more
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surprising. In the case of r discrete possible outcomes for an event, entropy can be defined as the

following summation [160]:

H = E[−log(pi)] = −
r∑
i=1

pilog(pi) (5.19)

Here, the transformation temperature resulting from each individual or fused model at a specific

composition/region is considered as an event. For each individual or fused model, the average of

all the entropies associated with probability distributions over 95% BCIs in different specified

compositions/regions are introduced as the average entropy of that model:

HM =
1

m

m∑
j=1

Hj (5.20)

where m is the total number of probability distributions in different specified compositions-

/regions, which is the same for all the models. The average entropies of the models are listed in

Table 5.3. It can be observed that model 2 has lower average entropy/uncertainty than model 1, 3

or 4, as expected.

The BMA fused model shows less average entropy/uncertainty compared to these three mod-

els. The lower uncertainty of the BMA fused model can be attributed to its concentrated distri-

bution around the results of model 2, which gives more certainty to the total distributions over

95% BCIs. However, the average model still has broader uncertainty bounds compared to each

of the individual models, which can provide more confidence in robust design. In other words,

broader uncertainties can give more assurance about the presence of specific microstructural phases

corresponding to a phase diagram region of interest by more shrinking the safe design space of

composition-temperature in that region. In addition, it seems that the BMA model can incorporate

some additional information about the uncertainties in the phase diagram compared to model 2

(the best model).

The incorporation of uncertainty from the individual models through CMF can be more opti-

mal than BMA due to the consideration of model error correlations, as the given thermodynamic
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models clearly are statistically correlated. According to Table 5.3, it is clear that the fused models

can yield better predictions with less average entropies/uncertainties than the individual models

used in each fusion case.

Table 5.3: Average entropy as a measure of uncertainty for each individual and fused model

Model 1 Model 2 Model 3 Model 4 Bayesian Average Model Fused Model from 3 sources Fused Model from 4 sources

HM 1.8450 0.6553 1.9044 1.9876 1.4916 1.7923 0.6510

5.6 Summary and Conclusion

Due to the importance of uncertainty quantification in CALPHAD, an MCMC sampling ap-

proach is utilized in this work for the probabilistic calibration of CALPHAD model parameters

against the available data in the case of the Hf-Si binary system. Considering the vast high-

dimensional parameter space in CALPHAD modeling, applying some prior information about the

parameter values and ranges from Thermo-Calc optimization module is often required to achieve

parameter convergence with a reasonable cost. However, choosing an appropriate CALPHAD

model with a sufficient number of parameters is a challenging task.

Therefore, a systematic approach is required to find an optimal model rather than a trial-and-

error approach. For this purpose, Bayesian hypothesis testing (or Bayesian model selection) based

on Bayes’ factors is proposed in this work and applied in a case study for the Hf-Si system to

show how the best model can be chosen from a list of independently generated models. However,

our work suggests to use information fusion approaches to smartly combine the given individual

models into a fused model rather than just the application of the best model that may lose some

useful information. BMA and an error correlation-based model fusion are used for our Hf-Si case

study to show different beneficial purposes of these information fusion approaches.

The average model obtained from BMA shows larger 95% confidence intervals compared to

any one of the individual models, which can provide more confidence for robust design but is likely
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too conservative. On the other hand, the error correlation-based technique can provide closer re-

sults to data with less uncertainties than the individual models used for the fusion. The uncertainty

reductions through this fusion approach are also verified through the comparison of the average

entropies (as a measure of uncertainty) obtained for the individual and fused models. Therefore,

random CALPHAD models can smartly be fused together to find reasonable predictions for phase

diagrams with no need to go through the cumbersome task of identifying the best CALPHAD

models.
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6. UNCERTAINTY QUANTIFICATION AND PROPAGATION IN CALPHAD MODELING∗

6.1 Overview

Design is about making decisions bounded by a quantifiable degree of certainty. In the con-

text of alloy design, Integrated Computational Materials Engineering (ICME) provides the frame-

work whereby performance requirements are ultimately transformed into alloy/processing specifi-

cations through the combination of (complex) computational models connecting process-structure-

property-performance relationships and experiments. Most ICME approaches consider the models

used as deterministic and thus do not provide the means to make alloy design decisions with proper

confidence measures. At the root of ICME lie CALPHAD models that describe the thermodynam-

ics and phase stability of phases under specific thermodynamic boundary conditions. To date, the

vast majority of efforts within the CALPHAD community have been deterministic in that ther-

modynamic models and the resulting thermodynamic properties and phase diagram features do

not explicitly account for the uncertainties inherent in the model formulation or in the experimen-

tal/computational data used. In this contribution, we provide an overview of the state of the field.

We review major efforts thus far and we then provide a (brief) tutorial on basic concepts of un-

certainty quantification and propagation (UQ/UP) in CALPHAD. We discuss the major features

of frequentist and Bayesian interpretations of uncertainty and proceed with a discussion of recent

case studies in which UQ has been used to parameterize models for the thermodynamic properties

of phases. We follow our discussion by presenting frameworks and demonstrating the propaga-

tion of uncertainty in thermodynamic properties and phase diagram predictions and briefly discuss

how we can use Bayesian frameworks for rigorous model selection as well as for model fusion.

We close our contribution by providing context for what has been done and what remains to be

accomplished in order to fully embrace the management of uncertainty in CALPHAD modelling,

a foundational element of ICME.
∗Republished with permission of IOP Publishing, from "Uncertainty quantification and propagation in CALPHAD

modelling", Pejman Honarmandi, Noah Paulson, Raymundo Arroyave, Marius Stan, 27, 3, 2019; permission conveyed
through Copyright Clearance Center, Inc.
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6.2 Introduction

Uncertainty quantification (UQ) and its propagation (UP) across multi-scale model/experiment

chains are key elements of decision-based [1,161] materials design in the framework of Integrated

Computational Materials Engineering (ICME) [162] where databases, multi-scale computations,

and experiments are integrated with the aim of reducing the time and cost of design and manufac-

turing of materials and products [163]. In any materials design effort within the ICME framework,

understanding and quantifying uncertainties can provide the materials/product designers with a

confidence measure for the models used in the decision-making process in materials innovation.

Uncertainty quantification (UQ) is the process of identifying different sources of uncertainty

and developing the corresponding mathematical representations for the error bounds of quanti-

ties of interest (QoI) [1, 2, 164]. Uncertainty in QoIs arise from different sources, including: the

random/stochastic nature of the physical system in question; uncertainty in the values of the vari-

ables used to parameterize models; lack of sufficient or accurate data to parameterize the models;

and incomplete knowledge of the model structure representative of the physical model due to

excessive simplifications, wrong assumptions and/or incomplete representation of the underlying

physics/chemistry in the model [3]. Different sources of uncertainty can be further classified as

aleatoric or epistemic. Uncertainty Propagation (UP), on the other hand, refers to the determination

of the distribution of values in model outputs–i.e. their uncertainty–arising from the uncertainty in

the inputs and/or parameters of the models [1, 127]. This propagated uncertainty thus represents a

measure of the impact of unavoidable aleatoric/epistemic model uncertainties in the distribution of

values of QoIs that ultimately should inform decisions in the materials development cycle.

For over a decade, uncertainty quantification (UQ), its propagation (UP), and the overall un-

certainty management (UM) have been recognized as essential components to any effort in which

simulations assist the discovery and design of materials. Relative to their importance in the overall

materials innovation ecosystem [161], surprisingly few examples [2, 130, 131, 165, 166] exist in

which state-of-the-art UQ/UP/UM approaches have been used in computational materials model-

ing and simulation.
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Perhaps the general area in the field of computational materials science that has experienced a

comparatively slow rate of development–in the context of UQ/UP/UM–that is at odds with its

importance in the entire ICME edifice is the CALculation of PHAse Diagrams (CALPHAD)

method [167]. Developed in the 1970s, the CALPHAD method [168] is based on the system-

atic encoding of alloy phase stability in terms of Gibbs energy functions assessed, initially, with

the use of experimental evidence for phase stability as well as thermo-chemical measurements.

Experimental thermochemical data has, for the past two decades, been enriched through the in-

corporation of quantum mechanical "first-principles" calculations of thermodynamic properties of

phases [169, 170]. Gibbs free energy functions so-assessed are then encoded in self-consistent

databases [171].

The quality of CALPHAD models is ultimately limited not only by the quality of the thermo-

chemical and phase stability data available but also by the intrinsic uncertainty associated with the

optimal model structure to represent the thermodynamic behavior of phases. On the experimental

front, a major challenge is the fact that in many systems it is exceedingly difficult to guarantee that

the phase state observed and the corresponding thermochemical measurements truly correspond to

thermodynamic equilibrium states [70]. Even conceding that the states under investigation corre-

spond (or are close) to equilibrium conditions, major sources of uncertainty arise due to limitations

in the resolution of the experimental techniques. CALPHAD assessments rely more and more on

first-principles calculations to estimate the thermodynamic properties of phases. However, it is

clear that in some regions of the chemical space there remain considerable discrepancies between

calculations and experiments [172], putting into question the reliability of first-principles calcula-

tions to supplement unavailable/inaccessible thermodynamic information. In addition, being based

in quantum mechanics, first-principle calculations are considered highly accurate and precise and

are rarely accompanied by uncertainty quantification.

Uncertainty with regards to the correct form of the model used to describe the thermodynamics

of phases constitutes a major challenge [173] Discrepancy in the context can arise from different

assumptions about the nature of the underlying structure of the phase in question and the proper
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mathematical representation of the Gibbs free energy of the phases. Typical examples of model

form inconsistencies leading to uncertainty are: the use of competing models to describe the liquid

phase in intermetallic-forming systems–regular solution vs associated liquid models [174]–; the

use of different numbers of sublattices to describe the site occupancy in solid phases—the use

of three or five sublattices to describe the sigma phase [175]–; or the use of different orders of

expansion in Redlich-Kister polynomials that describe the excess Gibbs energy in solid solutions

[176, 177].

Clearly, both aleatoric and epistemic sources contribute significantly to the uncertainty in

CALPHAD-based thermodynamic descriptions of phases. Uncertainty in CALPHAD models has

important consequences in the predicted state of a material system under (close to) equilibrium

conditions. Uncertainty becomes increasingly important when extrapolating knowledge about the

thermodynamic behavior of low-order systems to higher order systems for which little experi-

mental information is available. Recently, the exploration of the high entropy alloy space using

CALPHAD-based calculations and databases has highlighted the importance of uncertainty quan-

tification in thermodynamic descriptions of phases [178].

Thankfully, while scarce, several studies have addressed issues related to UQ/UP in thermo-

dynamic models of phases. Early on, Stan and Reardon [144] presented a Bayesian framework

to identify the effect of uncertainty in the values of parameters in thermodynamic models on the

predicted phase diagram of systems. They used a fuzzy logic-weighted algorithm as a sampling

tool to propagate the uncertainty from model parameters to phase boundaries in binary systems.

