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ABSTRACT

The recent revolution in two-dimensional materials, such as graphene mono-layers,

has attracted many researchers to investigate their properties and potential applications

in different fields. The 2D materials are usually implemented as flat surfaces of atomic

thickness embedded transversely in layered structures. The EM properties of 2D materials

are described by surface conductivity that can be anisotropic in general. In this work, we

demonstrate a general framework to study the EM fields in planar layered media in the

presence of anisotropic conductive sheets arbitrarily placed at the interfaces.

The EM problem of planar layered media has been successfully modeled by a trans-

mission line analogy in the past. The introduction of anisotropic surface conductive sheets

results in a coupled transmission lines model representing TE and TM fields decomposi-

tions. A numerically stable novel formulation is developed to solve the new problem, and

applied to various EM aspects of layered structures such as fields evaluation and modal

analysis. The elegant methods developed for evaluating EM fields in layered media, using

the transmission line model, will be upgraded after modifying the dyadic Green’s functions

in order to include the effect of anisotropic surface conductivity tensor.

The study of EM modes supported by planar layered structures is of high demand in

many applications from design to analysis. A reliable and robust approach for finding the

EM modes in this environment is developed with new proposed dispersion relations. The

Cauchy integration method is accompanied with efficient treatments to alleviate the math-

ematical challenges in applying this method in this problem. The coupling between TE

and TM modes, resulting from the fully populated surface conductivity tensor, is handled

by the new transmission line model formulation developed in this work.
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1. INTRODUCTION AND LITERATURE REVIEW

This chapter is an introduction for the reader to the problems of interest that will be

covered in this study. Relevant works and contributions from the literature will be high-

lighted along this introduction. This chapter also provides a brief problem statement to the

major topics of this study.

The planar layered media problem has emerged as a natural extension to the original

half-space problem first considered by Sommerfeld in 1909 [6]. This simple ideal scenario

on itself has resulted in a prolonged controversy about the existence of surface waves along

the interface. A thorough review for these arguments and developments is covered in [7].

Later, this half-space study has been generalized into multiple layers medium and became

the subject of several notable works [8–10]. The multiple planar layered medium is an ide-

alization to numerous scenarios commonly encountered in geophysics, Radio Frequency

(RF) devices, and nano-structures. Several techniques were introduced to handle this prob-

lem, among them is the spectral domain Transmission Line (TL) analogy which is the most

elegant and versatile formulation. The TL model exploits the symmetry in these structures

and delivers an efficient solution. The TL model has been adopted and generalized for

uniaxial media by the prominent works of Michalski [11–14].

The recent developments in 2D materials led by the introduction of graphene with

promising advancements in nano-electric devices and optoelectronics has attracted many

researchers and resulted in a Noble prize in 2010 [15–18]. Such a material of atomic thick-

ness is best approximated as a 2D conductive sheet [1, 19, 20]. This category of materials

includes Black Phosphorus (BP), Transition Metal Dichalcogenide (TMD) monolayers,

and also may include 2DEG layers. For example, an illustration of a graphene sheet atomic

structure is shown in Figure 1.1. The unique optical properties of 2D materials have po-
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tential applications associated with surface wave propagations [21–25]. In addition to the

electrical properties of graphene sheet, it also exhibits interesting mechanical properties

such as high thermal conductivity, high electron mobility, and high modulus of elasticity

[26]. The advantage of graphene over the other 2D metals is the possibility to control its

optical properties by changing the electrostatic and magnetostatic bias [27].

Figure 1.1: Depiction of graphene sheet atomic structure from top view. The carbon atoms
are represented by circles, and the tetravalent atoms are connected to three other carbon
atoms by three covalent bonds. This forms a 2D hexagonal structure [1].

Introducing the 2D materials into planar layered structures at interfaces has been con-

sidered in several practical applications. For example, Field Effect Transistors (FETs),

Surface Plasmon Resonance (SPR) sensors, and antennas [28–35]. Moreover, in some

2D materials such as BP and magnetically biased graphene, the surface conductivity ten-

sor exhibits anisotropic properties which is pertinent to some applications [36]. In ad-

dition to this, metasurfaces can be made of arrays with anisotropic light scatterers that

can be approximated by homogenized conductive sheets [37–41]. The problem of half-

space with anisotropic conductive sheet was investigated in few works from the literature

[27, 42–44], while recent attempts to generalize the solutions for multilayered media are
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limited [3, 45, 46]. The only attempt to generalize this problem was demonstrated for an

electric dipole on the top layer [47]. However, these approaches are not general nor flex-

ible for computing Electromagnetic (EM) fields due to a point source embedded at any

location in the presence of multiple arbitrary anisotropic conductive sheets. Neverthe-

less, there is no flexibility to treat other aspects of this problem such as modal analysis,

far-fields approximations, and plane-wave excitation via these solutions to the best of our

knowledge.

The modal analysis is of high importance to gain insights about EM structures [48].

This makes the investigation of modes in planar layered media a continuing research topic

[49–52]. For example, many RF and optical designs are based on layered structures which

require eliminating the spurious waves effects [53]. In semiconductor devices, surface

waves may couple to surface carriers when 2DEG inversion layer is formed. Several tech-

niques for computing the Sommerfeld Integrals (SIs) require evaluating the poles locations

accurately in the spectral domain [54–59]. Also, the excitation of Surface Plasmon Polari-

ton (SPP) waves plays a major role in many applications which requires knowledge about

this mode in layered media [60–64]. Several techniques for evaluating the modes in planar

layered structure have been proposed such as Fast Fourier Transform (FFT) [65], Reflec-

tion Pole Method (RPM), and Wave-vector Density Method (WDM) [66, 67]. However,

these techniques are limited to specific configurations or types of modes.

The modal analysis is performed by developing a dispersion function, where the zeros

correspond to the transverse wavenumbers (eigenvalues) of the modes supported by the

structure. Developing dispersion functions to accommodate the presence of 2D isotropic

conductive sheet in planar layered media was discussed in the literature [69–73]. However,

considering anisotropic conductive sheets is scarce [3,74]. A reliable method for comput-

ing zeros of arbitrary function is the Cauchy Integral Method (CIM) introduced by Delves

and Lyness [68]. The application of CIM in this context requires additional treatments.
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Outline

This study is mainly divided into isotropic and anisotropic conductive sheets scenarios.

Chapters 2 and 3, discuss all the EM problems of interest for isotropic conductive sheets.

While Chapters 4 and 5 are dedicated to the anisotropic case. This approach follows the

work progress during this research and provides enough background in order to handle the

more general scenarios of anisotropic conductive sheets. So, the remaining chapters of this

study will discuss the following. In Chapter 2, the reader will find a thorough introduc-

tion to the EM aspects of the planar layered media and the TL model. This chapter also

demonstrates the EM fields computation when isotropic conductive sheets are included

in a planar layered structure. Chapter 3, presents a complete discussion on the modal

analysis in this environment. In Chapter 4, the introduction and treatment of anisotropic

conductive sheets are demonstrated and discussed using the new TL formulation. While

Chapter 5 describes the modal analysis for this environment. As stated earlier, graphene

is the ideal example to illustrate our formulations and results since its optical properties

were thoroughly studied and reported. Hence, several isotropic and anisotropic graphene

based structures were considered in our numerical examples. This study ends with final

conclusions and recommendations for future work in Chapter 6.

The numerical examples presented in this study are meant to demonstrate the appli-

cation and the validation of the developed methods. Practical physical aspects were con-

sidered in the studied structures as much as possible. The physical constants were taken

from [75], and the MKS system of units was used throughout this work. All the numerical

results presented in this work were computed using MATLAB codes written by the author

of this dissertation.
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2. DYADIC GREEN’S FUNCTIONS FOR ISOTROPIC CONDUCTIVE SHEETS

2.1 Planar Layered Media Environment

A uniaxial planar layered media comprising arbitrary anisotropic conductive sheets

placed at the interfaces is illustrated in Figure 2.1. A number of N planar layers are

stratified against the z-axis and extend to infinity in the transverse direction. Each layer

n ∈ [1, N ] occupies the space between zn−1 and zn with a thickness of dn = zn−1 − zn.

Each layer consists of a homogeneous uniaxial material with electric and magnetic con-

stants tensors as described in (2.1) and (2.2), respectively. The unaxial media is equivalent

to optic axis directed in z-axis direction [77]. The z dependency in the media parame-

ters represents a piece-wise definition according to the structure (i.e., µ(z) = µn : zn ≤

z ≤ zn−1 ,∀n ∈ [1, N ] and the same for ε(z)). Moreover, a number of N − 1 possi-

ble anisotropic conductive sheets are placed at the interfaces between layers with tensor

surface conductivity as in (2.3). The top and bottom layers 1 and N , respectively, are

considered of finite thicknesses. This choice allows us to terminate the configuration with

boundary layers such as Perfect Electric Conductor (PEC) or Perfect Magnetic Conductor

(PMC) at the top and bottom layers. It is also possible to choose any arbitrary impedance

as a termination if needed. However, if the top and bottom layers are to be open (semi infi-

nite), then z0 and zN , respectively, will serve as numerical boundaries for the evaluational

of fields inside the layered medium. Any calumniation of the terminations mentioned

above is allowed.

Scalarizing the Maxwell’s equations and satisfying the boundary conditions results in

a TL model analogy for this problem. The TL model has been thoroughly studied and

applied to the planar layered media in the literature. The Transmission Line Green’s Func-

tions (TLGFs) are the solutions for source-free and source-excited TL inside all sections.
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When the media are uniaxial, this results in two separate TLs e and h representing Trans-

verse Magnetic (TM) and Transverse Electric (TE) modes, respectively. Moreover, the

anisotropic conductive sheets between layers can be included by adding transformers cou-

pling the two TLs. In this work, we propose solving various problems in this environment

via new TL formulation and methods.

Figure 2.1: Planar layered media structure stratified against z-axis consists of N uniaxial
layers with N − 1 possible anisotropic conductive sheets at interfaces. Arbitrary electric
and magnetic current sources J andM , respectively, are placed inside the configuration.

µ =


µ 0 0

0 µ 0

0 0 µz

 (2.1)
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ε =


ε 0 0

0 ε 0

0 0 εz

 (2.2)

σs =

σsxx σsxy

σsyx σsyy

 (2.3)

The treatment of the planar layered media is done for as follows. The Dyadic Green’s

Functions (DGFs) will be developed for layer n ∈ [1, N ] allowing the evaluation of the

EM field within the layer. For this purpose, both electric and magnetic point sources are

assumed to exist inside the same layer n of interest. Then, the EM fields in the other lay-

ers are computed after enforcing the boundary conditions at the interfaces. This process

should take into account the terminations at top and bottom layers as well. All of this treat-

ment will be performed using the TL analogy to be discussed in details later. Throughout

this study, we assume time-harmonic fields with ejωt time convention. The Maxwell’s

postulates are given in (2.4) [78]. The spatial dependency r = xx̂ + yŷ + zẑ is implicit

in all expressions for convenience. Sometimes, we prefer to explicitly write the spatial

dependency for clarification when needed. For uniaxial media, the constitutive relations

are D = ε0ε · E and B = µ0µ ·H . Also, we allow the media constants components to

be complex in general as µ = µ′ − jµ′′ and ε = ε′ − jε′′.

