
COMPUTATIONAL OPTIMIZATION TECHNIQUES FOR GRAPH PARTITIONING

A Dissertation

by

SCOTT PARKER KOLODZIEJ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Timothy A. Davis
Committee Members, Dezhen Song

Shaoming (Jeff) Huang
Erick Moreno-Centeno
William W. Hager

Head of Department, Dilma Da Silva

August 2019

Major Subject: Computer Science

Copyright 2019 Scott Parker Kolodziej

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/237704528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Partitioning graphs into two or more subgraphs is a fundamental operation in computer sci-

ence, with applications in large-scale graph analytics, distributed and parallel data processing, and

fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected

subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and

efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must

balance the need to produce high quality partitions with that of providing practical performance.

Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments

in continuous optimization formulations have led to the development of hybrid methods that com-

bine the best of both approaches.

This work describes numerical optimization formulations for two classes of graph partitioning

problems, edge cuts and vertex separators. Optimization-based formulations for each of these

problems are described, and hybrid algorithms combining these optimization-based approaches

with traditional combinatoric methods are presented. Efficient implementations and computational

results for these algorithms are presented in a C++ graph partitioning library competitive with

the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is

proposed.

ii

DEDICATION

To Claire

iii

ACKNOWLEDGMENTS

I sincerely and especially wish to thank my wife, Elizabeth, and our daughter, Claire, for their

support, patience, and sacrifice.

I also thank my parents, Saundra and Edwin Kolodziej, for their lifelong support and encour-

agement.

I would like to thank my doctoral research advisor, Dr. Tim Davis, for all of his help and

support. Without his guidance, this research would never have happened.

I would also like to thank my doctoral research committee: Dr. Dezhen Song, Dr. Jeff Huang,

Dr. Erick Moreno-Centeno, and Dr. Bill Hager. I have appreciated their feedback and suggestions.

I am also grateful to Dr. Dilma Da Silva for her career mentoring and support.

Through coursework and other interactions, I also owe a great deal of thanks to a number of

other faculty in the department: Dr. Ricardo Bettati, Dr. Thomas Ioerger, Dr. Andrew Jiang, Dr.

John Keyser, Dr. J. Michael Moore, Dr. Daniel Ragsdale, Dr. Scott Schaefer, Dr. Dylan Shell, Dr.

Aakash Tyagi, Dr. Hank Walker, and Dr. Tiffani Williams.

And to all of the many friends I made along the way, a few of whom I list here: Mohsen

Aznaveh, Hsin-min "Jasmine" Cheng, Chieh "Jay" Chou, Jory Denny, Raniero Lara-Garduno,

Cassandra Oduola, Seth Polsley, Read Sandström, Traci Sarmiento, Wissam Sid-Lakhdar, Timmie

Smith, Nathan Thomas, Pulakesh Upadhyaya, Diane Uwacu, and Stephanie Valentine.

I am also grateful for the assistance and support of the following department and university

staff: Taffie Behringer, Karrie Bourquin, Dave Cote, Sheila Dotson, Brad Goodman, Sarah Mor-

gan, David Ramirez, Elena Rodriguez, Kelly Ford Sandström, Krista Simmons, Valerie Sorenson,

Bruce Veals, Carly Veytia, and, of course, Kathy Waskom.

And thank you to Reva Power, my high school computer science teacher. Her introduction to

computer science has carried me further than I could have imagined as a high school freshman.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Timothy A.

Davis, Dezhen Song, and Jeff Huang of the Department of Computer Science and Engineering

at Texas A&M University, Professor Erick Centeno-Moreno of the Department of Industrial and

Systems Engineering at Texas A&M University, and Professor William Hager of the Department

of Mathematics at the University of Florida.

Chapter 2 is largely based on a jointly-authored paper by Dr. Timothy A. Davis, Dr. William

W. Hager, Dr. Nuri S. Yeralan, and me [1]. The initial algorithm development was done by Dr.

Yeralan, and completing the software and preparing it for publication and release was my starting

point in my doctoral studies.

All other work conducted for this dissertation was completed independently.

Funding Sources

Graduate study was supported by the following funding sources:

• Research startup funding for Dr. Timothy Davis through the Department of Computer Sci-

ence and Engineering at Texas A&M University.

• A Graduate Teaching Fellowship from the College of Engineering.

• National Science Foundation grants 1115297 and 1514406.

• Corporate gift funding from Intel Corporation and Nvidia Corporation.

v

NOMENCLATURE

AMD Approximate Minimum Degree

CPU Central Processing Unit

FM Fiduccia-Mattheyses (Algorithm)

Gx Gain metric for moving to part X

Gy Gain metric for moving to part Y

γ Penalty parameter

GPU Graphics Processing Unit

∇f The gradient of the function f

∇xf The gradient of the function f with respect to the variable x

∇f̃ An approximation of the gradient of the function f

I Identity matrix

KKT Karush-Kuhn-Tucker (Conditions)

K-L Kernighan-Lin (Algorithm)

LP Linear Program (or Programming)

MCA Mountain Climbing Algorithm

MILP Mixed-Integer Linear Program (or Programming)

ψ Imbalance metric

QCQP Quadratically-Constrained Quadratic Program (or Programming)

QP Quadratic Program (or Programming)

RCM Reverse Cuthill-McKee (Ordering)

VLSI Very Large Scale Integration

vi

wi Vertex weight for vertex i

wi,j Edge weight for the edge (i, j)

wmax Maximum vertex weight

wmin Minimum vertex weight

xi Affinity of vertex i for part X

yI Affinity of vertex i for part Y

0m,n An all-zero matrix with m rows and n columns

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION TO GRAPH PARTITIONING . 1

1.1 Graph Partitioning. 1
1.2 Preliminaries . 1

1.2.1 Graphs. 1
1.2.2 Hypergraphs . 2
1.2.3 Graph Representations . 2

1.2.3.1 Adjacency Matrix . 3
1.2.3.2 Compressed Sparse Column Format . 3

1.3 Graph Partitioning Problems . 4
1.3.1 Edge Cuts . 4
1.3.2 Vertex Separators . 6
1.3.3 Complexity . 6

1.4 Applications . 6
1.4.1 Graph Analytics and Data Partitioning . 6
1.4.2 Sparse Matrix Orderings and Nested Dissection . 7
1.4.3 Parallel and Distributed Computation Load Balancing . 7

1.5 Established Methods for Graph Partitioning . 9
1.5.1 Combinatoric Local Search . 9
1.5.2 Graph Coarsening and Refinement . 10
1.5.3 Spectral and Eigenvector Partitioning . 11
1.5.4 Normalized Cut and Image Segmentation. 11
1.5.5 Network Flow Algorithms . 11
1.5.6 Existing Software Libraries . 12

viii

1.6 New Approaches Using Optimization Formulations . 13
1.7 Overview of Optimization Techniques . 13

1.7.1 Linear Programming . 13
1.7.2 Quadratic Programming . 14
1.7.3 Mixed-Integer Linear Programming . 14

2. COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING EDGE
CUTS . 16

2.1 Introduction. 16
2.1.1 Problem Definition . 16
2.1.2 Applications . 16

2.2 Related Work . 17
2.2.1 Combinatoric Methods . 17
2.2.2 Coarsening, Matchings, and Multilevel Frameworks . 17
2.2.3 Recent Optimization Approaches. 18
2.2.4 Graph Partitioning Libraries . 19

2.3 Multi-Level Graph Partitioning. 19
2.3.1 Graph Coarsening . 19
2.3.2 Initial Guess Partitioning . 20
2.3.3 Uncoarsening . 20

2.4 Coarsening and Matching Strategies . 20
2.4.1 Brotherly Matching. 21
2.4.2 Adoption Matching . 21
2.4.3 Community Matching . 22

2.5 Quadratic Programming Refinement . 22
2.6 Algorithm Description . 23

2.6.1 Input and Pre-Processing . 23
2.6.2 Coarsening . 24
2.6.3 Initial Partitioning . 24
2.6.4 Uncoarsening and Refinement . 24

2.6.4.1 Quadratic Programming-Based Refinement . 24
2.6.4.2 Fiduccia-Mattheyses Algorithm Refinement . 25

2.7 Results . 26
2.7.1 Overall Performance . 26
2.7.2 Performance on Large Graphs . 29
2.7.3 Hybrid Performance . 29
2.7.4 Power Law and Social Networking Graphs . 31
2.7.5 Sensitivity Analysis of Options . 33

2.7.5.1 Matching Strategy . 34
2.7.5.2 Initial Cut Strategy . 34
2.7.5.3 Coarsening Limit . 36
2.7.5.4 Community Matching . 36

2.8 Summary . 36

ix

3. COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING VERTEX
SEPARATORS . 37

3.1 Introduction. 37
3.2 Overview of the Vertex Separator Problem . 37

3.2.1 Complexity . 38
3.3 Traditional Approaches . 38
3.4 Optimization Formulations and Approaches. 39

3.4.1 Mixed-Integer Linear Programming Approaches . 39
3.4.1.1 Solution Methods. 40

3.4.2 Quadratic Programming Approaches . 41
3.4.2.1 Solution Methods. 42

3.5 Generalized Gains . 43
3.5.1 Fiduccia-Mattheyses Gains as a Special Case . 46
3.5.2 Determining Separation and Exclusivity Violations . 47
3.5.3 Computing the Quadratic Programming Objective Function. 48
3.5.4 Update Formulas for Generalized Gains . 49

3.6 Algorithmic Description . 51
3.6.1 Heuristic Cost Metric. 51
3.6.2 Pre-Processing and Coarsening . 52
3.6.3 Initial Separator Selection. 54
3.6.4 Uncoarsening and Refinement Loop . 54
3.6.5 Greedy Knapsack Algorithm. 54
3.6.6 Quadratic Programming with Gamma Reduction. 55

3.6.6.1 Gamma Reduction. 56
3.6.7 Continuous Fiduccia-Mattheyses Algorithm . 57
3.6.8 Rectification . 58
3.6.9 Discrete Fiduccia-Mattheyses Algorithm . 60
3.6.10 Weight Perturbation . 60

3.7 Implementation . 63
3.8 Computational Results . 63
3.9 Summary . 73

4. CONCLUSIONS AND FUTURE WORK . 74

4.1 Parallelization . 74
4.2 Further Algorithmic Optimizations . 75
4.3 Extensions to k-way Partitioning . 75
4.4 Hypergraph Partitioning . 76

REFERENCES . 79

x

LIST OF FIGURES

FIGURE Page

1.1 A graph, its adjacency matrix, and its compressed sparse column representation 3

1.2 Edge cut . 4

1.3 Vertex separator . 5

1.4 Graph partitioning in graph analytics applications . 7

1.5 Effect of fill-reducing orderings on matrix Pothen/mesh1em1 . 8

1.6 Graph coarsening and refinement . 10

2.1 Brotherly and adoption matching. 21

2.2 Community matching . 22

2.3 Overall timing and overall cut quality performance of Mongoose relative to
METIS 5 . 27

2.4 Timing and cut quality performance profiles of Mongoose on large graphs relative
to METIS 5 . 28

2.5 Relative timing and relative cut size performance profiles on the 2,685 graphs
formed from the SuiteSparse Matrix Collection . 30

2.6 Relative timing and relative cut size performance profiles on the largest 601 graphs
in the SuiteSparse Matrix Collection . 30

2.7 Performance of Mongoose on social networking graphs relative to METIS 5 32

2.8 Relative timing and cut quality performance profiles of each set of options 35

3.1 Difficulties in transitioning between valid vertex separator states . 38

3.2 Mapping of graph connectivity to optimization formulation values . 42

3.3 Plot of imbalance penalty as a function of imbalance . 53

3.4 Deriving an initial vertex separator from an edge cut . 53

3.5 Rectification of an invalid vertex separator using generalized gains 59

xi

3.6 Imbalance comparison between Mongoose and METIS with different imbalance
tolerances on all 2,778 graphs from the SuiteSparse Collection . 66

3.7 Wall time and separator size comparison between Mongoose and METIS with 20%
imbalance tolerance on large graphs from the SuiteSparse Collection, including
results with imbalance constraint violations . 69

3.8 Wall time and separator size comparison between Mongoose and METIS with
1.5% imbalance tolerance on large graphs from the SuiteSparse Collection, in-
cluding results with imbalance constraint violations . 70

3.9 Wall time and separator size comparison between Mongoose and METIS with 20%
imbalance tolerance on the large graphs from the SuiteSparse Collection with re-
sults that violate the imbalance constraint treated as failures . 70

3.10 Wall time and separator size comparison between Mongoose and METIS with
1.5% imbalance tolerance on the large graphs from the SuiteSparse Collection with
results that violate the imbalance constraint treated as failures . 71

xii

LIST OF TABLES

TABLE Page

2.1 Performance comparison between Mongoose and METIS on all 2,685 graphs from
the SuiteSparse Collection . 27

2.2 Performance comparison between Mongoose and METIS on the 601 largest graphs
in the SuiteSparse Collection . 29

2.3 Performance comparison between Mongoose and METIS on 41 social networking
graphs in the SuiteSparse Collection . 32

2.4 Performance comparison between Mongoose and METIS on the 15 largest social
networking graphs in the SuiteSparse Collection. 32

3.1 Performance comparison between Mongoose and METIS on all 2,778 graphs from
the SuiteSparse Collection with imbalance tolerance of 20%. 65

3.2 Performance comparison between Mongoose and METIS on all 2,778 graphs from
the SuiteSparse Collection with imbalance tolerance of 1.5% . 66

3.3 Performance comparison between Mongoose and METIS on all 2,778 graphs from
the SuiteSparse Collection with imbalance tolerance of 20%, treating imbalance
violations as failures . 67

3.4 Performance comparison between Mongoose and METIS on all 2,778 graphs from
the SuiteSparse Collection with imbalance tolerance of 1.5%, treating imbalance
violations as failures . 68

3.5 Performance comparison between Mongoose and METIS on 42 large graphs from
the SuiteSparse Collection with imbalance tolerance of 20%. 69

3.6 Performance comparison between Mongoose and METIS on 42 large graphs from
the SuiteSparse Collection with imbalance tolerance of 1.5% . 71

3.7 Performance comparison between Mongoose and METIS on the 15 largest graphs
in the SuiteSparse Collection . 72

xiii

1. INTRODUCTION TO GRAPH PARTITIONING

1.1 Graph Partitioning

Graph partitioning is the subfield of computer science and mathematics concerned with parti-

tioning graphs into two or more partitions, or subgraphs. The starting graph can be either a regular

graph with vertices and edges (with each edge connecting exactly two vertices) or a hypergraph

(where each hyperedge can connect two or more vertices).

Graph partitioning problems take many forms. The most common is the balanced edge cut,

where a minimal number of edges are cut to partition the graph into two subgraphs with roughly

the same number of vertices.

1.2 Preliminaries

We begin with an overview of various types of graphs and graph partitioning problems. Much

of this section and associated definitions are adapted from Bichot and Siarry’s Graph Partitioning

[2].

1.2.1 Graphs

Within discrete mathematics, a graph is a discrete structure made up of a set of unique vertices

(also referred to as nodes) and edges which each connect exactly two vertices, representing some

kind of relationship between those two vertices. Examples include road networks (with cities or

addresses as vertices and roads as edges), distributed systems (with compute nodes as vertices

and network connections as edges), and social networks (with individuals as vertices and social

connections as edges).

Here we define several different types of graphs:[2]

Definition 1.2.1. (Graph) – Given a set of vertices V and a set of edgesE ⊆ {e = (u, v) ∈ V ×V },

the pair G = (V,E) defines a graph.

Definition 1.2.2. (Undirected Graph) – A graph whose edges are non-directional, i.e. the edge

e = (u, v) ∈ E implies the existence of e = (v, u) ∈ E.

1

Definition 1.2.3. (Directed Graph) – A graph whose edges are directional, i.e. the edge (u, v) ∈ E

is unique from the edge (v, u) ∈ E. Such directed edges are often referred to as arcs.

Generally, loop- or self-edges (i.e. edges that originate and terminate at the same vertex,

(u, u) ∈ E) are ignored in the context of graph partitioning. For the bulk of this work, a graph is

assumed to have no self-edges and at most one undirected edge connecting each pair of vertices.

This is known as a simple graph:

Definition 1.2.4. (Simple Graph) – An undirected graph with no self-edges and at most one edge

connecting each pair of vertices.

Additionally, graphs can have numeric weights associated with their vertices and edges. These

can be used to represent properties about the vertices and edges, such as distances in a road net-

work. A graph with such weights is said to be a weighted graph. In this work, graphs are assumed

to be simple graphs with weighted edges and vertices, making them simple weighted graphs.

To further define the connectivity of vertices via edges, we introduce the concept of adjacency

and that of the neighborhood of a vertex:

Definition 1.2.5. (Adjacency) – Vertices connected by an edge are said to be adjacent. In (u, v) ∈

E, vertices u and v are adjacent to one another.

Definition 1.2.6. (Neighborhood) – The set of all vertices adjacent to a vertex vi defines the neigh-

borhood N(i).

1.2.2 Hypergraphs

A related generalization of a graph where edges can connect more than two vertices is known

as a hypergraph, with such edges being called hyperedges or nets.

Definition 1.2.7. (Hypergraph) – A set of vertices V and a set of hyperedges E ⊆ {e|e ∈ V |V |}.

1.2.3 Graph Representations

Graphs are abstract data structures and can be represented in many different forms. We discuss

here the two most relevant to graph partitioning: the adjacency matrix and compressed sparse

column formats (see Figure 1.1).

2

1

2

3

4

7

11

13

19

5



1 2 3 4 5

1 0 7 11 0 0
2 7 0 19 13 0
3 11 19 0 0 0
4 0 13 0 0 0
5 0 0 0 0 0


p 0 2 5 7 8 8

i 2 3 1 3 4 1 2 2

x 7 11 7 19 13 11 19 13

Figure 1.1: A graph, its adjacency matrix, and its compressed sparse column representation. Note
that because this graph is so small, the compressed sparse column representation provides only a
modest space savings (22 compared with 25 elements).

1.2.3.1 Adjacency Matrix

The adjacency matrix of a graph is a square matrix that represents each vertex as a row and

column of the matrix, and each edge as an entry in the matrix. For a graph with n = |V | vertices

and nz = |E| edges, its adjacency matrix is n×nwith nz non-zero entries. An edge with weight w

connecting vertices u and v is represented asAu,v = w. Note that undirected graphs are represented

as a symmetric matrix (Au,v = Av,u), while directed graphs are generally unsymmetric (Au,v need

not equal Av,u).

