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ABSTRACT 

  

Unmanned aerial system (UAS) technologies are becoming common place within 

field-based agriculture programs allowing breeders to evaluate greater numbers of 

genotypes, reducing resource inputs and maintaining unbiased data collection. A 

comprehensive evaluation was conducted focused on the implementation of UAS 

technologies within a field-based maize breeding program using the plant height phenotype 

as a proof of concept in implementation and validation. A robust data processing pipeline 

was developed to extract height measurements from RGB structure from motion (SfM) point 

clouds. The 95th percentile (P95) height estimates exceeded 70% correlation to manual 

ground truth measurements across diverse germplasm groups of hybrid (F1) and inbred lines. 

Sigmoidal functions were developed to model the overall growth and trajectory of hybrids 

(R2: >98%; RMSE: < 14 cm) and inbred (R2: >99%; RMSE: < 4 cm). UAS-based height 

estimates demonstrated greater capacity to partition phenotypic variance to genetic 

components compared to manual measurements; function growth parameters (asymptote, 

inflection point, and growth rate) were explained by more than 70% of variance with genetics 

for the hybrid trials. UAS height estimates improved correlations to hybrid grain yield >1.5-

fold similar to functional growth parameters. A ~4-fold improvement in indirect selection of 

hybrid grain yield was achieved using functional growth parameters compared to 

conventional manual, terminal plant height (PHTTRML). We expanded our implementation 

of UAS phenotyping to evaluate three inbred line mapping populations aimed at studying 

functional QTL and temporal QTL expression. Functional growth parameters identified 34 

associations explaining 3 to 15% genetic variation. Height was estimated at one-day 
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intervals to 85 DAS using the Weibull function, identifying 58 unique temporal peak QTL 

locations. Temporal QTL demonstrated all of the identified significant QTL had dynamic 

expression patterns. In all, UAS technologies improved phenotypic selection accuracy and 

have capacity to monitor traits on a temporal scale furthering our understanding of crop 

development and biological trajectories.
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CHAPTER I  

INTRODUCTION  

 

1.1 The Rise of Phenomics  

  A linear improvement of cereal grain yields has been achieved following the green 

revolution (Hafner, 2003) due to conventional breeding and improved agronomic practices 

(Duvick, 1997), however, projections of future cereal crop yields indicate that traditional 

approaches may be reaching a upper yield plateau (Grassini, et al., 2013). Plant scientists 

and agronomists are faced with the responsibility to develop germplasm and agricultural 

systems with the capacity to produce an additional 25-70% of current yield production in 

order to meet the projected increase in food and fiber demand (Hunter, et al., 2017; Tilman, 

et al., 2011). In order to meet production demands we must find ways to raise the genetic 

yield ceiling of cereal crops utilizing existing, as opposed to new, farmland (Tilman, et al., 

2002) and find agricultural systems that also sustainably increase production. 

Advances in next-generation DNA sequencing technologies have seen rapid 

improvements leading to vast genomic data availability, while phenotypic characterization 

is drastically lagging in scale, density, and accuracy that of genomic data in agricultural use. 

Due to resource demands (labor, time, etc…) involved in conventional phenotyping, most 

traits are acquired at one time point in the growing season leading to a limited elucidation of 

genomic information associated to the complexity underlying the traits of interest (Furbank 

and Tester, 2011). Recently, advances in technologies including computer processing, 

robotics, imaging software, unmanned vehicles and sensors have facilitated the development 

of high-throughput phenotyping platforms (HTPP) to combat the phenotypic bottleneck 
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(Araus and Cairns, 2014). These perpetually improving HTPPs will help bridge the 

phenotype-to-genotype gap critically necessary to make the required gains in crop 

improvement.  

To date, field-based ground and aerial platforms have been developed to conduct 

non-invasive, dynamic HTPP implementing a diverse group of sensors including VIS-NIR, 

spectroradiometry (multi- and hyper-spectral imaging), conventional digital photography 

(RGB), infrared thermometry (thermal imagery), and light detection and ranging (LiDAR); 

which have been discussed in regards to agricultural applications (Araus and Cairns, 2014; 

Deery, et al., 2014; Lin, 2015; Perez-Sanz, et al., 2017; Prashar and Jones, 2014; White, et 

al., 2012; Yang, et al., 2017). Currently, low-altitude, high-resolution unmanned aerial 

imaging systems (LAHR-UAS), including rotary wing and fixed wings aircrafts, are being 

more widely used in addressing several issues of ground-based HTTP including: (i) non-

simultaneous measurement of different plots, (ii) soil compaction, (iii) vibration due to 

terrain, (iv) plant damage and (v) wet soil inhibiting field entrance and resulting in excessive 

soil compaction (Sankaran, et al., 2015; White, et al., 2012).  

1.2 Multi-Temporal Crop Surface Models 

Although plant height is a key indicator of plant growth and biomass and is easily 

collected manually via measurement sticks/tapes, it is time consuming, laborious, and prone 

to subjectivity; because of this, height measurements are nearly always collected only at the 

end of the growing season prior to harvest. Remote sensing should make collection of height 

throughout the season less labor intensive. The state of the art procedure used for estimates 

of large-scale canopy/plant height through remote sensing techniques is to produce of crop 

surface models (CSM) (Bendig, et al., 2013) or normalized digital surface models (nDSM) 
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(Granshaw, 2016); calculated as the difference between the digital surface model (DSM) and 

digital elevation model (DEM). The concept of multi-temporal CSM (MT-CSM) was 

introduced by Hoffmeister, et al. (2010)  with a terrestrial laser scanner (TLS) for monitoring 

plant growth patterns across physiological development of sugar beets. Vertical structure 

information (i.e. point clouds) of vegetation canopies can be quantified using laser scanning 

approaches as a terrestrial laser scanning (TLS) (Hoffmeister, et al., 2010; Keightley and 

Bawden, 2010; Lumme, et al., 2008; Tilly, et al., 2014; Tilly, et al., 2012) and airborne laser 

scanning (ALS) (Gao, et al., 2015; Li, et al., 2015). Although ALS is capable of a greater 

spatial detection range, during early crop growth stages in a crop such as maize, vertical 

laser pulse resolution may be large in comparison to actual plant height (Li, et al., 2015); 

therefore, TLS is better suited for monitoring short crops in early growth stages (Hofle, 

2014).  

Applications of multi-temporal growth modeling have been adopted as a new 

technology in LAHR-UAS platforms due to their relatively low cost, high flexibility, high 

temporal range with respect to TLS, and an ability to fly at low altitudes without endangering 

human wellbeing compared with ALS (Geipel, et al., 2014; Li, et al., 2016; Link, et al., 

2013). UAS-derived CSM data is collected, via an RGB camera, in the form of stereo 

images. Stereo images enable a 3D reconstruction of the topographic geometry, 

accomplished based on Structure-from-Motion (SfM) photogrammetry methods (Westoby, 

et al., 2012). Bendig, et al. (2013) demonstrated the transferability of Hoffmeister, et al. 

(2010) TLS based multi-temporal CSMs to a UAS platform. Accuracy comparisons between 

SfM UAS- and TLS-derived height estimates have routinely been found to be comparable, 

explaining ~90% of the manual height measurement variation (Bareth, et al., 2016; Bendig, 
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et al., 2013; Bendig, et al., 2014; Malambo, et al., 2018; Tilly, et al., 2014) . However, UAS-

derived height estimates have been found to consistently underestimate height measurement 

in barley (Aasen, et al., 2015; Bareth, et al., 2016; Bendig, et al., 2013; Bendig, et al., 2014), 

maize (Malambo, et al., 2018) ,wheat (Holman, et al., 2016), rice (Willkomm, et al., 2016), 

sugar cane (De Souza, et al., 2017), and sorghum (Pugh, et al., 2018; Watanabe, et al., 2017). 

1.3 Sigmoidal Growth Function 

Multi-temporal models are a great resource to plant scientists, UAVs allow for 

consistent monitoring of growth throughout the plants life span at independent time points. 

Although MT-CSM allow analysis of the extracted phenomic data, they do not model the 

growth patterns in a way that can be implemented for predictive purposes, for this regression 

modeling remains the most appropriate tool. Traditional analysis of plant growth stems from 

linear regression, assuming constant relative (RGR) and absolute (AGR) growth rates. 

Nonlinear modeling (nlm) of growth provides a flexible, parsimonious alternative to linear 

models to accommodating temporal growth variation (Paine, et al., 2012).  Once nlm 

parameters are defined, it is possible to predict growth at any time point within the growth 

period, whereas, MT-CSM are limited to discrete time points.  Furthermore, sigmoidal 

models (e.g. logistical, beta, etc.) provide unique parameters (e.g. AGR, inflection points, 

etc.) for understanding growth variations and are commonly applied to model plant growth 

(Miguez, et al., 2008; Muraya, et al., 2017; Wardhani and Kusumastuti, 2013). Using MT-

CSM, fitting sigmoidal functions will enable exploration of maize growth patterns through 

the growing season in a field-based environment. 
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1.4 Maize Height and QTL Mapping 

Maize (Zea mays L.) has been adapted to be grown from tropical to temperate 

climates, now making it the second largest cultivated crop in the world after wheat (FAO, 

2016). The maize genome is twice the size of is closest living relative sorghum (Sorghum 

bicolor L.) consisting of ten chromosomes. Maize is a paleopolyploid (Schnable and 

Freeling, 2011; Woodhouse, et al., 2010)  with a medium-sized genome consisting of ~85% 

long terminal repeats (Huang, et al., 2012). The first genome (B73 RefGen_v1) was 

sequenced based on Sanger sequencing using the shotgun approach resulting in an assembly  

2048 Mbp in length with 32,540 high-confidence protein-coding genes (Schnable, et al., 

2009). The most resent assembly (B73 RefGen_v4) was based on PacBio sequencing and 

high-resolution optical mapping resulting and is considered the most accurate assembly to 

date. B73 RefGen_v4 is 2,106 Mb in length of which 1268 Mb were structurally intact 

retrotransposons and 70% of the 39,324 protein-coding genes were annotated by full length 

transcripts (Jiao, et al., 2017).  An estimated one third of maize genes are duplicated at 

multiple locations in the genome (Gaut, 2001). Maize is also an important model organism 

in plant biology and genomics. Vast gene duplication and high non-collinearity (Fu and 

Dooner, 2002; Springer and Stupar, 2007) across maize cultivars has resulted in abundant 

genetic diversity within the available germplasm for quantitative traits such as plant height 

(PHT). 

The genetic variation of PHT in maize is a highly heritable trait (>90%) and can be 

explained by the infinitesimal model (i.e. very large numbers of small additive effect loci) 

with some large effect loci likely fixed during domestication and early selection (Peiffer, et 

al., 2014).  PHT is commonly collected in maize research programs when the plants have 
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reached maximum growth potential, after the completion of flowering. Trends from 1930-

2001 of representative U.S. corn belt hybrids of their era demonstrated no trend in reduced 

plant height, but rather a reduction in ear height accompanied the genetic gain grain yield 

(Duvick, et al., 2004; Russell, 1974). Positive correlations between plant height (as measured 

to tip of tassel on a representative plant) and yield have been observed (Anderson, et al., 

2019; Farfan, et al., 2013; Katsvairo, et al., 2003; Machado, et al., 2002; Mallarino, et al., 

1999; Yin, et al., 2011). Specifically, PHT being positively correlated to yield in TX 

(Anderson, et al., 2019; Farfan, et al., 2013) is likely an indication of genetic tolerance to 

stressed conditions, or some form of hybrid vigor, and is a favorable trait within the TX corn 

breeding program for yield. Identifying loci associated with PHT will aid in our 

understanding of underlying pathways associated with maize growth, helping to further 

improve maize lines for Texas environments.    

To date, over 200 QTL associated with height have been reported to the Gramene 

QTL database (http://archive.gramene.org/qtl/) and multiple more are certainly buried 

within the literature. Of those PHT QTL entombed within the literature, the majority are 

centered on temperate genetic germplasm and evaluated in temperate U.S. environments. 

Inevitably, it is likely that many of the PHT QTL previously discovered will not exhibit 

similar expression patterns nor effect sizes within a Central Texas public maize breeding 

program. Furthermore, very little is known about the temporal expression of QTL throughout 

the growing season for dynamic quantitative traits (Sun and Wu, 2015) such as maize PHT. 

Improvements in HTP technologies coupled with statistical and computational techniques 

have made it possible to begin understanding the complexity of temporal QTL expression 

and the genetics controlling growth trajectories (Wu and Lin, 2006). Functional mapping 
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(Ma, et al., 2002) implements mathematical functions (e.g., logistic function) within QTL 

mapping to identify genetic regions that define the developmental trajectory of a trait. 

Muraya, et al. (2017) conducted univariate association mapping for maize biomass marker 

trait associations (MTA) across 12 time points up to 42 DAS under greenhouse conditions; 

discovering significant early growth MTAs where the proportion of genotypic variation 

explained by the MTA decreased as development progressed. Muraya, et al. (2017) 

identified an additional four MTA affecting growth dynamics of biomass accumulation 

through non-parametric functional mapping and multivariate mapping. Wang, et al. (2019) 

estimated PHT at four developmental stages via UAS imaging, identifying that few PHT 

related QTL were co-localized across developmental stages. Zhang, et al. (2017) 

investigated the genetic architecture of maize growth across 16 developmental time points 

(22-67 DAS) using a greenhouse based HTPP, identified 988 QTL across 109 quantified 

traits, including three QTL hotspots. To date all temporal growth QTL studies in maize have 

been conducted at limited time points (Wang, et al., 2019), early developmental stages 

(Muraya, et al., 2017), or within HTPP under greenhouse environments (Muraya, et al., 

2017; Zhang, et al., 2017). Comprehensive temporal phenotyping within field-based 

experiments is now possible with UAS and may aid in the understanding of the genetic 

factors controlling growth trajectories and trajectory deviations caused by abiotic and biotic 

interactions. 

 

 



 

 

*Reprinted with permission from Prediction of Maize Grain Yield Before Maturity Using Improved Temporal Height Estimates of 

Unmanned Aerial Systems by Anderson, S.L., Murray, S.C., Malambo, L., Ratcliff, C., Popescu, S., Cope, D., Jung, J., Chang, A., and 

Thomasson, J.A. 2019. The Plant Phenome Journal, 2:190004, doi: 10.2135/tppj2019.02.0004. Copyright 2019 The Author(s). This is an 

open access article distributed under the terms of the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Plant 

Phenome J. 2:190004 (2019) doi:10.2135/tppj2017.02.0004. 
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CHAPTER II 

PREDICTION OF MAIZE GRAIN YIELD BEFORE MATURITY USING IMPROVED 

TEMPORAL HEIGHT ESTIMATES OF UNMANNED AERIAL SYSTEMS* 

 

2.1. Introduction 

2.1.1 Maize Height and Correlation to Grain Yield  

Genetic variation of terminal plant height (PHTTRML) in maize (Zea mays L.) is a 

highly heritable trait (Anderson, et al., 2018; Li, et al., 2016; Mahan, et al., 2018; Peiffer, et 

al., 2014; Wallace, et al., 2016), and is relatively easy to phenotype, for instance, measuring 

from the ground to the tip of a tassel on a representative plant. However, the labor and time 

required to collect data is still resource constrained and height measurements collected in 

maize research programs are generally taken only once, when the plants have reached 

maximum growth after the completion of flowering.  

Plant height is valuable not only as a phenotype in and of itself, it has also been 

shown to be predictive of maize grain yield in some regions and environments (Katsvairo, 

et al., 2003; Machado, et al., 2002; Mallarino, et al., 1999; Yin, et al., 2011). Farfan, et al. 

(2013) observed positive correlations (r = 0.46) between PHTTRML and grain yield within the 

semi-arid stressed environment of Texas, less correlation (r = 0.19) in the irrigated High 

Plains, and the highest correlations by combining all Texas environments (r=0.61). 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Yin, et al. (2011) demonstrated that V10/V12 plant height was highly predictive (R2=0.26-

0.87) of grain yield using an exponential regression model. Previous work has shown that 

early season plant height can be decoupled from PHTTRML and has been hypothesized to 

offer additional insight into yield (Mallarino, et al., 1999; Pugh, et al., 2018). The relative 

ease of plant height measurements via remote sensing in the field (Chang, et al., 2017; Chu, 

et al., 2018; Han, et al., 2018; Malambo, et al., 2018), and the potential to predict yield  at 

earlier time points (i.e., before harvest) makes plant height an excellent case study for 

phenotypic data collection via unmanned aerial systems. 

Unmanned aerial systems (UAS) include unmanned aerial vehicles (UAV)  that have 

been equipped with light detection and ranging (LiDAR) sensors to generate dense three 

dimensional (3D) point clouds (Wallace, et al., 2012) or more commonly digital 

RGB/multispectral cameras (Araus and Kefauver, 2018; Hunt Jr and Daughtry, 2017; 

Sankaran, et al., 2015) to collect high resolution images and 3D point clouds through post-

processing of image sets. Specifically, point clouds have been used to estimate above ground 

heights of objects and vegetation. Aerial laser scanning technology (i.e., LiDAR) has been 

a major source of three dimensional data sets via manned aerial vehicles, but is very 

expensive. New innovations including low cost UAS (Reynolds, et al., 2018; Sankaran, et 

al., 2015; Shi, et al., 2016), optimized image matching software, and graphical processing 

units (GPUs) have reduced the inefficiency of image based photogrammetry methods (3D 

vision) that existed in previous decades (Baltsavias, 1999). The cost and difficulty of 

LiDAR-UAS system integration (Wallace, et al., 2012) has led to broad adoption of  

multispectral- and RGB-UAS systems (3D vision UAS) to easily and rapidly produce 

temporal 3D datasets in agriculture using structure from motion (SfM) photogrammetry 
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(Burkart, et al., 2018; Holman, et al., 2016; Malambo, et al., 2018; Pugh, et al., 2018; Xavier, 

et al., 2017). 

2.1.2 Ground Filtering and Separation Approaches 

A critical step in estimating above ground heights from UAS is the identification of 

ground points and accurate reconstruction of the digital terrain models (DTM) to produce 

digital surface models (DSM) from the digital elevation model (DEM). Ground filtering 

algorithms have been developed to delineate between points belonging to ground and non-

ground classes and have been extensively reviewed, but the field has been dominated by 

LiDAR efforts in regards to urban and forested terrains (Chen, et al., 2017; Korzeniowska, 

et al., 2014; Meng, et al., 2010; Pfeifer and Mandlburger, 2009; Polat and Uysal, 2015; 

Serifoglu Yilmaz and Gungor, 2016; Sithole and Vosselman, 2004; Weed, et al., 2002) with 

little focus on agricultural crop land. Among comparative ground filter studies, Montealegre, 

et al. (2015) specifically discussed areas covered with cereal crops, concluding that an 

adaptive triangulated irregular network (ATIN) (Axelsson, 2000) resulted in the most 

accurate modeling of the terrain within crop/grasslands dominated study areas. Crop heights 

are commonly estimated using the “difference based method” (DBM) in which DTMs are 

modeled by pre- or post-season bare earth images (Bareth, et al., 2016; Bendig, et al., 2013; 

Chu, et al., 2018; Watanabe, et al., 2017). Alternatively, the “point cloud method” identifies 

ground points within each digital surface model (DSM) and creates an independent DTM 

for each data set (Malambo, et al., 2018; Pugh, et al., 2018).  Holman, et al. (2016) 

demonstrated that the point cloud method produces reduced root mean square error (RMSE) 

compared to the DBM due to biased ground representation of the pre/post flight ground 

model. Correct ground modeling is essential to improving estimation accuracy, so further 
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studies are necessary to evaluate the most effective technique to model the terrain specific 

to using SfM photogrammetry from high resolution UAS images of a breeding or genetic 

field trial. 

2.1.3 Estimating Maize Height via UAS 

Common trends have been demonstrated in past UAS field studies using 3D vision 

SfM height. Statistical metrics of UAS point clouds have been shown to be significantly 

correlated to manual phenotyping and LiDAR datasets in maize (Chu, et al., 2018; Hu, et 

al., 2018; Li, et al., 2016; Malambo, et al., 2018; Niu, et al., 2018; Pugh, et al., 2018; Shi, et 

al., 2016; Varela, et al., 2017). In many of these studies, plot level point clouds were divided 

into quartiles with the 99th (P99) percentile including the top of the plant and the bottom 1% 

(P01) representing soil and above ground roots. Niu, et al. (2018) demonstrated that the use 

of higher quantile percentage reduced bias and RMSE in reference to LiDAR data. Similarly, 

UAS derived heights at the higher percentiles commonly found at P95 and P99 in maize, but 

excluding the P100/maximum, have shown the greatest correlation to manual plant height 

measurements and least RMSE (Chu, et al., 2018; Malambo, et al., 2018; Pugh, et al., 2018; 

van der Voort, 2016). UAS derived height estimates are highly repeatable (R = 0.91–0.99 

for P95) and capable of capturing equivalent genotypic variation to manual height 

measurements; especially at later dates (>50 DAS) in the growing season as greater 

variability is expressed across genotypes (Pugh, et al., 2018).   

 Using high throughput technologies such as UAS and ground vehicles is rapidly 

becoming commonplace in agriculture and breeding programs. The majority of the published 

research has been focused on validation of UAS measurement to manual phenotyping and it 

is evident in the literature that UAS derived phenotypes provide highly accurate 
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measurements, highly correlated to manual phenotyping data. The focus of this study was to 

expand beyond validation of UAS estimated heights toward using of data as it is presented 

(i.e. without validation). The objectives of this study were to (i) compare multiple methods 

of ground point filtering for DSM accuracy, (ii) identify sources of variation across UAS 

platforms and environmental treatments throughout the growing season, (iii) apply nonlinear 

modeling approaches to identify critical flight dates and capture new growth parameters, and 

(iv) evaluate UAS height estimates and nonlinear modeling parameters for their ability 

predict grain yield in maize. To conduct this work efficiently, an improved method was 

needed to increase the speed of extracting plot information of large studies in the UAS to 

knowledge pipeline; a novel plot boundary delineation function to generate plot boundary 

ESRI shapefiles automatically given two boundary coordinates, the experimental design, 

and plot dimensions of the breeding field are also described here.  

2.2 Materials and Methods 

2.2.1 Germplasm Material and Experimental Design 

 The Genomes to Fields (G2F) initiative (https://www.genomes2fields.org/) is a 

multidisciplinary umbrella initiative aimed at understanding the genotype-by-environment 

interaction (GxE) of the maize genome (AlKhalifah, et al., 2018; Gage, et al., 2017). As of 

2018 and beginning in 2014, the G2F collaborators have evaluated more than 94,000 field 

plots involving more than 1,700 hybrid varieties across 77 unique environments being 

conducted in 23 states and provinces in the United States and Canada. For this study, the 

2017 G2F trials were evaluated and imaged via UAS in College Station, Texas. This trial 

was comprised of 280 unique hybrids, with 230 common hybrids across three different 

management environments: irrigated, optimal planting (G2FE), non-irrigated, optimal 
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planting (DG2F), and irrigated, delayed (~30 days) planting (G2LA). Each trial was arranged 

in a randomized complete block design (RCBD; 2 replicates/trial) with two row plots, 0.76 

m row spacing, and 7.62 m plot lengths. The three trials were planted adjacent to each other 

in a single field of approximately ~1.4 hectares. 