∇ ·D = qe

∇ ·B = qm

∇×E = −jωB −M

∇×H = jωD + J

(2.4)
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The boundary conditions between layers n and n + 1 at the interface z = zn can be

expressed in general as in (2.5), where n̂ = ẑ according to the configuration described

in Figure 2.1. Here, En and Hn represents the fields inside layer n. Note that only

the transverse fields continuity boundary conditions are needed to satisfy the physical re-

quirements and the normal fields discontinuity boundary conditions will be automatically

satisfied [59, p. 19].

n̂×
[
En(zn)−En+1(zn)

]
= 0

n̂×
[
Hn(zn)−Hn+1(zn)

]
= J sn = σsn ·En(zn)

(2.5)

2.2 Scalarization of Maxwell’s Equations

The solution for DGFs begins with scalarizing the system in (2.4). Since the planar

layered media is symmetric in the transverse direction for a given z, it is possible to take

advantage of this property in the structure and apply Fourier Transform (FT) for ρ and

simplify the differential operators. Note that this property is not true for anisotropic con-

ductive sheets. However, we will start our derivation from isotropic conductive sheets

and then add more complexity by introducing anisotropic conductivity. So, assuming

isotropic conductive sheets, this results in the spectral domain derivation presented in this

section. The FT pairs1 in (2.6) will be applied to the system in (2.4). The spectral domain

can be thought of a rotation as illustrated in Figure 2.2. The orthonormal set of vectors

(û, v̂, ẑ) will be used to decompose the Maxwell’s equations into e and h solutions, where

kρ = kρû, the transverse wave vector.

1The complete FT in r and t is given in [79, p. 16].
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f̃(kρ) =

∫ ∞
−∞

∫ ∞
−∞

f(ρ)ejkρ·ρdρ

f(ρ) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

f̃(kρ)e
−jkρ·ρdkρ

(2.6)

Figure 2.2: Definition of the orthonormal set of vectors (û, v̂, ẑ) and kρ via spectral im-
mittance [2].

The differential operator can be re-written as ∇ = ∇t +
∂

∂z
ẑ, where t denotes the

transverse components here. Also the fields can split into transverse and longitudinal

components as in (2.7).

E = Et + Ezẑ

H = Ht +Hzẑ

(2.7)

After applying the FT in (2.6), ∇ becomes ∇̃ = −jkρ + ∂
∂z
ẑ. In all expressions, the

kρ dependency is implicit for convenience, and this is distinguished by the tilde symbol in

the components. Applying the FT in (2.6), the last two equations of (2.4) become:
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(−jkρ +
∂

∂z
ẑ)× (Ẽt + Ẽzẑ) = −jωµ0µH̃t − jωµ0µzH̃zẑ − M̃t − M̃zẑ

(−jkρ +
∂

∂z
ẑ)× (H̃t + H̃zẑ) = jωε0εẼt + jωε0εzẼzẑ + J̃t + J̃zẑ

(2.8)

The longitudinal field components are found as in (2.9).

Ẽz =
−1

jωε0εz

[
jkρ · (H̃t × ẑ) + J̃z

]
H̃z =

−1

jωµ0µz

[
jkρ · (ẑ × Ẽt) + M̃z

] (2.9)

It is possible to reduce the equations into:

∂

∂z
Ẽt =

1

jωε0ε

[
k2It −

1

νe
kρkρ

]
· (H̃t × ẑ) +

J̃z
ωε0εz

kρ − M̃t × ẑ

∂

∂z
H̃t =

1

jωµ0µ

[
k2It −

1

νh
kρkρ

]
· (ẑ × Ẽt) +

M̃z

ωµ0µz
kρ + J̃t × ẑ

(2.10)

Where the wave number is defined as k = k0
√
µε and k0 = ω

√
µ0ε0. The intrinsic

impedance is defined as η = η0

√
µ

ε
and η0 =

√
µ0

ε0
.2 Also, the axial anisotropy ratios are

νe =
εz
ε

and νh =
µz
µ

. Also, It = x̂x̂+ ŷŷ = ûû+ v̂v̂. The notations e, h in previous ex-

pressions indicate a TM and TE decompositions receptively with respect to the transverse

x-y plane. The next step in this solution is to apply the spectral immittance. Thus, if the

wave is propagating with wave vector k = kρ + kzẑ, the transverse field components can

be decomposed into û and v̂ as in (2.11). The choice for voltages and currents symbols

will become clear in the next steps where a TL equivalent can be obtained.

2It is possible to include Left Handed (LH) materials by implementing k = k0
√
µ
√
ε and η = η0

√
µ
√
ε

.

This choice will preserve the correct signs [80].
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Ẽt = V eû+ V hv̂ −→ ẑ × Ẽt = −V hû+ V ev̂

H̃t = −Ihû+ Iev̂ −→ H̃t × ẑ = Ieû+ Ihv̂

(2.11)

Thus, introducing (2.11) into (2.10) gives the system in (2.12).

∂

∂z
[V eû+ V hv̂] =

1

jωε0ε

[
k2It −

k2
ρ

νe
ûû
]
· [Ieû+ Ihv̂] +

kρ
ωε0εz

J̃zû− M̃t × ẑ

∂

∂z
[−Ihû+ Iev̂] =

1

jωµ0µ

[
k2It −

k2
ρ

νh
ûû
]
· [−V hû+ V ev̂] +

kρ
ωµ0µz

M̃zû+ J̃t × ẑ

(2.12)

The final step can be achieved by equating the û and v̂ components in (2.12) and

results in the TL system in (2.13).

dV α

dz
= −jkαzZαIα + vα

dIα

dz
= −jkαz Y αV α + iα

(2.13)

Where kαz =

√
k2 −

k2
ρ

να
, Ze =

kez
ωε0ε

, and Zh =
ωµ0µ

khz
. Here, we let α = e, h. The

previous system represents TLs with series voltage and shut current sources excitations

that can be summarized as in Table 2.1. Thus, we can separate these equations into two

systems as in (2.14) and (2.15) utilizing the superposition in linear systems. Here, we

observe that this treatment for Maxwell’s equations results in two separate TLs, viz. e and

h.
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Table 2.1: Series voltage and shut current excitations for the TL system in (2.13).

α = e α = h

vα
kρ

ωε0εz
J̃z − M̃v M̃u

iα −J̃u − kρ
ωµ0µz

M̃z − J̃v

dV α
i

dz
= −jkαzZαIαi

dIαi
dz

= −jkαz Y αV α
i + δ(z − z′)

(2.14)

dIαv
dz

= −jkαz Y αV α
v

dV α
v

dz
= −jkαzZαIαv + δ(z − z′)

(2.15)

The TLGFs are kernels defined as V α
s (kρ; z|z′) and Iαs (kρ; z|z′) for s = v, i. Here, the

subscript s represents the source type. The total voltages and currents are found via the

kernels integrals in in (2.16)3.

V α = 〈V α
i , i

α〉+ 〈V α
v , v

α〉

Iα = 〈Iαi , iα〉+ 〈Iαv , vα〉
(2.16)

3The kernel integrals denoted by 〈K(ζ, ζ ′), φ(ζ ′)〉 ≡
∫∞
−∞K(ζ, ζ ′)φ(ζ ′)dζ ′. The same definition is

applicable to multi-dimensional kernels and functions.
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2.3 Transmission Line Green’s Functions

The TLGFs are the solutions for the differential equation that resulted from scalarizing

the Maxwell’s equations in (2.14) and (2.15). The equivalent TL model for the planar

layered media is illustrated in Figure 2.3. The TL model is applicable to both e and h

modes which are omitted in Figure 2.3. At the top and bottom terminations z0 and zN ,

the impedances
−→
Z 1 and

←−
Z N are used to express any possible terminations, respectively.

Those terminations include PEC, PMC, open, and impedance boundary in general. The

open termination means semi-infinite layer.

Figure 2.3: Equivalent TL model e or h (left) for the planar layered media configura-
tion (right) for N layers with possible isotropic conductive sheets. The shut admittances
represent the isotropic surface conductivities σsn measured in [S].
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From the boundary conditions in (2.5), in the spectral domain, the surface conductivity

tensorσs is replaced with σ̃s = σsuuûû+σsuvûv̂+σsvuv̂û+σsvvv̂v̂.4 Also Ẽt = V eû+V hv̂

and −ẑ × H̃t = Ieû+ Ihv̂. Applying these definitions in (2.13), the following boundary

conditions are obtained as:

V e
n+1(zn) = V e

n (zn)

V h
n+1(zn) = V h

n (zn)

Ien+1(zn)− Ien(zn) = σsuuV
e
n (zn) + σsuvV

h
n (zn)

Ihn+1(zn)− Ihn(zn) = σsvuV
e
n (zn) + σsvvV

h
n (zn)

(2.17)

If an isotropic conductivity is considered σs = σs(ûû + v̂v̂), this reduces (2.17) to

(2.18) and (2.19). This also decouples the equations and simplifies the derivation [82].

V α
n+1(zn) = V α

n (zn) (2.18)

Iαn+1(zn)− Iαn (zn)

V α
n (zn)

= σsn (2.19)

The complete TLGFs solutions for isotropic conductive sheets are summarized in Ap-

pendix A.

2.4 Fields Dyadic Green’s Functions

In order to obtain the fields DGFs, a point source should be considered. Thus, the

fields expressions allow the extraction of DGFs as presented in this section. The total field

can be formed as in (2.7) and using (2.9) by combing the expressions of transverse and

4The symbol σ̃s is used in order to distinguish between the spatial and spectral domain coordinates.
Note that the surface conductivity is independent of ρ and hence no convolution is needed[81].
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longitudinal components in (2.11). This takes the form:

Ẽ = V eû+ V hv̂ − kρ
ωε0εz

Ieẑ − J̃z
jωε0εz

ẑ

H̃ = −Ihû+ Iev̂ +
kρ

ωµ0µz
V hẑ − M̃z

jωµ0µz
ẑ

(2.20)

Using the voltages and currents solutions in (2.16) and the sources in Table 2.1 and

substituting the expressions into (2.20), the complete field is obtained. Considering point

sources J = Ilδ(ρ)δ(z− z′) andM = Klδ(ρ)δ(z− z′) which correspond to the spectral

domain J̃ = Ilδ(z − z′) and M̃ = Klδ(z − z′). Here, Il and Kl are the electric and

magnetic current moments, respectively. The fields DGFs are obtained as follows:5

Ẽ = 〈G̃EJ
; J̃〉+ 〈G̃EM

;M̃〉

H̃ = 〈G̃HJ
; J̃〉+ 〈G̃HM

;M̃〉
(2.21)

The spectral domain DGFs given in (2.22)-(2.25) can be obtained by carefully isolating

the current components and moving the other terms to the kernel side.

G̃
EJ

= −V e
i ûû− V h

i v̂v̂ +
kρ

ωε0εz
Iei ẑû+

kρ
ωε0ε′z

V e
v ûẑ

− 1

jωε0ε′z

[ jk2
ρ

ωε0εz
Iev + δ(z − z′)

]
ẑẑ

(2.22)

G̃
EM

= −V e
v ûv̂ + V h

v v̂û+
kρ

ωε0εz
Iev ẑv̂ −

kρ
ωµ0µ′z

V h
i v̂ẑ (2.23)

5The kernel integrals 〈K(ζ, ζ ′);F (ζ ′)〉 indicate the dot-product.