In later work, Otis and Liu [145] introduced an ICME-directed multi-level framework that linked

first-principles calculations to CALPHAD modeling. They proposed to determine the most rele-

vant model parameters through the use of the Akaike Information Criterion (AIC) [179] and more

traditional F-tests, while Markov Chain Monte Carlo (MCMC) sampling was used to sample the

(stochastic) distribution of the model parameters in order to determine the posterior probability

distribution of the (predicted) thermodynamic quantities. Duong et al. [70] used MCMC sampling

to carry out Bayesian uncertainty quantification of the model parameters that describe the phase
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stability in the U-Nb system.

Understanding how the uncertainty in thermodynamic model parameters propagates to predic-

tions of phase stability is necessary, but not sufficient, for creating a truly stochastic/probabilistic

measure of uncertainty in the phase stability of multi-component systems. Duong et al. [146]

studied the effect of uncertainty in CALPHAD model parameters, first-principles calculations, ex-

perimental information and even synthesis conditions on the prediction of the equilibrium states

along the Ti2AlC-Cr2AlC pseudo-binary system. As a result of a full account of all uncertainty

sources, the prediction of phase stability in this system was deemed stochastic as opposed to de-

terministic and the presence or absence of a given phase at specific (synthesis) conditions was

represented as a probability measure.

More recently, Honarmandi et al. [180] demonstrated the Bayesian probabilistic assessment

of CALPHAD model parameters through the use of a MCMC approach. They proceeded to

use Monte Carlo sampling to propagate (non-uniform) uncertainties in predicted phase stabilities.

Moreover, they introduced Bayesian hypothesis testing–using the models’ Bayes factor–in order to

evaluate the quality of different models. Rather than considering only the propagated uncertainty of

individual models, they used Bayesian Model Averaging (BMA) for ensemble probabilistic phase

stability predictions. Finally, they carried out correlation-based model fusion to take into account

all potential information any given model may provide and fused unique information from the

available models. In this way, one can identify dependencies among model discrepancies via mea-

sures of statistical correlations between models, allowing a more accurate measure of propagated

uncertainty in phase stability computations.

It is also critical to specifically address the details of uncertainty quantification with regards to

ensuring the thermodynamic consistency between models, robustness to outliers and the weighting

of data sets. Recently Paulson et al. [181] investigated these questions through a Bayesian frame-

work for model selection, calibration and uncertainty quantification and straightforward modifica-

tions to the Bayesian Likelihood and Prior distributions. Most importantly, this work demonstrated

the possibility of automatically weighting the measurements of various authors in model parameter
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calibration and providing uncertainty distributions for these weights.

In the present contribution, we review major concepts associated to the quantification and prop-

agation of uncertainty in CALPHAD thermodynamic models. We discuss frequentist and Bayesian

perspectives of uncertainty measures and how uncertainty is propagated across thermodynamic

models. We finalize the paper by discussing the outlook and outstanding issues related to uncer-

tainty management in CALPHAD models and its importance in ICME-based frameworks for alloy

design.

6.3 Uncertainty Quantification

Uncertainty quantification (UQ) of thermodynamic models and phase diagrams requires an un-

derstanding of the connections between the uncertainty in data and in the resultant models (and

model parameters). Data uncertainty comes in two forms: aleatoric and epistemic [182]. Aleatoric

uncertainty describes uncontrollable and random variations in a process which cause statistical

scatter in measured output metrics. In this regard, it can be stated that not any two identical mea-

surements of a physical phenomenon result in the same response due to inherent randomness of

the phenomenon; however, these measurements may have different occurrence frequencies that

can be described in the form of a probability distribution. In general, aleatoric uncertainty may be

measured, but not corrected given current technologies. In contrast, epistemic uncertainty refers

to sources of error in measurements or modeling due to inaccurate and/or insufficient knowledge

about the system that are potentially knowable and controllable and are typically expressed in the

form of a systematic bias. In experimental measurements, epistemic uncertainty may come from

a variety of sources, including environmental conditions, equipment calibration and human error;

while, in modelling, it may result from the lack of information or precession about the parameters

known as model parameter uncertainty (MPU) and missing physics, assumptions and/or simpli-

fications in the model structures known as model structure uncertainty (MSU). In some cases, it

may be possible to correct for these factors and reduce the epistemic uncertainty [180, 181]. This

is desirable whenever possible as it may reduce uncertainty in the final model. In the remainder of

this section we will discuss forward and inverse propagation of uncertainty. Furthermore, we will
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introduce Frequentist and Bayesian methods for uncertainty quantification.

6.3.1 Forward vs. inverse uncertainty propagation

In most UQ tasks, we desire to understand the uncertainty in a model and its predictions. Model

prediction uncertainty is obtained in a process called forward uncertainty propagation (UP). In

contrast, uncertainty in the model itself may be described by the uncertainty of the model’s param-

eters. Obtaining parameter uncertainties given the data is called inverse uncertainty propagation.

For both tasks the first step is to select a physical or machine-learning model which appropriately

represents the phenomena of interest.

In forward UP, uncertainty in the model parameters is passed through to the model predictions.

Model parameter uncertainties may be estimated from the literature, previous experience or the

best intuition of the researcher. In the simplest case, parameter uncertainties are expressed as hard

boundaries. For example, the uncertainty in the Debye temperature for Hafnium metal may be rep-

resented as a uniform distribution between 145 and 165K [183]. If more information is available,

sophisticated parameter distributions may be assumed, such as Normal or Exponential distribu-

tions. Furthermore, multivariate distributions may be employed to express known covariances

between parameters.

Traditionally, parameter uncertainties yield model prediction uncertainties through analytical

approaches. These approaches usually take advantage of surrogate modelling to propagate the

uncertainties. In this regard, first order second moment (FOSM) and second order second moment

(SOSM) approaches have widely been used to perform nonlinear uncertainty propagations. In these

UP approaches, the uncertainties of the model responses resulting from the parameter uncertainties

are estimated through the first and second order Taylor expansion of the model at the mean values

of the parameters [124, 184].

Polynomial Chaos Expansion (PCE) and Kriging (Gaussian process (GP) regression) are two

other common used methods which have recently received plentiful attention in engineering ap-

plications. Building the surrogate model in PCE includes the selection of a set of orthonormal

polynomials using, for example, least-angle regression, which is followed by the determination
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of the coefficients through an optimization approach, such as least squares [185]. Kriging is a

stochastic fitting approach that builds the surrogate model based on a weighted distance-based cor-

relation between the errors of the given data points obtained from the primary model function at

random parameter values [81, 185].

Sometimes parameter uncertainties are only available as discrete samples from the true pa-

rameter uncertainties and must be propagated through numerical methods. This is common when

parameter uncertainties are obtained from Monte Carlo sampling methods [52]. In this case, the

model is sampled by evaluating the model at the available discrete parameter values. Confidence

intervals may then be constructed using the model prediction samples to quantify the uncertainty.

Analytical UP techniques are usually so cheap that is very useful for the propagation of uncertain-

ties within the expensive models, but they are not as precise as the numerical methods.

Inverse UP, also traditionally known as (inverse) UQ, describes the process of computing model

parameter uncertainties given the observation of data [186]. Typically, inverse uncertainty propaga-

tion methods result in fully-dimensional parameter uncertainties including the covariances between

parameters. The uncertainties may be either analytical distributions or merely samples depending

on the method employed. Furthermore, inverse uncertainty propagation methods may be used to

estimate the uncertainties in the data itself. Inverse uncertainty propagation is performed via either

Frequentist or Bayesian methods as discussed in detail in the next section.

6.3.2 Frequentist vs. Bayesian methods for uncertainty quantification

Uncertainty quantification in thermodynamic modelling can be performed in the context of

either frequentist or Bayesian statistical paradigms. Although both views have their own strengths

and weaknesses, their inferences should be consistent and correlated. The way that the probability

is interpreted in these frameworks is the basis of their differences, which is discussed in more detail

in the remainder of this section.
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6.3.2.1 Frequentist inference

In frequentist approaches, the probability is defined as the frequency at which a particular out-

come occurs during a long-term repetition of a specific measurement or observation. Within the

context of this paradigm, it is generally assumed that existing data are a random sample from

a larger population (a random variable), while parameters are fixed and usually unknown in the

larger population [187]. Therefore, frequentists believe that there is only one true set of the param-

eter values whose noises result in the available data or observation samples. It is clear that more

available data can provide better estimation of these true values. In this paradigm, the average

(θ̄) and ensemble covariance matrix (Ê) of the "best parameter values" or "parameter estimates"

obtained from the available sample of data/observations are introduced as an estimate of the true

values of the parameters and their accuracy, i.e.

θ̄ =
1

ND

ND∑
i=1

θ̂i (6.1)

Ê =
1

ND

ND∑
i=1

(θ̂i − θ̄)(θ̂i − θ̄)T (6.2)

where ND is the number of the available data and θ̂i is the parameter estimate obtained from

the ith data in the sample [188]. Maximum likelihood approaches (MLE) are the most commonly

used estimators for frequentist inference, where the parameter values that maximize the likelihood

function, i.e., are most likely to yield the data, are considered as the parameter estimates [187].

Let L(θ|D) ≡ P (D|θ) denote the likelihood function where θ and D are the parameters and data,

respectively. Then, the parameter estimates are mathematically obtained as follows,

θ̂MLE = argθmax
[
L(θ|D)

]
(6.3)

In the frequentist framework, hypothesis testing is usually performed based on the calculation

of the p-value for two hypotheses known as the null and alternative hypotheses. P-values indicate
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how likely the sampled data would be observed on condition that the null hypothesis is true. In

frequentist hypothesis testing, the null hypothesis is rejected in the case that the calculated p-

value is less than a significant level (α) that is usually selected as 0.01, 0.05 or 0.10. One of the

main advantages of this hypothesis testing approach is the objectivity conferred through global

agreement on the statistical inference obtained from the p-value.

6.3.2.2 Bayesian inference

In the Bayesian statistical view, the probability is defined as a degree of belief for the oc-

currence of a particular outcome determined based on the state of knowledge (prior beliefs) in

combination with newly acquired data (evidence) [187]. Since beliefs are subjective, Bayesian

probabilities are always introduced in conditional forms. In this paradigm, observed data are con-

sidered fixed, while parameters are treated as random variables with assumed known prior distribu-

tions. The prior (current) knowledge about the parameters should be updated upon acquiring new

data under the Bayesian inference framework. In this regard, the information update is performed

using Bayes’ rule from a prior to a posterior distribution given the observed data. This theorem is

expressed as,

P (θ|M,D) =
P (D|θ,M)P (θ|M)

P (D|M)
(6.4)

where P (θ|M) is the probability having the parameter θ given the model M , which is known

as the prior probability that represents the prior knowledge about the parameter θ; P (D|M) is

the probability having the observed data D given the model M, which is a normalizing constant

called the evidence; P (D|θ,M) is the likelihood function that is the conditional probability of D

given the model M with the parameter θ. In other words, the likelihood shows how likely it is

to obtain the data D in the case that the model M with the parameter values θ is applied for the

system. P (θ|M,D) is the posterior probability in the form of a conditional probability of θ given

the model M and the data D.