1.2.3.2 Compressed Sparse Column Format

For matrices with very few non-zero entries, an adjacency matrix is frequently an inefficient

representation. In practice, most graphs have far more vertices than the average degree of a vertex,

lead to very sparse adjacency matrices. Thus, sparse matrices (and by extension most graphs)

require a compressed storage format. Here we discuss one such format: compressed sparse column

(CSC) form.

In compressed sparse column form, three vectors are maintained: p ∈ N(n+1) for column

pointers, i ∈ Nnz for row indices, and x ∈ Rnz for matrix entry values. A separate vertex weight

array w ∈ R+n is used if vertices have weights associated with them [3].

In short, the space required for storing a symmetric matrix in CSC form isO(n+2nz) compared

with O(n2) for an uncompressed adjacency matrix. For matrices where nz � n2, such as in the

case of sparse matrices, this format generally provides significant storage savings. Because of this,

3

Part X

Part Y

Shore Vertices

Cut Edges

Figure 1.2: Edge cut

all graphs presented in this work are stored in CSC form and operated on in that format.

Several drawbacks exist for storing a graph in such a format. First, like most compressed for-

mats, it is difficult to modify once created. Row-wise traversals are also significantly less efficient

than column-wise traversals. Thus, graphs stored in this format are often treated as immutable and

only operated on in a column-wise fashion.

1.3 Graph Partitioning Problems

There are many different ways graphs can be partitioned. This work focuses on two classes of

partitioning problems in particular: edge cuts and vertex separators. In this section, we introduce

these problems and discuss their challenges, applications, and prior work.

1.3.1 Edge Cuts

Given an undirected graph G = (V,E) with vertices V and edges E, a graph can be said to

have an edge cut (or edge separator) if the vertices are separated into two groups VX and VY such

that V = VX ∪ VY and where VX and VY are disjoint (VX ∩ VY = ∅). The naming of these

4

Part X

Part Y

Separator

Shore Vertices

Figure 1.3: Vertex separator

groups is arbitrary, although in some formulations the groups are labeled in order of decreasing

size (e.g. |VX | > |VY |). These two groups (and in k-way partitioning, k groups) are also referred

to as parts. The set of vertices VX are said to belong to the X part in the partition, and likewise

for VY belonging to the Y part. The edges that lie on the cut, Ecut = {(u, v)|u ∈ VX , v ∈ VY },

exclusively connect the two groups of vertices – that is, if the cut edges were removed, VX and VY

would form two disjunct subgraphs.

The vertices located on either side of the cut, Eshores = {u ∈ VX |∃(u, v), v ∈ VY }, are said to

be located on the shores of the cut or partition. Alternatively, vertices located on a shore have at

least one edge on the cut.

A balanced edge cut is one where the sizes of the groups of vertices are approximately the

same size, |VX | ≈ |VY |. This is usually implemented as a hard limit (max{|VX |, |VY |} ≤ 2 ∗

min{|VX |, |VY |}) or with some form of penalty function to allow for smaller cuts with some small

amount of imbalance.

5

1.3.2 Vertex Separators

A different kind of partitioning can be created called a vertex separator, or vertex cut, where

three groups of vertices are found: VX and VY as in edge cuts, but also VS , for vertices in the

separator. The separator group represent vertices that must be visited in any traversal from part

VX to part VY . If the vertices in the separator v ∈ VS were removed, VX and VY would from two

disjunct subgraphs.

Vertex separator problems are generally not concerned with how many edges are cut, but rather

attempt to minimize the number of vertices in the separator. Consequently, edge weights are often

irrelevant in vertex separator problems.

1.3.3 Complexity

Both the vertex separator and edge cut problems are NP-hard [4]. While algorithms exist

that can guarantee globally optimal cuts or separators, they take exponential time in the worst

case. Practical existing methods rely almost exclusively on heuristics to compute minimal cuts and

separators.

1.4 Applications

The applications of graph partitioning are as varied as the problem itself. However, listed below

are three of the most common applications.

1.4.1 Graph Analytics and Data Partitioning

Analytics and data analysis over increasingly large data sets has driven the development of ever

more efficient algorithms to aid in such analysis. However, as data sets continue to grow, outpacing

such algorithmic gains, the need for subdividing and partitioning these data sets for analysis has

arisen. While many facets of Big Data are unstructured, others such as social networks, genome

graphs, brain networks, road networks, and internet graphs are all naturally structured as graphs

[5, 6].

The development of GraphBLAS has also enabled the use of high-performance linear algebra

in the domain of graph analytics [7, 8]. In this context, graph partitioning serves as a pre-processing

step for enabling parallel sparse linear algebra such as sparse matrix-vector multiplication [9].

6

Compute First

Decoupled Parts

(a)

Minimize Communication

Between Parts

(b)

Figure 1.4: Graph partitioning in graph analytics applications.

Examples of how vertex separators (a) and edge cuts (b) are used in graph analytics and data partitioning
applications. Vertex separators are used to decouple two large bodies of data, while edge cuts are used for
communication minimization tasks.

More generally, vertex separators provide a boundary layer between two decoupled bodies of

data in graph analytics tasks where each vertex represents a task that can be computed in any order.

In this case, the separator vertices can be computed first, allowing a complete decoupling of the X

and Y parts. Edge cuts are used for graph analytics problems that require partitioning to minimize

communication between two coupled bodies of data, such as in the case of streaming graphs that

update in real-time (see Figure 1.4).

1.4.2 Sparse Matrix Orderings and Nested Dissection

In the solution of sparse symmetric linear systems, the matrix can be reordered to minimize fill-

in during a subsequent Cholesky factorization. One technique for computing such a fill-reducing

ordering is called nested dissection, where a graph representing the matrix is recursively subdivided

[10]. Figure 1.5 shows the impact that a fill-reducing ordering can have on a Cholesky factoriza-

tion. For very large linear systems, an effective fill-reducing ordering can have a significant impact

on the solution tractability.

1.4.3 Parallel and Distributed Computation Load Balancing

Both the edge cut and vertex separator problems can be used to assign work to different cores or

cluster nodes in a parallel computation framework. By minimizing the edges cut or separator size,

7

Original Matrix
Permuted with Reverse

Cuthill-McKee
Permuted with METIS

Matrix to
Factorize

nz = 306 nz = 306 nz = 306

Cholesky
Factor

nz = 559 nz = 471 nz = 361

Figure 1.5: Effect of fill-reducing orderings on matrix Pothen/mesh1em1 [11]

The top row (in order) shows the original matrix, the matrix permuted using the reverse Cuthill-McKee
ordering, and the same matrix permuted using an ordering derived from a graph partitioning library, METIS
[12]. The second row shows each matrix after being factorized using Cholesky factorization. Note that the
permuted matrices result in significantly less fill-in (35% less using reverse Cuthill-McKee and 78% less
using METIS).

8

communication between each node can be minimized, and by balancing the sizes of the parts, each

compute node can be assigned a roughly equally-sized amount of work. This application requires

a specific type of load balancing, as a single node with less work than average is acceptable, but

a single node with far more work than average results in a significant underutilization of all other

nodes [13, 14].

1.5 Established Methods for Graph Partitioning

1.5.1 Combinatoric Local Search

Some of the first graph partitioning methods involved moving individual vertices to one side

of the cut or the other. One such algorithm, proposed by Brian Kernighan and Shen Lin for VLSI

circuit layout, computes the net benefit of moving a vertex across the cut. The algorithm then

moves vertices accordingly, in such a way as to minimize the number of edges cut [15]. This

algorithm runs in O(n2 log n) time, where n is proportional to the size of the vertex set, |V |.

A refinement of the Kernighan-Lin algorithm, proposed by Charles M. Fiduccia and Robert

M. Mattheyses, runs in linear time with respect to the number of vertices, or O(|V |) time [16].

However, at its core, it is a very similar algorithm to Kernighan-Lin, utilizing computed gain

values to determine which vertex to move to the other side of the cut. These algorithms could be

characterized as greedy, shrinking the edge cut until a locally optimal solution is found. To find a

better solution, a vertex move that increases the size of the cut may be required before being able

to transition to a solution with a smaller cut. Although modern implementations address this by

adding random perturbations to better explore the search space of partitions, this is a key weakness

of this class of algorithm.

While both the Kernighan-Lin and Fiduccia-Mattheyses algorithms were developed for use

in finding small, balanced edge cuts, they have been adapted for use in finding balanced vertex

separators [17], [18]. The general idea is the same, computing gain values for vertices both in the

separator and on the shores on each side of the separator and then moving vertices into and out of

the separator accordingly.

9

Coarsening

Initial Partition

Refinement

Figure 1.6: Graph coarsening and refinement

Multilevel algorithms first coarsen input graphs until they are of a reasonable size. An initial partition is
computed, and that partition is then repeatedly projected back onto the larger graphs, often with minor
readjustments.

1.5.2 Graph Coarsening and Refinement

Despite the effectiveness of combinatoric local search on finding high quality edge cuts and

vertex separators, this approach becomes less effective for very large graphs. To address this,

multilevel approaches were developed to reduce the graph to a manageable size [19, 20, 12]. Given

a large graph, vertices are matched with other vertices using a variety of matching strategies, and

then coarsened into super-vertices. This process is repeated until the graph is of a more tractable

size, and an initial solution is computed on the coarsened graph. Then, the process is reversed, with

the initial solution projected onto the less-coarsened (refined) graph, with periodic optimizations to

increase the quality of the projected solution. Eventually, the solution is projected onto the original

graph, generally yielding a high quality solution to the original problem (see Figure 1.6).

10

This entire process has a moderate computational complexity and is generally non-trivial to

implement, but it is almost universally more efficient than attempting to solve the partitioning

problem on the original, very large graph.

1.5.3 Spectral and Eigenvector Partitioning

Spectral methods have also been proposed for computing edge cuts and vertex separators [21].

The second smallest eigenvalue of the Laplacian of a graph can be used to provide a balanced

partitioning, in addition to providing bounds on the size of the optimal separator. This approach

has been shown to be related to the quadratic programming formulation proposed by Hager and

Krylyuk [22].

1.5.4 Normalized Cut and Image Segmentation

One application area that has spawned a number of heuristics for graph partitioning is image

segmentation. The well-known normalized cut was first proposed with this application in mind

[23]. The normalized cut takes into account the degree of connectivity (or associativity) of vertices

when determining the optimal cut. This helps to avoid edge cuts that are highly unbalanced. Graph

clustering methods (generally with more than two parts) can be used to segment an image into

relevant groups of pixels by brightness, color, or some other metric.

The definition of the normalized cut metric is shown below:

Ncut(X, Y) =
cut(X, Y)

assoc(X, V)
+

cut(X, Y)

assoc(Y, V)

where cut(X, Y) =
∑

u∈X,v∈Y w(u, v) and assoc(X, V) =
∑

u∈X,t∈V w(u, t). Note that the nor-

malized cut is a measure of cut quality, not an algorithm unto itself, but it can be paired with

existing methods such as eigenvector decomposition to yield high quality cuts.

1.5.5 Network Flow Algorithms

Another established method for finding partitions of graphs is to use a max-flow min-cut algo-

rithm [24]. While such algorithms allow for weighted edges, they have one principle disadvantage:

they do not account for balanced partitions. For this reason, they are largely not relevant to this re-

search, as the targeted application areas require some degree of balance in the computed partitions.

11

1.5.6 Existing Software Libraries

A number of existing graph partitioning libraries exist which employ numerous algorithms,

heuristics, and other strategies. A subset is listed below with their relevant features:

1. METIS utilizes graph coarsening and refinement for scalability, and Fiduccia-Mattheyses-

style combinatoric search techniques [12]. It also comes in several versions, including

ParMETIS (for parallelized graph partitioning) [25, 26], hMETIS (for hypergraph partition-

ing) [27], and MT-METIS (for use with OpenMP) [28].

2. Chaco, like METIS, uses graph coarsening and refinement with FM-style combinatoric

search. Chaco also utilizes spectral partitioning methods [20].

3. SCOTCH is a very diverse library, providing sequential and multi-threaded implementa-

tions of sparse matrix ordering and graph partitioning methods [29]. There is also a parallel

distributed version using the MPI interface, PT-SCOTCH [30].

4. Mondriaan is a sequential graph and matrix partitioning library for use in sparse matrix-

vector multiplication [9]. It uses a multilevel coarsening and refinement framework and can

also be used to partition rectangular matrices.

5. Zoltan is a dynamic load-balancing library for parallel scientific computations. In addition to

providing a number of simple partitioning methods for graphs and hypergraphs, it interfaces

with other graph partitioning libraries to provide a large variety of available algorithms and

heuristics [31].

6. PaToH is a hypergraph partitioning library that can provide k-way hyperedge partitions [32,

33]. Similar to METIS, it utilizes combinatoric local search heuristics within a coarsening

and refinement framework to compute its partitioning.

Despite the great variety of graph partitioning libraries in existence, none explicitly utilize

continuous optimization formulations nor fully exploit other traditional optimization algorithms.

12

1.6 New Approaches Using Optimization Formulations

Despite there being a large body of existing techniques for graph partitioning, a promising new

research direction involves formulating graph partitioning problems as optimization problems. As

many of these graph partitioning problems can be formulated as discrete or continuous optimiza-

tion problems, existing algorithms can be applied, such as gradient projection or branch-and-bound

search. However, this naive approach is generally not very efficient, and general purpose solvers

either converge to poor solutions or take intractable lengths of time. New algorithms for solving

these special classes of optimization problems are ongoing, with the principle advantage of being

able to better explore a highly nonconvex search space. For example, continuous optimization

methods do not require vertices to be in any single part at intermediate search steps, allowing ver-

tices to be partially in and partially out of a given part. This can result in a more direct path to a

better local solution.

1.7 Overview of Optimization Techniques

Because this work relies heavily on optimization techniques, we provide a short introduction

of these techniques here.

1.7.1 Linear Programming

maximize f(x) = cTx

subject to g(x) = Ax ≤ b

x ≥ 0

(LP)

Linear programming describes a class of optimization problems with a linear objective function

and linear constraints. One general form for linear programming problems, or LPs, is shown in

(LP). Note that the equality constraint can represent inequalities with the introduction of slack vari-

ables, and one can convert (LP) into a minimization problem by instead maximizing−f(x). Exam-

ple applications of linear programming include network flow problems (such as max-flow/min-cut)

and crew scheduling problems [34].

Linear programs can be solved in polynomial time using either the simplex algorithm or an

13

interior point method [35, 36].

1.7.2 Quadratic Programming

minimize f(x) =
1

2
xTGx + cTx

subject to g(x) = ATx ≤ b

x ∈ Rn

(QP)

Quadratic programming can be viewed as an extension of linear programming to a quadratic

objective function, or a special case of nonlinear programming with linear constraints. Quadratic

programming problems, or QPs, can often be solved by extensions to methods used to solve LPs,

as well as by methods used to solve more complex nonlinear programming problems (NLPs).

The concept of convexity determines how difficult a given quadratic program is to solve. If the

matrix G is positive semidefinite, the quadratic program is said to be convex, generally implying

that a locally optimal solution is also globally optimal. If G is not positive semidefinite, the

quadratic program is said to be nonconvex, implying the possibility of multiple local optima [36].

Methods exist for solving convex QPs efficiently and in polynomial time, but nonconvex QPs

are NP-hard and generally require some form of spatial subdivision framework to guarantee global

optimality. Because of this, a common approach is to apply a gradient- or Hessian-based method

normally used on convex QPs on a nonconvex QP to converge to a local optimum. For example,

if gradient descent is applied to a nonconvex QP and converges to a point satisfying first- and

second-order optimality conditions, this solution is said to be locally optimal. Locating locally

optimal solutions to a nonconvex QP can generally be done quickly, but no guarantees regarding

the quality of such a solution (e.g. an optimality gap, or difference in objective function from the

current solution and the global optimum) are provided.

1.7.3 Mixed-Integer Linear Programming

Graph partitioning involves making discrete decisions (e.g. a vertex being in a part or not), and

is perhaps more naturally expressed as a discrete optimization problem. As such, we introduce

mixed-integer linear programming, an extension of linear programming to include integer and/or

14

binary variables.

Integer linear programming is a subset of mixed-integer linear programming where no contin-

uous variables are used. Both ILP and MILP are NP-hard.

maximize f(x) = cT(x + y)

subject to g(x) = Ax ≤ b

x ≥ 0

y ∈ Z

(MILP)

MILPs are generally solved using a branch-and-bound tree, which involves progressively fixing

and relaxing the integer variables to obtain bounds regarding the optimal solution. While branch-

and-bound tree-based approaches suffer from poor worst-case asymptotic performance, they are

also capable of superlinear speedup when parallelized [37, 38].

15

2. COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING EDGE CUTS∗

2.1 Introduction

In this chapter, we present a multilevel graph partitioning library and algorithm incorporating

novel coarsening and optimization approaches for computing edge cuts. We outline the algorithm

used and its associated novel elements, its implementation details, and compare its performance

using several graph partitioning metrics. We also apply this library to partition a large collection

of graphs and compare our results to METIS, another graph partitioning library [12].

A brief discussion of multilevel graph partitioning appears in Section 2.3. Related and prior

work in graph partitioning is discussed in Sections 2.2. The main components of the proposed

algorithm and their relationship with one another are given in Sections 2.4, 2.5, and 2.6; compu-

tational results and comparisons are provided in Section 2.7. We conclude with a summary of this

work and highlight future research directions in Section 2.8.

2.1.1 Problem Definition

Computing an edge cut is an NP-complete problem defined as taking an undirected input graph,

G = (V,E), and removing (i.e. cutting) edges until the graph breaks into two disjoint subgraphs.

The set of edges deleted in this manner is known as the cut set, with the vertices on either side of

these edges referred to as the shores of the cut. When partitioning a graph, we seek to minimize

the number (or, more generally, the total weight) of edges in the cut set while maintaining balance

between the size or weight of the vertices in each component.

2.1.2 Applications

Graph partitioning arises in a variety of contexts including VLSI circuit design, dynamic

scheduling algorithms, computational fluid dynamics (CFD), and fill-reducing orderings for sparse

direct methods for solving linear systems [39].