15



G̃
HJ

= Ihi ûv̂ − Iei v̂û−
kρ

ωµ0µz
V h
i ẑv̂ +

kρ
ωε0ε′z

Iev v̂ẑ (2.24)

G̃
HM

= −Ihv ûû− Iev v̂v̂ +
kρ

ωµ0µz
V h
v ẑû+

kρ
ωµ0µ′z

Ihi ûẑ

− 1

jωµ0µ′z

[ jk2
ρ

ωµ0µz
V h
i + δ(z − z′)

]
ẑẑ

(2.25)

Where µ′z = µz(z
′) and ε′z = εz(z

′). The spatial domain DGFs require applying the

inverse FT in (2.6). Figure 2.4 illustrates the relation between spatial and spectral domain

unit vectors. The point sources considered in the previous derivation allow exploiting

the symmetry in ϕ and result in Fourier Bessel Transform (FBT). Just as a reminder, the

spectral domain DGFs have the dependency G̃
PQ

(kρ; z|z′), whereas the spatial domain

DGF have the dependencyGPQ(ρ; z|z′). Here, P field type is due to Q current type.

Figure 2.4: Spatial and spectral domain relation.

Consider that f̃(kρ) is independent of ζ , hence f̃(kρ) = f̃(kρ) and the inverse FT

becomes:
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f(ρ) =
1

2π

∫ ∞
0

f̃(kρ)
1

2π

[ ∫ 2π

0

e−jkρρ cos(ζ−ϕ)dζ
]
kρdkρ =

1

2π

∫ ∞
0

f̃(kρ)J0(kρρ)kρdkρ

(2.26)

The integral in (2.26) can be re-written as in (2.27).

Sn{f̃(kρ)} =
1

2π

∫ ∞
0

f̃(kρ)Jn(kρρ)kρdkρ (2.27)

The integral in (2.27) is referred to as Sommerfeld Integral (SI). When evaluating SIs,

sometimes it is preferred to re-express the integrals from−∞ to +∞ under the assumption

that f̃(kρ) is even (odd) for even (odd) values of n respectively.6

Sn{f̃(kρ)} =
1

4π

∫ ∞
−∞

f̃(kρ)H
(2)
n (kρρ)kρdkρ (2.28)

Applying the definition in (2.27) and utilizing Bessel’s functions properties to the spec-

tral DGFs in (2.22)-(2.25), one can obtain the spatial domain DGFs which are listed in

Appendix B.

2.5 Point Source Excitation

The evaluation of EM fields due to point sources (Hertzian dipoles) is a special case of

the general arbitrary current distribution. But, it is very important to focus on this special

case since it provides a lot of insights and it is applicable to many practical scenarios. An

example of an arbitrary electric current point source located at r′ is illustrated in Figure

2.5. Here, the point source is defined by a current moment Il and orientation angles

(θ0, ϕ0).

For multiple dipoles, the superposition results in a sum of dot products for point

sources as in (2.29). Where NJ and NM are the number of electric and magnetic dipoles

6The Hankel relations Jn(z) = 1
2 [H

(1)
n (z)+H

(2)
n (z)] andH(1)

n (zejπ) = −e−jnπH(2)
n (z) are also used.
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Figure 2.5: A point source of current moment Il [Am]. Note that the x and y axes are
shifted by x′ and y′ respectively.

with arbitrary current moments IlkJ and KlkM , respectively. For a continuous distribution

of currents, a convolution is needed.

E =

NJ∑
kJ=1

GEJ · IlkJ +

NM∑
kM=1

GEM ·KlkM

H =

NJ∑
kJ=1

GHJ · IlkJ +

NM∑
kM=1

GHM ·KlkM

(2.29)

For point source excitation, we need to evaluate the SIs as mentioned in the previous

section. Unfortunately, these integrals have no closed form expressions and require either

an approximation or a numerical integration. These SIs as discussed earlier can be rep-

resented as infinite or semi-infinite integrals which are both equivalent. For example, the

integration path is defined as in Figure 2.6 [83, p. 459], for the Hankel function definition

in (2.28). Note that the Sommerfeld Integration Path (SIP) in Figure 2.6 has to avoid the

influence of poles in the integrand near integration path. These poles are unique and re-

lated to the configuration resonance condition. Each pole corresponds to a special wave
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type such as surface and leaky waves [84, p. 470], and will be investigated thoroughly in

Chapter 3.

Figure 2.6: An example of the SIP. The branch cut associated with the Hankel function is
not presented. In this case layer 1 is lossless and layer N is lossy.

Moreover, the definition of kαzn =
√
k2
n − k2

ρ/ν
α
n results in two branch cuts [85] for

layers 1 andN .7 The branch cuts can be chosen arbitrarily, but the definitions at Im[kαz1] =

0 and Im[kαzN ] = 0 were chosen according to [84, p. 460], as in Figure 2.6. The two branch

cuts correspond to four Riemann sheets [86, p. 613], with possible transitions between the

sheets through the branch cuts for k1 and kN as shown in Figure 2.7.

Several methods for evaluating this integral have been successfully presented such

as DCIM, FHT and matrix pencil method [57, 87–95]. Nevertheless, the only method that

7For the layers n = 2, 3, . . . , N − 1 it can be shown that the definition of kzn doesn’t result in a branch
cut [86, p. 479] This be can verified by alternating the sign of kzn and we notice no change on the integrand.
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Figure 2.7: The four Riemann sheets definitions and connections between the sheets
through the branch cuts associated with branch points k1 and kN .

provides accurate and reliable results is the real axis integration method which will be used

in this work. The only disadvantage in this method is the limitation for large ρ computa-

tions and the time it takes to evaluate the integrals. When ρ� λ0, the integrands become

extremely highly oscillatory making it very difficult to evaluate with reasonable accuracy.

Roughly, a distance of hundreds λ0 would be the maximum range for this method. For

distances beyond this, one would prefer to use the far fields approximations instead of

computing the exact solution via SIs. The details of the numerical evaluation of SIs using

the real axis integration are summarized in Appendix C.

2.5.1 Numerical Examples

A numerical example of isotropic graphene sheet in layered media from Simsek [96]

is considered for validation. The results were computed using both the finite thickness

model δ = 0.335 [nm] [97] and the conductive sheet formulation developed in this chapter

for validation.8 The frequency of operation is f = 750 [THz]. The configuration details

are summarized in Table 2.2, where the graphene sheet is at the interface between layers 1

and 2.

8The effective dielectric constant ε = 1− j σs

ωε0δ
.
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The conductivity of thin-film of graphene is modeled by Kubo-model for surface con-

ductivity which results in intraband and interband conductivities that can be approximated

as in (2.30) [19, 27, 98]. The surface conductivity in the low THz frequency range is illus-

trated in Figure 2.8. The results are shown in Figure 2.9.

Figure 2.8: An example for the surface conductivity of isotropic graphene sheet using
(2.30).

σintra =
−j2e2kBT

π~2(ω − jγc)
ln

(
2 cosh

[ µc
2kBT

])
σinter =

e2

4~

[
1

2
+

1

π
tan−1

(
~(ω − jγc)− 2µc

2kBT

)
+

j

2π
ln

(
[~(ω − jγc) + 2µc]

2

[~(ω − jγc)− 2µc]2 + (2kBT )2

)] (2.30)

Where e: charge of electron, kB: Boltzmann’s constant, h: Planck’s constant, ω: radial
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frequency, and T : absolute temperature. µc is the chemical potential |µc| ≤ 1 and γc is the

phenomenological carrier scattering rate. Also, ~ =
h

2π
and σ0 =

e2

~
. The total surface

conductivity is evaluated as σs = σintra + σinter.

(a)
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Figure 2.9: DGFs computed using the modified TL model (solid) and values computed using
finite thickness model and (circles) for the configuration in Table 2.2. The graphene parameters
are: µc = 0.2 [eV], ~γc = 2.7 [meV] and T = 300 [K] using Kubo-model in (2.30). The
frequency of operation was selected to be 750 [THz]. The surface conductivity is σs ≈ 6.0660 ×
10−5 − j1.9221× 10−7 [S].
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Table 2.2: Details of Simsek configuration. A dielectric slab surrounded by air.

Layer n zn [nm] εn
0 open -
1 0 1

Graphene - -
2 −2 2.25
3 open 1

2.6 Plane Wave Excitation

The evaluation of the plane wave excitation in planar layered media is a very important

aspect of this study. Several optical devices can be modeled by planar layered such as thin-

film anti-reflection coatings, dielectric mirrors, and optical interference filters [99, p. 186].

In addition to that, the excitation of surface waves modes such as Surface Plasmon Polari-

ton (SPP) [100] are usually achieved by laser sources which can be adequately represented

in small region of interest by incident plane waves [101, p. 47]. The optical signal passing

in these devices are well represented by incident plane waves. An illustration of the wave

number of an incident plane wave from the top layer is shown in Figure 2.10. The plane

wave is decomposed into two components Ei
θ and Ei

ϕ allowing the definition of TE and

TM polarizations, but also circular polarizations.

The analysis of plane wave excitation can be simplified by using the surface equiva-

lence theorem [78, 102, 103]. Thus, it is possible to define an equivalent magnetic surface

current at z0 as n̂×E = Ms. Using image theorem, the problem in the range zN ≤ z ≤ z0

can be solved using magnetic currents sheetMs = 2ẑ×Eiδ(z−z0) as depicted in Figure

2.11. Also, the transverse wave number is kiρ = k1 sin(θi). The incident field in z > z0 is

expressed in (2.31) according to Figure 2.10.

Ei = E0e
jkiρ·ρejk1 cos(θi)z (2.31)
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Figure 2.10: Schematic of the incident plane wave excitation from the top layer. The wave
vector ki is defined by the incidence angles (θi, ϕi).

Figure 2.11: The equivalent problem of incident plane wave from the top layer. The
equivalent current sheet is defined at z = z0.

24



Where E0 is given as:

E0 = Ei
θθ̂i + Ei

ϕϕ̂i (2.32)

According to this choice, for TM excitation we setEi
ϕ = 0, while and for TE excitation

we set Ei
θ = 0. The evaluation of the fields due to this excitation can be simplified by

exploiting FT properties. Hence, the FT is applied and the evaluation is performed in the

spectral domain where ρ̂i = û and ϕ̂i = v̂. Thus, the spectral domain equivalent current

M̃s is given in (2.33).

M̃s =
[
Ei
θ cos(θi)v̂ − Ei

ϕû
]
ejk1 cos(θi)z0(2π)2δ(kρ + kiρ)δ(z − z0) (2.33)

Now, the convolution integral in (2.23) and (2.25) are used to evaluate the fields in the

range of interest zN ≤ z ≤ z0 as in (2.34). Note that these convolutions reduce into dot

product because of δ(z − z0).

Ẽ = 〈G̃EM
; 2M̃s〉

H̃ = 〈G̃HM
; 2M̃s〉

(2.34)

Upon applying the inverse FT to the resulting fields, this reduces to the expression in

(2.35). Where the definitions Ze
1 = η1 cos(θi) and Zh

1 =
η1

cos(θi)
were used.

E = −2E0 ·
[
V e
v cos(θi)θ̂iρ̂i + V h

v ϕ̂iϕ̂i − IevZe
1

ε1
εz

sin(θi)θ̂iẑ
]
ejk

i
ρ·ρejk1 cos(θi)z0

H = −2E0 ·
[
− Ihv ϕ̂iρ̂i + Iev cos(θi)θ̂iϕ̂i + V h

v

1

Zh
1

µ1

µz
sin(θi)ϕ̂iẑ

]
ejk

i
ρ·ρejk1 cos(θi)z0

(2.35)
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2.6.1 Numerical Examples

In this example, a graphene based Otto configuration [20] is considered as illustrated

in Figure 2.12. However, we decided to optimize this example for more practical values.