Figure 6.1 shows a clearer illustration of the Bayesian update of the model parameters with the
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given data. Bayesian inferences are generally based on the posterior probability rather than just

the likelihood which is the primary inference element in the frequentist paradigm. Technically, the

posterior is the solution to the inverse uncertainty propagation problem. As observed in Equation

6.4, the posterior probability is proportional to the prior probability times the likelihood–in other

words, the likelihood is modified by the prior beliefs.

Figure 6.1: Bayesian framework to update the prior information of the model parameters given the
data through the likelihood function

The prior probability distribution can be either informative with a specific defined distribution

(e.g. normal distribution) or non-informative (e.g. uniform distribution) in the case that no or very

little knowledge is available about the parameters. Generally, Bayesian inference is criticized for

being subjective due to expert opinions in most cases for the selection of the prior distributions;

even in the presence of data for the parameters, a decision should be made about the form of the
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prior distribution. However, the ability to incorporate the prior knowledge for better statistical

inference has its worth when a reasonable prior distribution is selected. Therefore, the prior de-

termination is very important in Bayesian inference since incorrect prior information sometimes

leads to a wrong inference or a longer time to infer correctly.

The likelihood form is also important in the Bayesian framework. It is usually defined as a func-

tion of the difference between the data and the corresponding model results that are known as the

residuals. The likelihood can be determined through either formal or informal approaches which

have their own advantages and disadvantages. In formal methods, a statistical model is assumed for

the residuals, which can be used to statistically drive the corresponding likelihood function [189].

The form of this function is usually determined using some assumptions about the residual distri-

bution, correlation, and/or heteroscedasticity. These explicit assumptions in the formal approaches

are advantageous since their validity can be confirmed by the posterior probability of the parame-

ters given the data. However, it should be noted that the mentioned assumptions for the residuals

are not correct in many cases. For this reason, informal approaches have been proposed to define

the likelihood functions. Generalized likelihood uncertainty estimation (GLUE) [190] is one of the

most common informal approaches, where the likelihood has a very general functional form with

high flexibility and shows a fuzzy measure of belief about the model ability to capture the data.

Unlike the formal approaches, there are no underlying models for residuals distribution in the in-

formal determination of the likelihood function. Therefore, the assumptions in these approaches

are mainly implicit and cannot be verified through the posterior probability distributions. However,

it is worth noting that a generalized formal likelihood function has been introduced by Schoups et

al. [191], which includes no assumptions about the residuals. The hyper-parameters of this gen-

eralized function can be calibrated against the data obtained for the residual distribution through

numerous runs of the model with the parameter values that are sampled from the prior probability

distribution.

As mentioned earlier, the state of knowledge about the parameters can be updated as soon as

the new data is observed. In this sequential process, the posterior distribution obtained from the
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previous data training is considered as the prior probability distribution for the new training. In

Bayesian approaches, more data can result in more precise inference with reduced uncertainties.

The probability of the data given the model (P (D|M)) is a normalization constant in the denomi-

nator of the Bayes’ rule, which is expressed as

P (D|M) =

∫
P (D|θ,M)P (θ|M)dθ (6.5)

P (D|M) can be considered as a marginal likelihood that indicates how likely the data D is

given the model M . Solving the above integral is important for the calculation of Bayes’ factor

that is used in Bayesian model selection (BMS) and Bayesian model averaging (BMA) (further

discussed in section 4). However, this integration suffers from the curse of dimensionality in the

case of high-dimensional parameter spaces. However, different numerical approaches are applied

to tackle the multi-dimensionality problems, e.g. Laplace’s methods, the Schwarz criterion, im-

portance sampling methods, Quadrature Methods, and approaches that samples from the posterior

probability distribution.

Bayesian hypothesis testing, proposed by Jeffreys [14] in 1935, help us determine to what

extent the evidence is in favor of a hypothesis. Assigning probabilities to the hypotheses in this

testing is criticized by frequentists since the hypotheses are philosophically either true or wrong.

On the other hand, knowing the hypothesis probabilities is required for decision making. From the

Bayesian point of view, the null hypotheses are not considered true and tested for the evidence in

their favor in contrast to the frequentist p-value based hypothesis testing where the null hypothesis

is assumed to be true and tested for possible rejection using a significance level. The main problem

in the frequentist point of view is that the strength of the evidence in favor of the null hypothesis

cannot be obtained when no rejection takes place, whereas the Bayesian counterpart can provide

this strength through the calculation of Bayes’ factor with no need to reject the null hypothesis.

Moreover, Bayesian hypothesis testing provides the ability to incorporate the prior information

and uncertainty which are missing in the frequentist approach. Another advantage of Bayesian

hypothesis testing is the capability of having multiple alternative hypotheses instead of just one. In
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model selection where competing models act as hypotheses, models are not required to be nested,

which means they can include different sets of parameters [152].

Generally, Bayesian inference for the model parameters given the data is characterized by

most plausible values (〈θ〉) and the covariance matrix (Cθ) of the parameters using the posterior

probability distribution, as follows,

〈θ〉 =

∫
θP (θ|D)dθ (6.6)

Cθ =

∫
(θ − 〈θ〉)(θ − 〈θ〉)TP (θ|D)dθ (6.7)

The above-mentioned integrations can be performed analytically, when there are closed-form

solutions. For example, using conjugate priors can result in closed form expressions for the poste-

rior probability distributions. However, the absence of the closed form solutions in most real cases

is the reason to use the numerical approaches to solve the integrals. Monte Carlo integration is one

of the strong numerical approaches to estimate these integrals [52, 186, 188]. In this method, the

estimations are expressed in the form of the following summations,

〈θ〉 ≈ 1

N

N∑
i=1

θi (6.8)

Cθ ≈ 1

N

N∑
i=1

(θi − 〈θ〉)(θi − 〈θ〉)T (6.9)

where θi are the parameter samples from the posterior probability distribution, P (θ|D). In this

regard, direct or rejection sampling methods can be applied for simple cases. However, this is

not usually the case due to the complexity resulting from the multi-dimensionality and unknown

form of the posterior distributions in the practical situations. In these cases, Markov Chain Monte

Carlo (MCMC) techniques are commonly used to sample from the parameter posterior distribu-

tions. Among MCMC techniques, Gibbs’ sampler and Metropolis-Hastings algorithm are the most
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common used sampling methods.

Gibbs sampling begins with an initial guess about the parameter values, θ0 = {θ0
1, ..., θ

0
n}.

Then, the parameter values are sequentially sampled one by one from their corresponding condi-

tional probability distributions, P (θi|θz1, ..., θz(i−1), θ
(z−1)
(i+1) , ..., θ

(z−1)
n , D), to generate the parameter

vector θz after n samplings. This is a way to go around the problem of sampling directly from the

posterior probability distribution, since these conditional distributions can analytically be deter-

mined in most cases. The Gibbs sampling stops when the multivariate distribution for the sampled

parameter vectors becomes stationary.

In the Metropolis-Hastings algorithm, a new candidate for the parameter vector is randomly

sampled from a proposal distribution (q) in each iteration. Unlike Gibbs sampling where all the

samples are accepted, the candidates can be accepted or rejected through a probabilistic criterion

based on the Metropolis-Hastings ratio that is expressed as

MH =
P (θcand)P (D|θcand)
P (θz−1)P (D|θz−1)

q(θz−1|θcand)
q(θcand|θz−1)

(6.10)

where the first ratio compares the posterior probability of a sampled candidate (θCand) for the

parameter vector with its counterpart for the initial (θ0) or the last accepted (θ(z−1)) parameter

vector, which is known as Metropolis ratio. It should be noted that P (D) is a constant that can

be canceled out in this ratio. The second ratio is known as Hastings ratio that shows the effect of

asymmetric proposal distribution by comparing the probability of a forward move from θ(z−1) to

θCand with its reverse move in the MCMC chain. It is worth noting that the hastings ratio equals 1

in the case of symmetric proposal distributions. In each iteration, min(MH ,1) is considered as the

acceptance probability of the new candidate. When a candidate is accepted, θz = θCand; otherwise,

θz = θ(z−1). Again, the above sampling process continues until the MCMC chain converges to a

stationary distribution.

Generally, Gibbs sampling method is a specific case of Metropolis-Hastings algorithm on the

condition that the proposal distribution is considered as the conditional posterior probability dis-

tribution. In this case, the probability of acceptance is always 1.
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Other advanced MC and MCMC based sampling methods have been developed to address

the weaknesses of the previously discussed approaches in sampling multi-modal distributions or

distributions with pronounced degeneracy between parameters. Two of the most notable such

approaches are the MultiNest [192] and Affine Invariant Ensemble Samplers [193].

6.4 Uncertainty of Thermodynamic Data

Fundamental thermodynamic properties such as the specific heat, enthalpy, entropy and Gibbs

free energy of materials form the basis of numerous important technological applications, includ-

ing the prediction of phase stability and microstructure evolution during processing. To therefore

obtain uncertainty in the phase diagram using the calculation of phase diagrams (CALPHAD)

approach, uncertainty in the parameters of the models of the thermodynamic properties of the pos-

sible phases must be obtained. Parameter uncertainties in the form of probability distribution are

obtained via inverse uncertainty propagation protocols through frequentist or Bayesian approaches

as discussed in Section 6.3. The first consideration for the development of thermodynamic prop-

erty models is the reliability and uncertainties of the experimental or simulated thermodynamic

data itself, as this may have an outsized effect on the final model. Once data is obtained and pro-

cessed, a model is selected, fit to the data, and probability distributions for the model parameters

are computed. In the remainder of this section, we will address questions regarding various data

sets and the models and how they relate to the quantification of uncertainty.

