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ABSTRACT

Machine learning methods and algorithms working under the assumption of identically and in-

dependently distributed (i.i.d.) data cannot be applicable when dealing with massive data collected

from different sources or by various technologies, where heterogeneity of data is inevitable. In

such scenarios where we are far from simple homogeneous and uni-modal distributions, we should

address the data heterogeneity in a smart way in order to take the best advantages of data coming

from different sources. In this dissertation we study two main sources of data heterogeneity, time

and domain. We address the time by modeling the dynamics of data and the domain difference by

transfer learning.

Gene expression data have been used for many years for phenotype classification, for instance,

classification of healthy versus cancerous tissues or classification of various types of diseases. The

traditional methods use static gene expression data measured in one time point. We propose to

take into account the dynamics of gene interactions through time, which can be governed by gene

regulatory networks (GRN), and design the classifiers using gene expression trajectories instead of

static data. Thanks to recent advanced sequencing technologies such as single-cell, we are now able

to look inside a single cell and capture the dynamics of gene expressions. As a result, we design

optimal classifiers using single-cell gene expression trajectories, whose dynamics are modeled

via Boolean networks with perturbation (BNp). We solve this problem using both expectation

maximization (EM) and Bayesian framework and show the great efficacy of these methods over

classification via bulk RNA-Seq data.

Transfer learning (TL) has recently attracted significant research attention, as it simultaneously

learns from different source domains, which have plenty of labeled data, and transfers the relevant

knowledge to the target domain with limited labeled data to improve the prediction performance.

We study transfer learning with a novel Bayesian viewpoint. Transfer learning appears where we

do not have enough data in our target domain to train the machine learning algorithms well but

have good amount of data in other relevant source domains. The probability distributions of the
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source and target domains might be totally different but they share some knowledge underlying

the similar tasks between the domains and are related to each other in some sense. The ultimate

goal of transfer learning is to find the amount of relatedness between the domains and then transfer

the amount of knowledge to the target domain which can help improve the classification task in

the data-poor target domain. Negative transfer is the most vital issue in transfer learning and

happens when the TL algorithm is not able to detect that the source domain is not related to the

target domain for a specific task. For addressing all these issues with a solid theoretical backbone,

we propose a novel transfer learning method based on a Bayesian framework. We propose a

Bayesian transfer learning framework, where the source and target domains are related through

the joint prior distribution of the model parameters. The modeling of joint prior densities enables

better understanding of the transferability between domains. Using such an idea, we propose

optimal Bayesian transfer learning (OBTL) for both continuous and count data as well as optimal

Bayesian transfer regression (OBTR), which are able to optimally transfer the relevant knowledge

from a data-rich source domain to a data-poor target domain, whereby improving the classification

accuracy in the target domain with limited data.
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1. INTRODUCTION

Machine learning has become one of the most important and challenging research topics today

with immense number of applications such as genomics or computer vision, which owes its pop-

ularity to the emergence of different types of data which can now be easily acquired thanks to the

growth of technology. Being exposed to different types of data coming from various measurement

technologies lead to great amount of heterogeneity in data, which had not been experienced so

far. As a result, we would more likely be very far away from the identically and independently

distributed (i.i.d.) assumption, upon which many machine learning methods have been built. In

this dissertation, we have addressed two types of heterogeneity in data: heterogeneity due to time

evolution and heterogeneity due to domain difference. First, we address the time heterogeneity

via modeling the dynamics of data. Second, we solve heterogeneity due to domain difference via

transfer learning.

In chapter 2, we thoroughly study the classification of gene expression trajectories using the

partial knowledge of gene regulatory networks (GRN). Traditionally, gene expression data from

different sources of measurements, such as microarray and RNA-Seq, have been used for phe-

notype classification, that is, the classification of cancer versus normal or the classification of

different types of diseases. According to the fact that the genes in our cells interact with each

other and actually evolve over time via a GRN, we propose to model their dynamics and classify

phenotypes using gene expression trajectories (time-series) which contain more information than

the static data which are a snapshot of gene expressions in one time point. We first use partially

known GRNs and model the gene expression state trajectories using Boolean Networks with per-

turbation (BNp), where a gene has two values: 1 for On and 0 for Off. We study the classification

error under different mutated networks and attractor cycles and show that the mutations which

change the attractor structures more lead to lower classification error. We then generalize it to real

gene expression trajectories by assuming an observation model on top of state dynamics. Thanks

to recent single-cell sequencing technologies, we are now able to sequence the gene expressions
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inside every cell at each time point and generate meaningful gene expression trajectory data which

can reflect the dynamics of gene regulatory networks. We design a classifier using single-cell gene

expression trajectories and show that it can significantly outperform the classifiers which use static

gene expression data derived from bulk gene expression technologies like RNA-Seq. The reason

is that in bulk RNA-Seq, the expression values of genes are averaged over the population of cells

and the dynamics cannot be captured. For the single-cell gene expression trajectories, we propose

an expectation maximization (EM) algorithm with closed-from updates which can efficiently esti-

mate the unknown parameters of the model using the observed trajectories. We finally study the

single-cell gene expression trajectories in a Bayesian framework and propose intrinsically Bayesian

robust classifier for the trajectories, where instead of estimating the unknown parameters, we as-

sume they belong to an uncertainty class governed by a prior distribution. We evaluate all these

methods on different important gene regulatory networks including p53 and cell cycle networks

and demonstrate their efficacy in accurately classifying different phenotypes.

In chapter 3, we study transfer learning with a novel Bayesian viewpoint. Transfer learning

appears where we do not have enough data in our target domain to train the machine learning

algorithms well but have good amount of data in other relevant source domains. The probabil-

ity distributions of the source and target domains might be totally different but they share some

knowledge underlying the similar tasks between the domains and are related to each other in some

sense. The ultimate goal of transfer learning is to find the amount of relatedness between the do-

mains and then transfer the amount of knowledge to the target domain which can help improve the

classification task in the data-poor target domain. Domain adaptation (DA) is a method to address

transfer learning, where the source and target data are mapped to a common domain in which they

follow a similar distribution. However, domain adaptation is not a very clever way of addressing

transfer learning in that it can only work well when the two domains are highly related and can

easily fail if there are huge distribution difference between the source and target domains. Indeed,

many existing transfer learning and domain adaptation methods fail to answer questions regarding

the relatedness and transferability between the source and target domains. As a result, they are very

2



prone to negative transfer, which is a phenomenon in which transfer learning fails to transfer help-

ful knowledge to the target domain and consequently deteriorates the performance compared to the

target-only training without transferring any knowledge. Negative transfer is the most vital issue

in transfer learning and happens when the algorithm is not able to detect that the source domain is

not related to the target domain for a specific task. For solving all these issues, we propose a novel

transfer learning method based on a Bayesian framework, which is the scope of chapter 3. We

propose a Bayesian transfer learning framework, where the source and target domains are related

through the joint prior distribution of the model parameters. The modeling of joint prior densities

enables better understanding of the transferability between domains. We first consider continuous

data under a Gaussian model. We define a joint Wishart distribution for the precision matrices of

the Gaussian feature-label distributions in the source and target domains to act like a bridge that

transfers the useful information of the source domain to help classification in the target domain by

improving the target posteriors. Using several theorems from multivariate statistics, the posteriors

and posterior predictive densities are derived in closed forms in terms of hypergeometric functions

of matrix argument, leading to our novel closed-form and fast Optimal Bayesian Transfer Learning

(OBTL) classifier. Then we generalize the OBTL for the regression problem and similarly propose

Optimal Bayesian Transfer Regression (OBTR). Finally, we extend our transfer learning idea to

count data with the aim of cancer classification using the next generation sequencing data such as

RNA-Seq. In this case, for addressing over-dispersion in RNA-Seq data, we use Negative Bino-

mial (NB) and define joint priors for the parameters of the source and target domain. We learn the

posteriors using Hamiltonian Monte Carlo (HMC) algorithm and then define the optimal transfer

learning classifier for the count data. We evaluate the performance of our proposed transfer learn-

ing methods for classification and regression using both image and cancer datasets and show that

they are able to optimally transfer the relevant knowledge from the source to the target domain and

consequently improve the performance of data-poor target domains.
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2. CLASSIFICATION OF GENE EXPRESSION TRAJECTORIES USING THE

KNOWLEDGE OF GENE REGULATORY NETWORKS∗

2.1 Classification of Gene State Trajectories

2.1.1 Overview

Gene-expression-based phenotype classification is used for disease diagnosis and prognosis

relating to treatment strategies. In this section we study classification based on sequential mea-

surements of multiple genes using gene regulatory network (GRN) modeling. We assume there are

two networks, original (healthy) and mutated (cancerous), and observations consist of trajectories

of network states. The problem is to classify an observation trajectory as coming from either the

original or mutated network. GRNs are modeled via probabilistic Boolean networks (PBN), which

incorporate stochasticity at both the gene and network levels. Mutation affects the regulatory logic.

Classification is based upon observing a trajectory of states of some given length. We characterize

the Bayes classifier and find the Bayes error for a general PBN and the special case of a single

Boolean network affected by random perturbations (BNp). The Bayes error is related to network

sensitivity, meaning the extent of alteration in the steady-state distribution of the original network

owing to mutation. Using standard methods to calculate steady-state distributions is cumbersome

and sometimes impossible, so we provide an efficient algorithm and approximations. Extensive

simulations are performed to study the effects of various factors, including approximation accu-

racy. We apply the classification procedure to a p53 BNp and a mammalian cell cycle PBN.
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Biology 12, no. 3, 1-10, Copyright 2018 BMC.
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balayghareh, U. Braga-Neto, J. Hua, and E. Dougherty 2018. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 15, no. 1, 68-82, Copyright 2018 IEEE.
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2.1.2 Introduction

Gene-expression-based phenotype classification was among the first applications proposed for

high-throughput expression measurements, starting with DNA microarrays, the aim being disease

diagnosis or prognosis relating to treatment strategies [11-14]. Owing to feature selection and error

estimation in extremely high-dimensional spaces with limited sample data, accurate classification

and error estimation have proven to be difficult, even with the advent of RNA-seq data [15-20].

Measurement noise in high-throughput data and heterogeneity across samples and patients increase

the challenge. One proposed approach is to use groups of genes as features, such as merging genes

in signaling pathways. This can help avoid redundant information contained in selected genes,

for instance, selecting several genes in a pathway that are regulated by a single master gene [21].

The approach is to jointly analyze the expression levels of genes related by functionality, which

can be obtained via transcriptome analysis [22-24], GO annotations [25], or other sources. Several

methods have been proposed to measure the activity of a particular pathway: mean or median [26],

first principle component [24], using a subset of genes in the pathway [27], and combining log-

likelihood ratios of genes in the pathway [28].

While the aforementioned methods take advantage of multiple gene activity, in the end they

all rely on single measurements and therefore do not take advantage of the regulatory information

in trajectory data. In this section we consider classification based on sequential measurements of

multiple genes. The problem is modeled via gene regulatory networks (GRNs). There are two

networks, an original and one having undergone mutation, and observations consist of trajectories

of network states, the classification problem being to classify an observation trajectory as coming

from either the original or mutated network.

Before describing the mathematical setting, we note that traditionally it has been difficult to

collect time-course gene-expression data for cancer, not only because cancer is known for its het-

erogeneity, but also because the cells are not synchronized. Thus, traditionally, for quality time-

course expression data, one has to purify and synchronize the whole cell population, which is very

challenging and cannot be achieved in a routine manner [29]. However, with the breakthrough in
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single-cell profiling, the problem can be overcome by profiling individual cells using RNA-Seq or

quantitative PCR [30]. The individual cells can be captured via standard methods, such as flow

cytometry, glass capillaries, or laser [31], and be measured at various time points. For example,

in [32], between 49 to 77 cells have been collected at each time for 4 total time points and a soft-

ware, Monocle, has been built to extract various gene-expression trajectories of individual cells.

The authors have shown that key gene-expression transition sequences can be observed based on

the trajectories. The method, according to the authors, can also be applied to time-course data col-

lected via quantitative PCR. Since the regulation dynamic can provide a wide range of information

not readily available from existing medical tests, driven by the need for personalized treatment,

one would envision that in the future such procedures might be commercialized to help physicians

make better diagnoses and choose the best treatments.

We model GRNs via probabilistic Boolean networks (PBNs) [33]. These characterize regula-

tory relations over discrete steps, which need not be time but instead can be related to gene state

transitions such as in the cell cycle. They incorporate stochasticity at the gene level by allowing

random gene perturbation and at the network level by consisting of multiple Boolean networks

randomly selected based upon the activity of latent variables outside the network. While for sim-

plicity we assume binary values, corresponding to a gene expressing or not expressing, the general

PBN model makes no such assumption and the results of this work extend directly to multi-valued

genes. PBNs have been used extensively for the study of optimal intervention based on control

over time [34] and a one-time targeted alteration of the regulatory functions [35].

We assume that the mutated network has arisen from a mutation affecting the regulatory logic,

and classification is based upon observing a trajectory of states of some given length. In this

section, we characterize the Bayes classifier and find the Bayes error for a general PBN and the

special case of a single Boolean network (BNp) affected by random perturbations. It will be seen

that longer trajectories lower the Bayes error. We also see that if the two networks are similar and

share some same attractor cycles, the longer trajectories are required to achieve a desired Bayes

error close to zero, but when they are totally dissimilar, even the short trajectories can result in a
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lower Bayes error. As is commonly assumed (although not always mentioned), we suppose that

classification is in the steady-state. Owing to perturbation, the Markov chain corresponding to a

PBN is irreducible and hence possesses a steady-state distribution for the states.

We relate the Bayes error to the sensitivity of the network to mutation, where by sensitivity we

mean quantification of the alteration in the steady-state distribution of the original network owing

to mutation [36]. We define a trajectory-based notion of sensitivity suitable to the classification

problem. Lack of sensitivity is good for cell survival because long-run wild-type state probabilities

are not significantly altered, but this makes classification more difficult. If a function mutation

significantly reduces the number of common attractor states in the two networks, then the Bayes

error will be low. However, if the function mutation does not change the attractor structures of

the original network, we cannot expect to have a Bayes error around zero, unless we have access

to very long trajectories. The steady-state probabilities of attractors in PBNs have been derived

in [37] with good approximations.

Using standard methods to calculate steady-state distributions is cumbersome and sometimes

impossible due to the high computation time required for inverting large transition probability

matrices (TPMs). We provide an efficient algorithm to help ease the computation; nevertheless,

the computational burden is still prohibitive when the trajectory length is long, especially because

we want to do simulations over large numbers of networks. Therefore, we provide approximations

when the gene perturbation probability is small, a common assumption. We provide extensive

simulations to study the effects of various factors, including the goodness of the approximations.

Finally we apply the classification procedure to a p53 BNp and a mammalian cell cycle PBN.

2.1.3 Background

For a binary Boolean network (BN) on n genes, a truth table gives the functional relationships

between the genes [38]. Each gene value xi ∈ {0, 1}, for i = 1, · · · , n, at time k+ 1 is determined

by the values of some predictor genes at time k via a Boolean function fi : {0, 1}n → {0, 1} in the

truth table. In practice, fi is a function of small number of genes, Ki, which is called input degree

of the gene xi in the network. Given a truth table, a gene network can be represented as a graph
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with vertices representing genes and edges representing regulations. Given an initial state, a BN

will eventually reach a set of states, called an attractor cycle, through which it will cycle endlessly.

Each initial state corresponds to a unique attractor cycle, and the set of initial states leading to a

specific attractor cycle is known as the basin of attraction (BOA) of the attractor cycle.

2.1.3.1 Boolean Networks with perturbation (BNp)

For BNps, perturbation is introduced with a probability p by which the current state of the

network can be randomly changed. Implicitly, we assume that there is an independent identically

distributed (i.i.d.) random perturbation vector at each time k, denoted by nk ∈ {0, 1}n, where the

ith gene flips at time k if the ith component of nk is equal to 1. Therefore, the dynamical model of

the states can be expressed as

xk+1 = f(xk)⊕ nk+1, k = 0, 1, 2, · · · , (2.1)

where xk = [x1(k), x2(k), · · · , xn(k)]T is a binary state vector, called a gene activity profile

(GAP), at time k, in which xi(k) indicates the expression level of the ith gene at time k (either

0 or 1); f(xk) = [f1, f2, · · · , fn]T : {0, 1}n → {0, 1}n is the vector of the network functions,

in which fi shows the expression level of the ith gene at time k + 1 when the system lies in

the state xk at time k; nk = [n1(k), n2(k), · · · , nn(k)]T is the perturbation vector at time k, in

which n1(k), n2(k), · · · , nn(k) are i.i.d. Bernoulli random variables for every k with the parame-

ter p = P (ni(k) = 1); and ⊕ is component-wise modulo 2 addition. The existence of perturbation

makes the corresponding Markov chain of a BNp irreducible. Hence, the network possesses a

steady-state distribution π describing its long-run behavior. A BNp inherits the attractor structure

from the original BN without perturbation, the difference being that a random perturbation can

cause a BNp to jump out of an attractor cycle, perhaps then transitioning to a different attractor

cycle. If p is sufficiently small, π will reflect the attractor structure within the original network. We

can derive the transition probability matrix (TPM) if we know the truth table and the perturbation

probability for a BNp. As a result, the steady-state distribution π can be computed as well.
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2.1.3.2 Probabilistic Boolean Network (PBN)

The network function in a PBN is not fixed and changes over time. We first consider context-

sensitive PBNs, in which the current function governing the network will be changed if a switch ξ is

on (ξ = 1), which has the probability q. When the switch is on, the new network function will be se-

lected among L functions {f (1), f (2), · · · , f (L)} with corresponding probabilities {c1, c2, · · · , cL}.

Then we analyze instantaneously random PBNs, which are a special case of context-sensitive

PBNs with q = 1, meaning that the network functions are changing at each time point indepen-

dently with the selection probabilities {c1, c2, · · · , cL}. The PBN dynamics are defined as

xk+1 = fk+1(xk)⊕ nk+1, k = 0, 1, 2, · · · , (2.2)

where xk and nk denote the state and perturbation vectors, as defined in (2.1). Here, fk+1 is the

network function at time k+1, which is randomly picked from the context set {f (1), f (2), · · · , f (L)},

with the aforementioned probabilities, at each time k + 1. A BNp is a PBN possessing a single

context, that is, L = 1. When L = 1, fk+1 = f (1) in (2.2) is a constant function over time and (2.2)

turns to the BNp definition in (2.1).

In this section, we address the following problem. Suppose the truth table governing the orig-

inal BNp (or PBN) is altered to yield a mutated BNp (PBN), keeping p unchanged, and we are

given an observed trajectory of the states in the steady-state. Our goal is to classify this arbitrary

trajectory as belonging to the original or mutated BNp (PBN). We will obtain the Bayes classifier

for this problem and find the corresponding Bayes error for the classifier.

2.1.4 Methods

2.1.4.1 Bayes Classifier

• Context-sensitive PBN:

We first consider the general case of context-sensitive PBNs. Let xk denote an n × 1 binary

state vector at time k. Let x̄k = 1 +
∑n

i=1 xi(k)× 2i−1 denote the index of xk at time k, such that

9



x̄k ∈ {1, 2, · · · , 2n}; for instance, (0, 0, ..., 0)T → 1 and (1, 1, ..., 1)T → 2n. In a context-sensitive

PBN the state of the corresponding Markov chain at each time consists of both a GAP and a context,

and is of the form (Xk,Fk). Thus, the TPM has dimension 2n × L by 2n × L. Its entries are the

probabilities P (Xk+1 = xk+1,Fk+1 = fk+1|Xk = xk,Fk = fk). In our classification problem we

only have access to the GAP observations in the steady-state. As a result, we will use a hidden

Markov model (HMM) to compute the probability of a given GAP trajectory in the steady-state.

The TPM in this case is a 2n × L by 2n × L matrix, whose entries are defined by

P (Xk+1 = xk+1, fk+1 = f (i)|Xk = xk, fk = f (j)) =

P (Xk+1 = xk+1|Xk = xk, fk+1 = f (i))

×P (fk+1 = f (i)|fk = f (j)). (2.3)

From (2.2) we have

P (Xk+1 = xk+1|Xk = xk, fk+1 = f (i)) =

pd(xk+1,f
(i)(xk))(1− p)n−d(xk+1,f

(i)(xk)), (2.4)

where d(xk+1, f
(i)(xk)) is the Hamming distance between two binary vectors xk+1 and f (i)(xk).

We know that {fk} itself forms an irreducible Markov chain, and consequently possesses a steady-

state distribution. If the current function is f (i), then the probability that the function stays fixed

at the next time is 1 − q + qci, which is the addition of the probabilities of two exclusive events:

the network switch is not called for (probability 1 − q), or the switch is called for and the current

network is selected again (probability qci). If the current function is not f (i), then the probability

that f (i) will be the network function at the next time point is qci, which is the probability that the

switch is called for and the function f (i) is selected. Therefore, we can write,

P (fk+1 = f (i)|fk = f (j)) = 1[i=j](1− q + qci) + 1[i 6=j](qci), (2.5)

10



for i, j = 1, · · · , L. Consequently, from (2.3)-(2.5), the TPM has the following entries,

P (Xk+1 = xk+1, fk+1 = f (i)|Xk = xk, fk = f (j)) =

{1[i=j](1− q + qci) + 1[i 6=j](qci)}

×pd(xk+1,f
(i)(xk))(1− p)n−d(xk+1,f

(i)(xk)). (2.6)

Now we aim to compute the probability of a given GAP trajectory in a specific PBN in the

steady-state. Suppose X = [xs,xs+1, · · · ,xs+m−1] is an observed trajectory of length m in the

steady-state, where s is a time point in the steady-state, and F = [fs+1, · · · , fs+m−1] is composed

of the hidden network functions from time s+ 1 to s+m− 1. The joint probability of X and F is

P (X ,F) = P (X|F)P (F), (2.7)

where P (X|F) and P (F) can be factorized as

P (X|F) = P (xs)
m−1∏
k=1

P (xs+k|xs+k−1, fs+k) (2.8)

P (F) = P (fs+1)
m−1∏
k=2

P (fs+k|fs+k−1). (2.9)

In order to derive the probability of trajectory, P (X ), we should marginalize the joint PMF of (2.7)

over F ,

P (X ) =
∑
F

P (X ,F), (2.10)

which can be efficiently computed using the forward update in the structure of the HMM due to

the factorization in (2.8) and (2.9). We define the vectors αk, for k = s + 1, · · · , s + m− 1, with

the i-th entry,
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αs+1(i) = P (xs)P (fs+1 = f (i))P (xs+1|xs, fs+1 = f (i)),

αs+k+1(i) = P (xs+k+1|xs+k, fs+k+1 = f (i))

×
L∑
j=1

αs+k(j)P (fs+k+1 = f (i)|fs+k = f (j)), (2.11)

where k = 1, · · · ,m− 2 and i = 1, · · · , L.

Proposition 1: The steady-state distribution of the network functions is equal to their selection

probabilities, that is, P (fk = f (i)) = ci, where k →∞.

Proof: From the total probability rule,

P (fk+1 = f (i)) = P (fk+1 = f (i)|fk = f (i))P (fk = f (i))

+P (fk+1 = f (i)|fk 6= f (i))P (fk 6= f (i)). (2.12)

As mentioned before, {fk} is an irreducible Markov chain and has a steady-state distribution, that

is, P (fk+1 = f (i)) = P (fk = f (i)) when k → ∞; using this and (2.5) in (2.12) leads to P (fk =

f (i)) = ci , where k →∞. �

According to Proposition 1, P (fs+1 = f (i)) = ci in (2.11). Furthermore, P (xs) = πx̄s in (2.11)

is the steady-state distribution of xs, which can be computed from the TPM in (2.6). Hence, we

can rewrite (2.11) as

αs+1(i) = πx̄sciP (xs+1|xs, fs+1 = f (i)),

αs+k+1(i) = P (xs+k+1|xs+k, fs+k+1 = f (i))

×
L∑
j=1

αs+k(j)P (fs+k+1 = f (i)|fs+k = f (j)). (2.13)

Using (2.4), (2.5), and (2.13), we can compute αs+m−1. Finally, the probability of the trajectory X
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can be computed by summing the entries of αs+m−1 as

P (X ) =
L∑
i=1

αs+m−1(i). (2.14)

Suppose πx̄s and π̃x̄s are the steady-state probabilities of being in state xs in the original and

mutated PBNs, respectively, {f (1), · · · , f (L)} and {f̃ (1), · · · , f̃ (L)} are the L constituent network

functions of the original and mutated PBNs, respectively, and {c1, c2, · · · , cL} and {c̃1, c̃2, · · · , c̃L}

are the corresponding function selection probabilities. As a result, the probability of the trajectory

X in the original network, P (X|PBNoriginal), can be computed from (2.14). We can also compute

the probability of the trajectory X in the mutated network, P (X|PBNmutated), using (2.14), but

we should use π̃x̄s , f̃ (i), c̃i, and q̃ instead of πx̄s , f (i), ci and q, respectively, in (2.1)-(2.14).

Let p0 and p1 be the prior probabilities of the original and mutated PBNs, respectively. Then

the posterior probabilities of the classes after observing the trajectory X are

η(X ) = P (PBNmut.|X ) =
p1P (X|PBNmut.)

P (X )
, (2.15)

1− η(X ) = P (PBNorig.|X ) =
p0P (X|PBNorig.)

P (X )
. (2.16)

The Bayes classifier is given by

ψ?(X ) =


1, η(X ) ≥ 1− η(X )

0, η(X ) < 1− η(X )

=


1, p1P (X|PBNmut.) ≥ p0P (X|PBNorig.)

0, p1P (X|PBNmut.) < p0P (X|PBNorig.)

. (2.17)

In (2.17), the classes 0 and 1 denote the original and mutated PBNs, respectively. If we assume

the classes are equally likely, p0 = p1 = 1
2
, then p0 and p1 can be dropped from both sides of the

inequality in (2.17).
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• Instantaneously random PBN:

Now we consider the case q = 1, which means that the network functions are changing at each

time point. The probability of selecting f (i) at time k + 1 is independent of the previous network

function at time k and is equal to ci. We can see this fact from (2.5):

P (fk+1 = f (i)|fk = f (j)) = P (fk+1 = f (i)) = ci. (2.18)

Furthermore, the TPM in (2.6) becomes

P (Xk+1 = xk+1, fk+1 = f (i)|Xk = xk, fk = f (j)) =

cip
d(xk+1,f

(i)(xk))(1− p)n−d(xk+1,f
(i)(xk))

= P (Xk+1 = xk+1, fk+1 = f (i)|Xk = xk). (2.19)

As a result, the TPM of the GAP can be achieved by marginalizing (2.19) over f (i) as

P (Xk+1 = xk+1|Xk = xk) =
L∑
i=1

cip
d(xk+1,f

(i)(xk))(1− p)n−d(xk+1,f
(i)(xk)). (2.20)

Note that in this case, P (F) in (2.9) is factorized as (based on independence)

P (F) =
m−1∏
k=1

P (fs+k). (2.21)

From (2.7), (2.8), (2.10), and (2.21), we have

P (X ) = πx̄s

m−2∏
k=0

P (Xs+k+1 = xs+k+1|Xs+k = xs+k). (2.22)

Therefore, from (2.20) and (2.22), the probabilities of the steady-state GAP trajectory X in the
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original and mutated instantaneously random PBNs are

P (X|PBNoriginal) = πx̄s

m−2∏
k=0

{
L∑
i=1

cip
d(xs+k+1,f

(i)(xs+k))(1− p)n−d(xs+k+1,f
(i)(xs+k))

}
, (2.23)

P (X|PBNmutated) = π̃x̄s

m−2∏
k=0

{
L∑
i=1

c̃ip
d(xs+k+1,f̃

(i)(xs+k))(1− p)n−d(xs+k+1,f̃
(i)(xs+k))

}
. (2.24)

The Bayes classifier is the same as in (2.17).

• BNp:

According to (2.1), the TPM of a BNp is a 2n × 2n matrix with the following entries.

P (Xk+1 = xk+1|Xk = xk) = pd(xk+1,f(xk))(1− p)n−d(xk+1,f(xk)). (2.25)

We can see that the TPM in (2.25) can also be achieved from the TPM of the GAP in the instan-

taneously random PBN (2.20) by letting L = 1, c1 = 1, and f (1) = f . The probability of X in the

BNp is

P (X ) = πx̄s

m−2∏
k=0

P (Xs+k+1 = xs+k+1|Xs+k = xs+k). (2.26)

Using (2.25) and (2.26), the probability of X in the original and mutated BNps can be written as

P (X|BNporiginal) = πx̄sp
∑m−2
k=0 d(xs+k+1,f(xs+k))

×(1− p)n(m−1)−
∑m−2
k=0 d(xs+k+1,f(xs+k)), (2.27)

P (X|BNpmutated) = π̃x̄sp
∑m−2
k=0 d(xs+k+1,f̃(xs+k))

×(1− p)n(m−1)−
∑m−2
k=0 d(xs+k+1,f̃(xs+k)), (2.28)

where f and f̃ are the network functions of the original and mutated BNps, respectively. Similar to
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(2.17), the Bayes classifier is

ψ?(X ) =


1, p1P (X|BNpmut.) ≥ p0P (X|BNporig.)

0, p1P (X|BNpmut.) < p0P (X|BNporig.)
, (2.29)

where the classes 0 and 1 denote the original and mutated BNps, respectively.

The GAP steady-state distribution π = [π1, π2, · · · , π2n ] can be easily calculated using the fact

that π = πP and
∑2n

i=1 πi = 1, where P is the GAP TPM of the original instantaneously random

PBN and original BNp, whose entries are respectively computed using (2.20) and (2.25). More

specifically, π = πP can be written in the form π(I − P ) = 0. We know I − P is not a full-rank

matrix and that one out of 2n linear equations depends on the others. Therefore, we remove one

column (say the last column) of the matrix I − P and replace it by an all-one column, which adds

the normalization constraint,
∑2n

i=1 πi = 1, to the set of the linear equations π = πP . Calling the

resultant matrix Q, we have

π = [0, 0, · · · , 0, 1]Q−1. (2.30)

We know from the Markov chain properties that Q is a full-rank matrix and has an inverse. We

should also note that although computing the steady-state distribution using (2.30) is exact, it may

not be the most efficient method in terms of the computation time. As a result, we may need to use

the approximate and faster algorithms, like power methods, to compute π in very large networks.

For the mutated PBN, π̃ can be similarly derived. However, as we will study the behavior of the

average Bayes error over many random networks and many random mutations, we will provide an

algorithm to compute π̃ very efficiently without a need for matrix inversion like in (2.30).

2.1.4.2 Bayes Error and Long-run Sensitivity

This section provides the Bayes error for the previously derived Bayes classifiers. It uses the

fact that the Bayes error can be expressed via the posterior probabilities by

ε? = E [min{η(X ), 1− η(X )}] . (2.31)
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• Bayes error for BNps:

From (2.15), (2.16) (replacing PBNs with BNps), and (2.31), and with the assumption of

equally likely BNps, i. e., p0 = p1 = 1
2
, the Bayes error can be written as

ε? =
1

2

∑
X

min {P (X|BNporig.), P (X|BNpmut.)} , (2.32)

where P (X|BNporiginal) and P (X|BNpmutated) are given in (2.27) and (2.28), and the summa-

tion is over all possible 2mn trajectories of the length m. For long trajectories (large m) and big

networks (large n), 2mn is huge, and it is impossible to compute the exact Bayes error using (2.32).

We will consider approximation to reduce the complexity of computing the Bayes error.

We begin by writing the Bayes error in terms of the trajectory long-run sensitivity, ωm(f , f̃),

which we define as the total absolute change in the steady-state probability masses of trajectories

of length m resulting from changing f to f̃ . Using the equality

min{a, b} =
a+ b

2
− |a− b|

2
, (2.33)

in conjunction with (2.32) and the fact that
∑
X P (X|BNporiginal) =

∑
X P (X|BNpmutated) = 1,

the Bayes error can be expressed as

ε? =
1

2

[
1− ωm(f , f̃)

]
, (2.34)

where

ωm(f , f̃) =
1

2

∑
X

∣∣∣∣P (X|BNporig.)− P (X|BNpmut.)
∣∣∣∣. (2.35)

Note that 0 ≤ ωm(f , f̃) ≤ 1 and ωm(f , f̃) is also called Kolmogorov’s variational distance. Ac-

cording to (2.34), the difficulty of classification is inversely related to the sensitivity, with ε? ≈ 0.5

when ωm(f , f̃) ≈ 0, and ε? ≈ 0 when ωm(f , f̃) ≈ 1. The more sensitive a network is to mutation,

the easier it is to classify.
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The main challenge in calculating the sensitivity in (2.35) is summation over the 2mn trajecto-

ries X . In most cases, the perturbation probability p is small. Assuming p is sufficiently small, we

can reduce the trajectory space to achieve a good approximation for the sensitivity with a feasible

computational complexity. To this end, we consider the trajectories in which there is at most one

gene perturbation. The Bayes error in (2.32) and the long-run sensitivity in (2.35) are some func-

tions of the probabilities given in (2.27) and (2.28), and those probabilities have a term p to the

power of
∑m−2

k=0 d(xs+k+1, f(xs+k)) and
∑m−2

k=0 d(xs+k+1, f̃(xs+k)) respectively in the original and

mutated BNps. As a result, when p is small enough, we can only consider the trajectories for which

those Hamming distances are equal to 0 or 1, and terms with higher powers of p are negligible and

a good approximation results by ignoring them. Using this fact, we define the reduced space of

trajectories of length m in the original BNp by

R0 =

{
X

∣∣∣∣∣
m−2∑
k=0

d(xs+k+1, f(xs+k)) = 0

}
, (2.36)

R1 =

{
X

∣∣∣∣∣
m−2∑
k=0

d(xs+k+1, f(xs+k)) = 1

}
, (2.37)

and R = R0 ∪ R1, where X = [xs,xs+1, · · · ,xs+m−1]. Since in the Boolean networks, there is

only one directed edge between any two states, starting from state xs there is only one trajectory

of length m. Thus, the cardinality of R0 is |R0| = 2n. Since there are m− 1 state transitions, and

in each transition there are n positions to apply one gene perturbation, |R1| = n(m− 1)2n. Since

R0 and R1 are disjoint, |R| = |R0| + |R1| = 2n(nm − n + 1). We analogously define R̃0 and

R̃1 for the mutated BNp by using f̃ instead of f in (2.36) and (2.37), and define R̃ = R̃0 ∪ R̃1,

for which |R̃| = |R| = 2n(nm − n + 1). If p ≈ 0, then P (X|BNporiginal) ≈ 0 for X /∈ R and

P (X|BNpmutated) ≈ 0 for X /∈ R̃. Due to the minimum function in the Bayes error in (2.32)

and the absolute value function in the sensitivity in (2.35), only trajectories in R ∪ R̃ play a non-

negligible role in determining the Bayes error and sensitivity. Moreover |R ∪ R̃| ≤ 2n+1(nm −

n + 1), which is much less than 2mn for large m. Since the summands in (2.32) and (2.35) have
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positive values, we have the following lower bounds for the Bayes error and long-run sensitivity:

ε? ≥ 1

2

∑
X∈R∪R̃

min {P (X|BNporig.), P (X|BNpmut.)} , (2.38)

ωm(f , f̃) ≥ 1

2

∑
X∈R∪R̃

∣∣∣∣P (X|BNporig.)− P (X|BNpmut.)
∣∣∣∣. (2.39)

From (2.34) and (2.39), an upper bound for the Bayes error can be derived as

ε? ≤ 1

2

1− 1

2

∑
X∈R∪R̃

∣∣∣∣P (X|BNporig.)− P (X|BNpmut.)
∣∣∣∣
 . (2.40)

The tightness of the lower and upper bounds in (2.38) and (2.40) depends on how small p is. As

p→ 0, these bounds converge to the Bayes error. However, when p increases, the gap between the

bounds grows. A tight approximation requires that p be sufficiently small. We will examine this

with simulations.

• Bayes error in instantaneously random PBNs:

From (2.15), (2.16), and (2.31), and assuming equally likely PBNs, i. e., p0 = p1 = 1
2
, the

Bayes error in classifying the two PBNs (original and mutated) is

ε? =
1

2

∑
X

min {P (X|PBNorig.), P (X|PBNmut.)} . (2.41)

Again, this summation is over 2mn possible trajectories. To reduce computational complexity, we

can analogously define R0 and R1 as for BNps; however, for PBNs, the corresponding reduction is

insufficient on account of context switching. Thus, we must reduce even further and only consider

R0, in which case, owing to context switching, |R0| ≤ Lm−1 × 2n, where L is the number of

constituent BNs in the PBN. Based on (2.23) and (2.24), which are for the instantaneously random
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PBNs, we restrict our computation to

R0 =

{
X

∣∣∣∣∣
m−2∏
k=0

{
L∑
i=1

ci1[xs+k+1=f (i)(xs+k)]

}
6= 0

}
, (2.42)

R̃0 =

{
X

∣∣∣∣∣
m−2∏
k=0

{
L∑
i=1

c̃i1[(xs+k+1=f̃ (i)(xs+k)]

}
6= 0

}
, (2.43)

for the original and mutated PBNs, under the assumption that p ≈ 0. The Bayes error lower and

upper bounds, similar to (2.38) and (2.40), are

ε? ≥ 1

2

∑
X∈R0∪R̃0

min {P (X|PBNorig.), P (X|PBNmut.)} , (2.44)

ε? ≤ 1

2

1− 1

2

∑
X∈R0∪R̃0

∣∣∣∣P (X|PBNorig.)− P (X|PBNmut.)