The minimum reflectivity is found at f = 1 [THz] when d = 20 [µm] after tuning the

setup vs µc. These results are evident from Figure 2.13. The advantage of introducing

graphene sheet is the possibility of tuning the configuration by adjusting the electrostatic

bias represented by the value of µc.

Table 2.3: Otto configuration with graphene details.

Layer Thickness [µm] n =
√
ε

Prism open 2.003
Air 20 1

Graphene - -
Dielectric open 1.762

Note that the SPP mode can be excited only by evanescent waves beyond the critical

angle, i.e., θi > θc. In this case θc = sin−1
√

max(ε2, ε3)/ε1 ≈ 61.6◦. Using the meth-

ods from Chapter 3, the SPP pole is found at kρ/k0 = 1.88224 − j0.00063. Hence, the

transverse incident plane wave number is n1 sin(70◦) = 1.8822 ≈ Re[kρ/k0].

2.7 Far Fields Computation

The far field due to a point source can be evaluated using the equivalence theorem

combined with image theorem in a similar way to the plane wave excitation fields. Here,

the interest is on the top and bottom layers. Hence, the solution will be considered for

z > z0 and z < zN . The solution for z < zN can be easily obtained using a similar

procedure to the one used for z > z0. The electric field due to equivalent magnetic current

at z = z0 is shown in (2.34) using free-space Green’s function [104].
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Figure 2.12: Otto configuration with graphene sheet. The graphene parameters are µc =
0.8138 [eV], ~γc = 0.1 [meV], and T = 300 [K]. The configuration is designed to operate
at f = 1 [THz] for air gap width d = 20 [µm].

E = −∇×
∫∫∫

e−jk1|r−r
′|

4π|r − r′|
M(r′)dr′ (2.36)

In the far field, it is possible to make the following approximation [105, Ch. 2]: ∇ ∼

−jkr̂ and |r − r′| ∼ r − r′ · r̂. Applying these asymptotic expressions to (2.36), this

results in equation (2.37).9

E ∼ jk1
e−jk1r

4πr

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
r̂ ×M (r′)δ(z′ − z0)ejkρ·ρ

′
ejk1 cos(θ)z′dρ′dz′

∼ jk1
e−jk1r

4πr
ejk1 cos(θ)z0

[
r̂ × M̃s(kρ; z0)

] (2.37)

Considering the magnetic currents sheet Ms = 2ẑ × Eδ(z − z0) as in Figure 2.11.

The spectral electric field can be found using (2.21). Assuming NJ and NM electric and

magnetic dipoles respectively. For dipole kJ :

9Here, k1r′ · r̂ = k1(ρ′ + z′ẑ) · r̂ = kρ · ρ′ + k1 cos(θ)z′. Also, kρ = k1 sin(θ)ρ̂.
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(a) (b)

(c) (d)

Figure 2.13: Otto configuration with graphene sheet. Default values are: θi = 70◦, µc = 0.8138
[eV], d = 20 [µm] , and f = 1 [THz] (a) Reflectivity vs incident angle θi. (b) Reflectivity vs µc.
(c) Reflectivity vs frequency f . (d) Reflectivity vs air gap thickness d.
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Figure 2.14: Plane wave excitation for SPP mode in Figure 2.12 Otto configuration.

J̃ = F{IlkJ δ(ρ− ρkJ )δ(z − zkJ )} = IlkJe
jkρ·ρkJ δ(z − zkJ ) (2.38)

Thus, the far field for z > z0 can be found using (2.38).

E ∼ −jk1
e−jk1r

2πr
ejk1 cos(θ)z0

[
r̂ × ẑ × G̃EJ

(kρ; z0|zkJ )
]
· IlkJejkρ·ρkJ (2.39)

Thus, for the electric and magnetic dipoles kJ and kM respectively, it is possible to

write the far field due to these dipoles for z > z0 in (2.40) and (2.41). Where, the far field

for z < zN is in (2.42) and (2.43).
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For z > z0, we substitute kρ = k1 sin(θ), and this corresponds to 0 ≤ θ ≤ π/2:

E ∼ −jk1
e−jk1r

2πr
ejk1 cos(θ)z0

[
V e
i θ̂ρ̂+ V h

i cos(θ)ϕ̂ϕ̂− V e
v η1

ε1
ε′z

sin(θ)θ̂ẑ
]
· IlkJejkρ·ρkJ

(2.40)

E ∼ jk1
e−jk1r

2πr
ejk1 cos(θ)z0

[
V h
v cos(θ)ϕ̂ρ̂− V h

v θ̂ϕ̂− V h
i

1

η1

µ1

µ′z
cos(θ)ϕ̂ẑ

]
·KlkM ejkρ·ρkM

(2.41)

For z < zN , we substitute kρ = kN sin(θ), and this corresponds to π/2 ≤ θ ≤ π:

E ∼ −jkN
e−jkNr

2πr
e−jkN cos(θ)zN

[
V e
i θ̂ρ̂+V h

i cos(θ)ϕ̂ϕ̂−V e
v ηN

εN
ε′z

sin(θ)θ̂ẑ
]
·IlkJejkρ·ρkJ

(2.42)

E ∼ jkN
e−jkNr

2πr
ejkN cos(θ)z0

[
V h
v cos(θ)ϕ̂ρ̂−V h

v θ̂ϕ̂−V h
i

1

ηN

µN
µ′z

cos(θ)ϕ̂ẑ
]
·KlkM ejkρ·ρkM

(2.43)

2.7.1 Numerical Examples

An example of the far fields computation is the previous Otto configuration at f = 1

[THz]. The formulas presented in (2.40)-(2.43) were used to obtain the far field due to

Vertical Electric Dipole (VED) and Horizontal Electric Dipole (HED) as shown in Figure

2.15. Note the strong absorption at θ = 70◦ by the VED due to the SPP excitation as

discussed in the previous section.

30



(a) (b)

Figure 2.15: Far field due to electric dipole embedded in the Otto configuration. The dipole is
located at 25 [µm] above the graphene sheet (i.e., 5 [µm] in the prism). (a) VED (b) HED.
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3. MODAL ANALYSIS FOR ISOTROPIC CONDUCTIVE SHEETS

3.1 Dispersion Relation

The general approach for modal analysis is to develop a Dispersion Function (DF) that

contains all the information about the configuration. The DF or D(kρ), is a transcendental

function, where the roots (zeros) represent the modes or eigenvalues kρ. When the DF

is set to zero, it results in the dispersion relation D(kρ) = 0. Here, we will refer to the

dispersion relation as the DF and both names are used interchangeably. In the planar

layered media, the DF is a function of the transverse propagation constant kρ. The values

of kρ solutions also allow the evaluation of the longitudinal propagation constants kαzn. This

should be evaluated in the light of choosing the suitable Riemann sheet. In this chapter,

the mode types α = e, h are omitted in the expressions for simplicity. This is also because

the derivation here is applicable to both modes. Also, one should note that the poles of

DGFs are the roots of the DF. As stated earlier, the search method for zeros is the Cauchy

Integration Method (CIM) summarized in Appendix D.

From the previous discussion, one can seek spatial fields solutions with e−jkρ·ρ depen-

dency (kρ is a fixed eigenvalue) which corresponds to δ(kρ) shifted by the eigenvalue in

the spectral domain and reduces the source-free expressions from (2.20).1 This leads to

two possible e and h or TM and TE modes, respectively, as in (3.1) and (3.2). Hence,

it is possible to study the modal analysis for planar layered media via the TL quantities

directly, i.e., the modal fields are voltages and currents solutions of the TL.

Ee
t = V eû , He

t = Iev̂ , Ee
z = −kρ

k0

η0I
e

εz
(3.1)

1Note that in the isotropic case, we are only interested in kρ since the symmetry in ζ.
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Eh
t = V hv̂ , Hh

t = −Ihû , Hh
z =

kρ
k0

V h

η0µz
(3.2)

The DF can be obtained in different ways. The easiest DF is obtained from the Trans-

verse Resonance Condition (TRC) [106, p. 246]. In (3.3), this condition is applied for

an arbitrary point source located at z′ in section n. The determinant gives the non-trivial

solutions.

 [1 +
−→
Γ ′ej2kzn(z−z′)] [1 +

←−
Γ ′e−j2kzn(z−z′)]

Yn[1−
−→
Γ ′ej2kzn(z−z′)] −Yn[1−

←−
Γ ′e−j2kzn(z−z′)]


V +

n

V −n

 =

0

0

 (3.3)

At z = z′, the determinant reduces to (3.4).

←−
Γ ′
−→
Γ ′ = 1 (3.4)

Upon the substitution of reflection coefficients definitions, the transverse resonance

condition is obtained and the resulting DF is given in (3.5) in two equivalent forms.

←−
Z n(z′) +

−→
Z n(z′) = 0

←−
Y n(z′) +

−→
Y n(z′) = 0

(3.5)

Equation (3.5) represents a DF that contains all the necessary information about the

configuration in order to find the modes. The arbitrary choice of z′ is permissible for

zN ≤ z′ ≤ z0. Unfortunately, there is no way to guarantee that this DF is pole-free

(depends on the number of layers and the choice of n), and hence it is not possible to

reliably apply the CIM. This DF is useful when treating a simple scenario of half-space

or perhaps a slab surrounded with the same media. In these simple configurations, it is

possible to handle the DF analytically and reach some conclusions such as SPP modes.
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For instance, one can obtain the SPP kρ eigenvalues for conductive sheet suspended in the

same medium as in [98] in (3.6).

kρ =
√
να
√
k2 − (pα)2 (3.6)

Where pe =
2ωε0ε

σs1
and ph =

ωµ0µσ
s
1

2
. Also, for a slab suspended in the identical

isotropic media, the direct application of (3.5) result in (3.7). Here, N = 3 and k1 = k3 =

kamt and the slab is defined as k2 = kslab.

Zslab − Zamt

Zslab + Zamt
± ejΘslab = 0 (3.7)

Although it is easy to compute the DFs above, the DF of this type does not result in a

systematic DF and the function may include both zeros and poles which affects the CIM

and may result in spurious poles. Thus, a rigorous approach is to use T-matrix (Transfer

Matrix) formulation instead [50, 107, 108]. It can be shown that treating the overall stack

as a two-port network and by eliminating the incident waves, it is possible to define DFs

from the equivalent T-matrix. This procedure will be demonstrated in the next section.

Before rushing into the derivation of our DFs, it is important to briefly discuss the

issue of having branch points and branch cuts when applying the CIM. As mentioned ear-

lier, the definitions of kz result in four Riemann sheets depicted in Figure 2.7. Generally

speaking, there are several methods to handle this discontinuity. One solution is to apply

a kρ-transformation in such a way that the four Riemann sheets are mapped all together

on the new domain. This approach we shall call it double transformation [109–112], in

this case the two branch cuts disappear allowing direct implementation of the CIM. How-

ever, these transformations always result in numerical instability, and also the mapping

change according to the configuration. A better solution is to use the Sine transformation

[9, p. 462]. This transformation leads to a fixed mapping, but one would need to navigate
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through two Riemann sheets as proposed by Smith [107,113]. This approach we shall call

it the single transformation. Nevertheless, a more recent technique "point-wise product

of Riemann sheets", suggested by Kowalczyk [114], totally removes the branch cuts and

points numerically. But, it was found that this method slows down the numerical compu-

tations even though it is the most convenient method. The last method to mention is the

four loop integration, also discussed by Smith [109]. This requires navigating through the

four Riemann sheets every time we want to search for roots. This technique will return all

the eigenvalues on all Riemann sheets together once the region of interest is defined. In

our implementation, the previous methods were studied and implemented. Our preference

goes to the last two methods.