In VLSI circuit design, integrated circuit components must be arranged to allow uniform power

∗The work described in this chapter is adapted from “Mongoose, A Graph Coarsening and Partitioning Library”
by Timothy Davis, William Ward Hager, Scott Parker Kolodziej, and Nuri Sencer Yeralan, 2019, ACM Transactions
on Mathematical Software, Copyright 2019 ACM [1]. Copyright of the work is retained by the authors.

16

demands across each silicon layer while simultaneously reducing the manufacturing costs by min-

imizing the required number of layers. Graph partitioning is used to determine when conductive

material needs to be cut through to the next layer.

In the dynamic scheduling domain, task-based parallelism models dependencies using directed

acyclic graphs. Graph partitioning is used to extract the maximum amount of parallelism for a set of

vertices while maintaining uniform workload, maximizing high system utilization, and promoting

high throughput.

Sparse matrix algorithms utilize graph partitioning when computing parallel sparse matrix-

vector multiplication, as well as when computing fill-reducing orderings for sparse matrix factor-

izations.

2.2 Related Work

2.2.1 Combinatoric Methods

Kernighan and Lin at Bell Labs developed the first graph partitioning package for use at Bell

Systems [40]. Their algorithm considers all pairs of vertices and swaps vertices from one part to

the other when a net gain in edge weights is detected.

Fiduccia and Mattheyses improved upon the Kernighan-Lin swapping strategy by ranking ver-

tices by using a metric called the gain of a vertex [16]. The Fiduccia-Mattheyses algorithm con-

strains edge weights to integers and computes gains in linear time. The algorithm swaps the par-

titions of vertices in order from greatest to least gain while updating the gains of its neighbors.

Vertices are allowed to swap partitions once per application of the algorithm.

Many variations of these two algorithms exist, but their fundamental strategy of swapping

discrete vertices has remained largely intact. As an example of more recent extensions, Karypis and

Kumar considered constraining swap candidates to those vertices lying in the partition boundary

[12], a strategy we have also adopted in Mongoose.

2.2.2 Coarsening, Matchings, and Multilevel Frameworks

Most graph partitioning heuristics scale at least quadratically with respect to either edges or

vertices, and therefore become intractable for large graphs. However, many heuristics can perform

17

well if given a sufficiently good initial partition to start from. Multilevel frameworks were intro-

duced to address this issue by coarsening (or contracting) large graphs into a hierarchy of smaller

graphs [20].

During coarsening, vertex matchings are computed that ideally retain the topology of the origi-

nal graph. These matchings can be computed in a variety of ways. Karypis and Kumar considered

Heavy Edge Matching (HEM), Sorted Heavy Edge Matching (SHEM), and Heavy Clique Match-

ing (HCM) [12], as well as Light Edge Matching (LEM) and Heavy Clique Matching (HCM) [41].

Gupta considered Heavy Triangle Matching (HTM) [42]. Generally, some consideration is given

to edge weights, and recently methods have been proposed to avoid stalling during coarsening,

where matchings result in far fewer than the ideal n/2 vertex matches in each iteration, such as

matching vertices with similar neighbors [11] and 2-hop matching [43].

Our extensions to these coarsening and matching methods are explained in detail in Section 2.4.

2.2.3 Recent Optimization Approaches

While the traditional approaches to graph partitioning are combinatorial in nature, swapping

discrete vertices from one part to another, a variety of novel optimization formulations for par-

titioning problems have been introduced recently in the literature. While using optimization in

graph partitioning is not uncommon using strategies such as simulated annealing [44] and mixed-

integer programming [45], these discrete methods have many of the same scaling issues as the

combinatorial methods that do not (explicitly) use optimization. As such, continuous optimization

formulations have been proposed by Hager and Krylyuk [22], who showed that the discrete graph

partitioning problem is equivalent to the continuous quadratic programming problem

min
x∈Rn

(1− x)T(A + I)x (2.1)

subject to 0 ≤ x ≤ 1, ` ≤ 1Tx ≤ u,

where ` and u are lower and upper bounds on the desired size of one partition, and A is the

adjacency matrix of the graph. They show that this continuous quadratic programming problem

18

has a binary solution; moreover, the partitions

{i : xi = 0} and {i : xi = 1}

are optimal solutions of the graph partitioning problem if the quadratic program is solved to opti-

mality. This is the formulation that we utilize in Mongoose to form one part of our hybrid algo-

rithm, described in more detail in Sections 2.5 and 2.6.

2.2.4 Graph Partitioning Libraries

A variety of graph partitioning libraries and algorithms have been developed over the past sev-

eral decades. Perhaps most well-known is METIS [12], an early multi-level framework partitioner

that has since been refined and expanded to include parallel [26], hypergraph [27], and multi-

threaded [28] versions. We use METIS as our primary comparison in Section 2.7, and build on

their work on coarsening and refinement. Other graph partitioning libraries are listed in Section

1.5.6.

2.3 Multi-Level Graph Partitioning

Multilevel graph partitioners seek to simplify the input graph in an effort to recursively apply

expensive partitioning techniques on a smaller problem. The motivation for such a strategy is due

to limited memory and computational resources to apply a variety of combinatoric techniques on

large input problems. By reducing the size of the input, more advanced techniques can be applied

and carried back up to the original input problem.

2.3.1 Graph Coarsening

The process whereby an input graph is simplified is known as graph coarsening. In graph

coarsening, the original input graph is reduced through a series of vertex matching operations to

an acceptable size [20]. Vertices are merged together using strategies that exploit geometric and

topological features of the problem.

High degree vertices that arise in irregular graphs, particularly social networks, impede graph

coarsening by reducing the maximum number of matches that can be made per coarsening phase.

19

When the number of coarsening phases becomes proportional to the degree of a vertex, we say that

coarsening has stalled.

2.3.2 Initial Guess Partitioning

Once the input graph is coarsened to a size suitable for more aggressive algorithms, an initial

guess partitioning algorithm is used. Initial partitioning strategies accumulate a number of vertices

into one partition such that the desired partition balance is satisfied. Karypis and Kumar demon-

strated that region-growing techniques, such as applying a breadth-first search from random start

vertices, tend to find higher quality initial partitions than random guesses or first/last half guesses

[12].

Note that for edge cuts even a random initial guess provides a valid cut. Also, when partitioning

graphs with more than a single connected component, some initial partitioning schemes may fail

or perform poorly. As such, random initial partitions and bin-packing approaches can offer a safe

fallback method.

2.3.3 Uncoarsening

Once a satisfactory guess partition is computed at the coarsest level, projecting the partition

back to the original input graph requires the inverse operation of graph coarsening, known as

graph uncoarsening. During uncoarsening, vertices expand back into their original representations

at the finer level. The part choice (X or Y) for each coarse vertex is applied to all of the vertices

that participated in the matching used during coarsening.

Because a partition at a coarse level is not generally guaranteed to be optimal when projected to

the finer level, traditional graph partitioning strategies (e.g. methods described in Section 2.6.4.2)

are used to improve the projected partition as the graph is refined back to its original size.

2.4 Coarsening and Matching Strategies

To coarsen a graph as described in Section 2.3.1, a matching of which vertices are merged

together must be computed. More precisely, a mapping of vertices to super-vertices (i.e. fine to

coarse) must be created. A variety of matching strategies exist, including heavy edge matching,

where vertices are matched with the neighbor with the incident edge of largest weight [12]. One

20

disadvantage of heavy edge matching is that it can be prone to stalling. If matching is limited to

neighbors, a high-degree vertex may prevent matching more than two vertices at a time. We present

a variety of additional strategies to avoid such stalling, including an approach that can guarantee

that the number of vertices in each phase of coarsening decreases by at least half.

2.4.1 Brotherly Matching

In brotherly matching, two vertices that are not neighbors can be matched if they share a neigh-

bor (see Figure 2.1). This can help prevent stalling in cases such has star graphs, where a single

high-degree vertex can only be matched with a single neighbor in each pass. Using brotherly

matching, many vertices can be matched together because they share a neighbor (the central high-

degree vertex).

Note that brotherly matching is already implemented in METIS 5 as 2-hop matching [12]. The

next two methods, adoption and community matching, are novel.

2.4.2 Adoption Matching

Related to brotherly matching is adoption matching, which allows a three-way matching be-

tween adjacent vertices. Given an even number of unmatched neighbors of a given unmatched

vertex, a matching can be computed using heavy-edge and brotherly matching that leaves only

one vertex unmatched. The remaining vertex that is not matched pairwise with any other vertex is

added to (i.e. adopted by) an existing two-way match (see Adoption Matching in Figure 2.1).

Heavy Edge
Match

Brotherly Matches

Adoption Match
(3-Way)

Coarsen

Figure 2.1: Brotherly and adoption matching

21

2.4.3 Community Matching

Community matching occurs when two neighboring vertices are both in a 3-way match formed

by adoption matching. Since two neighboring vertices each have a vertex matched via adoption,

those adopted vertices can instead be matched with each other (see Figure 2.2).

Brotherly Matches

Community Match

Heavy-Edge
Match

Coarsen

Figure 2.2: Community matching

2.5 Quadratic Programming Refinement

As mentioned earlier, Hager and Krylyuk [22] introduced a continuous quadratic programming

formulation of the edge cut graph partitioning problem:

min
x∈Rn

(1− x)T(A + I)x subject to 0 ≤ x ≤ 1, ` ≤ 1Tx ≤ u, (1)

where ` and u are lower and upper bounds on the desired size of one partition, and A is the

adjacency matrix of the graph. They show that this continuous quadratic programming problem

has a binary solution; moreover, the partitions

{i : xi = 0} and {i : xi = 1}

are optimal solutions of the graph partitioning problem.

During refinement, we complement our implementation of the Fiduccia-Mattheyses algorithm

22

with the quadratic programming approach. Because we use both traditional combinatoric methods

as well as quadratic programming at the refinement stage in an effort to yield better quality results,

we call this a hybrid graph partitioning method.

To actually solve the quadratic programming formulation, we first use the discrete partition

choices for each vertex as a starting guess for a solution to the quadratic programming problem

(2.1). We then perform iterations of gradient projection until reaching a stationary point of (2.1);

often convergence takes just a few iterations. Although the stationary point may not be binary, the

analysis in [22] shows how to move to a binary feasible point while possibly further improving the

objective value.

Note that each iteration of the gradient projection algorithm takes a step along the negative

gradient followed by projection onto the feasible set of (2.1). Since the constraints of (2.1) consist

of a single linear constraint coupled with bound constraints, computing this projection amounts to

solving a quadratic knapsack problem. An efficient algorithm for computing this projection, called

NAPHEAP, is given in [46]. Because the quadratic programming formulation ignores the discrete

notion of boundary, it is capable of identifying vertices to swap which do not lie on the boundary

of the cut. Gradient projection also adheres to strict bounds on part size as a way of enforcing

balance, and its local minimizers result in cuts with better balance than our Fiduccia-Mattheyses

implementation.

2.6 Algorithm Description

In this section, we describe a novel hybrid graph partitioning heuristic algorithm based on both

the quadratic programming formulation and existing combinatoric methods. We have implemented

this algorithm in a production-ready C++ library available to the public.

2.6.1 Input and Pre-Processing

First, Mongoose accepts an input graph and ensures that it is undirected (i.e. the adjacency

matrix is symmetric) and has no self-edges (an all-zero diagonal). It also ensures that all edge and

vertex weights are strictly positive.

23

2.6.2 Coarsening

Once the graph is found to be acceptable, Mongoose coarsens the graph down to a user-

specified number of vertices (64 by default). The stall-reducing matching methods (Section 2.4)

are used during coarsening to avoid stalling on irregular and power-law graphs. However, com-

munity matching is disabled by default, as it can be computationally expensive on all but very

irregular graphs.

2.6.3 Initial Partitioning

At the coarsest (and smallest) level, an initial partition is computed for the graph. By default,

a random partitioning is computed, but partitions computed from the quadratic programming for-

mulation as well as the natural order of the vertices are available.

The algorithm then performs a round of the Fiduccia-Mattheyses algorithm, but only considers

shore vertices. This acts to minimize the size of the cut to a minimal (although not necessarily

globally optimal) size.

These partition choices for vertices are then used as an initial starting point for gradient projec-

tion. Because gradient projection is a continuous method, it computes the affinity of a vertex as a

floating point value between 0 and 1. Our algorithm discretizes this result and interprets values of

x ≤ 0.5 as the first partition and values x > 0.5 as the second partition.

2.6.4 Uncoarsening and Refinement

The graph is then repeatedly uncoarsened and the edge cut refined. First, the partition for the

coarsened graph is projected upward to the uncoarsened parent graph, and the primary refinement

loop begins.

During refinement of the cut, the following quadratic programming-based approach and dis-

crete Fiduccia-Mattheyses algorithm are used alternately to search for a smaller (and/or more bal-

anced) cut.

2.6.4.1 Quadratic Programming-Based Refinement

We solve the quadratic programming formulation (2.1) using gradient projection, which can be

summarized as follows:

24

1. With an initial starting point, take a step in the direction of the negative gradient to improve

the solution.

2. Project the step back onto the feasible space defined by the constraints.

Because the constraints are box constraints (upper and lower bounds only), the projection step

is straightforward to compute, capping the solution at the bounds. Convergence using gradient

projection to a locally optimal solution usually only requires a few iterations. We utilize a modified

version of NAPHEAP [46] to solve the gradient projection subproblem.

2.6.4.2 Fiduccia-Mattheyses Algorithm Refinement

We implement a version of the Fiduccia-Mattheyses algorithm (see Sections 1.5.1 and) for

improving edge cuts to use in tandem with the QP-based refinement already described. Rather

than impose hard bounds on part size, we introduce a heuristic cost to penalize imbalance without

strictly forbidding it:

fheuristic =


∑

(i,j)∈ Cut Set

wi,j + ψH if ψ > imbalance tolerance

∑
(i,j)∈ Cut Set

wi,j otherwise
(2.2)

In this expression, H is a heuristic penalty equal to twice the sum of all edge weights in the

graph (H = 2
∑

(i,j)∈E

wi,j). The imbalance metric ψ is defined as follows:

ψ = (Target Ratio)− min{wTx,wT(1− x)}
1Tw

(2.3)

As is the hallmark of the Fiduccia-Mattheyses algorithm, we use two heaps, one for each part,

as priority queues keyed by the gain metric G for each vertex i:

Gi = WExternal −WInternal (2.4)

25

In this gain metric,WExternal is the sum of edge weights connecting vertex i to a vertex in another

part, and WInternal is the sum of edge weights connecting vertex i to a vertex in the same part as

vertex i. Thus, for vertices where it would be advantageous to move to the opposite part, Gi should

be positive, removing WExternal from the cut and replacing it with edges with edge weights equal to

WInternal.

Our implementation of the Fiduccia-Mattheyses algorithm continues to make non-advantageous

moves (swapping vertices with non-positive gains) in an effort to better explore the search space

of edge cuts. Once a user-defined number of moves has been made with no improvement, the cut

is restored to the best cut found to that point.

2.7 Results

In this section, we explore the computational performance of Mongoose compared to METIS,

a popular graph partitioning library, on a variety of graph sizes and types. All experiments were

run on a 24-core dual-socket 2.40 GHz Intel Xeon E5-2695 v2 system with 768 GB of memory.

Note that only one thread was utilized, as both libraries are serial in nature. All comparisons were

conducted with METIS 5.1.0 and compiled with GCC 4.8.5 on CentOS 7.

For consistency, each partitioner was run five times for each problem. The highest and lowest

times are removed, and the remaining three are averaged (i.e. a 40% trimmed mean). Default

options were used, and a target split of 50%/50% was used with a tolerance of ±0.1%. All results

shown satisfy this balance tolerance.

2.7.1 Overall Performance

Mongoose and METIS were run on the entire SuiteSparse Matrix Collection [11] with only

modest filtering. First, complex matrices were removed. Of the remaining matrices, any unsym-

metric matrices A were treated as the biadjacency matrix of a bipartite graph adjacency matrix

B =

0m,m A

AT 0n,n

; symmetric matrices were unmodified and treated as undirected graphs. A

final preprocessing step removed any nonzero diagonal elements (i.e. ignoring/eliminating self

edges) and reduced the matrix to a binary pattern (i.e. nonzero elements were replaced with 1).

26

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Test Graphs

(a)

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Test Graphs

(b)

Figure 2.3: Overall timing (a) and overall cut quality (b) performance of Mongoose relative to
METIS 5. Note the logarithmic vertical scale. Points below the center line represent cases where
Mongoose outperforms METIS (relative performance less than one), while points above the center
line indicate cases where METIS outperforms Mongoose (relative performance greater than one).
In general, Mongoose performs competitively with METIS 5.

Table 2.1: Performance comparison between Mongoose and METIS on all 2,685 graphs from (or
formed from) the SuiteSparse Collection.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 759 527 1286

Tie 113 173 286

Mongoose 542 571 1113

1414 1271 2685

27

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Large Graphs

(a)

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Large Graphs

(b)

Figure 2.4: Timing (a) and cut quality (b) performance profiles [47] of Mongoose on large graphs
(1,000,000+ edges) relative to METIS 5. Note the logarithmic vertical scale. Points below the cen-
ter line represent cases where Mongoose outperforms METIS (relative performance less than one),
while points above the center line indicate cases where METIS outperforms Mongoose (relative
performance greater than one).

This yielded 2,685 symmetric matrices at the time of comparison, which were then treated as

undirected graphs to be partitioned.

The relative timing (a) and relative cut quality (b) performance are shown in Figure 2.3, and a

tabular comparison is shown in Table 2.1. Of the 2,685 graphs, Mongoose found a smaller cut on

1,113 (∼41%), and took less time to compute its cut on 1,271 (∼47%). Mongoose outperformed

METIS in both time and cut quality on 571 graphs (∼21% of cases), while METIS outperformed

Mongoose in both time and cut quality on 759 graphs (∼28%). Thus, Mongoose is generally

competitive with METIS, with METIS having a slight edge.

Figures 2.3, 2.4, and 2.7 are created by first computing the computational metrics (either cut

quality or wall time) relative to METIS: less than 1 being better than METIS, and greater than 1

being worse. The results are then ordered from smaller (better than METIS) to larger (worse than

METIS) and plotted on a logarithmic scale. Along the horizontal axis, graph numbers are normal-

ized to the interval [0, 1], with the first graph corresponding to 0, and the last graph corresponding

to 1.