∣∣∣∣
 , (2.45)

respectively. Simulations will demonstrate the tightness of the bounds.

2.1.4.3 Markov Chain Perturbation Theory and Multiple Function Mutations

The steady-state distribution π̃ of the mutated BNp governed by f̃ can be computed similarly to

π using (2.30) by replacing Q by Q̃; however, computational savings can be had by using Markov

Chain perturbation theory to derive π̃ directly from π and the TPMs of the original and mutated

BNps, P and P̃ . Keep in mind that we are referring to function perturbations as mutations and

we will state the original Markov Chain perturbation theory in terms of mutations so that it is

consistent with our terminology. A rank-one mutation (perturbation) has the TPM P̃ = P + abT ,

where a and b are two arbitrary column vectors satisfying bT e = 0, where e is an all-one column

vector.

Theorem [35]: Consider a rank-one mutation for which P̃ = P + abT and let π (a row vector)

and Z = [I−P + eπ]−1 be the steady-state distribution and the fundamental matrix of the original

Markov chain, respectively. Then, the steady-state distribution and the fundamental matrix of the
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mutated Markov chain are respectively given by

π̃ = π +
πa

1− bTZa
bTZ, (2.46)

Z̃ =

[
I − πa

1− bTZa
ebTZ

] [
Z +

ZabTZ

1− bTZa

]
. (2.47)

One special case of a rank-one mutation is a mutation in only one state, which changes only

one row of the TPM. In this case, a = ek and ek is a vector with 1 in the k-th entry and 0s in the

other entries. We consider a commonly used 1-bit function mutation in which the output of only

one gene is flipped in the transition from a specific state and the other outputs are kept unchanged.

If x? is the state in which the output of the i?-th gene is mutated (flipped), then we can write

f̃(x?) = f(x?) ⊕ ei? , and f̃(x) = f(x) for x 6= x?. Since there is only a change in x̄?-th row of

the TPM P , a = ex̄? . Furthermore, bT can easily be computed by subtracting the x̄?-th rows of the

original and mutated TPMs, respectively, P and P̃ .

More complicated function mutations can be considered by extending to multiple 1-bit muta-

tions. Indeed, all the complex function mutations can be viewed as several 1-bit mutations taking

place successively. As a result, the steady-state distribution can be again obtained from the results

of the Markov chain perturbation theory in a recursive manner. When we have multiple 1-bit func-

tion mutations, we split them into several 1-bit function mutations for which we can use (2.46) to

compute the steady-state distribution. For the second 1-bit function mutation, we update π and Z

using (2.46) and (2.47) and similarly compute the steady-state distribution and so forth.

Algorithm 1 shows how to compute the Bayes error, given the original BNp and mutated BNp

after applying multiple 1-bit function mutations. Using this algorithm, we only need one matrix

inversion for the original BNp. For the mutated BNps, we can update π and Z based on the

algorithm, without a need for matrix inversion. This can considerably reduce the complexity,

especially when we want to study the effect of many multiple 1-bit function mutations to obtain

the average Bayes error over many randomly generated BNps. This helps more in the case of large

networks. With n genes, the dimension of the matrices to be inverted is 2n × 2n.
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Algorithm 1 Computing the Bayes error for multiple 1-bit function mutations in BNps
1: procedure
2: Initialize the number of the genes: n
3: Initialize the length of trajectory: m
4: Initialize the gene perturbation probability: p
5: Initialize the number of the 1-bit function mutations: nmut
6: Initialize the position of the k-th function perturbation: (x?(k), i?(k)), where x̄?(k) ∈

{1, 2, · · · 2n} and i?(k) ∈ {1, 2, · · · , n} for k = 1, · · · , nmut.
7: Initialize the original BN: f and save it: fo ← f
8: Initialize the perturbed BN: f̃ ← f
9: Compute the TPM of the original BNp using (2.25): P

10: Compute the SS distribution of the original BNp: π ← [0, · · · , 1]Q−1

11: Compute the fundamental matrix of the original BNp: Z ← [I − P + eπ]−1

12: Compute the reduced trajectory set: R
13: for k = 1 : nmut do
14: f̃(x?(k))← f(x?(k))⊕ ei?(k)

15: Compute x̄?(k)-th row of P̃ , that is, P̃ (x̄?(k), :), from (2.25) (use f̃ instead of f )
16: a← ex̄?(k)

17: bT ← P̃ (x̄?(k), :)− P (x̄?(k), :)
18: π̃ ← π + πa

1−bTZab
TZ

19: if k == nmut then
20: • Compute the reduced trajectory set: R̃
21: • Compute the Bayes error’s bounds from (2.38) and (2.40).
22: • break
23: else
24: Z ←

[
I − πa

1−bTZaeb
TZ
] [
Z + ZabTZ

1−bTZa

]
25: f ← f̃
26: P ← P̃
27: π ← π̃
28: end if
29: end for
30: end procedure
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As mentioned in Algorithm 1, (x?(k), i?(k)) shows the position of the k-th 1-bit function mu-

tation for k = 1, · · · , nmut, where x?(k) is the state in which the output of the gene i?(k) is flipped.

As there are n2n choices for a 1-bit mutation, the number of all possible nmut 1-bit function muta-

tions is C(n2n, nmut). Considering all possible function mutations is computationally impossible

for even a moderate n and nmut. Hence, in simulating a great number of networks, we gener-

ate a few random 1-bit mutations of length nmut and average the Bayes error over these random

mutations.

2.1.4.4 Studying the Bayes error and sensitivity of BNps when p ≈ 0

We reduced the BNp trajectory space from cardinality 2mn to at most 2n+1(nm−n+1) by only

considering trajectories in R0 ∪ R1 and R̃0 ∪ R̃1, where R0 (R̃0) and R1 (R̃1) were respectively

the trajectory spaces with no and only one gene perturbations; however, when n is large, this

can still be too time-consuming for simulations involving many random networks. If we assume

p ≈ 0 in such cases, we can only consider trajectories in R0 and R̃0. Under this assumption,

the computation time of the Bayes error will be very fast and we only need to find the attractor

states, since the non-attractor states have zero steady-state probabilities when p ≈ 0. Recall that

|R0| = |R̃0| = 2n.

Proposition 2: The sensitivity and Bayes error possess the limits

lim
p→0

ωm(f , f̃) =
1

2

 ∑
i∈A\Cm

πi +
∑

i∈B\Cm

π̃i +
∑
i∈Cm

|πi − π̃i|

 , (2.48)

lim
p→0

ε? =
1

2

∑
i∈Cm

min{πi, π̃i}, (2.49)

where A and B are the attractor states of the original and mutated BNps, respectively, and Cm is

the set of common attractor states of the two BNps from which there exists an identical trajectory

of length m− 1 in the two graphs,

Cm =
{

x̄s | xs ∈ A ∩B, X ∈ R0 ∩ R̃0

}
. (2.50)
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Proof: If xs is not an attractor state, then πx̄s → 0 as p → 0. Since p → 0, from (2.27), (2.28),

and (2.36),

P (X|BNporig.) = 1[X∈R0, xs∈A] πx̄s , (2.51)

P (X|BNpmut.) = 1[X∈R̃0, xs∈B] π̃x̄s , (2.52)

where 1[A] is the indicator function whose value is 1 when A is true and is 0 otherwise. From

(2.32), (2.51), and (2.52),

ε? =
1

2

∑
X

min
{

1[X∈R0, xs∈A] πx̄s , 1[X∈R̃0, xs∈B] π̃x̄s

}
=

1

2

∑
X

1[X∈R0∩R̃0, xs∈A∩B] min {πx̄s , π̃x̄s} . (2.53)

Using (2.53) and the fact that there is only one trajectory in R0 ∩ R̃0 starting from xs, we have

ε? =
1

2

∑
x̄s∈Cm

min {πx̄s , π̃x̄s} =
1

2

∑
i∈Cm

min {πi, π̃i} , (2.54)

which finishes the proof of (2.49). Similarly, from (2.35), (2.51 ), and (2.52),

ωm(f , f̃) =
1

2

∑
X

∣∣∣∣1[X∈R0, xs∈A] πx̄s − 1[X∈R̃0, xs∈B] π̃x̄s

∣∣∣∣
=

1

2

 ∑
i∈A\Cm

πi +
∑

i∈B\Cm

π̃i +
∑
i∈Cm

|πi − π̃i|

 , (2.55)

which finishes the proof of (2.48). �

For finding the set Cm, we first use an efficient algorithm to find the attractor states in the two

BNps. Then, after determining a common attractor state xs, we check if there is a trajectory in

R0 ∩ R̃0 whose starting state is xs. If there is, then xs ∈ Cm; otherwise, xs /∈ Cm. The efficient

algorithm to find the set Cm is very fast.

A key understanding is that the Bayes error, for a fixed p, is a function of two factors:

Function mutation: It affects both π̃i and Cm. A strong mutation can ruin the attractor struc-

24



tures of the original network and, as a result, the number of the common attractors in the two BNps

and the size of the set Cm will be decreased, resulting in a lower Bayes error. A weak mutation

barely affects the attractor cycles in the original BNp, resulting in ε? ≈ 0.5. The strongest mutation

is one in which there is no common attractor state in the two BNps, so Cm = �, ωm = 1, and

ε? = 0.

The trajectory length m: It affects the Bayes error by affecting the size of Cm. For a given

original and mutated BNp, the size of Cm is a non-increasing function of m. If m increases, it will

be harder to find a common trajectory of length m − 1 starting from the common attractor states

of the two BNps. Therefore, we expect the Bayes error decreases by the increase of m and tends

to zero for sufficiently large m.

2.1.5 Simulation Results

2.1.5.1 Synthetic BNps

• Single BNp:

Consider a Boolean network function f for a BNp with n = 4 genes that has been generated

randomly (with probability 0.5 for each gene to be 0 or 1), its truth table being given in Table 2.1

(a). This BNp has three attractor cycles: 13 → 13, 5 → 9 → 5, and 10 → 14 → 15 → 10. We

consider one 1-bit function mutation in only one state. For example, we choose x̄? = 5 (which is

in the attractor cycles of the original network) and i? = 1 (first gene to be perturbed). The mutated

BNp has three attractor cycles: 13 → 13, 10 → 14 → 15 → 10, and 1 → 6 → 9 → 5 → 1. With

this mutation, one of the attractor cycles of the original BNp has changed and the other two have

been kept unchanged.

Fig. 2.1 (a) represents the Bayes error ε? in (2.32) versus the gene perturbation probability p

for different values of m. For a fixed p, the Bayes error decreases as m increases. However, for

a fixed m, the Bayes error as a function of p does not have a unique behavior. For instance, for

m = 2 to m = 5, the Bayes error is a monotone increasing function in terms of p, but for m = 6, it

is not a monotone function, in such a way that it first decreases and then increases as p grows from
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Table 2.1: (a) Truth table of the original and mutated Boolean functions f and f̃ , (b) The Bayes error for all the 1-bit
function perturbations. m = 4 and p = 0.01. Reprinted with permission from [1], c©2018 IEEE.

(a)

x̄ xT fT (x) f̃T (x)
1 0000 0101 0101
2 0001 0100 0100
3 0010 0000 0000
4 0011 0100 0100
5 0100 1000 0000
6 0101 1000 1000
7 0110 0010 0010
8 0111 0100 0100
9 1000 0100 0100
10 1001 1101 1101
11 1010 1110 1110
12 1011 0011 0011
13 1100 1100 1100
14 1101 1110 1110
15 1110 1001 1001
16 1111 1101 1101

(b)

x̄? i? = 1 i? = 2 i? = 3 i? = 4

1 0.4036 0.4825 0.4824 0.4839
2 0.4815 0.4969 0.4957 0.4673
3 0.4919 0.4919 0.4462 0.4917
4 0.4831 0.4972 0.4961 0.4976
5 0.2171 0.2624 0.2497 0.2497
6 0.3751 0.3938 0.3702 0.3704
7 0.4474 0.4574 0.4933 0.4900
8 0.4981 0.4997 0.4996 0.4997
9 0.2616 0.2216 0.2114 0.2425
10 0.3221 0.3078 0.3241 0.3203
11 0.4427 0.4412 0.4575 0.4926
12 0.4752 0.4975 0.4975 0.4966
13 0.3822 0.3835 0.3993 0.3986
14 0.3240 0.3247 0.3214 0.3094
15 0.3219 0.2920 0.3225 0.3213
16 0.4691 0.4956 0.4705 0.4737

0.001 to 0.05.

The lower and upper bounds of the Bayes error in (2.38) and (2.40) are depicted in Figs. 2.1

(b), (c), and (d) for m = 2, m = 4, and m = 6, respectively. These figures show that when p is

small enough, the bounds are tight. For a given m, these bounds become loose with an increase of

p, but the value of p after which the bounds are not tight depends on m. For a given p, both the

lower and upper bounds become loose with increasingm, the reason being that asm grows, we are

disregarding more trajectories by only considering the effective trajectories inR and R̃. Therefore,

as m grows, p should shrink to zero for these bounds to be tight and provide a good approximation

of the exact Bayes error; if p does not shrink, then the bounds will become loose.

Figs. 2.1 (e) and (f) plot the Bayes error and its lower and upper bounds versus m for two

different values of p. Note that the exact Bayes error has been computed up to m = 6, because

for larger m we cannot compute it due to an exponential complexity with respect to m. Fig. 2.1
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Figure 2.1: (a): Bayes error vs. p. (b), (c), (d): Bayes error lower and upper bounds vs. p respectively for m = 2,
m = 4, and m = 6. (e), (f): Bayes error lower and upper bounds vs. m respectively for p = 0.001 and p = 0.01.
Reprinted with permission from [1], c©2018 IEEE.

(e) shows the results for p = 10−3, from which we see that the Bayes error’s lower and upper

bounds are sandwiched and converge to the exact Bayes error for all m ≤ 20, because p = 10−3

is considered small enough for this range of m. Fig. 2.1 (f) represents the results for p = 0.01.

Contrary to the previous case, the bounds are getting loose with increasing m, since p = 0.01

cannot be considered small enough. These two figures demonstrate that the Bayes error is a non-

increasing function of m and its reduction rate depends on the value of p. Larger p tends to give

a higher reduction rate of the Bayes error for larger m, since when p is very small and there are

common attractor cycles in the original and mutated BNps (as this case), the reduction rate of the

Bayes error will be very slow, but when p is a bit larger, the higher perturbation frequency can

more readily get the network out of attractor cycles and thereby lead to a greater decrease in the

Bayes error.

Finally, we are interested in the Bayes error over all 1-bit function mutations in the different

states. Table 2.1 (b) summarizes these results when m = 4 and p = 0.01, using (2.32). We see that
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mutations in the attractor states lead to lower Bayes error, which is expected. The lowest Bayes

error is 0.2114, which is related to flipping the gene i? = 3 at the state x̄? = 9, which is also an

attractor state. In general, mutations that ruin all the attractor cycles of the original BNp can lead

to Bayes error near zero. In the examples of Fig. 2.1, x̄? = 5 (attractor state) and i? = 1, which,

based on the table, leads to Bayes error 0.2171. As mentioned, this function mutation changes only

one attractor cycle of the original BNp and leaves the other two unchanged. The results of Table

2.1 (b) are for 1-bit function mutations in the specific states. In general, arbitrary mutations can

change the outputs of many states, thereby resulting in greater reduction of the Bayes error.

• Average Bayes error over many random networks;

Fig. 2.2 shows average Bayes errors for nmut random 1-bit function mutations to the Boolean

function f , for nmut = 1, 2, · · · , 100, over 1000 randomly generated BNps (averaged over both

random function mutations and random BNps) versus nmut for n = m = 4, n = m = 6, n =

m = 8, and n = m = 10, assuming p = 10−3 for all scenarios. Since p is very small, we have

used the limiting results of the Bayes error in (2.49). All averages decrease as the number of 1-bit

mutations (nmut) increases. We have used Algorithm 1 for calculating the Bayes error over 1000

random BNps, and 100 random mutations for each each BNp and nmut.

Fig. 2.3 shows the average Bayes error lower bound for different trajectory lengths, m =

2, 3, · · · , 10, given a fixed number of function mutations nmut = 10 and p = 0.01, and using

Algorithm 1 for calculating the Bayes error over 1000 random BNps. The averages decrease with

increasing m: longer trajectories lead to smaller Bayes errors. Note that for larger networks (larger

n), for a given nmut, m and p, there is a higher average Bayes error lower bound. For instance,

when nmut = m = 10 and p = 0.01, Fig. 2.3 shows that the average Bayes error is approximately

0.068, 0.145, and 0.26 for n = 4, n = 6, and n = 8, respectively.

2.1.5.2 Real Gene regulatory Networks

We consider two GRNs for which we already know the wild-type and mutated networks. For a

BNp, we analyze a p53 network; for a PBN, we consider a mammalian cell-cycle PBN.

• p53 BNp:

28



2 4 6 8 10 12 14 16 18 20

n
mut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e

ra
g

e
 B

a
y
e

s
 e

rr
o

r

n = m = 4

(a)

5 10 15 20 25 30 35 40

n
mut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
v
e

ra
g

e
 B

a
y
e

s
 e

rr
o

r

n = m = 6

(b)

5 10 15 20 25 30 35 40

n
mut

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
e

ra
g

e
 B

a
y
e

s
 e

rr
o

r

n = m = 8

(c)

10 20 30 40 50 60 70 80 90 100

n
mut

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
v
e

ra
g

e
 B

a
y
e

s
 e

rr
o

r

n = m = 10

(d)
Figure 2.2: p = 10−3. Average Bayes error (averaged over 1000 random BNps) versus nmut for (a): n = m = 4,
(b): n = m = 6, (c): n = m = 8, and (d): n = m = 10. Reprinted with permission from [1], c©2018 IEEE.
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Figure 2.3: p = 0.01 and nmut = 10. Average Bayes error lower bound (averaged over 1000 random BNps) versus
m for (a): n = 4, (b): n = 6, and (c): n = 8. Reprinted with permission from [1], c©2018 IEEE.

We use the wild-type BNp of the p53 network whose GRN is depicted in Fig. 2.4, adapted

from [7]. This GRN has four genes and its regulating functions are defined in Table 2.2. According

to [39], cancerous BNps result when either gene p53 is deactivated (f2 = 0 in Table 2.2) or gene
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Figure 2.4: p53 gene regulatory network. Reprinted with permission from [1], c©2018 IEEE.

Mdm2 is activated (f4 = 1 in Table 2.2) permanently. Hence, we have computed the Bayes

error when one of the classes is the wild-type and another is one of the aforementioned mutated

networks. DNAdsb in Fig. 2.4 is a Boolean signal that indicates the presence of a double strand

break. We assume a DNA damage situation in which DNAdsb = 1. Figure 2.5 (a) represents

the wild-type BNp, while Figs. 2.5 (b) and 2.5 (c) are related to the mutated BNps with f2 = 0

and f4 = 1, respectively. The numbers inside the nodes show the indices of the binary states.

The wild-type BNp has an attractor cycle consisting of seven states, 9, 13, 15, 7, 8, 4, 2, while the

mutated BNps in Figs. 2.5 (b) and (c) have a single state attractor 9 and 10, respectively. The BNps

in (a) and (c) have no common attractor states. Although the BNp in (a) has one common attractor

state (9) with the BNp in (c), there is no common trajectory of any length m in them. Thus, we

expect that as p→ 0, the Bayes error tends to zero. The simulation results in Fig. 2.6 confirm this

fact.

Figure 2.6 (a) shows the Bayes error ε? versus p for several values of m when the mutated

network has the p53 gene deactivated, calculated from (2.48). Note that ε? is an increasing function

in terms of p. This is an anticipated phenomena, for when p increases, it becomes harder to

distinguish between the original and mutated networks because the genes are randomly flipped

more often and do not let us see the true structure of the networks easily. In other words, when

we have larger p, the two TPMs of the original and mutated networks become more similar to
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Table 2.2: Definitions of Boolean functions in wild-type p53 BNp. Reprinted with permission from [1], c©2018
IEEE.

Order Gene Regulating function
x1 ATM f1 = Wip1∧(ATM∨dnadsb)
x2 p53 f2 = Mdm2 ∧ (ATM ∨

Wip1)
x3 Wip1 f3 = p53
x4 Mdm2 f4 = ATM ∧ (p53 ∨Wip1)

Figure 2.5: (a) Wild-type (original) p53 BNp. (b) Mutated (perturbed) BNp with p53 = 0. (c) Mutated (perturbed)
BNp with MDM2 = 1. Reprinted with permission from [1], c©2018 IEEE.

each other, and as a result, identifying the real BNps will be hard, leading to a larger Bayes error.

Regardless of m, as p → 0, ε? → 0, which is expected since there is no common trajectory of

length m ≥ 2 in the two BNps of Fig. 2.5 (a) and (b). In Fig. 2.6 (a), for p ≤ 0.01 and m ≥ 3,

we have ε? ≈ 0. Fig. 2.6 (b) depicts the Bayes error and its lower and upper bounds versus m

for p = 0.001 and p = 0.01. The bounds have been calculated using (2.38) and (2.40). The exact

Bayes error has only been computed up to m = 6. It can be seen from 2.6 (b) that the Bayes

error is decreasing with increasing m. Fig. 2.6 (b) shows that the bounds are tight when p is
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Figure 2.6: (a) and (b): Bayes error versus p and m. First class is the wild-type p53 BNp, and the second is mutated
BNp with deactivated gene p53. (c) and (d): Bayes error versus p and m. First class is the wild-type p53 BNp, and the
second is mutated BNp with activated gene MDM2. Reprinted with permission from [1], c©2018 IEEE.

sufficiently small; indeed, for p = 0.001 they are roughly equal. Moreover, in 2.6 (b) the upper

bound becomes looser with increase of m, the reason being that p = 0.01 cannot be considered

small enough for larger m. Figs. 2.6 (c) and (d) show analogous results when the mutated network

is the p53 network with activated Mdm2, the difference being that the Bayes error is even less, for

any p and m, than those in Figs. 2.6 (a) and (b), since in this case, the wild-type and mutated BNps

do not share a common attractor state. We conclude from the results in Fig. 2.6 that the wild-type

and either mutated BNp are well classifiable, the Bayes errors being close to zero.

• Instantaneously random Mammalian Cell-Cycle PBN:

We use the wild-type mammalian cell-cycle PBN, whose GRN, adapted from [7], is depicted

in Fig. 2.7. This GRN consists of ten genes and the regulating functions are defined in Table 2.3.

The value of gene CycD is determined by some extracellular signals and is assumed to be 0 or 1
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Figure 2.7: Mammalian cell-cycle gene regulatory network. Reprinted with permission from [1], c©2018 IEEE.

with the probability of 0.5 for each case. This fact enables us to define the two constituent BNps

of this PBN. The first BNp has CycD always off (i. e., f1 = 0 in Table 2.3) and the second BNp

has CycD always on (i. e., f1 = 1 in Table 2.3). Each BNp has the selection probability of 0.5 ,

that is, c1 = c2 = 0.5. As for the mutated PBN, according to [7], p27 is a key gene in the cell-cycle

network whose absence can lead to a cancerous network. Therefore, for the mutated PBN, we

permanently set the value of p27 to zero in both the constituent BNps, that is, f3 = 0 in Table 2.3

for the mutated PBN.

Regarding classification of these PBNs, the Bayes error lower and upper bounds in (2.44) and

(2.45) are depicted in Fig. 2.8 for p = 10−3 and p = 10−4. Computing the exact Bayes error

using (2.41) is impossible due to an intractable computational cost. Even when m = 5, there are

250 ≈ 1015 trajectories. Furthermore, in using the bounds in (2.44) and (2.45), we are assuming

sufficiently small p. The bounds in Fig. 2.8 can be used to capture the behavior of the exact Bayes

error for p = 10−3 and p = 10−4, the latter being tighter. Since the Bayes error is a decreasing

function of m, for sufficiently large m the wild-type and cancerous PBNs are classifiable with a

desired low Bayes error.

33



Table 2.3: Definitions of Boolean functions for the wild-type mammalian cell-cycle PBN with 10 genes. Reprinted
with permission from [1], c©2018 IEEE.

Order Gene Regulating function
x1 CycD f1 = Extracellular signals
x2 Rb f2 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧

CycB)
x3 p27 f3 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧

(CycE ∧ CycA) ∧ CycD ∧ CycB)

x4 E2F f4 = (Rb ∧ CycA ∧ CycB) ∨ (p27 ∧Rb ∧ CycB)

x5 CycE f5 = (E2F ∧Rb)
x6 CycA f6 = (E2F ∧Rb∧Cdc20∧(Cdh1 ∧ UbcH10))∨(CycA∧

Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))
x7 Cdc20 f7 = CycB
x8 Cdh1 f8 = (CycA ∧ CycB) ∨ Cdc20 ∨ (p27 ∧ CycB)

x9 UbcH10 f9 = Cdh1∨(Cdh1∧UbcH10∧(Cdc20∨CycA∨CycB))

x10 CycB f10 = (Cdc20 ∧ Cdh1)
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Figure 2.8: Lower and upper bounds of the Bayes error versus m. The two classes are the wild-type and mutated
(with p27 = 0) mammalian cell-cycle PBNs. Reprinted with permission from [1], c©2018 IEEE.

2.1.6 Conclusion

This section characterized the classification of trajectories observed in m successive states in

the steady-state to an original (wild-type) or mutated GRN using the PBN and BNp frameworks, in

particular deriving the Bayes classifier and the Bayes error. To circumvent computational complex-

ity, we proposed an effective and reduced trajectory space when the gene perturbation probability
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p is small and found lower and upper bounds for the Bayes error, which are acceptably tight when

p is sufficiently small. The procedure was applied to classify trajectories for both synthetic and

real BNps and PBNs, including computing the Bayes errors.
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2.2 Classification of Single-Cell Gene Expression Trajectories

2.2.1 Overview

In this section, we study the classification of gene-expression trajectories coming from two

classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to

model the dynamics of each class at the state level. Each class has its own BNp, which is par-

tially known based on gene pathways. We employ a Gaussian model at the observation level to

show the expression values of the genes given the hidden binary states at each time point. We

use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive

closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in

Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring

gene expressions at different times yields trajectories only when measurements come from a single

cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly

different states. Via the central-limit theorem, we propose another model for expression data in

multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform

multiple-cell average expression data relative to classification error, especially in high-noise situ-

ations. We also consider data generated via a mammalian cell-cycle network, both the wild-type

and with a common mutation affecting the gene p27.

2.2.2 Introduction

In the previous section we characterized the Bayes classifier and Bayes error for classification

of steady-state trajectories observed in successive states in an original (wild-type) or mutated gene

regulatory network (GRN) modeled via probabilistic Boolean networks (PBNs) [1]. In the present

section we consider classification when the networks are only partially known and the training data

consist of labeled trajectories from an original and mutated network modeled as Boolean networks

with perturbation (BNp), which is a special case of a PBN, observed indirectly through noise

[2,40]. The overall model is called a partially-observed Boolean dynamical system (POBDS) [41].

Owing to heterogeneity across samples and patients, it has long been recognized that it can be
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beneficial to use groups of genes as features. This can help avoid redundant information contained

in selected genes, for instance, several genes in a pathway regulated by a single master gene [21].

The approach is to jointly analyze the expression levels of genes related by functionality, which

can be obtained via transcriptome analysis [22-24], GO annotations [25], or other sources. Several

methods have been proposed to measure the activity of a particular pathway: mean or median

[26], first principle component [24], using a subset of genes in the pathway [27], and combining

log-likelihood ratios of genes in the pathway [28]. Although these methods utilize multiple-gene

features, they still rely on single measurements and do not take advantage of regulatory information

in trajectory data.

Single-cell gene expression has recently become popular, as it is able to reveal the expressions

of genes in many different cells in parallel in a single experiment, instead of bulk gene expression

methods like conventional RNA-Seq in which the reported expression level of a gene is actually

an average over cells with different states and possibly different types [42]. As a result, it has been

utilized and proven to be a very effective alternative of bulk expression methods in various research

studies. For instance, [43] demonstrated single-cell RNA-Seq (scRNA-Seq) as an effective strat-

egy for classification of sensory neuron types. [44] used scRNA-Seq data to classify low quality

cells. A massively parallel single-cell RNA profiling was used in [45] to classify retinal bipolar

cells, where 15 previously known and two novel types were identified. Authors in [46] proposed

a nonnegative matrix factorization (NMF) method as a robust unsupervised learning of cell sub-

types from single-cell gene expression data. [47] proposed a method for unsupervised clustering

of single-cell epigenetic data using single-cell ATAC-seq data.

Single-cell expression measurements have enabled generating and using time-series data and

discovering the regulatory information of genes, since bulk expression measurements, like RNA-

Seq or microarrays, destroy crucial information by averaging signals from individual cells together

[42]. However, lower amounts of mRNA in individual cells cause experimental issues which lead

to dropout events [48], such that expressions of some genes are missed in some cells. Accordingly,

in this section, we also consider missing values of genes in order to better reflect the real data. [49]
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proposed a differential expression method using single-cell RNA-Seq time-series data for recovery

of potential cell types from complex mixtures of multiple cell types. BNP-Seq, proposed in [50], is

a Bayesian nonparametric differential expression analysis of count data, which might be beneficial

if applied to single-cell RNA-Seq data to discover differentially expressed genes. Furthermore,

[51] presented a probabilistic model with a Bayesian inference scheme to analyze single-cell time-

series data, which was used for pseudotime estimation. Single-cell gene expression time-series

measurements have also been employed to infer gene regulatory networks; for instance, single-cell

expression measurements at four time points of blood development were used in [52] to synthesize

a Boolean network model for 20 related transcription factors.

In this section, gene regulation is modeled via BNps, in which states are binary vectors, and

1 and 0 represent On and Off, respectively (Binary representation is chosen because it models

switch-like gene behavior and because it makes computation tractable, but the theory is directly

extendable to any number of expression levels.) We consider a Gaussian observation model, in

which the expression level of each gene given its state (hidden) follows a normal density with

some unknown mean and variance. We observe the Gaussian expression values of n genes in m

consecutive time points; however, to take account of missing data, at each time point there is a

probability, pmiss, of not observing the expression of a gene. After observation of such trajectories,

we estimate the unknown network parameters as well as the unknown network connections, which

are partially known. For maximum likelihood estimation and inference, we use the Expectation

Maximization (EM) approach to estimate the continuous parameters of the networks. We then plug

in the estimated parameters and the inferred networks to the Bayes classifier. We study the effects

of the different parameters on the average classification error over many random networks using

trajectory data of different length and missing probability.

When gene-expression values are measured from tissues containing many cells, with genes not

synchronized, a gene may be in different states at any time across the cell sample. Expression

data derived from a multiple-cell scenario is approximated by average expression values across

all states. To treat multiple-cell averaging, we consider averaged expression data and use a static
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model that does not take into account the dynamics of the networks. We compare the classification

errors using trajectory data (single-cell) and averaged data (multiple-cell) in the simulation part

and show that trajectories outperform averaged data if the trajectory length is sufficient, even with

missing data.

2.2.3 Preliminaries

For a Boolean network (BN) on n genes, a truth table gives the functional relationships between

the genes [38]. Each gene value xi ∈ {0, 1}, for i = 1, · · · , n, at time k + 1 is determined by the

values of some predictor genes at time k via a Boolean function fi : {0, 1}n → {0, 1} in the

truth table. In practice, fi is a function of a small number of genes, Ki, called the in-degree

of the gene xi in the network. The in-degree of the network is the maximum of Ki’s, that is,

K = maxi=1,··· ,nKi. A gene network can be represented as a graph with vertices representing

genes and edges representing regulations. There is a state diagram of 2n states corresponding to

the truth table of the BN, representing the dynamics of the network. Given an initial state, a BN

will eventually reach a set of states, called an attractor cycle, through which it will cycle endlessly.

Each initial state corresponds to a unique attractor cycle, and the set of initial states leading to a

specific attractor cycle is known as the basin of attraction (BOA) of the attractor cycle.

2.2.3.1 State Model

We allow stochasticity in our state model by using BNps instead of deterministic BNs. For

BNps, perturbation is introduced with a probability p by which the state of the network can be

randomly changed at any time. Implicitly, we assume that there is an independent identically

distributed (i.i.d.) random perturbation vector at each time k, denoted by nk ∈ {0, 1}n, such that

the i-th gene flips at time k if the i-th component of nk is equal to 1. Therefore, the dynamical

model of the states can be expressed as

Xk+1 = f(Xk)⊕ nk+1, k = 0, 1, 2, · · · , (2.56)
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where Xk = [x1(k), x2(k), · · · , xn(k)]T is a binary state vector, called a gene activity profile

(GAP), at time k, in which xi(k) indicates the expression level of the i-th gene at time k (either

0 or 1); f = [f1, f2, · · · , fn]T : {0, 1}n → {0, 1}n is the vector of the network functions, in

which fi shows the expression level of the i-th gene at time k + 1 when the system lies in the

state Xk at time k; nk = [n1(k), n2(k), · · · , nn(k)]T is the perturbation vector at time k, in which

n1(k), n2(k), · · · , nn(k) are i.i.d. Bernoulli random variables for every k with the parameter p =

P (ni(k) = 1) for every i = 1, · · · , n; and ⊕ is component-wise modulo 2 addition.

The existence of perturbation makes the corresponding Markov chain of a BNp irreducible.

Hence, the network possesses a steady-state distribution π describing its long-run behavior. A BNp

inherits the attractor structure from the original BN without perturbation, the difference being that

a random perturbation can cause a BNp to jump out of an attractor cycle, perhaps then transitioning

to a different attractor cycle. If p is sufficiently small, π will reflect the attractor structure within

the original network. We can derive the transition probability matrix (TPM) if we know the truth

table and the perturbation probability of a BNp. As a result, the steady-state distribution π can be

computed as well.

We assume that the networks are partially known, perhaps from biological pathway knowl-

edge or previous partial inference, and the missing model parameters are estimated from the new

trajectory data. One could, in principle, assume that nothing is known about the BNs except the

genes and depend entirely on the data, but we are generally interested in using prior knowledge to

facilitate classifier design.

Since we do a supervised classification between two classes, healthy and a specific mutated

phenotype, the mutated genes of that mutated phenotype determine the desired BN. For example,

we have considered a specific phenotype in which the gene p27 is mutated. As a result, we are

required to use a pathway and a BN which involves the gene p27; one such BN is the known

cell-cycle BN which we have utilized as our healthy class and its mutated version of knocked out

p27 as the mutated class. In general, if we are interested in a supervised classification between a

healthy class and a mutated class in which some genes are mutated, we need to use a BN which
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involves those mutated genes.

2.2.3.2 Observation Model

Our model for gene expression is the partially-observed Boolean dynamical system (POBDS)

[41], which is a special case of a hidden Markov model (HMM). Having defined the state transition

model as a BNp, we now define the observation model given the hidden states by assuming that

the expression level of each gene at any time comes from a Gaussian distribution whose mean

value is specified by that gene’s binary state value, which is hidden. In other words, depending on

whether a gene is active or not, its expression value comes from two Gaussian distributions with

two different means. The observation model for the j-th gene at time k is

p (yj(k)|xj(k)) ∼ N
(
λ+ δjxj(k), σ2

)
, j = 1, 2, · · · , n, (2.57)

where xj(k) is the hidden binary state (0 or 1) of the j-th gene at time k, and yj(k) is the observed

expression value of the j-th gene at time k. The variance σ2 is constant, but the mean varies

over time, as the value of xj(k) is changing according to the state dynamics (2.56). This shows

that when the j-th gene is off (suppressed) and on (expressed), its observed expression values

come from Gaussian distributions with the means of λ and λ+ δj , respectively, and with the same

variance σ2. In (2.57), λ is the baseline expression level of the genes, which depends on the

sequencing technology, and δj is the activation coefficient of the j-th gene, which determines the

level of the expression for the j-th gene when it is on. Although we can proceed with arbitrary

values of δj for different genes, for the sake of simplicity we assume the same activation coefficient

for all the genes, that is, δj = δ for j = 1, · · · , n.

We denote the expression values of all n genes at time k by the vector Yk = [y1(k), · · · , yn(k)]T .

If we assume that, at any time point k, the expression value of each gene given its binary state is

independent of the expressions of other genes given their corresponding binary states, we can write,

Yk = λ1n + δXk + ε, k = 1, 2, · · · , (2.58)
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where 1n is an n × 1 all-one vector and ε ∼ N (0, σ2In) is a n × 1 multivariate Gaussian random

variable of zero mean and diagonal covariance matrix (In is n × n identity matrix) showing the

variability across the samples. The state vector Xk in (2.58) is hidden (not observed), and the

conditional distribution of Yk given Xk is

p(Yk|Xk) ∼ N (λ1n + δXk, σ
2In), k = 1, 2, · · · . (2.59)

Note that there are two types of variability: intra-subject and inter-subject. Intra-subject vari-

ability is sometimes called within-subject variability and refers to the variability of the samples in

one subject, for example, the variability seen in the expression values of the genes in one individual

at different times. Subject in this context means either cell, organism, or individual. Inter-subject

variability is sometimes called between-subject variability and represents the variability among

the samples of different subjects. For example, the variability seen in the expression values of the

genes in different individuals refers to inter-subject variability. For avoiding confusion, we use

the term "inter-cell variability" to refer to the variability across different cells of an individual,

which will be used in Section 4 for the analysis of the multiple-cell scenario. In this section, we

do single-cell analysis and do not deal with inter-cell variability, since each individual has a single

cell to be used for expression measurements. We should note that in (2.58), ε accounts for both the

inter- and intra-subject variability.