It is crucial to understand, and where possible, reduce, the uncertainty in thermodynamic data

as it may lead to thermodynamic property models that drastically depart from the experimentally

observed material’s behaviour [194]. While experimental data exhibits aleatoric uncertainty, this

is rarely the cause of poor thermodynamic property models. Instead, epistemic uncertainty plays

a critical role, biasing datasets in ways that may be misleading or unpredictable. Two common

forms of epistemic uncertainty in thermodynamic data are the compositional impurity and the use

of historical temperature scales (e.g. if a temperature was performed prior to the introduction of

the ITS-90 standard) [195]. Fortunately, with care and attention these errors can be corrected and

the epistemic uncertainty reduced. It is also possible to correct for known biases of certain mea-
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surement techniques (e.g. a DFT functional may have a known energy prediction bias for a class

of materials [196]). In most cases, however, the source of epistemic uncertainty is unknown and

therefore impossible to reduce. Examples of such uncertainties include unknown biases inherent

to a measurement technique, poor instrument calibration or human error.

It is important to obtain a reasonable estimate of the combined aleatoric and epistemic un-

certainty for data points or data sets. These estimated uncertainties, typically given by a stan-

dard deviation from the mean, may serve as effective "weighting factors" in the determination of

model parameter distributions in both Bayesian and Frequentist approaches. It is possible to es-

timate these uncertainties through a variety of means. Typically, the CALPHAD expert assigns

weights based on knowledge of measurement approaches, research group reputation, or trial and

error [197]. As this approach is subjective and not necessarily reliable, the authors have recently

proposed automated approaches to weight thermodynamic datasets [181]. Beyond the weighting

of datasets, ensuring robustness to outliers and thermodynamic consistency between models are

important in the CALPHAD approach and have significant impacts on the uncertainty of the re-

sultant models. The authors have recently developed a Bayesian methodology to address each of

these problems [181]. This framework is briefly introduced in the next section.

6.4.1 Bayesian framework

As discussed in Section 6.3, Bayes’ Theorem and modern sampling algorithms enable robust

approaches to model selection, calibration and uncertainty quantification. We perform model se-

lection by comparing competing models via their marginal Likelihoods. Monte Carlo algorithms

perform inverse uncertainty propagation to obtain the Posterior distribution of the model param-

eters given the observation of data. We then propagate sampled parameters from the Posterior

forward to the model prediction to obtain uncertainty intervals.

In CALPHAD, it is necessary to analyse thermodynamic data from different sources and to

ensure consistency between property models. For example, the specific heat is simply the deriva-

tive of the enthalpy. As such, the independent calibration of specific heat and enthalpy models

using their respective measurements may not incorporate all relevant data and would not necessar-
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ily result in thermodynamically consistent models. Furthermore, the resultant models may have

unnecessarily large uncertainty intervals due to the inefficient use of the data. Therefore, in the

CALPHAD approach we employ common parameters (e.g. mathematical function coefficients)

for related models whenever possible. In a Bayesian framework we achieve this by defining a

common set of Prior distributions for parameters shared between multiple models. Furthermore,

we simultaneously calibrate the Posterior distribution for parameters across all models via analyt-

ical or numerical Bayesian methods [181].

Beyond ensuring thermodynamic consistency between models, it is critical to evaluate the qual-

ity of the data itself. This step is necessary as data sets sometimes conflict with each other to a

degree that makes it impossible to ensure thermodynamic self-consistency. Currently, it is the

responsibility of the researcher to identify outliers and to assign weights to datasets. From an un-

certainty quantification perspective, it is desirable to handle these tasks in a more automated and

transparent way.

Instead of manually removing outliers from consideration, the issue can be addressed in the

Bayesian framework by modifying the likelihood function to better accommodate scatter in the

data [52]. The use of the Normal distribution for the likelihood assumes that the data is also

normally distributed around the model prediction. This assumption is reasonable if each datum

represents the mean of multiple measurements and if all data comes from the same source. In

some cases, however, individual data points may significantly deviate from the mean behaviour.

One reasonable way to account for non-Normally distributed data is to use a distribution for the

Likelihood with more weight in the tails, such as Student’s t-distribution with few degrees of

freedom. Alternately, the Likelihood may be expressed as the weighted sum of two independent

Normal distributions, one to represent the bulk of the data and the other to represent the outliers.

We may also weight datasets in an automated manner by making modifications to the Like-

lihood function [198]. We start by assuming that the distribution of each data point around the

mean in the Likelihood is represented by the error reported in the original publication. As such,

the most natural way to correct these errors is by applying a multiplicative weighting factor to
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each data point. In the Bayesian framework, we treat these weighting factors, herein referred to

as hyperparameters, the same as all other model parameters and allow the sampler to explore their

Posterior distribution. While it is possible to assign each data point an independent hyperparam-

eter, this would dramatically increase the number of parameters in the Bayesian analysis at great

computational expense. Instead, we assume that all points in a dataset should be rescaled by the

same factor and assign a unique hyperparameter to each dataset. This approach allows the frame-

work to automatically find consistency between varied datasets (potentially measuring different

quantities) and to give reasonable and coherent estimates of each data point’s combined aleatoric

and epistemic uncertainty.

6.4.2 Case study: Hafnium

In this section, we present the application of the proposed Bayesian framework to the devel-

opment of thermodynamic property models for elemental Hafnium (Hf) with quantified uncer-

tainty. Hf is a tetravalent transition metal with applications in nuclear energy, plasma welding,

super-alloys and electronics [199–202]. It is suitable as a case study because its high melting and

vaporization temperatures (∼2500K and ∼4900K respectively), difficulty of separation from the

chemically similar Zirconium (Zr) and susceptibility to oxidation at high temperatures lead to the

data problems previously mentioned such as the presence of outliers and datasets with systematic

errors. Further details of this case study are available in our prior work [181].

We develop thermodynamic property models for the specific heat, enthalpy, entropy and Gibbs

energy in the alpha, beta and liquid phases of Hf. Twenty sets of specific heat and enthalpy mea-

surements were extracted from the literature and corrected for temperature scale [195] and Zr

content [183, 203]. Furthermore, errors were transformed to standard errors (1 standard deviation

assuming the data is normally distributed) according to the GUM standard [204] when reported

and estimated to be +/- %5 when not available.

We identify a diverse pool of models for each temperature range (associated with the alpha,

beta and liquid phases). For the alpha phase, the fundamental component of the specific heat and

enthalpy models is either an Einstein or a Debye [205, 206] term, depending on the physics of the
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solid phase, to account for quantum effects. Polynomial terms or a bent cable model [207] are then

added to account for higher temperature behaviour. For the beta and liquid phases, polynomial

model forms are employed as we choose not to extrapolate to low temperatures. The distribution

of the data is modelled using a Student’s-t Likelihood with 2+10−6 degrees of freedom to impart

robustness to outliers. The standard deviation parameter in the Likelihood for each data point is

given by the reported (or estimated) standard error rescaled by the Bayesian hyperparameter (as

described in Section 6.4.1). We employ Uniform and Exponential Priors for model parameters and

hyperparameters, respectively. For each phase and candidate model family, the MultiNest [192]

algorithm is used to sample the Posterior and compute the marginal Likelihood for all relevant

specific heat and enthalpy measurements. For each phase, we select the optimal model according

to the Bayes’ Factors.

Through the application of this Bayesian framework, we identified that, for the case of the

specific heat formulation, the Debye plus quartic polynomial model is optimal for the alpha phase,

the quadratic polynomial model is optimal for the beta phase and the linear model is optimal for

the liquid phase. As an example, Figure 6.2 displays Posterior samples for pairs of liquid phase

model parameters and hyperparameters in addition to univariate distributions for all parameters.

Figure 6.2 reveals that model parameters C0, C1 and C2 are all correlated with each other while

the hyperparameters are relatively uncorrelated with each other and with the model parameters.

This indicates that weights determined by the automated weighting procedure described in Section

6.4.1 are relatively insensitive to each other and, perhaps more surprisingly, to fluctuations in the

model’s parameterization. Looking at the values of the hyperparameters themselves, we can see

that the Bayesian framework highly weights the measurements of Korobenko [208], Cagran [209]

and Rosner-Kuhn [210] while assigning the measurements of Paradis [211] a low weight. Figures

6.3 and 6.4, which display the model predictions and experimental datasets confirm that the model

prediction aligns closely with the prioritized datasets while effectively ignoring the Paradis mea-

surements. Furthermore, this confirms the observation that the inclusion of hyperparameters for

dataset weighting makes the Bayesian framework find consistency between datasets, even between
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Figure 6.2: A corner plot is presented for the Hafnium liquid phase model parameters and hy-
perparameters. Posterior samples are plotted for pairs of parameters and the univariate Posterior
distribution is plotted for each parameter
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disparate thermodynamic quantities (in this case specific heat and enthalpy).

Figure 6.3: The alpha, beta and liquid phase specific heat models for Hafnium are plotted versus
temperature alongside the experimental data and the results of two previous assessments

Figure 6.4: The alpha, beta and liquid phase enthalpy models for Hafnium are plotted versus
temperature alongside the experimental data and the results of two previous assessments
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Figures 6.3 and 6.4 show the experimental measurements and model predictions for the alpha,

beta and liquid phases for specific heat and enthalpy, respectively. Ninety-five percentile uncer-

tainty intervals are plotted for all model predictions. In general, the availability of large quantities

of data constrain the model predictions through tight Posterior parameter distributions. This effect

is evident in both Figures 6.3 and 6.4. The uncertainty intervals are visible in the liquid-phase spe-

cific heat model prediction as only four datasets were available to the Bayesian analysis–resulting

in a less constrained Posterior distribution. Figure 6.2 corroborates this observation; for example,

the C1 parameter (the intercept of the linear model for specific heat model) has a standard deviation

of ∼1 J mol−1 K−1 which is easily propagated to the model prediction uncertainty interval.

To compare the results of our Bayesian framework with other model building strategies, we

add to the figures two previous sets of models; the first from an expert (Arblaster [183]), and the

second from commercial software (HSC-Chemistry [212]). We find it informative that both HSC-

Chemistry and the work of Arblaster employ linear models for the enthalpy of the liquid phase.

This requires the associated specific heat models to be constant as the specific heat is the derivative

of enthalpy with respect to temperature. Unfortunately, this is not consistent with the specific heat

measurements. As the Bayesian framework presented in this work simultaneously incorporates the

specific heat and enthalpy measurements in the model selection and calibration of both models,

our model is consistent with both sets of measurements.

6.5 Challenges in CALPHAD Modeling

Generally, large sparsity of the experimental data due to high measurement uncertainties, un-

certainty quantification of the high-dimensional model parameters and the resulting phase diagram,

and the choice of thermodynamic model with appropriate number of parameters are some of the

major challenges in CALPHAD, which will be addressed in this section.