28

Table 2.2: Performance comparison between Mongoose and METIS on the 601 largest graphs
(1,000,000+ edges) in the SuiteSparse Collection.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 99 215 314

Tie 2 11 13

Mongoose 57 217 274

158 443 601

2.7.2 Performance on Large Graphs

When limited to graphs with at least 1,000,000 edges, Mongoose performs significantly better.

Of the 601 graphs that meet this size criterion, Mongoose computed smaller edge cuts in 274 cases

(∼46%), and terminated faster in 443 cases (∼74%). Mongoose outperformed METIS in both

time and cut quality on 217 graphs (∼36%), while METIS outperformed Mongoose in both time

and cut quality on only 99 of the large graphs (∼16%). Thus, Mongoose provides comparable

cut quality, but much faster execution when partitioning large graphs compared to METIS. The

relative timing (a) and relative cut quality (b) performance are shown in Figure 2.4, and a tabular

comparison is shown in Table 2.2.

2.7.3 Hybrid Performance

Figures 2.5 and 2.6 compare the hybrid graph partitioning method to the combinatorial method

and quadratic programming methods in isolation. While the combinatorial Fiduccia-Mattheyses

algorithm is very fast, its resulting cut quality is inferior to that of the hybrid approach (markedly

so with large graphs). In isolation, the quadratic programming approach is less performant in both

speed and cut quality when compared to the Fiduccia-Mattheyses and hybrid methods, highlighting

the algorithmic cooperation of the two approaches that make the hybrid approach so effective.

Figures 2.5, 2.6, and 2.8 are generated by calculating performance for each option relative

to the fastest time or smallest cut size (with the best result being 1, and all other results being

greater than or equal to 1). The graphs are ordered from best to worst along the vertical axis and

29

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 A

ll
G

ra
ph

s

Relative Wall Time

Hybrid

QP Only

FM Only

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 A

ll
G

ra
ph

s

Relative Cut Size

Hybrid

QP Only

FM Only

(a) (b)

Figure 2.5: Relative timing (a) and relative cut size (b) performance profiles [47] on the 2,685
graphs formed from the SuiteSparse Matrix Collection. In the figure, the following methods ap-
pear: Hybrid (black), Quadratic Programming only (red), and Fiduccia-Mattheyses only (blue).
Note that the horizontal axis is logarithmic.

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ar
ge

 G
ra

ph
s

Relative Wall Time

Hybrid

QP Only

FM Only

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ar
ge

 G
ra

ph
s

Relative Cut Size

Hybrid

QP Only

FM Only

(a) (b)

Figure 2.6: Relative timing (a) and relative cut size (b) performance profiles [47] on the largest
601 graphs in the SuiteSparse Matrix Collection (1,000,000+ edges). In the figure, the following
methods appear: Hybrid (black), Quadratic Programming only (red), and Fiduccia-Mattheyses
only (blue). Note that the horizontal axis is logarithmic. The hybrid approach provides better cuts
than either standalone approach while taking less time than the quadratic programming method
alone.

30

normalized on the interval [0, 1], with the first graph (best result) at 0 and the last (worst result) at

1. These plots are generally known as performance profiles [47].

2.7.4 Power Law and Social Networking Graphs

We examined our hybrid combinatorial quadratic programming algorithm on power law graphs

that arise in social networking and Internet hyperlink networks. The problem set of 41 social net-

working graphs was formed by filtering the SuiteSparse Matrix Collection using the words “wiki,"

“email," “soc-*," and all matrices in the Laboratory for Web Algorithmics (LAW) collection [48]

[49].

Figure 2.7 and Table 2.3 suggest that the hybrid approach is both significantly faster and nearly

always computes a higher quality cut than METIS for this class of graph. We speculate that this is

due to the following factors:

• Our Coarsening Strategy is able to prevent stalling during coarsening while preserving

topological features. In mesh-like and regular graphs, stalling is generally not a problem,

but in social networking graphs, high-degree (or “celebrity") vertices can lead to time-

consuming coarsening phases. With our brotherly/adoption matching methods, Mongoose

is able to efficiently coarsen these social networking graphs.

• Algorithmic Cooperation. The combinatorial algorithm provides the quadratic program-

ming formulation a guess partition that gradient projection can improve on. Conversely,

the quadratic programming formulation exchanges vertices that are not necessarily on the

partition boundary, overcoming a limitation of our combinatorial partitioning method.

Table 2.4, which contains the largest 15 social networking graphs from the problem set of 41,

further suggests that our hybrid approach may result in significant improvement in cut quality for

large social networks. Of these largest 15 such networks, Mongoose found a better cut in all but

one case when compared to METIS, and did so faster in 8 out of the 14 cases.

One social networking graph of particular note is SNAP/email-EuAll, as it highlights Mon-

goose’s singleton handling during coarsening. This graph has a single connected component that

31

0.1

1

10

0 0.2 0.4 0.6 0.8 1

W
al

l T
im

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Social Networking Graphs

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

C
ut

 S
iz

e
R

el
at

iv
e

to
 M

ET
IS

Fraction of Social Networking Graphs

Figure 2.7: Performance of Mongoose on social networking graphs relative to METIS 5. Note
the logarithmic vertical scale. Points below the center line represent cases where Mongoose out-
performs METIS (relative performance less than one), while points above the center line indicate
cases where METIS outperforms Mongoose (relative performance greater than one).

Table 2.3: Performance comparison between Mongoose and METIS on 41 social networking
(power law) graphs in the SuiteSparse Collection. There were no ties in cut quality.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 1 2 3

Mongoose 14 24 38

15 26 41

Table 2.4: Performance comparison between Mongoose and METIS on the 15 largest (by edges)
social networking graphs in the SuiteSparse Collection. Note that the bipartite graph is formed
for unsymmetric (directed) graphs, which is all graphs listed except LAW/hollywood-2009. All
results had zero imbalance (i.e. the target balance of 50% was achieved in all cases).

Problem Wall Time (s) Cut Size (# of Edges)

Graph Name Vertices Edges METIS Mongoose Speedup METIS Mongoose Relative
Cut Size

LAW/sk-2005 101,272,308 3,898,825,202 554.1 255.2 2.17 7,380,768 4,518,734 0.61
LAW/it-2004 82,583,188 2,301,450,872 226.1 128.6 1.76 2,486,866 693,068 0.28
LAW/webbase-2001 236,284,310 2,039,806,380 488.0 253.1 1.93 2,709,752 616,101 0.23
LAW/uk-2005 78,919,850 1,872,728,564 194.7 121.2 1.61 1,810,378 821,430 0.45
LAW/arabic-2005 45,488,160 1,279,998,916 109.6 64.6 1.70 805,443 189,641 0.24
LAW/uk-2002 37,040,972 596,227,524 82.3 44.3 1.86 613,916 192,917 0.31
LAW/indochina-2004 14,829,732 388,218,622 26.9 18.0 1.49 46,350 18,522 0.40
LAW/ljournal-2008 10,726,520 158,046,284 61.6 66.4 0.93 3,962,147 3,015,059 0.76
SNAP/soc-LiveJournal1 9,695,142 137,987,546 58.8 69.4 0.85 3,740,193 3,093,681 0.83
LAW/hollywood-2009 1,139,905 112,751,422 10.8 11.8 0.92 2,388,505 1,872,190 0.78
Gleich/wikipedia-20070206 7,133,814 90,060,778 43.2 59.7 0.72 5,536,148 2,833,749 0.51
Gleich/wikipedia-20061104 6,296,880 78,766,470 41.9 50.2 0.84 4,763,514 2,544,141 0.53
Gleich/wikipedia-20060925 5,966,988 74,538,192 35.4 56.1 0.63 4,653,238 2,455,991 0.53
Gleich/wikipedia-20051105 3,269,978 39,506,156 20.2 19.9 1.02 1,780,359 1,352,360 0.76
LAW/eu-2005 1,725,328 38,470,280 2.9 2.3 1.26 40,188 42,670 1.06

32

makes up nearly 50% of the vertices in the graph. Since Mongoose preferentially matches sin-

gletons with other singletons during coarsening, vertices in the largest components are internally

matched with one another while the components making up the other half of the graph are matched

with each other. This results in at least two large connected components at the coarsest level, lead-

ing to an edge cut of size zero.

2.7.5 Sensitivity Analysis of Options

Mongoose has a variety of options that can significantly impact performance (both time and cut

quality). To investigate the tradeoffs of each set of options, four options were varied as described

below, and each combination was used to compute an edge cut.

• Matching Strategy. During the coarsening phase, vertices are matched with other vertices to

be contracted together to form a smaller (but structurally similar) graph. Mongoose contains

four such methods of computing this matching:

– Random matching matches a given unmatched vertex to a randomly selected un-

matched neighbor.

– Heavy Edge Matching (HEM) matches an unmatched vertex with a neighboring un-

matched vertex with whom it shares the edge with the largest weight.

– Heavy Edge Matching with Stall-Free or Stall-Reducing Matching (HEMSR) first

conducts a heavy edge matching pass, but follows with a second matching pass to fur-

ther match leftover unmatched vertices in brotherly, adoption, and community matches.

– Heavy Edge Matching with Stall-Reducing Matching, subject to a degree thresh-

old (HEMSRdeg). Like HEMSR above, but the second matching pass is only con-

ducted on unmatched vertices with degree above a certain threshold (in these experi-

ments, twice the average degree).

• Initial Cut Strategy. After coarsening is complete, an initial partition is computed using

one of three approaches:

33

– Random. Randomly assigns vertices into an initial part.

– QP (Quadratic Programming). Runs a single iteration of the quadratic programming

formulation of the edge cut problem, with an initial guess of x = 0.5 for all vertices.

– Natural Order. Assigns the first bn/2c vertices to one part, and the next dn/2e vertices

to the other.

• Coarsening Limit. Coarsening terminates when a specified threshold number of coarsened

vertices is reached. In these experiments, values of 1024, 256, and 64 were tested.

• Community Matching. When using stall-reducing matching, vertices can be optionally

aggressively matched in community matches (two vertices are matched if their neighbors

are matched together). This can be enabled to further maximize the number of matched

vertices, or disabled to potentially save time.

The results of this sensitivity analysis in both time and cut quality are shown in Figure 2.8. For

each option, the best result (in both time and cut quality) is chosen, and relative metrics are com-

puted relative to this best result. The relative metrics are then sorted and plotted as a performance

profile, with the best results being the ones that stay at or near 1.0 for the largest percentage of

problems.

2.7.5.1 Matching Strategy

Heavy edge matching and random matching are competitive only with small graphs, but quickly

become intractable for large problems. Of the two options that use stall-reducing matching, the one

that is not subject to the degree threshold appears to perform slightly faster with no noticeable de-

crease in cut quality.

2.7.5.2 Initial Cut Strategy

While the natural ordering approach can sometimes be effective for meshes and other regular

graphs, it is generally outperformed by both the QP and random initial cuts. Interestingly, the

random initial cut yields a comparable final cut weight despite being more efficient to compute.

34

Fi
gu

re
2.

8:
R

el
at

iv
e

tim
in

g
(t

op
ro

w
)a

nd
cu

tq
ua

lit
y

(b
ot

to
m

ro
w

)p
er

fo
rm

an
ce

pr
ofi

le
s

of
ea

ch
se

to
fo

pt
io

ns
.E

ac
h

co
lu

m
n

co
rr

es
po

nd
s

to
an

av
ai

la
bl

e
op

tio
n

in
M

on
go

os
e.

N
ot

e
th

at
th

e
ho

ri
zo

nt
al

ax
is

is
lo

ga
ri

th
m

ic
,a

nd
th

e
ve

rt
ic

al
ax

is
co

rr
es

po
nd

s
to

th
e

fr
ac

tio
n

of
th

e
2,

68
5

gr
ap

hs
us

ed
fo

r
te

st
in

g.
R

un
s

th
at

ex
ce

ed
ed

72
00

se
co

nd
s

w
er

e
te

rm
in

at
ed

(a
s

w
as

th
e

ca
se

fo
r

m
uc

h
of

th
e

H
E

M
an

d
R

an
do

m
m

at
ch

in
g

st
ra

te
gy

da
ta

).

35

2.7.5.3 Coarsening Limit

There is a tradeoff between speed and cut quality in determining the coarsening limit. If coars-

ening is terminated early (1024 vertices), less computational time is spent on coarsening, but the

final cut weight is generally worse. Inversely, if coarsening continues to 64 vertices, more time is

spent on the coarsening phases, but the resulting cut quality is generally better. This is unsurpris-

ing, as the heuristics used to find the initial cut and to progressively refine the cut are generally

more effective with smaller graphs.

2.7.5.4 Community Matching

In the majority of cases, community matching has no significant effect on cut quality. However,

for a sizable minority of graphs, community matching does have a detrimental effect on timing. In

short, community matching does not appear to offer a significant improvement, but can be mildly

helpful in coarsening graphs that are prone to stalling. For most graphs, the reduced stalling during

coarsening does not justify the computational cost of computing the matching.

2.8 Summary

In this chapter, we have presented a novel hybrid graph partitioning library, Mongoose, for ef-

ficiently computing edge cuts for arbitrary graphs. By combining the optimization-based approach

with the combinatoric Fiduccia-Mattheyses algorithm and utilizing novel graph coarsening meth-

ods, we can outperform existing graph partitioning software, especially for large social network

graphs. In the next chapter, we will extend this approach to vertex separators.

36

3. COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING VERTEX

SEPARATORS

3.1 Introduction

Now that we have developed a multilevel graph partitioning library capable of computing edge

cuts, we now move on to the development of an algorithm for computing vertex separators. We can

build on the work from Chapter 2 to create an efficient, scalable approach capable of computing

high-quality vertex separators in arbitrary graphs. First, we review the current state of the art for

vertex separators (Sections 3.3 and 3.4), then derive generalized gain metrics capable of combining

multiple existing vertex separator algorithms (Section 3.5), before exploring the computational

results of our new graph partitioning algorithm and library implementation (Sections 3.6 through

3.8).

3.2 Overview of the Vertex Separator Problem

As discussed in Section 1.3.2, the vertex separator problem is another graph partitioning prob-

lem that requires finding three parts: part X and part Y , which should be approximately balanced

in size or weight, and a separator part S, whose size is minimized. The separators part should

separate the other two parts such that no path exists from a vertex in part X to a vertex in part Y

without traversing a vertex in part S.

While similar to an edge cut, the vertex separator problem is fundamentally a more difficult

problem. First, in an edge cut, any possible assignment of vertices to parts is a (perhaps unbal-

anced) feasible edge cut. This is not the case in the vertex separator problem, where even the

existence of a feasible solution is not guaranteed. For example, if the graph being partitioned is

a clique (i.e. all vertices are connected to all other vertices), no vertex separator exists. Second,

the concept of a balanced partition is less clear and more difficult to satisfy compared to edge cuts.

Due to the introduction of a third part, balance can be evaluated a number of different ways. Do we

account for the size of the separator when evaluating balance (|X||V |) or not (|X|
|X∪Y |)? While both the

edge cut problem and vertex separator problem are essentially mutli-objective optimization prob-

37

1

2

Separator

1

2

1

2 1

2

1

2 1

2

1

2 1

2

Figure 3.1: Difficulties in transitioning between valid vertex separator states. There may be no
feasible transition states between one partition and another better partition. In the top transition,
the graph is reduced to only two parts, and in the bottom, the separation constraint is violated.

lems and must address the tradeoff between balance and cut (or separator) size, ensuring balance

in the vertex separator problem, especially during coarsening and uncoarsening of the graph, is

non-trivial.

During coarsening, the number of vertices is reduced, but vertex weights are aggregated and

increase. Thus, at very coarsened levels of the multilevel framework, balance may be difficult or

impossible to satisfy. Worse, the balance constraint may even prevent moving through an unbal-

anced intermediate stage between one vertex separator to a better one (see Figure 3.1).

3.2.1 Complexity

Both the vertex separator and edge cut problems are NP-hard [4]. While algorithms exist

that can guarantee globally optimal cuts or separators, they take exponential time in the worst

case. Practical existing methods rely almost exclusively on heuristics to compute minimal cuts and

separators.

3.3 Traditional Approaches

While both the Kernighan-Lin [40] and Fiduccia-Mattheyses [16] algorithms were developed

for use in finding small, balanced edge cuts, they have been adapted for use in finding balanced

vertex separators [17, 18]. The general approach is the same, computing gain values for vertices

38

both in the separator and on the shores on each side of the separator and then moving vertices into

and out of the separator accordingly. While these combinatoric methods are generally the most

prevalent, other methods do exist, usually as extensions to edge cut algorithms (see Section 1.5).

3.4 Optimization Formulations and Approaches

Despite there being a large body of existing techniques for graph partitioning, a promising new

research direction involves formulating graph partitioning problems as optimization problems. As

many of these graph partitioning problems can be formulated as discrete or continuous optimiza-

tion problems, existing algorithms can be applied, such as gradient projection or branch-and-bound

search. However, this naive approach is generally not very efficient, and general purpose solvers

either converge to poor solutions or take intractable lengths of time. New algorithms for solving

these special classes of optimization problems are ongoing, with the principle advantage of being

able to better explore a highly nonconvex search space. For example, continuous optimization

methods do not require vertices to be in any single part at intermediate search steps, allowing ver-

tices to be partially in and partially out of a given part. This can result in a more direct path to a

better local solution.

3.4.1 Mixed-Integer Linear Programming Approaches

The first optimization formulation described for solving the vertex separator problem uses

mixed-integer linear programming. This formulation, first introduced by Balas and de Souza,

guarantees global optimality when used with a branch-and-bound MILP solver [50]. Given the

39

computational complexity of branch-and-bound, this approach was very inefficient.

maximize
V∑
i=1

wi(xi + yi)

subject to xi + yi ≤ 1 ∀ i ∈ V

xi + yj ≤ 1 ∀ (i, j) ∈ E

xj + yi ≤ 1 ∀ (i, j) ∈ E

`x ≤
∑
i∈V

wixi ≤ ux

`y ≤
∑
i∈V

wiyi ≤ uy

xi, yi ∈ {0, 1} ∀ i ∈ V

(VSP-MILP)

The objective function maximizes the size of theX and Y parts (which is equivalent to minimizing

the size of the separator). The first constraint enforces that each vertex is either in part X , part Y ,

or the separator S. The second and third constraints enforce the separator requirement, ensuring

that no edge can have one endpoint in partX and the other endpoint in part Y (onlyX−X , Y −Y ,

X − S, and S − Y edges are allowed).