3.1.1 T-Matrix Formulation

The source-free section n solution can be written as in (3.8).

V α
n (z) = V +

n e
−jkαzn(z−zn) + V −n e

jkαzn(z−zn)

Iαn (z) = Y α
n

[
V +
n e
−jkαzn(z−zn) − V −n ejk

α
zn(z−zn)

] (3.8)

The boundary conditions between sections n and n− 1 at z = zn−1 must be enforced

in order to construct the basic T-matrix relation.

Vn(zn−1) = Vn−1(zn−1)

In(zn−1) = σsn−1Vn−1(zn−1) + In−1(zn−1)

(3.9)

From (3.7), it is possible to re-arrange the expressions in a convenient matrix form at

the boundary zn−1. This results in the expressions in (3.10) and (3.11).
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Vn(zn−1)

In(zn−1)

 =

 1 1

Yn −Yn


e−jΘn 0

0 ejΘn


V +

n

V −n

 (3.10)

Vn−1(zn−1)

In−1(zn−1)

 =

 1 1

Yn−1 −Yn−1


V +

n−1

V −n−1

 (3.11)

Now, it is possible to form the matrix relation in (3.12) between incident V + and

reflected V − voltages in sections n and n− 1. This results in the matrix
[
Tn
]

which is the

T-matrix relating sections n and n − 1.
[
Tn
]

will become the building block for the final

DF.

V +
n

V −n

 =
[
Tn
] V +

n−1

V −n−1

 (3.12)

The elements of matrix
[
Tn
]

can be expressed as in (3.13) and (3.14).

[
Tn
]

=

T11,n T12,n

T21,n T22,n

 (3.13)

T11,n =
1

2

[
1 +Qn + Znσ

s
n−1

]
ejΘn

T12,n =
1

2

[
1−Qn + Znσ

s
n−1

]
ejΘn

T21,n =
1

2

[
1−Qn − Znσsn−1

]
e−jΘn

T22,n =
1

2

[
1 +Qn − Znσsn−1

]
e−jΘn

(3.14)

Where Qn =
Zn
Zn−1

. The overall T-matrix can be defined in (3.15) by equating the

contiguous sections. This is also an advantage when using T-matrix formulation.
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V +
N

V −N

 =
[
TN
]
. . .
[
T2

]︸ ︷︷ ︸[
T
]

V +
1

V −1

 (3.15)

The boundary impedances
←−
Z N and

−→
Z 1 will be used to represent the all possible ter-

minations. Thus, the following relations are used to introduce these terminations in the

dispersion relation:

[
1
←−
Z N

]VN(zN)

IN(zN)

 = 0 (3.16)

V1(z0)

I1(z0)

 =

−→Z 1

1

 I1(z0) (3.17)

The previous termination relations in (3.16) and (3.17) are given in terms of voltages

and currents. This requires introducing intermediate relations to allow using (3.16) and

(3.17) in (3.15). Thus, the relations in (3.18) and (3.19) are applied.

V +
1

V −1

 =
1

2

 ejΘ1 Z1e
jΘ1

e−jΘ1 −Z1e
−jΘ1


V1(z0)

I1(z0)

 (3.18)

VN(zN)

IN(zN)

 =

 1 1

YN −YN


V +

N

V −N

 (3.19)

The last step is to collect all the previous expressions in (3.15)-(3.19) as illustrated in

(3.20) in order to obtain the final DF in (3.21).
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1

2

[
1
←−
Z N

] 1 1

YN −YN

 [T ]
 ejΘ1 Z1e

jΘ1

e−jΘ1 −Z1e
−jΘ1


−→Z 1

1

 I1(z0) = 0 (3.20)

Dα =

[
1 +

←−
Z N

ZN
1−
←−
Z N

ZN

]
︸ ︷︷ ︸

TerminationN

[
T
]  [−→Z 1 + Z1

]
ejΘ1[−→

Z 1 − Z1

]
e−jΘ1


︸ ︷︷ ︸

Termination1

= 0 (3.21)

The dispersion relation in (3.21) is required to be analytic. Thus, the terminations 1

and N as in Table 3.1 and 3.2 must be strictly applied. For arbitrary impedance boundary,

the terminations in Table 3.3 must be applied. These terminations automatically remove

the branch point singularities and make the DF pole-free. Hence, the only problem left is

to navigate through the Riemann sheets.

Table 3.1: Terminations for α = e TL.

Termination PEC PMC open

1

[
Ze

1e
jΘ1

−Ze
1e
−jΘ1

] [
Ze

1e
jΘ1

Ze
1e
−jΘ1

] [
Ze

1

0

]

N
[
1 1

] [
1 −1

] [
1 0

]

The proof for the pole-free property of the DF developed in (3.21) can be understood

by considering the simple scenario of half-space separated with a conductive sheet. Con-

sidering open/open terminations, the DFs are given in (3.22) and (3.23) for e and h modes

respectively.
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Table 3.2: Terminations for α = h TL.

Termination PEC PMC open

1

[
ejΘ1

−e−jΘ1

] [
ejΘ1

e−jΘ1

] [
1
0

]

N

[
1

Zh
N

1

Zh
N

] [
1

Zh
N

− 1

Zh
N

] [
1

Zh
N

0

]

Table 3.3: Terminations for impedance boundary conditions.

Term. α = e α = h

1

[ [
Ze

1 +
−→
Z 1

]
ejΘ1[

Ze
1 −
−→
Z 1

]
e−jΘ1

] 
[−→Z 1

Zh
1

+ 1
]
ejΘ1

[−→Z 1

Zh
1

− 1
]
e−jΘ1



N

[
1 +

←−
Z N

Ze
N

1−
←−
Z N

Ze
N

] [←−
Z N + Zh

N

(Zh
N)2

←−
Z N − Zh

N

(Zh
N)2

]
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ε2k
e
z1 + ε1k

e
z2 + kez1k

e
z2

σs1
ωε0

= 0 (3.22)

khz1
µ1

+
khz2
µ2

+ ωµ0σ
s
1 = 0 (3.23)

For half-space only, if k1 = k2 = k, the above expression for e modes results in a

spurious mode at kρ = k for a suspended conductive sheets. Thus, we replace it with

(3.24).

2 + kez
σs

ωε0ε
= 0 (3.24)

At the branch point kz = 0, hence the DF given in (3.22) and (3.23) are pole-free. In

addition to this, by alternating the signs of kz1 and kz2, one may check for the existence of

branch cuts [86, p. 479]. Another important example is the termination open/PEC which

is suitable for substrate applications. The DFs for this scenario are given in (3.25) and

(3.26).

[
ε2k

e
z1 + ε1k

e
z2 + kez1k

e
z2

σs1
ωε0

]
ejΘ2 +

[
ε2k

e
z1 − ε1kez2 − kez1kez2

σs1
ωε0

]
e−jΘ2 = 0 (3.25)

[khz1
µ1

+
khz2
µ2

+ ωµ0σ
s
1

]
ejΘ2 +

[khz1
µ1

− khz2
µ2

− ωµ0σ
s
1

]
e−jΘ2 = 0 (3.26)

A last example is given for PEC/PEC terminations. This is also a common scenario in

layered media waveguides. The DFs for this scenario are shown in (3.27) and (3.28).
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[[
ε2k

e
z1 + ε1k

e
z2 + kez1k

e
z2

σs1
ωε0

]
ejΘ2 +

[
ε2k

e
z1 − ε1kez2 − kez1kez2

σs1
ωε0

]
e−jΘ2

]
ejΘ1

−

[[
ε2k

e
z1 − ε1kez2 + kez1k

e
z2

σs1
ωε0

]
ejΘ2 +

[
ε2k

e
z1 + ε1k

e
z2 − kez1kez2

σs1
ωε0

]
e−jΘ2

]
e−jΘ1

= 0

(3.27)

[[khz1
µ1

+
khz2
µ2

+ ωµ0σ
s
1

]
ejΘ2 +

[khz1
µ1

− khz2
µ2

− ωµ0σ
s
1

]
e−jΘ2

]
ejΘ1

−

[[khz1
µ1

− khz2
µ2

+ ωµ0σ
s
1

]
ejΘ2 +

[khz1
µ1

+
khz2
µ2

− ωµ0σ
s
1

]
e−jΘ2

]
e−jΘ1

= 0

(3.28)

Similarly, it is possible to give expressions for other terminations. As seen from the

above, this formulation is versatile and suits several applications of interest. Again, the

objective is to show that this formulation is pole-free and other scenarios of N > 2 will

follow the same analysis.

3.1.2 S-Matrix Formulation

In the previous T-matrix formulation, growing exponentials of ejΘn are present in some

matrix elements which affects the numerical stability. In addition to this, the S-matrix

(Scattering Matrix) is considered numerically more stable than the T-matrix formulation

in the presence of evanescent waves [115] or very thick layers with respect to λ0. Hence,

the S-matrix formulation is introduced. The elements of
[
Tn
]

in (3.13) and (3.14) can be

re-written as in (3.29).
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[
Tn
]

=
1

τn−1,n

 [
1 + Ωn−1,nσ

s
n−1

]
ejΘn

[
Γn−1,n + Ωn−1,nσ

s
n−1

]
ejΘn[

Γn−1,n − Ωn−1,nσ
s
n−1

]
e−jΘn

[
1− Ωn−1,nσ

s
n−1

]
e−jΘn

 (3.29)

Where τi,j = 1 + Γi,j . Note that σsn = 0 when the conductive sheets are removed. The

equivalent S-matrix
[
Sn
]

can be obtained from the relation in (3.30) [116, 117].

[
S
]

=

T21T
−1
11 T22 − T21T

−1
11 T12

T−1
11 −T−1

11 T12

 (3.30)

Using (3.30), the equivalent
[
Sn
]

can be written as in (3.31).2

[
Sn
]

=
1

1 + Ωn−1,nσsn−1

[Γn−1,n − Ωn−1,nσ
s
n−1

]
e−j2Θn τn,n−1e

−jΘn

τn−1,ne
−jΘn

[
Γn,n−1 − Ωn−1,nσ

s
n−1

]


(3.31)

It is clear from (3.31) that all the matrix elements have only decaying exponentials.

According to this, the S-matrix formulation is more stable than the T-matrix. In order to

utilize the S-matrix and apply it in the DF formulation, the overall S-matrix is computed

using the star product [118] described in (3.32). Here, considering the overall matrix of[
S
]

=
[
Sa
]
?
[
Sb
]
.

[
S
]

=

Sa11 + Sa12S
b
11(1− Sa22S

b
11)−1Sa21 Sa12(1− Sb11S

a
22)−1Sb12

Sb21(1− Sa22S
b
11)−1Sa21 Sb22 + Sb21S

a
22(1− Sb11S

a
22)−1Sb12

 (3.32)

Thus, the overall S-matrix is evaluated using (3.33). Then, the T-matrix is converted

2Here, the relations Γn−1,n = −Γn,n−1 and τn,n−1 = 1 + Γn,n−1 were used.
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back using (3.34).

[
S
]

=
[
SN
]
?
[
SN−1

]
? . . . ?