2.2.4 Classification of Trajectories with Missing Data in Single-cell Scenarios

Assume there are two BNps corresponding to the healthy and mutated (cancerous) classes,

each having n genes, and we partially know the networks but do not know the model parameters

p, λ, δ, and σ2. The healthy and mutated networks may have distinct model parameter values.

Using D observed trajectories, Y = {Y(1),Y(2), · · · ,Y(D)}, we infer the unknown parameters and

connections of each network. Y may be incomplete, meaning that there may be missing data.

Without missing data, each trajectory Y(d), for d = 1, · · · , D, has the expression values of the n

genes in m consecutive time points. However, if each gene at each time point has the probability
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pmiss of being missed, then each observed trajectory has the form Y(d) =
[
Y

(d)
i1
, · · · ,Y(d)

im(d)

]
,

where T (d)
obs = {i1, · · · , im(d)} is the set of time points at which at least one gene is observed.

For the maximum likelihood (ML) problem, the search space consists of both discrete and

continuous parts. The space of network functions is discrete and that of the parameters is contin-

uous. Suppose F = {f1, f2, · · · , fM} is the uncertainty set of M network functions containing

the unknown true network function in (2.56). We wish to infer the true network function using

the observation data. In each class, healthy or mutated, we assume an uncertainty set of network

functions F. Although there are many biologically confirmed gene pathways from which Boolean

networks can be constructed, we are likely to be uncertain about some regulations and interactions

between some genes. In such cases, we can form an uncertainty class F of network functions, each

being a possible network function which would be inferred from the observed data. For instance,

assume we know that the gene A regulates the gene B but are not sure about the type of regulation,

that is, activator or suppressor. As such, in our uncertainty class of network functions we let f1

and f2 be the network functions for the cases that regulator A to B is activator and suppressor,

respectively. In a similar way, we can consider any kind of uncertainty in the network structure,

and the true network is inferred from the observed trajectories.

Suppose the model parameters are defined as the vector θ = [p, λ, δ, σ2]T . For any given

network function f i, i = 1, · · · ,M , we employ the EM algorithm to find the optimal parameters θ

by

θ̂i = argmax
θ
p(Y|f i, θ), (2.60)

where p(Y|f i, θ) is the likelihood of the observation trajectory set Y given that the network function

is f i and the parameter is θ. The ML inferred network function and estimated parameters are then

derived as

(f̂ , θ̂) = arg max
(f ,θ)∈{(f1,θ̂1),··· ,(fM ,θ̂M )}

p(Y|f , θ). (2.61)
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2.2.4.1 EM algorithm for finding θ

In (2.60), the network function is given, and we are supposed to find the ML estimation for θ.

To ease notation, suppose the network function in (2.60) is denoted by f . As there are hidden states

in the model, we employ the EM algorithm to estimate the parameters. The EM algorithm can be

described simply as repeating the following steps until convergence:

1- E-step: Q(θ, θ(s)) =
∑

X log[p(X,Y|θ)]P (X|Y, θ(s)),

2- M-step: θ(s+1) = argmaxθQ(θ, θ(s)),

where X = {X (1), · · · ,X (D)} contains the hidden state trajectories corresponding to D observed

trajectories, such that X (d) = [X
(d)
1 , · · · ,X(d)

m ] are the hidden states of the d-th trajectory from time

1 to m.

• E-step:

Since the D trajectory observations are i.i.d., we can write the joint log-likelihood of X and Y

as

log[p(X,Y|θ)] =
D∑
d=1

log[p(X (d),Y(d)|θ)]. (2.62)

The joint likelihood of each d-th observed trajectory Y(d) and its corresponding hidden trajectory

X (d) can be factored as

p(X (d),Y(d)|θ) = P (X
(d)
1 )

m−1∏
k=1

P (X
(d)
k+1|X

(d)
k )

∏
k∈T (d)

obs

p(Y
(d)
k |X

(d)
k ), (2.63)

where, under the usual biological assumption of steady-state observations, P (X
(d)
1 ) is the steady-

state probability of state X
(d)
1 . Let xi denote the n×1 binary vector of the state i, for i = 1, · · · , 2n.

For example, if n = 4, then x1 = [0, 0, 0, 0]T and x10 = [1, 0, 1, 1]T . Denote the steady-state

distribution by the 1 × 2n vector π = [π1, · · · , π2n ], where πi is the steady-state probability of

being in the i-th state. Then P (X
(d)
1 = xi) = πi for any d = 1, · · · , D and i = 1, · · · , 2n. Should

we drop the steady-state assumption, then P (X
(d)
1 ) is an arbitrary distribution to be estimated from

the observed data. The second term in (2.63) is the probability of transitioning from state X
(d)
k at
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time k to state X
(d)
k+1 at time k + 1, which using (2.56) can be written as

P (X
(d)
k+1|X

(d)
k ) = pd(X

(d)
k+1,f(X

(d)
k ))(1− p)n−d(X

(d)
k+1,f(X

(d)
k )), (2.64)

where d(X
(d)
k+1, f(X

(d)
k )) denotes the Hamming distance between the two binary vectors X

(d)
k+1 and

f(X
(d)
k ). The probabilities in (2.64) are the entries in the transition probability matrix. The third

term in (2.63), p(Y(d)
k |X

(d)
k ), is the likelihood of the gene-expression vector Y

(d)
k at time k given

its corresponding hidden state vector X
(d)
k . In the absence of missing data, Y

(d)
k contains the

expression values of all n genes, but with missing data some expression values may not appear in

Y
(d)
k . Let G(d)

k denote the set of genes whose expressions have been observed at time k of the d-th

trajectory. Then from (2.59), we have,

p(Y
(d)
k |X

(d)
k ) =

∏
j∈G(d)

k

(2πσ2)−
1
2 exp

−
(
y

(d)
j (k)− λ− δx(d)

j (k)
)2

2σ2

. (2.65)

Using (2.62)-(2.65), the joint log-likelihood can be written as in (2.66).

log[p(X,Y|θ)] =
D∑
d=1

{
logP (X

(d)
1 ) +

m−1∑
k=1

[
d(X

(d)
k+1, f(X

(d)
k )) log p+ [n− d(X

(d)
k+1, f(X

(d)
k ))] log(1− p)

]

+
∑
k∈T (d)

obs

∑
j∈G(d)

k

−1

2
log 2πσ2 −

(
y

(d)
j (k)− λ− δx(d)

j (k)
)2

2σ2


 . (2.66)

Now we can compute Q(θ, θs). After some straightforward simplifications and dropping the con-
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stant parts, Q(θ, θs) can be derived as in (2.67),

Q(θ, θ(s)) =
D∑
d=1

2n∑
i=1

log(πi)Π
(d,s)
i (1)

+
D∑
d=1

m−1∑
k=1

2n∑
i=1

2n∑
j=1

[
d(xj, f(xi)) log p+ [n− d(xj, f(xi))] log(1− p)

]
Ξ

(d,s)
i,j (k)

+
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

−1

2
log σ2 −

(
y

(d)
j (k)− λ− δxij

)2

2σ2

Π
(d,s)
i (k), (2.67)

where,

Π
(d,s)
i (k) = P (X

(d)
k = xi|Y(d), θ(s)), (2.68)

for any i = 1, · · · , 2n, k = 1, · · · ,m, and d = 1, · · · , D, is the posterior probability of the state i at

time k after the observation of the d-th trajectory, and given the parameter vector θ(s). Furthermore,

in (2.67),

Ξ
(d,s)
i,j (k) = P (X

(d)
k = xi,X

(d)
k+1 = xj|Y(d), θ(s)), (2.69)

for any i, j = 1, · · · , 2n, k = 1, · · · ,m− 1, and d = 1, · · · , D, is the posterior probability of two

consecutive states being i and j, respectively, at times k and k + 1 after the observation of the d-th

trajectory and given the parameter vector θ(s).

•M-step:

Having derived Q(θ, θ(s)), we address the second step of the EM method, which is the max-

imization of Q(θ, θ(s)). We take the derivative of Q(θ, θ(s)) with respect to θ. The derivatives of

Q(θ, θ(s)) with respect to p, λ, δ, and σ2 are

∂Q

∂p
=

D∑
d=1

2n∑
i=1

π′i
πi

Π
(d,s)
i (1) +

D∑
d=1

m−1∑
k=1

2n∑
i=1

2n∑
j=1

[
d(xj, f(xi))

p(1− p)
− n

1− p

]
Ξ

(d,s)
i,j (k), (2.70)

∂Q

∂λ
=

1

σ2

D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

(
y

(d)
j (k)− λ− δxij

)
Π

(d,s)
i (k), (2.71)
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∂Q

∂δ
=

1

σ2

D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

xij

(
y

(d)
j (k)− λ− δxij

)
Π

(d,s)
i (k), (2.72)

∂Q

∂σ2
=
−1

2σ2

D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

1−

(
y

(d)
j (k)− λ− δxij

)2

σ2

Π
(d,s)
i (k), (2.73)

respectively. π′i in (2.70) is the derivative of the steady-state distribution of the state i with respect

to p, that is, π′i = ∂πi
∂p

. To find π′, we start with the fact that the steady-state distribution π =

[π1, π2, · · · , π2n ] satisfies

π = πA, (2.74)
2n∑
i=1

πi = 1, (2.75)

where A is the TPM with the corresponding entries (2.64),

Ai,j = pd(xj ,f(xi))(1− p)n−d(xj ,f(xi)). (2.76)

Taking the derivative of both sides in (2.74) and (2.75) with respect to p yields

π′(I − A) = πA′, (2.77)
2n∑
i=1

π′i = 0, (2.78)

where A′ is the derivative of the TPM with respect to p and, using (2.76), can be written in terms

of A as

A′i,j =

(
d(xj, f(xi))− np

p(1− p)

)
Ai,j. (2.79)

π′ is easily found from the linear equations (2.77) and (2.78).

Given the derivatives in (2.71), (2.72), and (2.73), thanks to the specific form of the Gaussian
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distribution, we can derive closed-formed solutions for λ, δ, and σ2 by setting the derivatives equal

to zero. Such closed-form solutions considerably reduce the complexity of the EM algorithm

because they eliminate the iterative computations required for the algorithms like gradient descent

in every M-step. Define ρ1 and ρ2 by

ρ1 =
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

y
(d)
j (k)Π

(d,s)
i (k)

=
D∑
d=1

∑
k∈T (d)

obs

∑
j∈G(d)

k

y
(d)
j (k), (2.80)

ρ2 =
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

Π
(d,s)
i (k) =

D∑
d=1

∑
k∈T (d)

obs

∑
j∈G(d)

k

1, (2.81)

where we have used the fact that the summation of the posterior probabilities of the states is one,∑2n

i=1 Πd,s
i (k) = 1, for any d and k and s. Define ρ3 and ρ4 by

ρ3 =
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

xijΠ
(d,s)
i (k), (2.82)

ρ4 =
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

xijy
(d)
j (k)Π

(d,s)
i (k). (2.83)

Setting the derivatives in (2.71) and (2.72) equal to zero yields two linear equations for λ and δ:

ρ2λ+ ρ3δ = ρ1, ρ3λ+ ρ3δ = ρ4. (2.84)

If ρ3 6= 0, then

λ(s+1) =
ρ1 − ρ4

ρ2 − ρ3

, (2.85)

δ(s+1) =
ρ2ρ4 − ρ1ρ3

ρ2ρ3 − ρ2
3

. (2.86)

If ρ3 = 0, then ρ4 = 0, λ(s+1) = ρ1

ρ2
, but δ cannot be found. In this case, we define δ(s+1) = δ(s).
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Now define ρ5 by

ρ5 =
D∑
d=1

∑
k∈T (d)

obs

2n∑
i=1

∑
j∈G(d)

k

(
y

(d)
j (k)− λ(s+1) − δ(s+1)xij

)2

Π
(d,s)
i (k). (2.87)

Setting the derivative in (2.73) equal to zero gives the following solution for σ2:

σ2(s+1)
=
ρ5

ρ2

. (2.88)

To find a closed-form solution for p note that the derivative of Q with respect to p in (2.70)

consists of two terms. In the first term, π and π′ are not explicit functions of p, which means that

we are unable to derive a closed-form solution for p by setting the derivative equal to zero. From

simulations, we found that the second term in (2.70) plays a much more important role than the first

term, that is, has a much larger value. Hence, a good approximation results from omitting the first

term in (2.70) and setting the second to zero, which gives the following approximate closed-form

solution for p (we tested its accuracy and it can correctly estimate the real p):

p(s+1) =
ρ6

nD(m− 1)
, (2.89)

where ρ6 is defined as

ρ6 =
D∑
d=1

m−1∑
k=1

2n∑
i=1

2n∑
j=1

d(xj, f(xi))Ξ
(d,s)
i,j (k). (2.90)

Note that in deriving (2.89) we have used the fact that
∑2n

i=1

∑2n

j=1 Ξ
(d,s)
i,j (k) = 1 for any k, d, and

s, since Ξ
(d,s)
i,j (k) is the posterior probability of two consecutive states being i and j at times k and

k + 1, respectively.

• Computing the posterior probabilities of the states:

As our model is an HMM, the posterior probabilities in (2.68) and (2.69) can be efficiently

computed using the forward-backward algorithm, whose complexity is linear in m. From Bayes

rule, we know that the posterior probabilities of states such as those in (2.68) and (2.69) can be
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Figure 2.9: Factor graph of the HMM. Reprinted with permission from [2], c©2019 IEEE.

computed using the joint distribution of the states X and observation trajectories Y , which are

factored as in (2.63). A joint distribution (2.63) for an HMM can be represented by a factor graph

as in Fig. 2.9 [53]. In this figure, the circles show the state variable from time 1 to m; the factor

nodes (black) between the state nodes denote the transition probabilities between two consecutive

states; the factor nodes under the state nodes represent the likelihood of each observation given its

corresponding state. The rightmost factor node is an all-one vector and the leftmost factor node is

the initial distribution of the states, which based on our assumption is the steady-state distribution.

The message-passing is done through the graph by defining so-called forward, Γ, and backward

parameters, ∆. It can be shown that the posteriors in (2.68) and (2.69) can be derived as [53]

Π
(d,s)
i (k) =

Γ
(d,s)
i (k)∆

(d,s)
i (k)∑2n

r=1 Γ
(d,s)
r (k)∆

(d,s)
r (k)

, (2.91)

Ξ
(d,s)
i,j (k) =

Γ
(d,s)
i (k)A

(s)
i,j ∆

(d,s)
j (k + 1)Φ

(d,s)
j (k + 1)∑2n

r=1 Γ
(d,s)
r (m)

, (2.92)

where A(s)
i,j = P (Xk+1 = xj|Xk = xi, θ = θ(s)) is the transition matrix defined in (2.76), and

Φ(d,s)(k) is a 2n × 1 vector at time k, whose j-th entry is defined as Φ
(d,s)
j (k) = p(Y

(d)
k |X

(d)
k =

xj, θ = θ(s)), which can be computed using (2.65). Furthermore, Γ
(d,s)
i (k) and ∆

(d,s)
i (k) are re-
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spectively the forward and backward parameters, defined and recursively computed by

Γ
(d,s)
i (k) = p(Y

(d)
1 , · · · ,Y(d)

k ,X
(d)
k = xi|θ(s)),

Γ
(d,s)
i (1) = π

(s)
i Φ

(d,s)
i (1),

Γ
(d,s)
j (k + 1) = Φ

(d,s)
j (k + 1)

2n∑
i=1

Γ
(d,s)
i (k)A

(s)
i,j , (2.93)

and

∆
(d,s)
i (k) = p(Y

(d)
k+1, · · · ,Y

(d)
m |X

(d)
k = xi, θ(s)),

∆
(d,s)
i (m) = 1,

∆
(d,s)
i (k) =

2n∑
j=1

∆
(d,s)
j (k + 1)A

(s)
i,j Φ

(d,s)
j (k + 1), (2.94)

for any k = 1, · · · ,m− 1.

Define the vectors Γ(d,s)(k) = [Γ
(d,s)
1 (k), · · · ,Γ(d,s)

2n (k)]T and

∆(d,s)(k) = [∆
(d,s)
1 (k), · · · ,∆(d,s)

2n (k)]T . From (2.93) and (2.94), we have the following recursions

in vector-matrix form:

Γ(d,s)(1) = π(s)T ◦ Φ(d,s)(1),

Γ(d,s)(k + 1) =
[
A(s)TΓ(d,s)(k)

]
◦ Φ(d,s)(k + 1), (2.95)

and

∆(d,s)(m) = 12n ,

∆(d,s)(k) = A(s)
[
∆(d,s)(k + 1) ◦ Φ(d,s)(k + 1)

]
, (2.96)

where 12n is the all-one column vector of length 2n and ◦ denotes the Hadamard product (or

component-wise product). The superscript T denotes transpose. Now suppose that Π(d,s)(k) and

Ξ(d,s)(k) are respectively a 2n × 1 vector and 2n × 2n matrix whose entries are given in (2.91) and

51



(2.92). Then,

Π(d,s)(k) =
Γ(d,s)(k) ◦∆(d,s)(k)

‖ Γ(d,s)(k) ◦∆(d,s)(k) ‖1

, k = 1, · · · ,m, (2.97)

Ξ(d,s)(k) =

[
Γ(d,s)(k)∆(d,s)(k + 1)

T
]
◦ A(s) ◦Φ(d,s)(k + 1)

‖ Γ(d,s)(m) ‖1

, (2.98)

k = 1, · · · ,m− 1, where Φ(d,s)(k) is the 2n × 2n matrix

Φ(d,s)(k) =
[
Φ(d,s)(k), · · · ,Φ(d,s)(k)

]T
. (2.99)

In the case of missing data, if there is a time point k at which no expression of the n genes is

observed (k 6∈ Tobs), then p(Yk|Xk = xi) = 1 for any i = 1, · · · , 2n, and Φ(k) = 12n in Fig. 2.9,

as well as in all the equations (2.91)-(2.99); however, if at least one gene expression is observed at

time k (k ∈ Tobs), then p(Yk|Xk), and thus Φj(k) = p(Yk|Xk = xj), is computed from (2.65).

2.2.4.2 Learning Algorithm

In the previous subsection, we demonstrated that, given the network function, we can esti-

mate the parameters by the EM method. Let θ̂i denote the estimated parameter vector, defined

in (2.60) and derived via the EM algorithm when f = f i for i = 1, · · · ,M . The final estimates

for both the network function, f̂ , and the parameter vector, θ̂, can be determined from (2.61). Let

l(Y|f , θ) = log p(Y|f , θ) be the log-likelihood of the observed trajectories. Since all D observa-

tions are independent,

l(Y|f , θ) =
D∑
d=1

log p(Y(d)|f , θ). (2.100)

For d = 1, · · · , D, p(Y(d)|f , θ) is derived by marginalizing the joint distribution of the states and

observations over the states as

p(Y(d)|f , θ) =
∑
X (d)

p(X (d),Y(d)|f , θ), (2.101)
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where p(X (d),Y(d)|f , θ) is given by (2.63) with the factor-graph shown in Fig. 2.9. Computing

p(Y(d)|f , θ) only requires the forward parameter Γ and recursions up to time m. In fact, the desired

likelihood for the d-th trajectory is the summation of the entries of Γ(d)(m), that is,

p(Y(d)|f , θ) =‖ Γ(d)(m) ‖1, (2.102)

where Γ(d)(m) can be computed in the same way as in (2.95), assuming the parameter vector θ and

the network function f . From (2.100) and (2.102), we can write

l(Y|f , θ) =
D∑
d=1

log ‖ Γ(d)(m) ‖1 . (2.103)

Then, according to (2.61), the final estimate for the network function and parameters is given by

(f̂ , θ̂) = arg max
(f ,θ)∈{(f1,θ̂1),··· ,(fM ,θ̂M )}

l(Y|f , θ). (2.104)

We summarize the algorithm for learning the network function and model parameters in Algorithm

2.

2.2.4.3 Plug-In Bayes Classifier

Let labels 0 and 1 refer to the healthy and mutated classes, respectively, let Y0 and Y1 denote

the respective training trajectory sets, and let F0 and F1 denote the respective uncertain network

function sets for the two classes. We apply Algorithm 2 to both classes, with corresponding Y and

F, to derive the learned network functions f̂0 and f̂1, and the estimated parameters θ̂0 and θ̂1, for

the healthy and mutated classes, respectively. These are plugged into the Bayes classifier. For any

new trajectory Y = [Y1, · · · ,Ym] of n genes with any arbitrary length m and possibly missing

data, the classifier is defined by

ψD(Y) =


1, ĉ1p(Y|f̂1, θ̂1) ≥ ĉ0p(Y|f̂0, θ̂0)

0, ĉ1p(Y|f̂1, θ̂1) < ĉ0p(Y|f̂0, θ̂0)

, (2.105)
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Algorithm 2 Learning Algorithm
1: Inputs: the number of genes n, the length of trajectories m, the set of D observations

Y = {Y(1),Y(2), · · · ,Y(D)}, the set of uncertain network functions F = {f1, · · · , fM},
and a convergence threshold, τ , for the EM.

2: Outputs: f̂ and θ̂, the estimated network function and model parameters θ = [p, λ, δ, σ2]T .
3: procedure
4: for i = 1 to M do
5: • s = 0
6: • f = f i

7: • Initialize θ(0) = 0
8: • Randomly initialize θ(1)

9: while ‖ θ(s+1) − θ(s) ‖> τ do
10: • s = s+ 1
11: E-step:
12: • Compute Π(d,s)(k) for any k = 1, · · · ,m,

and d = 1, · · · , D via (2.97).
13: • Compute Ξ(d,s)(k) for any k = 1, · · · ,m− 1,

and d = 1, · · · , D via (2.98).
14: M-step:
15: • Compute ρj for j = 1, · · · , 6, via (2.80),

(2.81), (2.82), (2.83), (2.87), and (2.90).
16: • Compute λ(s+1) via (2.85).
17: • Compute δ(s+1) via (2.86).
18: • Compute σ2(s+1) via (2.88).
19: • Compute p(s+1) via (2.89).

20: • θ(s+1) =
[
p(s+1), λ(s+1), δ(s+1), σ2(s+1)

]T
21: end while
22: • θ̂i = θ(s+1)

23: end for
24: • Get f̂ and θ̂ via (2.103) and (2.104).
25: end procedure

where ĉ0 and ĉ1 are the estimated values of the prior probabilities of the healthy and mutated

classes, respectively. These can be estimated by the number of training trajectories for each class

divided by the total number of training trajectories D; however, this estimate is unreliable for

small samples [54]. Often there are substantial data regarding the proportions of healthy and

pathological phenotypes – for instance, false negative rates resulting from preliminary testing such

as mammography and needle biopsies, so that excellent estimates of ĉ0 and ĉ1 are available for
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genomic classification following prelimineary testing. We assume the equiprobable case, ĉ0 =

ĉ1 = 1
2
, which makes classification most challenging.

In the simulations we generate an equal number of training trajectories for each class, |Y0| =

|Y1| = D
2

. The likelihoods p(Y|f̂0, θ̂0) and p(Y|f̂1, θ̂1) in (2.105) can be computed, as in (2.102),

by

p(Y|f̂i, θ̂i) =‖ Γ(i)(m) ‖1, i = 0, 1, (2.106)

where Γ(i)(m) can be computed by forward computations, as in (2.95), by

Γ(i)(1) = π(i)T ◦ Φ(i)(1),

Γ(i)(k + 1) =
[
A(i)TΓ(i)(k)

]
◦ Φ(i)(k + 1), (2.107)

where π(i), A(i), and Φ(i) are computed for the class i = 0, 1, assuming f = f̂i and θ = θ̂i.

2.2.5 Classification of Averaged Steady-State Expression Data in Multiple-Cell Scenarios

In the absence of single-cell technology, when measuring expressions in a nonsynchronized

multiple-cell setting, at each time point the measured expression value of each gene is an average

over 2n different states. The underlying state model for the evolution of the genes in each cell

is the same BNp model (2.56); however, since the observations are static expression data in the

steady-state and not trajectories, we use the state model (2.56) only for calculating the steady-state

distribution π.

2.2.5.1 Observation Model

Suppose that the expression values of the genes in every individual are measured from a tissue

consisting of N cells. As mentioned previously, the variability existing in the different cells of

an individual is inter-cell variability. According to (2.59), in every cell c of an individual, the

expression values of the n genes, Y(c) = [y
(c)
1 , · · · , y(c)

n ]T , given the state X = [x1, · · · , xn]T in
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the steady-state, follow a Gaussian model:

p(Y(c)|X) ∼ N
(
λ1n + δX, σ2

icIn
)
, c = 1, · · · , N, (2.108)

where σ2
ic denotes the inter-cell variability across the different cells of an individual. In the

multiple-cell scenario we do not observe expression values of the genes in every single cell but

only observe the expression averaged over N cells, namely,

SN =

∑N
c=1 Y(c)

N
. (2.109)

We can obtain the distribution of Y(c) from (2.108) by marginalizing over the states X, which have

the steady-state distribution π. Doing so, the distribution of Y(c) for any c is

p(Y(c)) =
2n∑
i=1

p(Y(c)|X = xi)πi, (2.110)

which is a Gaussian mixture distribution with 2n components. Since the Y(c)’s are independent for

different cells and have the same mean and covariance matrix, we can use the central-limit theorem

to approximate the distribution of SN . The mean and covariance matrix of Y(c) are given by

µ = E
[
Y(c)

]
= E

[
E
[
Y(c)|X

]]
=

E [λ1n + δX] = λ1n + δ
2n∑
i=1

xiπi, (2.111)

ΣY = cov
(
Y(c)

)
= cov

(
E(Y(c)|X)

)
+ E(cov

(
Y(c)|X)

)
= cov(λ1n + δX) + E(σ2

icIn) = δ2ΣX + σ2
icIn, (2.112)
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where ΣX is the covariance matrix of the states in the steady-state,

ΣX = cov(X) = E(XXT )− E(X)E(X)T =

2n∑
i=1

xixi
T
πi −

(
2n∑
i=1

xiπi

)(
2n∑
i=1

xiπi

)T

. (2.113)

According to the central-limit theorem, when N is large (having many cells), the distribution of

SN converges to the multivariate normal

SN ∼ N
(
µ,

ΣY

N

)
, (2.114)

where µ and ΣY are given in (2.111) and (2.112).

Since SN is the averaged expression values of the genes over many cells in only one individual

and our samples come from different individuals, we should also take into account the inter-subject

variability between different individuals. As a result, in the multiple-cell scenario, the expression

values of the n genes, denoted by the vector Z = [z1, · · · , zn]T , can be modeled by

Z = SN + ε, (2.115)

where ε provides the inter-subject variability. Since in the single-cell scenario we assumed that ε ∼

N(0, σ2In), we assume the same here. Since SN and ε are multivariate Gaussian and independent

of each other, Z has a multivariate Gaussian distribution,

p(Z) ∼ N
(
µ,

ΣY

N
+ σ2In

)
. (2.116)

Usually there are many cells (largeN ) in the tissues from which the expressions are measured. N is

typically large in practice, for instance, according to [55], there are millions of cells in bulk RNA-

Seq experiments. Hence, the first part of the covariance matrix of Z, that is, ΣY

N
, has negligible
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entries, and we can well approximate the distribution of Z by

p(Z|µ, σ2) ∼ N

(
µ = λ1n + δ

2n∑
i=1

xiπi, σ
2In

)
. (2.117)

2.2.5.2 Plug-In Bayes Classifier

To use the Bayes plug-in classifier, we need to estimate the parameters using the training data,

but since the class-conditional densities in (2.117) are Gaussian and σ2 may be different in the two

classes, the Bayes plug-in classifier is quadratic discriminant analysis (QDA). Hence, we need only

estimate µ and σ2 in (2.117), not λ, δ, and π. This reduces the complexity because we skip the

cumbersome optimization problem of finding p (for estimating π), which would have been done

for each of M possible network functions f (i), for i = 1, · · · ,M , for each class. Moreover, we do

not even need to partially know the network functions in the classifier, which is beneficial when

we have no knowledge of network structures. In other words, although µ in (2.117) is a function

of λ, δ, p, and f (two last determine π), we do not need to estimate them to estimate µ, which we

can directly estimate from the observed data.

The ML estimates of µ and σ2 in (2.117) from observed data Z = [Z(1), · · · ,Z(D)] are

µ̂ =

∑D
d=1 Z(d)

D
, (2.118)

σ̂2 =

∑D
d=1 ‖ Z(d) − µ̂ ‖2

2

nD
, (2.119)

respectively. The log-likelihood (after dropping the constant parts) of any expression vector Z

from (2.117) is

l(Z|µ, σ2) = −n
2

log σ2 − ‖ Z− µ ‖2
2

2σ2
. (2.120)

Let Z0 and Z1 denote the training data sets of the healthy and mutated classes, respectively, the

total number of data points being D. Suppose µ̂i and σ̂2
i are the estimated values (using (2.118)

and (2.119)) for the class i = 0, 1 using Zi. We assume ĉ0 = ĉ1 = 1
2

and | Z0 |=| Z1 |= D
2

. The
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Bayes plug-in classifier (QDA) for Z = [z1, · · · , zn]T is

ψD(Z) =


1, l(Z|µ̂1, σ̂

2
1) ≥ l(Z|µ̂0, σ̂

2
0)

0, l(Z|µ̂1, σ̂
2
1) < l(Z|µ̂0, σ̂

2
0)

, (2.121)

where l(Z|µ̂i, σ̂2
i ) can be computed from (2.120) for each class i = 0, 1.

2.2.5.3 Classification Difficulty

We wish to quantify classification difficulty relative to attractor structure. From (2.117), the

expression values of the n genes in classes 0 and 1 are modeled as

p(Z(j)) ∼ N
(
µj, σ

2
j In
)
, j = 0, 1. (2.122)

If we assume that λ and δ are the same in the two classes, then

µj = λ1n + δ
2n∑
i=1

xiπ
(j)
i = λ1n + δXπ(j)T , j = 0, 1, (2.123)

where X = [x1, · · · ,x2n ] is the n×2n binary matrix representing the binary states, its i-th column

being the i-th binary state.

In the Gaussian settings, the means and covariance matrices affect classification error. We

focus on the distance

ξ = (µ0 − µ1)T (µ0 − µ1) =

δ2
(
π(0) − π(1)

)
XTX

(
π(0) − π(1)

)T
(2.124)

between the means because this distance is directly relatable to the attractors. If the perturba-

tion probability p is very small and each class has only one attractor cycle, then the steady-state
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distributions are accurately approximated by

π
(j)
i =

1

|Aj|
1(i ∈ Aj), j = 0, 1, i = 1, · · · , 2n, (2.125)

where Aj is the set of the attractor states of class j, 1(.) is the indicator function (equals to 1 if its

argument is true and equals to 0 otherwise), and |Aj| ∈ {1, · · · , 2n} is the attractor length for class

j [37].

For any attractor lengths we find networks having minimum (ξ = 0) and maximum distances,

where a network is identified with its attractor states because according to the preceding equation

ξ depends only on these. Letting Σ(Aj) denote the sum of the values in Aj , if |A0| = |A1| and

Σ(A0) = Σ(A1), then ξ = 0. We represent minimum ξ and maximum ξ cases by (Af0 ,A
f
1) (f for

failure) and (Ao0,Ao1) (o for optimal), respectively, where

(Af0 ,A
f
1) =

{
A0,A1 :

(
π(0) − π(1)

)
XTX

(
π(0) − π(1)

)T
= 0
}
, (2.126)

(Ao0,Ao1) = argmax
A0,A1

(
π(0) − π(1)

)
XTX

(
π(0) − π(1)

)T
. (2.127)

Letting l0 = |A0| and l1 = |A1| denote the lengths, the numbers of sets A0 and A1 are
(

2n

l0

)
and(

2n

l1

)
, respectively. Note that there are (l0− 1)! and (l1− 1)! cyclic permutations of each set, which

lead to different attarctors, but we do not consider them since they all have the same average and

thus are equivalent in the current sense. Hence, the size of the search space for solving (2.126) and

(2.127) is
(

2n

l0

) (
2n

l1

)
. In general, the solutions are not unique.

2.2.6 Simulation Results and Discussion

As this is the first work which studies supervised classification of single-cell gene expression

trajectories under the framework of Boolean networks with perturbations, there is not a similar
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trajectory-based method to compare it with. However, we compare the performance of our pro-

posed trajectory-based classifier, using single-cell gene expression trajectories as its input, with

that of a multiple-cell averaging classifier which uses bulk gene expression data, like RNA-Seq or

microarray, as its input. We have set the model parameters to do a fair comparison between these

two methods. The comparisons show a clear advantage of the first method, especially in high-noise

scenarios.

2.2.6.1 Some Specific Networks

LetA = {a1, a2, · · · , al} be the set of attractor states with the length l, in which order matters,

such that the attractor cycle is a1 → a2 → · · · → al → a1. We consider three specific cases as

examples and compare the two methods of classification, single-cell trajectories and multiple-cell

averaging. In all the cases, we assume n = 4, p = 0.001, pmiss = 0, λ = 10, and δ = 30.

Case 1: Suppose the failure case with l0 = 5 and l1 = 5. We choose A0 = {1, 6, 11, 15, 7}

and A1 = {1, 16, 15, 5, 3}. Since |A0| = |A1| and Σ(A0) = Σ(A1), ξ = 0. Hence, we expect that

averaging cannot perform well. Figure 2.10a represents the classification error of the two methods,

single-cell trajectories and multiple-cell averaging, for σ = 5 and σ = 20. It can be seen that

for any value of σ, averaging has the maximum classification error 0.5. However, the single-cell

trajectory method has the error 0 (perfect classification for all m) for σ = 5, and a decreasing error

as a function of m for σ = 20.

Case 2: Figures 2.10b, 2.10c, 2.10d, and 2.10e, which show results for optimal attractor sets

derived from (2.127), relate to l0 = l1 = 1 (single attractors), l0 = l1 = 3, l0 = l1 = 5, and

l0 = 2, l1 = 3, respectively. There are many solutions to (2.127). We only select the first solution

to show the results, the selected optimal attractor sets A0 and A1 being written at the top of each

figure. For example, in Fig. 2.10b (l0 = l1 = 1), A0 = {1} and A1 = {16}, meaning that the

attractor cycles in class 0 and class 1 are [0, 0, 0, 0]T → [0, 0, 0, 0]T and [1, 1, 1, 1]T → [1, 1, 1, 1]T ,

respectively. For the low noise levels (σ = 5), both methods yield zero classification error. For

σ = 10, the trajectory method still has zero error for every m, but averaging has nonzero error,

even though its difference with zero is slight. For σ = 20, the trajectory method has nonzero error
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for smallm, but it is still much less than the error of the averaging method. No matter the size of σ,

the error of the trajectory method will converge to 0 for sufficiently large m. In sum, the trajectory

method is more robust realtive to the noise level than the averaging method.

Case 3: The only scenario in which averaging can work better than the trajectory method is

when there are similar trajectories in the attractor cycles of the two classes. In such situations,

the trajectory method may make a mistake in classifying short trajectories, while the averaging

method may be able to classify better. For example, consider l0 = l1 = 5 with A0 = {9, 5, 3, 2, 1}

and A1 = {9, 5, 3, 2, 16}. The trajectory 9 → 5 → 3 → 2 exists in the both attractor cycles. As

a result, we expect that for short observed trajectories, the trajectory method will perform poorly.

Figure 2.10f shows the results in this case for σ = 2, 5, 20. For σ = 2, the averaging method

yields zero error but the trajectory method has nonzero error for m ≤ 4. For σ = 5, the averaging

method still has better performance than the trajectory method with m ≤ 3, but for σ = 20, the

trajectory method outperforms averaging for any m. This again shows that the averaging method

cannot work in high noise regimes, whereas the trajectory method can result in a very low error if

the observed trajectories are long enough.

2.2.6.2 Random Synthetic Networks

To evaluate performance on random synthetic networks, we randomly generate 500 Boolean

networks for each case of n = 4, 6, 8 genes and consider a maximum in-degree ofK = 2, meaning

that each gene has 1 or 2 randomly assigned predictors. If the i-th gene has in-degree Ki, its 2Ki

outputs are selected from a Bernoulli distribution with parameter pbias = 0.5. A single-bit mutation

is applied to all healthy networks to obtain the corresponding 500 mutated networks. Specifically,

we randomly pick a gene, say gene i, and randomly flip the value of one of its 2Ki outputs, 0→ 1

and 1 → 0. This mutation changes the output of 2n−Ki states in the truth table of the healthy

BN. We restrict the generated healthy and mutated BNs to have a single attractor cycle, with the

minimum length of the two attractor cycles being L. The simulations will demonstrate that L is

an important parameter in determining the sufficient trajectory length in low-noise scenarios. In

all simulations, we use the same parameter values, p, λ, δ, σ2, for both the healthy and mutated
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Figure 2.10: Classification error of single-cell trajectory method versus m. The classification error of the multiple-
cell averaging method is also included in the plots for comparison. Reprinted with permission from [2], c©2019 IEEE.
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networks: λ = 10, δ = 30, and M = 2. We use three different values for the observation noise

level: σ = 5 (low noise), σ = 10 (medium noise), and σ = 20 (high noise).