2.2.2 Ground Truth Measurements 

Manual height measurements were collected on several dates (Appendix A1) 

throughout the growing season to assess the accuracy of the UAS height estimates. Two 

heights were taken during manual phenotyping: (i) the apex height which was either the erect 

emerging leaf (pre-flowering) or the tip of the tassel and (ii) the flat plane of the plot during 

vegetative growth or the flag leaf height during reproductive stages (Appendix B1a).  

Furthermore, manual terminal height measurements were taken on all plots at the tip of tassel 

height (PHTTRML) after flowering was completed. Manual measurements were collected as 

a visual plot average by measuring a single representative plant. 

2.2.3 Unmanned Aerial System Image Collection 

  Two platforms were used, a rotary wing and a fixed wing UAV. The rotary wing 

model, a DJI Phantom 3 Professional with a 12 megapixel DJI FC300X camera, was flown 

at an altitude of 25 m above the ground surface with an 80% forward and side image overlap. 

Fixed wing images were collected with a Tuffwing UAV Mapper 

(http://www.tuffwing.com) equipped with a 24 megapixel Sony a6000 RGB camera. Fixed 

wing surveys were conducted at a 120 m altitude with 80% image overlap. The goal was to 

collect weekly UAS imagery throughout the early growing season and transition to biweekly 

flights on a 3 to 4 day interval during the exponential growth phase, based on observations 

from earlier studies (Malambo, et al., 2018; Pugh, et al., 2018). Twenty-two and nineteen 
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flights were completed throughout the 2017 growing season by the rotary wing and fixed 

wing platforms, respectively (Appendix A1). 

2.2.4 Image Processing 

 All UAS images were processed using SfM photogrammetry algorithms in either the 

Pix4Dmapper (https://www.pix4d.com) or Agisoft PhotoScan Professional (AgiSoft 

PhotoScan Professional, 2016) software. In general, these software packages are equivalent 

and used to identify common features (tie points) across images followed by triangulation 

and distortion adjustment optimization to generate densified 3D point clouds, DSM, and 

orthomosaic images. Due to the large collaborative effort of this project, the preference of 

the software was based upon each group’s (fixed wing or rotary wing) capability and 

familiarity. Ground control points were placed throughout the study sites to ensure correct 

scale, orientation and geographic location of generated outputs. All of the fixed wing flights 

were processed in Agisoft PhotoScan, while the majority of the rotary wing flights were 

processed in Pix4Dmapper (excluding flights on 07-14-17 and 07-27-17). Issues with image 

matching and tie point identification during stages of canopy closure resulted in large “black 

holes” within the center of some rotary wing flight image mosaics. In an attempt to resolve 

the holes of missing data, Agisoft Photoscan was used in those mosaics with holes and 

resulted in improved data for some dates (07-14-17 and 07-27-17). Where Agisoft Photoscan 

did not improve the data quality, manual tie point assignment was performed.   

2.2.5 Data Extraction Pipeline 

Following the initial processing of raw images into point clouds, a novel processing 

pipeline was developed to acquire plot based height estimates from the point clouds (Figure 

1A). R/UAStools::plotshpcreate  (https://github.com/andersst91/UAStools) was developed  

https://github.com/andersst91/UAStools
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Figure 1. [a] Flow chart depicting UAS data curation pipeline from image acquisition to 

statistical analysis of phenotype estimates. [b] Graphical representation of the   

R/UAStools::plotshpcreate inputs and plot level polygon ESRI shapefile output. [c] Visual 

conversion of DSM to above ground canopy surface models using digital terrain modeling 

via hierarchical robust interpolation
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to constructs ESRI shapefiles (.shp) of individual research plots for subsequent plot 

extraction (Figure 1B). The initial assignment of these plots is based on the GPS 

coordinates of an AB line representing the bottom left corner of the first plot (A) and the 

top left corner tool in CloudCompare v2.10 (Girardeau-Montaut, 2016). Following manual 

blunder of the trial within the same row as the A point (B).  Using a data frame containing 

the experimental design, plot dimensions, and unique plot IDs, (i.e. a research ‘fieldbook’) 

the script produces an ESRI shapefile that contains all of the plot boundaries necessary to 

extract plot level measurements. However, we have found that some manual adjustment is 

needed when visually overlaid on the mosaics due to subtle variances in tractor rows (even 

when GPS guided) and in the orthomosaics that are exaggerated when overlaying a precise 

rectangular grid. 

The point clouds were first clipped to the trial level and large blunders (i.e. 

serendipitous point anomalies above/below the point cloud) were manually removed using 

the segment removal, a custom batch script was run including executable functions from 

LAStools (Isenburg, 2015; LAStools, 2017) and FUSION/LDV (McGaughey, 2016) 

software (https://github.com/andersst91/UAS_Height_Pipeline). In brief, the pipeline (i) 

sorted data points (LAStools\lasssort.exe) to improve processing efficiency, (ii) removed 

additional blunders (LAStools\lasnoise.exe) closer to the canopy structure, (iii) executed a 

ground filtering algorithm (FUSION\GroundFilter.exe) to identify ground points, (iv) 

identified key points (LAStools\lasthin.exe) on the vertex of the hills from the ground filter 

for DTM modeling, and (v) interpolated/constructed the DTM from the key points 

(FUSION\GridSurfaceCreate.exe). Following the DTM construction, (vi) the noise filtered 

point cloud (step ii output) was adjusted to above ground height using the DTM 
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(LAStools\lasheight.exe) and points below the DEM (i.e. ground) were removed as to not 

bias the height estimates with negative values (Figure 1C). Using the adjusted “Z” point 

cloud, the plot level ESRI shapefile was used to clip individual plot point clouds 

(FUSION/PolyClipData.exe) and calculate statistical metrics within each of the plots 

(FUSION/CloudMetrics.exe) including estimating height from the point clouds. Further data 

compiling and processing was conducted in R version 3.3.1 (R Core Team, 2016). All 

manually collected and extracted phenotypes from this study are publicly available from the 

Dryad Digital Repository: https://doi.org/10.5061/dryad.3295k54. 

2.2.6 Comparison of Terrain Modeling Methods 

2.2.6.1 Study Areas 

 Three flight dates were first chosen for the purpose of comparing ground filtering 

algorithms based on available manual height measurements and the collection of images 

from both UAS platforms (Appendix B2). The first site (G2LA 05/09/2017) was 

characterized with low canopy density, high ground point representation, and young (33 

DAS) hybrid maize plants: the “low canopy density hybrid” (LCDH) site. The second site 

(G2LA 06/02/2017) was characterized with full canopy closure, minimal ground point 

representation, and mature (57 DAS) hybrid maize plants: the “high canopy density hybrid” 

(HCDH) site. The third site (YYCP 05/24/2017) was characterized with medium canopy 

density, medium ground point representation, and young vegetative (61 DAS) inbred maize 

plants: the “medium canopy density inbred” (MCDI) site. The MCDI study site was separate 

from G2F consisting of 533 plots from three bi-parental recombinant inbred line mapping 

populations; these plots provide a useful contrast to address other common research needs 

(e.g. new line development, QTL mapping, and trait discovery).  
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2.2.6.2 Terrain Modeling Methods 

 The DBM of terrain modeling was compared with more advanced point cloud 

methods commonly used with LiDAR data. The DBM relies on a pre-season (i.e. pre-plant) 

or post-season flight of the bare ground to model the terrain. This terrain model is then 

subtracted from the DSMs in-season to obtain CSM (Appendix B1b). The point cloud based 

methods are algorithms which work iteratively through point clouds of each flight and 

identify ground points based on classification tuning parameters that the user sets. Three 

point cloud methods were selected for evaluation including hierarchical robust interpolation 

(HRI) (Kraus and Pfeifer, 1998), cloth simulation filter (CSF) (Zhang, et al., 2016), and 

adaptive triangulated irregular network (ATIN) (Axelsson, 2000)) based on: (i) open access 

software, (ii) computational efficiency, and (iii) accuracy performance as indicated in the 

literature. Optimized filter parameters were identified through minimization of root mean 

square error (RMSE) and mean absolute error (MAE) between UAS height estimates and 

manual ground truth measurements taken the same day as the UAS surveys. Optimized 

algorithm parameters were then used to compare ground filtering methods across UAS 

platforms and study sites. Details on the point cloud based methodology and optimized 

filtering parameters can be found in Appendix C1. 

2.2.7 Statistical Inference 

2.2.7.1 Variance Component Estimates 

From the extracted point cloud derived canopy height metrics (P90, P95, P99, Max), 

we fit mixed linear models using residual maximum likelihood (REML) in JMP version 

14.0.0 (JMP®, 2018) to define best linear unbiased predictors (BLUPs) of the hybrids by 

their pedigree. Models were fit on a per flight date basis by UAS platform. The individual 
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G2F trials were evaluated as a randomized complete block design (RCBD, Eq. 1) including 

spatial regression (range and row [what furrow irrigation runs down], also called row and 

column, respectively, where furrow irrigation is not used) with terms genotype (𝜎𝐺
2), 

 

𝑌 = µ + 𝜎𝐺
2 + 𝜎𝑟

2 + 𝜎𝑖
2 + 𝜎𝑗

2 + 𝜎𝜀
2     Eq. [1] 

 

replicate (𝜎𝑟
2) range (𝜎𝑖

2), row (𝜎𝑗
2) and residual error (𝜎𝜀

2). By flying all three trials within 

the same flight dates, we were able to evaluate the variance components of UAS plant height 

as a multi-environment RCDB (Eq. 2) with terms: genotype (𝜎𝐺
2), environment (𝜎𝐸

2), 

 

𝑌 = µ + 𝜎𝐺
2 + 𝜎𝐸

2 + 𝜎𝐺∗𝐸
2 + 𝜎𝐸∗𝑟

2 + 𝜎𝐸∗𝑖
2 + 𝜎𝐸∗𝑗

2 + 𝜎𝜀
2   Eq. [2] 

 

genotype-by-environment interaction (𝜎𝐺∗𝐸
2 ), replicate (𝑟) nested within environment (𝜎𝐸∗𝑟

2 ), 

range (𝑖) nested within environment (𝜎𝐸∗𝑖
2 ), and row (𝑗) nested within environment (𝜎𝐸∗𝑗

2 ).   

2.2.7.2 Repeatability 

Repeatability (R) estimates represent the percentage of genetic variation explained 

by the data compared with the experimental variation explained excluding identifiable 

environmental effects. Repeatability was calculated on an entry means basis similar to broad 

sense heritability (H2) with the key differentiation of presence (H2) or absence (R) of familial 

structure. Within environment repeatability (Eq. 3) estimates calculated on single  

 

𝑅 =
𝜎𝐺

2 

𝜎𝐺
2+𝜎𝜀

2/r 
       Eq. [3] 

 



 

20 

replicates (r).  Multi-environment repeatability (Eq. 4) was calculated by expanding equation 

3 to include the entry-by-environment interaction variation component (and the number of 

environments (E). 

 

𝑅 =
𝜎𝐺

2 

𝜎𝐺
2+𝜎𝐺∗𝐸

2 /E +𝜎𝜀
2/rE 

      Eq. [4] 

 

2.2.7.3 Nonlinear Logistic Function 

Implementation of nonlinear modeling was assessed to further reduce the 

dimensionality of the dataset of multiple flights throughout the growing season. Maize being 

an annual crop, we assumed that plant height should follow an asymptotic model that begins 

with zero at planting and concludes its lifespan with a terminal growth parameter 

(Archontoulis and Miguez, 2015). The three parameter logistic model (Eq. 5) best followed  

 

𝑓(𝑥) =
𝐿

1+𝑒−𝑘(𝑥−𝑥0)     Eq. [5] 

 

these assumptions,modeling height as a function of DAS (x) with the asymptote (L; m), 

inflection point (x0; DAS), and the growth rate (k; DAS-1) of the fitted curve (Verhulst, 

1838). The asymptote is the maximum value of the curve which represents terminal PHT. 

The inflection point indicates the DAS where the rate of growth is maximized. The growth 

rate parameter defines the steepness of the logistic curve.  Logistic curves were fit using the 

Fit Curve tool in JMP 14 (AnalyzeSpecialized ModelingFit Curve) and parameters were 
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estimated on a UAS height estimates on a plot basis, as well as, on a pedigree basis using 

the BLUPs of the individual environment REML models (Eq. 1). Significance of the logistic 

parameters were evaluated using the chi squared (X2) test (α = 0.05, df = 1) to identify 

logistical curves with poor fits to UAS height estimates. Plots with a non-significant 

parameter fits were excluded in further analysis, as the logistical function would not 

accurately represent that plot/pedigree’s growth model. 

2.2.7.4 Stepwise Regression of Predictive Models 

 Forward and reverse stepwise regression were performed in JMP 14 using the “Fit 

Model” function to identify the most predictive UAS height parameters with respect to grain 

yield (tonnes per hectare, t ha-1). Parameters identified by the stepwise regression procedure 

were then fit as continuous effects in a linear model to assess their ability to predict yield 

based on their coefficient of determination (R2) and RMSE. The parameters tested for each 

UAS platform included three sets of predictors: (i) the logistic parameters, (ii) pedigree 

BLUPs by flight date, and (iii) the combination of logistic parameter and pedigree BLUPs 

by flight date. Predictors were removed if they were not significant in the fit model. Due to 

the time series nature of our dataset, collinearity between the predictor variables was 

evaluated using the variance inflation factor (VIF). The VIF (1/(1-R2)) cutoff was set to VIF 

≤ 4.0 and the variable that caused the least reduction in R2 of the model was removed. 

2.3 Results and Discussion 

 Extraction of informative UAS height data from SfM photogrammetry point clouds 

required the optimization of terrain modeling and selection of the optimal point cloud metric 

to be implemented within the data extraction pipeline. We first optimized the terrain 

modeling procedure through the comparison of four ground modeling methods (HRI, ATIN, 
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CSF, DBM) across three survey sites varying in canopy structure (LCDH, MCDH, HCDH) 

and two UAV platforms (rotary wing and fixed wing).  Based on these results, comparison 

across UAS platforms at each flight date were made using HRI to identify sources of 

variation throughout the growing season. Following the comparison of UAS platforms by 

flight date, nonlinear logistic functions were fit to identify critical flight dates and capture 

new growth parameters. Finally, we evaluated UAS height estimates and nonlinear modeling 

parameters for their ability predict maize grain yield. 

2.3.1 Optimizing Terrain Modeling and Point Cloud Metric  

 A subset of three flight dates (LCDH: G2LA 05/09/2017, HCDH: G2LA 

06/02/2017, and MCDI: YYCP 05/24/2017) were chosen to evaluate terrain modeling 

methods and point cloud metric comparisons across different maize canopy structures to 

optimize the data extraction pipeline prior to processing the complete season datasets. 

Selection of the three flight dates was based on availability of manual height measurements 

while maintaining high qualitative appearance (i.e. minimal noise) from both UAS platforms  

all on the same date (Pugh, et al., 2018). Comparisons were made between the DBM and 

three point cloud methods (HRI, ATIN, CSF) to identify the optimal terrain modeling 

method to be implemented within the data extraction pipeline. Further comparisons were 

made between four point cloud metrics (P90, P95, P99, Max) to identify the most 

informative metric based on RMSE, MAE, percent genetic variance explained, and 

repeatability. 

2.3.1.1 Accuracy of Ground Filtering Methods to Ground Truth Measurements 

Across both UAS platforms and canopy structures all of the algorithms performed 

similarly (Figure 2a) when their parameters were optimized (Sithole and Vosselman, 2004),  
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Figure 2. [a] Violin plots comparing distribution of absolute difference between UAS height metrics and ground truth measurements 

across UAS platforms (fixed wing and rotary wing) and study sites (LCDH: Low Canopy Density Hybrids, MCDI: Medium Canopy 

Density Inbred, and HCDH: High Canopy Density Hybrids) for each of the ground filtering methods (HRI: Hierarchical Robust 

Interpolation, ATIN: Adaptive Triangulated Irregular Network, CSF: Cloth Simulation Filter, DBM: Difference Based Method). [b] 

Comparison percent genetic variation explained (left) and repeatability (right) across UAS platforms and study sites for each of the 

ground filtering methods. 
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likely due to the relative flat plane of the study sight (irrigation furrows not withstanding) 

compared with the more varied natural terrain these algorithms were designed around. 

Across both UAS platforms, halving the resolution (fixed wing ~2 cm pixel-1; rotary wing 

~1 cm pixel-1; Appendix A1) via fixed wing flights had a noticeable impact on the MAE 

(FWP95 19-40 cm; RWP95 10-21 cm) of the height estimates compared to ground truth (Figure 

2A). The fixed wing achieved its best MAE to ground truth across the canopy structures 16, 

20, and 11 cm within LDCH-DBM-Max, MDCI-HRI-Max, and HCDH-HRI-Max, 

respectively. The rotary wing achieved its best MAE to ground truth across the canopy 

structures within 6, 8, and 10 cm for LDCH-CSF-P99, MDCI-DBM-Max, and HCDH-HRI-

P95, respectively. Within the LCDH and MCDI sites, the MAE of the fixed wing ranged 

from ~18 to ~45 cm, whereas the rotary wing ranged from ~8 to ~25 cm, dependent upon 

the filter method and metric.  

These results demonstrated that sparse canopy structure (e.g tassels, young plants) 

were better captured by the low altitude rotary wing rather than the fixed wing. We 

hypothesize that the reduced resolution results in triangulating pixels (i.e. smoothing of the 

canopy structure) at lower elevations in the canopy, as well as, failure to capture less dense 

features at the canopy apex (e.g. tassel, erect leaf, flag leaf). In general, plant height was 

consistently underestimated by UAS estimates from the high altitude fixed wing and overall 

accuracy improved with increased crop maturity. In contrast, low altitude rotary wing 

transition from underestimated to overestimated heights as the metric percentile was 

increased, indicating increased error blunders above the canopy surface within the rotary 

wing datasets (Appendix B3).  
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2.3.1.2 Genetic Variation and Repeatability of Terrain Model Comparisons 

Absolute accuracy relative to traditional manual measurements as tested above is 

important to validate plant height estimates. However, plant breeders (focused on selecting 

the best variety) and geneticists (focused on distributions for mapping) can sufficiently use 

and are more interested in relative rankings, genetic variation captured, and repeatability 

across germplasm. Genetic variation (σ2
G) explained and repeatability (R) are two metrics 

that have been used to compare the precision of different point cloud percentiles (Pugh, et 

al., 2018), but can also be used to compare the precision of different UAS platforms, different 

canopy structures, and different ground filtering algorithms. Overall, both genetic variation 

and repeatability showed similar results between each factor individually (UAS platforms, 

canopy densities, ground filtering algorithms, and point cloud percentiles) when looking at 

only a single factor (Figure 2b), however specific interactions of these factors are notable 

and can inform best practices.  

The P90 and P95 metrics most consistently captured the greatest genetic variation 

across study sites and ground filtering methods (Figure 2b); consistent with other findings 

using a different experiment (Pugh, et al., 2018). The Pmax metric captured the least genetic 

variation and had the increased noise in low altitude flights despite showing the most 

consistency with the ground data (Figure 2b). The P90 and P95 metrics of the HRI and ATIN 

methods consistently explained greater genetic variation and repeatability than the ground 

truth measurements (Figure 2b; red bar) across all sites and platforms, with HRI tending to 

outperform ATIN. Although the DBM outperformed HRI in genetic variation and 

repeatability at some sites (FW-LDCH and RW-MDCI), the majority of situations result in 

lower genetic variation and repeatability (less desirable) in comparison to the three point 
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cloud based methods and lower variation than ground truth data (FW-LCDH, RW-MDCI, 

and FW-HDCH) (Figure 2b).  

 Several important discoveries were made from this comparative study for 

implementing UAS SfM height estimates. First, high accuracy to manual measurements did 

not result in genetic variation and repeatability being maximized (e.g. CSF and DBM 

approaches; Figure 2; Appendix B3) because the ground measurements themselves are likely 

flawed (biased across data curators consistency/experience phenotyping a trait of interest). 

Second, although specific point cloud percentiles had greater accuracy that did not always 

correlate to the highest repeatability/genetic variation (e.g. P99 vs P95/P90; Figure 2). Third, 

one of the greatest benefits of UAS height estimates was the ability to substantially improve 

repeatability over manual measurements. While genetic variation was improved somewhat 

across study sites and platforms, repeatability increased by reducing error and better 

partitioning spatial variance; for example the HRI method across all canopy densities and 

UAS platforms (𝑅𝑃95: 50-80% and  𝜎𝐺
2: 20-50%; Figure 2b) outperformed ground truth 

measurements (𝑅 : 30-60% and 𝜎𝐺
2: 18-40%; Figure 2b) with more useful variance 

decomposition (Appendix B4). Finally, if adequate ground representation is available 

throughout the study area (alleys between plots for example) in each flight, point cloud 

filtering (specifically HRI) methods are a more robust alternative to the difference-based 

method. The HRI method was easy to optimize, robust across study sites and UAS platforms, 

and improved repeatability over manual measurements. Based on these results, digital 

terrains were modeled off ground points identifies with the HRI ground filtering method and 

the P95 metric was used to estimate plant height from point clouds in our data extraction 

pipeline for the rest of the study.   
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2.3.2 Comparison of UAS Platforms Across Flight Dates 

2.3.2.1 Statistics of UAS Survey Flight Dates 

 Throughout the growing season, most UAS surveys had either no difference or one 

day difference between flight dates of two UAS platforms (Appendix A1). During the 

beginning of the growing season, minimal plant structure was captured by UAS imagery due 

to a sparse canopy density and a small physical size of the maize seedlings. Plant structure 

was not represented within the fixed wing point clouds until 48 DAS for G2FE/DG2F and 

35 DAS for G2LA (later plantings have faster germination and growth) while the rotary wing 

first detected plant structure at 27 DAS for G2FE/DG2F and 21 DAS for G2LA (Figure 3). 

The early plantings (G2FE and DG2F) demonstrate that higher flight altitudes require 

increased canopy structure before being represented in the SfM point clouds. This 48 day 

delay was likely due to a 13 day gap in fixed wing flights during early growth stages 

(biweekly) in which the date that structure became capturable was missed.  Understanding 

the date at which structure can be captured is important to reduce resources from UAS 

surveys of non-informative dates but is also critical for nonlinear modeling of growth. 

The goal of increasing flights to twice weekly (every 3 to 4 d) rather than once a 

week, was to capture the exponential growth period of maize where a few days has been 

shown to make a large difference (Pugh, et al., 2018). Unfortunately, the complete 

exponential stage was missed for the fixed wing flights in the first plantings (G2FE and 

DG2E) due to limited knowledge of when this stage would begin. With the delayed planting 

of G2LA, surveys were collected biweekly and the exponential growth stage was captured 

effectively by both fixed and rotary wings (Figure 3). The fixed wing surveys of G2LA  
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Figure 3. Mean P95 height estimate on a plot basis across the G2F trials (DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal 

planted, irrigated trial; G2LA: Delay planted, irrigated trial) and UAS platforms (fixed wing and rotary wing). Red error bars indicate 

the 95% confidence intervals scaled by one order of magnitude for visualization purposes. Numbers above the confidence intervals 

indicate days after sowing.
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captured the exponential growth stage beginning around ~35 DAS and P95 height effectively 

increased by ~42 cm wk-1 at a rate of ~6 cm d-1 (Appendix A2; Figure 3). Within the rotary 

wing surveys the exponential growth stage began around ~35 DAS  and P95 height 

effectively increased by 37, 37, and 42 cm per week at a rate of 5, 5, and 7 cm per day across 

the G2FE, DG2F, and G2LA trials, respectively (Appendix A2; Figure 3). The higher 

resolution of the rotary wing coupled with weekly flights rather than once every two weeks, 

resulted in better observations of the exponential growth phase via temporal flight dates in 

all trials. 