Both the objective function and the constraints in this formulation are linear, but the x and y

variables are strictly binary.

3.4.1.1 Solution Methods

As discussed in Section 1.7.3, solving mixed-integer linear programming problems to optimal-

ity is NP-hard, being an extension to 0-1 integer programming, one of the original NP-complete

problems [51]. Solution strategies to find a good (but not necessarily optimal) solution to MILPs

include simulated annealing [52, 44] and ant colony search and optimization [53], which has also

been directly applied to graph partitioning [54, 55]. Due to their computational complexity, they

have generally not been used in the graph partitioning space with the exception of some proofs of

concept.

For guarantees on global optimality (or ε-optimality), the standard approach to solving MILPs

is to use the branch-and-bound algorithm, solving linear programming subproblems until the dif-

40

ference between upper and lower bounds on the solution are reduced to within some optimality

gap ε [56, 57, 58]. However, this algorithm is generally even more computationally complex than

the previously discussed methods, taking even more time to arrive at a solution. Solving the MILP

formulation (VSP-MILP) efficiently and in time practicable for use in graph partitioning is still an

open problem.

3.4.2 Quadratic Programming Approaches

Both the edge separator and vertex separator problems can be formulated as bilinear (noncon-

vex) quadratic programming problems. The QP formulation for the vertex separator problem is

shown below (extended from [59]):

maximize wT(x + y)

subject to xTy = 0 (Exclusivity Constraint)

xTAy = 0 (Separation Constraint)

0 ≤ x ≤ 1 0 ≤ y ≤ 1

`x ≤ wTx ≤ ux `y ≤ wTy ≤ uy

(VSP-QPQC)

w is an array of vertex weights, and A is the binary adjacency matrix for the graph. `x and `y are

the lower bounds on the size of each part, usually `x = `y = 1. ux and uy are the upper bounds on

the size of each part, usually ux = uy = 2
3
|V |. x is a binary array such that xi = 1 if vertex i is in

part X , and zero otherwise. y is the analog to x with respect to part Y .

The objective function serves to maximize the size of the parts (thus minimizing the size of

the separator). The first constraint enforces that each vertex is in either one part or the separator,

but never both parts simultaneously. For reference, we will call this the exclusivity constraint. The

second constraint enforces that there does not exist an edge between one part and the other. As this

constraint enforces the separation of the parts, we will call this the separation constraint. The last

constraints limit the size of the parts and also bound x and y between 0 and 1. To see how these

constraints correspond to the vertex separator problem, see Figure 3.2.

This quadratically constrained quadratic programming problem (or QCQP) can be reformulated

41

1 4

2 3

Part BPart A

Separator

x1 = 1

y1 = 0

x4 = 0

y4 = 1

x3 = 0

y3 = 1

x2 = 0

y2 = 0

Figure 3.2: Mapping of graph connectivity to optimization formulation values

To represent the graph as an optimization problem formulation, we introduce an x and a y vector with an
element for each vertex. Note that because vertices 1 and 2 are connected by an edge in the graph, A1,2 = 1,
and so x1A1,2y2 = 0. Alternatively, note how this constraint is violated in the case of vertices 1 and 4
(x1A1,4y4 = 1 ∗ 1 ∗ 1 = 1 6= 0).

as a linearly constrained quadratic programming problem using a penalty function:

maximize wT(x + y)− γxT(A + I)y

subject to 0 ≤ x ≤ 1 0 ≤ y ≤ 1

`x ≤ 1Tx ≤ ux `y ≤ 1Ty ≤ uy

(VSP-QPLC)

Note that for large enough γ, the penalty function is equivalent to the first and second constraints

in Problem VSP-QPQC. Unfortunately, in both cases the QP is nonconvex, and finding a global

optimum is NP-hard. Using a nonlinear programming (NLP) solver on either formulation generally

results in poor solutions. However, several techniques have been developed to find better binary

solutions via perturbation [59, 60].

3.4.2.1 Solution Methods

As discussed in Section 1.7.2, quadratic programming is generally easy to solve if the problem

is convex, but NP-hard when nonconvex. These quadratic programming problems (VSP-QPQC

42

and VSP-QPLC) are both nonconvex and a special case of quadratic programming called bilinear

programming. In bilinear programming, the variables can be divided into two disjoint subsets such

that the quadratic term 1
2
xTGx becomes linear when either subset is held constant.

Methods for solving bilinear programming problems include spatial subdivision methods, an

extension of branch-and-bound algorithms that solve to ε-optimality [61, 62], and bilevel meth-

ods, which work by decomposing the bilinear program into linear programs by fixing a subset of

variables [63, 64, 65]. As simply alternating between linear subproblems does not guarantee con-

vergence to an optimum (global or otherwise), bilevel methods often use a variety of techniques to

improve their solutions, such as cutting planes [66] and solving the dual of the problem [63]. How-

ever, as the underlying problem is NP-hard, these algorithms either do not guarantee optimality or

do not run in polynomial time in the worst case. Some bilevel methods, specifically Konno’s algo-

rithm [66], can be used to find an improved solution quickly by running for only a small number

of iterations, a fact which we exploit later in Section 3.6.6.

3.5 Generalized Gains

Despite these recent developments in optimization formulations of the vertex separator prob-

lem, implementations generally scale poorly [60]. One difficulty that we address here is the con-

version between a continuous partition (x ∈ [0, 1]n, y ∈ [0, 1]n) and a discrete one (x ∈ {0, 1}n,

y ∈ {0, 1}n). This conversion process is often costly to compute, as are the associated properties

for solving the quadratic programming formulation VSP-QPLC such as objective function values.

Ideally, we would like to have a set of common metrics from which we can efficiently compute

properties about the partition regardless of the continuous or discrete state of the partition. Specif-

ically, we aim to avoid recomputing the objective function of the quadratic programming formula-

tion and the gain values used in the discrete Fiduccia-Mattheyses algorithm, as both requireO(|E|)

time to compute with no prior information.

Our goal is to derive a set of general gains that should be equivalent to the Fiduccia-Mattheyses

gains for vertices in the separator, but should also be applicable to vertices with continuous values

of x and y.

43

First, both the quadratic programming objective function and Fiduccia-Mattheyses gains ad-

dress the fact that a vertex i moving out of the separator will decrease the weight of the separator

by its weight wi. Thus, we take the first term of the quadratic programming objective function

wT(x + y) as our starting point.

f = wT(x + y) (3.1)

Next, we consider that a vertex cannot be in both the X part and the Y part simultaneously.

In the Fiduccia-Mattheyses algorithm, this is assumed: vertices have discrete states of being in

one part or the other. However, in the quadratic programming formulation, this prohibition is

addressed with a penalty term in the objective function: −γxTIy, where γ is a sufficiently large

penalty parameter, x and y are n× 1 vectors, and I is the n×n identity matrix. Thus, this penalty

is zero only when x and y are orthogonal (x ⊥ y).

f = wT(x + y)− γxTIy (3.2)

Lastly, we incur a penalty for moving a vertex out of the separator into a part (e.g. X) who

has neighbors in the opposite part (e.g. Y). The Fiduccia-Mattheyses gains assume that a vertex

moving in this way will immediately draw the violating neighbors into the separator. For example,

if a vertex moves from the separator to X , then all of its neighbors in Y will move to the separator

S. Once again, the quadratic programming formulation must address this in continuous terms, so

another penalty parameter is introduced: −γxTAy, where γ is the same sufficiently large penalty

parameter from before, x and y are n× 1 vectors, and A is the n× n graph adjacency matrix.

f = wT(x + y)− γxTIy − γxTAy (3.3)

f = wT(x + y)− γxT(A + I)y (3.4)

This is the quadratic programming formulation objective function. Note that this function is

44

defined globally over all vertices in the graph.

To derive the generalized gains, we take the expanded version of the objective function and

take partial derivatives with respect to x and y to yield the gradient of the objective function:

∇fobj =


∂fobj
∂x

∂fobj
∂y

 =

wT − γIy − γAy

wT − γIx− γAx

 (3.5)

We can now compare these expressions with the Fiduccia-Mattheyses gains:

Gx = wi −
∑

j∈Ny(i)

wj (3.6)

Gy = wi −
∑

j∈Nx(i)

wj (3.7)

where wi is the weight for vertex i, and Nx(i) and Ny(i) are the sets of neighbor vertices

adjacent to vertex i in parts X and Y respectively. First, we note that unlike the gradient of

the quadratic programming objective function, the Fiduccia-Mattheyses gains are only defined for

individual vertices that are located in the separator. We can determine the contribution of a vertex

i toward the objective function by looking at the i’th element of the gradient:

∇fi =

wi − γyi − γA∗,iy
wi − γxi − γA∗,ix

 (3.8)

The term γA∗,iy can also be expressed as a summation, γ
∑

j∈N(i) yj , where N(i) is the set of

vertices adjacent to vertex i, also known as the closed neighborhood of i. The notation A∗,i refers

to the i’th column of the binary adjacency matrix A.

∇fi =


wi − γyi − γ

∑
j∈N(i)

yj

wi − γxi − γ
∑
j∈N(i)

xj

 (3.9)

45

We now address the penalty parameter, γ. The choice of γ is arbitrary so long as it is sufficiently

large, so that in solving the quadratic programming formulation, solutions that represent invalid

separators are penalized disproportionately compared to valid separators (ones that do not violate

the exclusivity and separation constraints). In the Fiduccia-Mattheyses gains, these violations

cannot occur, and so the penalty is directly proportional to the gain of each vertex.

If we relax this penalty to resemble the Fiduccia-Mattheyses gains by replacing γ with vertex

weights, the gains will no longer strictly enforce the exclusivity and separation constraints. How-

ever, as γ need only be sufficiently large, we can easily re-introduce γ to once again enforce these

constraints. For now, we will make this substitution, yielding generalized gains:

Gx,i = wi − wiyi −
∑
j∈N(i)

wjyj (3.10)

Gy,i = wi − wixi −
∑
j∈N(i)

wjxj (3.11)

Similar to the Fiduccia-Mattheyses gains, Gx and Gy can be said to describe the effect of

moving a vertex to the X part or Y part, respectively, but are applicable to continuous and invalid

partitions as well.

3.5.1 Fiduccia-Mattheyses Gains as a Special Case

Note that the Fiduccia-Mattheyses gains are now a special case of the generalized gains. If

we impose the same restrictions on x and y that the Fiduccia-Mattheyses algorithm imposes (i.e.

x ∈ {0, 1}n, y ∈ {0, 1}n, and x ⊥ y), we can remove the exclusivity term, and the generalized

gains become

Gx,i = wi −
∑
j∈N(i)

wjyj (3.12)

Gy,i = wi −
∑
j∈N(i)

wjxj (3.13)

We can simplify further by noting that xj = 1 for all vertices in Nx(i), and likewise that yj = 1

46

for all vertices in Ny(i), yielding the Fiduccia-Mattheyses gains exactly:

Gx,i = wi −
∑

j∈Ny(i)

wj (3.14)

Gy,i = wi −
∑

j∈Nx(i)

wj (3.15)

3.5.2 Determining Separation and Exclusivity Violations

While the generalized gains are useful for continuous x and y, they can also be used to detect

which vertices are in violation of the separation and exclusivity constraints. When considering

such vertices, we note that valid, discretely partitioned vertices fall into three cases:

• Case 1. A vertex in part X (xi = 1, yi = 0) with no neighbors in Y (yj = 0 ∀ j ∈ N(i)).

• Case 2. A vertex in part Y (xi = 0, yi = 1) with no neighbors in X (xj = 0 ∀ j ∈ N(i)).

• Case 3. A vertex in part S (xi = 0, yi = 0).

For case 1, the generalized X gain is equal to wi:

Gx,i = wi − wiyi −
∑
j∈N(i)

wjyj = wi (3.16)

For case 2, the generalized Y gain is also equal to wi:

Gy,i = wi − wixi −
∑
j∈N(i)

wjxj = wi (3.17)

For case 3, we can only say that Gx ≤ wi and Gy ≤ wi.

If a vertex is not in the separator (xi > 0 and/or yi > 0), we would expect that at least one of

the generalized gains Gx,i or Gy,i would be equal to wi. If this is not the case, one or both of the

separation and exclusivity constraints is in violation.

47

For example, if a vertex is violating the exclusivity constraint with xi = 0.5 and yi = 1, the

generalized gains will be

Gx,i = wi − wi(1)−
∑
j∈N(i)

wjyj < wi (3.18)

Gy,i = wi − wi(0.5)−
∑
j∈N(i)

wjxj < wi (3.19)

Alternatively, perhaps a vertex in the X part (xi = 1, yi = 0) has a neighbor vk partly in the Y

part (xk = 0, yk = 0.3). This violation of the separation constraint is reflected in the generalized

gains:

Gx = wi − wi(0)−
∑

j∈N(i)\k

wjyj − wk(0.3) < wi (3.20)

Gy = wi − wi(1)−
∑

j∈N(i)\k

wjxj − wk(0) < wi (3.21)

Thus, we can quickly (in O(1) time) identify which vertices are not in a discrete part by ex-

amining the current values of the generalized gains. Such violations can be resolved by moving

the invalid vertex into the separator (xi = yi = 0), and so a valid partitioning can be generated in

linear (O(|V |)) time, assuming at least one vertex is left in each of the X and Y parts.

3.5.3 Computing the Quadratic Programming Objective Function

As previously discussed, the generalized gains do not strictly enforce the separation and exclu-

sivity constraints. However, we can compute an approximation of the ith element of the objective

function gradient in constant time. We start with the generalized x gain for a vertex i:

Gx,i = wi − wiyi −
∑
j∈N(i)

wjyj (3.22)

48

Recalling that the penalty parameter need only be sufficiently large, we multiply through by γ:

γGx,i = γwi − γwiyi −
∑
j∈N(i)

γwjyj (3.23)

Note that for wi ≥ 1, γwi ≥ γ, implying that if γ is sufficiently large, so is γ′i = γwi ∀ i ∈ V .

Thus, if we assume wi ≥ 1 ∀ i ∈ V , we can therefore simplify the above expression to the

following:

γGx,i = γwi − γ′iyi −
∑
j∈N(i)

γ′jyj (3.24)

We now correct for the first term containing wi to yield the objective function gradient:

∇xf̃i = wi(1− γ) + γwi − γ′iyi −
∑
j∈N(i)

γ′jyj (3.25)

∇xf̃i = wi(1− γ) + γGx,i (3.26)

The same process can be used to derive the analogous formula for the gradient approximation

with respect to y:

∇yf̃i = wi(1− γ) + γGy,i (3.27)

We can now compute an approximation of the gradient to the quadratic programming objective

function in constant time from the generalized gains. Note that this approximation penalizes vio-

lations between heavily weighted vertices more than violations between lighter weighted vertices,

unlike the original formulation, which penalizes all violations equally regardless of vertex weight.

3.5.4 Update Formulas for Generalized Gains

To compute the generalized gains for a vertex requires data from all vertices neighboring that

vertex. Thus, computing gains for each vertex requires O(|N(i)|) time, and computing gains for

all vertices in the graph requires O(|E|) time. This can quickly become intractable for very large

49

graphs, especially as vertices are frequently moved from one part to another in search of better

solutions.

Rather than compute the generalized gains after each modification, we can derive update for-

mulas to more efficiently compute the new gains G′x and G′y given previous gains Gx and Gy. We

begin with the x gain Gx and a modification y′i = yi + ∆yi:

Gx = wi − wi(yi + ∆yi)−
∑
j∈N(i)

wjyj (3.28)

G′x = wi − wiy′i −
∑
j∈N(i)

wjyj (3.29)

G′x = wi − wiyi − wi∆yi −
∑
j∈N(i)

wjyj (3.30)

G′x = Gx − wi∆yi (3.31)

We can derive a similar formula for updating a vertex whose neighbor has changed with a

modification y′j = yj + ∆yj:

Gx = wi − wi(yi + ∆yi)−
∑
j∈N(i)

wjyj (3.32)

G′x = wi − wiyi −
∑
j∈N(i)

wjy
′
j (3.33)

G′x = wi − wiyi −
∑
j∈N(i)

wj(yj + ∆yj) (3.34)

G′x = wi − wiyi −
∑
j∈N(i)

wjyj + wj∆yj (3.35)

G′x = Gx + wj∆yj (3.36)

50

Analogous formulas can be derived for the y gain Gy:

G′y = Gy − wi∆xi (3.37)

G′y = Gy + wj∆xj (3.38)

These updates can all be computed in constant (O(1)) time. Therefore, for each vertex move,

the gains for that vertex and all of its neighbors can be computed in O(|N(i)|) time.

3.6 Algorithmic Description

The aforementioned generalized gains were used as a foundation for a new heuristic for solving

the vertex separator problem over arbitrary graphs. The only restrictions placed on the graphs are

that they must have positive vertex weights (or no vertex weights, in which case the weights are

assumed to be 1). The following sections describe the primary portions of the algorithm, followed

by an explanation of how they were combined and implemented as an extension to Mongoose, our

graph partitioning library written in C++.

3.6.1 Heuristic Cost Metric

In practice, graph partitioning is a multiobjective optimization problem, attempting to compute

both a small separator and a balanced partition. To simplify our algorithm and address this issue,

we introduce a single heuristic cost metric:

fheuristic =


∑
i∈V

wi (max{1− xi − yi, 0}) + ψH if ψ > imbalance tolerance

∑
i∈V

wi (max{1− xi − yi, 0}) + ψwmin otherwise
(3.39)

In this metric,
∑

i∈V wi max(1−xi−yi, 0) represents the weight of all vertices in the separator,

H is a large penalty of 3wmax, and ψ is a measure of imbalance defined as follows:

ψ =

∣∣∣∣ptarget − min(|X|, |Y |)
|X|+ |Y |)

∣∣∣∣ (3.40)

51

By default, ptarget = 0.5, representing an ideal 50% split between X and Y , although ptarget

can be specified in the interval (0, 0.5]. We use the minimum of |X| and |Y | so min(|X|,|Y |)
|X|+|Y |) is

guaranteed to be in the same range. Thus, if ptarget = 0.5 and X = Y , then ψ = 0. The default

imbalance tolerance is 0.05.