Figure 2.11, in which σ = 10, shows average classification error versus D, the total number

of training trajectories for both the healthy and mutated BNs, for different numbers of genes n,

trajectory lengthm, minimum attractor length L, gene perturbation probability p, and gene missing

probability pmiss. As expected, missing observations deteriorate classifier performance in all cases.

Average error decreases with more training trajectories and converges to a fixed value when D

becomes large enough. The value of D required for a converged error rate depends on n, m, and

pmiss. For a given network size, having larger m and lower pmiss can speed up estimation of the

network parameters, so that smaller D is required to achieve the converged error. Furthermore, for

larger networks, the required value of D increases. Note that we have assumed that we partially

know the networks, so that the search space is limited to M functions. Hence, the error curves

have fairly fast convergence realtive to D. In the absence of network knowledge, more training

data would be required to correctly learn the networks and convergence would be slower.

Figure 2.12 demonstrates the behavior of the average classification error versusm, where based

on the results in Fig. 2.11, we assume D = 40 training trajectories to achieve the converged error.

We set pmiss = 0 in Fig. 2.12. Figures 2.12a and 2.12b show the error for n = 4 gene networks

when p = 0.001 and p = 0.01, respectively, assuming different values of L = 2, 4 and σ = 5, 20.

Figures 2.12c and 2.12d present the error for n = 6 gene networks when p = 0.001 and p = 0.02,

respectively, assuming different values ofL = 4, 6 and σ = 5, 20. In all figures for every value ofm

and L, the error increases with increasing σ. Moreover, the error curves are always monotonically

decreasing in terms ofm. There is a special case in which the error gets fixed after somem. This is

when p is close to 0 and σ is small. In such conditions, the sufficientm to achieve the least possible

error is L + 1 because when p ≈ 0 the BNps tend to BNs, which are deterministic, meaning that

the observations occur only in the attractor states and circulate inside the attractor cycles. In such a

case, the maximum length of a trajectory that can help distinguish the two networks is L+1, where

L is the minimum length of the attractor cycles in the two networks. When p is considerable, there

64



20 40 60 80 100

D

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

n = 4, K = 2, p
bias

 = 0.5, L = 3, m = 4, p = 0.01,

 λ = 10, δ = 30, σ = 10

p
miss

 = 0

p
miss

 = 0.2

(a)

20 40 60 80 100

D

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

n = 6, K = 2, p
bias

 = 0.5, L =3, m = 6, p = 0.01,

 λ = 10, δ = 30, σ = 10

p
miss

 = 0

p
miss

 = 0.2

(b)

20 40 60 80 100

D

0.16

0.18

0.2

0.22

0.24

0.26

0.28

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

n = 6, K = 2, p
bias

 = 0.5, L = 3, m = 4, p = 0.01, 

λ = 10, δ = 30, σ = 10

p
miss

 = 0

p
miss

 = 0.2

(c)

20 40 60 80 100

D

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

n = 6, K = 2, p
bias

 = 0.5, L = 5, m = 6, p = 0.01,

 λ = 10, δ = 30, σ = 10

p
miss

 = 0

p
miss

 = 0.2

(d)

20 40 60 80 100

D

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

A
v
e

ra
g

e
 c

la
s
s
if
ic

a
ti
o

n
 e

rr
o

r

n = 8, K = 2, p
bias

 = 0.5, L = 3, m = 4, p = 0.01, 

λ = 10, δ = 30, σ = 10

p
miss

 = 0

p
miss

 = 0.2

(e)
Figure 2.11: Average classification error of the trajectory classifier over 500 synthetic BNs versus D with K = 2

and pbias = 0.5. Parameter values are p = 0.01, λ = 10, δ = 30, σ = 10, (a) n = 4, L = 3, m = 4, (b) n = 4,
L = 5, m = 6, (c) n = 6, L = 3, m = 4, (d) n = 6, L = 5, m = 6, (e) n = 8, L = 3, m = 4. Reprinted with
permission from [2], c©2019 IEEE.
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Figure 2.12: Average classification error of the trajectory classifier over 500 synthetic BNs versus m with K = 2

and pbias = 0.5. Parameter values are pmiss = 0, λ = 10, δ = 30, D = 40, (a) n = 4, p = 0.001, (b) n = 4,
p = 0.01, (c) n = 6, p = 0.001, (d) n = 6, p = 0.02. Reprinted with permission from [2], c©2019 IEEE.

is a nonnegligible probability of jumping states, so that longer trajectories can help. In Figs. 2.12a

and 2.12c, where p = 0.001, when σ = 5, the error curves flatten out after m = L + 1 = 3, 5, 7,

corresponding to L = 2, 4, 6, respectively. In Figs. 2.12a and 2.12c, in which observation noise is

high, σ = 20, the error curves still converge to a constant value, but the convergence is much slower

and longer trajectories are required (> L + 1). In Figs. 2.12b and 2.12d, where p = 0.01, 0.02,

respectively, the error curves are permanently decreasing with increasing m and do not converge

to a fixed value, even in the low-noise cases.

Figure 2.13 depicts the average errors versus D in multiple-cell scenarios, where there is no
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Figure 2.13: Average classification error of the multiple-cell classifier over 500 synthetic BNs versusD withK = 2

and pbias = 0.5. Parameter values are λ = 10, δ = 30, (a) n = 4, p = 0.001, (b) n = 4, p = 0.01, (c) n = 6,
p = 0.001, (d) n = 6, p = 0.02. Reprinted with permission from [2], c©2019 IEEE.

trajectory data but only averaged expression data. Figures 2.13a and 2.13b show the error curves

in 4-gene networks for p = 0.001 and p = 0.01, respectively, and different values of L = 2, 4

and σ = 5, 20. Figures 2.13c and 2.13d show similar results in 6-gene networks for p = 0.001

and p = 0.02, respectively, and different values of L = 4, 6 and σ = 5, 20. The error is higher in

high-noise cases and it decreases to converge to a fixed value. The convergence rate depends on σ.

When σ is low (high), the convergence is fast (slow).

Figure 2.14 shows average classification error versus m for different values of pmiss = 0 (no

missing), pmiss = 0.2 (low missing probability), and pmiss = 0.5 (high missing probability). For
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Figure 2.14: Average classification error of the trajectory classifier and multiple-cell classifier over 500 synthetic
BNs versus m with K = 2 and pbias = 0.5. Parameter values are λ = 10, δ = 30, D = 40, (a) n = 4, L = 4,
p = 0.001, σ = 5, (b) n = 6, L = 6, p = 0.01, σ = 10. Reprinted with permission from [2], c©2019 IEEE.

the sake of comparison, we have also included in Fig. 2.14 the error of the multiple-cell scenarios

for the same parameter values. Figure 2.14a shows the results for 4-gene networks when L = 4,

p = 0.001, σ = 5, and D = 40. In this figure, smaller pmiss always yields a lower error rate for

every value of m, but the differences decrease as m grows. The salient point of Fig. 2.14a is that

one can always get a lower error rate by using the single-cell trajectory data, even with missing

data, than by using the multiple-cell averaged data. In the case of Fig. 2.14a, the trajectory data

with pmiss = 0, 0.2, 0.5 has lower error than multiple-cell data when m ≥ 3, m ≥ 3, m ≥ 5,

respectively. We previously mentioned that when p ≈ 0 and σ is small, the error curves flatten out

after m = L + 1; Fig. 2.14a shows that that is true when there are no missing data (pmiss = 0).

With missing data, convergence is slow and longer trajectories are required to reach the converged

error. Figure 2.14b shows similar results for 6-gene networks when L = 6, p = 0.01, σ = 10, and

D = 40. Again, classification using trajectory data, even with high probability of missing data,

can considerably lower the error rate as opposed to using multiple-cell averaged data.
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2.2.6.3 Real Network: Mammalian Cell-Cycle BN

For an illustration using a real network, we use the wild-type mammalian cell-cycle BN, whose

GRN [56] is shown in Fig. 2.15. This GRN has ten genes. The regulating functions are defined

in Table 2.4 [56]. According to [56], one mutated situation is that the gene p27 is always off

and cannot be activated. As a result, we derive the healthy BN from Table 2.4 and for the mu-

tated/cancerous BN we put the value of p27 in Table 2.4 to zero, that is, f3 = 0. This means

that in the cancerous scenario the value of p27 does not obey the regulating functions and is

always zero. The gene CycD is determined by extracellular signals. As we do not know the

value of CycD, we have M = 2 candidate network functions for each of the healthy and mu-

tated networks, which are corresponding to f1 = 0 and f1 = 1 in Table 2.4. If f1 = 0, then the

healthy and mutated networks have the singleton attractor cycles A0 = {389} and A1 = {261},

respectively. If f1 = 1, both the healthy and mutated networks have the same attractor cy-

cle A0 = A1 = {516, 524, 527, 583, 613, 629, 561}. Consequently, the multiple-cell averaging

method cannot classify the two networks when f1 = 1. In the simulations, we assume that the

trajectory expression data are generated from the networks with f1 = 0 in both the healthy and

mutated networks.

Figures 2.16a and 2.16b show the classification error of the trajectories of length m = 6 with

p = 0.05 and two values of pmiss = 0, 0.2 versus D for low-noise (σ = 5) and high-noise (σ = 20)

scenarios, respectively. A higher probability of missing data deteriorates classifier performance, as

does higher observation noise σ. Convergence of the error curves is faster for lower σ. The clas-

sification error of the healthy and mutated mammalian cell-cycle networks when using averaged

expression data in the multiple-cell scenario is shown in Figs. 2.16c and 2.16d for σ = 5, 10, 20,

when p = 0.01 and p = 0.05, respectively. In Figs. 2.16c and 2.16d, the classifier based on the

multiple-cell expression data can only work well in the low-noise scenarios and is very susceptible

to observation noise. Convergence of the error curves versus D gets slower as σ increases. For a

given σ, the error of the multiple-cell classifier decreases with decreasing p, the reason being that

larger p makes the steady-state distributions of the healthy and mutated cell-cycle BNs similar to
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Figure 2.15: Mammalian cell-cycle gene regulatory network. Reprinted with permission from [2], c©2019 IEEE.

Table 2.4: Definitions of Boolean functions for the wild-type mammalian cell-cycle BN with 10 genes. Reprinted
with permission from [2], c©2019 IEEE.

Order Gene Regulating function
x1 CycD f1 = Extracellular signals
x2 Rb f2 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧

CycB)
x3 p27 f3 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧

(CycE ∧ CycA) ∧ CycD ∧ CycB)

x4 E2F f4 = (Rb ∧ CycA ∧ CycB) ∨ (p27 ∧Rb ∧ CycB)

x5 CycE f5 = (E2F ∧Rb)
x6 CycA f6 = (E2F ∧Rb∧Cdc20∧(Cdh1 ∧ UbcH10))∨(CycA∧

Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))
x7 Cdc20 f7 = CycB
x8 Cdh1 f8 = (CycA ∧ CycB) ∨ Cdc20 ∨ (p27 ∧ CycB)

x9 UbcH10 f9 = Cdh1∨(Cdh1∧UbcH10∧(Cdc20∨CycA∨CycB))

x10 CycB f10 = (Cdc20 ∧ Cdh1)

each other, so that the means of two normal distributions for the two classes get closer to each

other, leading to a larger error.

Figures 2.16e and 2.16f present the error versus m in the mammalian cell-cycle networks for
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Figure 2.16: Classification errors of the trajectory and multiple-cell classifiers in the mammalian cell-cycle BN.
The fixed parameters are n = 10, λ = 10, δ = 30. (a) Classification error of the trajectory classifier versus D. The
parameters are m = 6, p = 0.05, σ = 5, (b) Classification error of the trajectory classifier versus D. The parameters
are m = 6, p = 0.05, σ = 20, (c) Classification error of the multiple-cell classifier versus D. The parameter is
p = 0.01, (d) Classification error of the multiple-cell classifier versus D. The parameter is p = 0.05, (e) Classification
error of the trajectory and multiple-cell classifiers versus m. The parameters are D = 40, p = 0.05, σ = 5, (f)
Classification error of the trajectory and multiple-cell classifiers versus m. The parameters are D = 40, p = 0.05,
σ = 20. Reprinted with permission from [2], c©2019 IEEE.

p = 0.05, D = 40 and different values of pmiss = 0, 0.2, 0.5 when σ = 5 and σ = 20, respectively.

Similar to the synthetic networks, the error curves have a decreasing trend as m increases. In Figs.
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2.16e and 2.16f, the error of the multiple-cell classifier is shown for the same parameter values. In

the low-noise scenario of Fig. 2.16e, the error of the multiple-cell classifier is better than that of

the trajectory classifier when m is small, the extent depending on the probability of missing data in

the trajectory data; however, for longer trajectories (larger m), the error of the trajectory classifier

is less. We observe in Fig. 2.16f that the performance of the multiple-cell classifier is very bad in

the high-noise scenario, the error of the multiple-cell classifier being much greater than that of the

trajectory classifier for every value of m and even for high pmiss.

2.2.7 Conclusion

This section studied classification of gene-expression trajectories coming from two classes,

healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the

dynamics of each class at the state level, meaning that each class has its own BNp, which we par-

tially know based on gene pathways. We employed a Gaussian model at the observation level to

show the expression values of the genes given the hidden states at each time point. We used the

expectation maximization (EM) methodology to learn the BNps and the unknown model param-

eters, derived closed-form updates for the parameters, and proposed a learning algorithm. After

learning, a plug-in Bayes classifier was used to classify the unlabeled trajectories. The effect of

missing data was also considered.

From the biological perspective, measuring gene expressions at different times yields trajec-

tories only when the measurements come from a single cell. In multiple-cell scenarios, the ex-

pression values of the genes are averages over many cells with possibly different states. Using the

central-limit theorem, we proposed another model for expression data in multiple-cell scenarios.

Using simulations, it was demonstrated that single-cell trajectory data can outperform multiple-cell

average expression data in terms of the classification error, especially in high-noise situations.
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2.3 Intrinsically Robust Bayesian Classification of Gene Expression Trajectories

2.3.1 Overview

In this section we assume a partially known Gaussian observation model belonging to an un-

certainty class of models. We derive the intrinsically Bayesian robust classifier to discriminate

between wild-type and mutated networks based on expression trajectories. The classifier mini-

mizes the expected error across the uncertainty class relative to the prior distribution. We test it

using a mammalian cell-cycle model, discriminating between the normal network and one in which

gene p27 is mutated, thereby producing a cancerous phenotype. Tests examine all model aspects,

including trajectory length, perturbation probability, and the hyperparameters governing the prior

distribution over the uncertainty class.

2.3.2 Introduction

Genes have interactions with each other, which can determine how they are behaving over time

and define the dynamics of gene regulatory networks (GRNs). One way of showing the dynamics

of GRNs over discrete time points is Boolean networks with perturbation (BNp) [33]. A BNp is a

Markov chain, in which the state of a gene (0 for off and 1 for on) at the current time is a function

of the states of its predictor genes at the previous time plus a small random Boolean noise.

Suppose we have single-cell measurements sampled with a sufficient rate to detect regulatory

timing. In effect, this would mean that classification would be done on data reflecting an underlying

gene regulatory network. In section 2.1 we proposed a classifier to classify the state trajectories of

the two classes: wild-type and mutated, each having its own BNp. We derived the Bayes classifier

and computed the Bayes error. We analyzed the effects of the length of the trajectories, perturbation

probability, and different mutations on the Bayes error.

In section 2.2 we assumed an observation model on the state dynamics of the BNps, from which

the expression values of the genes are obtained. As the parameters of the model were all unknown

and the network functions were partially known, we proposed an expectation-maximization (EM)-

based algorithm to estimate these parameters and functions, and then plugged them into the Bayes
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classifier. In 2.2 we assumed that the expression trajectory data come from single-cell measure-

ments and compared that with a multiple-cell scenario, in which instead of trajectories we have the

averaged expressions of all genes over all cells, which translates to an average over all states.

In this section, we extend the single-cell trajectory classification to the Bayesian framework.

We propose the intrinsically Bayesian robust (IBR) classifier for the trajectorires [3]. The IBR

classifier is a specific type of the obtimal Bayesian classifier (OBC), first introduced in [57, 58]

for the classification of static data. In fact, the difference between the OBC and IBR classifiers

is that in the OBC the expectation of the class-conditional densities is taken over the posteriors

of the parameters to obtain the effective class-conditional densities, whereas in the IBR classifier

the expectation is taken over the priors. The IBR/OBC concept has been applied to linear and

morphological filtering [59, 60], and IBR Kalman filtering [61]. Regarding the prior distributions,

prior construction methods using the pathway knowledge have been studied in the literature, such

as [62, 63].

Here we apply the IBR classifier to the classification of trajectories. As opposed to section 2.2,

where we estimated the parameters, here we assume that the parameters belong to an uncertainty

class governed by a prior distribution. We assume that there are two classes: wild-type (S = 0) and

mutated (S = 1). We introduce a Bayesian version of the partially observed Boolean dynamical

system (POBDS), proposed in [41], as the observation model. We use a beta prior distribution for

the prior probability of the class S = 0 and also for the gene perturbation probability. Since the

observation model given the states is Gaussian, we employ the normal-gamma distribution as the

prior distribution of the mean and precision (inverse of variance) of the Gaussian model.

In the simulation part, we employ a mammalian cell-cycle gene regulatory network [56] con-

sisting of 10 genes as the BNp for the class S = 0 and its mutated version as the BNp for the class

S = 1. We analyze the effects of all the hyperparameters of the model and the length of the ob-

served trajectories on the classification error. The proposed classifier is computationally efficient

because we use the sum-product method to reduce the complexity tom×2n, wherem is the length

of the observed trajectory and n is the number of genes in the network. Being linearly dependent
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on time points, m, makes the classifier very fast even for longer trajectories.

2.3.3 Methods

In a Boolean network (BN) for n genes, each gene value xi ∈ {0, 1}, for i = 1, · · · , n, at

time k + 1 is determined by the values of some predictor genes at time k via a Boolean function

fi : {0, 1}n → {0, 1}. In practice, fi is a function of a small number of genes, Ki, called the in-

degree of the gene xi in the network. The in-degree of the network is K = maxi=1,··· ,nKi. A gene

network can be represented as a graph with vertices representing genes and edges representing

regulations. There is a state diagram of 2n states corresponding to the truth table of the BN,

representing the dynamics of the network. Given an initial state, a BN will eventually reach a

set of states, called an attractor cycle, through which it will cycle endlessly. Each initial state

corresponds to a unique attractor cycle, and the set of initial states leading to a specific attractor

cycle is known as the basin of attraction (BOA) of the attractor cycle.

2.3.3.1 State Model

We allow stochasticity in our state model by using Boolean networks with perturbation (BNps)

instead of deterministic BNs. For BNps, perturbation is introduced with a probability pk by which

the state of a gene in the network can be randomly flipped at time k. We assume that there is an

independent identically distributed (i.i.d.) random perturbation vector at each time k, denoted by

nk ∈ {0, 1}n, such that the i-th gene flips at time k if the i-th component of nk is equal to 1.

Therefore, the dynamical model can be expressed as

Xk+1 = f(Xk)⊕ nk+1, k = 0, 1, 2, · · · , (2.128)

where Xk = [x1(k), x2(k), · · · , xn(k)]T is a binary state vector, called a gene activity profile

(GAP), at time k, in which xi(k) indicates the expression level of the i-th gene at time k (either

0 or 1); f = [f1, f2, · · · , fn]T : {0, 1}n → {0, 1}n is the vector of the network functions, in

which fi shows the expression level of the i-th gene at time k + 1 when the system lies in the

state Xk at time k; nk = [n1(k), n2(k), · · · , nn(k)]T is the perturbation vector at time k, in which
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n1(k), n2(k), · · · , nn(k) are i.i.d. Bernoulli random variables for every k with the parameter pk =

P (ni(k) = 1) for i = 1, · · · , n; and ⊕ is component-wise modulo 2 addition.

The existence of perturbation makes the corresponding Markov chain of a BNp irreducible.

Hence, the network possesses a steady-state distribution π describing its long-run behavior. If pk is

sufficiently small, π will reflect the attractor structure within the original network. We can derive

the transition probability matrix (TPM) if we know the truth table and the perturbation probability

of a BNp. As a result, the steady-state distribution π can be computed as well.

• Prior for state parameter: We assume that we know the underlying Boolean networks for

both the wild-type and mutated classes, and the only uncertain parameter at the state level is the

perturbation probability pk. Since 0 < pk < 1, we can employ the beta prior for pk, for all

k = 1, 2, · · · , as

g(pk) ∼ Beta(a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1
k (1− pk)b−1, (2.129)

where a and b are known parameters. Since in reality pk is close to zero, we can choose a and b in

such a way that this fact is satisfied. To this end, we can use the mean and variance of pk:

E[pk] =
a

a+ b
, Var[pk] =

ab

(a+ b)2(a+ b+ 1)
. (2.130)

2.3.3.2 Observation Model

We define a Bayesian partially-observed Boolean dynamical system (BPOBDS) as the model

for the gene expression data. In this model, we assume that the gene expressions come from

Gaussian distributions whose parameters are governed by prior distributions whose parameters

(the hyperparameters of the observations) are a function of the hidden Boolean states. If yj(k) is

the expression value of the j-th gene at time k, then the observation model is

p (yj(k)|θj(k), λj(k)) ∼ N (θj(k), λj(k)−1), (2.131)
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for j = 1, 2, · · · , n and k = 1, 2, · · · , where θj(k) and λj(k) denote the mean and precision,

respectively, of the Gaussian distribution.

• Priors for observation parameters:

We employ the well-known normal-gamma prior distribution for θj(k) and λj(k):

p(λj(k)) ∼ Gamma(α0, β0),

p(θj(k)|λj(k), xj(k)) ∼ N
(
µj(k), (κ0λj(k))−1

)
,

where µj(k) = µ0 + δ0xj(k), (2.132)

where α0, β0, κ0, µ0, and δ0 are known positive hyperparameters, and xj(k) is the hidden Boolean

state of gene j at time k. The intuition behind the prior (2.132) is that when gene j at time k is on

or off, that is, xj(k) = 1 or 0, the hyper-mean of the expression for that gene is µj(k) = µ0 + δ0

or µj(k) = µ0, respectively, at time k. In (2.132), µ0 is the baseline expression level and δ0 is the

expression coefficient. The hyperparameters α0, β0, and κ0 determine the level of uncertainty, by

which we can control the variance of the outputs. We assume the same values of hyperparameters

for all genes at all times.

2.3.3.3 IBR Classifier

If one knows the feature-label distribution, then the error of any classifier can be found and an

optimal (Bayes) classifier minimizes classifier error. If the feature-label distribution is unknown

but belongs to an uncertainty class Θ of feature-label distributions, then we desire a classifier to

minimize the expected error over the uncertainty class. Given a classifier ψ, from the perspective

of mean-square error (MSE), the best error estimate minimizes the MSE between its true error

(a function of parameter θ) and an error estimate. This Bayesian minimum-mean-square-error

(MMSE) estimate is given by the expected true error, ε̂(ψ) = Eθ[ε(ψ, θ)], where ε(ψ, θ) is the

error of ψ on the feature-label distribution parameterized by θ and the expectation is taken relative

to the prior distribution π(θ) [64].

An IBR classifier minimizes the Bayesian MMSE estimate. If ψ (x) = 0 if x ∈ R0 and
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ψ (x) = 1 if x ∈ R1, where x is a multidimensional vector of data, and R0 and R1 partition the

sample space, then [57]

ε̂ (ψ) = Eπ[c]

∫
R1

fΘ (x|0) dx + (1− Eπ[c])

∫
R0

fΘ (x|1) dx,

where

fΘ (x|y) =

∫
Θy

fθy (x|y)π (θy) dθy

is the effective class-conditional density for class y, Θy being the space for θy, fθy (x|y) is the

class-conditional density, and c is the prior probability of the class 0. The IBR classifier is given

by [57]

ψIBR (x) =


0 if Eπ[c]fΘ (x|0) ≥

(1− Eπ[c])fΘ (x|1)

1 otherwise

. (2.133)

2.3.3.4 Trajectory-based IBR Classifier

Let Θs = [p2:m, θ1:n(1 : m), λ1:n(1 : m)] denote the parameters of the class S = s, for

s = 0, 1, where p2:m means the parameters p2, p3, · · · , pm, and similarly for θ1:n(1 : m) and

λ1:n(1 : m). Furthermore, let fs denote the Boolean network function of the class S = s and

X = [X1,X2, · · · ,Xm] denote the Boolean state trajectory at m consecutive times points at which

Y has been observed. The n × 1 Boolean vector Xk = [x1(k), x2(k), · · · , xn(k)]T has the states

of the n genes at time k, which are hidden and not observed.

Suppose that we obtain the expressions of n genes at m consecutive time points. Let Yk =

[y1(k), · · · , yn(k)]T denote the n×1 expression vector of n genes at time k, andY = [Y1, · · · ,Ym]

denote a time trajectory of length m, containing the expression vectors at the m consecutive times.

The problem is to optimally classify this observed trajectory Y to the class 0 (wild-type) or class 1

(mutated). Let c and 1−c be the prior probabilities of the class S = 0 and class S = 1, respectively.
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Since we are uncertain about c, we use a beta prior

g(c) ∼ Beta(ac, bc) =
Γ(ac + bc)

Γ(ac)Γ(bc)
cac−1(1− c)bc−1, (2.134)

with mean

E[c] =
ac

ac + bc
, (2.135)

where ac and bc are known parameters.

According to (2.133), the IBR classifier for the trajectories is

ψIBR(Y) =


0 if E[c]p(Y|S = 0) ≥

(1− E[c])p(Y|S = 1)

1 otherwise

, (2.136)

where p(Y|S = s) is the effective class-conditional density of the trajectory Y in the class S = s

for s = 0, 1.

• Effective Class-Conditional Densities of Trajectories: The joint distribution of Y , X , and Θs

given the class S = s can be factorized as

p(Y ,X ,Θs|S = s) = g(p2:m)P (X|p2:m, S = s)

×p (Y|θ1:n(1 : m), λ1:n(1 : m))

×p (θ1:n(1 : m), λ1:n(1 : m)|X ) . (2.137)

In deriving (2.137), it is assumed that the state parameters {p2:m} are independent of the observa-

tion parameters {θ1:n(1 : m), λ1:n(1 : m)}. Due to the independence assumption in the priors,

g(p2:m) =
m−1∏
k=1

g(pk+1) (2.138)

=
m−1∏
k=1

Γ(a+ b)

Γ(a)Γ(b)
pa−1
k+1(1− pk+1)b−1,
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p (θ1:n(1 : m), λ1:n(1 : m)|X ) (2.139)

=
m∏
k=1

n∏
j=1

p(θj(k)|λj(k), xj(k))p(λj(k))

=
m∏
k=1

n∏
j=1

1√
2π(κ0λj(k))−1

βα0
0

Γ(α0)

× exp

(
−(θj(k)− µj(k))2

2(κ0λj(k))−1

)
λj(k)α0−1 exp(−β0λj(k)).

If we assume that the conditional expressions, given the parameters, of the n genes atm time points

are independent, the likelihood of Y given the parameters in (2.137) can be written as

p (Y|θ1:n(1 : m), λ1:n(1 : m)) (2.140)

=
m∏
k=1

n∏
j=1

p (yj(k)|θj(k), λj(k))

=
m∏
k=1

n∏
j=1

1√
2πλj(k)−1

exp

(
−(yj(k)− θj(k))2

2λj(k)−1

)
.

We should note that the independency assumption in (2.140) is only for the observations, whereas

the genes have interactions at the state level, following the underlying Boolean network, so that

they cannot be considered independent. Due to the Markov property in (2.128), p (X|p2:m, S = s)

in (2.137) can be factored as

P (X|p2:m, S = s) = (2.141)

P (X1|S = s)
m−1∏
k=1

P (Xk+1|Xk, pk+1, S = s),

where P (Xk+1|Xk, pk+1, S = s) is the probability of transitioning from state Xk at time k to state

Xk+1 at time k + 1, given the perturbation probability pk+1, in the class S = s, and P (X1|S = s)

is the probability of the first state X1 in the class S = s. Let xi denote the n× 1 Boolean vector of

the state i, for i = 1, 2, · · · , 2n. Given the perturbation probability pk+1, the conditional transition

probability matrix (TPM) at time k+1, which is a 2n×2n matrix, in the class S = s can be derived
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from (2.128) as

A
(s)
i,j (k + 1) = P (Xk+1 = xj|Xk = xi, pk+1, S = s)

= p
d(xj ,fs(xi))
k+1 (1− pk+1)n−d(xj ,fs(xi)), (2.142)

where d(xj, fs(x
i)) is the Hamming distance between the two Boolean vectors xj and fs(x

i).

For obtaining p(Y|S = s), we need to integrate out the joint distribution p(Y ,X ,Θs|S = s) in

(2.137) with respect to Θs and X :

p(Y|S = s) =
∑
X

∫
Θs

p(Y ,X ,Θs|S = s) (2.143)

=
∑
X

{
P (X1|S = s)

m−1∏
k=1

∫
pk+1

g(pk+1)p
d(Xk+1,fs(Xk))
k+1

×(1− pk+1)n−d(Xk+1,fs(Xk))dpk+1

×
m∏
k=1

n∏
j=1

∫
θj(k)

∫
λj(k)

p(yj(k)|θj(k), λj(k))

×p(θj(k)|λj(k), xj(k)) p(λj(k)) dθj(k)dλj(k)} .

Fortunately, as the priors are conjugate, we can analytically solve the integrals in (2.143). We will

use the following lemmas to do so.

Lemma 1. Let P = (0 1) be the domain of pk+1. The following equation holds:

K1 ,
∫

P

g(pk+1)p
d(Xk+1,fs(Xk))
k+1 (2.144)

×(1− pk+1)n−d(Xk+1,fs(Xk))dpk+1

=
Γ(d(Xk+1, fs(Xk)) + a)Γ(n− d(Xk+1, fs(Xk)) + b)

Γ(a)Γ(b)Γ(a+ b+ n)Γ(a+ b)−1
.

Proof. See Appendix A.1.

We assume that the observations Y occur in the steady state. As a result, in (2.143), P (X1|S =

s) is the steady-state probability of the state X1 in the class S = s, for s = 0, 1. The following
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lemma gives the steady-state distribution.

Lemma 2. Let π(s)
i = P (X1 = xi|S = s) denote the steady-state probability of the i-th state in

the class S = s, and π(s) = [π
(s)
1 , · · · , π(s)

2n ] be the 1 × 2n vector of the steady-state distribution.

Then π(s) can be calculated from

π(s) = π(s)M(s),

2n∑
i=1

π
(s)
i = 1, (2.145)

where M(s) is the transition probability matrix of the class S = s with the entries

M
(s)
i,j =

Γ(d(xj, fs(x
i)) + a)Γ(n− d(xj, fs(x

i)) + b)

Γ(a)Γ(b)Γ(a+ b+ n)Γ(a+ b)−1
. (2.146)

Proof. See Appendix A.2.

Lemma 3. Let Ω = (−∞ ∞) and Λ = (0∞) be the domains of θj(k) and λj(k), respectively,

for j = 1, · · · , n, and k = 1, · · · ,m. The following equation holds:

K2 ,
∫

Ω

∫
Λ

p(yj(k)|θj(k), λj(k))

×p(θj(k)|λj(k), xj(k)) p(λj(k)) dθj(k)dλj(k)

=
1

(2π)
1
2

(
κ0

κ1

) 1
2 Γ(α1)

Γ(α0)

βα0
0

βα1
1

, (2.147)

where

κ1 = κ0 + 1,

α1 = α0 +
1

2
,

β1 = β0 +
κ0(yj(k)− µ0 − δ0xj(k))2

2(κ0 + 1)
. (2.148)

Proof. See Appendix A.3.

• Summing out X :
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Using (2.143), (1), (2.146), and (2.147), we have

p(Y|S = s) =
∑
X1

· · ·
∑
Xm

{
π

(s)
X1

m−1∏
k=1

Γ(d(Xk+1, fs(Xk)) + a)Γ(n− d(Xk+1, fs(Xk)) + b)

Γ(a)Γ(b)Γ(a+ b+ n)Γ(a+ b)−1

×
m∏
k=1

n∏
j=1

1

(2π)
1
2

(
κ0

κ1

) 1
2 Γ(α1)

Γ(α0)

βα0
0

βα1
1

}
. (2.149)

We use the sum-product algorithm [53] to efficiently compute the summation in (2.149). Define

the 2n × 1 vector Φ(k) by

Φi(k) =

(
βα0

0

(2π)
1
2

(
κ0

κ0 + 1

) 1
2 Γ(α0 + 1

2
)

Γ(α0)

)n

×
n∏
j=1

[
β0 +

κ0(yj(k)− µ0 − δ0x
i
j)

2

2(κ0 + 1)

]−(α0+ 1
2

)

, (2.150)

for i = 1, · · · , 2n, where xij is the j-th entry of the Boolean state xi. We define an auxiliary 2n× 1

vector Π(s)(k) at the time k, for k = 1, · · · ,m, which is initialized and updated as follows:

Π(s)(1) = (π(s))T ◦ Φ(1),

Π(s)(k + 1) = [M(s)TΠ(s)(k)] ◦ Φ(k + 1), (2.151)

for k = 1, · · · ,m − 1, where T denotes the transpose, and ◦ is the Hadamard product. Once we

have calculated Π(s)(m), the summation of (2.149) is equal to the l1 norm ‖ Π(s)(m) ‖1, which is

the summation of the all 2n entries of Π(s)(m). Therefore, (2.149) can be written as

p(Y|S = s) =‖ Π(s)(m) ‖1 . (2.152)
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2.3.4 Results and Discussion

In this section, we consider a mammalian cell-cycle gene regulatory network [56], depicted

in Figure 2.15, for evaluating our proposed trajectory-based IBR classifier. This GRN consists

of n = 10 genes, whose interactions are shown in Figure 2.15. The Boolean functions of the

corresponding Boolean network for this GRN are given in Table 2.4 [56]. We define class S = 0

as the wild-type class, whose network function f0 is in Table 2.4. According to [56], one mutated

case which leads to cancer is when the gene p27 in the network is shut down and cannot be activated

by its regulating genes, that is, f3 = 0. Therefore, we define class S = 1 as the mutated class with

the network function f1, which is the same as Table 2.4 with f3 = 0. We analyze the effects of

the hyperparameters and m on the classification error in Figures 2.17-2.24. In the simulations, we

have set ac = bc = 10 and µ0 = 10. Therefore, the prior probability c of the class S = 0 will have

the mean value E[c] = 0.5.

Figure 2.17 shows the classification error versus m for a = 1, 3, 5, when the values of the

other hyperparameters are b = 100, α0 = 100, β0 = 104, δ0 = 40, and κ0 = 100. We see

that the classification error decreases by increasing m and converges to zero. This means that for

long enough trajectories we can have perfect classification. The value of the hyperparameter a

determines the amount of uncertainty for the gene perturbation probability pk at time k. From a

biological perspective, we know that pk should be small. As a result, we have chosen b = 100, and

a = 1, 3, 5, leading to the mean values of pk, respectively, as E[pk] = a
a+b
≈ 0.01, 0.03, 0.05. For

a given b, the bigger value of a allows a wider range of pk, which results in higher classification

error.

Figure 2.18 represents the classification error versus m for different values of α0 and β0, when

a = 1, b = 100, δ0 = 40, and κ = 100. As the precision (inverse of variance) has a Gamma(α0, β0)

distribution, its mean and variance are equal to E[λ] = α0

β0
and Var[λ] = α0

β2
0

= E[λ]
β0

. Figure 2.18

shows the error curves for the two cases α0

β0
= 10−3 and 2 × 10−3, each having a different value

of β0, leading to a different variance of λ. As such, we can see the effects of both the mean and

variance of the precision λ. Whenever α0

β0
increases, there is lower variance in the outputs, which
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Figure 2.17: Classifier error versus m in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.
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Figure 2.18: Classifier error versus m in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.

results in lower errors. We also notice from Figure 2.18 that for a given value of α0

β0
, increasing β0

decreases the error, the reason being that increased β0 yields lower variance for the precision.

Figure 2.19 plots the error versus α0 for a = 1, 3, 5, when m = 5, b = 100, δ0 = 40, κ0 = 100,

and β0 = 105. For all values of a, the classification error is a decreasing function of α0. Similarly,

Figure 2.20 gives the error versus β0 for a = 1, 3, 5, when α0 = 10 and the other hyperparameters
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Figure 2.19: Classifier error versus α0 in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.
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Figure 2.20: Classifier error versus β0 in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.

are the same as in Figure 2.19. Figure 2.20 shows an increasing trend of classification error as β0

grows.

Figure 2.21 shows the error as a function of a, when m = 5, b = 100, δ0 = 40, κ0 = 100,

α0 = 100, and β0 = 105. When a grows, the uncertainty of the perturbation probability grows as

well. The error is an increasing function of a. Similarly, Figure 2.22 is for error versus b, when
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Figure 2.21: Classifier error versus a in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.

a = 1, and the others are the same as in Figure 2.21. In Figure 2.22 the classification error is

decreasing as b increases.