Analysis of temporal P95 height data indicated that a combination of survey methods 

should be used to successfully capture the growth patterns of maize hybrids. We have 

identified that weekly or fortnightly UAS surveys should begin three weeks after sowing and 

continue through the flowering stage to accurately model the exponential growth stage, and 

may require the combination of different flight altitudes based on the maturity of the trial. 

Early season flights should be flown at lower altitudes (≤ 25 m) to increase the detection of 

sparse plant structure by SfM photogrammetry, while later season flights should be flown at 

higher altitudes (>25 m) to ensure image matching, tie point identification, and point cloud 

densification. The ability to capture early season plant structure is still limited and will 

require improved SfM functionality or methods that do not rely on SfM photogrammetry 

(e.g. LiDAR or stereo sensors). 

2.3.2.2 Variance Components and Repeatability of UAS Flight Dates 

 As the crop grew, total variance throughout the growing season increased in a 

quadratic manner across both platforms and all trials, although the trend was less consistent 

in low altitude rotary wing (black circles; Figure 4). The repeatability estimates (white  
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Figure 4. Stack bar graphs of percent variation explain by variables of Eq. 3 for individual UAS surveys of individual UAS platforms 

(fixed wing and rotary wing) and experimental trials (DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated trial; 

G2LA: Delay planted, irrigated trial). Julian day of UAS image collection are indicated by the x-axis and days after sowing (DAS) are 

indicated by the numbering above the bars. Total variance captured (black circle) per image set, defined by the right y-axis, puts 

repeatability and genetic variance explained into perspective of other flight dates. Repeatability is indicated by the white triangles.
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triangles; Figure 4) were moderate (>60%) to very high (>90%) excluding uninformative 

image sets (e.g. flight dates with noticeably increased total variance like the rotary wing 

flight on Julian day 128 of the optimal planted trials, the DSM of which was also visibly 

distorted). We determined that distorted flights were caused by a failure to identify key tie  

points in the mature canopies of the early plantings  (DG2F, G2FE), leading to poor 

modeling of the canopy structure; this resulted in increased error variance, reduced 

consistency between replicates, and reduced genetic variance. Fixed wing surveys captured 

~10-40 % increase in greater genetic variation compared to PHTTRML (𝜎𝐺
2: ~30%).  The rotary 

wing itself did not improve explaining genetic variance within the early planted trials (Figure 

4) and increased genetic variance by ~10% in the late planting (G2LA) compared to 

PHTTRML. Specifically, estimates from low altitude images became inconsistent during 

canopy closure accompanied with (DG2F, G2FE), leading to poor modeling of the canopy 

structure; this resulted in increased error variance, reduced consistency between replicates, 

and reduced genetic variance. Fixed wing surveys captured ~10-40% increase in greater 

genetic variation compared to PHTTRML (𝜎𝐺
2: ~30%).  The rotary wing itself did not improve 

explaining genetic variance within the early planted trials (Figure 4) and increased genetic 

variance by ~10% in the late planting (G2LA) compared to PHTTRML. Specifically, estimates 

from low altitude images became inconsistent during canopy closure accompanied with 

serendipitous spikes/dips in P95 height estimates and shrinkage of pedigree BLUP variance 

(e.g. rotary wing in Appendix B5).  

Variance component decomposition demonstrated that the majority of UAS surveys 

were informative. The authors recommend temporal data collection which allows for 

identification of flights that deviate from normal trend (e.g. spikes in total variance, reduced 
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genetic variance, increased residual error). It would be difficult to identify if images 

collected from a single UAS survey should be used in downstream analysis without temporal 

comparison. Continued research is required to develop tools and methodologies for 

classifying an individual UAS flight as informative without a comparison group.  

2.3.3 Nonlinear Logistic Growth Curves  

 These and previous UAS surveys of plant height captured appeared as a sigmoidal 

growth pattern (Figure 3), which is commonly applied to plant growth (Archontoulis and 

Miguez, 2015; Wardhani and Kusumastuti, 2013). While this data is highly informative, 

completing UAS surveys over 20 times in a season is resource intensive, impractical and the 

data can be redundant (assuming quality data is collected on every flight) for some dates. 

Furthermore, it is not possible to compare data across environments with different planting 

dates. A model that can both reduce the number of flights needed and predict the optimal 

flight dates after sowing would be valuable to maximize flight efficiency. Nonlinear models 

that capture the sigmoidal growth, specifically the logistical function (Eq. 5), provide tools 

to model temporal crop growth and reduced dimensionality. Nonlinear models were fit on a 

plot level basis and BLUPs of the logistical parameters were extracted on a pedigree basis 

within each trial. 

 The fit of the logistic function had a RSME of 0.06-1.13 m across the trial 

environments with fixed wing (0.06-0.10 m) having a slightly better fit than the rotary wing 

(0.10-0.13 m). Similarly, the mean R2 across plots ranged from 0.98 to 0.99 demonstrating 

that the logistic function accurately explained the variation in P95 height, regardless of 

environmental conditions or UAS platform (Appendix A3).  
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Variance component and repeatability estimates demonstrated that the three 

parameters of the plot level logistic function captured equivalent or greater genetic variation 

then PHTTRML (𝜎𝐺
2 = ~30 %, R = 60-67% within environments). The inflection point 

explained the greatest genetic variation in the early planted trials ranging from 43 to 65% of 

the total variation and met or exceeded the genetic variance captured by any single flight 

date or PHTTRML (Appendix B6). High genetic variation of the inflection point demonstrated 

that there was wide genetic variability in PHT at mid-season growth (half way between zero 

and asymptote). Inflection point is a novel predictive phenotype not captured by single 

height estimates alone. The variance explained by the asymptote, exceeded the genetic 

variation of PHTTRML, excluding the G2FE and DG2F rotary wing where tie point 

identification was poor. The asymptote, indicating terminal growth of the logistic curve, 

should be equivalent to the PHTTRML measurement. Growth rate explained greater genetic 

variation than the asymptote in three data sets (fixed wing DG2F, fixed wing G2FE, and 

rotary wing DG2F) and was never greater than the genetic variation explained by inflection 

point. The fixed wing comparisons demonstrated that variation in growth rate is reduced if 

planting is delayed (G2LA trial vs early planting). Reduced variation is explainable by 

increased growing degree days later within the season leading to more consistent, rapid 

growth across genetic backgrounds. The rotary wing effectively captured the genetic 

variation in the inflection point, which occurred during periods of lower canopy density 

when tie points could be better identified.  

 Although repeatability of logistic parameters was reduced (did not exceed 60%; 

Appendix B6) in comparison to the best individual flight date UAS P95 estimates, logistic 

parameter provided an opportunity to use multi-environment UAS data sets in a combined 
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Table 1. Combined analysis (Eq. 2) across G2F trials for manual terminal height logistic curve parameters for each UAS platform. 

Top values are raw variance component estimates, values within parentheses are percent genetic variation explained by each model 

variable and entry means. UAS estimates used HRI ground modeling and P95 height estimate.  

 

  Fixed wing Rotary wing 

PHTTRML Asymptote 

Growth 

rate 

Inflection 

point Asymptote 

Growth 

rate 

Inflection 

point 

Genotype 9.9e-3  

(48) 

1.3e-2  

(29) 

1.3e-4 

(23) 

1.7  

(50) 

7.9e-3  

(37) 

4.1e-5 

(16) 

1.3  

(16) 

Environment 2.1e-3  

(10) 

2.5e-2  

(55) 

1.8e-4 

(33) 

0.5  

(16) 

3.4e-3  

(16) 

5.4e-5 

(21) 

5.5  

(70) 

G x E 0  

(0) 

8.0e-4  

(2) 

5.4e-5 

(10) 

0.1  

(4) 

1.8e-4  

(1) 

1.9e-6 

(1) 

5.4e-2  

(1) 

Rep [Env] 0  

(0) 

1.5e-3  

(3) 

4.5e-5 

(8) 

5.9e-2 

 (2) 

4.3e-5  

(0) 

3.2e-5 

(12) 

0.2  

(2) 

Range [Env] 2.1e-3  

(10) 

1.1e-3  

(2) 

4.7e-5 

(8) 

0.2  

(7) 

3.2e-3  

(15) 

2.4e-5 

(9) 

0.1  

(1) 

Row [Env] 3.2e-3  

(2) 

7.9e-4  

(2) 

1.7e-5 

(3) 

0.3  

(7) 

2.1e-3  

(10) 

2.2e-5 

(8) 

0.2  

(2) 

Residual 6.1e-3 

(30) 

3.2e-3  

(7) 

8.9e-5 

(16) 

0.5  

(14) 

4.4e-3  

(21) 

8.3e-5 

(32) 

0.6  

(7) 

Repeatability 0.70 0.85 0.62 0.82 0.73 0.42 0.77 
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analysis. Specifically, logistical parameters do not confine UAS surveys to similar DAS or 

calendar dates across environments or years (e.g. P95 at 60 DAS).  Combined analysis of 

PHTTRML measurements (𝜎𝐺
2 = 48%, R = 70%, Table 1) was only exceeded by the fixed wing 

P95 inflection point (𝜎𝐺
2 = 50%, R = 82%, Table 1). Although, limited improvement was 

made in capturing greater genetic variation of the logistic parameter over PHTTRML, a 

noticeable reduction (23-77%) of residual variation (excluding rotary wing growth rate) was 

observed (Table 1). Specifically, variance was partitioned to a greater extent within 

environment, GxE, and spatial variables resulting in a 3%-15% increase in repeatability 

estimates over PHTTRML (excluding growth rate). The results demonstrated that nonlinear 

logistic modeling could provide highly repeatable, genetically informative phenotypes 

which would alleviate the need for capturing of UAS surveys at equivalent days after 

planting across trial, years, or locations, allowing for more efficient targeting of flight dates, 

as well as providing novel phenotypes beyond simple height measurements. Incorporation 

of growing degree days, weather patterns, or other time dependent parameters as the 

dependent factor (x) of the growth curve could improve comparisons of growth curves across 

sites, and warrants further investigation. 

2.3.4 Correlation to Grain Yield 

 While the plant height trait is of interest in and of itself, it is of greater interest as a 

phenotype correlated with and help in predicting the highest yielding genotypes. Pearson’s 

correlations between PHTTRML and grain yield demonstrated 0.28, 0.25, and 0.23 for DG2F 

(Figure 5), G2FE, and G2LA trials, respectively (Table 2, Appendix B7, Appendix B8, and 

Appendix B9). These correlations are slightly lower than generally seen in the Texas A&M 
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Figure 5. Heat map comparing correlations between grain yield (GY), manual terminal plant height (PHT), flowering time (DTA/DTS), 

logistic parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the DG2F trial surveyed via the 

fixed wing UAS. 
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Table 2. Pedigree BLUP correlation between of grain yield and manual terminal plant height (PHTTRML), the flight date with the highest 

correlation, and the logistic parameters across trials (DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated trial; 

G2LA: Delay planted, irrigated trial). Combined columns indicated the correlations based on the pedigree BLUPs of a combined trial 

analysis. 

 

 Fixed wing Rotary wing 

DG2F G2FE G2LA Combined DG2F G2FE G2LA Combined 

PHTTRML
 0.28** 0.25*** 0.23*** 0.27*** 0.28** 0.25*** 0.23*** 0.27*** 

Best flight date 0.45*** 0.42*** 0.43**** - 0.41*** 0.36**** 0.47*** - 

Asymptote 0.44*** 0.42*** 0.42*** 0.39*** 0.44*** 0.38*** 0.45*** 0.41*** 

Growth rate -0.46*** -0.42*** -0.34*** -0.42*** -0.30*** -0.13*** -0.13** -0.29*** 

Inflection point 0.46*** 0.42*** 0.18 0.36*** 0.42*** 0.36*** 0.15* 0.36*** 

*     Significant at α < 0.05 

**   Significant at α < 0.01 

*** Significant at α < 0.001 
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breeding program and substantially lower than that found in Farfan, et al. (2013); likely due 

to the G2F experiment including hybrids of diverse origins which contained a variety of 

unadapted factors that affect the yield and plant height relationship in different ways (e.g. 

photoperiod sensitivity, temperature stress, drought stress, etc.). The UAS P95 height 

estimates showed higher correlations to grain yield than PHTTRML beginning ~70 DAS for 

DG2F and G2FE, while flights after ~50 DAS show higher correlation to yield in the G2LA 

trial. Furthermore, fixed wing UAS P95 heights maximum yield correlations of 45, 42, and 

42 percent; while rotary wing reach 41, 36, and 46 percent correlation to yield for DG2F, 

G2FE, and G2LA, respectively (Table 2).  The ~20% increase in correlation to yield from 

UAS P95 estimates over PHTTRML measurements demonstrate that UAS P95 height 

estimates can serve as an improved method for collecting phenotypes to improve genetic 

gain.  

Correlation between temporal measures of UAS P95 height and yield increased with 

time and were least informative to grain yield prior to the reproductive growth and grain fill 

stages. If using only plant height to predict yield, late season flights are more informative 

than flight prior to the vegetative to growth transition. However, both plant height and grain 

yield are sculpted by daily interactions between the genetics of the plants and the 

environment up to that point. This lack of correlation between early season UAS P95 height 

and yield suggests the genetic variation in early season height is under independent genetic 

control. We hypothesize that vigorous early season growth could be pyramided into the 

terminally taller, higher yielding plants to develop varieties improved across all growth 

stages; UAS P95 height estimates would be critical for practically testing this hypothesis.  
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While individual flight dates were highly correlated to grain yield, the logistic 

parameters correlation to grain yield equaled the highest correlated single flight date P95 

height measurement. The asymptote parameter was 38 to 45 percent correlated to grain yield 

across trials and platforms (Table 2). The asymptote parameter describes the maximum plant 

height of the logistic curve and was 69% to 76% correlated to PHTTRML (Figure 5, Appendix 

B7, Appendix B8, and Appendix B9). The inflection point was also 36% to 46% correlated 

to grain yield in DG2F and G2FE, while becoming less informative (15% to 18%) in the 

later G2LA trial (Table 2). We speculate that the high correlation of inflection point and 

asymptote to grain yield may be equivalent to the previously reported predictive power of 

V6 and V10/12 height to grain yield (Machado, et al., 2002; Yin, et al., 2011), although a 

leaf counting study would be necessary to validate this hypothesis.  Growth rate depicted a 

negative trend to grain yield while showing a significant reduction in correlation from fixed 

wing (-30 to -46 %) to rotary wing (-13 to - 30%). The negative correlations between growth 

rate with both grain yield and plant height relates to the negative correlation between 

flowering time (37 -73%) and growth rate (Appendix B7, Appendix B8, and Appendix B9). 

Early maturity results in less vegetative growth and shorter plants. In addition, early hybrids 

are more likely to originate from the far northern U.S. and may be maladapted to Texas 

conditions. 

2.3.5 Predicting Grain Yield from UAS Height Phenotypes 

 While simple correlations provided relationships between grain yield and a single 

P95 estimate/logistic parameter, it is possible that multiple height factors could be combined 

to make more robust predictions of yield. Forward and reverse stepwise regression was 

performed to identify the most predictive UAS height parameters for grain yield (tonnes per 
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hectare, t ha-1), the best of these were then fit as continuous effects in a linear model. Models 

were developed for each UAS platform separately with three sets of possible predictors: (i) 

the logistic parameters, (ii) pedigree P95 height BLUPs by flight date, and (iii) the 

combination of logistic parameter and pedigree P95 height BLUPs by flight date. 

 Initially PHTTRML was used as the predictor of grain yield which resulted in a R2 of 

0.08, 0.06, and 0.07 with a RMSE of 1.02, 1.05, and 0.68 t ha-1 for DG2F, G2FE, and G2LA, 

respectively, and R2=0.16, RMSE=0.50 t ha-1 from a combined trial analysis. Excluding 

logistic parameters, the fixed wing flights identified the two flight dates most informative in 

yield prediction at ~ 40 to 50 DAS and ~110 to 120 DAS significantly increasing R2 (0.28-

0.38) and reducing RMSE by ~0.06 t ha-1 (Table 3, Appendix A4).   

Similar R2 and RSME were obtained with rotary wing flights with the addition of a 

third predictor around 70 DAS. Using only the logistic parameters, predictive power was 

slightly reduced (fixed wing R2: 0.26 – 0.34; rotary wing R2: 0.25 – 0.33) compared to the 

best sets of individual flight dates (Table 3), but were significantly improved compared to 

PHTTRML. Combining individual flight data and logistic parameters showed no improvement 

in predictive power and was inconsistent in the inclusion of only flight dates or a 

combination of flight dates and logistic parameters in the selected models (Appendix A4). 

The individual flight dates identified through stepwise regression co-localize with the 

inflection point period (40-53 DAS) and terminal plant height (i.e. asymptote) which 

indicates why the logistic parameter model achieved equivalent predictive power to the 

specific flight date model. 

The comparison of relative rankings of hybrids from the models using logistic 

parameters versus PHTTRML measurements demonstrated improved selection accuracy of  
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Table 3. Coefficient of determination (R2) for the best prediction models of yield defined by stepwise regression (Appendix A4) by 

UAS platform (fixed wing and rotary wing) and G2F trial (DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated 

trial; G2LA: Delay planted, irrigated trial). Values in parentheses are the root mean squared error of grain yield (t ha-1). Combined 

columns indicated the combined trial analysis. 

 

Grain yield 

predictors 

Fixed wing Rotary wing 

DG2F G2FE G2LA Combined  DG2F G2FE G2LA Combined 

Logistic 

parameters† 

0.34 

(0.92) 

0.26 

(0.95) 

0.27 

(0.62) 

0.32 

(0.49) 

0.33 

(0.94) 

0.32 

(0.99) 

0.25 

(0.62) 

0.32 

(0.49) 

Flight dates‡ 0.38 

(0.92) 

0.35 

(0.97) 

0.28 

(0.60) 

NA 0.39 

(0.90) 

0.33 

(0.99) 

0.26 

(0.61) 

NA 

Logistic 

parameters  

and flight dates§ 

0.37 

(0.92) 

0.35 

(0.97) 

0.28 

(0.60) 

NA 0.38 

(0.92) 

0.33 

(0.98) 

0.26 

(0.61) 

NA 

† Prediction model defined using logistic parameters in the stepwise regression. 

‡ Prediction model defined using UAS estimates by flight date in the stepwise regression. The same 

flight date was at different growth stages for early and late (G2LA) plantings, so they could not be 

combined (NA).  

§ Prediction model defined using logistic parameters and UAS estimates by flight date in the 

stepwise regression. 

 

 



 

42 

UAS derived logistic curves over PHTTRML measurements (Appendix A5). Prediction of 

grain yield using logistic parameters improved ranking error by 7-10 ranks over PHTTRML 

prediction (MAE= 59-78 ranks; Appendix A5). Although improvement in relative ranking 

is ideal, plant breeders generally select a subset (e.g. top 10% yielding hybrids) of their 

evaluated material to advance in evaluation trials. UAS logistic based prediction improved 

the selection accuracy of the top 10% yielding hybrids by ~50% - 150% over PHTTRML  

predictions (21%), and the combined analysis demonstrated a 7% and 12% increase in 

selection accuracy for the fixed wing and rotary wing, respectively (Appendix A5). 

For a plant breeding program, selecting material to advance by UAS a month or more 

before maturity can speed the breeding cycle, substantially decrease the cost and time 

compared to combine harvesting, and allow more environments to be screened. However, it 

is acknowledged that the prediction of grain yield solely upon height measurements is not 

an acceptable model of yield prediction in these trials; nevertheless, significant 

improvements in predictive power were obtained by using UAS technologies temporally. 

Additional UAS estimated phenotypes (vegetation indices, canopy cover, plant population, 

etc.) need to be developed and included with height for better predictions of yield if plant 

breeders will ever be able to select based on remote sensing data. 

For fundamental research into plant physiology, genetics, and development these 

UAS findings open up interesting avenues to identify differences in growth trajectories, 

impractical to measure previously. Most importantly, such studies can be conducted on 

mature plants, non-destructively, in a field setting, which is important if discoveries are ever 

to be used in practical crop or agronomic improvement.    

 



 

43 

2.4 Conclusion 

 This study is one of the first applications of UAS phenotyping of agriculture research 

at representative scale (>1,500 plots) of a breeding/agriculture research program. The 

comparisons of different UAS platforms and flight altitudes have provided additional 

insights towards reliable application of UAS imagery within an agricultural field trial setting, 

specifically within crops with dense canopy structure yet sparse apex canopy features (e.g. 

tassels). To our knowledge, this is one of the first empirical studies to move beyond UAS 

phenotype validation towards phenotypic predictive modeling across a large set of plant 

material (280 hybrids), while validating a previous finding (Pugh, et al., 2018) in a different 

germplasm pool and environment. Four of the most important findings were: (i) the dense 

canopy structure at later growth stages of maize restricts execution of SfM photogrammetry, 

returning inconsistent data quality, specifically at low flight altitudes. (ii) Increased genetic 

variation (10-40%) was captured by UAS P95 compared to conventional manual terminal 

plant height, accompanied with reduced residual error, resulting in increased measurement 

repeatability. (iii) Logistic functions accurately model UAS maize height estimates, which 

can be used in place of independent flight dates to develop robust prediction models and 

allow for execution of combined environment analysis with relative ease. (iv) Predictive 

modeling of grain yield via UAS height estimates or logistic function parameters 

demonstrated substantial improvements in the proportion of grain yield variation explained 

and overall selection accuracy compared to traditional PHTTRML in model selection accuracy.
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CHAPTER III 

UNMANNED AERIAL SYSTEMS REVEAL DYNAMIC EXPRESSION OF 

QUANTITATIVE TRAIT LOCI ASSOCIATED WITH PLANT HEIGHT IN MAIZE 

(Zea mays L.) 

 

3.1 Introduction 

Phenotypic characterization of agricultural plant populations have been lagging in 

scale, density, and accuracy when compared with genomic data (Pauli, et al., 2016). Due to 

resource demands (labor, time, etc.) involved in conventional phenotyping, most manually 

measured traits are acquired at one time point in the growing season, leading to a limited 

scope of interest for the genomic information associated with the underlying the traits of 

interest (Furbank and Tester, 2011). Recently, advances in technologies including computer 

processing, robotics, imaging software, unmanned vehicles and  sensors have facilitated the 

development of high-throughput phenotyping platforms (HTPP) to improve phenotypic 

bottlenecks (Araus and Cairns, 2014; Araus, et al., 2018). 

Implementation of HTTP systems now provides the ability to collect temporal 

phenotypic measurements on representative breeding populations within a field based setting 

(Araus and Cairns, 2014; Sankaran, et al., 2015; Shi, et al., 2016). Currently, unmanned 

aerial systems (UAS) are being used to collect RGB images and reconstructed three 

dimensional representations of field trials using structure from motion methodology for 

height estimates in field crops (Anderson, et al., 2019; Bendig, et al., 2014; Chang, et al., 

2017; Chu, et al., 2018; De Souza, et al., 2017; Holman, et al., 2016; Malambo, et al., 2018; 

Pugh, et al., 2018; Shi, et al., 2016; Watanabe, et al., 2017). UAS height estimates of maize 
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have been extensively validated by both high correlations to traditional manual 

measurements and by having equivalent or greater phenotypic variation partitioned to 

genetic factors (Anderson, et al., 2019; Chu, et al., 2018; Pugh, et al., 2018). To our 

knowledge the majority of reported field based phenotyping of maize with HTTP platforms 

has been with respect to hybrid trials (Anderson, et al., 2019; Chu, et al., 2018; Geipel, et 

al., 2014; Li, et al., 2016; Malambo, et al., 2018; Pugh, et al., 2018; Shi, et al., 2016; Varela, 

et al., 2017) and limited reports have been published on the evaluation of inbred trials (Han, 

et al., 2019; Han, et al., 2018; Wang, et al., 2019), specifically genetic mapping populations.  