[
S2

]
(3.33)

[
T
]

=

 S−1
21 −S−1

21 S22

S11S
−1
21 S12 − S11S

−1
21 S22

 (3.34)

In the light of the DF described in (3.21), it is possible to re-express the DF for several

terminations using the S-Matrix formulation directly. Sample DFs based on S-matrix for

common terminations are summarized in Table 3.4. So, the T-matrix can be evaluated

using the S-matrix stable formulation.

Table 3.4: DF based on S-matrix formulation.

Termination α = e α = h

open/open
Ze

1

S21

1

Zh
NS21

open/PEC
Ze

1

S21

(1 + S11)
Zh

1

Zh
NS21

(1 + S11)

open/PMC
1

S21

(1− S11)
1

Zh
NS21

(1− S11)

For parallel PEC termination one can obtain the following DFs in (3.33) and (3.34) for

e and h modes respectively.
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Ze
1

S21

[
(1 + S11)(1 + S22e

−j2Θ1)− S12S21e
−j2Θ1

]
= 0 (3.35)

1

Zh
NS21

[
(1 + S11)(1 + S22e

−j2Θ1)− S12S21e
−j2Θ1

]
= 0 (3.36)

It should be noted that all the terminations in Tables 3.1-3.3 are still valid. However, it

can be shown that the overall S-matrix corresponds to the following:

[
S
]

=

−→Γ ←−τ
−→τ
←−
Γ

 (3.37)

Thus, we can compute the overall S-matrix components using the above expressions

via our TL model.

3.2 Modal Fields Profile

The computation of modal fields profile is another important aspect of this study. This

helps in visualizing the modal field. The analysis presented here is restricted to structures

with open boundary on layer 1 while the termination in layer N is arbitrary. This doesn’t

limit the method presented here, but it is more convenient and suitable for the vast majority

of practical configurations. The transverse propagation constant kρ eigenvalues result in
←−
Γ 1 = ∞ as indicated earlier due to resonance which results in additional precautions.

In addition to this, the field in layer 1 is leaving the structure, i.e., V −1 = 0 as shown in

(3.38). Hence, the boundary conditions in the previous chapter were enforced in the first

interface. Also, note that the solutions in layers n > 1 are computed using the down-

looking solutions as in (3.39).
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V1(z) = V +
1 e
−jkz1(z−z1)

I1(z) = Y1V
+

1 e
−jkz1(z−z1)

(3.38)

Vn(z) = V −n e
−jΘn [ejkzn(z−zn) +

←−
Γ ne

−jkzn(z−zn)]

In(z) = −YnV −n e−jΘn [ejkzn(z−zn) −
←−
Γ ne

−jkzn(z−zn)]

(3.39)

The transition between layers 1 and 2 has to be carefully evaluated because two differ-

ent solutions are used in the two sections and the boundary condition is not automatically

satisfied as one would expect. In contrast to the conventional TL solutions, the voltages

and currents solutions are separate, hence:

For voltages:

V −2 =
V +

1

1 +
←−
Γ 2e−j2Θ2

(3.40)

For currents:

V −2 = −Z2[Y1 + σs1]V +
1

1−
←−
Γ 2e−j2Θ2

(3.41)

Thus, using (3.40) and (3.41), one can compute the voltages and currents solutions

respectively for n > 1.

3.3 Numerical Examples

Several examples for practical structures were considered for demonstrating our meth-

ods. These configurations were taken from the literature in order to provide a validation

for our results. The examples were chosen so that they will cover all possible configura-
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tions and challenges that can be faced in the modal analysis. This is an illustration for the

reliability and accuracy of the approach developed in this work.

3.3.1 Active Layer InGaAsP-InP Waveguide

In this example, the five-layers dielectric waveguide in [50] was considered. The de-

tails of this structure are summarized in Table 3.5. This configuration contains lossy di-

electrics and an active layer sandwiched in the middle. Moreover, the top and bottom lay-

ers are both open air. The frequency of operation correspond to the free-space wavelength

λ0 = 1.3 [µm]. The Search contour was defined by the two corners (x1 = 0.4k0, y1 =

−0.1k0) and (x2 = 0.6k0, y2 = 0.8k0) in z domain. In Table 3.6, the kρ solutions for TE

and TM modes are listed after applying this contour. The transverse electric field profile

for samples from Table 3.6 are illustrated in Figure 3.1. This is an example for the case

k1 = kN which requires no special treatment as stated previously.

Table 3.5: Details of active layer InGaAsP-InP configuration.

Layer Thickness [nm] n =
√
ε

1 open 1
2 600 3.4− j0.002
3 400 3.6 + j0.01
4 600 3.4− j0.002
5 open 1

3.3.2 PEC Backed Waveguide

A configuration which includes a PEC backing is considered from [119]. The summary

of this configuration in available in Table 3.7. The frequency of operation is f = 30 [GHz].

Notice that the kρ are all real as shown in Table 3.8.
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Table 3.6: kρ values for TE and TM modes.

Mode kρ/k0

TE0 3.50344333295003 + j0.007103000978684
TE1 3.33728685820776− j0.000229491104012
TE2 3.25168520698338− j0.000530514779911
TE3 3.10425142141457 + j0.001337986339752
TE4 2.87863677988123− j0.000173729890361
TE5 2.62813932045903 + j0.001548644331148
TE6 2.24395136260119 + j0.000708377958009
TE7 1.76819096634077 + j0.001353217176371
TE8 1.07426202652578 + j0.002457891473571
TM0 3.49668379589128 + j0.006543981710984
TM1 3.33069711910721 + j0.000035186422257
TM2 3.22433799874652− j0.000174482612621
TM3 3.05040586521867 + j0.001170315120992
TM4 2.79439777568252 + j0.000708785204484
TM5 2.46292446281425 + j0.001179320064768
TM6 2.00514007332263 + j0.001602922029295
TM7 1.35099878658162 + j0.002314049514967
TM8 1.00143843982593 + j0.000046694123539

Table 3.7: Layered media details of the PEC backed waveguide.

Layer Thickness [mm] ε
1 open 1
2 1.5 2.1
3 1 12.5
4 1.5 9.8
5 1.5 8.6
- PEC -

Table 3.8: kρ values for TE and TM modes.

Mode kρ/k0

TE0 3.04424283140817
TE1 2.35900516800964
TE2 1.00029607180535
TM0 3.00016000121686
TM1 2.57078112913698
TM2 1.36810357278679
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(a) (b)

(c) (d)

Figure 3.1: Transverse electric field profile for modes from Table 3.6 (normalized to 1). (a) TE0.
(b) TE1. (c) TM0. (d) TM1.
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3.3.3 Uniaxial Media Metal-Clad Waveguide

This example considers uniaxial media metal-clad waveguide structure for surface-

plasmon to guided-mode coupling reported in [120]. In this example λ0 = 632.8 [nm].

The summary of this configuration is found in Table 3.5. This configuration has possible

device applications because of the strong coupling between layers.

Table 3.9: Layered media details of the Metal-Clad waveguide with uniaxial media.

Layer Medium Thickness [nm] n =
√
ε nz =

√
εz

1 Air open 1 1
2 Ag 126.56 0.067− j4.05 0.067− j4.05
3 ZnO 341.712 1.99 2.007
4 PE:LiNbO3 841.624 2.2465 2.3266
5 LiNbO3 open 2.2865 2.2026

Table 3.10: kρ values for TM modes.

Mode kρ/k0

TM0 2.30556713927974− j0.011864664172497
TM1 2.30555961890282− j0.000256272937491
TM2 2.24499542019970− j0.000063137358457
TM3 1.03192473691726− j0.001104799491271

3.3.4 Isotropic Graphene

Here, several scenarios that include a graphene sheet in a planar layered media are

considered. First, the method is validated by computing the SPP transverse propagation

constant for a graphene ribbon in free-space. In this case, a closed form for SPP kρ values

is available as in (3.42) [98]. It can be shown for this case that graphene ribbon supports
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TM mode if Im[σs] < 0 and TE mode if Im[σs] > 0 assuming Re[σs] ∼ 0. Thus,

a comparison of the results obtained using CIM with the closed form values at several

frequencies is shown in Figure 3.2.

kρ =
√
να
√
k2 − (pα)2 (3.42)

Where pe =
2ωε0ε

σs1
and ph =

ωµ0µσ
s
1

2
.

Figure 3.2: kρ migration diagram for SPP (TM mode). Frequency range from 1 [THz] to
10 [THz]. (Solid) using the formula in (3.42). (Circles) values computed using the CIM
described here.

Next, the interesting scenario of a graphene based Otto configuration in Table 2.3 from

the Chapter 2 is considered again at frequency of operation 1 [THz]. The SPP mode was

found using the methods developed here and the transverse fields are presented in Figure

3.3 for the TM mode kρ/k0 = 1.88224222918665− j0.00063471402154.
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(a) (b)

Figure 3.3: Transverse fields profile for TM mode (normalized to 1). (a) Electric field. (b)
Magnetic field.

The last example is a half-space with graphene sheet of spatial dispersion taken from

[121] and illustrated in Figure 3.4. In this case the interband contribution is ignored in σs

as in [70] since the frequency of interest in relatively lower than the optical range. The

surface conductively is replaced with σsd as given in (3.43).

σs =
2e2τskBT

π~2(1 + jωτs)
ln
[
2 cosh

( µc
2kBT

)]
σsd = σs

[
1 +

( kρτsvF
1 + jωτs

)2] (3.43)

As seen from the results in Figure 3.5, one of the modes is non-physical at frequen-

cies beyond 4 [GHz] [70]. This problem is due to limitations in the spatially dispersive

graphene expression in (3.43). A modified expression was introduced in [122] as given

in (3.44). This expression is examined in Otto configuration again with the parameters:

τs = 0.5 [ps], µc = 50 [meV], vF = 106 [ms−1] and T = 300 [K]. The media parameters

are also modified as in Table 3.11. The results illustrated in Figure 3.6 represent physical
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Figure 3.4: The graphene parameters are τs =
~
γc

= 0.135 [ps], µc = 50 [meV], vF = 106

[ms−1] and T = 300 [K]. The dielectric is layer permittivity is ε = 11.9.

(a) (b)

(c) (d)

Figure 3.5: TM modes for the graphene half-space configuration. Transverse propagation constant
kρ = β − jα. (a) and (b) Results on Sheet I. (c) and (d) Results on Sheet II.
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modes.

Table 3.11: Otto configuration with graphene details for results in Figure 3.6.

Layer Thickness [µm] ε
Prism open 11.9

Air 20 1
Graphene - -
Dielectric open 3.9

σs =
[−je2kBT

π~2

] ln
[
2
[
1 + cosh

( µc
2kBT

)]]
√

(ω − jτ−1
s )2 − v2

Fk
2
ρ

(3.44)

(a) (b)

Figure 3.6: TM modes for the Otto configuration with graphene vs frequency. The interband
effects were ignored in the local conductivity. The non-local conductivity is given in (3.44).
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3.3.5 Metamaterial Multilayered Waveguide

In this example a 63 layers stack suspended in air is considered [123] forming a Meta-

material Multilayered (ML) with effective hyperbolic uniaxial media parameters [124].