Figure 2.23 illustrates the error versus κ0, for m = 5, a = 1, b = 100, δ0 = 40, α0 = 100,

and β0 = 105. From (2.132), the hyperparameter κ0 controls the variance of the mean parameters

θj(k). When κ0 increases, the uncertainty of θj(k) is reduced and its density peaks at µ0 and µ0+δ0

for the unexpressed and expressed states, respectively. Consequently, we expect better error rates

for higher κ0. Accordingly, in Figure 2.23 the classification error is a decreasing function of κ0.

Figure 2.24 illustrates the error versus δ0, the expression coefficient, form = 5, a = 1, b = 100,

κ0 = 100, α0 = 100, and β0 = 105. Having larger δ0 means that the mean values of data for each

gene in the unexpressed and expressed cases are well separated, which leads to lower classification

error. As expected, in Figure 2.24 the error is decreasing as δ0 gets larger.

2.3.5 Conclusion

In this section, we proposed a trajectory-based intrinsically Bayesian robust classifier for clas-

sification of single-cell gene-expression trajectories. We assumed that the expressions of the n

genes, whose interactions are known in terms of a Boolean network, are observed in m consecu-
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Figure 2.22: Classifier error versus b in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.
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Figure 2.23: Classifier error versus κ0 in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.

tive time points, for both the wild-type class (S = 0) and mutated class (S = 1). As the parameters

have uncertainty, we assigned priors for them. We assumed a beta distribution as a prior for both

the probability of the class S = 0 and the gene perturbation probabilities at each time. We assumed

a normal-gamma distribution for the mean and precision of the expressions at each time and for

each gene, given the underlying states. As such, we derived closed-form solutions for the effective
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Figure 2.24: Classifier error versus δ0 in cell-cycle network. Reprinted with permission from [3], c©2018 BMC.

class-conditional densities of the trajectories in each class, by which we defined the IBR classi-

fier. The performance of the IBR classifier was evaluated in a cell-cycle gene regulatory network

with 10 genes, for which we know the Boolean networks of the two classes. We also analyzed the

effects of m and all the hyperparameters on the classification error.
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3. BAYESIAN TRANSFER LEARNING AND REGRESSION∗

3.1 Optimal Bayesian Transfer Learning

3.1.1 Overview

Transfer learning has recently attracted significant research attention, as it simultaneously

learns from different source domains, which have plenty of labeled data, and transfers the rele-

vant knowledge to the target domain with limited labeled data to improve the prediction perfor-

mance. We propose a Bayesian transfer learning framework, in the homogeneous transfer learning

scenario, where the source and target domains are related through the joint prior density of the

model parameters. The modeling of joint prior densities enables better understanding of the trans-

ferability between domains. We define a joint Wishart distribution for the precision matrices of

the Gaussian feature-label distributions in the source and target domains to act like a bridge that

transfers the useful information of the source domain to help classification in the target domain by

improving the target posteriors. Using several theorems from multivariate statistics, the posteriors

and posterior predictive densities are derived in closed forms with hypergeometric functions of

matrix argument, leading to our novel closed-form and fast Optimal Bayesian Transfer Learning

(OBTL) classifier. Experimental results on both synthetic and real-world benchmark data confirm

the superb performance of the OBTL compared to the other state-of-the-art transfer learning and

domain adaptation methods.

3.1.2 Introduction

A basic assumption of traditional machine learning is that data in the training and test sets are

independently sampled in one domain with the identical underlying distribution. However, with

∗Reprinted with permission from “Optimal Bayesian Transfer Regression” by A. Karbalayghareh, X. Qian, and E.
Dougherty 2018. IEEE Signal Processing Letters 25, no. 11, 1655-1659, Copyright 2018 IEEE.

∗Reprinted with permission from “Optimal Bayesian Transfer Learning for Count Data” by A. Karbalayghareh,
X. Qian, and E. Dougherty 2019. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Copyright
2019 IEEE.

∗Reprinted with permission from “Optimal Bayesian Transfer Learning” by A. Karbalayghareh, X. Qian, and E.
Dougherty 2018. IEEE Transactions on Signal Processing 66, no. 14, 3724-3739, Copyright 2018 IEEE.
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the growing amount of heterogeneity in modern data, the assumption of having only one domain

may not be reasonable. Transfer learning (TL) is a learning strategy that enables us to learn from

a source domain with plenty of labeled data as well as a target domain with no or very few labeled

data in order to design a better classifier in the target domain than the ones trained by target-only

data for its generalization performance. This can reduce the effort of collecting labeled data for the

target domain, which might be very costly, if not impossible. Due to its importance, there has been

ongoing research on the topic of transfer learning and many surveys in the recent years covering

transfer learning and domain adaptation methods from different perspectives [65-69].

If we train a model in one domain and directly apply it in another, the trained model may not

generalize well, but if the domains are related, appropriate transfer learning and domain adaptation

methods can borrow information from all the data across the domains to develop better general-

izable models in the target domain. Transfer learning in medical genomics is desirable, since the

number of labeled data samples is often very limited due to the difficulty of having disease sam-

ples and the prohibitive costs of human clinical trials. However, it is relatively easier to obtain

gene-expression data for cell lines or other model species like mice or dogs. If these different life

systems share the same underlying disease cellular mechanisms, we may utilize data in cell lines or

model species as our source domain to develop transfer learning methods for more accurate human

disease prognosis in the target domain [70, 71].

3.1.2.1 Related Works

Domain adaptation (DA) is a specific case of transfer learning where the source and target do-

mains have the same classes or categories [66,67,69]. DA methods either adapt the model learned

in the source domain to be applied in the target domain or adapt the source data so that the distribu-

tion can be close to the one of the target data. Depending on the availability of labeled target data,

the DA methods are categorized as unsupervised and semi-supervised algorithms. Unsupervised

DA problems applies to the cases where there are no labeled target data and the algorithm uses

only unlabeled data in the target domain along with source labeled data [72]. Semi-supervised

DA methods use both the unlabeled and a few labeled target data to learn a classifier in the target
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domain with the help of source labeled data [9, 73-75].

Depending on whether the source and target domains have the same feature space with the same

feature dimension, there are homogeneous and heterogeneous DA methods. The first direction in

homogeneous DA is instance re-weighting, for which the most popular measure to re-weight the

data is Maximum Mean Discrepancy (MMD) [76] between the two domains. Transfer Adaptive

Boosting (TrAdaBoost) [77] is another method that adaptively sets the weights for the source and

target samples during each iteration based on the relevance of source and target data to help train

the target classifier. Another direction is model or parameter adaptation. There are several efforts

to adapt the SVM classifier designed in the source domain for the target domain, for example,

based on residual error [78, 79]. Feature augmentation methods, such as Geodesic Flow Sampling

(GFS) and Geodesic Flow Kernel (GFK) [72], derive intermediate subspaces using Geodesic flows,

which interpolate between the source and target domains. Finding an invariant latent domain in

which the distance between the empirical distributions of the source and target data is minimized is

another direction to tackle the problem of domain adaptation, such as Invariant Latent Space (ILS)

in [8]. Authors in [8] proposed to learn an invariant latent Hilbert space to address both the unsu-

pervised and semi-supervised DA problems, where a notion of domain variance is simultaneously

minimized while maximizing a measure of discriminatory power using Riemannian optimization

techniques. Max-Margin Domain Transform (MMDT) [9] is a semi-supervised feature transfor-

mation DA method which uses a cost function based on the misclassification loss and jointly opti-

mizes both the transformation and classifier parameters. Another domain-invariant representation

method [80] matches the distributions in the source and target domains via a regularized optimal

transportation model. Heterogeneous Feature Augmentation (HFA) [73] is a heterogeneous DA

method which typically embeds the source and target data into a common latent space prior to data

augmentation.

Domain adaption has been recently studied in deep learning frameworks like deep adaptation

network (DAN) [81], residual transfer networks (RTN) [82], and models based on generative ad-

versarial networks (GAN) such as domain adversarial neural network (DaNN) [83] and coupled
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GAN (CoGAN) [84]. Although deep DA methods have shown promising results, they require a

fairly large amount of labeled data.

3.1.2.2 Main Contributions

This section treats homogeneous transfer learning and domain adaptation from Bayesian per-

spectives, a key aim being better theoretical understanding when data in the source domain are

transferrable to help learning in the target domain. When learning complex systems with limited

data, Bayesian learning can integrate prior knowledge to compensate for the generalization per-

formance loss due to the lack of data. Rooted in Optimal Bayesian Classifiers (OBC) [57, 58],

which gives the classifiers having Bayesian minimum mean squared error (MMSE) over uncer-

tainty classes of feature-label distributions, we propose a Bayesian transfer learning framework and

the corresponding Optimal Bayesian Transfer Learning (OBTL) classifier to formulate the OBC in

the target domain by taking advantage of both the available data and the joint prior knowledge in

source and target domains. In this Bayesian learning framework, transfer learning from the source

to target domain is through a joint prior probability density function for the model parameters of

the feature-label distributions of the two domains. By explicitly modeling the dependency of the

model parameters of the feature-label distribution, the posterior of the target model parameters can

be updated via the joint prior probability distribution function in conjunction with the source and

target data. Based on that, we derive the effective class-conditional densities of the target domain,

by which the OBTL classifier is constructed.

Our problem definition is the same as the aforementioned domain adaptation methods, where

there are plenty of labeled source data and few labeled target data. The source and target data

follow different multivariate Gaussian distributions with arbitrary mean vectors and precision (in-

verse of covariance) matrices. For the OBTL, we define a joint Gaussian-Wishart prior distribution,

where the two precision matrices in the two domains are jointly connected. This joint prior distri-

bution for the two precision matrices of the two domains acts like a bridge through which the useful

knowledge of the source domain can be transferred to the target domain, making the posterior of

the target parameters tighter with less uncertainty.
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With such a Bayesian transfer learning framework and several theorems from multivariate

statistics, we define an appropriate joint prior for the precision matrices using hypergeometric

functions of matrix argument, whose marginal distributions are Wishart as well. The corresponding

closed-form posterior distributions for the target model parameters are derived by integrating out

all the source model parameters. Having closed-form posteriors facilitates closed-form effective

class-conditional densities. Hence, the OBTL classifier can be derived based on the corresponding

hypergeometric functions and does not need iterative and costly techniques like MCMC sampling.

Although the OBTL classifier has a closed form, computing these hypergeometric functions in-

volves the computation of series of zonal polynomials, which is time-consuming and not scalable

to high dimension. To resolve this issue, we use the Laplace approximations of these functions,

which preserves the good prediction performance of the OBTL while making it efficient and scal-

able. The performance of the OBTL is tested on both synthetic data and real-world benchmark

image datasets to show its superior performance over state-of-the-art domain adaption methods.

3.1.3 Bayesian Transfer Learning Framework

We consider a supervised transfer learning problem in which there are L common classes (la-

bels) in each domain. Let Ds and Dt denote the labeled datasets of the source and target domains

with the sizes of Ns and Nt, respectively, where Nt � Ns. Let Dls =
{

xls,1,x
l
s,2, · · · ,xls,nls

}
,

l ∈ {1, · · · , L}, where nls denotes the size of data in the source domain for the label l. Similarly,

let Dlt =
{

xlt,1,x
l
t,2, · · · ,xlt,nlt

}
, l ∈ {1, · · · , L}, where nlt denotes the size of data in the target

domain for the label l. There is no intersection between Dit and Djt and also between Dis and Djs

for any i, j ∈ {1, · · · , L}. Obviously, we have Ds = ∪Ll=1Dls, Dt = ∪Ll=1Dlt, Ns =
∑L

l=1 n
l
s, and

Nt =
∑L

l=1 n
l
t. Since we consider the homogeneous transfer learning scenario, where the feature

spaces are the same in both the source and target domains, xls and xlt are d×1 vectors for d features

of the source and target domains, respectively.

Letting xl =
[
xl
′
t ,x

l′
s

]′
be a 2d × 1 augmented feature vector, A

′ denoting the transpose of
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matrix A, a general joint sampling model would take the Gaussian form

xl ∼ N
(
µl,
(
Λl
)−1
)
, l ∈ {1, · · · , L}, (3.1)

with

µl =

µlt
µls

 , Λl =

 Λl
t Λl

ts

Λl
ts

′
Λl
s

 , (3.2)

where µl is the 2d× 1 mean vector, and Λl is the 2d× 2d precision matrix. In this model, Λl
t and

Λl
s account for the interactions of features within the source and target domains, respectively, and

Λl
ts accounts for the interactions of the features across the source and target domains, for any class

l ∈ {1, · · · , L}. In this Gaussian setting, it is common to use a Wishart distribution as a prior for

the precision matrix Λl, since it is a conjugate prior.

In transfer learning, it is not realistic to assume joint sampling of the source and target domains.

Therefore we cannot use the general joint sampling model. Instead, we assume that there are two

datasets separately sampled from the source and target domains. Thus, we define a joint prior

distribution for Λl
s and Λl

t by marginalizing out the term Λl
ts. This joint prior distribution of

the parameters of the source and target domains accounts for the dependency (or “relatedness")

between the domains.

Given this adjustment to account for transfer learning, we utilize a Gaussian model for the

feature-label distribution in each domain:

xlz ∼ N
(
µlz,
(
Λl
z

)−1
)
, l ∈ {1, · · · , L}, (3.3)

where subscript z ∈ {s, t} denotes the source s or target t domain, µls and µlt are d × 1 mean

vectors in the source and target domains for label l, respectively, Λl
s and Λl

t are the d× d precision

matrices in the source and target domains for label l, respectively, and a joint Gaussian-Wishart

distribution is employed as a prior for mean and precision matrices of the Gaussian models. Under
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these assumptions, the joint prior distribution for µls, µ
l
t, Λl

s, and Λl
s takes the form

p
(
µls, µ

l
t,Λ

l
s,Λ

l
t

)
= p

(
µls, µ

l
t|Λl

s,Λ
l
t

)
p
(
Λl
s,Λ

l
t

)
. (3.4)

To facilitate conjugate priors, we assume that, for any class l ∈ {1, · · · , L}, µls and µlt are condi-

tionally independent given Λl
s and Λl

t, so that

p
(
µls, µ

l
t,Λ

l
s,Λ

l
t

)
= p

(
µls|Λl

s

)
p
(
µlt|Λl

t

)
p
(
Λl
s,Λ

l
t

)
, (3.5)

and that both p
(
µls|Λl

s

)
and p

(
µlt|Λl

t

)
are Gaussian,

µlz|Λl
z ∼ N

(
ml

z,
(
κlzΛ

l
z

)−1
)
, (3.6)

where ml
z is the d × 1 mean vector of µlz, and κlz is a positive scalar hyperparameter. We need

to define a joint distribution for Λl
s and Λl

t. In the case of a prior for either Λl
s or Λl

t, we use

a Wishart distribution as the conjugate prior. Here we desire a joint distribution for Λl
s and Λl

t,

whose marginal distributions for both Λl
s and Λl

t are Wishart.

We present some definitions and theorems that will be used in deriving the OBTL classifier.

Definition 1. A random d × d symmetric positive-definite matrix Λ has a nonsingular Wishart

distribution with ν degrees of freedom, Wd(M, ν), if ν ≥ d and M is a d × d positive-definite

matrix (M > 0) and the density is

p(Λ) =
[
2
νd
2 Γd

(ν
2

)
|M|

ν
2

]−1

|Λ|
ν−d−1

2 etr

(
−1

2
M−1Λ

)
, (3.7)

where |A| is the determinant of A, etr(A) = exp (tr(A)) and Γd(α) is the multivariate gamma

function given by

Γd(α) = π
d(d−1)

4

d∏
i=1

Γ

(
α− i− 1

2

)
. (3.8)

Proposition 1. [85]: If Λ ∼ Wd(M, ν), and A is an r × d matrix of rank r, where r ≤ d, then
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AΛA
′ ∼ Wr(AMA

′
, ν).

Corollary 1. If Λ ∼ Wd(M, ν) and Λ =
(

Λ11 Λ12

Λ
′
12 Λ22

)
, where Λ11 and Λ22 are d1 × d1 and d2 × d2

submatrices, respectively, and if M =
(

M11 M12

M
′
12 M22

)
is the corresponding partition of M with M11

and M22 being two d1 × d1 and d2 × d2 submatrices, respectively, then Λ11 ∼ Wd1(M11, ν) and

Λ22 ∼ Wd2(M22, ν).

Using Corollary 1, we can ensure that using the Wishart distribution for the precision matrix

Λl (3.2) of the joint model in (3.1) will lead to the Wishart marginal distributions for Λl
s and Λl

t

in the source and target domains separately, which is a desired property. Now we introduce a

theorem, proposed in [86], which gives the form of the joint distribution of the two submatrices of

a partitioned Wishart matrix.

Theorem 1. [86]: Let Λ =
(

Λ11 Λ12

Λ
′
12 Λ22

)
be a (d1 + d2) × (d1 + d2) partitioned Wishart random

matrix, where the diagonal partitions are of sizes d1 × d1 and d2 × d2, respectively. The Wishart

distribution of Λ has ν ≥ d1 + d2 degrees of freedom and positive-definite scale matrix M =(
M11 M12

M
′
12 M22

)
partitioned in the same way as Λ. The joint distribution of the two diagonal partitions

Λ11 and Λ22 have the density function given by

p(Λ11,Λ22) =

K etr

(
−1

2

(
M−1

11 + F
′
C2F

)
Λ11

)
etr

(
−1

2
C−1

2 Λ22

)
× |Λ11|

ν−d2−1
2 |Λ22|

ν−d1−1
2 0F1

(
ν

2
;
1

4
G

)
,

(3.9)

where C2 = M22 −M
′
12M

−1
11 M12, F = C−1

2 M
′
12M

−1
11 , G = Λ

1
2
22FΛ11F

′
Λ

1
2
22,

K−1 = 2
(d1+d2)ν

2 Γd1

(
ν
2

)
Γd2

(
ν
2

)
|M| ν2 , and 0F1 is the generalized matrix-variate hypergeometric

function.

Definition 2. [87]: The generalized hypergeometric function of one matrix argument is defined
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by

pFq(a1, · · · , ap; b1, · · · , bq; X)

=
∞∑
k=0

∑
κ`k

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(X)

k!
, (3.10)

where ai, i = 1, · · · , p, and bj , j = 1, · · · , q, are arbitrary complex (real in our case) numbers,

Cκ(X) is the zonal polynomial of d×d symmetric matrix X corresponding to the ordered partition

κ = (k1, · · · , kd), k1 ≥ · · · ≥ kd ≥ 0, k1 + · · · kd = k and
∑

κ`k denotes summation over all

partitions κ of k. The generalized hypergeometric coefficient (a)κ is defined by

(a)κ =
d∏
i=1

(
a− i− 1

2

)
ki

, (3.11)

where (a)r = a(a+ 1) · · · (a+ r − 1), r = 1, 2, · · · , with (a)0 = 1.

Conditions for convergence of the series in (3.10) are available in the literature [88]. From

(3.10) it follows

0F0(X) =
∞∑
k=0

∑
κ`k

Cκ(X)

k!
=
∞∑
k=0

(tr(X))k

k!
= etr(X),

1F0(a; X) =
∞∑
k=0

∑
κ`k

(a)κCκ(X)

k!
= |Im −X|−a, ||X|| < 1,

0F1(b; X) =
∞∑
k=0

∑
κ`k

Cκ(X)

(b)κk!
,

1F1(a; b; X) =
∞∑
k=0

∑
κ`k

(a)κ
(b)κ

Cκ(X)

k!
,

2F1(a, b; c; X) =
∞∑
k=0

∑
κ`k

(a)κ(b)κ
(c)κ

Cκ(X)

k!
, ||X|| < 1,

(3.12)

where ||X|| < 1 means that the maximum of the absolute values of the eigenvalues of X is less

than 1. 1F1(a; b; X) and 2F1(a, b; c; X) are respectively called Confluent and Gauss hypergeometric

functions of matrix argument. See Appendix B.1 for some useful theorems on zonal polynomials

and generalized hypergeometric functions of matrix arguments. We use those theorems to derive

98



the posterior densities and posterior predictive densities of the target parameters in closed forms in

terms of Confluent and Gauss hypergeometric functions of matrix argument in Sections 3.1.4 and

3.1.5, respectively.

Now, using Theorem 1, we define the joint prior distribution, p(Λl
s,Λ

l
t) in (3.5), of the precision

matrices of the source and target domains for class l ∈ {1, · · · , L} as follows:

p(Λl
t,Λ

l
s) = K letr

(
−1

2

((
Ml

t

)−1
+ Fl

′
ClFl

)
Λl
t

)
× etr

(
−1

2

(
Cl
)−1

Λl
s

)
×
∣∣Λl

t

∣∣ νl−d−1
2
∣∣Λl

s

∣∣ νl−d−1
2

0F1

(
νl

2
;
1

4
Gl

)
,

(3.13)

where M =
(

Ml
t Ml

ts

Ml
ts

′
Ml
s

)
is a 2d × 2d positive definite scale matrix, νl ≥ 2d denotes degrees of

freedom, and

Cl = Ml
s −Ml

ts

′(
Ml

t

)−1
Ml

ts,

Fl =
(
Cl
)−1

Ml
ts

′(
Ml

t

)−1
,

Gl = Λl
s

1
2 FlΛl

tF
l
′
Λl
s

1
2 ,

(K l)
−1

= 2dν
l

Γ2
d

(
νl

2

)
|Ml|

νl

2 .

(3.14)

Using Corollary 1, Λl
t and Λl

s have the following Wishart marginal distributions:

Λl
z ∼ Wd(M

l
z, ν

l), l ∈ {1, · · · , L}, z ∈ {s, t}. (3.15)

3.1.4 Posteriors of Target Parameters

Having defined the prior distributions in the previous section, we aim to derive the posterior

distribution of the parameters of the target domain upon observing the training source Ds and

target Dt datasets. The likelihood of the datasets Dt and Ds is conditionally independent given

the parameters of the target and source domains. The dependence between the two domains is

due to the dependence of the prior distributions of the precision matrices, as shown in Fig 3.1.
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Dlt µlt Λl
t Λl

s µls Dls

Target Domain Source Domain

Figure 3.1: Dependency of the source and target domains through their precision matrices for any class l ∈
{1, · · · , L}. Reprinted with permission from [4], c©2018 IEEE.

Within each domain, source or target, the likelihoods of the different classes are also conditionally

independent given the parameters of the classes. As such, the joint likelihood of the datasets Dt

and Ds can be written as

p(Dt,Ds|µt, µs,Λt,Λs) = p(Dt|µt,Λt)p(Ds|µs,Λs)

= p(D1
t , · · · ,DLt |µ1

t , · · · , µLt ,Λ1
t , · · · ,ΛL

t )

× p(D1
s , · · · ,DLs |µ1

s, · · · , µLs ,Λ1
s, · · · ,ΛL

s )

=
L∏
l=1

p(Dlt|µlt,Λl
t)

L∏
l=1

p(Dls|µls,Λl
s).

(3.16)

The posterior of the parameters given Dt and Ds satisfies

p(µt, µs,Λt,Λs|Dt,Ds)

∝ p(Dt,Ds|µt, µs,Λt,Λs)p(µt, µs,Λt,Λs)

∝
L∏
l=1

p(Dlt|µlt,Λl
t)

L∏
l=1

p(Dls|µls,Λl
s)

L∏
l=1

p(µlt, µ
l
s,Λ

l
t,Λ

l
s),

(3.17)

where we assume that the priors of the parameters in different classes are independent, p(µt, µs,Λt,Λs) =∏L
l=1 p(µ

l
t, µ

l
s,Λ

l
t,Λ

l
s). From (3.5) and (3.17),

p(µt, µs,Λt,Λs|Dt,Ds) ∝
L∏
l=1

p(Dlt|µlt,Λl
t)p(Dls|µls,Λl

s)

×p
(
µls|Λl

s

)
p
(
µlt|Λl

t

)
p
(
Λl
s,Λ

l
t

)
.

(3.18)
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We can see that the posterior of the parameters is equal to the product of the posteriors of the

parameters of each class:

p(µt, µs,Λt,Λs|Dt,Ds) =
L∏
l=1

p(µlt, µ
l
s,Λ

l
t,Λ

l
s|Dlt,Dls), (3.19)

where

p(µlt, µ
l
s,Λ

l
t,Λ

l
s|Dlt,Dls) ∝ p(Dlt|µlt,Λl

t)p(Dls|µls,Λl
s)

×p
(
µls|Λl

s

)
p
(
µlt|Λl

t

)
p
(
Λl
s,Λ

l
t

)
. (3.20)

Since we are interested in the posterior of the parameters of the target domain, we integrate out the

parameters of the source domain in (3.19):

p(µt,Λt|Dt,Ds) =

∫
µs,Λs

p(µt, µs,Λt,Λs|Dt,Ds)dµsdΛs

=
L∏
l=1

∫
µls,Λ

l
s

p(µlt, µ
l
s,Λ

l
t,Λ

l
s|Dlt,Dls)dµlsdΛl

s

=
L∏
l=1

p(µlt,Λ
l
t|Dlt,Dls),

where
p(µlt,Λ

l
t|Dlt,Dls)

=

∫
µls,Λ

l
s

p(µlt, µ
l
s,Λ

l
t,Λ

l
s|Dlt,Dls)dµlsdΛl

s

∝ p(Dlt|µlt,Λl
t)p
(
µlt|Λl

t

)
×
∫
µls,Λ

l
s

p(Dls|µls,Λl
s)p
(
µls|Λl

s

)
p
(
Λl
s,Λ

l
t

)
dµlsdΛ

l
s.

(3.21)

Theorem 2. Given the target Dt and source Ds data, the posterior distribution of target mean µlt

and target precision matrix Λl
t for the class l ∈ {1, · · · , L} has Gaussian-hypergeometric-function
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distribution

p(µlt,Λ
l
t|Dlt,Dls) =

Al
∣∣Λl

t

∣∣ 1
2 exp

(
−
κlt,n
2

(
µlt −ml

t,n

)′
Λl
t

(
µlt −ml

t,n

))

×
∣∣Λl

t

∣∣ νl+nlt−d−1

2 etr

(
−1

2

(
Tl
t

)−1
Λl
t

)
× 1F1

(
νl + nls

2
;
νl

2
;
1

2
FlΛl

tF
l
′
Tl
s

)
,

(3.22)

where Al is the constant of proportionality

(
Al
)−1

=

(
2π

κlt,n

) d
2

2
d(νl+nlt)

2 Γd

(
νl + nlt

2

) ∣∣Tl
t

∣∣ νl+nlt2

× 2F1

(
νl + nls

2
,
νl + nlt

2
;
νl

2
; Tl

sF
lTl

tF
l
′
)
,

(3.23)

and

κlt,n = κlt + nlt,

ml
t,n =

κltm
l
t + nltx̄

l
t

κlt + nlt
,(

Tl
t

)−1
=
(
Ml

t

)−1
+ Fl

′
ClFl + Slt

+
κltn

l
t

κlt + nlt
(ml

t − x̄lt)(m
l
t − x̄lt)

′
,

(
Tl
s

)−1
=
(
Cl
)−1

+ Sls +
κlsn

l
s

κls + nls
(ml

s − x̄ls)(m
l
s − x̄ls)

′
,

(3.24)

with sample means and covariances for z ∈ {s, t} as

x̄lz =
1

nlz

nlz∑
i=1

xlz,i, Slz =

nlz∑
i=1

(
xlz,i − x̄lz

) (
xlz,i − x̄lz

)′
.

Proof. See Appendix B.2.

3.1.5 Effective Class-Conditional Densities

In classification, the feature-label distributions are written in terms of class-conditional den-

sities and prior class probabilities, and the posterior probabilities of the classes upon observation
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of data are proportional to the product of class-conditional densities and prior class probabilities,

according to the Bayes rule. This also holds in the Bayesian setting except we use effective class-

conditional densities, as shown in [57, 58]. For optimal Bayesian classifier [57, 58], using the

posterior predictive densities of the classes, called “effective class-conditional densities", leads to

the optimal choices for classifiers in order to minimize the Bayesian error estimates of the clas-

sifiers. Similarly, we can derive the effective class-conditional densities for defining the OBTL

classifier in the target domain, albeit with the posterior of the target parameters derived from both

the target and source datasets.

Suppose that x denotes a d × 1 new observed data point in the target domain that we aim to

optimally classify into one of the classes l ∈ {1, · · · , L}. In the context of the optimal Bayesian

classifier, we need the effective class-conditional densities for the L classes, defined as

p(x|l) =

∫
µlt,Λ

l
t

p(x|µlt,Λl
t)π

?(µlt,Λ
l
t)dµ

l
tdΛ

l
t, (3.25)

for l ∈ {1, · · · , L}, where π?(µlt,Λ
l
t) = p(µlt,Λ

l
t|Dlt,Dls) is the posterior of (µlt,Λ

l
t) upon obser-

vation of Dlt and Dls.

Theorem 3. The effective class-conditional density, denoted by p(x|l) = OOBTL(x|l), in the target

domain is given by

OOBTL(x|l) = π−
d
2

(
κlt,n
κlx

) d
2

Γd

(
νl + nlt + 1

2

)
× Γ−1

d

(
νl + nlt

2

) ∣∣Tl
x

∣∣ νl+nlt+1

2
∣∣Tl

t

∣∣− νl+nlt2

× 2F1

(
νl + nls

2
,
νl + nlt + 1

2
;
νl

2
; Tl

sF
lTl

xFl
′
)

× 2F
−1
1

(
νl + nls

2
,
νl + nlt

2
;
νl

2
; Tl

sF
lTl

tF
l
′
)
,

(3.26)

where

κlx = κlt,n + 1 = κlt + nlt + 1,(
Tl

x

)−1
=
(
Tl
t

)−1
+

κlt,n
κlt,n + 1

(
ml

t,n − x
) (

ml
t,n − x

)′
.

(3.27)
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Proof. See Appendix B.3.

3.1.6 Optimal Bayesian Transfer Learning Classifier

Let clt be the prior probability that the target sample x belongs to the class l ∈ {1, · · · , L}.

Since 0 < clt < 1 and
∑L

l=1 c
l
t = 1, a Dirichlet prior is assumed:

(c1
t , · · · , cLt ) ∼ Dir(L, ξt), (3.28)

where ξt = (ξ1
t , · · · , ξLt ) are the concentration parameters, and ξlt > 0 for l ∈ {1, · · · , L}. As

the Dirichlet distribution is a conjugate prior for the categorical distribution, upon observing n =

(n1
t , · · · , nLt ) data for class l in the target domain, the posterior has a Dirichlet distribution:

π? = (c1
t , · · · , cLt |n) ∼ Dir(L, ξt + n)

= Dir(L, ξ1
t + n1

t , · · · , ξLt + nLt ),

(3.29)

with the posterior mean of clt as

Eπ?(c
l
t) =

ξlt + nlt
Nt + ξ0

t

, (3.30)

where Nt =
∑L

l=1 n
l
t and ξ0

t =
∑L

l=1 ξ
l
t. As such, the optimal Bayesian transfer learning (OBTL)

classifier for any new unlabeled sample x in the target domain is defined as

ΨOBTL(x) = arg max
l∈{1,··· ,L}

Eπ?(c
l
t)OOBTL(x|l), (3.31)

which minimizes the expected error of the classifier in the target domain, that is, Eπ? [ε(Θt,ΨOBTL)] ≤

Eπ? [ε(Θt,Ψ)], where ε(Θt,Ψ) is the error of any arbitrary classifier Ψ assuming the parameters

Θt = {clt, µlt,Λl
t}Ll=1 of the feature-label distribution in the target domain, and the expectation is

over the posterior π? of Θt upon observation of data. If we do not have any prior knowledge for the

selection of classes, we use the same concentration parameter for all the classes: ξt = (ξ, · · · , ξ).

Hence, if the number of samples in each class is the same, n1
t = · · · = nLt , the first term Eπ?(c

l
t) is
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the same for all the classes and (3.31) is reduced to:

ΨOBTL(x) = arg max
l∈{1,··· ,L}

OOBTL(x|l). (3.32)

We have derived the effective class-conditional densities in closed forms (3.26). However, de-

riving the OBTL classifier (3.31) requires computing the Gauss hypergeometric function of matrix

argument. Computing the exact values of hypergeometirc functions of matrix argument using the

series of zonal polynomials, as in (3.12), is time-consuming and is not scalable to high dimension.

To facilitate computation, we propose to use the Laplace approximation of this function, as in [89],

which is computationally efficient and scalable. See Appendix B.4 for the detailed description of

the Laplace approximation of Gauss hypergeometric functions of matrix argument.

3.1.7 OBC in Target Domain

To see how the source data can help improve the performance, we compare the OBTL classifier

with the OBC based on the training data only from the target domain. Using exactly the same

modeling and parameters as the previous sections, the priors for µlt and Λl
t, from (3.6) and (3.15),

are given by

µlt|Λl
t ∼ N

(
ml

t,
(
κltΛ

l
t

)−1
)
,

Λl
t ∼ Wd(M

l
t, ν

l).

(3.33)

Using Lemma 6 in Appendix B.2, upon observing the dataset Dlt, the posteriors of µlt and Λl
t will

be
µlt|Λl

t,Dlt ∼ N
(
ml

t,n,
(
κlt,nΛ

l
t

)−1
)
,

Λl
t|Dlt ∼ Wd(M

l
t,n, ν

l
t,n),

(3.34)

where

κlt,n = κlt + nlt, νlt,n = νl + nlt, ml
t,n =

κltm
l
t + nltx̄

l
t

κlt + nlt
,

(
Ml

t,n

)−1
=
(
Ml

t

)−1
+ Slt +

κltn
l
t

κlt + nlt
(ml

t − x̄lt)(m
l
t − x̄lt)

′
,

(3.35)
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with the corresponding sample mean and covariance:

x̄lt =
1

nlt

nlt∑
i=1

xlt,i, Slt =

nlt∑
i=1

(
xlt,i − x̄lt

) (
xlt,i − x̄lt

)′
. (3.36)

By (3.25) and similar integral steps, the effective class-conditional densities p(x|l) = OOBC(x|l)

for the OBC are derived as [57]

OOBC(x|l) = π−
d
2

(
κlt,n

κlt,n + 1

) d
2

Γd

(
νl + nlt + 1

2

)
× Γ−1

d

(
νl + nlt

2

) ∣∣Ml
x

∣∣ νl+nlt+1

2
∣∣Ml

t,n

∣∣− νl+nlt2 ,

(3.37)

where (
Ml

x

)−1
=
(
Ml

t,n

)−1
+

κlt,n
κlt,n + 1

(ml
t,n − x)(ml

t,n − x)
′
. (3.38)

The multi-class OBC [90], under a zero-one loss function, can be defined as

ΨOBC(x) = arg max
l∈{1,··· ,L}

Eπ?(c
l
t)OOBC(x|l). (3.39)

Similar to the OBTL, in the case of equal prior probabilities for the classes,

ΨOBC(x) = arg max
l∈{1,··· ,L}

OOBC(x|l). (3.40)

For binary classification, the definition of the OBC in (3.39) is equivalent to the definition in [57],

where it is defined to be the binary classifier possessing the minimum Bayesian mean square error

estimate [64] relative to the posterior distribution.

Theorem 4. If Ml
ts = 0 for all l ∈ {1, · · · , L}, then

ΨOBTL(x) = ΨOBC(x), (3.41)

meaning that if there is no interaction between the source and target domains in all the classes a
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priori, then the OBTL classifier turns to the OBC classifier in the target domain.

Proof. If Ml
ts = 0 for all l ∈ {1, · · · , L}, then Fl = 0. Since 2F1(a, b; c; 0) = 1 for any values of

a, b, and c, the Gauss hypergeometric functions will disappear in (3.26). From (3.24) and (3.35),

Tl
t = Ml

t,n. From (3.27) and (3.38), Tl
x = Ml

x. As a result, OOBTL(x|l) = OOBC(x|l), and

consequently, ΨOBTL(x) = ΨOBC(x).

3.1.8 Experiments

3.1.8.1 Synthetic datasets

We have considered a simulation setup and evaluated the OBTL classifiers by the average

classification error with different joint prior densities modeling the relatedness of the source and

target domains. The setup is as follows. Unless mentioned, the feature dimension is d = 10,

the number of classes in each domain is L = 2, the number of source training data per class is

ns = nls = 200, the number of target training data per class is nt = nlt = 10, ν = νl = 25,

κt = κlt = 100, κs = κls = 100, for both the classes l = 1, 2, m1
t = 0d, m2

t = 0.05 × 1d,

m1
s = m1

t + 1d, and m2
s = m2

t + 1d, where 0d and 1d are d × 1 all-zero and all-one vectors,

respectively. For the scale matrices, we choose Ml
t = ktId, Ml

s = ksId, and Ml
ts = ktsId for

two classes l = 1, 2, where Id is the d × d identity matrix. Note that choosing an identity matrix

for Ml
ts makes sense when the order of the features in the two domains is the same. We have

the constraint that the scale matrix Ml =
(

Ml
t Ml

ts

Ml
ts

′
Ml
s

)
should be positive definite for any class l.

It is easy to check the following corresponding constraints on kt, ks, and kts: kt > 0, ks > 0,

and |kts| <
√
ktks. We define kts = α

√
ktks, where |α| < 1. In this particular example, the

value of |α| shows the amount of relatedness between the source and target domains. If |α| = 0,

the two domains are not related and if |α| is close to one, we have greater relatedness. We set

kt = ks = 1 and plot the average classification error curves for different values of |α|. All the

simulations assume equal prior probabilities for the classes, so we use (3.32) and (3.40) for the

OBTL classifier and OBC, respectively.