This imbalance penalty has the following properties (see Figure 3.3):

• With ψ ≤ tolerance, the imbalance penalty is between zero and wmin. In this range, the

penalty will never be large enough to cause the heuristic cost to choose a larger separator over

a smaller one, but does penalize less balanced partitions slightly more than more balanced

ones.

• With ψ > tolerance, the imbalance penalty is very large. While there are cases where

a partition will be found whose imbalance exceeds the tolerance, the relative improvement

must be very significant. This is particularly useful during intermediate steps of the algorithm

when the graph is very coarse and the balance constraint may be difficult to satisfy.

With this heuristic cost metric, we can compare any two partitions and assess their quality. We

aim to minimize this cost metric at all steps in the algorithm, saving better partitions and rejecting

new partitions that evaluate to a larger heuristic cost.

3.6.2 Pre-Processing and Coarsening

A simple undirected input graph is accepted in the form of a symmetric sparse matrix in com-

pressed sparse column format. Edge weights are assumed to be binary for the vertex separator

problem, and vertex weights are assumed to be 1 if not present; if present, vertex weights are made

positive using an absolute value transformation. Starting statistics for the graph are computed,

including minimum and maximum vertex weight. Memory for the x and y vectors is allocated,

along with space for the the X and Y heaps (discussed in Section 3.6.4).

The graph is then coarsened until the coarsened graph is reduced to a user-defined number of

vertices (128 vertices by default).

52

0
ψ

Imbalance
Penalty

Tolerance

wmin

3wmax

Figure 3.3: Plot of imbalance penalty as a function of imbalance

Y Part

X Shore

Vertices

X Part

Y Shore

Vertices

(a)

Y PartX Part

Initial

Separator

(b)

Figure 3.4: Deriving an initial vertex separator from an edge cut.

Using the methods described in Chapter 2, an edge cut is computed for the graph (a). The vertex weights of
each set of shore vertices are summed, and the set with the least weight is chosen as the initial separator part
(b).

53

3.6.3 Initial Separator Selection

Once the graph has been coarsened to a sufficiently small size, an initial vertex separator is

computed. First, an edge cut is computed for the graph using the methods described in Chapter 2.

The vertex weights of the vertices in the shores of the edge cut are summed, and the shore with the

least weight is chosen as the initial separator part (see Figure 3.4).

It is possible, especially for initially large graphs, for this coarsened graph to be a clique. Thus,

a vertex separator does not exist. After the initial separator is computed, if there are zero vertices

in the X or Y parts, the initial partitioning fails. The graph is then uncoarsened once and the initial

partitioning is attempted again. This process is repeated until the partitioning succeeds, producing

three parts (X , Y , and S) with at least one vertex in each.

3.6.4 Uncoarsening and Refinement Loop

Once an initial separator is computed, the graph is repeatedly uncoarsened, with the coarse

solution (which is always a valid, discrete vertex separator) being projected onto the uncoarse (or

parent) graph. After this solution is projected, the vertex separator is refined using several tech-

niques. This refinement loop is done twice by default, but can be done as many times as needed to

obtain a desired quality (at the cost of runtime). Because of the combination of continuous opti-

mization methods and combinatoric approaches, this set of heuristics is termed a hybrid algorithm.

At the beginning of each refinement loop, two max-heaps are built: an X heap and a Y heap.

All vertices not in the X part are added to the X heap, and likewise all vertices not in the Y part

are added to the Y heap. The heaps are keyed by the generalized X and Y gains, respectively, such

that the root of the X heap contains the vertex with the largest X gain that is also not in the X part.

3.6.5 Greedy Knapsack Algorithm

Immediately following uncoarsening and projection, it is common for the initial solution to be

trivially suboptimal, meaning vertices that had been in a minimal separator in the coarse graph are

easily moved to the X or Y parts in the uncoarse graph. To address this, we first treat each part as

an instance of the knapsack problem. We can greedily move vertices at the top of the X heap into

the X part from the separator, and likewise with the Y heap and Y part, until either the best gain

54

becomes negative or such a move would violate the upper or lower bounds on the X and Y parts.

This is a variation of George Dantzig’s greedy algorithm for the knapsack problem [67].

Algorithm 1 Greedy Knapsack Packing Algorithm

Input: x ∈ [0, 1]n; y ∈ [0, 1]n; valid X and Y heaps
Output: fheuristic,out ≤ fheuristic,in

improvement← true
while improvement do

improvement← false
for each part P do

select first unmarked vertex i from top of corresponding heap
if moving vertex i to part P decreases heuristic cost fheuristic then

improvement← true
mark vertex i
move vertex i to part P
update gains for vertex i and N(i)

end if
end for

end while

3.6.6 Quadratic Programming with Gamma Reduction

We now use the quadratic programming formulation of the vertex separator problem to further

optimize the partition. Following the general approach described in Hager and Hungerford (2015)

and Hager et al. (2018) [59, 60], we solve the quadratic programming problem using the mountain

climbing algorithm, a version of successive linear programming (SLP).

As described in Section 3.4.2, the quadratic programming formulation is nonconvex, despite

having relatively straightforward linear box constraints. We can solve this QP (to local optimal-

ity) using what is known as a mountain climbing algorithm. If we fix y to yfixed, the quadratic

55

programming problem simplifies to a linear programming problem (LP):

maximize [w − γ(A + I)yfixed]
T x

subject to 0 ≤ x ≤ 1

`x ≤ 1Tx ≤ ux

(VSP-LP)

An analogous LP for a fixed x vector is solved in succession with VSP-LP until the first order

optimality conditions are satisfied or an iteration limit is reached. This is the mountain (or hill)

climbing algorithm (or MCA) described previously [66, 60]; see Algorithm 2. While more sophis-

ticated optimization techniques exist for optimizing nonconvex QPs, this method is both simple to

implement and fast to execute.

However, we are still left with the question of how to solve the LPs. Thankfully, we can use

the same solver used in Chapter 2 when designing the hybrid algorithm for edge cuts. NAPHEAP

is capable of solving separable convex quadratic knapsack problems, of which the LPs described

are a subset. Thus, we chose to use NAPHEAP to solve the successive LPs.

NAPHEAP requires the objective function in the form of a cost vector; in other words, the

gradient of the objective function with respect to the variables being optimized. As discussed in

Section 3.5.3, we can compute an approximation of the objective function gradient for the quadratic

programming formulation in linear time:

∇xf̃i = wi(1− γ) + γGx,i (3.26)

∇yf̃i = wi(1− γ) + γGy,i (3.27)

3.6.6.1 Gamma Reduction

Solving the quadratic programming problem with a sufficiently large penalty γ often results

in poor solutions, forcing variables to their bounds to avoid constraint violations. To combat this,

and to help better explore the nonconvex search space, the process of gamma reduction was pro-

posed [60]. The QP is first solved (via the mountain climbing algorithm) with a reduced penalty

56

Algorithm 2 Mountain Climbing Algorithm (MCA)

Input: γ > 0; x ∈ [0, 1]n; y ∈ [0, 1]n

while optimality conditions are not satisfied and maximum iterations not reached do
solve VSP-LP for fixed y and variable x
solve VSP-LP for fixed x and variable y

end while

parameter γ, allowing for violations of the separation and exclusivity constraints. Then, the QP

is solved again with a sufficiently large γ, usually wmax, using the previous solution as a starting

point, resulting in a solution with few or no constraint violations. This acts as a perturbation with

the potential to discover better separators that are not near the current separator.

The overall algorithm described in this section is outlined in Algorithm 3.

Algorithm 3 Quadratic Programming Algorithm with Gamma Reduction
γreduced ← wmax
for a specified number of iterations do

(x′, y′)←MCA(γreduced, x, y)
(x∗, y∗)←MCA(wmax, x′, y′)
if heuristic cost is improved then

save current partition and gains
γreduced ← wmax

else {heuristic cost is worse}
restore previous partition and gains
γreduced ← 1

2
γreduced

end if
end for

3.6.7 Continuous Fiduccia-Mattheyses Algorithm

After using the quadratic programming formulation to optimize the current partition, there may

be many elements of the x and y vectors that are not at their binary bounds. To address this, we

have developed a version of the Fiduccia-Mattheyses algorithm that works with the generalized

gains and continuous x and y.

57

First, the vertices with the greatest generalizedX and Y gains (at the top of theX and Y heaps)

are considered for a move to theX or Y parts, respectively. For simplicity, we only consider moves

that will strictly improve the partition, although one could extend this algorithm to make moves

that do not improve the partition to better explore the solution search space. Each of these moves

forces a vertex to either xi = 0, yi = 1 or xi = 1, yi = 0, decreasing the size of the separator and

removing any exclusivity violations. As in the traditional Fiduccia-Mattheyses algorithm, once a

vertex is moved, it cannot be moved again during that iteration.

The iteration terminates when no more such moves exist (i.e. all potential vertices have either

been moved that iteration, or moving them would make the heuristic cost metric worse). The

algorithm is repeated until no improvements are made during an iteration (see Algorithm 4). While

similar, this algorithm is notably different from the previously discussed greedy knapsack packing

algorithm (Section 3.6.5). Instead of alternating between the X and Y parts, this continuous FM

algorithm moves whichever vertex has the highest gain in either of the X or Y heaps. Thus, in

this algorithm, it is possible for several vertices to be successively moved to the same part (if

maxGx > maxGy), while in the greedy knapsack packing, this is generally not the case.

3.6.8 Rectification

Up to this point in the refinement loop, we have assumed continuous values of x and y, but we

ultimately wish to apply the traditional Fiduccia-Mattheyses algorithm and return a valid (discrete)

vertex separator. Using the relationships described in Section 3.5.2, we can quickly iterate through

the vertices inO(n) time and move any vertices with violations into the separator, eliminating such

violations (see Algorithm 5 and Figure 3.5).

For all vertices not strictly in the separator, we check that at least one of the generalized gains

Gx,i or Gy,i is equal to wi. If this is not the case, we move the given vertex to the separator

(xi = yi = 0). Because we check that at least one of the gains must be equal to wi, this also moves

vertices that are partially in a part to the separator (e.g. xi = 0 and yi = 0.5).

58

Algorithm 4 Continuous Fiduccia-Mattheyses Algorithm

Input: x ∈ [0, 1]n; y ∈ [0, 1]n; valid X and Y heaps
Output: fheuristic,out ≤ fheuristic,in

improvement← true
while improvement do

improvement← false
unmark all vertices
select first unmarked vertices i and j from top of X and Y heaps, respectively
if Gx,i > Gy,j and moving vertex i to part X decreases heuristic cost fheuristic then

improvement← true
mark vertex i
move vertex i to part X
update gains for vertex i and N(i)

else if moving vertex j to part Y decreases heuristic cost fheuristic then
improvement← true
mark vertex j
move vertex j to part Y
update gains for vertex j and N(j)

end if
end while

(1, 0)
{-1, -9}

3

2

3

1

53

6

(0, 1)
{-5, 3}

(0, 1)
{-9, 3.8}

(0.2, 1)
{-9.4, 1.3}

(1, 0)
{1, -2}

(1, 1)
{-8.4, -6.7}

(0.5, 0.8)
{-7.4, -1.7}

7

(1, 0)
{7, -1}

(a)

(1, 0)
{1, -7}

3

2

3

1

53

6

(0, 1)
{-5, 3}

(0, 1)
{-9, 5}

(0, 1)
{-5, 6}

(1, 0)
{3, 0}

(0, 0)
{-4, -2}

(0, 1)
{-6, 3}

7

(1, 0)
{7, -1}

Y PartX Part

(b)

Figure 3.5: Rectification of an invalid vertex separator using generalized gains.

(a) An initial graph with continuous x and y vectors, and (b) one possible rectification to eliminate non-
binary and violations to the separation and exclusivity constraints. Vertex weights are shown in bold above
each vertex, with the (x, y) values for each vertex given in parentheses and generalized gains {Gx, Gy}
given in brackets. Note that vertices with no violations (and not in the separator), one of its generalized
gains is equal to the weight of the vertex (shown in bold).

59

Algorithm 5 Rectification

Input: x ∈ [0, 1]n; y ∈ [0, 1]n; valid X and Y heaps
Output: (xi, yi) ∈ {(0, 0), (1, 0), (0, 1)} ∀ i ∈ V

for each vertex i ∈ V do
if Gx,i < wi and Gy,i < wi then

move vertex i to separator part S
update gains for vertex i and N(i)

end if
end for

3.6.9 Discrete Fiduccia-Mattheyses Algorithm

Now that we are guaranteed to have a discrete and valid vertex separator, we can apply the

Fiduccia-Mattheyses algorithm [16]. The generalized gains now equate to the gains used in the

Fiduccia-Mattheyses algorithm. The maximum gains from each of the X and Y heaps are com-

pared, and the vertex corresponding to the greatest gain (subject to balance constraints) is moved

to either the X or Y part. This is repeated for a user-defined number of moves, referred to as the

search depth. Once the search depth is reached, the solution is rolled back to the best solution

found during the search (see Algorithm 6).

It should be noted that this version of the Fiduccia-Mattheyses algorithm also acts as a per-

turbation on the partition by making moves that are not always immediately beneficial. Many

moves may be made that increase the separator or increase imbalance before potentially locating

an improvement.

3.6.10 Weight Perturbation

In an attempt to further explore the search space, we perturb the weight vector for vertices in

the current separator to encourage the algorithm to seek other separators in the graph. One way

to accomplish this is to simply add a penalty to the weights of some or all of the vertices in the

current separator. However, it is possible that some of the vertices in the current separator are in the

globally optimal separator, and should therefore not be penalized. Thus, the selection of vertices

to penalize is purely heuristic.

We have chosen to penalize a randomly chosen subset of vertices in the separator with the

60

Algorithm 6 Discrete Fiduccia-Mattheyses Algorithm

Input: (xi, yi) ∈ {(0, 0), (1, 0), (0, 1)} ∀ i ∈ V ; valid X and Y heaps
Output: fheuristic,out ≤ fheuristic,in

improvement← true
while improvement and iteration limit not reached do

improvement← false
search_depth← 0
unmark all vertices
while search_depth limit not reached do

select first unmarked vertices i and j from top of X and Y heaps, respectively
if Gx,i > Gy,j then

mark vertex i
move vertex i to part X
update gains for vertex i and N(i)
for each vertex k ∈ N(i) ∩ Y do

move vertex k to separator part
update gains for vertex k and N(k)

end for
else if moving vertex j to part Y decreases heuristic cost fheuristic then

mark vertex j
move vertex j to part Y
update gains for vertex j and N(j)
for each vertex k ∈ N(i) ∩X do

move vertex k to separator part
update gains for vertex k and N(k)

end for
end if
if heuristic cost is improved then

improvement← true
best_search_depth← search_depth

end if
end while
roll back to best_search_depth

end while

61

following penalty:

wpenalty,i =
maxww

(ε+ |Gx,i −Gy,i|)
(3.41)

where w is the vertex weight vector, Gx,i and Gy,i are the generalized X and Y gains for vertex

i, and ε is some small positive value to avoid division by zero. Note that the gain term in the

denominator is equivalent to the following expression:

|Gx,i −Gy,i| =

∣∣∣∣∣∣
wi − wiyi −∑

j∈N(i)

wjyj

−
wi − wixi −∑

j∈N(i)

wjxj

∣∣∣∣∣∣ (3.42)

=

∣∣∣∣∣∣
∑
j∈N(i)

wjxj −
∑
j∈N(i)

wjyj

∣∣∣∣∣∣ (3.43)

=

∣∣∣∣∣∣
∑
j∈N(i)

wj(xj − yj)

∣∣∣∣∣∣ (3.44)

For a vertex in the separator, this expression represents the imbalance in weight between its

neighbors in each part. A large such imbalance may imply that the separator vertex is likely to be

moved to another part, even without a weight penalty, while a vertex with a small imbalance may

require a larger penalty to make it beneficial to remove from the separator. Hence, this imbalance

term is placed in the denominator of the penalty.

This penalty function generally works well at perturbing the current solution, but many other

heuristics could be used, such as using some function of vertex degree.

Algorithm 7 Weight Perturbation
for each vertex i in the separator part do
wi ← (wi + wpenalty,i)
update gains for vertex i and N(i)

end for

62

3.7 Implementation

The multi-part algorithm described in the previous section was implemented in C++ as a sig-

nificant extension to the graph partitioning library, Mongoose, described in Chapter 2. To ensure

reliability and correctness of the codebase, the following software engineering tools and techniques

were used in development:

• A thorough test suite written using Catch2 [68] resulting in near-total (97%+) code coverage.

• Continuous integration testing using Travis CI [69] to ensure compatibility with a variety of

compilers and compiler versions on Linux and macOS.

• Static analysis using Cppcheck [70].

• Dynamic analysis using Valgrind [71] to detect and fix memory leaks and uninitialized vari-

ables.

Despite the increased efficiency of this implementation due to the generalized gains, the con-

tinuous portions of the algorithm described in Sections 3.6.5, 3.6.6, 3.6.7, and 3.6.8 are utilized

only for graphs with no more than 10,000 vertices, mainly due to the computational complexity of

solving the quadratic programming formulation using NAPHEAP and the mountain climbing algo-

rithm. Using other techniques, such as other QP and LP solvers, may result in better performance

and enable our algorithm to utilize the continuous portions of the algorithm on larger graphs.

Altogether, these techniques are combined into a multilevel hybrid vertex separator algorithm,

described at a high level in Algorithm 8.

3.8 Computational Results

In this section, we examine the computational performance of Mongoose compared to METIS,

the same graph partitioning library we compared our edge cut algorithm with. All experiments

were run on a 24-core dual-socket 2.40 GHz Intel Xeon E5-2695 v2 system with 768 GB of mem-

ory. Only one thread was utilized, as both Mongoose and METIS are serial algorithms. All com-

parisons were conducted with METIS 5.1.0 and compiled with GCC 4.8.5 on CentOS 7.