Maize height is both an important and a highly heritable agronomic trait (Anderson, 

et al., 2018; Li, et al., 2016; Peiffer, et al., 2014; Wallace, et al., 2016) that is commonly 

collected due to its ease in measurement, agronomic importance, and correlation to hybrid 

grain yield in some situations. Manually measured plant height is commonly collected after 

reproductive maturity at the distance from the ground to the tip of the tassel.  The genetic 

architecture of plant height in maize has been explained as an infinitesimal model (i.e. very 

large numbers of small additive effect loci) with some large effect loci likely fixed during 

domestication and early selection (Peiffer, et al., 2014). Genetic variation in terminal plant 

height have been shown to have functional control through other hormones; mutations within 

the (i) gibberellin biosynthesis pathways (Lawit, et al., 2010) and crosstalk with other 

phytohormomes including: (ii) auxin (Multani, et al., 2003) and (iii) brassinosteriods 

(Hartwig, et al., 2011; Makarevitch, et al., 2012; Wang, et al., 2017; Winkler and Helentjaris, 

1995). Traditional QTL studies using phenotypic data at a single terminal time point can 

only represent the accumulated QTL effects while ignoringthe dynamic nature of many 
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agronomically important traits which change and should be mapped as a function of time 

(Wu and Lin, 2006).  

Patterns of temporal QTL expression using field-based HTTP systems have been 

demonstrated for soybean canopy cover (Xavier, et al., 2017), cotton stress-response traits 

(Pauli, et al., 2016), spring barley biomass accumulation (Neumann, et al., 2017), rice yield 

components (Tanger, et al., 2017), and tricticale plant height (Würschum, et al., 2014). 

Temporal patterns of QTL have been evaluated in maize within greenhouse setting using 

automated phenotyping platforms (Muraya, et al., 2017; Zhang, et al., 2017), to our 

knowledge Wang, et al. (2019) is the only reported field based temporal QTL study in maize. 

The agronomic importance, high heritability, depth of QTL knowledge and validated UAS 

phenotyping procedures make plant height an excellent phenotype for evaluating temporal 

patterns of QTL expression in maize as a proof of concept. Using UAS we evaluated three 

recombinant inbred line (RIL) linkage mapping populations under field conditions and 

captured the dynamic growth patterns of plant height in maize inbreds. The objectives of this 

study were to (i) assess the ability to of UAS to estimate heights within inbred maize 

populations as seen in hybrid trials, (ii) compare growth patterns across genetic populations 

via sigmoidal modeling, (iii) evaluate temporal patterns of QTL expression through the 

growing season for maize height, and (iv) compare with previously reported QTL to 

determine if they undergo changes in temporal expression. 

3.2 Materials and Methods 

3.2.1 Germplasm Material and Experimental Design 

Three bi-parental mapping populations were developed from breeding lines by Dr. 

Yuanyuan Chen (Chen, 2016) specifically to validate three height quantitative trait 
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nucleotides (QTN) for which they segregated within the Texas environment. The three QTN 

were discovered in an earlier genome wide association study (GWAS) (Farfan, et al., 2015) 

for height and grain yield. The recombinant inbred line (RIL) progeny were derived from 

the crosses of Tx740/NC356 (tropical/tropical; 110 RILs), Ki3/NC356 (tropical/tropical; 

239 RILs) and LH82/LAMA-YC (temperate/tropical; 178 RILs). Tx740 (LAMA2002-12-1-

B-B-B) (Mayfield, et al., 2012) is a parent in the “LAMA” inbred line which has the pedigree 

((LAMA2002-12-1-B-B-B-B/LAMA2002-1-5-B-B-B-B)-3-2-B-1-B3-B). In 2018, the 

mapping populations were planted in a randomized complete block design (RCBD) with two 

replications across two environments (irrigated and non-irrigated) with dimensions of 0.76 

m row spacing, and 3.81 m plot lengths.  

3.2.2 Unmanned Aerial System Image Collection 

  Two platforms were used, a rotary wing and a fixed wing UAV. For the rotary wing, 

a DJI Phantom 3 Professional with a 12 megapixel DJI FC300X camera was flown at an 

altitude of 25 m with to 80% forward and side image overlap. Fixed wing images were 

collected with a Tuffwing UAV Mapper (http://www.tuffwing.com) equipped with a 24 

megapixel Sony a6000 RGB camera. Fixed wing surveys were conducted at a 120 m altitude 

with 80% image overlap. A total of 19 DJI Phantom 3 Professional flights were conducted 

throughout the growing season, while 11 Tuffwing UAV Mapper flights (starting 

05/17/2018) were conducted due to mechanical setbacks of the Tuffwing. After QC/QA a 

total of 16 flights were used for height estimates based on mosaicking quality and limited 

data blunders.  

All of the Tuffwing flights were processed in Agisoft PhotoScan (AgiSoft PhotoScan 

Professional, 2016), while the majority of the DJI Phantom flights were processed in 
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Pix4Dmapper, based on collaborators comfort and preference with the associated software. 

In general, these software packages are equivalent and used to identify common features (tie 

points) across images followed by triangulation and distortion adjustment optimization to 

generate densified 3D point clouds, DSM, and orthomosaic images. Height estimates were 

extracted from the three dimensional point clouds following the procedures of (Anderson, et 

al., 2019). In short, the ground points were identified from the point cloud using the 

hierarchical robust interpolation algorithm within FUSION/LDV. Identified ground points 

were used to interpolate the digital elevation model, followed by subtracting the DEM from 

the original point cloud to produce the canopy surface model. The plot level polygon 

shapefiles were created using the R/UAStools::plotshpcreate (Anderson, et al., 2019) 

function in R and the 95th percentile height estimates were extracted for each experimental 

plot.  

3.2.3 Statistical Inference 

3.2.3.1 Variance Component Estimates and Heritability 

From the extracted point cloud derived canopy height metrics (P95), we fit mixed 

linear models utilizing residual maximum likelihood (REML) in JMP version 14.0.0 (JMP®, 

2018) to define best linear unbiased predictors (BLUPs) of the inbreds by their entry number. 

Models were fit on a per flight date basis. The individual mapping populations were 

evaluated as a randomized complete block design (RCBD, Eq. 6) including spatial regression 

(range and row [furrow irrigation runs down rows], but this is also called row and column, 

respectively, where furrow irrigation is not used). 

 

𝑌 = µ + 𝜎𝐺
2 + 𝜎𝑟

2 + 𝜎𝑖
2 + 𝜎𝑗

2 + 𝜎𝜀
2    Eq. [6] 
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with terms entry (𝜎𝐺
2), replicate (𝜎𝑟

2) range (𝜎𝑖
2), row (𝜎𝑗

2) and residual error (𝜎𝜀
2).  

Broad sense heritability (H2) estimates were calculated on an entry means basis 

(Eq.7).  

 

𝐻2 =
𝜎𝐺

2 

𝜎𝐺
2+𝜎𝜀

2/r 
     

 Eq. [7] 

 

Within each environment, H2 estimates were calculated for each population separately while 

including replicates (r) for each of the UAS flight dates. 

3.2.3.2 Nonlinear Function 

The three parameter Weibull sigmoid growth model (Eq. 8) was used to summarize 

the  

 

𝑓(𝑥) = 𝐿 ∗ (1 − 𝑒
(−(

𝑥

𝑥0
)

𝑘
)
)   

 Eq. [8] 

 

height as a function of DAS (x) with the asymptote (L), inflection point (x0), and the growth 

rate (k) of the fitted curve. The asymptote (L; m) is maximum value of the curve which 

represents maximum/terminal plant height (PHTTRML). The inflection point (x0; DAS) 
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indicates the DAS where the slope of the logarithmic phase is at its absolute maximum. The 

growth rate (k; DAS-1) estimates the steepness of the curve. Sigmoidal curves were fit using 

the Fit Curve tool in JMP 14 (AnalyzeSpecialized ModelingFit Curve) and parameters 

were estimated on an entry basis utilizing the extracted BLUPs or the individual environment 

REML models described above. Heights of zero were assigned to the day of planting and 

days pre-planting to fit the curve.  Significance of the logistic parameters were evaluated 

using the chi squared (X2) test (α = 0.05, df = 1) to identify logistical curves with poor fits 

to UAS height estimates, these were subsequently removed from future analysis. Using the 

associated Weibull growth curve parameter, height estimates were imputed on a one day 

interval (1 to 85 DAS) for each inbred entry in their associated environment. 

3.2.4 Genotyping and Linkage Map Construction 

 The genotyping was described in Chen 2016, and is paraphrased here. Genotype 

samples were collected from F3:4 seedlings grown under greenhouse conditions, where eight 

samples were bulked per genotype. The CTAB method (Chen and Ronald, 1999) was used to 

extract DNA and samples were sent to AgReliant Genetics LLC, where they were genotyped 

by Infinium® assays for 17,444 single nucleotide polymorphisms (SNPs). The linkage 

groups and physical locations were provided with the SNP chip of which 716 markers 

locations were unknown or withheld due to intellectual property rights, resulting in 17,019 

SNPs with known reference locations (B73 RefGEN_v3). 

 Individuals with >10% missing values and SNPs with >10% missing values were 

dropped from the data set resulting in 5316, 5628, and 6231 polymorphic SNPs for the 

Ki3/NC356, Tx740/NC356, and LH82/LAMA populations, respectively. Crosspoints were 

predicted using the crosspoint subcommand of SNPbinner (Gonda, et al., 2018) to clean data 
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set of double recombinants. The emission probability was set to 0.9 (-p 0.9), the continuous 

genotype region was set to 0.1% (-r 0.001) of the chromosome size, and the transition 

probability was calculated using a crosscount of 7,500,000 (-c 7,500,000). The visualize 

subcommand was used to evaluate the efficiency of the calculated break points to the original 

SNP calls and identify satisfactory crosspoint parameters. The crosspoint output identified 

break point locations for each RIL and the prediction of genotypic homogeneity of each 

region between breakpoint and the SNP calls were adjusted accordingly. Marker datasets 

filtered by SNPbinner were constructed into linkage maps using the MAP function of QTL 

IciMapping version 4.1.0.0 (http://www.isbreeding.net/) software. Linkage groups were 

defined by “By Anchor Only” setting and the marker orders were defined by their physical 

locations using the “By Input” ordering algorithm. Recombination frequencies between 

markers were calculated based on F3 marker frequencies by denoting the “POP.ID” to eight. 

The final genetic maps consisted of 1530, 2571, and 2324 SNPs after removal of 

redundant markers. The genetic map distances were calculated in QTL IcIMappering using 

the Kosambi mapping function, and the total map lengths were estimated to be 1315, 1207, 

and 1474 cM for the Tx740xNC356, Ki3xNC356, and LH82xLAMA populations, 

respectively.  

3.2.5 Linkage Mapping 

The entries phenotyped in 2018 were advanced several generations following initial 

DNA extraction and were evaluated in the field at F6 generation or greater. For this reason, 

heterozygous calls (1) were set to missing (-1) and QTL analysis was performed assuming 

RIL genotype frequencies (“POP.ID” = 4). Analysis by other methods (e.g. treating as F3) 

were also tested to ensure conclusions were similar, but detection power was much lower, 
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likely due to the software trying to fit dominance effects, which are expected to be very rare 

in an F6 generation . Inclusive Composite Interval Mapping (Li, et al., 2007) of Additive 

(ICIM-ADD) QTL was conducted in the QTL IciMapping v4.1 using the BIP (QTL mapping 

for bi-parental populations) function. The step parameters was set to 1.0 cM and the 

probability of inclusion in the stepwise regression (PIN) was set to 0.001. The focus of this 

study was on understanding the temporal shifts in the marker trait associations of plant 

height, rather than identifying regions of high confidence that could be used in later marker 

assisted selection. For these reasons, we defined QTL of interest liberally as those with LOD 

> 2.0 and percent variation explained ≥ 3% (Li, et al., 2008), however LOD and other metrics 

are provided to extract more conservative thresholds. Using the imputed heights from 1 to 

85 DAS, ICIM-ADD was performed on each DAS, for each population in each environment 

separately to access the temporal shifts in allelic effects and marker–trait associations.  

Candidate genes list was obtained from Wallace, et al. (2016). In short, candidate 

genes were identified from (i) literature, (ii) mining the MaizeGDB database for known 

height mutants, and (iii) searching the maize genome annotation on Phytozome genes 

annotated with “auxin”, “brassinosteroid” and/or “gibberellin”. Distance for the center of 

the QTL confidence interval to nearest candidate gene with the same chromosome were 

identified. 

3.3 Results and Discussion 

3.3.1 UAS Surveys and Image Processing Quality 

 A total of 18 and 11 flights were conducted over the bi-parental mapping populations 

for the DJI Phantom 3 Pro and Tuffwing UAV Mapper, respectively (Appendix A6). Early 

season DJI flights prior to 35 DAS resulted in limited to no plant structure being 
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reconstructed within the 3D point clouds, indicating that higher resolution imaging is 

necessary to reconstruct early seasons plant structure. Due to mechanical issues, Tuffwing 

image surveys did not begin until 64 DAS (05-17-2018). Qualitative, visual assessment of 

point clouds and image processing reports demonstrated reduced tie point matching leading 

to “black holes” in point clouds in later season flights (>70 DAS), with the vast majority 

occurring in the low altitude DJI flights. We hypothesize that the increased homogenous 

canopy appearance, coupled with reduced frame of reference of the low-altitude images led 

to the failure of the SfM algorithms to identify tie points for three dimensional point cloud 

construction in these cases. Our image processing results of inbred populations surveys are 

similar to image processing results of hybrid maize trial UAS surveys (Anderson, et al., 

2019), demonstrating that the level of inbreeding did not result in differential image 

processing quality. Following qualitative assessment for blunders and black holes, six DJI 

(35-72 DAS) and ten Tuffwing (64-133 DAS) flights (16 total) were identified as high 

quality point clouds for extraction of height estimates.   

3.3.2 Statistics Inference  

It is well documented that the quality of information contained within UAS image 

derived datasets fluctuates by flight date (Anderson, et al., 2019). For these reasons we have 

used several statistical and qualitative approaches to further filter our temporal dataset. First, 

we fit our RCBD design using REML approaches and extracted P95 entry based BLUPS by 

flight date, grouped by population and irrigation treatment. Using the entry BLUPs, Tukey 

HSD mean comparisons were made across flight dates for each population in each 

environment to identify flights that did not follow the standard sigmoidal growth pattern of 

maize (Anderson, et al., 2019; Archontoulis and Miguez, 2015). Flights on 64, 68, and 71 
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DAS produced a canopy of plants (all entries) far shorter than expected and were removed, 

which significantly lowered means during the exponential phase of growth. Days 72 and 96 

were removed due to significantly larger means in comparison to other dates past the curve’s 

upper vertex within the period of terminal growth (>65 DAS), where height should be 

consistent. In theory, phenotypic variance of plant height should increase throughout the 

growing season and become consistent across terminal growth dates. Following this theory, 

we conducted an unequal variances test across flight dates and identified days 71, 83, 86, 

96, 124, and 133 as dates which deviate from theory in two or more populations by 

environment grouping. Ignoring those flights with unequal variance resulted in eight high 

quality flight dates (35, 43, 57, 62, 65, 69, 100, and 117 DAS) used for the remainder of this 

study (Figure 6).  

The mean height of the Tx740xNC356 non-irrigated RILS increased from 0.08 m 

(35 DAS) to 1.12 m (100 DAS) with an average range of 0.35 m and the irrigated trial 

increased from 0.07 m (35 DAS) to 1.39 m (100 DAS) with an average range of 0.34 m 

(Table 4). Tx740 and NC356 reached a max estimated height of 1.17 m in the non-irrigated 

trial and a max estimated height of 1.06 m and 1.11 m in the irrigated trial, respectively. 

KixNC356 non-irrigated RILS increases from 0.07 (35 DAS) to 1.07 m (100 DAS) with an 

average range of 0.41 m and the irrigated trial increased from 0.00 (35 DAS) to 1.11 m (100 

DAS) with an average range of 0.44 m. Ki3 and NC356 reached a max estimated height of 

1.05 and 1.17m in the non-irrigated trial and a max estimated height of 1.02 and 1.11 m in 

the irrigated trial, respectively. LH82xLAMA non-irrigated RILS increases from 0.08 (35 

DAS) to 1.10 m (100 DAS) with an average range of 0.40 m and the irrigated trial increased 
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Figure 6. Boxplot representations of mapping populations (Tx740xNC356, Ki3xNC356, 

and LH82xLAMA) across the eight identified flight dates with high quality point clouds 

for the irrigated (top) and non-irrigate (bottom) trials. 
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Table 4. Summary statistics of the entries for each population (Tx740xNC356, Ki3xNC356, and LH82xLAMA) across the eight 

identified flight dates with high quality point clouds for the irrigated and non-irrigated trials. 

 

Population DAS† 

Non-Irrigated Trial  Irrigated Trial 

N 

Genotypes Mean 

Std. 

Dev. Min Max 

Female 

Mean 

Male 

Mean  N Mean 

Std.  

Dev. Min Max 

Female 

Mean 

Male 

Mean 

Tx740xNC356 35 101 0.08 0.02 0.04 0.12 0.08 0.11  87 0.07 0.01 0.06 0.11 0.05 0.11 

Tx740xNC356 43 101 0.19 0.05 0.09 0.32 0.17 0.24  100 0.17 0.04 0.08 0.27 0.11 0.21 

Tx740xNC356 57 101 0.65 0.06 0.48 0.84 0.63 0.69  100 0.52 0.05 0.39 0.64 0.49 0.59 

Tx740xNC356 62 101 0.88 0.06 0.65 1.07 0.88 0.90  100 0.85 0.07 0.63 1.03 0.82 0.88 

Tx740xNC356 65 101 1.05 0.07 0.70 1.26 1.07 1.08  100 1.00 0.07 0.80 1.22 0.96 1.02 

Tx740xNC356 69 101 1.03 0.07 0.83 1.20 1.05 0.95  100 1.06 0.07 0.79 1.24 1.01 1.10 

Tx740xNC356 100 101 1.12 0.08 0.91 1.34 1.17 1.17  100 1.07 0.09 0.88 1.39 1.06 1.11 

Tx740xNC356 117 101 1.10 0.07 0.91 1.28 1.13 1.08  100 1.04 0.08 0.86 1.34 1.05 1.06 

Ki3xNC356 35 237 0.07 0.02 0.04 0.12 0.05 0.11  196 0.01 0.00 0.01 0.01 0.01 0.01 

Ki3xNC356 43 237 0.19 0.04 0.09 0.33 0.17 0.24  238 0.16 0.04 0.06 0.28 0.17 0.17 

Ki3xNC356 57 237 0.66 0.06 0.46 0.91 0.64 0.68  238 0.55 0.05 0.36 0.69 0.54 0.51 

Ki3xNC356 62 237 0.86 0.07 0.58 1.10 0.87 0.88  238 0.88 0.08 0.67 1.21 0.82 0.88 

Ki3xNC356 65 237 1.02 0.06 0.77 1.17 1.03 1.05  238 1.03 0.08 0.68 1.32 0.97 1.00 

Ki3xNC356 69 237 1.00 0.09 0.72 1.24 1.00 1.04  238 1.08 0.10 0.70 1.48 1.02 1.10 

Ki3xNC356 100 237 1.07 0.08 0.81 1.36 1.05 1.17  238 1.04 0.10 0.80 1.32 1.02 1.11 

Ki3xNC356 117 237 1.02 0.09 0.82 1.32 1.02 1.07  238 1.01 0.09 0.79 1.30 0.98 1.06 
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Table 4. Continued. 

Population DAS† 

Non-Irrigated Trial  Irrigated Trial 

N Mean 

Std. 

Dev. Min Max 

Female 

Mean 

Male 

Mean  N Mean 

Std.  

Dev. Min Max 

Female 

Mean 

Male 

Mean 

LH82xLAMA 35 174 0.08 0.01 0.06 0.11 0.06 0.06  101 0.00 0.00 0.00 0.00 0.00 0.00 

LH82xLAMA 43 174 0.19 0.04 0.08 0.33 0.24 0.09  175 0.15 0.04 0.05 0.29 0.18 0.07 

LH82xLAMA 57 174 0.68 0.06 0.45 0.88 0.72 0.58  175 0.58 0.05 0.42 0.74 0.61 0.45 

LH82xLAMA 62 174 0.90 0.09 0.59 1.15 0.91 0.78  175 0.92 0.08 0.73 1.18 0.95 0.81 

LH82xLAMA 65 174 1.08 0.07 0.71 1.25 1.05 1.07  175 1.08 0.08 0.77 1.30 1.05 1.00 

LH82xLAMA 69 174 1.04 0.07 0.87 1.25 0.84 0.89  175 1.13 0.10 0.92 1.39 1.02 1.08 

LH82xLAMA 100 174 1.10 0.08 0.85 1.37 0.92 1.16  175 1.04 0.09 0.86 1.28 0.89 1.09 

LH82xLAMA 117 174 1.04 0.08 0.83 1.32 0.84 1.14  175 0.99 0.10 0.79 1.24 0.81 1.06 

†  DAS: Days after sowing.
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from 0.00 (35 DAS) to 1.04 m (100 DAS) with an average range of 0.36 m. LH82 and 

LAMA reached a max estimated height of 0.92 and 1.16 m in the non-irrigated trial and a 

max estimated height of 0.89 and 1.09 m in the irrigated trial, respectively. 

3.3.2.1 Variance Components and Heritability of UAS Height Estimates 

Variance component decomposition demonstrated total phenotypic variance 

increased throughout the growing season for all inbred populations (Figure 7, black circles)  

 

 

 

Figure 7. Stack bar graphs of percent variation explain by variables of Eq. 1 for individual 

UAS surveys of experimental mapping populations (Tx740xNC356, Ki3xNC356, and 

LH82xLAMA) for each irrigation regimen (irrigated and non-irrigated). Days after 

planting (DAS) of UAS image collection are indicated by the x-axis. Total variance 

captured (black circle) per image set, defined by the right y-axis, puts repeatability and 

genetic variance explained into perspective of other flight dates. Heritability is indicated by 

the white triangles. 
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similar to hybrid trials. Genetic variance fluctuated from flight to flight throughout the 

growing season, based on quality of the flights, but had an increasing general trend. The 

proportion of variation attributed to genetics (σ2
G) was 51±7, 55±11, and 55±9% within the 

irrigated trial and 49±6, 48±10, and 49±9% within the non-irrigated trial for Tx740xNC356, 

Ki3xNC356, and LH82xLAMA, respectively. Manual terminal height measurements within 

the irrigated trial partitioned 65, 59, and 76% and the non-irrigated trial attributed 51, 50, 

and 54 % of the phenotypic variation to genetics for Tx740xNC356, Ki3xNC356, and 

LH82xLAMA, respectively. Broad sense heritability (H2) estimates peaked at 84, 85, and 

85% with mean H2 of 72±7, 74±13, and 74±12% for the irrigated trials. Within the non-

irrigated trial, H2 peaked at 82, 80, and 83 with mean H2 of 73±6, 68±11, and 70±8% for 

Tx740xNC356, Ki3xNC356, and LH82xLAMA, espectively. Broad sense heritability of the 

terminal manually measured plant height (PHTTRML) was estimated at 81, 76, and 76% in 

the irrigated trial and 80, 70, and 73% in the non-irrigated trial for Tx740xNC356, 

Ki3xNC356, and LH82xLAMA, respectively. 