The presence of uncertain sparse experimental data for the phase diagram in most studied

multicomponent systems leads to large uncertainties in the CALPHAD model parameters and the

resulting phase diagrams. The high uncertainties are not usually desirable in materials design due

to lack of confidence in equilibrium compositions and fractions of thermodynamic phases in the
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system that may considerably influence the materials properties. For this reason, thermochem-

ical data obtained from first-principles density functional theory (DFT) calculations are used to

provide better alignments in the phase diagram with less uncertainties. Duong et al. [70] work is

one of the examples that has considered the thermo-chemical and experimental data together to

probabilistically estimate the phase diagram of U-Nb binary system. However, any availability of

new information about low component systems, specially DFT predictions, can cause difficulties

in modification of the modeling of their higher component systems; since the CALPHAD model

of the high component systems are strongly connected to the lower component subsystem counter-

parts. To solve this problem, Shang et al. [213] proposed an automated extensible self-optimization

approach (ESPEI) for the phase equilibrium in CALPHAD modeling. In this technique, the model

parameters are determined for each phase in the system through a two-step optimization–first with

the DFT thermo-chemical data and then the experimental data. Otis et al. [145] has incorporated

the uncertainty quantification of the appropriate CALPHAD model parameters into ESPEI frame-

work in the direction of the ICME design. This work attempts to address the challenges associated

with the model parameter selection and uncertainty quantification in CALPAD. Stan and Rear-

don [144], Duong et al. [70] and Honarmandi et al. [180] works are also recognized as other major

studies in the literature with regard to UQ and UP in CALPHAD, with the later work also in-

corporating model selection and fusion to target the challenge related to the identification of the

appropriate CALPHAD model. All the above-mentioned works are discussed further in Section

6.5.2.

6.5.1 Uncertainty quantification in CALPHAD: Fundamentals

Bayesian UQ in CALPHAD has schematically been demonstrated in Figure 6.5. As observed

in this figure, the CALPHAD model parameters (θ) describing the molar Gibbs free energy of

each phase (φ) in the system at any specific temperature (T ), pressure (P ) and composition (xφi )

are probabilistically calibrated against the available calculated and/or experimental data by solving

the inverse problem introduced through the Bayes’ rule to find the parameter posterior probability

distribution (π(θ|d,M) which is the same as P (θ|D,M) in Equation 6.4). As mentioned in section
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6.2, this inverse problem is usually solved using sampling techniques, such as MCMC approaches.

The identification of the parameter posterior distribution results in the quantification of the param-

eter uncertainties and the Molar Gibbs energy of the phases. In the case of model selection, the

evidence (π(d|M) which is the same as P (D|M) in Equation 6.4 and 6.5) obtained for different

competing models can be compared through Bayes’ factor.

Figure 6.5: Schematic illustration of Bayesian UQ in CALPHAD

As shown in Figure 6.6, the uncertainties of the parameters and the molar Gibbs free energy

of the phases can be propagated across the CALPHAD model which minimizes the total Gibbs

free energy of the system subject to some compositional constraints in order to determine the

uncertainty of the equilibrium phase diagram. UP can also be performed to quantify the uncertainty

of any other quantity of interest, such as the lattice parameters.
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Figure 6.6: Schematic illustration of UP in CALPHAD

6.5.2 Uncertainty quantification in CALPHAD: An overview of the recent literature

As pioneers in CALPHAD Bayesian uncertainty quantification, Stan and Reardon [144] have

evaluated the uncertainties of UO2-PuO2 and UO2-BeO binary phase diagrams based on the avail-

able data for these systems. In this work, enthalpy and melting temperature of the individual phases

are the model parameters that are probabilistically calibrated against the data for each system. In

this regard, a multi-objective genetic algorithm (GA) is applied to sample from the multivariate

posterior probability distribution of the model parameters in the context of the Bayesian inference,

as discussed in Section 6.3. In the GA context, the fitness of each particular member (parameter-

vector sample) of the population is determined through taking an average over all the corresponding

objective values rescaled by a fuzzy logic weighting from 0 to 1. In this scheme, 0 belongs to the

worst objective outcome of the population and 1 corresponds to the objectives whose values fall

into the uncertainty bands of the experimental data. The GA continues until the fitness of all the

members of the population become 1 or a constant value with no improvement. The last population
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at this state is considered to find the uncertainty bands of the model parameters. The parameter

uncertainties have also been propagated to the phase diagrams (as shown in Figure 6.7), using the

forward calculation of the phase diagrams with a large number of parameter vectors sampled from

the estimated parameter posterior distributions [144].

Figure 6.7: a) UO2-PuO2 and b) UO2-BeO binary phase diagrams with their uncertainty bands.
Reprinted with permission from [144].
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In another important work, Otis et al. [145] have developed an automated high-throughput

modeling in CALPHAD with the capability of quantifying the parameter uncertainties at the same

time. However, the selection of the model parameters is not absolutely objective and expert opin-

ion is still required to be incorporated into this sublattice-based modeling technique due to the

challenge associated with a high degree of freedom in the parameter selection. In this work, the

number of parameters in the modelling of pure elements, end-members or stoichiometric phases is

identified through the Akaike Information Criterion (AIC) that is a multi-variate parameter scoring

approach with a penalizing factor for overfitting. However, a univariate scoring approach (such as

an F-test) has been proposed to select from the rescaled interaction parameters of mixing in sublat-

tices in the general case that multi-phases are present, since AIC is not applicable in the presence

of numerous interaction parameters. After the identification of the model with appropriate number

of parameters, an MCMC sampling approach is applied to find the parameter posterior distribution

which represents the uncertainty of the model parameters. The developed UQ approach has been

tested with a model for the excess Gibbs free energy in a binary case that is expressed as

GE
mf = xAxB(Hex − TSex + LexT

2) (6.11)

The prior probability distributions for the parameters Hex, Sex and Lex have been updated to

their posterior distribution using 10 synthetic data points. The results of the MCMC sampling are

been shown in Figure 6.8 in the forms of joint and marginal distributions for the parameters. The

initial values of the parameters and their updated values with 95% credible intervals have also been

reported in this figure.

This approach has also been applied for the UQ of the Ni-Al binary system with magnetic prop-

erties to show the capability of this automated workflow for the rapid construction of CALPHAD

databases [145].

As mentioned earlier in this section, Duong et al. [70] have integrated thermo-chemical and ex-

perimental data to probabilistically calibrate a sub-regular solid solution CALPHAD model for the

U-Nb binary system. An adaptive MCMC sampling technique based on the Metropolis-Hastings
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Figure 6.8: Joint and marginal parameter distributions after MCMC sampling, initial values of the
parameters (blue solid lines) and their updated mean values with 95% credible intervals (black
dashed lines). Reprinted with permission from [145].

algorithm has been employed for this purpose. In this MCMC approach, the deterministically op-

timized parameter values obtained from the PARROT module in Thermo-Calc software are used

as initial values for the model parameters, θ0 = θopt. A uniform distribution has also been consid-

ered for the parameter prior distribution which is bounded between (θopt−3θopt) and (θopt+3θopt).

Moreover, the likelihood function has been considered Gaussian with unknown error due to lack of

knowledge about the data uncertainties. Here, the errors of the data are assumed to be the same as a

constant hyper-parameter which is updated like the model parameters during MCMC sampling. It

should also be noted that the proposal distribution is an adaptive multivariate Gaussian distribution,

where its initial arbitrary covariance matrix is adapted in each iteration of MCMC sampling based

on the covariance matrix obtained from the previous generated parameter samples. After quanti-
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fying the parameter uncertainties using this MCMC sampling, the analytical FOSM approach has

been applied in order to propagate the uncertainties to the Gibbs free energy formation of phase γ

and the phase diagram for this system, as shown in Figure 6.9 [70].

Figure 6.9: 95% credible intervals of a) the Gibbs free energy formation of phase γ and b) the
phase diagram of U-Nb system with their corresponding data points. Reprinted with permission
from [70].

Following the Duong et al. [70] work, Honarmandi et al. [180] have recently used the same

MCMC approach for the uncertainty quantification of the Hf-Si binary phase diagram and devel-

oped this approach further for the calculation of the Bayes’ factor which is an important measure

for Bayesian model selection (BMS) and Bayesian model averaging (BMA). In other words, not

only the Challenges for the uncertainty quantification and propagation in CALPHAD have been

addressed in this work, but the challenges for model selection and highly objective estimation of

phase diagrams have also been studied using Bayesian hypothesis testing and information fusion

approaches with an underlying goal towards automated design under the ICME framework [180].

This work is discussed in more detail in the following case study.
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6.5.2.1 Case study: UQ in Hf-Si phase diagram

In this case study based on the Honarmandi et al. [180] work, the MCMC-Metropolis Hastings

algorithm explained in [70] is applied for an expert recommended CALPHAD model in the case of

Hf-Si binary system to show how the uncertainties of the model parameters are quantified based on

the given data in the context of Bayesian statistics. This case study also shows how the parameter

uncertainties can precisely propagate to phase diagrams.

The CALPHAD model in this example has 20 parameters based on line-compound formalism

which includes 2 parameters for each phase in the system (i.e. 0aφ and 0bφ which are referred to as

aφ and bφ in this section). Synthetic data extracted from the calculated phase diagram in [147] has

also been considered for this probabilistic calibration.

1000000 parameter-vector samples have been generated during MCMC sampling with exactly

the same prior, likelihood and proposal distributions as [70] to ensure about true parameter con-

vergences. After removal of the burn-in period (unnecessary samples in the beginning of MCMC

sampling before parameter convergence) using the parameter cumulative mean plots, the average

values and the square root of the diagonal elements in the variance-covariance matrix of the re-

maining samples have been introduced as the most plausible values and uncertainties of the model

parameters, respectively. For better visualization of the MCMC simulation, the marginal and joint

posterior frequency distributions can be plotted for the model parameters. Marginal posterior dis-

tributions are useful to show the distribution form of the model parameters. The marginal distri-

butions of the parameters are almost Gaussian in this case study, which can be observed for one

of the liquid phase parameters (aliq) in Figure 6.10(a) as an example. Joint frequency distributions

show the density of MCMC samples in the parameter space, which can graphically represent the

parameter convergences as well as their qualitative correlations. For example, one of these plots

has been shown in Figure 6.10(b). The convergence of the given pair parameters towards the red

region can be observed in this figure. In addition, this plot suggests a positive correlation between

the two given parameters. A positive /negative correlation indicates a positive/negative change in

the value of one parameter as the other increases. Linear correlation between pair parameters can
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also be quantified by the Pearson linear coefficient expressed as,

ρx,y =
cov(x, y)

σxσy
(6.12)

where σx, σy and cov(x, y) are the standard deviation of x, the standard deviation of y and the

covariance of x and y, respectively. The correlation coefficient ρx,y can change from -1 to 1. Here,

-1 or 1 corresponds to a perfect negative or positive linear correlation, while 0 means no correlation

between the two parameters. As observed in Figure 6.10(b), the linear coefficient for the two given

parameters is 0.95 implying a high positive linear correlation between these two parameters.