We evaluate the prediction performance according to the common evaluation procedure of

Bayesian learning by average classification errors. To sample from the prior (3.5) we first sample
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from a Wishart distribution W2d(M
l, νl) to get a sample for Λl =

(
Λl
t Λl

ts

Λl
ts

′
Λl
s

)
, for each class

l = 1, 2, and then pick (Λl
t,Λ

l
s), which is a joint sample from p(Λl

t,Λ
l
s) in (3.13). Then given

Λl
t and Λl

s, we sample from (3.6) to get samples of µlt and µls for l = 1, 2. Once we have µlt,

µls, Λl
t, and Λl

s, we generate 100 different training and test sets from (3.3). Training sets contain

samples from both the target and source domains, but the test set contains only samples from the

target domain. As the numbers of source and target training data per class are ns and nt, there are

Lns and Lnt source and target training data in total, respectively. We assume the size of the test

set per class is 1000 in the simulations, so 2000 in total. For each training and test set, we use

the OBTL classifier and its target-only version, OBC, and calculate the error. Then we average all

the errors for 100 different training and test sets. We further repeat this whole process 1000 times

for different realizations of Λl
t and Λl

s, µ
l
t, and µls for l = 1, 2, and finally average all the errors

and return the average classification error. Note that in all figures, the hyperparameters used in the

OBTL classifier are the same as the ones used for simulating data, except for the figures showing

the sensitivity of the performance with respect to different hyperparameters, in which case we

assume that true values of the hyperparameters used for simulating data are unknown.

To examine how the source data improves the classifier in target domain, we compare the

performance of the OBTL classifier with the OBC designed in the target domain alone. The average

classification error versus nt is depicted in Fig. 3.2a for the OBC and OBTL with different values

of α. When α is close to one, the performance of the OBTL classifier is much better than that

of the OBC, this due to the greater relatedness between the two domains and appropriate use of

the source data. This performance improvement is especially noticeable when nt is small, which

reflects the real-world scenario. In Fig. 3.2a, we also observe that the errors of the OBTL classifier

and OBC are converging to a similar value when nt gets very large, meaning that the source data

are redundant when there is a large amount of target data. When α is larger, the error curves

converge faster to the optimal error, which is the average Bayes error of the target classifier. The

corresponding Bayes error averaged over 1000 randomly generated distributions is equal to 0.122

in this simulation setup. Recall that when α = 0, the OBTL classifier reduces to the OBC. In this

108



10 20 30 40 50

n
t
 

0.15

0.2

0.25

0.3

0.35

A
v
e

ra
g

e
 C

la
s
s
if
ic

a
ti
o

n
 E

rr
o

r

n
s
 = 200, ν = 25

OBC, target-only

OBTL, α = 0.5

OBTL, α = 0.7

OBTL, α = 0.9

OBTL, α = 0.95

(a)

50 100 150 200 250 300 350 400

n
s

0.14

0.16

0.18

0.2

0.22

0.24

0.26

A
v
e

ra
g

e
 C

la
s
s
if
ic

a
ti
o

n
 E

rr
o

r

n
t
 = 10, ν = 25 

OBC, target-only

OBTL, α = 0.5

OBTL, α = 0.7

OBTL, α = 0.9

OBTL, α = 0.95

(b)

Figure 3.2: (a) Average classification error versus the number of target training data per class, nt, (b) Average
classification error versus the number of source training data per class, ns. Reprinted with permission from [4],
c©2018 IEEE.

particular example, the sign of α does not matter in the performance of the OBTL, which can be

verified by (3.26). Hence, we can use |α| in all the cases.

Figure 3.2b depicts average classification error versus ns for the OBC and OBTL with different

values of α. The error of the OBC is constant for all ns as it does not employ the source data. The

error of the OBTL classifier equals that of the OBC when ns = 0 and starts to decrease as ns

increases. In Fig. 3.2b when α is larger, the amount of improvement is greater since the two
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Figure 3.3: Box plots of 1000 simulated classification errors for different nt. Blue denotes the OBC and red denotes
the OBTL with α = 0.9. Reprinted with permission from [4], c©2018 IEEE.

domains are more related. Another important point in Fig. 3.2b is that having very large source

data when the two domains are highly related can compensate the lack of target data and lead to a

target classification error as small as the Bayes error in the target domain.

Figure 3.3 illustrates the box plots of the simulated classification errors corresponding to the

1000 distributions randomly drawn from the prior distributions for both the OBC and OBTL with

α = 0.9, which show the variability for different numbers nt of target data per class.

We investigate the sensitivity of the OBTL with respect to the hyperparameters. Fig. 3.4

represents the average classification error of the OBTL with respect to |α|, where we assume

that we do not know the true value αtrue of the amount of relatedness between source and target

domains. In Figs. 3.4a-3.4d we plot the error curves when αtrue = 0.3, 0.5, 0.7, 0.9, respectively.

We observe several important trends in these figures. First of all, the performance gain of the

OBTL towards the OBC depends heavily on the relatedness (value of αtrue) of source and target

and the value of α used in the classifier. Generally speaking, there exists an αmax in (0, 1) such

that for |α| < αmax, the OBTL has a performance gain towards the OBC, where the maximum

gain is achieved at |α| = αtrue (it might not be exactly at αtrue due to the Laplace approximation

of the Gauss hypergeometric function). Second, the performance gain is higher when the two
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Figure 3.4: Average classification error vs |α|. Reprinted with permission from [4], c©2018 IEEE.

domains are highly related (Fig. 3.4d). Third, when the two domains are very related, for example,

αtrue = 0.9 in Fig. 3.4d, αmax = 1, meaning that for any |α|, the OBTL has performance gain

towards the target-only OBC. However, when the source and target domains are not related much,

like Figs. 3.4a and 3.4b, αmax < 1, and choosing |α| greater than αmax leads to performance loss

compared to the OBC. This means that exaggeration in the amount of relatedness between the two

domains can hurt the transfer learning classifier when the two domains are not actually related,

which refers to the concept of negative transfer.

Figure 3.5 shows the errors versus ν, assuming unknown true value νtrue, for different values

of α (0.5 and 0.9) and νtrue (25 and 50). The salient point here is that the performance of the OBTL

classifier is not so sensitive to ν if it is chosen in its allowable range, that is, ν ≥ 2d. In Fig. 3.5,

the error of the OBTL does not change much for ν ≥ 2d = 20. As a result, we can choose any
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Figure 3.5: Average classification error vs ν. Reprinted with permission from [4], c©2018 IEEE.

arbitrary ν ≥ 2d in real datasets without worrying about critical performance deterioration.

Figure 3.6 depicts average classification error versus κt for two different values of α (0.5 and

0.9), where the true value of κt is κtrue = 50. Similar to ν, if κt is greater than a value (20 in Fig.

3.6), the performance does not change much. According to (3.24), it is better to choose κlt and κls

to be proportional to nt and ns, respectively, since the values of updated means ml
t,n and ml

s,n are

weighted averages of our prior knowledge about means, ml
t and ml

s, and the sample means x̄lt and

x̄ls. Assuming that κt = βtnt and κs = βsns, for some βt, βs > 0, if we have higher confidence on

our priors on means, we pick higher βt and βs (as in Fig. 3.6); but for the untrustworthy priors, we

choose lower values for βt and βs.

Sensitivity results in Figs. 3.4, 3.5, and 3.6 reveal that in our simulation setup the performance

improvement of the OBTL depends on the value of α and true relatedness (αtrue in this example)
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Figure 3.6: Average classification error vs κt. Reprinted with permission from [4], c©2018 IEEE.

between the two domains and is not affected that much by the choices of other hyperparameters

like ν, κt, and κs. We could have a reasonable range of α to get improved performance but the

correct estimates of relatedness or transferability are critical, which is an important future research

direction.

3.1.8.2 Real-world benchmark datasets

We test the OBTL classifier on Office [91] and Caltech256 [92] image datasets, which have

been adopted to help benchmark different transfer learning algorithms in the literature. We have

used exactly the same evaluation setup and data splits of MMDT (Max-Margin Domain Transform)

[9].

• Office dataset: This dataset has images in three different domains: amazon, webcam, and dslr.

The dataset contains 31 classes including the office stuff like backpack, chair, keyboard, etc. The

three domains amazon, webcam, and dslr contain images from Amazon’s website, a webcam, and

a digital single-lens reflex (dslr) camera, respectively, with different lighting and backgrounds.

SURF [93] image features are used in all the domains, which are of dimension 800.

• Office + Caltech256 dataset: This dataset has L = 10 common classes of both Office and

Caltech256 datasets with the same feature dimension d = 800. According to the data splits of [9],

the numbers of training data per class in the source domain are ns = 20 for amazon and ns = 8 for
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the other three domains, and in the target domain nt = 3 for all the four domains. For this four-

domain dataset, 20 random train-test splits have been created by [9]. We run the OBTL classifier

on that 20 provided train-test splits and report the average accuracy. Note that the test data are

solely from the target domains. Authors of MMDT [9] reduce the dimension to d = 20 using

PCA. We follow the same procedure for the OBTL classifier.

Following the comparison framework of [8], which used the same evaluation setup of [9],

we compare the OBTL’s performance in terms of accuracy (10-class) in Table 3.1 with two target-

only classifiers and four state-of-the-art semi-supervised transfer learning algorithms (including [8]

itself). The evaluation setup is exactly the same for the OBTL and all the other six methods. As

a result, we use the results of [8] for the first six methods in Table 3.1 and compare them with the

OBTL classifier. The six methods are as follows.

• 1-NN-t and SVM-t: The Nearest Neighbor (1-NN) and linear SVM classifiers designed using

only the target data.

• HFA [73]: This Heterogeneous Feature Augmentation (HFA) method learns a common latent

space between source and target domains using the max-margin approach and designs a classifier

in that common space.

• MMDT [9]: This Max-Margin Domain Transform (MMDT) method learns a transformation

between the source and target domains and employs the weighted SVM for classification.

• CDLS [75]: This Cross-Domain Landmark Selection (CDLS) is a semi-supervised heteroge-

neous domain adaptation method, which derives a domain-invariant feature space for improved

classification performance.

• ILS (1-NN) [8]: This is a recent method that learns an Invariant Latent Space (ILS) to reduce

the discrepancy between the source and target domains and uses Riemannian optimization tech-

niques to match statistical properties between samples projected into the latent space from different

domains.

In Table 3.1, we have calculated the accuracy of the OBTL classifier in 12 distinct experiments,

where the source-target pairs are different (source→ target) in each experiment. We have marked
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Table 3.1: Semi-supervised accuracy for different source and target domains in the Office+Caltech256 dataset using
SURF features. Domain names are denoted as a: amazon, w: webcam, d: dslr, c: Caltech256. The numbers in red
show the best accuracy and the numbers in blue show the second best accuracy in each column. The results of the first
six methods have been adopted from [8]. Similar to [8], we have also used the evaluation setup of [9] for the OBTL.
Reprinted with permission from [4], c©2018 IEEE.

a→ w a→ d a→ c w→ a w→ d w→ c d→ a d→ w d→ c c→ a c→ w c→ d Mean
1-NN-t 34.5 33.6 19.7 29.5 35.9 18.9 27.1 33.4 18.6 29.2 33.5 34.1 29.0
SVM-t 63.7 57.2 32.2 46.0 56.5 29.7 45.3 62.1 32.0 45.1 60.2 56.3 48.9

HFA [73] 57.4 55.1 31.0 56.5 56.5 29.0 42.9 60.5 30.9 43.8 58.1 55.6 48.1
MMDT [9] 64.6 56. 7 36.4 47.7 67.0 32.2 46.9 74.1 34.1 49.4 63.8 56.5 52.5
CDLS [75] 68.7 60.4 35.3 51.8 60.7 33.5 50.7 68.5 34.9 50.9 66.3 59.8 53.5

ILS (1-NN) [8] 59.7 49.8 43.6 54.3 70.8 38.6 55.0 80.1 41.0 55.1 62.9 56.2 55.6
OBTL 72.4 60.2 41.5 55.0 75.0 37.4 54.4 83.2 40.3 54.8 71.1 61.5 58.9

Table 3.2: The values of hyperparameter α of the OBTL used in each experiment. nt and ns are based on the data
splits provided by [9]. Reprinted with permission from [4], c©2018 IEEE.

a→ w a→ d a→ c w→ a w→ d w→ c d→ a d→ w d→ c c→ a c→ w c→ d
nt 3 3 3 3 3 3 3 3 3 3 3 3
ns 20 20 20 8 8 8 8 8 8 8 8 8
α 0.6 0.75 0.99 0.9 0.99 0.99 0.9 0.99 0.99 0.85 0.5 0.75

the best accuracy in each column with red and the second best accuracy with blue. We see that

the OBTL classifier has either the best or second best accuracy in all the 12 experiments. We have

written the mean accuracy of each method in the last column, which has been averaged over all the

12 different experiments. The OBTL classifier has the best mean accuracy and the ILS [8] has the

second best accuracy among all the methods. We have assumed equal prior probabilities for all the

classes and used (3.32) for the OBTL classifier.

• Hyperparameters of the OBTL: We assume the same values of hyperparameters for all the

10 classes in each domain, so we can drop the superscript l denoting the class label. We set

ν = 10d = 200 for all the experiments. We choose α separately in each experiment since the

relatedness between distinct pairs of domains are different. For mt and ms, we pool all the target

and source data in all the 10 classes, respectively, and use the sample means of the datasets. We fix

βt = βs = 1 (meaning that κt = nt and κs = ns) and kt = ks = 1/ν = 1/200 = 0.005. The mean
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Figure 3.7: Accuracy in the Office+Caltech256 dataset versus: (a) kt when ks = 1/200 and for two experiments
a → w,α = 0.6 and w → d, α = 0.99, (b) ks when kt = 1/200 and for two experiments a → w,α = 0.6 and
w → d, α = 0.99, (c) α when kt = ks = 1/200 and for the experiment a→ w, (d) α when kt = ks = 1/200 and for
the experiment w → d. Reprinted with permission from [4], c©2018 IEEE.

of the Wishart precision matrix Λz, for z ∈ {s, t}, with scale matrix Mz and ν degrees of freedom

is νMz. Consequently, E(Λt) = E(Λs) = Id, which is a reasonable choice, since the provided

datasets of [9] have been normally standardized. Therefore, the only hyperparameter and the most

important one is α (∈ (0, 1)), which shows the relatedness between the two domains. Figs. 3.7a

and 3.7b demonstrate that the accuracy is robust for kt ∈ (0.005, 0.02) and ks ∈ (0.005, 0.02),

respectively. Figs. 3.7a and 3.7b are corresponding to two experiments: a→ w, α = 0.6 and w →

d, α = 0.99. Figs. 3.7c and 3.7d show interesting results. We have already seen similar behavior in

the synthetic data as well. In the case of a→ w, accuracy grows smoothly by increasing α, reaches

the maximum at α = 0.6, and decreases afterwards. This verifies the fact that the source domain a

cannot help the target domain w that much. On the contrary, accuracy increases monotonically in
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Fig. 3.7d, in the case of w → d, and the difference between accuracy for α = 0.01 and α = 0.99

is huge. This confirms that the source domain w is very related to the target domain d and helps it

a lot. Interestingly, this coincides with the findings from the literature that the two domains w and

d are highly related. We choose the values of α in each experiment which give the best accuracy.

They are shown in Table 3.2. The values of α in Table 3.2 also reveal the amount of relatedness

between any pairs of source and target domains. For example, both w → d and d → w have high

relatedness with α = 0.99, which has already been verified by other papers as well [72].

3.1.9 Conclusion

We constructed a Bayesian transfer learning framework to tackle the supervised transfer learn-

ing problem. The proposed Optimal Bayesian Transfer Learning (OBTL) classifier can deal with

the lack of labeled data in the target domain and is optimal in this new Bayesian framework since it

minimizes the expected classification error. We obtained the closed-form posterior distribution of

the target parameters and accordingly the closed-form effective class-conditional densities in the

target domain to define the OBTL classifier. As the OBTL’s objective function consists of hyper-

geometric functions of matrix argument, we used the Laplace approximations of those functions to

derive a computationally efficient and scalable OBTL classifier, while preserving its superior per-

formance. We compared the performance of the OBTL with its target-only version, OBC, to see

how transferring from source to target domain can help. We tested the OBTL classifier with real-

world benchmark image datasets and demonstrated its excellent performance compared to other

state-of-the-art domain adaption methods.

117



3.2 Optimal Bayesian Transfer Regression

3.2.1 Overview

Transfer learning studies effective ways to derive better predictors for a system of interest

in a target domain, where there is lack of data, by utilizing data from other related systems as

source domain(s). In this section we define a Bayesian transfer learning framework for regression

to integrate data between the domains through a joint prior distribution for the source and target

parameters. We derive closed-form posteriors of the target parameters integrating both the source

and target data, from which closed-form effective joint distributions in the target domain can be

derived in terms of generalized hypergeometric functions of matrix argument to define the Optimal

Bayesian Transfer Regression (OBTR) operator. We show that the OBTR improves the mean

squared error (MSE) when the source and target domains are related on both synthetic and real-

world data.

3.2.2 Introduction

Traditional machine learning methods assume that the training and test data follow the same

probability distribution and work poorly when that assumption does not hold. Transfer learning

and domain adaptation techniques attempt to address this issue and have been studied in recent

years [65-68]. Suppose we have two domains with different distributions, target domain and source

domain. The goal is to design an operator (for classification or regression) in the target domain,

assuming that the target domain has a very small number of training data. On the other side, there

are plenty of training data in the source domain. If the source data are somehow related to the

target data, leveraging those data can benefit the operator design in the target domain. Transfer

learning strives to transfer related data and knowledge from the source to the target domain.

The Optimal Bayesian Classifier (OBC) minimizes the expected classification error over an

uncertainty class of feature-label distributions [57, 58]. We followed the derivation of the OBC

(which is for one domain) and developed a Bayesian framework for transfer learning in previous

section, in which the relatedness between domains is defined via a joint prior distribution between
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the model parameters of the two domains. The Optimal Bayesian Transfer Learning (OBTL) [4]

classifier optimally transfers the data and knowledge from source to target domain and yields the

minimum expected classification error. The Optimal Bayesian Regression (OBR) proposed in [60]

minimizes the expected Mean Squared Error (MSE) over an uncertainty class of joint distributions

and outperforms traditional Bayesian Linear Regression (BLR) [94, 95]. In this section we adopt

the Bayesian transfer learning framework [4] and propose the Optimal Bayesian Transfer Regres-

sion (OBTR) for the target domain utilizing data across domains. We show that it outperforms the

OBR in terms of MSE when the data across domains are related. Unlike distribution-free transfer

learning methods [10, 70], here we are interested in finding optimal regression operators for an

assumed class of distributions. We particularly consider Gaussian distributions, with the benefit of

having closed-form posterior distributions.

3.2.3 Preliminaries

Suppose x is a d × 1 feature vector and y is the output. A joint process F (y,x) governs the

interactions of the output and the features. The goal is to find the optimal operator ψ(x) for the

observed point x which minimizes the MSE E[(y − ψ(x))2]:

ψ(x) = argmin
ψ∈F

EF [(y − ψ(x))2], (3.42)

where F denotes the class of all operators. It is well known that the optimal operator is the condi-

tional expectation of y given x, ψ(x) = EF [y|x]. If x and y follow a joint Gaussian distribution,

the optimal operator becomes linear [60, 94, 95]. Let z = [y,x
′
]
′ be the joint (d + 1) × 1 vector

which follows the multivariate Gaussian distribution z ∼ N (µ,Σ), where µ = [µy, µ
′
x]
′ and Σ =(

Σyy Σyx

Σ
′
yx Σxx

)
. In this case, the distribution of y given x is another Gaussian: y|x ∼ N (µy|x,Σy|x),

where µy|x = µy + ΣyxΣ−1
xx(x−µx) and Var(y|x) = Σyy−ΣyxΣ−1

xxΣ
′
yx. As a result, the optimal

operator (which is linear) and the minimum mean squared error (MMSE) are given by

ψ(x) = µy + ΣyxΣ−1
xx(x− µx),

EF [(y − ψ(x))2] = Σyy −ΣyxΣ−1
xxΣ

′

yx.

(3.43)
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Although we know the optimal operator as in (3.43), the true parameters µy, µx, Σyy, Σyx, and

Σxx are unknown and need to be estimated from the training data. Let θ̂ denote the estimate of θ

and ψn(.) be the optimal operator with the estimated parameters from n training data. In this case,

ψn(x) = µ̂y + Σ̂yxΣ̂−1
xx(x− µ̂x), (3.44)

and its MSE EF [(y − ψn(x))2] can be numerically found using test data (y,x) from the process

F (y,x). When there is little training data, and n is small for the feature dimension d, the estimated

parameters, especially the covariance matrices, will not be accurate, leading to a weak operator

and higher MSE. Bayesian methods are employed to incorporate prior knowledge in order to com-

pensate for the lack of data.

3.2.4 Optimal Bayesian Regression

The Optimal Bayesian Filter (OBF) and Optimal Bayesian Regression (OBR) assume that the

joint process (y,x) belongs to an uncertainly class of processes defined by the parameter set Θ,

each θ ∈ Θ corresponding to a distribution Fθ(y,x), and the aim is to minimize the MSE relative to

Θ [60]. Let D = {(y1,x
′
1)
′
, · · · , (yn,x

′
n)
′} contain n random training samples and π(θ,D) denote

the joint distribution over Θ and the sampling process. The dependence of (y,x) on θ is denoted

by writing (yθ,xθ). The OBR is defined as

ψOBR(x,D) = argmin
ψ∈F

Eπ∗EF [(yθ − ψ(xθ))
2], (3.45)

where the first expectation is relative to the posterior distribution of the parameters given the train-

ing data, π∗(θ) = π(θ|D). The solution to (3.45) is the conditional expectation

ψOBR(x,D) = Eπ∗EF [y|x, θ] = Eπ∗ [ψ(x)|θ], (3.46)
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where ψ(x) is the optimal operator given in (3.42). In the case of the Gaussian distribution, ψ(x)

as in (3.43), the OBR is still linear and can be written as

ψOBR(x,D) = Eπ∗ [µy]− Eπ∗ [ΣyxΣ−1
xxµx] + Eπ∗ [ΣyxΣ−1

xx ]x. (3.47)

It is shown in [60] that the OBR in (3.46) can also be written as

ψOBR(x,D) = EFDeff
[y|x], (3.48)

where FDeff(y,x) is the effective joint distribution of (y,x),

FDeff(y,x) =

∫
Θ

Fθ(y,x)π∗(θ)dθ. (3.49)

Suppose z = [y,x
′
]
′ follows the Gaussian distribution z ∼ N (µ,Λ−1), where µ = [µy, µ

′
x]
′

and Λ = Σ−1 =
(

Λyy Λyx

Λ
′
yx Λxx

)
is the precision matrix. The uncertain parameters are θ = (µ,Λ).

We use the conjugate Gaussian-Wishart prior distribution for µ and Λ: Λ ∼ Wd+1(M, ν) and

µ|Λ ∼ N (m, (κΛ)−1), where M =
(

Myy Myx

M
′
yx Mxx

)
> 0 is the positive-definite scale matrix, ν ≥

d + 1 is the degrees of freedom, m = [my,m
′
x]
′ is the prior mean, and κ > 0 is a positive

scalar. Due to the conjugacy, the posterior of θ is another Gaussian-Wishart distribution: Λ|D ∼

Wd+1(Mn, νn) and µ|Λ,D ∼ N (mn, (κnΛ)−1), where κn = κ + n, νn = ν + n, mn = κm+nz̄
κ+n

,

and M−1
n = M−1 + S + κn

κ+n
(m − z̄)(m − z̄)

′ . Here z̄ = 1
n

∑n
i=1 zi is the sample mean and

S =
∑n

i=1(zi − z̄)(zi − z̄)
′ is the sample covariance matrix. Similar to the derivations in [4, 57],

the effective joint distribution can be derived as a multivariate student’s t-distribution

FDeff(z) = T

(
νn − d,mn,

(
κn(νn − d)

κn + 1
Mn

)−1
)
. (3.50)

Lemma 4. [96] Suppose x ∈ Rd has a multivariate t-distribution T (x; ν, µ,Σ) with ν > 0
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degrees of freedom, the location µ ∈ Rd, and the scale matrix Σ ∈ Rd×d,

p(x|ν, µ,Σ) =
Γ(ν+d

2
)

Γ(ν
2
)(νπ)

d
2 |Σ| 12

×
(

1 +
1

ν
(x− µ)

′
Σ−1(x− µ)

)− ν+d
2

.

(3.51)

If x = [x
′
1,x

′
2]
′

with the dimensions of x1 and x2 being d1 and d2, respectively, and with the

corresponding partitions of the location µ = [µ
′
1, µ

′
2]
′

and scale matrix Σ =
(

Σ11 Σ12

Σ
′
12 Σ22

)
, the

conditional distribution of x1 given x2 is a t-distribution p(x1|x2) = T (x1; ν1|2, µ1|2,Σ1|2), where

ν1|2 = ν + d2, µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2),

Σ1|2 =
ν + (x2 − µ2)

′
Σ−1

22 (x2 − µ2)

ν + d2

(Σ11 −Σ12Σ
−1
22 Σ

′

12).

Using (3.48), (3.50), and Lemma 4, the OBR is derived as

ψOBR(x) = mn,y + ΦyxΦ−1
xx(x−mn,x), (3.52)

where mn = [mn,y,m
′
n,x]

′ and Φ =
(

Φyy Φyx

Φ
′
yx Φxx

)
= κn+1

κn(νn−d)
M−1

n .

3.2.5 Optimal Bayesian Transfer Regression

Suppose there are a target t and a source s domain, where zz = [yz,x
′
z]
′ and zz ∼ N (µz,Λ

−1
z )

for z ∈ {t, s}. We constructed in [4] a Bayesian transfer learning framework and defined the

relatedness between the domains by a joint prior distribution for the parameters of the models.

We adopt some results of [4] here for the regression problem and refer the readers to [4] for the

detailed definitions and proofs, due to the lack of space. Suppose the joint prior distribution

p(µt, µs,Λt,Λs) = p(µt|Λt)p(µs|Λs)p(Λt,Λs), (3.53)

where it is assumed µt and µs are conditionally independent given Λt and Λs in order to have

conjugacy and closed-form posteriors. Similar to the one-domain scenario,
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µz|Λz ∼ N (mz, (κzΛz)
−1). (3.54)

The key issue in [4] is to define a joint prior for the two precision matrices Λt and Λs that bridges

the two domains in a fully Bayesian framework. The joint distribution for Λt and Λs is defined as

p(Λt,Λs) = Ketr

(
−1

2

(
Mt
−1 + F

′
CF
)

Λt

)
× etr

(
−1

2
C−1Λs

)
|Λt|

ν−d−2
2 |Λs|

ν−d−2
2

0F1

(
ν

2
;
1

4
G

)
,

(3.55)

where M =
(

Mt Mts

M
′
ts Ms

)
is a 2(d + 1) × 2(d + 1) positive definite scale matrix, ν ≥ 2(d + 1)

denotes degrees of freedom, C = Ms −M
′
tsMt

−1Mts, F = C−1M
′
tsM

−1
t , G = Λs

1
2 FΛtF

′
Λs

1
2 ,

and K−1 = 2(d+1)νΓ2
d+1

(
ν
2

)
|M| ν2 . The function 0F1 is called the matrix-variate generalized

hypergeometric function [87]. Furthermore, the marginal distributions of the target and source

precision matrices are Wishart: Λz ∼ Wd+1(Mz, ν) for z ∈ {t, s}.

Let Dz = {zz,1, · · · , zz,nz} denote nz training data in the domain z ∈ {t, s}. Since we have

defined a joint prior, we will also have a joint posterior distribution for µt, µs, Λt, and Λs given

the two datasets Dt and Ds. However, as our aim is to design an operator in the target domain, the

source parameters are integrated out in the joint posterior, yielding the posterior distribution of the

target parameters µt and Λt. Having the posterior in the target domain, we use (3.49) to derive the

effective joint distribution of z = [y,x
′
]
′ in the target domain. The following theorems are used in

the OBTR, with the detailed proofs in [4].

Theorem 5. Given the target Dt and source Ds data, the posterior distribution of target mean µt

and target precision matrix Λt has a Gaussian-Hypergeometric-function distribution

p(µt,Λt|Dt,Ds) =

A |Λt|
1
2 exp

(
−κt,n

2
(µt −mt,n)

′
Λt (µt −mt,n)

)
× |Λt|

ν+nt−d−1
2 etr

(
−1

2
T−1
t Λt

)
× 1F1

(
ν + ns

2
;
ν

2
;
1

2
FΛtF

′
Ts

)
,

(3.56)
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where A is the constant of proportionality

A−1 =

(
2π

κt,n

) d+1
2

2
(d+1)(ν+nt)

2 Γd+1

(
ν + nt

2

)
|Tt|

ν+nt
2

× 2F1

(
ν + ns

2
,
ν + nt

2
;
ν

2
; TsFTtF

′
)
,

(3.57)

and

κt,n = κt + nt, mt,n =
κtmt + ntz̄t
κt + nt

,

T−1
t = M−1

t + F
′
CF + St

+
κtnt
κt + nt

(mt − z̄t)(mt − z̄t)
′
,

T−1
s = C−1 + Ss +

κsns
κs + ns

(ms − z̄s)(ms − z̄s)
′
,

(3.58)

with sample means and covariances for z ∈ {s, t} as

z̄z =
1

nz

nz∑
i=1

zz,i, Sz =
nz∑
i=1

(zz,i − z̄z) (zz,i − z̄z)
′
.

Theorem 6. The effective joint distribution of z = [y,x
′
]
′

in the target domain is given by

FDt,Dseff (z) = π−
d+1

2

(
κt,n
κz

) d+1
2

Γd+1

(
ν + nt + 1

2

)
× Γ−1

d+1

(
ν + nt

2

)
|Tz|

ν+nt+1
2 |Tt|−

ν+nt
2

× 2F1

(
ν + ns

2
,
ν + nt + 1

2
;
ν

2
; TsFTzF

′
)

× 2F
−1
1

(
ν + ns

2
,
ν + nt

2
;
ν

2
; TsFTtF

′
)
,

(3.59)

where

κz = κt,n + 1 = κt + nt + 1,

T−1
z = T−1

t +
κt,n

κt,n + 1
(mt,n − z) (mt,n − z)

′
.

(3.60)

The functions 1F1 and 2F1 utilized in Theorems 5 and 6 are called Confluent and Gauss hy-

pergeometric functions of matrix argument, respectively [87]. Having derived the effective joint
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distribution in our transfer learning framework, we can define the Optimal Bayesian Transfer Re-

gression (OBTR) operator, similar to the OBR in (3.48), as

ψOBTR(x,Dt,Ds) = E
F
Dt,Ds
eff

[y|x]. (3.61)

Although we have derived a closed-form joint distribution for z = [y,x
′
]
′ in Theorem 6, deriving

the closed-form conditional expectation E
F
Dt,Ds
eff

[y|x] in (3.61) is not straightforward if not impos-

sible, since FDt,Dseff (z) includes the Gauss hypergeometric functions. Based on the Bayes rule, the

conditional distribution is proportional to the joint distribution. Given any test point x, we can sam-

ple from FDt,Dseff (y|x) ∝ FDt,Dseff (y,x) = FDt,Dseff (z) using a Markov Chain Monte Carlo (MCMC)

method and consequently can compute E
F
Dt,Ds
eff

[y|x] by averaging the generated samples; however,

it is not efficient since the costly MCMC process have to be done for every test data point.

We propose a method to use only d + 1 MCMC processes, which can considerably reduce

the computations. Although we do not know the exact formula for the OBTR in (3.61), we know

from (3.47) that it is linear in x, since only the posterior distributions of the target parameters are

different from the OBR. Therefore, the OBTR has the general linear form

ψOBTR(x,Dt,Ds) = α + β
′
x, (3.62)

where α ∈ R and β ∈ Rd. We use d + 1 test points to determine α and β. Let 0d denote the all-

zero vector. From (3.61) and (3.62), α is derived as α = E
F
Dt,Ds
eff

[y|0d]. Let ei = [0, · · · , 1, · · · , 0]
′

denote the basis vector whose ith entry is one and the rest are zero. The ith entry of the vector

β can be found from (3.61) and (3.62) as βi = E
F
Dt,Ds
eff

[y|ei] − α for each i ∈ {1, · · · , d}. We

use Hamiltonian Monte Carlo (MHC) [97], which is more accurate than the Metropolis-Hasting

random walk samplers for complex functions since it takes into account the derivative information

of the functions as well. Since direct evaluation of the Gauss hypergeometric function is time-

consuming, we use its Laplace approximation, proposed in [4], to speed up the HMC computations.

Once α and β are derived, there is no need for HMC, and (3.62) can be used to predict any new
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test point.
3.2.6 Experiments

3.2.6.1 Synthetic data

We first compare the MSE results by OBTR and OBR based on simulated data to see how

transfer learning can help improve the MSE in the target domain, especially when the number of

target training data is small. Let St and Ss be our prior beliefs for the covariance matrices of the

target and source domains, respectively, which marginally follow Inverse-Wishart distributions. As

a result, we choose M−1
t = (ν−2(d+1)−1)St = (ν−2d−3)St and similarly M−1

s = (ν−2d−

3)Ss. In the OBTR framework, Mts has the key transferring role but there is a constraint that the

scale matrix M =
(

Mt Mts

M
′
ts Ms

)
should be positive definite, or equivalently, Mt−MtsM

−1
s M

′
ts > 0.

For satisfying the positive definiteness of M, we consider a special structure which is easier to

follow. Suppose St = A and Ss = ksA, where A ∈ R(d+1)×(d+1) is a symmetric positive definite

matrix and ks > 0. For this structure it can easily be shown that M > 0 if Mts = τ [
√
ks(ν −

2d − 3)A]−1 and |τ | < 1. We see τ as a representative for the relatedness between the source

and target domains. When τ = 0, we have Mts = 0, and similar to [4] where we proved that the

OBTL reduces to the OBC, here the OBTR becomes identical with the OBR. As a result, there is

no transfer learning when τ = 0. However, when |τ | is closer to one, we have a stronger bridge and

higher relatedness between the domains, and the abundance of data in the source domain can lead

to a much better MSE in the target domain. We consider two simulated examples. In both cases,

we set d = 10, ν = 25, κt = κs = 100, mt = 0d and ms = 2× 1d. In case 1, we use A = 5× Id,

ks = 1, and τ = 0.9. In case 2, we use ks = 2, τ = 0.95, Aii = 2, and Aij = ρ
√

AiiAjj , for any

i, j = 1, · · · , d+ 1 with ρ = 0.7.

To sample from the prior (3.53) we first sample from a Wishart distribution W2(d+1)(M, ν) to

get a sample for Λ =
(

Λt Λts

Λ
′
ts Λs

)
and then pick (Λt,Λs), which is a joint sample from p(Λt,Λs) in

(3.55). Then given Λt and Λs, we sample from (3.54) to get samples of µt and µs. Once we have

µt, µs, Λt, and Λs, we generate 20 different training and test sets. Training sets contain samples

from both the target and source domains, but the test set contains only samples from the target

126



0 20 40 60 80

n
t

1

1.2

1.4

1.6

1.8

2

A
v
e

ra
g

e
 M

S
E

Case 1

OBR

OBTR

Optimal

0 20 40 60 80

n
t

0.07

0.08

0.09

0.1

0.11

0.12

A
v
e

ra
g

e
 M

S
E

Case 2

OBR

OBTR

Optimal

Figure 3.8: Average MSE versus nt for the two cases, assuming ns = 500. Reprinted with permission from [5],
c©2018 IEEE.
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Figure 3.9: Average MSE versus ns for the two cases, assuming nt = 5. Reprinted with permission from [5],
c©2018 IEEE.

domain. We set the size of the test set at 104 in the simulations. For each training and test set,

we use the OBTR and its target-only version, OBR, and calculate the MSE. Then we average all

the errors for 20 different training and test sets. We further repeat this whole process 100 times

for different realizations of Λt, Λs, µt, and µs, and finally average all the MSE’s and return the

average MSE.

Figure 3.8 shows the average MSE versus nt for the OBTR and OBR, assuming ns = 500. We
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also include the average MSE of the optimal operator with known true parameters for the sake of

comparison. We see that for both cases, the OBTR has better performance than the OBR in the

range of small nt, which is the reasonable region in transfer learning scenarios with lack of data

in the target domain. The OBTR and OBR converge to each other and both to the optimal MSE

when nt → ∞, meaning that we have enough data in the target domain to learn the model well

without the need of source data and transfer learning. Figure 3.9 demonstrates the average MSE

versus ns for the OBTR and OBR in both cases, assuming nt = 5. The average MSE of the OBR is

constant, as it does not use the source data. For the OBTR, we see that its average MSE decreases

monotonically with respect to ns and then converges to a value which pertains to the amount of

relatedness between the domains.

3.2.6.2 Real-world data

We further test the OBTR and OBR on five benchmark regression datasets: Concrete, Housing,

Automobile MPG, Protein, and Yacht, available in the UCI repository. Authors in [10] have gen-

erated three different sets of source and target data for each of these datasets. Thus, there are three

cases for each dataset, and for each case one set is considered as the target data and the other two

as the source data. Table 3.3 shows the Root Mean Squared (RMS) error of the OBR and OBTR

with τ = 0.3, 0.5, 0.7, 0.9, 0.99 averaged over 100 runs. In each run, we randomly choose nt = 10

training target data, ns = 200 training source data, and 100 test target data. We first normalize

all the features and output in each domain to have zero mean and standard deviation one. For

all the cases, we see that the OBTR outperforms the OBR thanks to the relatedness between the

domains and transfer learning. Since the data are normalized, we choose the hyperparameters as:

mt = ms = 0d, A = Id and ks = 1. We also choose κt = nt, κs = ns, and ν = 3(d+ 1).