3.3.2.2 Sigmoidal Modeling of UAS Height Estimates  

Sigmoidal growth functions are an accurate way of modeling the dynamic growth of 

an annual crop, such as maize (Archontoulis and Miguez, 2015). The Weibull function 

showed an improved fit to the data over the logistic and Gompertz functions based on 

information criteria statistics (AIC, BIC, etc.) and was used in this analysis. The Weibull 

function effectively modeled the temporal growth with mean R2>0.99 and mean RMSE 

ranging from 2.4 to 3.7 cm across all populations and environment (Figure 8). Significant 

differences in asymptote were found between Tx740xNC356 (1.10 m) and LH82xLAMA 

(1.08 m) with a 2 cm difference in means under irrigation; LH82 is the earliest and shortest  
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Figure 8. Fitted sigmoidal curves based off the Weibull function (Eq. [3]) of each entry within each population: [a] Tx740xNC356, 

[b] Ki3xNC356, and [c] LH82xLAMA. Female parent is represented by the red line and the male parent is represent by the blue line.  
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Figure 9. Boxplots summarizing entry BLUPS of [a] manual terminal plant height, [b] Weibull asymptote, [c] Weibull inflection 

point, and [d] Weibull growth rate for each mapping population (Tx740xNC356, Ki3xNC356, and LH82xLAMA) within each 

irrigation regimen (irrigated vs. non-irrigated). Histograms to the left of the boxplot represent the distribution of the data and symbols 

to the right depict the phenotypes of the female (~) and male (-) parents of each population. Letter define significant differences in 

means at α=0.05.
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of the inbred lines adaptable to central Texas. Significant differences were found across all 

populations (1.02-1.09 m) within the non-irrigated trial (Figure 9b).  

In comparison, PHTTMRL was significantly different across populations (1.66, 1.59, 

and 1.57 m) under irrigated conditions for Tx740xNC356, Ki3xNC356, and LH82xLAMA, 

respectively. Tx740xNC356 (1.65 m) was significantly taller than the other populations 

(1.54 and 1.52 m) under the non-irrigated treatment (Figure 9a). The reduced means of the 

asymptote demonstrates the inherent biases of UAS estimation of plant height in maize 

compared with manual measurements. The ~0.5 m underestimate of height is slightly higher 

but within the range of previous studies in hybrid maize at similar flight altitudes (120 m). 

We speculate that the combination of flight altitude combined with reduced plant canopy 

density of the inbreds (as opposed to hybrids reported in past studies) influenced the UAS 

bias towards shorter estimates. Bias aside, numerical rankings between asymptote and 

PHTTRML were consistent in ranking Tx740xNC356, Ki3xNC356, and LH82xLAMA 

population means from tallest to shortest and Pearson correlations (r) (Irrigated: 77, 74, and 

74%; Non-Irrigated: 66, 72, and 74%; Appendix B10, Appendix B11, and Appendix B12) 

indicated highly significant (α=0.05), positive linear correlations between UAS asymptotes 

estimates and PHTTRML measurements. 

Significant differences were found between each population’s mean for inflection 

point (58.6, 58.0, and 57.5 d for Tx740xNC356, Ki3xNC356, and LH82xLAMA) within the 

irrigated trial while Tx740xNC356 (60.0 d) was significantly (α=0.05) one day later in the 

non-irrigated trials (Figure 9c). Comparison of irrigation treatments demonstrated that 

limiting abiotic stress caused by water limitation delayed the inflection point by two days on 

average across the populations. Inflection point had low positive correlations to PHTTRML 
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(Irrigated: 30, 27, and 34%; Non-Irrigated: 2, 22, and 24%; Appendix B10, Appendix B11, 

and Appendix B12) with high correlations to flowering time (DTA/DTS) (Irrigated: 60/45, 

59/58, and 64/59%; Non-Irrigated: 61/56, 55/53, and 68/66%; Appendix B10, Appendix 

B11, and Appendix B12). Correlations between inflection points and UAS P95 estimates by 

flight date consistently demonstrated a high negative correlation to PHT estimates during 

the early season that gradually progressed toward a positive correlation ~10 days after the 

mean inflection point (Appendix B10, Appendix B11, and Appendix B12). We hypothesize 

that the later inflection points demonstrate extended vegetative growth periods leading to 

taller plants, indicating the possibility of pleiotropic QTL across the functional curve 

parameters. Since the correlation is high but not perfect we hypothesize that taller genotypes 

with earlier inflection points could potentially indicate better fitness in stressful 

environments, as they are determined to reach their terminal height quickly.  

The growth rate parameter, which influences the steepness of the Weibull curve, was 

significantly different in its means across the populations in both environments (Irrigated: 

6.9, 7.6, and 8.2 DAS-1; Non-irrigated: 6.3, 6.5, and 6.8 DAS-1), though a greater range of 

the means was present in the irrigated trial (Figure 9d).  Using the first derivative of the 

Weibull function the absolute growth rate (AGR) was calculated at the inflection point which 

equates to the maximum growth rate of the curves. Significant differences were found in the 

maximum AGR across populations within the irrigated trial (48, 52, and 56 mm day-1) and 

LH82xLAMA was 3 mm day-1 greater than the other populations in the non-irrigated trial. 

Comparison across irrigation trials demonstrates a 4, 7, and 8 mm day-1 reduction in absolute 

growth rate within the non-irrigated trial for Tx740xNC356, Ki3xNC356, and 

LH82xLAMA, respectively. 
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3.3.3 QTL Mapping 

3.3.3.1 Manual Terminal Height Associations 

 Nine QTL were identified for PHTTRML across the three populations and two 

environments (Table 1) with genetic variation explained of each ranging from 5.1 to 9.4%. 

All PHTTRML associations had an additive effect of ~3 cm (Table 5). One region of interest 

was identified across two populations q1_172 (LH82xLAMA; irrigated) and q1_176 

(Tx740xNC356; non-irrigated), localizing to the 280 to 284 Mbs region of chromosome 1. 

We identified a single genomic region, 98 to 128 Mbs on chromosome 2 that co-localized 

within the same genetic background (Ki3xNC356) across different environmental treatments 

(q2_70 irrigated and q2_69 non-irrigated). The limited co-localization of QTLs across 

genetic populations demonstrates the difficulty of identifying genomic regions that can be 

utilized in genetic backgrounds beyond those they were discovered within.  They also 

demonstrated a lack of statistical power in the smaller of the three populations 

Tx740xNC356 (n=110).  It has been empirically shown that population size is the most 

critical factor in QTL linkage mapping (Anderson, et al., 2018).  

3.3.3.2 Functional Parameter Associations 

A main intention of this study was to evaluate the use of UAS estimates in modeling 

temporal growth of maize for the purpose of identifying dynamic QTL (Wu and Lin, 2006).  

Analysis of QTLs using functional parameters of the Weibull curve as phenotypes identified 

13, 9, and 12 significant associations with the asymptote, growth rate, and inflection point, 

respectively (Appendix A8). Asymptote QTLs explained genetic variation ranging from 

3.4% to 14.3% with additive effects ranging from 2 to 5 cm, consistent with PHTTRML. High 

correlations between asymptote and PHTTRML indicated that similar QTL should be detected 
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  Table 5. Summary of QTL identified using manual terminal plant height as the associated phenotype. 

Population Trt† Chromosome 

Position 

(cM) LOD§ PVE‡ 

Add  

(m)¶ 

Left 

Marker  

Position 

(cM) 

Right 

Marker  

Position 

 (cM) 

Left Marker  

Position 

 (bp) 

Right 

Marker  

Position  

(bp) 

Ki3xNC356 D 2 69 4.3 8.2 -0.03 68.5 69.5 98,935,095 101,781,010 

Ki3xNC356 D 8 12 3.0 5.6 -0.03 10.5 13.5 5,024,449 5,912,287 

Ki3xNC356 I 2 70 3.0 5.8 -0.03 69.5 70.5 113,899,778 127,959,743 

Ki3xNC356 I 6 62 2.6 5.1 -0.03 61.5 62.5 148,942,282 149,680,023 

Ki3xNC356 I 8 14 2.9 5.5 -0.03 13.5 15.5 6,810,510 7,748,559 

LH82xLAMA D 3 86 2.8 6.4 0.03 85.5 86.5 169,071,582 169,218,337 

LH82xLAMA I 1 172 2.8 6.4 -0.03 171.5 172.5 280,342,748 280,578,622 

LH82xLAMA I 8 65 2.2 6 -0.03 61.5 66.5 125,523,343 128,428,318 

Tx740xNC356 D 1 176 2.0 9.4 -0.04 171.5 178.5 281,709,021 283,430,713 

† Trt: Irrigation regimen; irrigated (I) and non-irrigated (D). 

§ LOD: Logarithm of odds calculated as LOD = –log10(p-value). 

‡ PVE: Prevent variation explained. 

¶ Add: Estimated additive effect size of the QTL. 
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Table 6. Selective summary of QTL identified using fitting parameters asymptote (Asym), inflection point (IP), and growth rate (GR) 

of the sigmoidal curve as the associated phenotypes. QTL presented are within 1 Mbp of a plausible candidate gene. 

 

Population Trt† Trait Chr§ 

Position 

(cM) 

Left Marker 

Position (bp) 

Right Marker 

Position (bp) Gene/QTL < 1Mbp Function 

Ki3xNC356 I Asym 4 61 156,517,564 156,384,593 GRMZM2G134023 
Brassinosteroid-responsive 

RING-H2 

Ki3xNC356 I IP 4 61 156,384,593 156,517,564 GRMZM2G134023 
Brassinosteroid-responsive 

RING-H2 

Ki3xNC356 D IP 4 119 237,391,404 237,610,499 AC196708.3_FG006 
SAUR-like auxin-responsive 

protein family 

Ki3xNC356 I IP 4 119 237,391,404 237,610,499 
AC196708.3_FG006 

 

SAUR-like auxin-responsive 

protein family 

LH82xLAMA I GR 2 117 212,246,084 212,544,633 GRMZM2G064941 
Auxin efflux carrier family 

protein 

LH82xLAMA D Asym 3 72 159,817,878 158,668,137 sdw2 
Short plant 

(Neuffer, 1992) 

LH82xLAMA D GR 9 14 5,289,590 6,124,392 GRMZM2G307440 Gibberellin receptor GID1L2 

LH82xLAMA D GR 10 20 6,537,612 5,874,629 cr4 
Crinkly4; short plant 

(Stinard and Robertson, 1987) 

LH82xLAMA D IP 10 20 5,874,629 6,537,612 cr4 
Crinkly4; short plant 

(Stinard and Robertson, 1987) 

LH82xLAMA D Asym 10 58 136,247,247 136,083,608 GRMZM2G397684 
Brassinosteroid-responsive 

RING-H2 

LH82xLAMA I Asym 10 58 136,247,247 136,083,608 GRMZM2G397684 
Brassinosteroid-responsive 

RING-H2 

Tx740xNC356 D IP 2 87 182,727,527 183,505,515 GRMZM2G045243 
SAUR-like auxin-responsive 

protein family 

Tx740xNC356 I GR 5 119 205,748,909 206,263,616 GRMZM2G074267 
Auxin efflux carrier family 

protein 

Tx740xNC356 D Asym 6 67 143,997,309 141,909,772 dwil1 
Dwarf & irregular leaf1 

(Jiang, et al., 2012) 

† Trt: Irrigation regimen; irrigated (I) and non-irrigated (D). 

§ Chr: Chromosome. 



 

67 

using the two phenotyping methods. Two PHTTRML QTLs, q1_172 LH82xLAMA (irrigated) 

and q1_176 Tx740xNC356 (non-irrigated), co-localized with an asymptote QTL, q1_173 of 

LH82xLAMA (irrigated) (Table2). Additional co-localizations were found between q6_67 

Tx740xNC356 (irrigated) asymptote and q6_62 Ki3xNC356 (irrigated) PHTTRML, as well 

as, q8_10 LH82xLAMA (non-irrigated) asymptote with q8_14 Ki3xNC356 (irrigated) 

PHTTRML and q8_12 Ki3xNC356 (non-irrigated) PHTTRML.  

Growth rate QTL each explained 5.6 to 15% of the genotypic variance with an 

additive effect ranging from 0.2 to 0.3 DAS-1 (Appendix A8). Inflection point QTL each 

explained 4.3 to 13% of the genotypic variance with an additive effect ranging from 0.2 to 

0.5 d (Appendix A8). Irrigated Ki3xNC356 trial q4_61 and irrigated LH82xLAMA 

q1_173/q1_176 were associated with inflection point and asymptote, while non-irrigated 

LH82xLAMA q10_20 was associated with inflection point and growth rate (Table 6). The 

co-localization of QTL associated with multiple parameters of the sigmoidal growth function 

indicate that these regions more than others may have an effect on defining the overall 

developmental trajectory of maize height. 

Multiple QTL were identified within the LH82xLAMA trials for PHTTRML, 

asymptote, inflection point, and flowering time (DTA/DTS) within the 273 to 287 Mbs 

region of chromosome 1 and the 140 to 176 Mbs region of chromosome 3 (Table 5, 

Appendix A7 and Appendix A8). This region of chromosome 3 harbors ZmMADS69 

(GRMZM2G171650; Chr3: 158979321..159007265), a regulator of flowering time with 

pleiotropic effects on plant height. ZmMADS69 has higher expression levels in temperate 

germplasm compared to tropical, which may explain why the region is identified in the 

temperate by tropical cross (Liang, et al., 2019), such as LH82xLAMA and others 
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(Anderson, et al., 2018; Hirsch, et al., 2014; Peiffer, et al., 2014). The identified region on 

chromosome 1 contains the viviparous8 (vp8; GRMZM2G010353; Chr1: 

286390345..286398537) loci which has exhibits dwarfism due to reduced cell proliferation 

(Lv, et al., 2014). ZmMADS69 effect was not influenced by day length (Liang, et al., 2019) 

and vp8 exhibited normal plant hormone response (Lv, et al., 2014) demonstrating that these 

QTL may be deterministic QTL (dQTL) represented as the differential allelic variation 

which affect the whole growth process (Wu, et al., 2004) unaffected by environmental 

stimuli. Conducting temporal phenotyping on large scale multi-environment trials, such as 

the Genomes to Fields Intuitive (AlKhalifah, et al., 2018; Gage, et al., 2017), using a diverse  

association panel such as the nested association  maize  (NAM) populations (McMullen, et 

al., 2009) could further the scientific understanding of  allelic variation of  dQTL and  

biotic/abiotic stimuli of opportunistic QTL (oQTL) and their effects on growth trajectories. 

3.3.3.3 Temporal QTL Expression 

In addition to the three parameters of the Weibull function, height estimates were 

predicted daily from 20 to 85 DAS using the Weibull function on individual entry specific 

curve parameters to evaluate their change over time. A total of 58 significant QTLs were 

identified with 6, 5, 4, 10, 13, and 20 unique QTLs based on the position of the QTL peak 

for the irrigated Tx740xNC356, non-irrigated Tx740xNC356, irrigated Ki3xNC356, non-

irrigated Ki3xNC356, irrigated LH82xLAMA and non-irrigated LH82xLAMA trials, 

respectively (Figure 10, Appendix A9).  Comparison of mean physical distance between the 

left and right marker of each the 58 unique QTLs to the physical position of candidate genes 

demonstrated that 23 of the 
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Figure 10.  Summary of significant QTL identified for agronomic traits (PHT_TRML: Manual, terminal plant height; DTA: Days to 

anthesis; DTS: Days to silking), functional growth parameters (asymptote, inflection point, growth rate) and temporal height estimates 

from the Weibull curves. Temporal expression of temporal height QTL can be visualized in Appendix B13. Points indicate the mean 

physical location between the left and right flanking markers of the QTL. 
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Figure 11.  Temporal trends in QTL expression for the [a] Tx740xNC356 irrigated trial, [b] Tx740xNC356 non-irrigated trial, and [c] 

Ki3xNC356 irrigated trial. Bars are colored based on unique QTL (e.g. chromosome position) within each trial and represent the LOD 

score (left) or estimated additive effect (right) for each day from 20 to 85 DAS.  Red dashed line represent significance threshold of 

LOD=2. 
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QTLs were within 1 Mbp of a candidate gene region and an additional 18 QTL were less 

than 5 Mbp from a candidate gene region.  

Temporal analysis of the 58 unique QTLs identified through height estimates of the 

fitted sigmoidal curve demonstrated the dynamic nature of height QTL throughout the 

growing season. Within the irrigated Tx740xNC356 trial, q5_119 was detected from 22 to 

62 DAS explaining 21% of the genetic variation at 54 DAS (Figure 10a, Appendix A9). In 

comparison, q5_35 of irrigated Tx740xNC356 trial was detected from 66 to 74 DAS 

explaining 11% of the genetic variation at 67 DAS (Figure 11a, Appendix A9, Appendix 

B13). Temporal QTL expression across environmental treatments (i.e. irrigation) 

demonstrated differential genomic localization while maintaining similarities in temporal 

expression for each population. Specifically, within the Tx740xNC356 population both 

irrigation regimens (i.e. environments) have a temporally broad QTL (q5_119 irrigated and 

q2_55 non- irrigated) prior to inflection point (~58 DAS), followed by QTLs detected at 

shorter temporal intervals after the inflection point. Additionally, trends in QTL temporal 

expression across populations exhibited unique temporal expression patterns. For example, 

Tx740xNC356 exhibited QTLs prior to the inflection point at early growth stages, whereas 

Ki3xNC356 exhibited no detectable QTLs until ~50 DAS.  

Identified QTLs demonstrated dynamic trends in additive phenotypic effect. In 

general, these results show that the additive effect found at the peak significance DAS of a 

temporal QTL is a result of the cumulative effect of a gradual increase in the effect size of 

each genomic region (Figure 11). QTLs with peak expression early within the season had 

significantly smaller additive effect estimates than at later points in the growing season; due 

to reduced overall variation across the individuals in the population at early growth stages 
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(e.g. Figure 11b q2_55).  Temporally, we observed both additive effects of individual QTL 

either maintained a constant directional effect (Figure 11a; q5_119 and q6_75; Appendix A9 

) or switched effect directions within the growing season (q6_35). Understanding the 

biological basis of this switching phenomena would be both interesting and important for 

optimizing plant growth.  

When discussing the implementation of identified QTL within marker assisted 

selection protocols, targeting consistent directional effects may result in greater gains than 

those of temporal bi-directional effects. The temporal effect size should first be validated 

through near isogenic lines or heterogeneous inbred families. However, we speculate that 

the temporal trend of the effect size, like many QTL effects will remain dependent on the 

genetic background, abiotic, and biotic interactions. Interval mapping across the entire 

linkage map demonstrated that directional changes in additive effect size are present 

throughout the growing season throughout the genome (Appendix B14).  If temporal shifts 

in directional effect are valid and not due to over inflations via false positives and limited 

population size; statistical models accounting for directional effect shifts will be necessary 

to incorporate temporal datasets of dynamic, quantitative traits within prediction modeling 

(e.g. genomic selection). 

3.4 Conclusion 

In this study we present one of the first applications of UAS phenotyping of temporal 

growth across the growing season using UAS imagery on several genetic mapping 

populations. To our knowledge, this is first empirical study to expand beyond selective 

developmental time points (Wang, et al., 2019), evaluating functional and temporal QTL 

expression in maize throughout the growing season within a field-based environment. Four 
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of the most important findings were: (i) UAS height estimates of RIL mapping populations 

are highly heritable although less phenotypic variance was portioned to genetic components 

compared to PHTTRML. (ii) Significant differences among the functional parameter 

phenotypes identified 32 functional QTL compared to the nine QTL identified by PHTTRML. 

Limited co-localization between functional, temporal, and PHTTRML
 QTL demonstrate novel 

genetic loci effecting the overall growth trajectory of maize. (iii) Temporal mapping of 

height estimates demonstrated unique dynamic patterns in QTL expression and effect sizes 

across different genetic background and environments. (iv) The additive effect of a QTL is 

a cumulative effect of a gradual increase in effect size of each genomic region. Efficient 

integration of temporal phenotyping via HTPP, such as UAS, will improve our scientific 

understanding of dynamic, quantitative traits and developmental trajectories of important 

agronomic crops leading to hypotheses to test in both breeding and fundamental plant 

biology. 
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CHAPTER IV 

SUMMARY  

 

Weekly unmanned aerial system (UAS) imagery was collected over the College 

Station, Texas 2017 Genomes to Fields (G2F) hybrid trial, across three environmental stress 

treatments, using two UAS platforms. The high-altitude (120 m) fixed wing platform 

increased the fraction of variation attributed to genetics and had highly repeatable (R: >60%) 

height estimates, increasing genetic variance explained (10-40%) over traditional terminal 

height measurement (PHTTRML; ~30%), as well as, over the low-altitude rotary wing UAS 

platform (10-20%). A logistic function reduced the dimensionality (>20 flights) of each UAS 

dataset to three parameters (inflection point, growth rate, and asymptote) and produced a 

more robust predictive model than independent flight dates, effectively summarizing 

(R2>0.98) the UAS flight dates. The logistic model overcame the need to use specific flight 

dates when comparing different environments. UAS height estimates (r = 0.36-0.48) doubled 

the correlations to grain yield in this G2F experiment compared to PHTTRML (r = 0.23-0.28). 

Parameters of the logistical function achieved equivalent correlations (r = 0.30-0.46) to 

individual flight dates (r = 0.36-0.48), improving grain yield prediction in this study by 

~400% (R2= 0.25-0.34) over PHTTRML (R2 = 0.06-0.08). Incorporating other UAS derived 

parameters beyond plant height, such as vegetation indicies, may allow yield to be accurately 

predicted before maturity, speeding breeding programs. A new public R function to generate 

ESRI shapefiles for plot research was also described.   

Using three bi-parental RIL mapping populations, Tx740xNC356, Ki3xNC356, and 

LH82xLAMA, we evaluated the ability of UAS imagery to estimate plant heights within 
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inbred germplasm. Temporal UAS surveying fit sigmoidal Weibull growth curves (R2>0.99 

and mean RMSE ranging from 2.4 to 3.7 cm) to summarize the growth trajectories of each 

genetic entry. Significant differences were identified between the populations and irrigation 

regimens for function growth parameter (asymptote, inflection point, and growth rate) 

signifying the presence of differential QTL expression throughout the growing season. 

Inclusive composite interval mapping was performed on PHTTRML measurements identifying 

nine significant QTL. Using functional growth parameters 34 significant QTL were with 3 

to 15% genetic variation explained. Few functional QTL co-localized with PHTTRML 

demonstrating unique genomic regions which may have an effect on the overall growth 

trajectory of maize. Height was estimated at one-day intervals to 85 DAS using the Weibull 

function, identifying 58 unique temporal peak QTL locations. Temporal QTL expression 

demonstrated all of the identified significant QTL to have dynamic expression patterns (i.e., 

no QTL were found with permanent significant expression through the entire growing 

season). Allelic effect estimates of significant temporal QTL demonstrated the dynamic 

nature of QTL effect size, which gradually increased with QTL expression. Permanent 

directional additive effect was identified for the majority of QTL, although one-directional 

scanning of the entire linkage map demonstrated that directional changes in additive effect 

size are present throughout the growing season throughout the genome. 