Figure 6.10: Examples of a) marginal and b) joint posterior frequency distributions of the parame-
ters after MCMC sampling. Reprinted with permission from [180].

The obtained uncertainties of the model parameters have been propagated to the phase diagram

using the forward model analysis of the last 5000 MCMC generated samples as an ensemble of

all converged samples. In this scheme, 95% Bayesian credible intervals (BCI) can be determined

by discarding 2.5% of the resulting samples from the above and below the total variation band at

any specified point in the phase diagram. The resulting probabilistic phase diagram for the Hf-Si

system has been shown in Figure 6.11. It is worth noting that the cross-sectional probability dis-

tributions are the same along the horizontal lines in the phase diagram, while they are composition

dependent throughout the liquidus line.
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Figure 6.11: Hf-Si phase diagram with 95% credible intervals obtained after MCMC calibration of
the CALPHAD model with 20 parameters against synthetic data shown by black crosses. Reprinted
with permission from [180].

6.5.2.2 Case study: Bayesian model selection and information fusion for the Hf-Si system

In this section, the model in the previous section and three other models that have randomly

been generated in [180] for the Hf-Si system are considered to show the applications of Bayesian

model selection and information fusion approaches in CALPHAD. The number of parameters in

these models are 17, 20, 28 and 30 which are referred as models 1, 2, 3 and 4, respectively. In

this regard, it should be noted that the intermetallic phases in these models have been described

by the line-compound formalism, while the end members are defined by either the line-compound

or sub-regular solid solution model. The additional three models have also been calibrated against

the same synthetic data through the MCMC approach explained in the previous section. The

probabilistic phase diagrams after the propagation of the parameter uncertainties are shown in

Figure 6.12. It is clear that these models have poor predictions with very high uncertainties for the

phase diagram.

Before proceeding our discussion about the application of information fusion approaches in
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Figure 6.12: Hf-Si phase diagrams with 95% credible intervals obtained after MCMC calibration
of the CALPHAD models with a) 17, b) 28 and c) 30 parameters against synthetic data shown by
black crosses. Reprinted with permission from [180].
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CALPHAD modeling, it is worth noting that Gibbs free energies of phases are the intermediate

variables which connect the thermodynamic parameters to phase diagram. Therefore, uncertain-

ties can be propagated from the parameters to Gibbs free energies and then to phase diagram, as

shown in Figures 6.13(a) and (b) for model 1 and 2 at two different iso-thermal conditions. As

expected, perfect agreements are generally observed between the mean values and uncertainties of

phase equilibrium compositions obtained from the convex hull of Gibbs free energy plots and the

corresponding phase diagrams at any arbitrary temperature. The parameter uncertainties can also

be propagated in the same way to the first and second derivatives of Gibbs free energy with respect

to composition. The uncertainty quantification of these derivatives is also important since the first

derivatives indicate the elemental chemical potentials in phases which are used for the identifica-

tion of the equilibrium conditions in the system; and the second derivatives determine the stability

of the single phases in the miscibility gap (if any) to any small compositional fluctuations which

can imply two different transformation mechanisms in these phase diagram regions, i.e. either

nucleation and growth mechanism or spinodal decomposition.

Although it is intuitively expected to predict more precise phase diagrams as the number of the

parameters in the model increases, the comparison of the phase diagram obtained from model 2 (20

parameters) in Figure 6.11 with the ones obtained from the models 3 and 4 (28 and 30 parameters)

in Figures 6.12(b) and (C) implies that higher number of parameters is not necessarily useful in

practice. In order to prove that unsuccessful parameter convergences are not the reasons for these

contradictory results, the parameter convergence during MCMC sampling have been checked for

all the models through the cumulative mean plots of their parameter samples. The plot for one

of the parameters in liquid has been shown in Figure 6.14 as an example. It is worth noting

that MCMC convergence appears as constant fluctuations around a constant value for each model

parameter, which is equivalent to the convergence of the parameter cumulative mean values to

constant values, as observed in Figure 6.14. Therefore, the contradictions do not result from the

unsuccessful parameter convergences, but where they converge to. This is clarified further below.
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Figure 6.13: Two examples of the uncertainty propagation from the model parameters to Gibbs
free energy curves to phase diagram for model 1 and 2 at two different iso-thermal conditions.
Reprinted with permission from [180].
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Figure 6.14: Cumulative mean plots for the parameter samples of one of the liquid parameters that
exists in all the applied models. Reprinted with permission from [180].

Model 1 with 17 parameters is too simple to capture the correct phase diagram based on the

given data. In this case, the large uncertainties have been attributed to the error of fitness. As

expected, increasing the number of the model parameters from 17 to 20 in model 2 significantly

improves the prediction of the phase diagram. However, higher number of parameters in model 3

or 4 results in so many local minima for the residual (the differences between results and the data)

in the high dimensional parameter space, making this global optimization (calibration) problem

very difficult or sometimes impossible to solve by the available deterministic or probabilistic opti-

mization approaches. Therefore, the possibility of falling into a local minimum is extremely high

during the deterministic calibration of large models in Thermo-Calc software. Since the parame-

ter ranges are obtained based on these deterministically optimized parameter values in the applied

MCMC approach, there is a very high probability for the global minimum to be outside the pa-

rameter ranges. Here, the high sensitivity of the large models to small variations of the parameters

has been introduced as a reason for the high uncertainties in their resulting phase diagrams. Con-

sequently, this study verifies the idea of model parsimony which emphasizes making the model as
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simple as possible, but not too simple.

In this case study, the best model (i.e. model 2) can visually be detected through the resulting

phase diagrams in Figures 6.11 and 6.12. However, there might be cases that all or some of the

models show comparably good predictions making the qualitative identification of the best model

very difficult. Therefore, a systematic quantitative approach is necessary in these cases for model

selection. Honarmandi et al. [180] have proposed Bayesian model selection based on the Bayes’

factor to quantify to what extent the given models are favored by the data. Technically, Bayesian

model selection is performed by comparing the posterior probabilities of the models given the data

in the form of the posterior odds for each pair of models, as follows

P (Mi|D)

P (Mj|D)
=
P (D|Mi)

P (D|Mj)

P (Mi)

P (Mj)
= Bijλij (6.13)

Since there are usually no prior preferences for any of the given models, prior odds (λij) are

assumed to be 1. Therefore, the posterior odds equal the ratio of the marginal likelihoods known

as Bayes’ factor. For the calculation of the marginal likelihoods, the integral in Equation 6.5

should be solved for each given model. In this regard, a harmonic average of likelihood values

obtained during MCMC parameter sampling of each model has been suggested as a numerical

solution [152].

In regard to the identification of the best CALPHAD model with an appropriate number of

parameters, an MCMC Metropolis Hastings technique can be applied to sample from all the fea-

sible models based on Equation 6.13. However, faster approaches are required for the prediction

of phase diagrams in the direction of the automated design under ICME framework. Information

fusion techniques can be candidate solutions for this challenge based on the fact that any feasible

CALPHAD model can potentially provide some useful information about the system.

Honarmandi et al. [180] have applied BMA and an error correlation-based model fusion (CMF)

to show how to smartly combine the existing information in the models to obtain a fused model

with more informative results compared to each applied individual model (including the best

model). In BMA, Bayes’ factors are converted into the weights for the applied models, and then
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the fused model is constructed based on a weighted average of the results obtained from the given

models. In this approach, the weight of models are defined using their posterior probabilities given

the data which can be calculated through Bayes’ factors as follows [152]

P (Mk|D) =
P (D|Mk)π(Mk)∑K
i=1 P (D|Mi)π(Mi)

=
Bk1λk1∑K
i=1Bi1λi1

=
Bk1∑K
i=1 Bi1

(6.14)

where K is the number of competing models and M1 is a model reference that is used to

calculate the Bayes’ factors in this ratio. Based on Equation 6.14, the weight of models 1 to 4

are 0.1474, 0.5572, 0.1451, and 0.1504, respectively. It is clear that model 2 as the best model

has a weight much more than the other models. The BMA fused model obtained from a weighted

average of the resulting phase diagrams has been shown in Figure 6.15. In this figure, the posterior

mode (peak) of the probability distributions at each composition has been considered rather than

the mean values of the BMA model to prevent the unrealistic behaviour of the fused phase diagram

around the eutectic points due to the difference in eutectic compositions predicted by the given

models. In Figure 6.15, the examples of the probability distributions of the individual and fused

models at different compositions/regions indicate that the posterior mode of the distributions in the

fused model corresponds to the posterior mode of the distributions in model 2 (shown by black and

purple distributions, respectively).

Therefore, the BMA fused model provides broader 95% credible intervals compared to the

best model (model 2) which can offer more confidence for robust design applications. However,

the BMA approach considers all the given CALPHAD models as statistically uncorrelated, which

might not be true in this case due to the consideration of the same underlying structure for the CAL-

PHAD models that attempts to predict the same ground truth. For this reason, the CMF approach

has been used for fusion of the models. In this approach, the correlations between model errors are

taken into account as a covariance matrix (Σ̃)) in this case in order to reduce the uncertainties for

more precise predictions. The mean value and variance of the fused model at any arbitrary point

(x) is calculated as follows [10].
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Figure 6.15: The posterior mode and 95% credible intervals of the BMA fused model for Hf-Si
phase diagram. Reprinted with permission from [180].

E[f̂(x)] =
e>Σ̃(x)−1µ(x)

e>Σ̃(x)−1e
(6.15)

Var
(
f̂(x)

)
=

1

e>Σ̃(x)−1e
(6.16)

where e = [1, ..., 1]T is an r × 1 vector of ones, µ(x) = [µ1(x), ..., µr(x)]T denotes the vector

of mean values for all the given models at point x, and Σ̃(x)−1 denotes the inverse of the r × r

covariance matrix which can be determined using the mean values (µi(x)) and standard deviations

(σi(x)) of the applied models at point x.

In this case study, the uncertainty at any composition/region of each individual phase diagram

has been defined as an equivalent Gaussian distribution. In this context, the fused models obtained

from the combination of the three models in Figure 6.12 and all the four models have been shown
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in Figures 6.16(a) and (b), respectively. While the phase diagram calculated by the fusion of

the three models does not capture all the features of the phase diagram (especially at eutectic

points), it can provide a phase diagram closer to the data with smaller uncertainty bands that

can cover all available data for the given system. This result is very important for incorporating

CALPHAD into automated ICME-based design, since it shows that the CMF approach can be

applied for random CALPHAD models to obtain an appropriate phase diagram in the context of

design, rather than a lengthy traditional trial-and-error approach to identify the best CALPHAD

model. Even in the presence of model 2, the fused model (shown in Figure 6.16(b)) suggests more

precise prediction compared to any individual model, which has been verified by the calculation

of an average information (Shannon) entropy over 95% credible intervals of each phase diagram.