3.2.7 Conclusion

In this section, we studied Bayesian transfer learning for regression. We constructed a fully

Bayesian transfer learning framework by defining a joint prior distribution over the model parame-

ters of the target and source domains. We proposed the OBTR which optimally transfers the useful
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Table 3.3: Average RMS errors on five UCI datasets, each divided into three cases as in [10]. In each case, target
and source data are different. Bold font marks the lowest error for the OBR and OBTR with different values of τ . In
each case, nt = 10 and ns = 200. C 1 means Case 1. Reprinted with permission from [5], c©2018 IEEE.

Concrete (d = 7) Housing (d = 12) MPG (d = 6) Protein (d = 8) Yacht (d = 5)
Method C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3

OBR 11.35 12.48 14.87 5.10 5.04 8.57 2.78 3.53 4.65 5.37 5.93 6.34 0.42 1.74 16.28
OBTR, τ = 0.3 11.24 12.28 14.73 4.99 4.89 8.37 2.75 3.50 4.61 5.35 5.92 6.30 0.42 1.73 16.21
OBTR, τ = 0.5 11.06 11.99 14.39 4.73 4.69 8.08 2.68 3.46 4.48 5.31 5.85 6.24 0.41 1.72 16.08
OBTR, τ = 0.7 10.77 11.48 13.93 4.45 4.41 7.97 2.61 3.36 4.35 5.23 5.74 6.08 0.41 1.70 15.87
OBTR, τ = 0.9 10.51 10.93 13.29 4.22 4.16 8.25 2.52 3.23 4.21 5.10 5.56 5.92 0.39 1.65 15.29

OBTR, τ = 0.99 10.65 10.92 13.15 4.21 4.07 8.59 2.40 3.09 4.16 5.06 5.48 5.87 0.38 1.62 14.86

knowledge from the source to target domain. We showed by synthetic and real-world data that the

OBTR outperforms OBR, its target-only counterpart.
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3.3 Optimal Bayesian Transfer learning for Count Data

3.3.1 Overview

There is often limited amount of omics data to design predictive models in biomedicine. Know-

ing that these omics data come from underlying processes that may share common pathways and

disease mechanisms, it may be beneficial for designing a more accurate and reliable predictor in a

target domain of interest, where there is a lack of labeled data, to leverage available data in relevant

source domains. In this section, we focus on developing Bayesian transfer learning methods for

analyzing next-generation sequencing (NGS) data to help improve predictions in the target domain.

We formulate transfer learning in a fully Bayesian framework and define the relatedness by a joint

prior distribution of the model parameters of the source and target domains. Defining joint priors

acts as a bridge across domains, through which the related knowledge of source data is transferred

to the target domain. We focus on RNA-seq discrete count data, which are often overdispersed.

To appropriately model them, we consider the Negative Binomial model and propose an Optimal

Bayesian Transfer Learning (OBTL) classifier that minimizes the expected classification error in

the target domain. We evaluate the performance of the OBTL classifier via both synthetic and

cancer data from The Cancer Genome Atlas (TCGA).

3.3.2 Introduction

Due to the high dimensionality of omics data, effective predictive models demand a great num-

ber of relevant samples, which are difficult and costly to collect. This puts machine learning in

bioinformatics in small-sample scenarios [15, 98], imposing critical concerns on the reproducibil-

ity of results derived from omics data. It is desired to leverage the shared knowledge of various

sources of omics data to design a better predictor in a target domain of interest which suffers from

lack of samples. Since the distributions of the source and target data may differ significantly, train-

ing on source data and testing on target data will give higher error. Transfer learning and domain

adaptation have been introduced to address this issue [65, 67, 68]. Suppose we have two different

domains with different distributions, target and source domains. The goal is to design a classifier

130



in the target domain and evaluate it with the target test data, assuming that the target domain has

a very small number of labeled data for training. There may be available labeled training data

in other relevant source domains, for example, from relevant disease models or similar studies.

Leveraging those data can benefit the training of the classifier in the target domain by transferring

useful knowledge from the source to the target domain.

Recently, transfer learning has been used in genomics in order to bring knowledge from mice

to the human domain [99]. The authors in [99] have exploited gene expression data for diseases in

mice to improve the predictions for similar human diseases and to derive more confident differen-

tial gene expression analysis. In [100] the authors have studied how multi-task learning could better

predict phenotype-gene associations in Human Phenotype Ontology (HPO) by effectively summa-

rizing the ontology structure, and how transfer learning across HPO and Gene Ontology (GO)

could bring useful training information. The study in [101] presents two novel approaches for in-

corporating information from a secondary domain for improving cancer drug sensitivity prediction

in a target domain. The first approach in [101] is based on latent variable cost optimization and the

second approach considers polynomial mapping between the two databases. The study in [71] has

proposed a transfer learning method for classification and biomarker discovery which transfers the

classifications rules between domains and shows better performance in genomics and proteomics

than the target-only dataset and also the union of the datasets. The study in [70] considers transfer

learning for degenerate biological systems. Degeneracy refers to the phenomenon that structurally

different elements of the system perform the same/similar function or yield the same/similar out-

put; the authors of [70] integrate transfer learning and degeneracy under a Bayesian framework

and present good predictive accuracy for the relationship between transcription factors and gene

expression across multiple cell lines.

Although there are many transfer learning methods in the literature, there is lack of a clear

definition of the relatedness between two domains and a rigorous theoretical approach in the sense

of minimizing the transfer-based classification error. Most endeavors in this field are based on

domain adaptation techniques, which derive another common space in which the target and source
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data follow a similar distribution after a space transformation, regardless of considering the classifi-

cation errors. On previous sections, we followed the framework of the Optimal Bayesian Classifier

(OBC) [57, 58], which minimizes the expected classification error over an uncertainty class of

feature-label distributions in one domain, and developed a Bayesian framework for transfer learn-

ing in [4,5], where the relatedness between domains is defined in terms of a joint prior distribution

between the model parameters of the corresponding feature-label distributions in the two domains.

We then proposed the Optimal Bayesian Transfer Learning (OBTL) classifier, which optimally

transfers the knowledge from the source to the target domain and yields the minimum expected

classification error. In [4], we addressed the transfer learning for continuous data with the assump-

tion of Gaussian feature-label distributions and derived the OBTL classifier in a closed form in

terms of hypergeometric functions of matrix argument.

In this section, we develop an OBTL classifier for count data from next-generation sequenc-

ing (NGS), which has been ubiquitous in modern biology and medicine research. NGS provides

access to genome-scale expression profiles, such as RNA-seq count data in different samples and

conditions, to help derive systematic understanding of cellular mechanisms. As noted, transfer

learning has been considered in different biological problems [70,71,102], for instance, to transfer

knowledge from prevalent diseases with much more labeled data to design accurate classifiers for

those for which there is little data.

Owing to both technical and biological variations in NGS count data, the Negative Binomial

(NB) distribution is well suited for modeling those data and accounts for large dispersion in the

data [50, 103-105]. Therefore, we use NB to model feature-label distributions. Our goal is to

design an optimal classifier in the target domain using a few labeled target training data as well

as available labeled source training data. We define joint prior distributions between the NB mean

parameters as well as between the NB shape (inverse of dispersion) parameters in the two domains.

Having defined such a joint prior, the posterior distributions of the parameters in the two domains

can be obtained simultaneously. As a result, when the source data are related to the target data,

they can improve the inference of the target posteriors and lead to a more accurate classifier in the
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target domain. Unlike [4], in this section we have no closed-form OBTL classifier. We employ

Hamiltonian Monte Carlo (HMC) [97], which is a leading Markov Chain Monte Carlo (MCMC)

method, to derive the posterior samples and effective class-conditional densities, on which the

OBTL classifier is defined. We compare the OBTL to its corresponding target domain OBC to see

when and how transfer learning and source data can help reach a lower error. We also evaluate

the OBTL classifier on lung cancer data from The Cancer Genome Atlas (TCGA) [106] to classify

two subtypes of non-small cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) versus lung

squamous cell carcinoma (LUSC), and observe its performance improvement. We further assess

the performance of the OBTL classifier using kidney cancer data from TCGA for the classification

of two main subtypes of kidney cancer called kidney renal clear cell carcinoma (KIRC) and kidney

renal papillary cell carcinoma (KIRP).

3.3.3 Method

3.3.3.1 Bayesian Transfer Learning Framework for Count Data

We consider a supervised transfer learning problem in which there are L common classes (la-

bels) in each domain. Let Ds and Dt denote the labeled datasets of the source and target domains

with sizes of Ns and Nt, respectively, where Nt � Ns. Let Dls =
{
xls,i,j

}
, where l ∈ {1, · · · , L},

i ∈ {1, · · · , d}, and j ∈ {1, · · · , nls}, and Dls contains the nls data points with the counts of d

genes in the source domain for the class l. Similarly, let Dlt =
{
xlt,i,j

}
, where l ∈ {1, · · · , L},

i ∈ {1, · · · , d}, and j ∈ {1, · · · , nlt}, and Dlt contains the nlt data points with the counts of d genes

in the target domain for the class l. Therefore, Ds =
⋃L
l=1Dls, Dt =

⋃L
l=1Dlt, Ns =

∑L
l=1 n

l
s,

and Nt =
∑L

l=1 n
l
t. We use the Negative Binomial distribution to model the gene expression count

data, which are often overdispersed, in each domain:

xlz,i,j ∼ NB(µlz,i, r
l
z,i), (3.63)
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with the probability mass function (PMF)

P (xlz,i,j = k|µlz,i, rlz,i) =

Γ(k + rlz,i)

Γ(rlz,i)Γ(k + 1)

(
µlz,i

µlz,i + rlz,i

)k(
rlz,i

µlz,i + rlz,i

)rlz,i

,

(3.64)

where z ∈ {s, t} denotes the source, s, or target, t, domains; Γ(·) is the gamma function which

is defined as Γ(z) =
∫∞

0
xz−1e−xdx and for the count value k is equal to Γ(k) = (k − 1)!; µlz,i

and rlz,i are respectively the mean and shape parameters of the gene i in domain z and class l. The

shape parameter rlz,i is the inverse of the dispersion parameter φlz,i (rlz,i = 1/φlz,i) of the Negative

Binomial model, which accounts for overdispersion in data, meaning that the variance can be much

greater than the mean. The mean and variance of xlz,i,j are

E(xlz,i,j) = µlz,i, Var(xlz,i,j) = µlz,i +

(
µlz,i
)2

rlz,i
. (3.65)

• Prior distributions:

In a Bayesian framework, we need to define prior distributions for the model parameters. For

transfer learning, we should define the priors in such a way that the relevant model parameters in

different domains relate to each other. We address this issue by defining joint prior distributions

between µls,i and µlt,i and between rls,i and rlt,i for any i ∈ {1, · · · , d} and l ∈ {1, · · · , L}. For

computationally feasible inference, we assume that the priors for different genes and classes are

independent in each domain. Let µ =
{
µ
{1:L}
{s,t},{1:d}

}
and r =

{
r
{1:L}
{s,t},{1:d}

}
denote respectively all

the mean and shape parameters of the d genes in L classes and two domains s and t. The prior is

factorized as

p(µ, r) =
L∏
l=1

d∏
i=1

p
(
µls,i, µ

l
t,i

)
p
(
rls,i, r

l
t,i

)
, (3.66)

where it is assumed that the mean and shape parameters are independent; p
(
µls,i, µ

l
t,i

)
is the joint

probability distribution between the mean parameters of the source and target domains for the

gene i and the class l; similarly, p
(
rls,i, r

l
t,i

)
is the joint probability distribution between the shape
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parameters of the source and target domains for gene i and class l.

We need to define joint priors for two sets of positive parameters: µls,i and µlt,i, r
l
s,i and rlt,i,

so that we can control the amount of correlation between them to simulate weaker to stronger

dependency between the features of the two domains. One way of deriving such a joint prior is to

integrate out the off-diagonal entry of a 2 × 2 Wishart matrix, which yields the joint distribution

of its diagonal entries, which are both positive. Their correlation can be altered by defining an

appropriate scale matrix.

Definition 3. A random d × d symmetric positive-definite matrix Λ has a nonsingular Wishart

distribution with ν degrees of freedom, Wd(M, ν), if ν ≥ d and M is a d × d positive-definite

matrix (M > 0), and the density is

p(Λ) =
[
2
νd
2 Γd

(ν
2

)
|M|

ν
2

]−1

|Λ|
ν−d−1

2 etr

(
−1

2
M−1Λ

)
, (3.67)

where |A| is the determinant of A, etr(A) = exp (tr(A)) and Γd(α) is the multivariate gamma

function given by Γd(α) = π
d(d−1)

4

∏d
i=1 Γ

(
α− i−1

2

)
.

If Vec(Λ) denotes the d2 × 1 vectorized representation of Λ by stacking the columns of the

matrix Λ on top of one another, then

Cov[Vec(Λ)] = ν[M⊗M][Id2 + T ], (3.68)

where ⊗ denotes the Kronecker product and Id2 is the identity matrix of size d2. Here T is the

transpose operator, i.e., TVec(A) = Vec(A
′
), which can be written in terms of basis vectors ei,

for i ∈ {1, · · · , d} (a column vector whose ith entry is one and the remaining entries are zeros), as

T =
d∑
i=1

d∑
j=1

[ej ⊗ ei][ei ⊗ ej]
′
. (3.69)

Lemma 5. [85]: If Λ ∼ Wd(M, ν), and A is an r × d matrix of rank r, where r ≤ d, then

AΛA
′ ∼ Wr(AMA

′
, ν).
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Corollary 2. If Λ ∼ W2(M, ν), Λ =
(
λ11 λ12
λ12 λ22

)
, and M = (m11 m12

m12 m22 ), then λii ∼ miiχ
2
ν for

i = 1, 2, where χ2
ν denotes the Chi-squared distribution with ν degrees of freedom. As a result,

their mean and variance are E(λii) = νmii and Var(λii) = 2νm2
ii for i = 1, 2, which can also be

verified by (3.68). Furthermore, based on (3.68), the covariance and correlation between λ11 and

λ22 are respectively

Cov(λ11, λ22) = 2νm2
12, ρλ =

m2
12

m11m22

. (3.70)

Theorem 7. [86]: Let Λ =
(
λ11 λ12
λ12 λ22

)
be a 2 × 2 Wishart random matrix with ν ≥ 2 degrees

of freedom and positive-definite scale matrix M = (m11 m12
m12 m22 ). The joint distribution of the two

diagonal entries λ11 and λ22 have density function given by

p(λ11, λ22) =

K exp

(
−1

2

(
m−1

11 + c2f
2
)
λ11

)
exp

(
−1

2
c−1

2 λ22

)
× (λ11)

ν
2
−1 (λ22)

ν
2
−1

0F1

(
ν

2
;
1

4
g

)
,

(3.71)

where c2 = m22 −m2
12m

−1
11 , f = c−1

2 m12m
−1
11 , g = f 2λ11λ22, K−1 = 2νΓ2

(
ν
2

)
|M| ν2 , and 0F1 is

the generalized hypergeometric function [87].

Definition 4. [87]: The generalized hypergeometric function is defined by

pFq(a1, · · · , ap; b1, · · · , bq;x)

=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
, (3.72)

where ai, i = 1, · · · , p, and bj , j = 1, · · · , q, are arbitrary numbers and (a)k = a(a + 1) · · · (a +

k − 1), k = 1, 2, · · · is the Pochhammer symbol with (a)0 = 1.
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Some special cases of generalized hypergeometric functions (3.72) are

0F0(x) =
∞∑
k=0

xk

k!
= exp(x),

1F0(a;x) =
∞∑
k=0

(a)kx
k

k!
= (1− x)−a, |x| < 1,

0F1(b;x) =
∞∑
k=0

xk

(b)kk!
,

(3.73)

where 0F1(b;x) is called the confluent hypergeometric limit function, which is closely related to

the Bessel functions:

Jα(x) =
(x

2
)α

Γ(α + 1)
0F1

(
α + 1;−1

4
x2

)
. (3.74)

Now, using Corollary 2 and Theorem 7, for every gene i ∈ {1, · · · , d} and class l ∈ {1, · · · , L},

we can define the following joint prior for µls,i and µlt,i:

p(µls,i, µ
l
t,i) = K l

µ,i exp

(
−

µls,i
2ml

s,i(1− ρlµ,i)

)

× exp

(
−

µlt,i
2ml

t,i(1− ρlµ,i)

)(
µls,i
) νµ

2
−1 (

µlt,i
) νµ

2
−1

× 0F1

(
νµ
2

;
ρlµ,i

4ml
s,im

l
t,i

(
1− ρlµ,i

)2µ
l
s,iµ

l
t,i

)
,

(3.75)

where E(µlz,i) = νµm
l
z,i, Var(µlz,i) = 2νµ(ml

z,i)
2 for z ∈ {s, t}, and Corr(µls,i, µ

l
t,i) = ρlµ,i.

Similarly, for every gene i ∈ {1, · · · , d} and class l ∈ {1, · · · , L}, we can define the following

joint prior for rls,i and rlt,i:

p(rls,i, r
l
t,i) = K l

r,i exp

(
−

rls,i
2sls,i(1− ρlr,i)

)

× exp

(
−

rlt,i
2slt,i(1− ρlr,i)

)(
rls,i
) νr

2
−1 (

rlt,i
) νr

2
−1

× 0F1

(
νr
2

;
ρlr,i

4sls,is
l
t,i

(
1− ρlr,i

)2 r
l
s,ir

l
t,i

)
,

(3.76)
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Figure 3.10: Dependency of the source and target domains through their mean and shape parameters for any gene
i ∈ {1, · · · , d} and class l ∈ {1, · · · , L}. Reprinted with permission from [6], c©2019 IEEE.

where E(rlz,i) = νrs
l
z,i, Var(rlz,i) = 2νr(s

l
z,i)

2 for z ∈ {s, t}, and Corr(rls,i, r
l
t,i) = ρlr,i.

Dependency of the source and target domains through their mean and shape parameters is

shown in Fig. 3.10. Defining joint prior distributions for the mean and shape parameters connects

the two domains through which the knowledge of rich source data can be transferred by improving

the posterior distributions of the target parameters. The OBTL uses the improved posteriors of the

target parameters to yield better prediction accuracy whenever the source domain is related to the

target domain.

• Posteriors of Target Parameters:

Independent assumptions for all the genes i ∈ {1, · · · , d}, classes l ∈ {1, · · · , L}, domains

z ∈ {s, t}, and samples j ∈ {1, · · · , nlz} is similarly adopted for the joint data likelihood function:

P (Ds,Dt|µ, r) =
∏

z∈{s,t}

L∏
l=1

d∏
i=1

nlz∏
j=1

P (xlz,i,j|µlz,i, rlz,i). (3.77)

Therefore, the posteriors of different genes in different classes can be factorized as

p

(
µls,i, µ

l
t,i, r

l
s,i, r

l
t,i

∣∣∣∣Dls,Dlt) ∝
p
(
µls,i, µ

l
t,i

)
p
(
rls,i, r

l
t,i

) ∏
z∈{s,t}

nlz∏
j=1

P (xlz,i,j|µlz,i, rlz,i),
(3.78)
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for all i ∈ {1, · · · , d} and l ∈ {1, · · · , L}. Since we are interested in the posteriors of the target

parameters for the sake of classification in the target domain, we can derive them by integrating

out the source parameters in the joint posterior (3.78) as

p

(
µlt,i, r

l
t,i

∣∣∣∣Dls,Dlt) ∝ ∫
µls,i

∫
rls,i

p
(
µls,i, µ

l
t,i

)
p
(
rls,i, r

l
t,i

)
×
∏

z∈{s,t}

nlz∏
j=1

P (xlz,i,j|µlz,i, rlz,i)dµls,idrls,i.
(3.79)

Since the joint prior is not conjugate for the joint likelihood, the joint posterior, and conse-

quently the target posteriors will not have closed forms. We utilize Markov Chain Monte Carlo

(MCMC) methods to obtain posterior samples in the target domain. We use Hamiltonian Monte

Carlo (HMC) [97], which has a superior performance to random walk MCMC samplers. To this

end, we employ the STAN software [107], which has efficiently implemented the HMC.

3.3.3.2 Effective Class-Conditional Densities

For the optimal Bayesian classifier [57, 58], using the posterior predictive densities of the

classes, called “effective class-conditional densities", leads to optimal classifiers to minimize the

Bayesian expected errors of the classifiers. Similarly, we can derive the effective class-conditional

densities for defining the OBTL classifier in the target domain, albeit, with the posterior of the

target parameters derived from both the target and source samples.

Suppose that x denotes a d × 1 new observed data point in the target domain, and we aim to

optimally classify it to one of the classes l ∈ {1, · · · , L}. In the context of the OBC, we need the

effective class-conditional densities (or posterior predictive densities) of the L classes, defined as

p(x|l) =

∫
µlt,r

l
t

p(x|µlt, rlt)π?(µlt, rlt)dµltdrlt, (3.80)

for l ∈ {1, · · · , L}, where π?(µlt, r
l
t) = p(µlt, r

l
t|Dlt,Dls) is the posterior of (µlt, r

l
t) upon observation

of Dlt and Dls. Since we do not have the closed form of the posterior π?(µlt, r
l
t), we cannot do the

integration of (3.80) in closed form. Instead, we use the posterior samples that were generated by
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HMC sampling to approximate the integration of (3.80). Suppose we have N posterior samples

from all of d genes in L classes. Then the approximation is given by:

p(x|l) =
1

N

N∑
j=1

d∏
i=1

p(xi|µ̄lt,i,j, r̄lt,i,j), (3.81)

where µ̄lt,i,j and r̄lt,i,j are the jth posterior sample of gene i in class l of the target domain for the

mean and shape parameters, respectively. We denote the effective class-conditional density of the

OBTL by OOBTL(x|l) = p(x|l).

3.3.3.3 Optimal Bayesian Transfer Learning Classifier

Let clt be the prior probability that the target sample x belongs to the class l ∈ {1, · · · , L}.

Since 0 < clt < 1 and
∑L

l=1 c
l
t = 1, a Dirichlet prior is assumed:

(c1
t , · · · , cLt ) ∼ Dir(L, ξt), (3.82)

where ξt = (ξ1
t , · · · , ξLt ) are the concentration parameters, and ξlt > 0 for l ∈ {1, · · · , L}. As

the Dirichlet distribution is a conjugate prior for the categorical distribution, upon observing n =

(n1
t , · · · , nLt ) data for class l in the target domain, the posterior has a Dirichlet distribution:

π? = (c1
t , · · · , cLt |n) ∼ Dir(L, ξt + n)

= Dir(L, ξ1
t + n1

t , · · · , ξLt + nLt ),

(3.83)

with the posterior mean of clt as

Eπ?(c
l
t) =

ξlt + nlt
Nt + ξ0

t

, (3.84)

where Nt =
∑L

l=1 n
l
t and ξ0

t =
∑L

l=1 ξ
l
t. As such, the optimal Bayesian transfer learning (OBTL)

classifier for any new unlabeled sample x in the target domain is defined as

ΨOBTL(x) = arg max
l∈{1,··· ,L}

Eπ?(c
l
t)OOBTL(x|l), (3.85)
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which minimizes the expected error of the classifier in the target domain, that is, Eπ? [ε(Θt,ΨOBTL)] ≤

Eπ? [ε(Θt,Ψ)], where ε(Θt,Ψ) is the error of any arbitrary classifier Ψ assuming the parameters

Θt =
{
c
{1:L}
t , µ

{1:L}
t,{1:d}, r

{1:L}
t,{1:d}

}
of the feature-label distribution in the target domain, and the expec-

tation is over the posterior π? of Θt.

If we do not have any prior knowledge for the selection of classes, we use the same concentra-

tion parameter for all the classes: ξt = (ξ, · · · , ξ). Hence, if the number of samples in each class

is the same, n1
t = · · · = nLt , the first term Eπ? is the same for all the classes and (3.85) is reduced

to:

ΨOBTL(x) = arg max
l∈{1,··· ,L}

OOBTL(x|l). (3.86)

3.3.3.4 OBC in Target Domain

To see how the source data can help improve the performance, we compare the OBTL classifier

with the OBC when there is only the target domain. Using Corollary 1 and exactly the same mod-

eling and parameters as the OBTL, the priors for µlt,i and rlt,i are scaled Chi-squared distributions:

µlt,i ∼ ml
t,iX 2

νµ ,

rlt,i ∼ slt,iX 2
νr ,

(3.87)

with the probability density functions

p(µlt,i) =
[
(2ml

t,i)
νµ
2 Γ
(νµ

2

)]−1

µlt,i

νµ
2
−1

exp

(
−µlt,i
2ml

t,i

)
,

p(rlt,i) =
[
(2slt,i)

νr
2 Γ
(νr

2

)]−1

rlt,i
νr
2
−1

exp

(
−rlt,i
2slt,i

)
.

(3.88)

Let µ =
{
µ
{1:L}
t,{1:d}

}
and r =

{
r
{1:L}
t,{1:d}

}
denote respectively all the mean and shape parameters

of the d genes in L classes in the target domain. The prior is factorized as

p(µ, r) =
L∏
l=1

d∏
i=1

p
(
µlt,i
)
p
(
rlt,i
)
. (3.89)
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The likelihood of the target data is

P (Dt|µ, r) =
L∏
l=1

d∏
i=1

nlt∏
j=1

P (xlt,i,j|µlt,i, rlt,i). (3.90)

Therefore, the posteriors of different genes in different classes can be factorized as

p

(
µlt,i, r

l
t,i

∣∣∣∣Dlt) ∝
p
(
µlt,i
)
p
(
rlt,i
) nlt∏
j=1

P (xlt,i,j|µlt,i, rlt,i),
(3.91)

for all i ∈ {1, · · · , d} and l ∈ {1, · · · , L}. Similar to the OBTL, here also we cannot derive the

posteriors in closed forms and use HMC to get samples from the posteriors of the parameters µlt,i

and rlt,i, for all i ∈ {1, · · · , d} and l ∈ {1, · · · , L}. Then using (3.81) yields us the effective

class-conditional density of the OBC, which we denote by OOBC(x|l).

The multi-class OBC [90], under a zero-one loss function, is defined as

ΨOBC(x) = arg max
l∈{1,··· ,L}

Eπ?(c
l
t)OOBC(x|l). (3.92)

Similar to the OBTL, in the case of equal prior probabilities for the classes,

ΨOBC(x) = arg max
l∈{1,··· ,L}

OOBC(x|l). (3.93)

For binary classification, the definition of the OBC in (3.92) is equivalent to the definition in [57],

where it is defined to be the binary classifier possessing the minimum Bayesian mean square error

estimate [64] relative to the posterior distribution.

If the correlations between the mean and shape parameters of the target and source domains

are zero for all the genes in all the classes, that is, ρlµ,i = 0 and ρlr,i = 0, for i ∈ {1, · · · , d} and

l ∈ {1, · · · , L}, then the joint priors for the OBTL in (3.75) and (3.76) become p(µls,i, µ
l
t,i) =

p(µls,i)p(µ
l
t,i) and p(rls,i, r

l
t,i) = p(rls,i)p(r

l
t,i), indicating that all the mean and shape parameters
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are independent between the two domains. Having independent priors and likelihoods leads to

independent posteriors for the two domains. In other words, source data cannot help improve the

target posteriors and the target posterior is identical to the OBC in the target domain. Therefore,

the OBTL becomes identical to the OBC. On the contrary, if we have higher correlations between

the parameters of the two domains, that is, ρlµ,i and ρlr,i are closer to 1, then more knowledge from

the source domain is transferred to the target and the OBTL yields much better performance than

the OBC.

3.3.4 Experiments and Discussion

3.3.4.1 Synthetic datasets

We consider a simulation setup and evaluate the OBTL classifiers by average classification

error with different joint prior densities modeling the relatedness of the source and target domains.

Unless mentioned, the feature dimension is d = 5, the number of classes in each domain is L = 2,

the number of source training data per class is ns = nls = 100, the number of target training data

per class is nt = nlt = 5, for l ∈ {1, 2}. We set νµ = νr = 4, m1
t,i = 1000/νµ, m2

t,i = 1500/νµ,

m1
s,i = 5000/νµ, m2

s,i = 6000/νµ, s1
t,i = s2

t,i = 1/νr, and s1
t,i = s2

t,i = 0.5/νr for all the genes

i ∈ {1, · · · , d}. As such, the expected values of the parameters are E(µ1
t,i) = 1000, E(µ2

t,i) = 1500,

E(µ1
s,i) = 5000, E(µ2

s,i) = 6000, E(r1
t,i) = E(r2

t,i) = 1, and E(r1
s,i) = E(r2

s,i) = 0.5 for all

i ∈ {1, · · · , d}. The variances of the parameters are Var(µlz,i) = 2[E(µlz,i)]
2/νµ and Var(rlz,i) =

2[E(rlz,i)]
2/νr for z ∈ {s, t}, l ∈ {1, 2}, and i ∈ {1, · · · , d}. All simulations assume equal

prior probabilities for the classes, so we use (3.86) and (3.93) for the OBTL classifier and OBC,

respectively.

We evaluate the prediction performance according to the common evaluation procedure of

Bayesian learning by average classification error. To sample from the prior (3.75) we first sample

from a Wishart distributionW2(Ml
i, ν

l) with the scale matrix of Ml
i =

(
mlt,i mlts,i
mlts,i m

l
s,i

)
, whereml

ts,i =√
ρlµ,im

l
t,im

l
s,i, to get a sample for Λl

i =
(
µlt,i µlts,i
µlts,i µ

l
s,i

)
, for each class l = 1, 2 and each gene i ∈

{1, · · · , d}. We then pick (µlt,i, µ
l
s,i), which is a joint sample from p(µlt,i, µ

l
s,i) in (3.75). Similarly,

143



to sample from the prior (3.76), we first sample from a Wishart distribution W2(Sli, ν
l) with the

scale matrix of Sli =
(
slt,i slts,i
slts,i s

l
s,i

)
, where slts,i =

√
ρlr,is

l
t,is

l
s,i, to get a sample for Rl

i =
(
rlt,i rlts,i
rlts,i r

l
s,i

)
,

for each class l = 1, 2 and each gene i ∈ {1, · · · , d}. We then pick (rlt,i, r
l
s,i), which is a joint

sample from p(rlt,i, r
l
s,i) in (3.76). Once we have µlt,i, µ

l
s,i, r

l
t,i, and rls,i, for all i ∈ {1, · · · , d},

and l ∈ {1, · · · , L}, we generate a training and test set from (3.63). The training set contains

samples from both the target and source domains, but the test set contains only samples from the

target domain. As the numbers of source and target training data per class is ns and nt, there are

Nt = Lns and Ns = Lnt source and target training data in total, respectively. We assume the size

of the test set per class is 500 in the simulations, so 1000 in total. Given the training and test set,

we use the OBTL and its target-only version, OBC, and calculate the error. We further repeat this

whole process 1000 times for different realizations of µlt,i, µ
l
s,i, r

l
t,i, and rls,i, for all i ∈ {1, · · · , d},

and l ∈ {1, · · · , L}, and finally average all the errors and return the average classification error.

To examine how the source data improves the classifier in the target domain, we compare

the performance of the OBTL classifier with the OBC designed in the target domain alone. The

average classification error versus Nt is depicted in Figs. 3.11(a), 3.11(b), and 3.11(c) for the OBC

and OBTL with different values of ρµ and ρr (we use the same value for all the classes and genes,

ρµ = ρlµ,i and ρr = ρlr,i for l ∈ {1, 2} and i ∈ {1, · · · , d}). When ρµ and ρr are close to one,

the performance of the OBTL classifier is much better than that of the OBC due to the greater

relatedness between the two domains and appropriate use of the source data. This performance

improvement is especially noticeable when Nt is small, which reflects the real-world scenario. In

Fig. 3.11, we also observe that the errors of the OBTL classifier and OBC are converging to a

similar value when Nt gets very large, meaning that the source data are redundant when there is

a large number of target data. When ρµ and ρr are larger, the error curves converge faster to the

optimal error, which is the average Bayes error of the target classifier. Recall that when ρµ = 0

and ρr = 0, the OBTL classifier reduces to the OBC.

Figures 3.11(d), 3.11(e), and 3.11(f) depict average classification error versus Ns for the OBC

and OBTL with different values of ρµ and ρr. The OBC error is constant for all Ns as it does not
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Figure 3.11: Average classification error versus the number of target training data Nt and the number of source
training data Ns. Reprinted with permission from [6], c©2019 IEEE.
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employ the source data. The error of the OBTL classifier equals that of the OBC when Ns = 0 and

starts to decrease as Ns increases. In Figs. 3.11(d), 3.11(e), and 3.11(f), when ρµ and ρr are larger,

the improvement is greater since the two domains are more related.

In the OBTL’s framework, ρr and ρµ have a bridging task between the two domains and transfer

the knowledge from the source to the target domain. We analyze in Fig. 3.12 the effects of

not choosing the true prior correlations ρr and ρµ in the classifier. Figures 3.12(a), 3.12(b), and

3.12(c) demonstrate the average classification error versus ρr and ρµ (0 ≤ ρr, ρµ < 1), used in

the OBTL classifier, when the true correlation priors from which data have been generated are

ρr = ρµ = 0.5, 0.7, 0.9, respectively. We also include the constant error plane of the OBC for the

sake of comparison, which hits the OBTL’s surface in ρr = ρµ = 0, as discussed previously. The

minimum error occurs in the true values of the prior correlations, and the distance between the

OBTL’s minimum error and the OBC’s error is greater when the true correlations are larger. The

most important observation in Fig. 3.12 is that the OBTL outperforms the OBC for any chosen

values of ρr and ρµ when the two domains are highly related (Fig. 3.12c), and even in the case of

less relatedness between the domains (Fig. 3.12a and Fig. 3.12b), the OBTL works better than the

OBC for a wide range of chosen values for ρr and ρµ around the true values. This assures us that

if we fail to use the true prior correlations, we will still get improvements using the OBTL.

3.3.4.2 Real TCGA datasets

• Lung Cancer: We consider the classification of two subtypes of non-small cell lung cancer

(NSCLC), lung adenocarcinoma (LUAD) versus lung squamous cell carcinoma (LUSC). Accord-

ing to the American Cancer Society, NSCLC accounts for 80% to 85% of lung cancers. Moreover,

40% of all lung cancers are LUAD and 25% to 30% of them are LUSC. We have used The Cancer

Genome Atlas (TCGA) datasets for both LUAD and LUCS. We have downloaded those datasets

using the R package “TCGA2STAT" [108] and extracted the RNA-Seq count data for the both

classes: LUAD and LUSC. There are two types of RNA-Seq measurements for cancer types in

TCGA: RNA-Seq and RNA-Seq-v2. Since the number of samples in RNA-Seq-v2 is larger than

that in RNA-Seq, we consider the first one as the source domain and the second one as the tar-
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Figure 3.12: Average classification error versus ρr and ρµ used in the OBTL classifier. The true data generating
values are written on top of each figure. Reprinted with permission from [6], c©2019 IEEE.
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Figure 3.13: RNA-Seq counts of ten genes in two domains and for two classes LUAD and LUSC from TCGA.
Red denotes the target domain, which is RNA-Seq data from TCGA. Blue denotes the source domain, which is RNA-
Seq-v2 from TCGA. We see that the source domain has lower values than the target domain. (a) First feature set with
the following ten genes (ordered from 1 to 10 successively): USP31, FGF11, CLCF1, C15orf41, KLF2, TMEM79,
CD302, SDHAP3, TSPAN12, CABLES1, (b) Second feature set with the following ordered genes (ordered from 1 to
10 successively): ACBD4, DTL, DISP1, BUB1B, MTMR11, CHAF1A, C9orf7, SIGIRR, C1orf74, GEN1. Reprinted
with permission from [6], c©2019 IEEE.
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Figure 3.14: RNA-Seq counts of ten genes in two domains and for two classes KIRP and KIRC from TCGA.
Red denotes the target domain, which is RNA-Seq-v2 data from TCGA. Blue denotes the source domain, which is
RNA-Seq from TCGA. We see that the source domain has larger values than the target domain. (a) Kidney feature
set with the following ten genes (ordered from 1 to 10 successively): MCC, PTP4A3, ABHD14B, VPS25, C9orf116,
LEPREL1, NOSTRIN, GTF2IRD1, GEM, MMP24. Reprinted with permission from [6], c©2019 IEEE.

get domain. Tumor sample sizes in the target domain (RNA-Seq) are 125 and 223 for LUAD

and LUSC, respectively, and in the source domain (RNA-Seq-v2) are 515 and 501 for LUAD and

LUSC, respectively.

We evaluate the performance of the OBTL classifier using two feature sets of size d = 10.

Our goal in this section is not feature selection. We want to show that for any feature set transfer

learning can help improve the target classifier, and the amount of improvement depends on how

much those features are related between the two domains. We choose two feature sets as follows.