The frequency of operation corresponds to λ0 = 422 [nm]. A dielectric-metal bi-layers 3

are repeated 32 times. The media parameters are εD = 6.76 and εM = −5.637 − j0.214

where dD = 11.7788 [nm] and dM = 10.2212 [nm]. In order to make the configuration

symmetric, the top dielectric layer is halved and the other half is placed below the bottom

layer of the 63 layers. The stack corresponds to an effective medium which exhibits strong

anisotropy [124–127]. The TM modes are listed in Table 3.12. In this example the compu-

tation was done by inserting PEC and PMC for even and odd modes respectively splitting

the waveguide. This simplifies the computations as shown in Figure 3.7 and 3.8.

Figure 3.7: The DF for TE modes of the metamaterial ML configuration with boundary
placed in the middle of the configuration with PEC.

3Dielectric on top of the metal bi-layer.
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Table 3.12: kρ values for TM modes.

Mode kρ/k0

TMs 1.0664873335033− j0.11115261799855
TM0 5.8854156233753 + j1.60530790786940
TM1 8.5910378082737 + j1.36679486975981
TM2 10.189888644414 + j1.30745983161466
TM3 11.364387201748 + j1.27929330849708
TM4 12.301163846515 + j1.26292683965598
TM5 13.081187277157 + j1.25240279413208
TM6 13.747811945725 + j1.24520640975688
TM7 14.327311972078 + j1.24007712164205
TM8 14.836968577866 + j1.23631023876062
TM9 15.288826322046 + j1.23348082771745
TM10 15.691648389941 + j1.23131793168107
TM11 16.052023705706 + j1.22964117627636
TM12 16.375035755902 + j1.22832629234286
TM13 16.664688046716 + j1.22728521449809
TM14 16.924186492410 + j1.22645402676158
TM15 17.156133781086 + j1.22578536272484
TM16 17.362667652078 + j1.22524344730243
TM17 17.545562597890 + j1.22480076497879
TM18 17.706307590974 + j1.22443576788610
TM19 17.846168527505 + j1.22413128554099
TM20 17.966241842029 + j1.22387346298643
TM21 18.067504237722 + j1.22365118954974
TM22 18.150861548331 + j1.22345610723103
TM23 18.217195461406 + j1.22328335549243
TM24 18.267397577562 + j1.22313301155693
TM25 18.302366070888 + j1.22301138946613
TM26 18.322932478830 + j1.22293014603284
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Figure 3.8: The DF for TM modes of the metamaterial ML configuration with boundary
placed in the middle of the configuration with PMC.

The hyperbolic properties of this structure are explained via the Effective Medium

Theory (EMT) [128–130]. In this case, the effective media parameters are ε ≈ 1.0004 −

j0.0994 and εz ≈ −160.0240−j161.2890 according to (3.45). The anisotropy ratio would

be νe ≈ −142.5347 − j175.3984 which indicates that the effective media is uniaxial but

also hyperbolic because of the negative sign on the real part.

ε = pεM + (1− p)εD

εz =
εMεD

pεD + (1− p)εM

(3.45)

Where the filling ratio p =
dM

dM + dD
.
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3.3.6 9-Layers ARROW Waveguide

This example is a 9-layer Anti-Resonant Reflecting Optical Waveguide (ARROW) in

[108] summarized in Table 3.13 with operating frequency corresponds to λ0 = 632.8

[nm]. The transverse magnetic fields for the modes: TM0 for kρ/k0 = 1.45792542304 −

j4.58804880738× 10−6 and TM1 for kρ/k0 = 1.45778277326− j5.71632735529× 10−6

are illustrated in Figure 3.9.

Table 3.13: Layered media details of 9-layer ARROW waveguide.

Layer Thickness [µm] n =
√
ε

1 open 1
2 2 1.46
3 0.448 1.5
4 4 1.46
5 0.448 1.5
6 2 1.46
7 0.448 1.5
8 4 1.46
9 0.448 1.5
10 2 1.46
11 open 3.5

3.3.7 4-Layers Leaky Waves

Finally, in this configuration is k1 6= kN as described in [131] and summarized in Table

3.14 where λ0 = 632.8 [nm]. The first propagating and leaky TE modes are listed in Table

3.15 and 3.16 respectively.
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(a) (b)

Figure 3.9: The transverse magnetic field profile for TM modes (normalized by the complex value
of H that corresponds to max(|H|)).

Table 3.14: Layered media details of 4-layers waveguide.

Layer Thickness [nm] n =
√
ε

1 open 1
2 500 1.66
3 500 1.53
4 500 1.46
5 500 1.6
6 500 1.66
7 open 1.5

Table 3.15: kρ values for TE propagating modes on sheet I.

Mode kρ/k0

TE0 1.62272868232444
TE1 1.60527569809455
TE2 1.55713615229412
TE3 1.50358711202272

Table 3.16: kρ values for TE leaky modes on sheet III.

Mode kρ/k0

TE4 1.46185664144564− j0.007155870648894
TE5 1.38248922303422− j0.018165877364415
TE6 1.28136443614803− j0.035877392160044
TE7 1.14231446246756− j0.052876075117094
TE8 1.00303701888735− j0.070770941090572
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4. FIELDS EVALUATION FOR ANISOTROPIC CONDUCTIVE SHEETS

4.1 Transmission Line Model

Anisotropic conductive sheets are distinguished by tensor surface conductivity as men-

tioned earlier (4.1). The equivalent circuit of anisotropic conductive sheet in the TL model

has been suggested as in Figure 4.1 [45, 46]. This model resembles the coupling between

the TM and TE TLs, and it is derived directly from the boundary conditions in (2.17).

Figure 4.1: Coupled TLs at the junction z = zn circuit model representing the boundary
condition arising from anisotropic conductive sheet placed between layers n and n+ 1.
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σs =

σsxx σsxy

σsyx σsyy

 (4.1)

The tensor surface conductivity can be expressed in the spectral domain as in (4.2)

[24, 132].

σ̃s = RT · σs ·R =

σsuu σsuv

σsvu σsvv

 (4.2)

Where the rotation matrix R is defined as in (4.3), and RT is the transpose. This is

a similarity transformation which preserves the matrix properties: rank, determinant, and

eigenvalues invariant under rotation [133, p. 181].

R =
1

kρ

kx −ky
ky kx

 (4.3)

One can write the spectral domain components as follows:

σsuu =
1

k2
ρ

[
k2
xσ

s
xx + k2

yσ
s
yy + kxky(σ

s
xy + σsyx)

]
σsuv =

1

k2
ρ

[
k2
xσ

s
xy − k2

yσ
s
yx − kxky(σsxx − σsyy)

]
σsvu =

1

k2
ρ

[
k2
xσ

s
yx − k2

yσ
s
xy − kxky(σsxx − σsyy)

]
σsvv =

1

k2
ρ

[
k2
xσ

s
yy + k2

yσ
s
xx − kxky(σsxy + σsyx)

]
(4.4)

One should note that
kx
kρ

= cos(ζ) and
ky
kρ

= sin(ζ) which uses the definition of the

spectral angle ζ . Also, we can define the isotropic case as σs = σsI if needed. In a special

case such as anisotropic graphene, the tensor surface conductivity results in no change in
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the elements under rotation [134].

σs =

σsd −σsh
σsh σsd

 = σ̃s (4.5)

The coupling between both TLs requires that we solve both TLs simultaneously. This

means that we need a different approach to solve for TL quantities. The following defini-

tions will be used:

[
Vn(z)

]
=

V e
n (z)

V h
n (z)

 ,
[
In(z)

]
=

Ien(z)

Ihn(z)

 (4.6)

[
V +
n

]
=

V e+
n

V h+
n

 ,
[
V −n
]

=

V e−
n

V h−
n

 (4.7)

[
P+
n (z)

]
=

e−jkezn(z−zn) 0

0 e−jk
h
zn(z−zn)

 ,
[
P−n (z)

]
=

ejkezn(z−zn) 0

0 ejk
h
zn(z−zn)


(4.8)

[
Θ+
n

]
=

e−jΘen 0

0 e−jΘ
h
n

 =
[
P+
n (zn−1)

]
,
[
Θ−n
]

=

ejΘen 0

0 ejΘ
h
n

 =
[
P−n (zn−1)

]
(4.9)

[
Zn

]
=

Ze
n 0

0 Zh
n

 ,
[
Yn
]

=

Y e
n 0

0 Y h
n

 (4.10)

Also, note the relations
[
P+
n (z)

]
=
[
P−n (z)

]−1,
[
Θ+
n

]
=
[
Θ−n
]−1, and

[
Zn

]
=
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[
Yn
]−1.

In this solution, one should note that the symbol
[ ]

represents a matrix. This notation

reduces the mathematical expressions and make them more readable. It is possible to

define the boundary conditions in (2.5) as in (4.11) using the new notation. This is in

agreement with [135]:1

[Vn+1(zn)
]

[
In+1(zn)

]
 =

 [1] [
0
]

[
σ̃sn
] [

1
]

[Vn(zn)

]
[
In(zn)

]
 (4.11)

The next step is to write a solution to this TLs system. Here, we follow a similar

approach to what we have done in Appendix A by splitting the solutions into source-free

and source-excited. In addition, in the source-free regions we have up-looking and down-

looking solutions. In the following, the source is assume to be located in section m.

4.1.1 Source-Free Solution (n 6= m)

A source-free section is illustrated in Figure 4.2. Here, we follow the same approach

for finding the solutions in both TLs simultaneously due to the coupling of anisotropic

conductive sheets.

4.1.1.1 Down-Looking Case (n > m)

Considering the following down-looking solution:

[
Vn(z)

]
=

[[
P−n (z)

]
+
[
P+
n (z)

][←−
Γ n

]][
Θ+
n

][
V −n
]

[
In(z)

]
= −

[
Yn
][[
P−n (z)

]
−
[
P+
n (z)

][←−
Γ n

]][
Θ+
n

][
V −n
] (4.12)

Here, initially we postulate this type of reflection coefficient definition which will be-

1Where
[
1
]

is the identity matrix.
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Figure 4.2: A source-free section n for coupled e and h TLs. The coupling is generally
represented by junctions at interfaces.

come clear as we proceed:

[←−
Γ n

]
=

←−Γ ee
n

←−
Γ eh
n

←−
Γ he
n

←−
Γ hh
n

 (4.13)

The incident and reflected waves definitions are:

[
w+
n (z)

]
=
[
P+
n (z)

][←−
Γ n

][
Θ+
n

][
V −n
]

[
w−n (z)

]
=
[
P−n (z)

][
Θ+
n

][
V −n
] (4.14)

The reflection coefficients are defined based on the wave relations:
[
w+
n (zn)

]
=[←−

Γ n

][
w−n (zn)

]
. This can be re-written as follows:
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[Vn(z)
]

[
In(z)

]
 =

 [
1
] [

1
]

−
[
Yn
] [

Yn
]

[P−n (z)

] [
0
]

[
0
] [

P+
n (z)

][←−
Γ n

]

[Θ+

n

][
V −n
]

[
Θ+
n

][
V −n
]
 (4.15)

The solution in (4.15) at z = zn becomes:

[Vn(zn)
]

[
In(zn)

]
 =

 [
1
] [

1
]

−
[
Yn
] [

Yn
]

 [

Θ+
n

][
V −n
]

[←−
Γ n

][
Θ+
n

][
V −n
]
 (4.16)

And the same for section n+ 1 solution:

[Vn+1(zn)
]

[
In+1(zn)

]
 =

 [
1
] [

1
]

−
[
Yn+1

] [
Yn+1

]

 [

V −n+1

]
[
Θ+
n+1

][←−
Γ n+1

][
Θ+
n+1

][
V −n+1

]
 (4.17)

Using the boundary conditions in (4.11), we obtain the following relation:

 [
V −n+1

]
[
Θ+
n+1

][←−
Γ n+1

][
Θ+
n+1

][
V −n+1

]
 =

[M11,n

] [
M12,n

]
[
M21,n

] [
M22,n

]

 [

Θ+
n

][
V −n
]

[←−
Γ n

][
Θ+
n

][
V −n
]

(4.18)

Where,
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[
M11,n

]
=

1

2

[[
1
]

+
[
Zn+1

][[
Yn −

[
σ̃sn
]]]

[
M12,n

]
=

1

2

[[
1
]
−
[
Zn+1

][[
Yn +

[
σ̃sn
]]]

[
M21,n

]
=

1

2

[[
1
]
−
[
Zn+1

][[
Yn −

[
σ̃sn
]]]

[
M22,n

]
=

1

2

[[
1
]

+
[
Zn+1

][[
Yn +

[
σ̃sn
]]]

(4.19)

Note that the inverse matrix in (4.20) was applied in (4.19).