Here, the average entropies have been considered to compare the uncertainties resulting from the

individual models with their corresponding fused model. This result also implies that the CMF

fused model that includes the best model can be more precise than the best model itself that may

lose some information about the system [180].

Figure 6.16: CMF fused models with their 95% credible intervals obtained from the fusion of a)
models 1, 3 and 4, and b) all four models. Reprinted with permission from [180].
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6.6 What to Do about (Uncertain) DFT Data?

For well over a decade, DFT calculations of the thermochemical properties of phases have be-

come an integral element of CALPHAD assessments [169]. As such, they have provided invaluable

information [170, 214, 215] that is particularly useful in the absence of sufficient thermochemical

data to properly ground the scale of the Gibbs energies of the phases being considered for possible

equilibria. There are in fact close to 4,000 manuscripts published in the past two decades in which

DFT calculations have been used to assist in the assessment of the phase stability of materials

systems–see for example [216–220].

While powerful, DFT calculations have been shown to have important limitations. When com-

pared with CALPHAD-based assessments, for example, computed lattice stabilities of metastable

phases tend to have significant disagreements with respect to their CALPHAD-derived counter-

parts [221]. Traditional DFT methods are also limited in their ability to compute the energetics

of systems with strong electron correlation effects, making their incorporation into CALPHAD-

based thermodynamic assessments problematic [222]. Even when computing the thermochemical

properties of stable systems, DFT-based predictions are often seen to be in conflict with carefully

acquired calorimetric data [172].

Given their general usefulness but acknowledging their limitations, the question then is what is

the real value of DFT-based calculations in the context of CALPHAD assessments? In the context

of UQ, the answer to this question remains easy to answer: DFT calculations are but one additional

source of information about the (elusive) ground truth of the phase stability. This means that the

methods presented above to infer the thermodynamic properties of phases from available, incom-

plete, sparse and most certainly uncertain (pun intended) phase stability and thermodynamic data

are amenable to treating DFT data without further modification. In a sense, we can consider DFT

data as additional information that can be used to build thermodynamically consistent CALPHAD

models through the use of rigorous Bayesian inference methods. Recent examples [70,146] by the

some of the present authors attest to the viability of this approach.
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6.7 Summary and Conclusion

Uncertainty quantification (UQ) of thermodynamic models and phase diagrams requires an un-

derstanding of the connections between the uncertainty in data and in the resultant models (and

model parameters). After examining both aleatoric and epistemic uncertainty sources [182], we

conclude that both have an important impact on phase diagram models. Although aleatoric un-

certainty may cause statistical scatter in measured output metrics and the epistemic uncertainty

may introduce systematic biases, both sources provide key information for evaluating the overall

uncertainty in phase stability diagrams.

Going beyond traditional, analytical approaches, we examined frequentist and Bayesian sta-

tistical paradigms. Although both methodologies have specific strengths and weaknesses, their

inferences can be consistent and correlated. In addition, both paradigms allow for forward and

inverse uncertainty propagation. In the context of CALPHAD assessments, the inverse problem is

critical and inverse uncertainty propagation methods result in fully dimensional parameter uncer-

tainties including the covariances between parameters. Furthermore, inverse uncertainty propaga-

tion methods may be used to estimate the uncertainties in the data itself.

In this work, we discuss estimates of the combined aleatoric and epistemic uncertainty for data

points or data sets. These estimated uncertainties, typically given by as standard deviation from

the mean, may serve as effective "weighting factors" in the determination of model parameter

distributions in both Bayesian and Frequentist approaches. While acknowledging that CALPHAD

experts often assign weights based on expert knowledge of measurement approaches, research

group reputation, or trial and error, the methodology we propose expands the type and quality of

thermodynamic information used as input in model development and optimization.

We conclude that it is necessary to analyse thermodynamic data from different sources and to

ensure consistency between property models. For example, the model of specific heat–a derivative

of enthalpy with respect to temperature–must be consistent with the enthalpy and free energy

model. To optimally represent the phase stability, all thermodynamic property models must satisfy

the well-established thermodynamic relationships.
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Through the application of this Bayesian framework to Hafnium, we identified that, for the

case of the specific heat formulation, the Debye plus quartic polynomial model is optimal for the

alpha phase, the quadratic polynomial model is optimal for the beta phase and the linear model is

optimal for the liquid phase.

The analysis of binary phase diagrams revealed a large sparsity of the experimental data due

to high measurement uncertainties and limited uncertainty quantification of the high-dimensional

model parameters. The choice of thermodynamic model with appropriate number of parameters

is one of the major challenges in CALPHAD assessments. Using Hf-Si as a case study and the

MCMC-Metropolis Hastings algorithm as optimization method, the Bayesian framework can prop-

agate uncertainties to the phase diagram. Moreover, we have shown how a Bayesian framework

enables model selection through the evaluation of Bayesian evidence for competing models, given

the available data. Finally, it has been shown how it is possible to fuse CALPHAD predictions in

a robust manner to obtain reasonable phase diagram uncertainties.

The discussions presented in this work provide a snapshot of the field as it stands today. We

are certain that with an ever-increasing emphasis on the development of simulation-assisted al-

loy development approaches, those that account for aleatoric/epistemic uncertainty in predictions

will necessarily become ubiquitous. In the case of alloy design, quantification, propagation and

management of uncertainty of CALPHAD models will certainly become a necessary (albeit not

sufficient) condition for robust decision-making and it is our hope that this important aspect of ma-

terials simulation will become one of many tools available to those who seek to make the premise

of ICME/MGI a reality.
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7. SUMMARY AND FUTURE WORK

UQ is one of the most important tasks towards the fulfillment of ICME/MGI promises for mate-

rials design. For this reason, this work intends to address how to quantify the overall uncertainties

of the parameters and to propagate them to the system outcomes in different cases of computational

materials modeling; and how to perform model selection and probabilistic model fusion in the case

that multiple competing models exist.

7.1 Summary

This dissertation begins by the discussions about the necessity of uncertainty quantification

in robust and reliability-based design which is followed by the explanations of different UQ fun-

damental concepts, including the sources of uncertainty in computational modeling, model pa-

rameter selection, Frequentist and Bayesian approaches for inverse UQ of model parameters with

their advantages and disadvantages, analytical and numerical methods for forward UP from model

parameters to responses with their advantages and disadvantages. In addition, the fundamentals

of Bayesian model selection and different model fusion approaches when several models try to

describe the same physical phenomenon.

A stress-strain curve model have been implemented for TRIP steels, and then its influential

parameters have probabilistically been calibrated using two different procedures of MCMC data

training, i.e. sequential and simultaneous data training. The corresponding calibration results have

been compared through the marginal and joint parameter probability distributions in addition to

optimal stress-strain curves with propagated uncertainties obtained at both training and test exper-

imental input conditions. This comparisons have implied no significant differences between these

two types of data training. However, the fairly high discrepancies between the calibrated model

results and the corresponding experimental data have brought the idea of the probabilistic esti-

mation of uncertain input data. Therefore, the micro-structural phase volume fractions have been

estimated using the same MCMC framework (while the model with fixed sequentially calibrated
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parameters has been considered) in order to reduce the epistemic uncertainties associated with the

volume fraction measurements. The reproducibility of the MCMC approach has also been verified

by the parameter probabilistic recalibration with the synthetic data sampled from the simultane-

ously calibrated model results. This means no considerable uncertainties result from the applied

MCMC approach.

A multi-objective MCMC approach has also been developed for the probabilistic calibration of

an Ni-Ti precipitation model in MatCalc c© software against the available experimental data. Here,

a empirical function has been found for matrix/precipitate interfacial energy in terms of nominal

composition and aging temperature using the optimal values obtained for the interfacial energy

after the MCMC calibration of the most influential model parameters with each given experimental

data individually. After replacing the interfacial energy parameter by this relationship, the other

parameters have probabilistically been determined through the multi-objective MCMC calibration

with all the given experimental data simultaneously. Again, large discrepancies and uncertainties

between the calibrated model results and the corresponding experimental data have reduced by

applying the co-kriging model fusion approach that probabilistically combines the model results

and experimental data for more precise prediction of precipitation behavior in Ni-Ti binary system.

In another work, a constrained MCMC approach has been proposed to probabilistically cali-

brate the most influential parameters a thermo-mechanical model under iso-baric conditions. For

this purpose, a distance based metric has been utilized to compare the transformation strain-

temperature curves obtained from the model with their experimental counterparts in the MCMC

likelihood function. In this work, a systematic design of experiment that combines CFD and

ANOVA methods has been applied to identify the most influential parameters. Moreover, UP from

the model parameters to responses have been performed through the FOSM and forward analy-

sis approaches separately. While FOSM approach showed some unrealistic uncertainty bounds

around the transformation temperatures, the forward analysis approach provided very smooth un-

certainty bounds with more precision. However, there is a trade-off between cost and precision

which can be considered in order to select any of these UP approaches. Generally, there are good
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agreements between the hysteresis curves obtained from the model and their corresponding ex-

perimental data (especially at the maximum transformation strains), or at least the model 95%

BCIs contain the experimental data; although the slopes and the temperatures–where the forward

and reverse transformation curves meet–have not been predicted precisely. The application of the

MCMC technique for decision making in experimental design has also been shown in this work.

This purpose has been fulfilled through the comparison of the information gained by the sequential

MCMC calibrations of the model parameters with two synthetic data sets which have been sampled

from the uncertainty bounds of the model responses at the same and different iso-baric conditions.

The mentioned comparison has been carried out by the calculation of K-L convergence for each

experimental design which determines the contrast between prior and final posterior probability

distribution of the parameters in each case. A higher value of K-L divergence obtained for the

experimental design at different iso-baric conditions implies more information gain in this case. It

should be noted that the K-L divergence values and their rates decrease as one-by-one sequential

MCMC training continues in each experimental design case.

As the most important highlight of this dissertation, the challenge corresponding to the model

selection in CALPHAD has been addressed. In this regard, the plausible optimal values of the

parameters and their uncertainties in four independently generated CALPHAD models for Hf-Si

binary system have been quantified through the same MCMC calibration against synthetic data

which have been sampled from the phase diagram calculated by Zhang et al. [218]. It should be

noted that the deterministically optimized parameters obtained from Thermo-Calc software are

considered as the initial parameter values in the MCMC calibration for faster convergence of the

parameter values. After the probabilistic calibrations, the parameter uncertainties have been prop-

agated using the forward analysis to find the uncertainties in phase diagram. Bayes’ factor in the

context of Bayesian hypothesis testing has been applied to find the best model out of the given

CALPHAD models. The results have shown that models with higher number of parameters do

not necessarily have better predictions. This has been attributed to the incapibility of PARROT

module in Thermo-Calc to find the global optimum in very high dimensional cases. In other
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words, increasing the number of parameters results in better prediction as far as Thermo-Calc has

a good estimation of the global optimum in the parameter space. However, information fusion

approaches–such as BMA and CMF–have been suggested in this work to solve the issue of finding

the most appropriate CALPHAD model which may also lose some useful information about the

system. BMA generates an average with larger uncertainties compared to any individual given

model which can provide more confidence in the case of robust design, but it is probably too

conservative. In contrast, CMF provides more precise predictions with lower uncertainties by con-

sidering correlations between the model errors. This reduction in uncertainties has been confirmed

by the comparison of the average entropies associated with the phase diagrams obtained from each

individual and fused models. It has also been shown that CMF can be applied on random CAL-

PHAD models to produce a reasonable fused phase diagram with the capability of being used in

robust design. As a result, this work was a big step toward making the CALPHAD modeling more

objective rather than being subjective to the expert opinions.