63

Algorithm 8 Overall Multilevel Hybrid Vertex Separator Algorithm

Input: A simple, undirected, weighted graph G = (V,E)
Output: A vertex separator partition of G

while |V | > coarsen_limit do
coarsen graph (Section 3.6.2)

end while
compute an initial vertex separator (Section 3.6.3)
while graph can still be uncoarsened do

for a set number of iterations do
if |V | < 1× 104 then

apply Greedy Knapsack Algorithm (Section 3.6.5)
apply Quadratic Programming with Gamma Reduction (Section 3.6.6)
apply Continuous Fiduccia-Mattheyses Algorithm (Section 3.6.7)
apply Rectification (Section 3.6.8)

end if
apply Discrete Fiduccia-Mattheyses Algorithm (Section 3.6.9)
if heuristic cost is improved then

save current partition and gains
else {heuristic cost is worse}

restore previous partition and gains
end if
apply weight vector perturbation (Section 3.6.10)

end for
end while

64

Table 3.1: Performance comparison between Mongoose and METIS on all 2,778 graphs from (or
formed from) the SuiteSparse Collection with imbalance tolerance of 20%.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 1414 101 1515

Tie 683 8 691

Mongoose 480 92 572

2577 201 2778

For consistency, each partitioner was run five times for each problem. The highest and lowest

times are removed, and the remaining three are averaged (i.e. a 40% trimmed mean). However,

only a single trial is used if the partitioner took more than one hour to partition a given graph.

Default options were used, and a target split of 50%/50% was used with tolerances of 1.5% and

20% to compare the effects of imbalance constraints.

Our first comparison is on the entire SuiteSparse Matrix Collection [11]. As in Section 2.7,

we filter the collection to remove complex matrices, and unsymmetric graphs are used to form an

augmented system B =

0m,m A

AT 0n,n

. All diagonal values (self-edges) were removed, and the

matrix was treated as a pattern matrix. All input weights were assumed to be 1. This yielded 2,778

graphs (93 matrices were added to the collection since the results in Chapter 2 were tabulated).

Tables 3.1 and 3.2 show the overall results comparing METIS and Mongoose with 20% and

1.5% imbalance tolerance, respectively. In the majority of cases (∼51% for the 20% tolerance

and ∼66% for the 1.5% tolerance), METIS provides a better quality cut in less time compared to

Mongoose.

However, there are two flaws with this comparison. First, a number of results from both Mon-

goose and METIS violate the stated imbalance tolerances (see Figure 3.6). To address this point,

we can choose to treat all solutions returned by either library in violation of the imbalance con-

straint as a failure. Revised tables taking into account such failures are shown in Tables 3.3 and

65

Table 3.2: Performance comparison between Mongoose and METIS on all 2,778 graphs from (or
formed from) the SuiteSparse Collection with imbalance tolerance of 1.5%.

Better Time

METIS Mongoose
B

et
te

r
C

ut
METIS 1826 105 1931

Tie 385 1 386

Mongoose 385 76 461

2596 182 2778

(a) (b)

Figure 3.6: Imbalance comparison between Mongoose and METIS with different imbalance toler-
ances on all 2,778 graphs from the SuiteSparse Collection.

The imbalance of the reported vertex separator provided by both METIS and Mongoose with a specified im-
balance tolerance of (a) 20% and (b) 1.5%. Note how both partitioners fail on a sizable subset of the graphs.
METIS generally fails with smaller violations, but on more graphs overall (∼28–33%), while Mongoose
treats the imbalance tolerance more strictly, failing on fewer graphs (∼7–23%) but with sometimes greater
violations.

66

Table 3.3: Performance comparison between Mongoose and METIS on all 2,778 graphs from (or
formed from) the SuiteSparse Collection with imbalance tolerance of 20%, treating imbalance
violations as failures.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 973 51 1024

Tie 674 5 679

Mongoose 272 640 912

1919 696 2615

3.4. In the 20% imbalance tolerance case, both METIS and Mongoose failed to return a separator

within the balance constraint in 163 instances, with Mongoose failing on 201 (∼7%) and METIS

failing on 791 (∼28%). In the 1.5% imbalance case, neither library returned a solution within

the tolerance on 621 instances, with Mongoose failing on 628 (∼23%) and METIS failing on 921

(∼33%).

As METIS generally fails more often to return a separator with the specified balance, these

results reflect slightly more favorably on Mongoose. METIS finds a better (balanced) separator in

less time in only 37% of cases at 20% imbalance, and 58% at 1.5% imbalance, while Mongoose

now finds a better (balanced) separator in less time in 24% and 14% of cases at 20% and 1.5%

imbalance, respectively.

The other flaw with the original comparison involves the size of the graphs formed from the

SuiteSparse Matrix Collection. While the Collection is an excellent cross-section of applications

and matrix types, nearly 20% of the graphs have fewer than 1,000 vertices, and almost all of

them (∼94%) have fewer than 1,000,000 vertices. For small graphs, runtimes may be measured in

milliseconds. We wish to focus our comparison on partitioner performance when partitioning very

large graphs, where runtimes can take significantly longer (more than one hour in some cases)

and scalability becomes more important. Thus, we limit the Collection to graphs with at least

10,000,000 vertices, which represent more modern computational loads such as applications in

67

Table 3.4: Performance comparison between Mongoose and METIS on all 2,778 graphs from (or
formed from) the SuiteSparse Collection with imbalance tolerance of 1.5%, treating imbalance
violations as failures.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 1252 53 1305

Tie 337 0 337

Mongoose 206 309 515

1795 362 2157

Big Data and exascale computing.

The Collection contains 42 such graphs with 10,000,000 vertices or more. If we repeat the

previous analysis on this subset, again excluding failures, we find that Mongoose scales extremely

well when compared to METIS (see Tables 3.5 and 3.6 and Figures 3.7, 3.8, 3.9, and 3.10). Mon-

goose yields faster execution in almost all cases with very few imbalance violations. However,

despite this scaling, METIS generally still provides better cuts most of the time (∼63% of cases

for the 0.2 imbalance constraint, and ∼89% of cases for the 1.5% imbalance constraint).

The largest graph in the collection (Sybrandt/MOLIERE_2016) has more than 30 billion ver-

tices and more than 6 trillion edges. Even on our computational server with 768GB of memory,

METIS was unable to partition this graph due to memory constraints. However, Mongoose was

able to partition this graph in approximately two hours with a separator of size 24,899,311 that

satisfies the balance constraint of 1.5%, and a separator of size 21,688,654 that satisfies the 20%

balance constraint.

If we examine the performance on the 15 largest graphs (by vertex count) in the Collection, we

see that Mongoose has a significant edge in runtime, although METIS provides generally smaller

separators (see Table 3.7). As has been the trend to this point, Mongoose more often satisfies the

imbalance constraint, and scales better to larger graphs in run-time.

68

Table 3.5: Performance comparison between Mongoose and METIS on 42 large graphs
(10,000,000+ vertices) from (or formed from) the SuiteSparse Collection with imbalance toler-
ance of 20%.

Better Time

METIS Mongoose
B

et
te

r
C

ut
METIS 1 25 26

Tie 0 2 2

Mongoose 0 13 13

1 40 41

(a) (b)

Figure 3.7: Wall time (a) and separator size (b) comparison between Mongoose and METIS with
20% imbalance tolerance on large graphs (10,000,000+ vertices) from the SuiteSparse Collection,
including results with imbalance constraint violations.

For all 42 large graphs, Mongoose completed execution faster, but provided a better separator on only 7
graphs (with an additional 2 ties). However, imbalance violations were not removed from this data. On 10
of these graphs, METIS returned a separator in violation of the imbalance constraint; Mongoose returned
only 1 result that violated the same constraint. See Figure 3.9 for this same plot with violations removed.

69

(a) (b)

Figure 3.8: Wall time (a) and separator size (b) comparison between Mongoose and METIS with
1.5% imbalance tolerance on large graphs (10,000,000+ vertices) from the SuiteSparse Collection,
including results with imbalance constraint violations.

For all 42 large graphs, Mongoose completed execution faster, but provided a better separator on only 7
graphs (with an additional 2 ties). However, imbalance violations were not removed from this data. On 10
of these graphs, METIS returned a separator in violation of the imbalance constraint; Mongoose returned
only 1 result that violated the same constraint. See Figure 3.10 for this same plot with violations removed.

(a) (b)

Figure 3.9: Wall time (a) and separator size (b) comparison between Mongoose and METIS with
20% imbalance tolerance on the large graphs (10,000,000+ vertices) from the SuiteSparse Collec-
tion with results that violate the imbalance constraint treated as failures.

For all except 1 of the 42 large graphs, Mongoose completed execution faster, with the exception being
an imbalance constraint violation. METIS returned a separator in violation of the imbalance constraint for
10 graphs; these were treated as infinite time and infinite size cuts. Mongoose returned only 1 result that
violated the same constraint and was treated the same as the ones returned in violation by METIS, with
infinite time and an infinite size cut. See Figure 3.7 for this same plot with violations included and ignored.

70

(a) (b)

Figure 3.10: Wall time (a) and separator size (b) comparison between Mongoose and METIS
with 1.5% imbalance tolerance on the large graphs (10,000,000+ vertices) from the SuiteSparse
Collection with results that violate the imbalance constraint treated as failures.

For all except 1 of the 42 large graphs, Mongoose completed execution faster, with the exception being
an imbalance constraint violation. METIS returned a separator in violation of the imbalance constraint for
10 graphs; these were treated as infinite time and infinite size cuts. Mongoose returned only 1 result that
violated the same constraint and was treated the same as the ones returned in violation by METIS, with
infinite time and an infinite size cut. See Figure 3.8 for this same plot with violations included and ignored.

Table 3.6: Performance comparison between Mongoose and METIS on 42 large graphs
(10,000,000+ vertices) from (or formed from) the SuiteSparse Collection with imbalance toler-
ance of 1.5%.

Better Time

METIS Mongoose

B
et

te
r

C
ut

METIS 1 24 25

Tie 0 0 0

Mongoose 0 3 3

1 27 28

71

Ta
bl

e
3.

7:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
M

on
go

os
e

an
d

M
E

T
IS

on
th

e
15

la
rg

es
t(

by
ve

rt
ic

es
)g

ra
ph

s
in

th
e

Su
ite

Sp
ar

se
C

ol
le

ct
io

n.
N

ot
e

th
at

th
e

bi
pa

rt
ite

gr
ap

h
is

fo
rm

ed
fo

ru
ns

ym
m

et
ri

c
(d

ir
ec

te
d)

gr
ap

hs
.I

m
ba

la
nc

e
vi

ol
at

io
ns

ar
e

de
no

te
d

w
ith

an
as

te
ri

sk
,a

nd
re

su
lts

w
ith

cl
ea

rl
y

be
tte

rp
er

fo
rm

an
ce

(i
.e

.b
et

te
rr

un
tim

e
an

d/
or

se
pa

ra
to

rs
iz

e
w

ith
no

im
ba

la
nc

e
vi

ol
at

io
n)

ar
e

de
no

te
d

in
bo

ld
.

Pr
ob

le
m

W
al

lT
im

e
(s

)
Se

pa
ra

to
rS

iz
e

(|S
|)

Im
ba

la
nc

e
(ψ

)

G
ra

ph
N

am
e

V
er

tic
es

E
dg

es
M

E
T

IS
M

on
go

os
e

Sp
ee

du
p

M
E

T
IS

M
on

go
os

e
R

el
at

iv
e

|S
|S

iz
e

M
E

T
IS

M
on

go
os

e

L
A

W
/w

eb
ba

se
-2

00
1

23
6,

28
4,

31
0

2,
03

9,
80

6,
38

0
90

9.
0

12
9.

3
7.

03
35

38
5

0
0

0.
19

92
2

*0
.2

00
09

M
A

W
I/

m
aw

i_
20

15
12

02
03

30
22

6,
19

6,
18

5
48

0,
04

7,
89

0
47

4.
6

82
.1

5.
78

1
21

15
21

15
0.

00
02

9
0.

18
05

9
G

en
B

an
k/

km
er

_V
1r

21
4,

00
5,

01
7

46
5,

41
0,

90
4

91
8.

5
21

9.
8

4.
18

17
94

89
1

51
27

9
0.

02
9

*0
.4

94
11

0.
16

31
0

G
en

B
an

k/
km

er
_A

2a
17

0,
72

8,
17

5
36

0,
58

5,
17

2
64

3.
2

20
9.

9
3.

06
1,

03
8,

18
0

17
,1

07
,8

8
1.

65
0.

19
42

8
0.

16
70

7
G

en
B

an
k/

km
er

_P
1a

13
9,

35
3,

21
1

29
7,

82
9,

98
4

50
5.

6
16

5.
1

3.
06

82
6,

27
5

1,
56

3,
90

2
1.

89
0.

19
35

0
0.

17
78

9
M

A
W

I/
m

aw
i_

20
15

12
02

01
30

12
8,

56
8,

73
0

27
0,

23
4,

84
0

22
1.

9
41

.5
5.

34
1

82
5

82
5

0.
00

00
1

0.
00

00
0

L
A

W
/s

k-
20

05
10

1,
27

2,
30

8
3,

89
8,

82
5,

20
2

90
7.

9
19

8.
0

4.
59

25
,6

81
1,

07
7,

21
9

41
.9

0.
19

99
9

*0
.2

00
03

SN
A

P/
tw

itt
er

7
83

,3
04

,4
60

2,
93

6,
73

0,
36

4
14

,0
64

.5
3,

90
9.

5
3.

60
2,

21
1,

78
8

27
,2

45
,5

84
12

.3
0.

19
98

0
*0

.2
19

12
L

A
W

/it
-2

00
4

82
,5

83
,1

88
2,

30
1,

45
0,

87
2

46
8.

8
12

1.
8

3.
85

41
,4

93
1,

58
7,

84
2

38
.3

0.
19

99
9

*0
.2

00
22

L
A

W
/u

k-
20

05
78

,9
19

,8
50

1,
87

2,
72

8,
56

4
37

8.
5

10
6.

0
3.

57
74

,9
39

2,
29

9,
81

3
30

.7
0.

19
99

9
*0

.2
00

69
M

A
W

I/
m

aw
i_

20
15

12
02

00
30

68
,8

63
,3

15
14

3,
41

4,
96

0
96

.9
25

.8
3.

75
1

46
3

46
3

0.
00

00
1

0.
19

92
3

G
en

B
an

k/
km

er
_U

1a
67

,7
16

,2
31

13
8,

77
8,

56
2

14
3.

7
62

.5
2.

30
19

2,
26

0
27

0,
83

6
1.

41
0.

19
53

9
0.

17
14

2
SN

A
P/

co
m

-F
ri

en
ds

te
r

65
,6

08
,3

66
3,

61
2,

13
4,

27
0

14
,7

37
.2

4,
61

7.
4

3.
19

3,
12

7,
47

4
11

,2
73

,5
76

3.
60

0.
00

06
9

0.
19

95
7

G
en

B
an

k/
km

er
_V

2a
55

,0
42

,3
69

11
7,

21
7,

60
0

11
1.

7
52

.2
2.

14
11

9,
57

2
19

3,
59

9
1.

62
0.

19
65

4
0.

16
91

9
D

IM
A

C
S1

0/
eu

ro
pe

_o
sm

50
,9

12
,0

18
10

8,
10

9,
32

0
56

.7
21

.6
2.

62
19

9
43

3
2.

18
0.

05
59

1
0.

19
24

7

72

3.9 Summary

In this chapter, we have described the use of computational optimization in a novel hybrid algo-

rithm for computing vertex separators in arbitrary graphs. We have derived generalized gains that

can be used to bridge the gap between combinatoric and continuous approaches to partitioning, and

built an algorithm around these gains, and reported computational results for this new algorithm.

It should be noted that this algorithm, while demonstrating favorable scaling properties and

being competitive with METIS on very large graphs, is only the starting point for future devel-

opments. With the generalized gains, additional sub-algorithms can be created that build off of

Mongoose with the goal of yielding higher quality and better balanced partitions. In short, while

Mongoose has been engineered to be high-quality scientific software (see Section 3.7), it should

still be considered a prototype code with room for future optimizations and improvements.

In the next chapter, we conclude and describe future directions for the Mongoose library and

hybrid algorithms for graph partitioning in general.

73

4. CONCLUSIONS AND FUTURE WORK

We have explored two types of graph partitioning, edge cuts and vertex separators, and ap-

plied a number of computational optimization approaches to develop novel heuristic partitioning

algorithms.

Many possible future directions exist for further improving the algorithms proposed in this

work, as well as for developing new optimization formulations for both the graph partitioning

problems discussed here and for others, such as hypergraph partitioning.

4.1 Parallelization

While we have limited ourselves to serial computation for the proposed algorithms and for

all comparisons to the state of the art, the natural progression of this work is the development

of versions of these graph partitioning algorithms that exploit computational parallelism. There

are many existing graph partitioning libraries that utilize parallelism, using either multiple CPU

threads or external accelerators such as GPUs [26, 28, 31, 30].

Many of these parallel graph partitioning libraries focus on subdividing the the graph and pro-

cessing these subgraphs in parallel. For example, one can use techniques from community detec-

tion and clustering, such as label propagation, to spatially subdivide the graph and process each

part largely independently of the others. While these techniques are often effective, they are also

highly dependent on the cluster size and the graph topology itself.

Hybrid techniques allow another avenue for exploiting parallelism: numerical optimization.

Depending on how the optimization portion of the hybrid algorithm is solved, parallelism can be

introduced in the following areas:

• Multi-threaded and GPU-accelerated sparse linear algebra in the solving of LPs, QPs, and

LP subproblems of MILPs.

• Parallel sparse matrix-vector multiply in the updating of generalized gains in the hybrid

vertex separator algorithm presented in Chapter 3.

74

• Parallel exploration of the branch-and-bound tree when solving MILPs.

Further exploration of the MILP formulation of the vertex separator problem, described in

Section 3.4.1, may be especially worthwhile, given the potential for parallelism in that approach.

4.2 Further Algorithmic Optimizations

Currently, both graph partitioning algorithms (the edge cut algorithm from Chapter 2 and the

vertex separator algorithm from Chapter 3) are generally competitive, but could be further opti-

mized both in run-time performance and cut quality. For example, Intel MKL kernels [72] and the

Sparse BLAS [73] could be used to exploit vectorization and sparse linear algebra operations. Also,

a sensitivity analysis could be performed on the vertex separator algorithm’s many user-specified

options to determine optimal defaults.

The BLP algorithm proposed by Hager, Hungerford, and Safro [60] may also provide a starting

point for further improvements to Mongoose. While BLP is not optimized for speed, it yields high-

quality vertex separators, and utilizes much of the same hybrid approach of applying continuous

optimization in tandem with traditional combinatoric approaches.