4.1 Reflection 

Three years of experience implementing UAS within the maize breeding program at 

Texas A&M has seen great scientific progress towards everyday usage as a phenotyping 

platform. We have advanced from small scale validation trials (<40 plot) trials to surveying 

several hectares of inbred and hybrid trials for QTL mapping, indirect selection, and novel 
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trait discovery. This research presented the challenge of effectively communicating ideas 

and research objective across diverse disciplines towards common goals. Each research 

group has unique research objectives and interest which the collaborative group as a whole 

needs to keep in mind and work towards to maintain engagement from all parties.  In all, this 

doctoral research has demonstrated successful implementation of UAS phenotyping within 

a maize breeding program. The direct collaboration across diverse disciplines has created a 

novel scientific community of experts specialized in implementation of remote sensing 

technologies within plot-based agriculture systems.  

The Texas A&M UAS project relied heavily on remote sensing, geoscience, and 

agricultural engineering collaborators for tedious, melancholy data collection and image 

processing. Although this was critical during the initial implementation of UAS 

phenotyping, if a research group plans to use UAS for the foreseeable future they should 

look towards in-house data collection and processing. Same day image processing, rather 

than quality analysis of an entire growing season of UAS surveys after that fact, will be 

critical to consistent collection of high data quality. Rapid turn-around of image processing, 

followed by QC/QA allows for identification of data issues within an actionable timeframe 

so solutions can be proposed and implemented during the same growing season rather than 

looking towards the next season.   

One of the most consistent issue we encountered with image processing was failure 

of image stitching and key point matching for point cloud construction. We hypothesis that 

the failures of image processing were a result of the homogeneous canopy structure and 

reduce frame of reference of low altitude (25 m) images. We attempted to resolve the 

stitching issues through increased GCP representation, with limited quality improvement. 
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We are currently conducting flights at 25, 40, 60, and 80 m with the rotary wing platform to 

determine the optimal flying altitudes which result in high quality image processing. In 

hindsight, this experiment should have been conducted as soon as the image stitching issues 

were first identified but will prove critical to identifying optimal flight altitudes. 

Furthermore, this study should help to identify critical flight altitudes at different growth 

stages of maize and result in reduced flight accompanied with image processing issues. 

Upon reflection if I could go back and make changes to my doctoral research several 

ideas come to mind. First, I entered the project during the second year of UAS 

implementation. In hindsight I would have started working with UAS during the first year 

as the transition into the remote sensing field was challenging and further delayed the 

pipeline development and data extraction timeline. Second, height estimates presented a 

unique set of challenges but most of them were due to lack of knowledge and experience 

with remote sensing datasets. If I were to go back I would have expanded my analysis to 

additional image-based phenotypes beyond height. In reference to chapter II, the indirect 

selection of grain yield may have seen significant improvement and with the inclusion of 

additional imaged based phenotypes. Third, chapter III identified unique trends in marker-

trait associations throughout the growing season. Due to the limited sample size of the 

mapping populations and limited detection of associated loci across genetic backgrounds 

and environments; implementation of findings would need extensive validation and lead to 

limited direct application. If I could go back I would have taken a genomic selection 

approach combining temporal UAS data with marker information to predict and advance 

relevant genetic materials focused on improving the genetic gains within the maize breeding 

program. 
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4.2 Future Direction of Research 

 Full implementation of UAS phenotyping demands accurate and consistent data 

collection. Future work will continue to understand data collection methods (e.g., flight 

altitudes, weather conditions, new UAV platforms, etc.) towards identifying optimal 

parameters/conditions to collect consistent, informative imagery. Improvements in 

stereoscopic image collection or swarm based UAS surveys will further improve our data 

collection quality. Ongoing work is being conducted in collaboration with statistics 

colleagues to improve spatial variance estimates and predict growth trajectories based on 

early season data. Additionally, predictive modeling will be expanded to a greater variety of 

image based phenotypes to identify optimal combinations that maximize the predictable 

variance in grain yield.  

The G2F experiment was an excellent opportunity to demonstrate proof of concepts 

finding but has limited genetic material relevant to the Texas maize breeding program. 

Optimal predictive models will be developed and applied to trials relevant to genetic 

improvement of the breeding program’s germplasm. Efforts will be turned to direct 

application within the breeding program through training and validation trials, accompanied 

with multi-year trials to evaluate genetic gain based on phenomic selection. Furthermore, 

continual evaluation of improved light weight sensor technologies (LiDAR, hyper-spectral, 

thermal) will be evaluated for novel phenotypes and everyday utilization within agriculture.  
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APPENDIX A 

SUPPLEMENTAL TABLES 

 

Appendix A1. Summary of 2017 UAS flight dates of G2F population, including: days after sowing (DAS), the number of images 

captured, spatial resolution of the mosaic image and dates in which manual phenotype measurements were collected for each trial 

(DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated trial; G2LA: Delay planted, irrigated trial). 

 

        GCP Geolocation details  

Flight 

date 

UAS 

Platform† DAS‡ 

Number 

Images§ 

Resolution  

(cm/pix)§ 

G2FE 

Manual 

Date 

DG2F  

Manual 

Date 

G2LA 

Manual 

Date 

No. 

GCP 

Mean 

RSME(X) 

(cm) 

Mean 

RSME(Y) 

(cm) 

Mean 

RSME(Z) 

(cm) 

Mean 

RMSE 

(cm) 

 

DJI Phantom 3 Pro 

3/14/17 RW 11/-23 491 0.98 - - - 6 6.5 7.3 0.8 4.9  

3/23/17 RW 20/-14 539 1.06 - - - 6 7.5 7.6 0.7 5.2  

3/30/17 RW 27/-7 529 1.04 - - - 12 26.5 30.6 17.0 24.1  

4/6/17 RW 34/0 487 1.01 - - - 9 33.6 30.9 6.9 23.7  

4/13/17  RW 41/7 519 1.00 - - - 12 43.2 38.1 18.4 33.2  

4/20/17 RW 48/14 550 1.06 4/24/17 4/24/17 - 12 40.2 35.9 20.0 32.0  

4/27/17 RW 55/21 548 1.01 4/28/17 - - 7 10.6 8.0 2.3 7.0  

5/1/17 RW 59/25 514 1.05 5/1/17 5/1/17 - 8 11.3 12.9 7.0 10.4  

5/5/17 RW 63/29 485 1.04 5/5/17 5/5/17 - 7 14.0 10.3 7.0 10.4  

5/9/17 RW 67/33 499 1.05 5/9/17 5/9/17 5/9/17 12 5.0 5.4 1.7 4.0  

5/11/17 RW 69/35 523 1.06 5/11/17 5/11/17 - 12 38.0 32.6 13.9 28.1  

5/19/17 RW 77/43 556 1.08 5/16/17 5/16/17 5/19/17 12 10.7 9.5 3.7 7.9  

5/24/17 RW 82/48 562 1.05 - - 5/24/17 12 12.1 9.3 3.6 8.3  

5/30/17 RW 88/54 501 1.10 - - 5/30/17 12 11.6 9.5 3.5 8.1  

6/2/17 RW 91/57 519 1.06 - - 6/2/17 12 3.9 4.5 0.9 3.1  

6/5/17 RW 94/60 568 1.04 - - 6/5/17 12 11.2 10.2 2.8 8.1  

6/8/17 RW 97/63 535 1.05 6/8/17 6/8/17 6/8/17 12 8.2 9.2 2.9 6.7  
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Appendix A1. Continued. 

        GCP Geolocation details  

Flight 

date 

UAS 

Platform† DAS‡ 

Number 

Images§ 

Resolution  

(cm/pix)§ 

G2FE 

Manual 

Date 

DG2F  

Manual 

Date 

G2LA 

Manual 

Date 

No. 

GCP 

Mean 

RSME(X) 

(cm) 

Mean 

RSME(Y) 

(cm) 

Mean 

RSME(Z) 

(cm) 

Mean 

RMSE 

(cm) 

 

6/16/17 RW 105/71 770 1.08 - - - 12 5.1 6.0 1.7 4.2  

6/29/17 RW 118/84 501 1.08 -  - 12 0.8 2.0 0.2 1.0  

7/14/17 RW 133/99 456 1.06 - - - 12 7.3 7.2 4.6 11.2  

7/27/17 RW 146/112 484 1.07 - - - 10 7.1 11.9 5.0 8.0  

Tuffwing UAV Mapper  

3/8/17 FW 5/-29 374 1.95 - - - 16 4.2 5.2 2.2 3.9  

3/21/17 FW 18/-16 163 2.79 - - - 16 3.0 4.2 1.4 2.9  

4/7/17 FW 35/1 247 2.67    16 1.8 3.6 2.4 2.6  

4/20/17 FW 48/14 137 2.76 4/24/17 4/24/17 - 12 2.1 1.6 1.1 1.6  

5/2/17 FW 60/26 199 2.67 - - - 16 2.1 1.6 1.4 1.7  

5/5/17 FW 63/29 199 2.67 5/5/17 5/5/17 - 16 2.1 1.6 1.4 1.7  

5/9/17 FW 67/33 144 2.74 5/9/17 5/9/17 5/9/17 10 2.3 2.0 1.0 1.8  

5/12/17 FW 70/36 210 2.83 - - - 16 2.0 1.5 1.1 1.5  

5/15/17 FW 73/39 204 2.73 - - - 16 2.2 1.9 1.4 1.8  

5/24/17 FW 82/48 231 2.76 - - 5/24/17 16 2.5 1.7 1.9 2.0  

5/30/17 FW 88/54 242 2.73 - - 5/30/17 16 2.2 2.1 1.0 1.8  

6/2/17 FW 91/57 235 2.75 - - 6/2/17 16 2.3 2.4 1.1 1.9  

6/6/17 FW 95/61 235 2.75 - - - 16 2.5 2.2 1.8 2.2  

6/9/17 FW 98/64 233 2.80 - - - 16 2.2 2.3 1.0 1.8  

6/12/17 FW 101/67 235 2.76 - - - 16 2.6 1.8 2.2 2.2  

6/16/17 FW 105/71 242 2.74 - - - 16 2.3 2.0 1.8 2.0  

6/23/17 FW 112/78 234 2.76 - - - 16 2.4 2.4 1.9 2.2  

6/29/17 FW 118/84 233 2.71 -  - 16 1.8 3.1 2.2 2.4  

7/13/17 FW 132/98 235 2.72 - - - 12 1.9 1.9 2.1 2.0  

7/25/17 FW 144/110 240 2.72 - - - 14 1.9 2.6 1.2 1.9  

† FW: Fixed wing; RW: Rotary wing. 

‡ DAS: Days after sowing; Number on left refers to early plantings (G2FE and DG2F) and right refers to late planting (G2LA). 

§ Number on left refers to FW and right refers RW if flights occurred on the same date. 
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Appendix A2. Summary of UAS P95 height estimates summarized as the mean of the plot-based estimates across UAS platforms and 

experimental trials (DG2F: optimal planted, non-irrigated trial; G2FE: optimal planted, irrigated trial; G2LA: delay planted, irrigated 

trial). 

 

Fixed wing Rotary wing 

DAS†‡ G2FE DG2F G2LA DAS†‡ G2FE DG2F G2LA 

-- (36) - - 0.31 34 (35) 0.33 0.33 0.50 

-- (39) - - 0.53 41 (43) 0.62 0.66 0.98 

48 (48) 0.87 0.98 1.09 48 (48) 1.03 1.13 1.42 

-- (54) - - 1.50 55 (54) 1.49 1.51 1.66 

60 (61) 1.39 1.49 1.98 -- (60) - - 2.16 

63  1.46 1.56 -- 63  1.79 1.81 -- 

67 1.69 1.78 -- -- -- -- -- 

∑ ∆𝝁𝑷𝟗𝟓

𝒏

§

 
0.27 0.27 0.42 ∑ ∆𝝁𝑷𝟗𝟓

𝒏

§

 
0.37 0.37 0.41 

∑ ∆𝝁𝑷𝟗𝟓
∆𝑫𝑨𝑺⁄

𝒏

¶

 
0.04 0.06 0.07 ∑ ∆𝝁𝑷𝟗𝟓

∆𝑫𝑨𝑺⁄

𝒏

¶

 
0.05 0.05 0.07 

† DAS; Days after sowing. 

‡ Numbers in parenthesis indicate DAS for the delayed planting, G2LA. 

§ Average of change in mean P95 across DAS during the exponential growth phase. 

¶ Average per day rate of growth during the exponential growth phase. 
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Appendix A3. Summary statistics of logistic function fit to plot level temporal UAS P95 data across UAS platforms (fixed wing and 

rotary wing) and trials (DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated trial; G2LA: Delay planted, 

irrigated trial). 

 

 Fixed wing Rotary wing 

G2FE DG2F G2LA G2FE DG2F G2LA 

N 589 499 500 594 500 495 

Mean RMSE (m) 0.061  0.061 0.101 0.095 0.086 0.131 

Std. Dev. RMSE (m) 0.014 0.017 0.032 0.030 0.035 0.053 

Mean R2 0.991 0.991 0.989 0.987 0.989 0.981 

Std. Dev. R2 0.004 0.004 0.006 0.007 0.010 0.015 
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Appendix A4. Table presents the best model identified for predicting yield using four sets of input predictor variables: (i) manual 

terminal plant height (PHT), (ii) logistic function parameters (3PLogistic), (iii) pedigree BLUPs by flight date (UAS heights), and (iv) 

a combination of logistic function parameter and pedigree BLUPs by flight date (UAS+3P). Models were fit by platform and by G2F 

trial. 

 

Trial† Platform§ Model 

RMSE  

(t/ha) R2 df 

Stepwise 

direction‡ 

Model 

term Estimate 

Std  

error t Ratio Prob>|t| VIF¶ 

Optimal Planting Non-irrigated Trial (DG2F) 

DG2F Manual PHT 1.04 0.08 2 NA Intercept -42.17 48.24 -0.87 0.38 . 

DG2F Manual PHT 1.04 0.08 2 NA Pht 88.95 19.97 4.45 <.0001 1.00 

DG2F FW 3PLogistic 0.92 0.34 3 F/B Intercept -316.20 49.73 -6.36 <.0001 . 

DG2F FW 3PLogistic 0.92 0.34 3 F/B Asymptote   77.90 15.58 5.00 <.0001 1.27 

DG2F FW 3PLogistic 0.92 0.34 3 F/B Inflection point   7.30 1.18 6.18 <.0001 1.27 

DG2F FW UAS heights 0.92 0.38 3 F/B Intercept 56.22 26.16 2.15 0.03 . 

DG2F FW UAS heights 0.92 0.38 3 F/B  2017-04-20  -133.16 19.42 -6.86 <.0001 1.05 

DG2F FW UAS heights 0.92 0.38 3 F/B  2017-06-23  136.08 12.55 10.84 <.0001 1.05 

DG2F FW UAS+3P 0.92 0.35 3 F Intercept -315.25 49.40 -6.38 <.0001 . 

DG2F FW UAS+3P 0.92 0.35 3 F Inflection point   7.50 1.14 6.55 <.0001 1.21 

DG2F FW UAS+3P 0.92 0.35 3 F  2017-06-23  73.08 13.75 5.32 <.0001 1.21 

DG2F FW UAS+3P 0.92 0.37 3 B Intercept 56.22 26.16 2.15 0.03 . 

DG2F FW UAS+3P 0.92 0.37 3 B  2017-04-20  -133.16 19.42 -6.86 <.0001 1.05 

DG2F FW UAS+3P 0.92 0.37 3 B  2017-06-23  136.08 12.55 10.84 <.0001 1.05 

DG2F RW 3PLogistic 0.92 0.33 3 F Intercept -527.87 65.97 -8.00 <.0001 . 

DG2F RW 3PLogistic 0.92 0.33 3 F Asymptote   158.06 27.28 5.79 <.0001 1.23 

DG2F RW 3PLogistic 0.92 0.33 3 F Inflection point   7.97 1.43 5.59 <.0001 1.23 

DG2F RW UAS heights 0.92 0.35 4 F Intercept -557.21 140.61 -3.96 <.0001 . 

DG2F RW UAS heights 0.92 0.35 4 F  2017-04-27  -97.99 18.15 -5.40 <.0001 1.06 
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Appendix A4. Continued. 

Trial† Platform§ Model 

RMSE  

(t/ha) R2 df 

Stepwise 

direction‡ 

Model 

term Estimate 

Std  

error t Ratio Prob>|t| VIF¶ 

DG2F RW UAS heights 0.92 0.35 4 F  2017-06-29  260.07 54.33 4.79 <.0001 1.03 

DG2F RW UAS heights 0.92 0.35 4 F  2017-07-14  124.66 15.44 8.08 <.0001 1.07 

DG2F RW UAS heights 0.92 0.35 4 B Intercept -557.21 140.61 -3.96 <.0001 . 

DG2F RW UAS heights 0.92 0.35 4 B  2017-04-27  -97.99 18.15 -5.40 <.0001 1.06 

DG2F RW UAS heights 0.92 0.35 4 B  2017-06-29  260.07 54.33 4.79 <.0001 1.03 

DG2F RW UAS heights 0.92 0.35 4 B  2017-07-14  124.66 15.44 8.08 <.0001 1.07 

DG2F RW UAS+3P 0.92 0.37 5 F Intercept -462.72 139.74 -3.31 0 . 

DG2F RW UAS+3P 0.92 0.37 5 F Asymptote   199.26 26.79 7.44 <.0001 1.25 

DG2F RW UAS+3P 0.92 0.37 5 F  2017-04-06  -212.14 85.52 -2.48 0.01 1.55 

DG2F RW UAS+3P 0.92 0.37 5 F  2017-04-20  -70.26 23.85 -2.95 0 1.58 

DG2F RW UAS+3P 0.92 0.37 5 F  2017-06-29  146.52 57.24 2.56 0.01 1.19 

DG2F RW UAS+3P 0.92 0.35 4 B Intercept -557.21 140.61 -3.96 <.0001 . 

DG2F RW UAS+3P 0.92 0.35 4 B  2017-04-27  -97.99 18.15 -5.40 <.0001 1.06 

DG2F RW UAS+3P 0.92 0.35 4 B  2017-06-29  260.07 54.33 4.79 <.0001 1.03 

DG2F RW UAS+3P 0.92 0.35 4 B  2017-07-14  124.66 15.44 8.08 <.0001 1.07 

Optimal planting irrigated trial (g2fe) 

G2FE Manual PHT 1.04 0.06 2 NA Intercept 9.36 40.03 0.23 0.82 . 

G2FE Manual PHT 1.04 0.06 2 NA Pht 69.95 16.65 4.20 <.0001 1.00 

G2FE FW 3PLogistic 0.98 0.26 3 F/B Intercept -180.13 41.81 -4.31 <.0001 . 

G2FE FW 3PLogistic 0.98 0.26 3 F/B Asymptote   63.56 13.53 4.70 <.0001 1.32 

G2FE FW 3PLogistic 0.98 0.26 3 F/B Inflection point   5.11 0.99 5.15 <.0001 1.32 

G2FE FW UAS heights 0.98 0.35 4 F Intercept 68.67 22.49 3.05 0 . 

G2FE FW UAS heights 0.98 0.35 4 F  2017-04-20  -121.03 18.10 -6.69 <.0001 1.03 

G2FE FW UAS heights 0.98 0.35 4 F  2017-06-29  125.00 `11.21 11.15 <.0001 1.03 
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Appendix A4. Continued. 

Trial† Platform§ Model 

RMSE  

(t/ha) R2 df 

Stepwise 

direction‡ 

Model 

term Estimate 

Std  

error t Ratio Prob>|t| VIF¶ 

G2FE FW UAS heights 0.98 0.37 4 B Intercept 62.94 22.43 2.81 0.01 . 

G2FE FW UAS heights 0.98 0.37 4 B  2017-04-20  -123.45 17.97 -6.87 <.0001 1.04 

G2FE FW UAS heights 0.98 0.37 4 B  2017-06-06  49.20 20.40 2.41 0.02 4.11 

G2FE FW UAS heights 0.98 0.37 4 B  2017-06-29  78.79 22.15 3.56 0 4.10 

G2FE FW UAS+3P 0.92 0.28 3 F Intercept -196.97 41.54 -4.74 <.0001 . 

G2FE FW UAS+3P 0.92 0.28 3 F Inflection point   5.42 0.93 5.81 <.0001 1.20 

G2FE FW UAS+3P 0.92 0.28 3 F  2017-06-29  65.42 12.52 5.23 <.0001 1.20 

G2FE FW UAS+3P 0.98 0.35 3 B Intercept 68.67 22.49 3.05 0 . 

G2FE FW UAS+3P 0.98 0.35 3 B  2017-04-20  -121.03 18.10 -6.69 <.0001 1.03 

G2FE FW UAS+3P 0.98 0.35 3 B  2017-06-29  125.00 11.21 11.15 <.0001 1.03 

G2FE RW 3PLogistic 0.98 0.32 4 F/B Intercept -812.08 115.15 -7.05 <.0001 . 

G2FE RW 3PLogistic 0.98 0.32 4 F/B Asymptote   172.58 26.64 6.48 <.0001 1.19 

G2FE RW 3PLogistic 0.98 0.32 4 F/B Growth rate   782.06 357.40 2.19 0.03 1.39 

G2FE RW 3PLogistic 0.98 0.32 4 F/B Inflection point   11.28 1.65 6.84 <.0001 1.41 

G2FE RW UAS heights 0.98 0.30 4 F Intercept -63.54 42.24 -1.50 0.13 . 

G2FE RW UAS heights 0.98 0.30 4 F  2017-04-13  -179.70 27.32 -6.58 <.0001 1.03 

G2FE RW UAS heights 0.98 0.30 4 F  2017-05-19  104.70 23.42 4.47 <.0001 2.09 

G2FE RW UAS heights 0.98 0.30 4 F  2017-06-16  72.73 27.28 2.67 0.01 2.05 

G2FE RW UAS heights 0.98 0.33 5 B Intercept -327.01 96.76 -3.38 0 . 

G2FE RW UAS heights 0.98 0.33 5 B  2017-04-20  -170.62 22.05 -7.74 <.0001 1.51 

G2FE RW UAS heights 0.98 0.33 5 B  2017-05-11  113.22 24.17 4.68 <.0001 2.25 

G2FE RW UAS heights 0.98 0.33 5 B  2017-06-16  67.33 25.77 2.61 0.01 1.90 

G2FE RW UAS heights 0.98 0.33 5 B  2017-06-29  143.51 46.64 3.08 0 1.39 

G2FE RW UAS+3P 0.98 0.33 3 F Intercept -703.50 75.46 -9.32 <.0001 . 
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Appendix A4. Continued. 

Trial† Platform§ Model 

RMSE  

(t/ha) R2 df 

Stepwise 

direction‡ 

Model 

term Estimate 

Std  

error t Ratio Prob>|t| VIF¶ 

G2FE RW UAS+3P 0.98 0.33 3 F Inflection point   14.48 1.39 10.40 <.0001 1.02 

G2FE RW UAS+3P 0.98 0.33 3 F  2017-05-11  112.89 16.26 6.94 <.0001 1.02 

G2FE RW UAS+3P 0.98 0.31 3 B Intercept -176.60 53.24 -3.32 0 . 