In the end, this dissertation has been closed by a literature review on UQ/UP in CALPHAD

modeling that is one of the fundamental tools in materials design under the ICME framework.

7.2 Future Work

The calibration of expensive high-fidelity models, such as phase field models, has still remained

a big challenge in the field of materials science and engineering. The calibration of these types of

models are almost impossible with the conventional deterministic and probabilistic approaches

due to high computational cost. Therefore, an optimal search approach is required to efficiently

combine the exploration and exploitation in the parameter space. In this regard, an efficient global

optimization (EGO) method [81] can be one of the most promising solutions employing surro-

gate models (such as GP) over the discrepancy between the model results and the corresponding

experimental observations to perform an efficient exploration and exploitation using the expected

improvement metric. This calibration can also be performed in a probabilistic way based on the

Kennedy and O’Hagan approach [13].

This dissertation has mostly been focused on the illustration of the Bayesian UQ/UP frame-
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work and different model fusion approaches for the sake of materials design under the ICME loop

of process-structure-property-performance. However, these approaches have only been applied on

individual low-fidelity (cheap) models and not on a chain of models. For future work, it is im-

portant to propagate the uncertainties across a chain of models, particularly chains that include

expensive models. For example, the propagation of uncertainties from thermodynamic parameters

to Gibbs free energies and phase diagrams to materials microstructures through CALPHAD and

phase field models can be one of the important task in materials design. Since phase field modeling

is very expensive, the development of an efficient UP approach seems to be required. In this regard,

a UP approach based on probability measure optimized importance weights are being developed

by Sanghvi et al. [223] in order to efficiently propagate the uncertainties of Gibbs free energy of

phases to microstructural features across a phase field model [224] developed for Mg2Sn-Mg2Si

quasi-binary system.

Another ongoing work is the application of information fusion approaches (such as co-kriging

or CMF) for more precise and more efficient multi-objective efficient optimization which can

be very useful for materials discovery in the case of Ni-Ti based SMAs. In this work, process-

structure-property in this class of materials are connected together through a chain of models that

includes a precipitation model and a thermo-mechanical/micro-mechanical model. The fusion of

the results obtained from the mentioned chain of models and the experiments can provide faster

optimization with less number of experiments to run compared to common multi-objective EGO

with GP surrogate modeling, which can reduce the cost of optimization/materials discovery. An-

other important application of information fusion approaches is efficient queries from different

sources of information with different fidelities and costs in the case of knowledge gradient (KG)

or entropy-based optimization, which can be considered for future work.
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dataâĂŤguide to the expression of uncertainty in measurement,âĂİ joint committee for
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APPENDIX A

TWO-WAY ANOVA

In the case of two-way ANOVA where there are L observations and two multi-level factors A

and B, system response can be defined as a Means model as follows [225],

yijl = µij + εijl = µ+ τi + βj + (τβ)ij + εijl ,

{ i = 1, ..., I

j = 1, ..., J

l = 1, ..., L

(A.1)

where, I and J are the number of levels associated with factors A and B, and τi, βj , and (τβ)ij

denote the effects of the level i of factor A, level j of factor B, and their interaction, respectively.

ε is the residual or the random error which is considered as an independent normally distributed

function with a fixed variance, N (0, σ2). In this context, the following hypotheses are statistically

evaluated to find the most sensitive factors and interactions in the system [225],

H0 : τ1 = τ2 = ... = τI = 0

H1 : at least one τi 6= 0

(A.2)

H0 : β1 = β2 = ... = βJ = 0

H1 : at least one βj 6= 0

(A.3)

H0 : (τβ)ij = 0 for all i and j

H1 : at least one (τβ)ij 6= 0

(A.4)

In each case, H0 and H1 are null and alternative hypothesis, respectively. It should be noted

that a component (either a factor or an interaction) is identified sensitive when the corresponding

null hypothesis is rejected after hypothesis testing. In this regard, a variance partitioning into the

components of the system is required; however, this partitioning can be performed on the total sum
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of squares instead due to the proportionality between total variance and total sum of squares.

Let yi.., y.j., yij., and y... denote the sum of all the factorial design responses which includes the

effects of the level i of the factor A, the level j of the factor B, the combination of the level i for

A and the level j for B, and all the level-factor combinations, respectively. Moreover, let ȳi.., ȳ.j.,

ȳij., and ȳ... denote the corresponding averages as follows [225],

yi.. =
J∑
j=1

L∑
l=1

yijl , ȳi.. =
yi..
JL

(A.5)

y.j. =
I∑
i=1

L∑
l=1

yijl , ȳ.j. =
y.j.
IL

(A.6)

yij. =
L∑
l=1

yijl , ȳij. =
yij.
L

(A.7)

y... =
I∑
i=1

J∑
j=1

L∑
l=1

yijl , ȳ... =
y...
IJL

(A.8)

Total sum of squares (SST ) can be decomposed to the sum of squares of the system compo-

nents, as follows,

SST =
I∑
i=1

J∑
j=1

L∑
l=1

(yijl − ȳ...)2 =
I∑
i=1

J∑
j=1

L∑
l=1

[
(ȳi.. − ȳ...) + (ȳ.j. − ȳ...)

+ (ȳij. − ȳi.. − ȳ.j. + ȳ...) + (yijk − ȳij.)
]2

= JL

I∑
i=1

(ȳi.. − ȳ...)2 + IL

J∑
j=1

(ȳ.j. − ȳ...)2

+ L

I∑
i=1

J∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2

+
I∑
i=1

J∑
j=1

L∑
l=1

(yijl − ȳij.)2

= SSA + SSB + SSAB + SSE

(A.9)

205



where, SSA, SSB, SSAB, and SSE are the sum of squares associated with A, B, A-B inter-

action, and the random error, respectively. It is worth noting that SSE can be obtained by the

subtraction of SSA, SSB, and SSAB from SST . In Equation A.9, the first equality results from

the addition and subtraction of the same terms on the right side, and the second equality is a con-

sequence of the polynomial expansion of the function where the six cross products becomes zero.

If these sum of squares are divided by their corresponding degrees of freedom, the mean squares

(MS) are obtained. The expected values of these mean squares when the levels are random vari-

ables can provide relationships to estimate the total deviations of all the levels associated with A,

B, and A-B interaction, as follows,

E(MSA) = E
( SSA
I − 1

)
= σ2 +

JL
I∑
i=1

τ 2
i

I − 1
(A.10)

E(MSB) = E
( SSB
J − 1

)
= σ2 +

IL
J∑
j=1

β2
j

J − 1
(A.11)

E(MSAB) = E
( SSAB

(I − 1)(J − 1)

)
= σ2 +

L
I∑
i=1

J∑
j=1

(τβ)2
ij

(I − 1)(J − 1)
(A.12)

E(MSE) = E
( SSE
IJ(L− 1)

)
= σ2 (A.13)

It should be noted that the mean square of each factor or interaction can be used in the above

equations in the problems that the levels are fixed. In the case that the null hypothesis about the

insensitivity of a factor or an interaction is true, the total corresponding effects of the component

becomes zero; therefore, the corresponding expected value in Equations A.10, A.11 or/and A.12

equals the expected value for the mean squares of the random error, i.e., its variance (σ2). On

the other hand, if there are any effects from the system components, the corresponding expected
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values are greater than σ2. It is clear that bigger ratio of the expected value of a component

to σ2 is equivalent to more sensitivity of the component. This is also true for the ratio of the

corresponding mean squares, which is called F -ratio. However, a certain criterion is required to

fully reject the null hypotheses for the identification of the sensitive components in the system. For

this reason, a F -distribution is created from anyone of the null hypotheses based on the numerator

and denominator degrees of freedom of F -ratio to calculate the corresponding p-value. Generally,

the area underneath the F-distribution confined between the F-ratio value and infinity is introduced

as the p-value. Different significance levels can be set as the criteria to reject the null hypotheses,

i.e., 0.01, 0.05, or 0.1. For any system component, a p-value less than the significance level rejects

the corresponding null hypothesis, and demonstrates the sensitivity of the given component.

In the case that there is just one observation/response for each level-factor combinations (gen-

erally for the models and simulations where their response is deterministic such as our thermo-

mechanical model), the variance of the random error (σ2) can not be determined by the expected

mean squares of the random error in Equation A.13 since L equals 1. Under this condition, no

clear differentiation can be established between the effect of the interaction and the random error

in Equation A.12. Therefore, the interaction effect in Equation A.1 must be considered zero in

order to be able to estimate σ2 using Equation A.12; otherwise, the effect of each individual factor

can not be estimated through Equations A.10 and A.11. ANOVA table for this case can be observed

in Table A.1 [225].

Table A.1: Two-way ANOVA table for the case of one observation/response per level-factor com-
bination [225].

Source of Sum of Degrees of Mean Expected Mean F-

Variation Squares Freedoms Square Square Ratio

A J

I∑
i=1

(ȳi. − ȳ..)2 I − 1 MSA σ2 +
J
∑
τ2i

I−1
MSA

MSE

B I

J∑
j=1

(ȳ.j − ȳ..)2 J − 1 MSB σ2 +
I
∑
β2
j

J−1
MSB

MSE

Residual or AB Subtraction (I − 1)(J − 1) MSE σ2 +
∑∑

(τβ)2ij
(I−1)(J−1)

Total
I∑
i=1

J∑
j=1

(yij − ȳ..)2 IJ − 1
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APPENDIX B

SUPPLEMENTARY MATERIAL (CHAPTER 5)

For each individual model and weighted average model, cross-sectional probability distribu-

tions obtained through kernel density estimation are demonstrated in the above figure for all the

transformation line uncertainty bands (the blue shaded regions with composition independent dis-

tributions) and at some random compositions for the liquidus uncertainty band (across the green

shaded region) that have been labeled from 1 to 13 in Figure 5.7.

For better clarity, theses probability distributions are also shown individually as follows.
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