We drop all genes having at least one sample of less than 10 or more than 20,000 reads in the two

domains. Then we use the edgeR package and sort all the genes by log-fold change values between

the two classes LUAD and LUSC in the target domain. We choose two feature sets of size d = 10

from different regions of the ordered list to have different ranges of classification errors. Those
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Table 3.4: The average error of the OBTL classifier using the first feature set in the TCGA data for the classification
of LUAD and LUAC assuming different values of ρµ and ρr. The corresponding average error for the OBC is 0.1312.
The minimum error is written in bold. Reprinted with permission from [6], c©2019 IEEE.

OBTL ρr = 0 ρr = 0.3 ρr = 0.5 ρr = 0.7 ρr = 0.9 ρr = 0.99

ρµ = 0 0.1315 0.1278 0.1286 0.1262 0.1225 0.1201
ρµ = 0.3 0.1290 0.1293 0.1255 0.1252 0.1220 0.1209
ρµ = 0.5 0.1272 0.1279 0.1255 0.1241 0.1207 0.1189
ρµ = 0.7 0.1267 0.1245 0.1228 0.1211 0.1189 0.1173
ρµ = 0.9 0.1176 0.1181 0.1162 0.1151 0.1121 0.1124
ρµ = 0.99 0.1024 0.1025 0.1023 0.1026 0.1009 0.1041

feature sets have corresponding RNA-Seq-v2 samples, which make the source dataset. The first

feature set consists of the ordered genes USP31, FGF11, CLCF1, C15orf41, KLF2, TMEM79,

CD302, SDHAP3, TSPAN12, CABLES1. The second feature set consists of the ordered genes

ACBD4, DTL, DISP1, BUB1B, MTMR11, CHAF1A, C9orf7, SIGIRR, C1orf74, GEN1. Figure

3.13 shows the distributions of the genes in the first and second feature sets in both target and

source domains and for each class LUAD and LUSC. We see in Fig. 3.13 that the source data

have lower values than the target data in each class. We create 50 random training and test splits

from both domains and compute the average classification error over those 50 splits in Tables (3.4)

and (3.5). In each split, we randomly choose nlt = 5 training target data per class and nls = 100

training source data per class. As a result, the total numbers of training target and source data are

respectively Nt = 10 and Ns = 200. For each split, we choose 100 random test data per class (200

in total) from the target domain. Note that we use only the target data for the test, since the goal is

to design a classifier in the target domain.

Regarding the hyperparameters, we set ml
s,i = 500/νµ and ml

t,i = 2000/νµ for l ∈ {1, 2}, and

i ∈ {1, · · · , d}. This makes the expected values of the mean parameters equal to E(µls,i) = 500

and E(µlt,i) = 2000, and the reason for choosing them in this way is that the target data have larger

values than the source data for any gene. We choose slz,i = 4/νr for z ∈ {t, s}, l ∈ {1, 2}, and

i ∈ {1, · · · , d}. This makes the expected values of the shape parameters equal to E(rlz,i) = 4

for z ∈ {t, s}, l ∈ {1, 2}, and i ∈ {1, · · · , d}. We also choose νµ = νr = 2 to have the least
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Table 3.5: The average error of the OBTL classifier using the second feature set in the TCGA data for the classifi-
cation of LUAD and LUAC assuming different values of ρµ and ρr. The corresponding average error for the OBC is
0.1776. The minimum error is written in bold. Reprinted with permission from [6], c©2019 IEEE.

OBTL ρr = 0 ρr = 0.3 ρr = 0.5 ρr = 0.7 ρr = 0.9 ρr = 0.99

ρµ = 0 0.1787 0.1771 0.1764 0.1723 0.1689 0.1673
ρµ = 0.3 0.1775 0.1752 0.1735 0.1701 0.1650 0.1668
ρµ = 0.5 0.1751 0.1727 0.1714 0.1686 0.1652 0.1670
ρµ = 0.7 0.1697 0.1700 0.1680 0.1651 0.1601 0.1612
ρµ = 0.9 0.1614 0.1597 0.1581 0.1545 0.1498 0.1520
ρµ = 0.99 0.1398 0.1386 0.1373 0.1340 0.1295 0.1274

informative priors. Tables (3.4) and (3.5) represent the average error of the OBTL classifier for

different values of ρµ and ρr. For the first feature set in Table (3.4), the error of the OBC is 0.1312,

while the best error of the OBTL is 0.1009 (for ρµ = 0.99 and ρr = 0.9). For the second feature

set in Table (3.5), the error of the OBC is 0.1776, while the best error of the OBTL is 0.1274 (for

ρµ = 0.99 and ρr = 0.99). These results show that the features in each feature set are highly

related between the two domains, and therefore, the source data in the OBTL classifier make the

error rate considerably less than that of the target-only OBC. We assume equal prior probabilities

(1/2) for both classes LUAD and LUSC, so we use (3.86) and (3.93) for the OBTL classifier and

OBC, respectively.

• Kidney Cancer: Knowing which type of cell makes up a kidney tumor helps doctors plan

treatment. According to the American Cancer Society, the two most common types of kidney

cancers are kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma

(KIRP). We downloaded the datasets for two kinds of kidney cancers and obtained RNA-Seq and

RNA-Seq-v2 data for both cancer types via “TCGA2STAT". Unlike the lung cancer case, in kidney

cancer subtyping, we consider RNA-Seq-v2 as the target domain and RNA-Seq as the source

domain, and we show again that transfer learning can help improve the accuracy of the target

classifier and the OBTL works better than the target-only case. Tumor sample sizes in the target

domain (RNA-Seq-v2) are 290 and 533 for KIRP and KIRC, respectively, and in the source domain

(RNA-Seq) are 14 and 469 for KIRP and KIRC, respectively. Similar to the lung cancers, we pick
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Table 3.6: The average error of the OBTL classifier using the kidney feature set in the TCGA data for the classifi-
cation of KIRP and KIRC assuming different values of ρµ and ρr. The corresponding average error for the OBC is
0.0866. The minimum error is written in bold. Reprinted with permission from [6], c©2019 IEEE.

OBTL ρr = 0 ρr = 0.3 ρr = 0.5 ρr = 0.7 ρr = 0.9 ρr = 0.99

ρµ = 0 0.0870 0.0837 0.0836 0.0831 0.0817 0.0843
ρµ = 0.3 0.0862 0.0842 0.0833 0.0822 0.0822 0.0823
ρµ = 0.5 0.0858 0.0854 0.0833 0.0805 0.0810 0.0823
ρµ = 0.7 0.0856 0.0842 0.0821 0.0803 0.0797 0.0815
ρµ = 0.9 0.0847 0.0834 0.0805 0.0797 0.0778 0.0789
ρµ = 0.99 0.0798 0.0776 0.0775 0.0758 0.0731 0.0741

Nt = 10 target data, Ns = 200 source data, and 200 test data for any of 50 random training and

test data splits.

Similar to the process we did for lung cancer, we choose d = 10 genes as our feature set: MCC,

PTP4A3, ABHD14B, VPS25, C9orf116, LEPREL1, NOSTRIN, GTF2IRD1, GEM, MMP24. The

expression values of these ten genes in both domains have been plotted in Fig. 3.14. Regarding the

hyperparameters, we set ml
s,i = 5000/νµ and ml

t,i = 1000/νµ for l ∈ {1, 2} and i ∈ {1, · · · , d}.

This makes the expected values of the mean parameters equal to E(µls,i) = 5000 and E(µlt,i) =

1000. We choose slz,i = 4/νr for z ∈ {t, s}, l ∈ {1, 2}, and i ∈ {1, · · · , d}. This makes the

expected values of the shape parameters equal to E(rlz,i) = 4 for z ∈ {t, s}, l ∈ {1, 2}, and

i ∈ {1, · · · , d}. We also choose νµ = νr = 2 to have the least informative priors. Table (3.6)

shows the average error of the OBTL classifier for different values of ρµ and ρr. The error of

the OBC is 0.0866, while the best error of the OBTL is 0.0731 (for ρµ = 0.99 and ρr = 0.9).

These results show that the features are highly related between the two domains, and therefore

the OBTL outperforms the target-only OBC. Similar to the lung cancer case, we assume equal

prior probabilities (1/2) for both classes KIRP and KIRC, so we use (24) and (31) for the OBTL

classifier and OBC, respectively.

3.3.5 Conclusion

We constructed a Bayesian transfer learning framework to address supervised transfer learning

for NGS count data. The Optimal Bayesian Transfer Learning (OBTL) classifier compensates
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for the lack of labeled data in the target domain by transferring the relevant knowledge from the

source domain with available labeled data and is optimal in this novel Bayesian framework since

it minimizes the expected classification error. We defined a joint prior model for the parameters

of the target and source domains and learned the parameters by HMC for joint posterior sampling.

Assuming the two domains are related, either through their mean or shape parameters, source data

helped obtain more accurate target posterior samples, from which we derived the effective class-

conditional densities as well as the OBTL classifier. We compared the performance of the OBTL

with its target-only version, OBC, to see how transferring from source to target domain can help.

We tested the OBTL classifier using RNA-Seq data from TCGA and demonstrated its performance

improvement.
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4. SUMMARY

In chapter 2, we studied classification of single-cell gene expression trajectories coming from

two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps)

to model the dynamics of each class at the state level, meaning that each class has its own BNp,

which we partially know based on gene pathways. We employed a Gaussian model at the observa-

tion level to show the expression values of the genes given the hidden states at each time point. We

used the expectation maximization (EM) methodology to learn the BNps and the unknown model

parameters, derived closed-form updates for the parameters, and proposed a learning algorithm.

After learning, a plug-in Bayes classifier was used to classify the unlabeled trajectories. The effect

of missing data was also considered. We then proposed an intrinsically Bayesian robust classi-

fier for classification of single-cell gene expression trajectories, which minimized the expected

classification error over the uncertainty class of parameters.

In chapter 3 we constructed a Bayesian transfer learning framework to tackle the supervised

transfer learning problem. The proposed Optimal Bayesian Transfer Learning (OBTL) classifier

could deal with the lack of labeled data in the target domain and is optimal in this new Bayesian

framework since it minimizes the expected classification error. We obtained the closed-form

posterior distribution of the target parameters and accordingly the closed-form effective class-

conditional densities in the target domain to define the OBTL classifier. As the OBTL’s objective

function consisted of hypergeometric functions of matrix argument, we used the Laplace approx-

imations of those functions to derive a computationally efficient and scalable OBTL classifier,

while preserving its superior performance. We compared the performance of the OBTL with its

target-only version, OBC, to see how transferring from source to target domain can help. We tested

the OBTL classifier with real-world benchmark image datasets and demonstrated its excellent per-

formance compared to other state-of-the-art domain adaption methods. We further extended the

OBTL to a regression problem and proposed Optimal Bayesian Transfer Regression (OBTR). We

finally generalized the OBTL to count data and showed that it can effectively employ RNA-Seq
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count cancer data from TCGA and improve the cancer classification accuracy using heterogeneous

sources of data.
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a Bayesian framework âĂŤ Part II: Properties and performance analysis,” Pattern Recogni-

tion, vol. 46, no. 5, pp. 1301 – 1314, 2013.

[59] L. A. Dalton and E. R. Dougherty, “Intrinsically optimal Bayesian robust filtering,” IEEE

Transactions on Signal Processing, vol. 62, pp. 657–670, Feb 2014.

[60] X. Qian and E. R. Dougherty, “Bayesian regression with network prior: Optimal Bayesian

filtering perspective,” IEEE Transactions on Signal Processing, vol. 64, pp. 6243–6253, Dec

2016.

[61] R. Dehghannasiri, M. S. Esfahani, and E. R. Dougherty, “Intrinsically Bayesian robust

Kalman filter: An innovation process approach,” IEEE Transactions on Signal Processing,

vol. 65, pp. 2531–2546, May 2017.

[62] S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Constructing pathway-based pri-

ors within a gaussian mixture model for Bayesian regression and classification,” IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 2017.

162



[63] S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Incorporating biological prior

knowledge for bayesian learning via maximal knowledge-driven information priors,” BMC

Bioinformatics, vol. 18, p. 552, Dec 2017.

[64] L. A. Dalton and E. R. Dougherty, “Bayesian minimum mean-square error estimation for

classification error-Part I: Definition and the Bayesian MMSE error estimator for discrete

classification,” IEEE Transactions on Signal Processing, vol. 59, pp. 115–129, Jan 2011.

[65] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge

and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[66] H. Venkateswara, S. Chakraborty, and S. Panchanathan, “Deep-learning systems for domain

adaptation in computer vision: Learning transferable feature representations,” IEEE Signal

Processing Magazine, vol. 34, no. 6, pp. 117–129, 2017.

[67] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adaptation: A survey of

recent advances,” IEEE signal processing magazine, vol. 32, no. 3, pp. 53–69, 2015.

[68] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big

Data, vol. 3, no. 1, p. 9, 2016.

[69] G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” arXiv

preprint arXiv:1702.05374, 2017.

[70] N. Zou, Y. Zhu, J. Zhu, M. Baydogan, W. Wang, and J. Li, “A transfer learning approach

for predictive modeling of degenerate biological systems,” Technometrics, vol. 57, no. 3,

pp. 362–373, 2015.

[71] P. Ganchev, D. Malehorn, W. L. Bigbee, and V. Gopalakrishnan, “Transfer learning of clas-

sification rules for biomarker discovery and verification from molecular profiling studies,”

Journal of biomedical informatics, vol. 44, pp. S17–S23, 2011.

[72] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsupervised domain

adaptation,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference

on, pp. 2066–2073, IEEE, 2012.

163



[73] L. Duan, D. Xu, and I. Tsang, “Learning with augmented features for heterogeneous domain

adaptation,” ICML, 2012.

[74] J. Hoffman, E. Rodner, J. Donahue, B. Kulis, and K. Saenko, “Asymmetric and category

invariant feature transformations for domain adaptation,” International journal of computer

vision, vol. 109, no. 1-2, pp. 28–41, 2014.

[75] Y.-H. Hubert Tsai, Y.-R. Yeh, and Y.-C. Frank Wang, “Learning cross-domain landmarks

for heterogeneous domain adaptation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5081–5090, 2016.

[76] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola,

“Integrating structured biological data by kernel maximum mean discrepancy,” Bioinfor-

matics, vol. 22, no. 14, pp. e49–e57, 2006.

[77] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,” in Proceedings of

the 24th international conference on Machine learning, pp. 193–200, ACM, 2007.

[78] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, “Domain transfer svm for video concept

detection,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-

ence on, pp. 1375–1381, IEEE, 2009.

[79] L. Bruzzone and M. Marconcini, “Domain adaptation problems: A dasvm classification

technique and a circular validation strategy,” IEEE transactions on pattern analysis and

machine intelligence, vol. 32, no. 5, pp. 770–787, 2010.

[80] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal transport for domain

adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,

pp. 1853–1865, Sept 2017.

[81] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with deep adap-

tation networks,” in International Conference on Machine Learning, pp. 97–105, 2015.

164



[82] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation with residual

transfer networks,” in Advances in Neural Information Processing Systems, pp. 136–144,

2016.

[83] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,

and V. Lempitsky, “Domain-adversarial training of neural networks,” Journal of Machine

Learning Research, vol. 17, no. 59, pp. 1–35, 2016.

[84] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in neural

information processing systems, pp. 469–477, 2016.

[85] R. J. Muirhead, Aspects of multivariate statistical theory. John Wiley & Sons, 2009.

[86] K. Halvorsen, V. Ayala, and E. Fierro, “On the marginal distribution of the diagonal blocks

in a blocked Wishart random matrix,” International Journal of Analysis, vol. 2016, pp. 1–5,

2016.

[87] D. K. Nagar and J. C. Mosquera-Benıtez, “Properties of matrix variate hypergeometric func-

tion distribution,” Applied Mathematical Sciences, vol. 11, no. 14, pp. 677–692, 2017.

[88] A. G. Constantine, “Some non-central distribution problems in multivariate analysis,” Ann.

Math. Statist., vol. 34, pp. 1270–1285, 12 1963.

[89] R. W. Butler and A. T. A. Wood, “Laplace approximations for hypergeometric functions

with matrix argument,” The Annals of Statistics, vol. 30, no. 4, pp. 1155–1177, 2002.

[90] L. A. Dalton and M. R. Yousefi, “On optimal Bayesian classification and risk estimation un-

der multiple classes,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2015,

no. 1, p. 8, 2015.

[91] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new

domains,” in Proceedings of the 11th European Conference on Computer Vision: Part IV,

ECCV’10, (Berlin, Heidelberg), pp. 213–226, Springer-Verlag, 2010.

165



[92] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” Technical Report

7694, California Institute of Technology, 2007.

[93] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” Computer

vision–ECCV 2006, pp. 404–417, 2006.

[94] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

[95] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer,

2009.

[96] M. Roth, On the multivariate t distribution. Linköping University Electronic Press, 2012.

[97] R. M. Neal et al., “MCMC using Hamiltonian dynamics,” Handbook of Markov Chain

Monte Carlo, vol. 2, no. 11, 2011.

[98] B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E. R. Dougherty, “Small-sample

precision of roc-related estimates,” Bioinformatics, vol. 26, no. 6, pp. 822–830, 2010.

[99] R. Normand, W. Du, M. Briller, R. Gaujoux, E. Starosvetsky, A. Ziv-Kenet, G. Shalev-

Malul, R. J. Tibshirani, and S. S. Shen-Orr, “Found In Translation: a machine learning

model for mouse-to-human inference,” Nature methods, vol. 15, no. 12, p. 1067, 2018.

[100] R. Petegrosso, R. Kuang, S. Park, and T. H. Hwang, “Transfer learning across ontologies

for phenomeâĂŞgenome association prediction,” Bioinformatics, vol. 33, pp. 529–536, Feb

2017.

[101] S. R. Dhruba, R. Rahman, K. Matlock, S. Ghosh, and R. Pal, “Application of transfer learn-

ing for cancer drug sensitivity prediction,” BMC Bioinformatics, vol. 19, p. 497, Dec 2018.

[102] C. Y. Park, A. K. Wong, C. S. Greene, J. Rowland, Y. Guan, L. A. Bongo, R. D. Burdine,

and O. G. Troyanskaya, “Functional knowledge transfer for high-accuracy prediction of

under-studied biological processes,” PLOS Computational Biology, vol. 9, 03 2013.

166



[103] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edger: a bioconductor package for

differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26,

no. 1, pp. 139–140, 2010.

[104] S. Anders and W. Huber, “Differential expression analysis for sequence count data,”

Genome Biology, vol. 11, p. R106, Oct 2010.

[105] S. Z. Dadaneh, M. Zhou, and X. Qian, “Bayesian negative binomial regression for differen-

tial expression with confounding factors,” Bioinformatics, vol. 34, no. 19, pp. 3349–3356,

2018.

[106] R. L. Grossman, A. P. Heath, V. Ferretti, H. E. Varmus, D. R. Lowy, W. A. Kibbe, and

L. M. Staudt, “Toward a shared vision for cancer genomic data,” New England Journal of

Medicine, vol. 375, no. 12, pp. 1109–1112, 2016.

[107] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,

J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming language,” Journal of

Statistical Software, Articles, vol. 76, no. 1, pp. 1–32, 2017.

[108] Y.-W. Wan, G. I. Allen, and Z. Liu, “TCGA2STAT: simple TCGA data access for integrated

statistical analysis in R,” Bioinformatics, vol. 32, no. 6, pp. 952–954, 2016.

[109] D. K. Nagar and S. Nadarajah, “Appell’s hypergeometric functions of matrix arguments,”

Integral Transforms and Special Functions, vol. 28, no. 2, pp. 91–112, 2017.

[110] A. K. Gupta, D. K. Nagar, and L. E. Sánchez, “Properties of matrix variate confluent hyper-

geometric function distribution,” Journal of Probability and Statistics, vol. 2016, 2016.

167



APPENDIX A

APPENDICES OF CHAPTER 2

A.1 Proof of lemma 1

Since g(pk+1) is a valid beta probability density, as in (2.129), its integration with respect to

pk+1 will be one:

∫
P

g(pk+1)dpk+1 = (A.1)∫
P

Γ(a+ b)

Γ(a)Γ(b)
pa−1
k+1(1− pk+1)b−1dpk+1 = 1.

Hence, ∫
P

pa−1
k+1(1− pk+1)b−1dpk+1 =

Γ(a)Γ(b)

Γ(a+ b)
. (A.2)

After replacing g(pk+1) in (1),

K1 =
Γ(a+ b)

Γ(a)Γ(b)

∫
P

p
d(Xk+1,fs(Xk))+a−1
k+1

×(1− pk+1)n−d(Xk+1,fs(Xk))+b−1dpk+1. (A.3)

Using (A.2) and (A.3), K1 is derived as in (1).

A.2 Proof of lemma 2

It is well-known that the steady-state distribution of a time-homogeneous TPM is obtained

from (2). The conditional TPM A(s)(k+ 1) in (2.142) is time-inhomogeneous, since each time has

its own perturbation probability pk+1. Since the prior distribution of pk+1 in (2.129) is the same

for every k, integrating the conditional TPM A(s)(k+ 1), for every k, over the prior distribution of
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pk+1 yields a time-homogeneous TPM with the (i, j)-th entry as

M
(s)
i,j =

∫
P

A
(s)
i,j (k + 1)g(pk+1)dpk+1 = (A.4)∫

P

g(pk+1)p
d(xj ,fs(xi))
k+1 (1− pk+1)n−d(xj ,fs(xi))dpk+1.

Lemma 1 and (A.4) result in (2.146).

A.3 Proof of lemma 3

From (2.132), the normal-gamma prior for θj(k) and λj(k) is

p(θj(k), λj(k)|xj(k)) = p(θj(k)|λj(k), xj(k)) p(λj(k))

=
1

Z0

λj(k)α0− 1
2

× exp

(
−λj(k)

2

[
κ0(θj(k)− µj(k))2 + 2β0

])
, (A.5)

where

Z0 =

(
2π

κ0

) 1
2 Γ(α0)

βα0
0

. (A.6)

The likelihood from (2.131) is

p(yj(k)|θj(k), λj(k)) (A.7)

=
1

(2π)
1
2

λj(k)
1
2 exp

(
−λj(k)

2
(yj(k)− θj(k))2

)
.

Therefore, for the posterior,

p(θj(k), λj(k)|yj(k), xj(k)) ∝ p(yj(k)|θj(k), λj(k)) (A.8)

×p(θj(k), λj(k)|xj(k)) ∝ λj(k)α0 exp

(
−λj(k)

2[
κ0(θj(k)− µj(k))2 + 2β0 + (yj(k)− θj(k))2

])
∝ λj(k)α1− 1

2 exp

(
−λj(k)

2

[
κ1(θj(k)− ηj(k))2 + 2β1

])
,
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where κ1, α1, and β1 are given in (2.148), and ηj(k) is defined by

ηj(k) =
κ0µj(k) + yj(k)

κ0 + 1
. (A.9)

Comparing (A.8) with (A.5), we see that the posterior also has the following normal-gamma den-

sity:

p(θj(k), λj(k)|yj(k), xj(k)) = (A.10)

1

Z1

λj(k)α1− 1
2 exp

(
−λj(k)

2

[
κ1(θj(k)− ηj(k))2 + 2β1

])
,

where

Z1 =

(
2π

κ1

) 1
2 Γ(α1)

βα1
1

. (A.11)

Since the posterior density in (A.10) integrates to 1,

∫
Ω

∫
Λ

λj(k)α1− 1
2 exp

(
−λj(k)

2
(A.12)[

κ1(θj(k)− ηj(k))2 + 2β1

])
dθj(k)dλj(k) = Z1.

Finally, K2 in (2.147) can be written as

K2 =
1

(2π)
1
2

1

Z0

∫
Ω

∫
Λ

λj(k)α1− 1
2

× exp

(
−λj(k)

2

[
κ1(θj(k)− ηj(k))2 + 2β1

])
dθj(k)dλj(k)

=
1

(2π)
1
2

Z1

Z0

=
1

(2π)
1
2

(
κ0

κ1

) 1
2 Γ(α1)

Γ(α0)

βα0
0

βα1
1

,

which finishes the proof.
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APPENDIX B

APPENDICES OF CHAPTER 3

B.1 Theorems for Zonal Polynomials and Generalized Hypergeometric Functions of Matrix

Argument

Theorem 8. [85]: Let Z be a complex symmetric matrix whose real part is positive-definite, and

let X be an arbitrary complex symmetric matrix. Then

∫
R>0

etr(−ZR)|R|α−
d+1

2 Cκ(RX)dR

= Γd(α)(α)κ|Z|−αCκ(XZ−1),

(B.1)

the integration being over the space of positive-definite d × d matrices, and valid for all complex

numbers α satisfying Re(α) > d−1
2

. Γd(α) is the multivariate gamma function defined in (3.8).

Theorem 9. [109]: The zonal polynomials are invariant under orthogonal transformation. That

is, for a d× d symmetric matrix X,

Cκ(X) = Cκ(HXH
′
), (B.2)

where H is an orthogonal matrix of order d. If R is a symmetric positive-definite matrix of order

d, then

Cκ(RX) = Cκ(R
1/2XR1/2). (B.3)

As a result, if R is a symmetric positive-definite matrix, the hypergeometric function has the

following property:

pFq(a1, · · · , ap; b1, · · · , bq; RX)

= pFq(a1, · · · , ap; b1, · · · , bq; R1/2XR1/2).

(B.4)
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Theorem 10. [110]: If Z > 0 and Re(α) > d−1
2

, and X is a d× d symmetric matrix, we have

∫
R>0

etr(−ZR)|R|α−
d+1

2

× pFq(a1, · · · , ap; b1, · · · , bq; RX)dR

=

∫
R>0

etr(−ZR)|R|α−
d+1

2

× pFq(a1, · · · , ap; b1, · · · , bq; R1/2XR1/2)dR

= Γd(α)|Z|−α p+1Fq(a1, · · · , ap, α; b1, · · · , bq; XZ−1).

B.2 Proof of Theorem 2

We require the following lemma.

Lemma 6. [85] If D = {x1, · · · ,xn} where xi is a d × 1 vector and xi ∼ N (µ, (Λ)−1), for

i = 1, · · · , n, and (µ,Λ) has a Gaussian-Wishart prior, such that, µ|Λ ∼ N (m, (κΛ)−1) and Λ ∼

Wd(M, ν), then the posterior of (µ,Λ) upon observingD is also a Gaussian-Wishart distribution:

µ|Λ,D ∼ N (mn, (κnΛ)−1),

Λ|D ∼ Wd(Mn, νn),

(B.5)

where

κn = κ+ n,

νn = ν + n,

mn =
κm + nx̄

κ+ n
,

M−1
n = M−1 + S +

κn

κ+ n
(m− x̄)(m− x̄)

′
,

(B.6)

depending on the sample mean and covariance matrix

x̄ =
1

n

n∑
i=1

xi,

S =
n∑
i=1

(xi − x̄)(xi − x̄)
′
.

(B.7)
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We now provide the proof. From (3.3), for each domain z ∈ {s, t},

p(Dlz|µlz,Λl
z) = (2π)−

dnlz
2

∣∣Λl
z

∣∣nlz2 exp

(
−1

2
Ql
z

)
, (B.8)

where Ql
z =

∑nlz
i=1

(
xlz,i − µlz

)′
Λl
z

(
xlz,i − µlz

)
. Moreover, from (3.6), for each domain z ∈ {s, t},

p
(
µlz|Λl

z

)
= (2π)−

d
2

(
κlz
) d

2
∣∣Λl

z

∣∣ 1
2

× exp

(
−κ

l
z

2

(
µlz −ml

z

)′
Λl
z

(
µlz −ml

z

))
. (B.9)

From (3.13), (3.21), (B.8), and (B.9),

p(µlt,Λ
l
t|Dlt,Dls) ∝

∣∣Λl
t

∣∣nlt2 exp

(
−1

2
Ql
t

) ∣∣Λl
t

∣∣ 1
2
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−κ

l
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t
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2 etr
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2
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+ Fl
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ClFl

)
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t

)
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l
s
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2
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2
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l
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s

(
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s
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s
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2 etr

(
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2

(
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)
× 0F1

(
νl

2
;
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4
Λl
s

1
2 FlΛl
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l
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1
2
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l
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(B.10)
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Using Lemma 6 we can simplify (B.10) as

p(µlt,Λ
l
t|Dlt,Dls)

∝
∣∣Λl
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∣∣ 1
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−
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2
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l
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2
;
1

4
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1
2 FlΛl

tF
l
′
Λl
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1
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)}
dµlsdΛ

l
s,

(B.11)

where
κlt,n = κlt + nlt, κls,n = κls + nls,

ml
t,n =

κltm
l
t + nltx̄

l
t

κlt + nlt
, ml

s,n =
κlsm

l
s + nlsx̄

l
s

κls + nls
,(

Tl
t

)−1
=
(
Ml

t

)−1
+ Fl

′
ClFl + Slt

+
κltn

l
t

κlt + nlt
(ml

t − x̄lt)(m
l
t − x̄lt)

′
,

(
Tl
s

)−1
=
(
Cl
)−1

+ Sls +
κlsn

l
s

κls + nls
(ml

s − x̄ls)(m
l
s − x̄ls)

′
,

(B.12)

with sample means and covariances for z ∈ {s, t} as

x̄lz =
1

nlz

nlz∑
i=1

xlz,i, Slz =

nlz∑
i=1

(
xlz,i − x̄lz

) (
xlz,i − x̄lz

)′
.

Using the equation

∫
x

exp

(
−1

2
(x− µ)

′
Λ(x− µ)

)
dx = (2π)

d
2 |Λ|−

1
2 , (B.13)
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and integrating out µls in (B.11) yields

p(µlt,Λ
l
t|Dlt,Dls)

∝
∣∣Λl

t

∣∣ 1
2 exp

(
−
κlt,n
2

(
µlt −ml
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)′
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(
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t,n
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×
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2 etr

(
−1

2

(
Tl
t

)−1
Λl
t

)
×
∫

Λl
s

{∣∣Λl
s
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2 etr
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(
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(B.14)

The integral, I , in (B.14) can be done using Theorem 10 as

I = Γd

(
νl + nls

2

)
×
∣∣2Tl

s

∣∣ νl+nls2
1F1

(
νl + nls

2
;
νl

2
;
1

2
FlΛl

tF
l
′
Tl
s

)
,

(B.15)

where 1F1(a; b; X) is the Confluent hypergeometric function with the matrix argument X. As a

result, (B.14) becomes

p(µlt,Λ
l
t|Dlt,Dls) =

Al
∣∣Λl

t

∣∣ 1
2 exp

(
−
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2

(
µlt −ml
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(
µlt −ml
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×
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2 etr
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;
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2
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1

2
FlΛl

tF
l
′
Tl
s

)
,

(B.16)

where the constant of proportionality, Al, makes the integration of the posterior p(µlt,Λ
l
t|Dlt,Dls)
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with respect to µlt and Λl
t equal to one. Hence,

(
Al
)−1

=

∫
Λl
t
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∣∣ νl+nlt−d−1
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(B.17)

Using (B.13), the inner integral equals to (2π)
d
2 |κlt,nΛl

t|−
1
2 =

(
2π
κlt,n

) d
2 |Λl

t|−
1
2 . Hence,
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=
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(B.18)

With the variable change Ω = FlΛl
tF

l
′
, we have dΩ = |Fl|d+1dΛl

t and Λl
t =

(
Fl
)−1

Ω
(
Fl
′)−1

.

Since tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC) and |ABC| = |A||B||C|, Al can
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(B.19)

where the second equality follows from Theorem 10, and 2F1(a, b; c; X) is the Gauss hypergeo-

metric function with the matrix argument X. As such, we have derived the closed-form posterior

distribution of the target parameters (µlt,Λ
l
t) in (3.22), where Al is given by (3.23).
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B.3 Proof of Theorem 3

The likelihood p(x|µlt,Λl
t) and posterior p(µlt,Λ

l
t|Dlt,Dls) are given in (3.3) and (3.22), respec-

tively. Hence,
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(B.20)

Similarly, we can simplify (B.20) as
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(B.21)

where

κlx = κlt,n + 1 = κlt + nlt + 1, ml
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(
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(B.22)

The integration in (B.21) is similar to the one in (B.17). As a result, using (3.23),
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d
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(B.23)
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By replacing the value ofAl, we have the effective class-conditional density. We denoteOOBTL(x|l) =

p(x|l), since it is the objective function for the OBTL classifier. As such,

OOBTL(x|l) = π−
d
2

(
κlt,n
κlx

) d
2

Γd
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2
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d
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(B.24)

B.4 Laplace Approximation of the Gauss Hypergeometric Function of Matrix Argument

The Gauss hypergeomeric function has the following integral representation:

2F1(a, b; c; X) = B−1
d (a, c− a)

×
∫

0d<Y<Id

|Y|a−
d+1

2 |Id −Y|c−a−
d+1

2 |Id −XY|−bdY,
(B.25)

which is valid under the following conditions: X ∈ Cd×d is symmetric and satisfies Re(X) < Id,

Re(a) > d−1
2

, and Re(c− a) > d−1
2

. Bd(α, β) is the multivariate beta function

Bd(α, β) =
Γd(α)Γd(β)

Γd(α + β)
, (B.26)

where Γd(α) is the multivariate gamma function defined in (3.8). The Laplace approximation is

one common solution to approximate the integral

I =

∫
y∈D

h(y) exp(−λg(y))dy, (B.27)
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where D ⊆ Rd is an open set and λ is a real parameter. If g(λ) has a unique minimum over D at

point ŷ ∈ D, then the Laplace approximation to I is given by

Ĩ = (2π)
d
2λ−

d
2 |g′′(ŷ)|−

1
2h(ŷ) exp(−λg(ŷ)), (B.28)

where g′′(y) = ∂2g(y)
∂y∂yT

is the Hessian of g(y). The hypergeometric function 2F1(a, b; c; X) depends

only on the eigenvalues of the symmetric matrix X. Hence, without loss of generality, it is assumed

that X = diag{x1, · · · , xd}. The following g and h functions are used for (B.25):

g(Y) = −a log |Y| − (c− a) log |Id −Y|+ log |Id −XY|,

h(Y) = B−1
d (a, c− a)|Y|−

d+1
2 |Id −Y|−

d+1
2 .

(B.29)

Using (B.28) and (B.29), the Laplace approximation to 2F1(a, b; c; X) is given by [89]

2F̃1(a, b; c; X) =
2
d
2π

d(d+1)
4

Bd(a, c− a)
J
− 1

2
2,1

×
d∏
i=1

{ŷai (1− ŷi)c−a(1− xiŷi)−b},
(B.30)

where ŷi is defined as

ŷi =
2a√

τ 2 − 4axi(c− b)− τ
, (B.31)

with τ = xi(b− a)− c, and

J2,1 =
d∏
i=1

d∏
j=i

{a(1− ŷi)(1− ŷj) + (c− a)ŷiŷj − bLiLj}, (B.32)

with

Li =
xiŷi(1− ŷi)

1− xiŷi
. (B.33)
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Figure B.1: Exact values of function 2F1(a, b; c; τId) and its Laplace approximation 2F̂1(a, b; c; τId) versus: (a)
τ , for d = 5, a = 3, b = 4, and c = 6, (b) c, for d = 10, a = 30, b = 50, and τ = 0.01. Reprinted with permission
from [4], c©2018 IEEE.

The value of 2F1(a, b; c; X) at X = 0 is 1, that is, 2F1(a, b; c; 0) = 1. As a result, the Laplace

approximation in (B.30) is calibrated at X = 0 to give the calibrated Laplace approximation [89]:

2F̂1(a, b; c; X) =
2F̃1(a, b; c; X)

2F̃1(a, b; c; 0)
= ccd−

d(d+1)
4 R

− 1
2

2,1

×
d∏
i=1

{(
ŷi
a

)a(
1− ŷi
c− a

)c−a
(1− xiŷi)−b

}
,

(B.34)

where

R2,1 =
d∏
i=1

d∏
j=i

{
ŷiŷj
a

+
(1− ŷi)(1− ŷj)

c− a

− bxixj ŷiŷj(1− ŷi)(1− ŷj)
(1− xiŷi)(1− xj ŷj)a(c− a)

}
.

(B.35)

According to [89], the relative error of the approximation remains uniformly bounded:

sup | log 2F̂1(a, b; c; X)− log 2F1(a, b; c; X)| <∞, (B.36)

supremum being over c ≥ c0 >
d−1

2
, a, b ∈ R, and 0d ≤ X < (1− ε)Id for any ε ∈ (0, 1). Authors
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provide in [89] some numerical examples to show how well this approximation works. We also

follow the same way and show two plots in Fig. B.1, which demonstrate a very good numerical

accuracy for several different setups. As mentioned, the hypergeometric function 2F1(a, b; c; X)

of matrix argument is only a function of the eigenvalues of X. So, we fix X = τId and draw the

exact and approximate values of 2F1(a, b; c; τId) versus τ (note 0 < τ < 1 for convergence as

mentioned in the definition of 2F1(a, b; c; X) in (3.12)) in Fig. B.1a for d = 5, a = 3, b = 4, and

c = 6. Fig. B.1b shows the exact and approximate values of 2F1(a, b; c; τId) versus c for d = 10,

a = 30, b = 50, and τ = 0.01. The authors stated in [89] that when the integral representation

is not valid, that is, when c − a < d−1
2

, this Laplace approximation still gives good accuracy. We

also see that approximation in Fig. B.1b is accurate for all range of c, even though the integral

representation is not valid for c < a + d−1
2

= 34.5. We also note that this approximation is more

accurate in the smaller function values.
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