Another area for further development and optimization is the use of heaps in both algorithms

described in Chapters 2 and 3. Currently, a simple binary heap is used, but other forms of heaps (or,

more specifically, priority queues) may yield better performance. Asymptotically, Fibonacci heaps

offer superior time complexity when compared to binary heaps, with O(1) amortized insertion.

However, they suffer from large constant factors that may prove too costly when operating on

smaller graphs [34].

4.3 Extensions to k-way Partitioning

Another class of graph partitioning problems involve partitioning the graph into k subgraphs,

usually with k ≥ 3. While k-way partitioning can be approximated using the methods described

in this work by applying the proposed algorithms recursively, oftentimes it is more effective to use

an algorithm specifically designed for k-way partitioning. Still, the proposed algorithms could be

used as a starting point for novel k-way partitioning algorithms and libraries.

75

4.4 Hypergraph Partitioning

A hypergraph is a graph whose edges (referred to as hyperedges or nets) may connect more

than two vertices (see Section 1.2.1). Hypergraphs have wide applicability in areas such as VLSI

design, as more than two electrical components can be connected to each other with a single wire

or lead. They are also a generalization of traditional undirected graphs, and thus approaches to

hypergraph partitioning can be used to partition traditional graphs.

Similar to edge cuts in graph (non-hypergraph) partitioning, the goal of hypergraph partitioning

is to partition the vertices of a hypergraph such that the fewest hyperedges are cut. In this context,

a cut hyperedge is one which contains at least one vertex in each part X and Y .

Despite optimization formulations existing for both edge cuts and vertex separators of tradi-

tional graphs, a canonical optimization formulation for hypergraph partitioning has not been put

forth. Given hypergraph consisting of a set of n vertices V , a set of m hyperedges E, and an n× 1

vertex weight vector w, we propose the following formulation and its derivation as a foundation

for future development:

minimize Ax ◦A(1− x)

subject to

` ≤ wTx ≤ u

0 ≤ x ≤ 1

x ∈ Rn

(HP-QP)

In this formulation, the matrix A is the hypergraph incidence matrix, the hypergraph equivalent

of an adjacency matrix. Instead of Aij representing the weight or existence of an edge between

vertices i and j, A is anm×n binary matrix representingm hyperedges and n vertices. Each row in

A represents a hyperedge ej with the following relationship, given a row (hyperedge) j ∈ 1, ...,m

and column (vertex) i ∈ 1, ..., n:

76

Aij =


1 if vertex vi ∈ ej

0 otherwise
(4.1)

The n× 1 vector x represents whether a vertex vi is in one part or the other in the partitioning:

xi =


1 if vertex vi is contained in part X

0 if vertex vi is contained in part Y
(4.2)

If all the vertices in a hyperedge ej are located in one part, then either xi = 0 or xi = 1 ∀ vi ∈

ej . It follows that Aj,∗x = 0 or Aj,∗(1 − x) = 0, so [xTAj,∗] · [(1 −Aj,∗x)] = 0. Thus, for any

edge that is not cut, it will contribute zero toward the objective function. However, if an edge is

cut, then [Aj,∗x] · [Aj,∗(1− x)] ≥ 1.

The constraints for this optimization formulation are analogous to the constraints in the formu-

lation for traditional edge cuts, with a balance constraint limiting the size of each part and limiting

the elements of x to the closed, continuous range of xi ∈ [0, 1].

Unfortunately, this formulation is incomplete and requires further development. The objective

function does not treat all possible cuts of a given hyperedge equally. For example, let us assume

that A = [1 1 1 1], a single hyperedge in a hypergraph with four vertices. Consider the following

two partitionings: x1 = [0 0 1 1]T and x2 = [0 0 0 1]T.

Ax1 ◦A(1− x1) =

[
1 1 1 1

]


0

0

1

1


◦
[
1 1 1 1

]


1

1

0

0


= 2 · 2 = 4 (4.3)

77

Ax2 ◦A(1− x2) =

[
1 1 1 1

]


0

0

0

1


◦
[
1 1 1 1

]


1

1

1

0


= 1 · 3 = 3 (4.4)

In both cases, a single hyperedge is cut, but the contribution to the objective function is differ-

ent. Thus, this objective function not only penalizes cut hyperedges, it also penalizes more for cut

hyperedges whose vertices are more symmetrically partitioned (2 and 2 versus 3 and 1). Nonethe-

less, this formulation roughly approximates the hyperedge partitioning problem, and can likely be

developed further to more accurately model the problem.

78

REFERENCES

[1] T. A. Davis, W. W. Hager, S. P. Kolodziej, and S. N. Yeralan, “Algorithm XXX: Mongoose,

a graph coarsening and partitioning library,” ACM Trans. Math. Software, 2019.

[2] C.-E. Bichot and P. Siarry, Graph Partitioning. Wiley Online Library, 2011.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins University Press,

4 ed., 2013.

[4] T. Bui and C. Jones, “Finding good approximate vertex and edge partitions is NP-hard,”

Information Processing Letters, vol. 42, no. 3, pp. 153–159, 1992.

[5] M. U. Nisar, A. Fard, and J. A. Miller, “Techniques for graph analytics on big data,” in 2013

IEEE International Congress on Big Data, pp. 255–262, IEEE, 2013.

[6] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in big data analytics,” Journal of

Parallel and Distributed Computing, vol. 74, no. 7, pp. 2561–2573, 2014.

[7] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar,

A. Lumsdaine, H. Meyerhenke, et al., “Mathematical foundations of the GraphBLAS,” in

2016 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–9, IEEE, 2016.

[8] T. Davis, “Algorithm 9xx: SuiteSparse: GraphBLAS: graph algorithms in the language of

sparse linear algebra,” ACM Trans. Math. Software, 2019.

[9] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distribution method for parallel

sparse matrix-vector multiplication,” SIAM Review, vol. 47, no. 1, pp. 67–95, 2005.

[10] A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal on Numerical

Analysis, vol. 10, no. 2, pp. 345–363, 1973.

[11] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM Trans.

Math. Software, vol. 38, pp. 1:1–1:25, Dec. 2011.

79

[12] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular

graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[13] H. D. Simon, “Partitioning of unstructured problems for parallel processing,” Computing

Systems in Engineering, vol. 2, no. 2-3, pp. 135–148, 1991.

[14] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel computing,” Parallel

Computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[15] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell

System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[16] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network parti-

tions,” in 19th Conference on Design Automation, 1982., pp. 175–181, June 1982.

[17] C. Ashcraft and J. W. Liu, “A partition improvement algorithm for generalized nested dissec-

tion,” Boeing Computer Services, Seattle, WA, Tech. Rep. BCSTECH-94-020, 1994.

[18] B. Hendrickson and E. Rothberg, “Improving the run time and quality of nested dissection

ordering,” SIAM J. Sci. Comput., vol. 20, pp. 468–489, Dec. 1998.

[19] S. Barnard and H. Simon, “Fast multilevel implementation of recursive spectral bisection for

partitioning unstructured problems,” Concurrency: Practice and Experience, vol. 6, no. 2,

pp. 101–117, 1994.

[20] B. Hendrickson and R. Leland, “A multi-level algorithm for partitioning graphs,” SuperCom-

puting Conference, p. 28, 1995.

[21] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with eigenvectors of

graphs,” SIAM Journal on Matrix Analysis and Applications, vol. 11, no. 3, pp. 430–452,

1990.

[22] W. W. Hager and Y. Krylyuk, “Graph partitioning and continuous quadratic programming,”

SIAM Journal on Discrete Mathematics, vol. 12, no. 4, pp. 500–523, 1999.

80

[23] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 22, pp. 888–905, Aug 2000.

[24] Bui, Chaudhuri, Leighton, and Sipser, “Graph bisection algorithms with good average case

behavior,” Combinatorica, vol. 7, no. 2, pp. 171–191, 1987.

[25] G. Karypis and V. Kumar, “Parallel multilevel graph partitioning,” in Proceedings of Interna-

tional Conference on Parallel Processing, pp. 314–319, IEEE, 1996.

[26] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning and sparse

matrix ordering,” Journal of Parallel and Distributed Computing, vol. 48, no. 1, pp. 71–95,

1998.

[27] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph partitioning:

applications in VLSI domain,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 7, no. 1, pp. 69–79, 1999.

[28] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in Parallel & Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on, pp. 225–236, IEEE, 2013.

[29] F. Pellegrini and J. Roman, “Scotch: A software package for static mapping by dual re-

cursive bipartitioning of process and architecture graphs,” in International Conference on

High-Performance Computing and Networking, pp. 493–498, Springer, 1996.

[30] C. Chevalier and F. Pellegrini, “PT-Scotch: A tool for efficient parallel graph ordering,”

Parallel Computing, vol. 34, no. 6-8, pp. 318–331, 2008. Parallel Matrix Algorithms and

Applications.

[31] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, “The Zoltan and Isorropia

parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring,”

Scientific Programming, vol. 20, no. 2, pp. 129–150, 2012.

[32] Ü. V. Çatalyürek and C. Aykanat, “PaToH: A multilevel hypergraph partitioning tool,” Tech.

Rep. BU-CE-9915, 1999.

81

[33] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decomposition for parallel

sparse-matrix vector multiplication,” IEEE Transactions on Parallel and Distributed Systems,

vol. 10, pp. 673–693, July 1999.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. MIT

Press, 2009.

[35] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why the simplex algo-

rithm usually takes polynomial time,” J. ACM, vol. 51, pp. 385–463, May 2004.

[36] J. Nocedal and S. Wright, Numerical Optimization. Springer Science & Business Media,

2006.

[37] M. J. Quinn and N. Deo, “An upper bound for the speedup of parallel best-bound branch-

and-bound algorithms,” BIT Numerical Mathematics, vol. 26, no. 1, pp. 35–43, 1986.

[38] B. Gendron and T. Crainic, “Parallel branch-and-bound algorithms: Survey and synthesis,”

Operations Research, vol. 42, no. 6, pp. 1042–1066, 2011.

[39] A. Pothen, “Graph partitioning algorithms with applications to scientific computing,” in Par-

allel Numerical Algorithms, pp. 323–368, Springer, 1997.

[40] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell

System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[41] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in Proc. 1995 Intl. Conf.

Parallel Processing, pp. 113–122, CRC Press, 1995.

[42] A. Gupta, “Fast and effective algorithms for graph partitioning and sparse-matrix ordering,”

IBM Journal of Research and Development, vol. 41, pp. 171–183, Jan 1997.

[43] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis, “Improving

graph partitioning for modern graphs and architectures,” in Proceedings of the 5th Workshop

on Irregular Applications: Architectures and Algorithms, p. 14, ACM, 2015.

82

[44] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simu-

lated annealing: an experimental evaluation; part I, graph partitioning,” Operations Research,

vol. 37, no. 6, pp. 865–892, 1989.

[45] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser, “Min-cut clustering,” Mathematical Pro-

gramming, vol. 62, no. 1-3, pp. 133–151, 1993.

[46] T. A. Davis, W. W. Hager, and J. T. Hungerford, “An efficient hybrid algorithm for the sep-

arable convex quadratic knapsack problem,” ACM Trans. Math. Software, vol. 42, pp. 22:1–

22:25, May 2016.

[47] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,”

Math. Program., vol. 91, pp. 201–213, 2002.

[48] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” in Proc. of

the Thirteenth International World Wide Web Conference (WWW 2004), pp. 595–601, ACM

Press, 2004.

[49] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A multiresolu-

tion coordinate-free ordering for compressing social networks,” in Proceedings of the 20th

International Conference on World Wide Web, ACM Press, 2011.

[50] C. de Souza and E. Balas, “The vertex separator problem: algorithms and computations,”

Mathematical Programming, vol. 103, no. 3, pp. 609–631, 2005.

[51] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Com-

putations, pp. 85–103, Springer, 1972.

[52] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Sci-

ence, vol. 220, no. 4598, pp. 671–680, 1983.

[53] C. Blum, “Ant colony optimization: Introduction and recent trends,” Physics of Life reviews,

vol. 2, no. 4, pp. 353–373, 2005.

83

[54] P. Kuntz, P. Layzell, and D. Snyers, “A colony of ant-like agents for partitioning in vlsi

technology,” in Proceedings of the Fourth European Conference on Artificial Life, pp. 417–

424, MIT Press, Cambridge, MA, 1997.

[55] P. Korošec, J. Šilc, and B. Robič, “Solving the mesh-partitioning problem with an ant-colony

algorithm,” Parallel Computing, vol. 30, no. 5-6, pp. 785–801, 2004.

[56] A. H. Land and A. G. Doig, “An automatic method of solving discrete programming prob-

lems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960.

[57] E. Balas, “An additive algorithm for solving linear programs with zero-one variables,” Oper-

ations Research, vol. 13, no. 4, pp. 517–546, 1965.

[58] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research,

vol. 14, no. 4, pp. 699–719, 1966.

[59] W. Hager and J. Hungerford, “Continuous quadratic programming formulations of opti-

mization problems on graphs,” European Journal of Operational Research, vol. 240, no. 2,

pp. 328–337, 2015.

[60] W. W. Hager, J. T. Hungerford, and I. Safro, “A multilevel bilinear programming algorithm

for the vertex separator problem,” Computational Optimization and Applications, vol. 69,

no. 1, pp. 189–223, 2018.

[61] J. E. Falk and R. M. Soland, “An algorithm for separable nonconvex programming problems,”

Management Science, vol. 15, no. 9, pp. 550–569, 1969.

[62] H. S. Ryoo and N. V. Sahinidis, “A branch-and-reduce approach to global optimization,”

Journal of Global Optimization, vol. 8, no. 2, pp. 107–138, 1996.

[63] G. Gallo and A. Ülkücü, “Bilinear programming: an exact algorithm,” Mathematical Pro-

gramming, vol. 12, no. 1, pp. 173–194, 1977.

[64] L. N. Vicente and P. H. Calamai, “Bilevel and multilevel programming: A bibliography re-

view,” Journal of Global Optimization, vol. 5, no. 3, pp. 291–306, 1994.

84

[65] S. Dempe, “Annotated bibliography on bilevel programming and mathematical programs

with equilibrium constraints,” Optimization, vol. 52, no. 3, pp. 333–359, 2003.

[66] H. Konno, “A cutting plane algorithm for solving bilinear programs,” Mathematical Pro-

gramming, vol. 11, no. 1, pp. 14–27, 1976.

[67] G. B. Dantzig, “Discrete-variable extremum problems,” Operations Research, vol. 5, no. 2,

pp. 266–288, 1957.

[68] P. Nash, “Catch2.” https://github.com/catchorg/Catch2.

[69] Travis CI, GmbH, “Travis CI.” https://travis-ci.com.

[70] D. Marjamäki, “Cppcheck: a tool for static C/C++ code analysis,” 2013.

[71] J. Seward and N. Nethercote, “Using Valgrind to detect undefined value errors with bit-

precision,” in Proceedings of the Annual Conference on USENIX Annual Technical Con-

ference, ATEC ’05, (Berkeley, CA, USA), pp. 2–2, USENIX Association, 2005.

[72] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, “Intel math kernel

library,” in High-Performance Computing on the Intel R© Xeon PhiTM, pp. 167–188, Springer,

2014.

[73] K. Remington and R. Pozo, “NIST Sparse BLAS: User’s Guide,” tech. rep., Citeseer, 1996.

85

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION TO GRAPH PARTITIONING
	Graph Partitioning
	Preliminaries
	Graphs
	Hypergraphs
	Graph Representations
	Adjacency Matrix
	Compressed Sparse Column Format

	Graph Partitioning Problems
	Edge Cuts
	Vertex Separators
	Complexity

	Applications
	Graph Analytics and Data Partitioning
	Sparse Matrix Orderings and Nested Dissection
	Parallel and Distributed Computation Load Balancing

	Established Methods for Graph Partitioning
	Combinatoric Local Search
	Graph Coarsening and Refinement
	Spectral and Eigenvector Partitioning
	Normalized Cut and Image Segmentation
	Network Flow Algorithms
	Existing Software Libraries

	New Approaches Using Optimization Formulations
	Overview of Optimization Techniques
	Linear Programming
	Quadratic Programming
	Mixed-Integer Linear Programming

	COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING EDGECUTS
	Introduction
	Problem Definition
	Applications

	Related Work
	Combinatoric Methods
	Coarsening, Matchings, and Multilevel Frameworks
	Recent Optimization Approaches
	Graph Partitioning Libraries

	Multi-Level Graph Partitioning
	Graph Coarsening
	Initial Guess Partitioning
	Uncoarsening

	Coarsening and Matching Strategies
	Brotherly Matching
	Adoption Matching
	Community Matching

	Quadratic Programming Refinement
	Algorithm Description
	Input and Pre-Processing
	Coarsening
	Initial Partitioning
	Uncoarsening and Refinement
	Quadratic Programming-Based Refinement
	Fiduccia-Mattheyses Algorithm Refinement

	Results
	Overall Performance
	Performance on Large Graphs
	Hybrid Performance
	Power Law and Social Networking Graphs
	Sensitivity Analysis of Options
	Matching Strategy
	Initial Cut Strategy
	Coarsening Limit
	Community Matching

	Summary

	COMPUTATIONAL OPTIMIZATION APPROACHES TO COMPUTING VERTEX SEPARATORS
	Introduction
	Overview of the Vertex Separator Problem
	Complexity

	Traditional Approaches
	Optimization Formulations and Approaches
	Mixed-Integer Linear Programming Approaches
	Solution Methods

	Quadratic Programming Approaches
	Solution Methods

	Generalized Gains
	Fiduccia-Mattheyses Gains as a Special Case
	Determining Separation and Exclusivity Violations
	Computing the Quadratic Programming Objective Function
	Update Formulas for Generalized Gains

	Algorithmic Description
	Heuristic Cost Metric
	Pre-Processing and Coarsening
	Initial Separator Selection
	Uncoarsening and Refinement Loop
	Greedy Knapsack Algorithm
	Quadratic Programming with Gamma Reduction
	Gamma Reduction

	Continuous Fiduccia-Mattheyses Algorithm
	Rectification
	Discrete Fiduccia-Mattheyses Algorithm
	Weight Perturbation

	Implementation
	Computational Results
	Summary

	CONCLUSIONS AND FUTURE WORK
	Parallelization
	Further Algorithmic Optimizations
	Extensions to k-way Partitioning
	Hypergraph Partitioning

	REFERENCES