G2FE RW UAS+3P 0.98 0.31 3 B Asymptote   231.90 24.68 9.40 <.0001 1.00 

G2FE RW UAS+3P 0.98 0.31 3 B  2017-04-06  -373.48 58.91 -6.34 <.0001 1.00 

Delayed planting irrigated trial (g2la) 

G2LA Manual PHT 0.67 0.07  NA Intercept 5.35 22.08 0.24 0.81 . 

G2LA Manual PHT 0.67 0.07  NA Pht  36.87 8.87 4.16 <.0001 1.00 

G2LA FW 3PLogistic 0.61 0.27 4 F/B Intercept 289.38 59.12 4.90 <.0001 . 

G2LA FW 3PLogistic 0.61 0.27 4 F/B Asymptote   54.90 8.13 6.76 <.0001 2.13 

G2LA FW 3PLogistic 0.61 0.27 4 F/B Growth rate   -407.42 99.21 -4.11 <.0001 2.46 

G2LA FW 3PLogistic 0.61 0.27 4 F/B Inflection point   -4.86 1.11 -4.39 <.0001 3.41 

G2LA FW UAS heights 0.61 0.28 3 F Intercept 9.12 9.89 0.92 0.36 . 

G2LA FW UAS heights 0.61 0.28 3 F  2017-05-15  68.17 13.45 5.07 <.0001 1.02 

G2LA FW UAS heights 0.61 0.28 3 F  2017-07-25  34.20 3.98 8.60 <.0001 1.02 

G2LA FW UAS heights 0.61 0.28 3 B Intercept 9.12 9.89 0.92 0.36 . 

G2LA FW UAS heights 0.61 0.28 3 B  2017-05-15  68.17 13.45 5.07 <.0001 1.02 

G2LA FW UAS heights 0.61 0.28 3 B  2017-07-25  34.20 3.98 8.60 <.0001 1.02 

G2LA FW UAS+3P 0.61 0.28 3 F Intercept 9.12 9.89 0.92 0.36 . 

G2LA FW UAS+3P 0.61 0.28 3 F  2017-05-15  68.17 13.45 5.07 <.0001 1.02 

G2LA FW UAS+3P 0.61 0.28 3 F  2017-07-25  34.20 3.98 8.60 <.0001 1.02 

G2LA FW UAS+3P 0.61 0.27 10 B Intercept 85.09 16.40 5.19 <.0001 . 

G2LA FW UAS+3P 0.61 0.27 10 B Growth rate   -503.01 65.13 -7.72 <.0001 1.08 

G2LA FW UAS+3P 0.61 0.27 10 B  2017-05-30  69.83 9.93 7.03 <.0001 1.08 
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Appendix A4. Continued. 

Trial† Platform§ Model 

RMSE  

(t/ha) R2 df 

Stepwise 

direction‡ 

Model 

term Estimate 

Std  

error t Ratio Prob>|t| VIF¶ 

G2LA FW 3PLogistic 0.61 0.25 4 F/B Intercept 166.16 75.38 2.20 0.03 . 

G2LA FW 3PLogistic 0.61 0.25 4 F/B Asymptote   81.07 10.07 8.05 <.0001 1.64 

G2LA FW 3PLogistic 0.61 0.25 4 F/B Growth rate   -483.70 192.21 -2.52 0.01 2.52 

G2LA FW 3PLogistic 0.61 0.25 4 F/B Inflection point   -4.17 1.46 -2.86 0 3.49 

G2LA FW UAS heights 0.61 0.26 3 F Intercept -48.64 20.53 -2.37 0.02 . 

G2LA FW UAS heights 0.61 0.26 3 F  2017-05-09  128.05 37.60 3.41 0 1.00 

G2LA FW UAS heights 0.61 0.26 3 F  2017-07-14  45.90 5.41 8.48 <.0001 1.00 

G2LA FW UAS heights 0.61 0.26 3 B Intercept -48.64 20.53 -2.37 0.02 . 

G2LA FW UAS heights 0.61 0.26 3 B  2017-05-09  128.05 37.60 3.41 0 1.00 

G2LA FW UAS heights 0.61 0.26 3 B  2017-07-14  45.90 5.41 8.48 <.0001 1.00 

G2LA FW UAS+3P 0.61 0.26 3 F Intercept -48.64 20.53 -2.37 0.02 . 

G2LA FW UAS+3P 0.61 0.26 3 F  2017-05-09  128.05 37.60 3.41 0 1.00 

G2LA FW UAS+3P 0.61 0.26 3 F  2017-07-14  45.90 5.41 8.48 <.0001 1.00 

G2LA FW UAS+3P 0.61 0.26 2 B Intercept -100.51 24.50 -4.10 <.0001 . 

G2LA FW UAS+3P 0.61 0.26 2 B Asymptote   64.98 7.82 8.31 <.0001 1.00 

G2LA FW UAS+3P 0.61 0.26 2 B  2017-05-09  117.53 37.78 3.11 0 1.00 

† Manual: Manually collected terminal plant height; FW: fixed wing; RW: rotary wing. 

§ DG2F: Optimal planted, non-irrigated trial; G2FE: Optimal planted, irrigated trial; G2LA: Delay planted, irrigated trial. 

‡ B: Backwards regression; F: Forward regression; F/B: mode was consistent across forward and backward regression. 

¶ VIF: Variance inflation factor.
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Appendix A5. Selection accuracy of hybrid grain perform based on relative ranks utilizing manual terminal plant height (PHTTRML), 

fixed wing logistic parameters (FW), or rotary wing logistic parameters (RW) across the G2F trials. 

 

 
DG2F G2FE G2LA Combined trials 

PHTTRML † FW‡ RW§ PHTTRML † FW‡ RW§ PHTTRML † FW‡ RW§ PHTTRML † FW‡ RW§ 

MAE#  

in relative ranking¶ 
63 55 53 78 66 67 59 52 52 33 57 26 

Selection  

accuracy 
0.21 0.50 0.54 0.21 0.36 0.36 0.21 0.32 0.36 0.25 0.32 0.36 

† PHT: Selection accuracy using manual plant height as predictor. 

‡ FW: Selection accuracy using logistic parameters of high altitude fixed wing as the predictors. 

§ RW: Selection accuracy using logistic parameters of low altitude rotary wing as the predictors. 

¶ The average of the absolute difference between grain yield rank and the predicted grain yield by prediction model (PHT, FW, RC). 

# MAE: Mean absolute error. 
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Appendix A6. Summary of 2018 UAS flight dates of the fields containing the Tx740xNC356, Ki3xNC356, and LH82xLAMA 

populations, including: days after sowing (DAS), the number of images captured, the number of calibrated images, spatial resolution of 

the mosaic image and mean errors of the GCP geo-referencing. 

 

      GCP Geolocation details  

Flight 

date 

UAS 

Platform† DAS‡ 

Number 

Images 

Calibrated 

Images 

Resolution  

(cm/pix) 

No. 

GCP 

Mean 

RSME(X) 

(m) 

Mean 

RSME(Y) 

(m) 

Mean 

RSME(Z) 

(m) 

Mean 

RMSE 

(m) 

` 

3/14/18 RW 0 822 822 1.12 8 0.24 0.25 0.03 0.17 

3/30/18 RW 16 505 505 1.04 8 0.13 0.12 0.01 0.08 

4/08/18 RW 25 473 473 1.02 8 6.17 2.12 0.08 2.60 

4/11/18 RW 28 555 555 1.05 8 0.13 0.11 0.01 0.08 

4/18/18 RW 35 539 539 1.13 8 0.16 0.15 0.02 0.11 

4/26/18 RW 43 520 518 1.03 7 0.09 0.09 0.01 0.06 

5/10/18 RW 57 513 513 1.07 30 0.05 0.05 0.05 0.05 

5/15/18 RW 62 535 513 1.10 26 5.48 9.41 0.06 4.98 

5/18/18 RW 65 515 485 1.06 25 0.05 0.06 0.03 0.04 

5/22/18 RW 69 786 786 0.62 28 0.03 0.03 0.01 0.02 

5/25/18 RW 72 1484 1315 0.65 30 0.03 0.04 0.03 0.03 

5/29/18 RW 76 512 463 1.06 26 0.78 0.91 1.11 0.78 

6/01/18 RW 79 521 448 1.04 8 0.01 0.01 <0.01 <0.01 

6/05/18 RW 83 - - - - - - - - 

6/07/18 RW 85 - - - - - - - - 

6/13/18 RW 91 513 289 1.04 10 <0.01 <0.01 <0.01 <0.01 

6/22/18 RW 100 492 303 1.08 22 0.03 0.02 0.03 0.03 

7/03/18 RW 111 290 232 1.10 17 0.19 0.20 0.03 0.14 

7/20/18 RW 128 - - - - - - - - 
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Appendix A6. Continued. 

      GCP Geolocation details  

Flight 

date 

UAS 

Platform† DAS‡ 

Number 

Images 

Calibrated 

Images 

Resolution  

(cm/pix) 

No. 

GCP 

Mean 

RSME(X) 

(m) 

Mean 

RSME(Y) 

(m) 

Mean 

RSME(Z) 

(m) 

Mean 

RMSE 

(m) 

Tuffwing UAV Mapper 

5/17/18 FW 64 67 67 2.70 39 0.02 0.04 0.01 0.04 

5/21/18 FW 68 66 66 2.68 39 0.02 0.04 0.01 0.04 

5/24/18 FW 71 65 65 2.59 10 0.01 0.01 <0.01 0.01 

6/05/18 FW 83 61 61 2.75 10 0.05 0.06 <0.01 0.08 

6/08/18 FW 86 66 66 2.71 10 0.06 0.06 <0.01 0.08 

6/14/18 FW 92 56 56 2.79 10 0.05 0.05 <0.01 0.07 

6/18/18 FW 96 66 66 2.72 10 0.01 0.02 <0.01 0.03 

6/22/18 FW 100 68 68 2.72 10 0.05 0.06 <0.01 0.08 

7/09/18 FW 117 67 67 2.77 10 0.01 0.01 0.01 0.02 

7/16/18 FW 124 - - - - - - - - 

7/25/18 FW 133 - - - - - - - - 

† FW: Fixed wing; RW: Rotary wing. 

‡ DAS: Days after sowing.
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Appendix A7. Summary of significant QTL for flowering time. 

 

Population Trt† Trait‡ Chr§ 

Position 

(cM) 

Left 

Marker 

Right 

Marker LOD¶ PVE# 

Add†† 

(d) 

Left 

CI‡‡ 

(bp) 

Right 

CI‡‡ 

(bp) 

Ki3xNC356 I DTA 2 24 AgR_02478 AgR_04085 6.77 5.08 0.63 10603658 11134513 

Ki3xNC356 I DTA 2 30 AgR_00649 AgR_00650 15.01 12.09 -0.98 13342033 13342154 

Ki3xNC356 D DTA 2 34 AgR_14537 AgR_10838 2.09 4.05 -0.42 15125786 15246819 

Ki3xNC356 I DTS 2 35 AgR_02349 AgR_14540 5.58 10.68 -0.76 15580072 15979202 

Ki3xNC356 D DTS 6 24 AgR_05809 AgR_16068 2.02 4.10 -0.49 89403767 89687544 

Ki3xNC356 I DTS 6 87 AgR_07216 AgR_05955 2.17 3.98 0.46 162645223 163665243 

Ki3xNC356 D DTA 9 60 AgR_01594 AgR_16910 2.07 4.03 0.42 133886762 133897924 

LH82xLAMA I DTS 1 129 AgR_03912 AgR_01056 2.03 3.91 -0.49 223165736 224078702 

LH82xLAMA D DTA 1 168 AgR_00790 AgR_00109 4.46 10.11 -0.62 275833355 277585472 

LH82xLAMA I DTA 1 169 AgR_10766 AgR_10769 7.42 15.25 -0.73 278195980 278603093 

LH82xLAMA D DTS 1 181 AgR_00413 AgR_00912 3.75 7.01 -0.56 287290866 287291452 

LH82xLAMA I DTS 1 182 AgR_17266 AgR_07760 5.43 11.64 -0.84 287335033 287586834 

LH82xLAMA D DTS 2 28 AgR_00736 AgR_10834 3.94 7.22 -0.57 11299939 11946310 

LH82xLAMA I DTA 3 68 AgR_15093 AgR_02600 2.69 5.22 0.43 154076377 154660873 

LH82xLAMA D DTS 3 68 AgR_15093 AgR_02600 2.52 4.53 0.46 154076377 154660873 

LH82xLAMA I DTS 8 62 AgR_09615 AgR_13174 6.11 13.27 -0.90 120610321 122427978 

LH82xLAMA D DTS 8 62 AgR_09615 AgR_13174 8.58 16.71 -0.87 120610321 122427978 

LH82xLAMA I DTA 9 36 AgR_06613 AgR_06616 2.69 5.23 -0.44 15307137 15409063 

LH82xLAMA D DTA 9 74 AgR_06777 AgR_01799 3.11 6.93 -0.52 110916495 130918887 

LH82xLAMA I DTS 9 103 AgR_13529 AgR_16949 3.78 7.94 -0.70 149276973 149426980 

LH82xLAMA I DTA 9 104 AgR_16951 AgR_09895 2.70 5.24 -0.43 149747320 149897954 

LH82xLAMA D DTS 9 106 AgR_09895 AgR_09897 3.99 7.26 -0.57 149897954 149971831 

Tx740xNC356 I DTA 8 60 AgR_09612 AgR_06423 2.07 9.45 0.55 117761454 118224127 
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Appendix A7. Continued. 

Population Trt† Trait‡ Chr§ 

Position 

(cM) 

Left 

Marker 

Right 

Marker LOD¶ PVE# 

Add†† 

(d) 

Left 

CI‡‡ 

(bp) 

Right 

CI‡‡ 

(bp) 

Tx740xNC356 D DTS 10 85 AgR_07121 AgR_13974 2.28 11.23 -0.65 144462556 145465473 

Tx740xNC356 I DTS 10 89 AgR_13777 AgR_17166 2.94 14.03 -0.72 145795322 145934793 

†   Trt: Treatment; I: Irrigated; D: Non-Irrigated. 

‡   DTADays to anthesis; DTS: Days to silking. 

§   Chr: Chromosome. 

¶   LOD: -log10(p-value). 

#   PVE: Percent variation explained. 

†† Additive effect estimate. 

‡‡ CI: Confidence interval.
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Appendix A8. Summary of significant QTL for functional parameters of the Weibull sigmoid function. 

  

Population Trt† Trait‡ Chr§ 
Position 

(cM) LOD¶ PVE# Add†† 

Left 
marker 

(bp) 

Right 
marker 

(bp) 

Closest 
candidate 

gene 
Gene 

function 

Distance 
from gene 

(bp) 

Ki3xNC356 I Asym 2 59 2.46 4.45 -0.02 48405262 48664915 GRMZM2G017187 
auxin response factor 1; auxin response factor 9, 

putative, expressed 
1026060 

Ki3xNC356 D IP 3 94 3.57 6.27 0.36 212692256 212698619 GRMZM2G126260 
Auxin efflux carrier family protein; auxin efflux 

carrier component, putative, expressed 
2206613 

Ki3xNC356 I Asym 4 61 4.92 9.23 0.03 156384593 156517564 GRMZM2G134023 
brassinosteroid-responsive RING-H2; zinc finger, 

C3HC4 type domain containing protein, 
expressed 

259336.5 

Ki3xNC356 I IP 4 61 2.21 4.28 0.22 156384593 156517564 GRMZM2G134023 
brassinosteroid-responsive RING-H2; zinc finger, 

C3HC4 type domain containing protein, 
expressed 

259336.5 

Ki3xNC356 I IP 4 119 2.66 5.39 0.25 237391404 237610499 AC196708.3_FG006 
SAUR-like auxin-responsive protein family ; 

OsSAUR5 - Auxin-responsive SAUR gene family 
member, expressed 

187124.5 

Ki3xNC356 D IP 4 119 3.12 5.41 0.33 237391404 237610499 AC196708.3_FG006 
SAUR-like auxin-responsive protein family ; 

OsSAUR5 - Auxin-responsive SAUR gene family 
member, expressed 

187124.5 

Ki3xNC356 I Asym 5 38 2.28 3.93 0.02 21893133 21893252 GRMZM2G113135 
SAUR-like auxin-responsive protein family ; 

CPuORF40 - conserved peptide uORF-containing 
transcript, expressed 

1105270 

Ki3xNC356 D Asym 7 27 13.04 7.35 0.04 25781951 26153406 GRMZM2G075715 
auxin response factor 6; auxin response factor, 

putative, expressed 
13766771 

Ki3xNC356 D Asym 7 32 21.45 13.37 -0.05 95447274 96847624 GRMZM2G391795 
alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, expressed 
11778171 

Ki3xNC356 D IP 8 19 2.65 4.63 -0.30 8731594 9875920 GRMZM2G000489 
alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, expressed 
5630336 

Ki3xNC356 D IP 10 41 3.37 5.90 -0.34 84071836 86777777 GRMZM2G072632 
Auxin efflux carrier family protein; auxin efflux 

carrier component, putative, expressed 
4860010 

LH82xLAMA I GR 1 135 4.03 7.36 -0.27 229187847 229850714 GRMZM2G153233 
auxin response factor 16; auxin response factor 

18, putative, expressed 
1200114 
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Appendix A8. Continued. 

 

Population Trt† Trait‡ Chr§ 
Position 

(cM) LOD¶ PVE# Add†† 

Left 
marker 

(bp) 

Right 
marker 

(bp) 

Closest 
candidate 

gene 
Gene 

function 

Distance 
from 

gene (bp) 

LH82xLAMA D IP 1 145 3.23 7.65 -0.39 251713072 252736144 GRMZM2G341460 
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein; gibberellin 20 oxidase 2, 
putative, expressed 

2399240 

LH82xLAMA I Asym 1 173 2.04 5.35 -0.02 280634097 281590394 vp8 viviparous8; small plant 5211076 

LH82xLAMA I IP 1 176 4.31 11.58 -0.41 283600596 284011134 vp8 viviparous8; small plant 2517456 

LH82xLAMA I GR 2 117 4.78 8.77 0.29 212246084 212544633 GRMZM2G064941 
Auxin efflux carrier family protein; auxin efflux carrier 

component, putative, expressed 
254540.5 

LH82xLAMA I GR 3 62 3.62 6.56 0.25 140845175 142249525 GRMZM2G116204 
endoplasmic reticulum auxin binding protein 1; auxin-

binding protein 4 precursor, putative, expressed 
7656087 

LH82xLAMA I IP 3 67 2.66 6.98 0.32 151971786 154075136 GRMZM2G338259 
auxin response factor 2; auxin response factor, 

putative, expressed 
3461005 

LH82xLAMA D IP 3 69 3.12 7.78 0.39 154668842 155959968 GRMZM2G338259 
auxin response factor 2; auxin response factor, 

putative, expressed 
1170061 

LH82xLAMA D Asym 3 72 2.08 3.37 0.02 158668137 159817878 sdw2 short plant 830009.5 

LH82xLAMA D Asym 3 96 2.14 3.42 0.02 176562816 177536662 na1 dwarf plant 1942864 

LH82xLAMA I GR 5 28 3.55 6.41 0.25 7996372 8175228 GRMZM2G130675 
SAUR-like auxin-responsive protein family ; OsSAUR1 - 

Auxin-responsive SAUR gene family member, 
expressed 

2835967 

LH82xLAMA D Asym 8 10 2.26 3.86 -0.02 5024449 5024479 GRMZM2G000489 
alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, expressed 
9909629 

LH82xLAMA D IP 8 81 5.38 13.02 -0.51 151312347 151664188 clt1 dwarf plant 1752094 

LH82xLAMA I GR 8 117 3.08 5.60 -0.23 172351557 172463767 GRMZM2G031724 
Arabidopsis thaliana gibberellin 2-oxidase 1; 

gibberellin 2-beta-dioxygenase, putative, expressed 
1441662 

LH82xLAMA D GR 9 14 2.45 6.87 -0.20 5289590 6124392 GRMZM2G307440 
alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, expressed 
873137 

LH82xLAMA D Asym 10 20 2.09 3.48 -0.02 5874629 6537612 cr4 Crinkly4; short plant 616213.5 

LH82xLAMA D GR 10 20 2.32 6.20 0.20 5874629 6537612 cr4 Crinkly4; short plant 616213.5 

LH82xLAMA I Asym 10 58 4.11 12.23 -0.03 136083608 136247247 GRMZM2G397684 
brassinosteroid-responsive RING-H2; zinc finger, 

C3HC4 type domain containing protein, expressed 
158067.5 
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Appendix A8. Continued. 

 

Population Trt† Trait‡ Chr§ 
Position 

(cM) LOD¶ PVE# Add†† 

Left 
marker 

(bp) 

Right 
marker 

(bp) 

Closest 
candidate 

gene 
Gene 

function 

Distance 
from 
gene 
(bp) 

LH82xLAMA D Asym 10 58 2.19 3.59 -0.02 136083608 136247247 GRMZM2G397684 
brassinosteroid-responsive RING-H2; zinc finger, 

C3HC4 type domain containing protein, expressed 
158067.5 

Tx740xNC356 I GR 1 167 2.19 9.24 -0.23 273833874 274877616 GRMZM5G899865 
SAUR-like auxin-responsive protein family ; 

OsSAUR24 - Auxin-responsive SAUR gene family 
member, expressed 

6791261 

Tx740xNC356 D IP 2 87 2.35 10.64 0.40 182727527 183505515 GRMZM2G045243 
SAUR-like auxin-responsive protein family ; 

OsSAUR37 - Auxin-responsive SAUR gene family 
member, expressed 

502507 

Tx740xNC356 I GR 5 119 3.01 15.02 -0.30 205748909 206263616 GRMZM2G074267 
Auxin efflux carrier family protein; auxin efflux carrier 

component, putative, expressed 
722594.5 

Tx740xNC356 D Asym 6 67 3.20 14.31 0.02 141909772 143997309 dwil1 dwarf & irregular leaf1 346506.5 

†   Trt: Treatment; I: Irrigated; D: Non-Irrigated. 

‡   Asym: Asymptote; IP: Inflection Point; GR: Growth Rate. 

§   Chr: Chromosome. 

¶   LOD: -log10(p-value). 

#   PVE: Percent variation explained. 

†† Additive effect estimate; Asym (m); IP (DAS); GR (DAS-1). 
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Appendix A9. Summary of significant temporal QTL for height estimates imputed from Weibull sigmoid curve. 

 

Population 

Trt

† 

Chr

‡ 

Pos 

(cM) 

Sig. 

DAS§ 

Peak 

LOD¶ 

DAS†† 

LOD
¶ 

PVE 
# 

Add 
(m) 
†† 

Left 

marker 

(bp) 

Right 

marker 

(bp) 

Closest 
candidate 

gene 

 

Gene  

function 

Distance 
from gene 

(bp) 

LH82xLAMA I 1 52 57-58 58 2.77 5.96 0.02 38250642 38633093 GRMZM2G331638 
Auxin-responsive family protein; auxin-

responsive protein-related, putative, expressed 
13698348 

LH82xLAMA I 1 53 56-57 57 2.18 4.76 0.02 39742242 40356668 GRMZM2G423851 

O-fucosyltransferase family protein; auxin-

independent growth promoter protein, putative, 

expressed 

13899169 

Tx740xNC356 D 1 73 65-67 65 2.41 10.86 -0.02 79236413 80698058 AC204821.3_FG004 
auxin response factor 10; indole-3-acetate beta-

glucosyltransferase, putative, expressed 
12058770 

Tx740xNC356 D 1 74 64-67 67 2.32 10.43 -0.02 81440994 81549504 AC204821.3_FG004 
auxin response factor 10; indole-3-acetate beta-

glucosyltransferase, putative, expressed 
10530756 

LH82xLAMA I 1 108 55-58 58 4.31 9.79 -0.02 198779072 198817809 GRMZM2G031065 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

943009 

LH82xLAMA I 1 132 26-59 58 5.60 12.54 0.02 225044054 226136399 GRMZM2G414727 

SAUR-like auxin-responsive protein family ; 

CPuORF40 - conserved peptide uORF-

containing transcript, expressed 

1217180 

LH82xLAMA I 1 134 20-59 55 5.38 13.59 0.03 229073049 229187847 GRMZM2G382393 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
1317326 

LH82xLAMA I 1 135 20-57 55 5.22 13.19 0.03 229187847 229850714 GRMZM2G153233 
auxin response factor 16; auxin response factor 

18, putative, expressed 
1200114 

LH82xLAMA D 1 168 68 68 2.02 5.18 -0.02 275833355 277585472 GRMZM5G899865 

SAUR-like auxin-responsive protein family ; 

OsSAUR24 - Auxin-responsive SAUR gene 

family member, expressed 

0 

Ki3xNC356 D 1 167 70-73 71 2.49 4.49 -0.02 298277113 298497315 AC203966.5_FG005 
gibberellin 20 oxidase 2; gibberellin 20 

oxidase 1, putative, expressed 
1141378 

Tx740xNC356 D 2 55 20-42 21 2.73 12.40 0.00 38192289 41023316 GRMZM2G121700 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein; gibberellin 20 

oxidase 2, putative, expressed 

1414534 

Ki3xNC356 D 2 67 48-69 61 2.59 5.32 -0.01 80271334 80586731 GRMZM5G848945 
auxin signaling F-box 3; OsFBL16 - F-box 

domain and LRR containing protein, expressed 
15391130 

Ki3xNC356 D 2 68 51-67 66 2.29 4.65 -0.01 83187294 87042364 GRMZM2G451037 

SAUR-like auxin-responsive protein family ; 

OsSAUR4 - Auxin-responsive SAUR gene 

family member, expressed 

19614474 

LH82xLAMA I 2 117 32-43 37 2.28 5.14 0.00 212246084 212544633 GRMZM2G064941 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
254541 

LH82xLAMA D 2 124 63-65 64 2.16 5.96 0.02 217637431 219258619 GRMZM2G062019 
carboxyesterase 18; gibberellin receptor 

GID1L2, putative, expressed 
708484 

LH82xLAMA I 3 62 20-47 37 2.59 6.30 0.00 140845175 142249525 GRMZM2G116204 

endoplasmic reticulum auxin binding protein 1; 

auxin-binding protein 4 precursor, putative, 

expressed 

7656087 

LH82xLAMA D 3 72 77-85 85 2.08 5.31 0.02 158668137 159817878 sdw2 short plant 830010 

LH82xLAMA D 3 96 69-85 70 2.18 5.53 0.02 176562816 177536662 na1 dwarf plant 1942864 
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Appendix A9. Continued. 

Population 

Trt

† 

Chr

‡ 

Pos 

(cM) 

Sig. 

DAS§ 

Peak 

LOD¶ 

DAS†† 

LOD
¶ 

PVE 
# 

Add 
(m) 
†† 

Left 

marker 

(bp) 

Right 

marker 

(bp) 

Closest 
candidate 

gene 

 

Gene  

function 

Distance 
from gene 

(bp) 

Ki3xNC356 I 4 61 63-85 82 5.03 10.29 0.03 156384593 156517564 GRMZM2G134023 

brassinosteroid-responsive RING-H2; zinc 

finger, C3HC4 type domain containing protein, 

expressed 

259337 

Ki3xNC356 I 4 62 63-69 69 4.13 8.45 0.02 156998152 157879556 GRMZM2G134023 

brassinosteroid-responsive RING-H2; zinc 

finger, C3HC4 type domain containing protein, 

expressed 

1247112 

Ki3xNC356 D 4 104 65-67 67 2.23 4.54 0.01 218940880 219145633 GRMZM2G326114 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein; gibberellin 20 

oxidase 2, putative, expressed 

15224555 

Ki3xNC356 I 4 120 48-54 52 2.11 4.40 -0.01 237391404 237610499 AC196708.3_FG006 

SAUR-like auxin-responsive protein family ; 

OsSAUR5 - Auxin-responsive SAUR gene 

family member, expressed 

187125 

LH82xLAMA I 5 17 21-52 39 2.65 6.48 -0.01 5105202 5211414 GRMZM2G130675 

SAUR-like auxin-responsive protein family ; 

OsSAUR1 - Auxin-responsive SAUR gene 

family member, expressed 

91525 

Ki3xNC356 D 5 36 63-65 64 2.11 4.06 0.01 17344330 18452570 GRMZM2G060940 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein; gibberellin 20 

oxidase 2, putative, expressed 

273100 

Ki3xNC356 I 5 38 63 63 2.08 4.33 0.01 21893133 21893252 GRMZM2G113135 

SAUR-like auxin-responsive protein family ; 

CPuORF40 - conserved peptide uORF-

containing transcript, expressed 

1105270 

Ki3xNC356 D 5 68 54-57 56 2.02 3.95 0.01 170416302 171276656 GRMZM2G702026 
auxin response factor 1; auxin response factor 

7, putative, expressed 
2961382 

Tx740xNC356 I 5 118 24-63 63 2.19 9.94 0.02 204585691 205239681 GRMZM5G885274 

GRAS family transcription factor; gibberellin 

response modulator protein, putative, 

expressed 

171258 

Tx740xNC356 I 5 119 23-63 56 4.90 20.89 0.03 205748909 206263616 GRMZM2G074267 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
722595 

Tx740xNC356 D 6 0 54-64 60 2.62 11.66 0.02 1338837 3573312 GRMZM2G070500 

nodulin MtN21 /EamA-like transporter family 

protein; auxin-induced protein 5NG4, putative, 

expressed 

37898001 

Tx740xNC356 I 6 30 64-65 65 2.30 10.48 0.02 94418426 95940965 GRMZM2G462760 

SAUR-like auxin-responsive protein family ; 

OsSAUR25 - Auxin-responsive SAUR gene 

family member, expressed 

2782579 

Tx740xNC356 I 6 35 64-74 68 2.53 11.40 0.02 96558982 96880264 GRMZM2G462760 

SAUR-like auxin-responsive protein family ; 

OsSAUR25 - Auxin-responsive SAUR gene 

family member, expressed 

4322506 

Tx740xNC356 D 6 67 64-85 84 3.20 14.11 0.02 141909772 143997309 dwil1 dwarf & irregular leaf1 346507 

Tx740xNC356 I 6 75 42-62 56 2.50 9.25 0.02 154194879 154326722 GRMZM2G140805 

nodulin MtN21 /EamA-like transporter family 

protein; auxin-induced protein 5NG4, putative, 

expressed 

1385932 
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Appendix A9. Continued. 

Population 

Trt

† 

Chr

‡ 

Pos 

(cM) 

Sig. 

DAS§ 

Peak 

LOD¶ 

DAS†† 

LOD
¶ 

PVE 
# 

Add 
(m) 
†† 

Left 

marker 

(bp) 

Right 

marker 

(bp) 

Closest 
candidate 

gene 

 

Gene  

function 

Distance 
from gene 

(bp) 

Tx740xNC356 I 6 76 51-62 62 2.28 9.12 0.02 154345260 155647497 GRMZM2G140805 

nodulin MtN21 /EamA-like transporter family 

protein; auxin-induced protein 5NG4, putative, 

expressed 

650354 

Ki3xNC356 D 7 23 72-73 73 6.46 11.68 0.03 13980271 14905605 GRMZM2G320298 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

7324200 

Ki3xNC356 D 7 27 74-85 85 13.02 24.16 0.04 25781951 26153406 GRMZM2G075715 
auxin response factor 6; auxin response factor, 

putative, expressed 
13766771 

Ki3xNC356 D 7 32 71-85 85 21.42 44.01 -0.05 95447274 96847624 GRMZM2G391795 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

11778171 

Ki3xNC356 D 8 3 64-85 85 3.58 6.08 -0.02 2792594 2901121 GRMZM2G000489 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

12087236 

LH82xLAMA D 8 10 72-85 85 2.26 6.08 -0.02 5024449 5024479 GRMZM2G000489 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

9909629 

LH82xLAMA D 8 84 35-43 43 3.08 8.40 0.01 157963615 157970345 GRMZM2G116557 
auxin response factor 2; auxin response factor, 

putative, expressed 
2134364 

LH82xLAMA D 8 96 51-61 54 4.26 11.35 0.03 165542954 165556999 GRMZM2G431066 

SAUR-like auxin-responsive protein family ; 

OsSAUR24 - Auxin-responsive SAUR gene 

family member, expressed 

349596 

LH82xLAMA D 8 97 44-50 50 3.97 10.62 0.02 166105809 166240043 GRMZM2G431066 

SAUR-like auxin-responsive protein family ; 

OsSAUR24 - Auxin-responsive SAUR gene 

family member, expressed 

972545 

LH82xLAMA D 9 14 24-34 24 2.23 5.71 0.00 5289590 6124392 GRMZM2G307440 

alpha/beta-Hydrolases superfamily protein; 

gibberellin receptor GID1L2, putative, 

expressed 

873137 

LH82xLAMA D 9 84 69-71 69 2.17 5.18 -0.02 139931280 139961881 GRMZM2G031447 
carboxyesterase 17; gibberellin receptor 

GID1L2, putative, expressed 
1592902 

LH82xLAMA I 9 94 61-62 62 2.28 5.68 -0.02 145282309 145505072 
GRMZM2G028039

_gras45 

GRAS family transcription factor; gibberellin 

response modulator protein, putative, 

expressed 

3773603 

LH82xLAMA D 10 20 44-85 44 2.13 5.59 -0.01 5874629 6537612 cr4 Crinkly4; short plant 616214 

LH82xLAMA D 10 22 44-50 44 2.31 6.21 -0.01 5874629 6537612 cr4 Crinkly4; short plant 616214 

LH82xLAMA D 10 23 44-50 44 2.26 5.81 -0.01 5874629 6537612 cr4 Crinkly4; short plant 616214 

LH82xLAMA D 10 26 24-50 24 2.50 6.84 0.00 8451245 10196681 GRMZM2G346110 

SAUR-like auxin-responsive protein family ; 

OsSAUR15 - Auxin-responsive SAUR gene 

family member 

663550 

LH82xLAMA D 10 45 45-64 64 2.09 5.75 -0.02 82042041 82850420 GRMZM2G072632 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
7838586 

 



 

116 

Appendix A9. Continued. 

Population 

Trt

† 

Chr

‡ 

Pos 

(cM) 

Sig. 

DAS 

Int. § 

Peak 

DAS 

# 

Peak
LOD

¶ 

Peak 
PVE 
†† 

Peak
Add  
‡‡ 

Left 

marker 

(bp) 

Right 

marker 

(bp) 

Closest 
candidate 

gene 

 

Gene  

function 

Distance 
from gene 

(bp) 

LH82xLAMA I 10 46 51-60 58 4.72 10.43 -0.02 88270397 88401043 GRMZM2G072632 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
1949096 

LH82xLAMA I 10 47 61-62 62 4.65 12.75 -0.02 92823460 95666918 GRMZM2G072632 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
3960373 

LH82xLAMA D 10 48 62-66 62 2.60 7.07 -0.02 99931137 101933970 GRMZM2G137451 
auxin signaling F-box 2; OsFBL16 - F-box 

domain and LRR containing protein, expressed 
10066214 

LH82xLAMA D 10 51 33-66 34 2.54 7.08 0.00 127261630 127988227 GRMZM2G007481 
Auxin efflux carrier family protein; auxin 

efflux carrier component, putative, expressed 
828343 

LH82xLAMA D 10 57 23-85 27 2.55 6.96 0.00 135609157 136083608 GRMZM2G397684 

brassinosteroid-responsive RING-H2; zinc 

finger, C3HC4 type domain containing protein, 

expressed 

160978 

LH82xLAMA I 10 58 63-85 64 4.38 12.29 -0.03 136083608 136247247 GRMZM2G397684 

brassinosteroid-responsive RING-H2; zinc 

finger, C3HC4 type domain containing protein, 

expressed 

158068 

LH82xLAMA D 10 58 23-85 27 2.46 6.80 0.00 136083608 136247247 GRMZM2G397684 

brassinosteroid-responsive RING-H2; zinc 

finger, C3HC4 type domain containing protein, 

expressed 

158068 

LH82xLAMA D 10 65 20-22 20 2.65 7.22 0.00 140049011 140268347 GRMZM2G456644 

SAUR-like auxin-responsive protein family ; 

OsSAUR20 - Auxin-responsive SAUR gene 

family member, expressed 

1394099 

†   Trt: Treatment; I: Irrigated; D: Non-Irrigated. 

‡   Chr: Chromosome. 

§   Day interval where the QTL has a LOD>2 and PVE>3. 

#   Day which QTL has the greatest LOD score within the significant day interval.  

¶   LOD: -log10(p-value). 

†† PVE: Percent variance explained. 

‡‡ Additive effect estimate (m). 
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APPENDIX B 

SUPPLEMENTAL FIGURES 

 

 

Appendix B1. [a] Illustration of locations in which manual height measurements were collected during vegetative (left) and reproductive 

(right) growth periods in maize from the top of the planted rows, separated by furrows. [b] Diagram demonstrating the different elevation 

models and what they are intended to model. 
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Appendix B2. Descriptions of study sites for comparison of ground filtering methods.  
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Appendix B3. Violin plots comparing distribution of the difference between ground truth measurements and UAS height metrics (PHT 

– UAS) across UAS platforms (fixed wing and rotary wing) and study sites (LCDH: Low Canopy Density Hybrids, MCDI: Medium 

Canopy Density Inbred, and HCDH: High Canopy Density Hybrids) for each of the ground filtering methods (HRI: Hierarchical Robust 

Interpolation, ATIN: Adaptive Triangulated Irregular Network, CSF: Cloth Simulation Filter, DBM: Difference Based Method). Violin 

plots provide summary statistics typical of boxplot accompanied with a visualization of the probability density of the data. Red dashed 

line indicates zero error.
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Appendix B4. Comparison of variance component estimates between UAS platforms (fixed 

wing and rotary wing) and terminal ground truth plant height (ground truth) across study 

sites (LCDH: Low Canopy Density Hybrids), MCDI: Medium Canopy Density Inbred, and 

HCDH: High Canopy Density Hybrids). 
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Appendix B5. Temporal growth models of the P95 pedigree BLUPS by UAS platform (fixed wing and rotary wing) and trials (DG2F: 

Optimal planted, D trial; G2FE: Optimal planted, irrigated trial; G2LA: Delay planted, irrigated trial) of the 2017 G2F trials in College 

Station, TX. All flight dates are independent by Julian day and connecting lines are for visualization purposes to follow the growth 

pattern of specific pedigrees.
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Appendix B6. Stack bar graphs of percent variation explained by variables of Eq. 3 for 

logistic curve parameter for individual UAS platforms (fixed wing and rotary wing)  and 

experimental trials (DG2F: Optimal planted, D trial; G2FE: Optimal planted, irrigated trial; 

G2LA: Delay planted, irrigated trial). Total variance captured (black circle) per image set, 

defined by the right y-axis, puts repeatability and genetic variance explained into perspective 

of other flight dates. Repeatability is indicated by the white triangles. 
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Appendix B7. Heat map comparing correlations between grain yield (GY), manual terminal plant height (PHT), flowering time 

(DTA/DTS), logistic parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the DG2F trial 

surveyed by the [a] fixed wing and [b] rotary wing. 
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Appendix B8. Heat map comparing correlations between grain yield (GY), manual terminal plant height (PHT), flowering time 

(DTA/DTS), logistic parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the G2FE trial 

surveyed by the [a] fixed wing and [b] rotary wing. 
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Appendix B9. Heat map comparing correlations between grain yield (GY), manual terminal plant height (PHT), flowering time 

(DTA/DTS), logistic parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the G2LA trial 

surveyed by the [a] fixed wing and [b] rotary wing.



 

126 

 
Appendix B10. Heat map comparing correlations between manual terminal plant height (PHT), flowering time (DTA/DTS), functional 

parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the Tx740xNC356 population under [a] 

irrigated and [b] non-irrigated watering regimens. 
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Appendix B11. Heat map comparing correlations between manual terminal plant height (PHT), flowering time (DTA/DTS), functional 

parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the Ki3xNC356 population under [a] 

irrigated and [b] non-irrigated watering regimens. 
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Appendix B12. Heat map comparing correlations between manual terminal plant height (PHT), flowering time (DTA/DTS), functional 

parameters (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the LH82xLAMA population under [a] 

irrigated and [b] non-irrigated watering regimens.
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Appendix B13. Significant temporal height QTL. Red indicates positive allelic effect 

estimates, blue indicates negative allelic effect estimates, and black indicate non-

significant (NS) genomic regions.  

 

 



 

130 

 
 

Appendix B14.  Visual representation of temporal single marker analysis of the Weibull 

imputed height estimates.
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APPENDIX C 

SUPPLEMENTAL MATERIALS AND METHODS 

 

Appendix C1. Description of point cloud based ground filtering algorithms. 

 

Hierarchical Robust Interpolation (HRI) 

The hierarchical robust interpolation (HRI) algorithm (GroundFilter.exe) 

implemented in FUSION/LDV (McGaughey, 2009) software utilizes linear least-squares 

with equal point weighting to define the initial surface followed by adaptive weight functions 

of the residual distances from the surface model to iteratively fine tune refine the ground 

points (Kraus and Pfeifer, 2001; Kraus and Rieger, 1999). The HRI begins by equally 

weighting all of the points as one, followed by the interpolation of an intermediate surface 

based on all of the points. Utilizing the shift parameters (g & w) point are assigned a weight 

between zero (object) and one (ground). Points lying (g) below the intermediate surface are 

assigned a weight of one, point’s with residuals (g + w) above the intermediate surface are  

 

Appendix C1 Table 1. Optimized parameters for HRI ground filter based on minimization 

of absolute error between UAS height estimates and manual measured height. 

 

Parameters Rotary wing Fixed wing 

Cell size (m) 25 25 

g (m) -0.25 -0.25 

g + w (m) 0.1 0.1 

a 1 1 

b 25 25 

 

 

assigned weighs of zero and excluded from the next iterative interpolation of an intermediate 

surface. All intermediate point are assigned weights based on their distance from the 
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intermediate surface. After the final iteration all remaining point with weights less than one 

are classified as ground points. Parameter “b” can be adjusted to set the steepness of the 

weight function and parameter “a” shifts the weight function. 

Cloth Simulation Filter (CSF) 

The cloth simulation filter (CSF) (Zhang, et al., 2016) was implemented within R via 

the  RCSF package (https://github.com/Jean-Romain/RCSF). A flat surface (i.e. cloth) is 

place upon the surface of the inverted point cloud and the shape of the cloth is adjusted based 

on intersections between the cloth points and the point cloud points, generating an 

approximation of the ground surface. The CSF has f iveparameters that must be set: grid 

resolution of the cloth grid (GR), time step (dT), cloth rigidness (RI), post processing slope 

smoothing (ST), and classification threshold (hcc). The dT was left at 0.65 as advised by  

 

Appendix C1 Table 2. Optimized parameters for CSF ground filter based on minimization 

of absolute error between UAS height estimates and manual measured height. 

 

Parameters Rotary wing Rotary wing Fixed wing Fixed wing 

Grid rigidness 1L 1L 1L 1L 

Cloth resolution (m) 1 25 1 25 

Class threshold (m) 0.1 0.5 0.1 0.1 

Time step 0.65 0.65 0.65 0.65 

Rigidness 1 1 1 1 

 

 

the creator of the CSF due to the minimization of classification error. The RI was set to three 

for flat terrains and the ST was set to false, as our agricultural study site is flat and lacks 

large elevation shifts. Optimization of the CSF was complete through iteration of the of the 

hcc and GR parameters.  
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Adaptive Triangulated Irregular Network (ATIN) 

The adaptive triangulated irregular network (ATIN) (Axelsson, 1999) was 

implemented within the LAStools (Isenburg, 2015) software suite with the LASground 

script. The algorithm first generates a TIN face below the point cloud by sub-randomly 

distributed local minimum points. Using threshold parameters, the surface is iteratively 

densified if the point lies within the filtering parameters: step size, offset, bulge, spike, and 

standard deviation. The standard deviation was set to zero to help reduce algorithm 

inconsistencies (i.e. algorithm doesn’t classify points effectively). The spike param`eter  

 

Appendix C1 Table 3. Optimized parameters for ATIN ground filter based on minimization 

of absolute error between UAS height estimates and manual measured height. 

 

Parameters Rotary wing Fixed wing 

Step size (m) 25 25 

Bulge (m) 0 0 

Offset (m) 0.5 0.2 

Spike 0.05 0.05 

Std. Dev. 0 0 

 

was set to 0.05 m to remove low vegetation from the ground classification. Iterative tuning 

of the step size, offset, and bulge parameters were evaluated to set the optimal parameters 

(Supplemental 3 Table S3). 

Discussion on Tuning of Filtering Algorithms 

In general, preference was set to cell size of 25 meters to find parameters that 

performed consistently across varying levels of ground point representation. With plots sizes 

ranging from 3.8 to 7.6 meters, a cell size of 25 meters ensured that whole plots are evaluated 

in the filtering algorithms and not mistakenly represented as ground while also being large 
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enough to have adequate ground representation with the cell in the high canopy density point 

clouds.  

The CSF algorithm is computationally efficient and requires four parameters (cloth 

resolution, class threshold, time step, and rigidness) to be implemented. Our results suggest 

that adjustments to the cloth resolution as the density of ground points is necessary to obtain 

adequate ground filtering. The CSF is simple to implement, but is highly affected by negative 

blunders as it creates the cloth mesh on the bottom of the point cloud.  

Like CSF, the ATIN method is highly affected by negative blunders when randomly 

sampling the minimum points within a cell as the seed points to begin building the TIN. The 

relative inefficiency of the ATIN combined with the large number of parameters (offset, 

bulge, spike, and standard deviation) made optimizing this algorithm time intensive and 

unfavorable. Our results indicate that blunders should not be present at distance greater that 

the upward spike parameter to ensure that the coarsest TIN can incorporate representative 

ground points. The LASground documentation indicates that fine tuning the bulge 

algorithms can result in highly accurate ground representation, but we did not see any 

improvement from including bulge parameters.  

In contrast, the HRI algorithms progressively creates surface models based on the 

average of the points in question, which means the algorithms works from the top down. 

This has significant impact in reducing the effect of positive and negative blunders on the 

algorithms performance. The HRI requires four parameters to be tuned (g, w, a, and b) and 

is computationally superior to ATIN. The greater the b parameter the greater the slope of the 

weight function resulting in stricter definition of ground versus no ground points. The a-

parameter has little effect on the weight function and can be set to the default value in most 
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situations. The g-parameter, should be large enough to progressively work through the 

canopy within the allotted iterations, but the w-parameter seems to be the most important of 

the parameters as it defines the distance above the intermediate surface in which points can 

be considered ground. This has a significant impact upon the differentiating low growth 

vegetation from ground and can greatly improve your early season height estimates. 

 