 [
1
] [

1
]

−
[
Yn+1

] [
Yn+1

]

−1

=
1

2

[1] −[Zn+1

]
[
1
] [

Zn+1

]
 (4.20)

Allowing the next definitions which are extensions to previous relations:

[
Γi,j

]
=

Γei,j 0

0 Γhi,j

 (4.21)

[
τi,j
]

=
[
1
]

+
[
Γi,j

]
=

τ ei,j 0

0 τhi,j

 (4.22)

Using the previous definitions and the relations in (4.18), It is possible to show that:

[
V −n+1

]
=

[[
M11,n

]
+
[
M12,n

][←−
Γ n

]][
Θ+
n

][
V −n
]

[←−
Dn+1

][
V −n+1

]
=

[[
M21,n

]
+
[
M22,n

][←−
Γ n

]][
Θ+
n

][
V −n
] (4.23)
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Where,

[←−
Dn+1

]
=
[
Θ+
n+1

][←−
Γ n+1

][
Θ+
n+1

]
(4.24)

Also,
[
Ωi,j

]
=
[[
Yi
]

+
[
Yj
]]−1

. Using (4.23) and rearranging the terms, one can

obtain:

[[
M22,n

]
−
[←−
Dn+1

][
M12,n

]][←−
Γ n

]
=

[
−
[
M21,n

]
+
[←−
Dn+1

][
M11,n

]]
(4.25)

The matrix elements in (4.19) can be re-written as in (4.26):2

[
M11,n

]
=
[
τn,n+1

]−1

[[
1
]
−
[
Ωn+1,n

][
σ̃sn
]]

−
[
M12,n

]
=
[
τn,n+1

]−1

[[
Γn+1,n

]
+
[
Ωn+1,n

][
σ̃sn
]]

−
[
M21,n

]
=
[
τn,n+1

]−1

[[
Γn+1,n

]
−
[
Ωn+1,n

][
σ̃sn
]]

[
M22,n

]
=
[
τn,n+1

]−1

[[
1
]

+
[
Ωn+1,n

][
σ̃sn
]]

(4.26)

Thus, the reflection coefficient is given in (4.27) and the voltages are related by (4.32).

[←−
Γ n

]
=
([
A
]

+
[
B
])−1([

C
]

+
[
D
])

(4.27)

Where,

2Note that
[
Γn,n+1

]
= −

[
Γn+1,n

]
was used.
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[
A
]

=
[
τn,n+1

]−1
([

1
]

+
[
Ωn+1,n

][
σ̃sn
])

[
B
]

=
[←−
Dn+1

][
τn,n+1

]−1
([

Γn+1,n

]
+
[
Ωn+1,n

][
σ̃sn
])

[
C
]

=
[
τn,n+1

]−1
([

Γn+1,n

]
−
[
Ωn+1,n

][
σ̃sn
])

[
D
]

=
[←−
Dn+1

][
τn,n+1

]−1
([

1
]
−
[
Ωn+1,n

][
σ̃sn
])

(4.28)

For n = N , we start with:

[←−
Γ N

]
=

←−Γ ee
N 0

0
←−
Γ hh
N

 (4.29)

Note that the overall reflection coefficient
[←−

Γ 1

]
takes the form in (4.30) in the presence

of anisotropic sheet(s) embedded in the stack. Hence, the coupling between the TLs is

observed explicitly.

[←−
Γ 1

]
=

←−Γ ee
1

←−
Γ eh

1

←−
Γ he

1

←−
Γ hh

1

 (4.30)

Also, using the first boundary condition:
[
Vn+1(zn)

]
=
[
Vn(zn)

]
:

[[
1
]

+
[←−
Dn+1

]][
V −n+1

]
=
[[

1
]

+
[←−

Γ n

]][
Θ+
n

][
V −n
]

(4.31)

Thus, we obtain:

[
V −n+1

]
=

[[
1
]

+
[←−
Dn+1

]]−1[[
1
]

+
[←−

Γ n

]][
Θ+
n

][
V −n
]

=
[←−τ n

][
V −n
]

(4.32)
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The overall
[←−τ ] =

∏1
n=N−1

[←−τ n

]
. Notice that these relations simplify to the un-

coupled TL formulation presented previously. If n = m + 1, then we define
[
V −n
]

as

follows:

[
V −n
]

=

[[
1
]

+
[←−
Dn

]]−1[
Vm(zm)

]
(4.33)

4.1.1.2 Up-Looking Case (n < m)

Similar to what we have done for isotropic scenario, the proposed solution is:

[
Vn(z)

]
=

[[
P+
n (z)

]
+
[
P−n (z)

][−→
Γ n

]][
Θ+
n

][
V +
n

]
[
In(z)

]
=
[
Yn
][[
P+
n (z)

]
−
[
P−n (z)

][−→
Γ n

]][
Θ+
n

][
V +
n

] (4.34)

Where the definitions of
[
P+
n (z)

]
and

[
P−n (z)

]
are replaced with (4.35).

[
P+
n (z)

]
=

e−jkezn(z−zn−1) 0

0 e−jk
h
zn(z−zn−1)


[
P−n (z)

]
=

ejkezn(z−zn−1) 0

0 ejk
h
zn(z−zn−1)


(4.35)

The reflection coefficients are defined based on the wave relation:
[
w−n (zn−1)

]
=[−→

Γ n

][
w+
n (zn−1)

]
. The reflection coefficient is given in (4.36).

[−→
Γ n

]
=
([
A
]

+
[
B
])−1([

C
]

+
[
D
])

(4.36)
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Where,

[
A
]

=
[
τn,n−1

]−1
([

1
]

+
[
Ωn−1,n

][
σ̃sn−1

])
[
B
]

=
[−→
Dn−1

][
τn,n−1

]−1
([

Γn−1,n

]
+
[
Ωn−1,n

][
σ̃sn−1

])
[
C
]

=
[
τn,n−1

]−1
([

Γn−1,n

]
−
[
Ωn−1,n

][
σ̃sn−1

])
[
D
]

=
[−→
Dn−1

][
τn,n−1

]−1
([

1
]
−
[
Ωn−1,n

][
σ̃sn−1

])
(4.37)

For n = 1, we start with:

[−→
Γ 1

]
=

−→Γ ee
1 0

0
−→
Γ hh

1

 (4.38)

The voltages are related by (4.39).

[
V +
n−1

]
=

[[
1
]

+
[−→
Dn−1

]]−1[[
1
]

+
[−→

Γ n

]][
Θ+
n

][
V +
n

]
=
[−→τ n

][
V +
n

]
(4.39)

Where, [−→
Dn−1

]
=
[
Θ+
n−1

][−→
Γ n−1

][
Θ+
n−1

]
(4.40)

The overall
[−→τ ] =

∏N
n=2

[−→τ n

]
. Also, if n = m−1, then we define

[
V +
n

]
as follows:

[
V +
n

]
=

[[
1
]

+
[−→
Dn

]]−1[
Vm(zm−1)

]
(4.41)

Similarly, the overall reflection coefficient is given below:

[−→
Γ N

]
=

−→Γ ee
N

−→
Γ eh
N

−→
Γ he
N

−→
Γ hh
N

 (4.42)
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This completes the solution for source-free sections.

4.1.2 Source-Excited Solution (n = m)

A source-excited section is illustrated in Figure 4.3. Notice that we distinguish the

excitations from each TL using the notation e and h. Considering section n where the

source is place in z′, we introduce the definitions:

Figure 4.3: A source-excited section n for coupled e and h TLs. The coupling is generally
represented by junctions at interfaces.

[
Ṕ+
n (z)

]
=

e−jkezn(z−z′) 0

0 e−jk
h
zn(z−z′)

 ,
[
Ṕ−n (z)

]
=

ejkezn(z−z′) 0

0 ejk
h
zn(z−z′)


(4.43)

Similar to the isotropic case, the proposed solutions are:
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[
Vn(z)

]
=


[
V +
n (z)

]
=
[[
Ṕ+
n (z)

]
+
[
Ṕ−n (z)

][−→
Γ ′
]][
V +
n

]
, z > z′[

V −n (z)
]

=
[[
Ṕ−n (z)

]
+
[
Ṕ+
n (z)

][←−
Γ ′
]][
V −n
]
, z < z′

(4.44)

[
In(z)

]
=


[
I+
n (z)

]
=
[
Yn
][[
Ṕ+
n (z)

]
−
[
Ṕ−n (z)

][−→
Γ ′
]][
V +
n

]
, z > z′[

I−n (z)
]

= −
[
Yn
][[
Ṕ−n (z)

]
−
[
Ṕ+
n (z)

][←−
Γ ′
]][
V −n
]
, z < z′

(4.45)

Notice that the reflection coefficients definitions are based on the following waves

relations:

[
w+
n (z′)

]
=
[←−

Γ ′
][
w−n (z′)

]
, z < z′[

w−n (z′)
]

=
[−→

Γ ′
][
w+
n (z′)

]
, z > z′

(4.46)

From the definitions in (4.46), we can obtain:

[
w+
n (zn)

]
=
[←−

Γ n

][
w−n (zn)

]
, z < z′[

w−n (zn−1)
]

=
[−→

Γ n

][
w+
n (zn−1)

]
, z > z′

(4.47)

From the previous, we introduce the following relations in (4.48) and (4.49).

[
Ṕ+
n (zn)

][
w+
n (z′)

]
=
[←−

Γ n

][
Ṕ−n (zn)

][
w−n (z′)

]
[
Ṕ−n (zn−1)

][
w−n (z′)

]
=
[−→

Γ n

][
Ṕ+
n (zn−1)

][
w+
n (z′)

] (4.48)
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[←−
Γ ′
]

=
[
Ṕ−n (zn)

][←−
Γ n

][
Ṕ−n (zn)

]
[−→

Γ ′
]

=
[
Ṕ+
n (zn−1)

][−→
Γ n

][
Ṕ+
n (zn−1)

] (4.49)

Here, the following definitions will be used for the excitations
[
v
]

and
[
i
]

as in (4.50).

Note that only one type of excitation will be used while the other values are set to zeros.

[
v
]

=

ve
vh

 ,
[
i
]

=

ie
ih

 (4.50)

The jump condition can be expressed as:

[
V +
n (z′)

]
−
[
V −n (z′)

]
=
[
v
]

[
I+
n (z′)

]
−
[
I−n (z′)

]
=
[
i
] (4.51)

Substituting the corresponding expressions from (4.44) and (4.45) into (4.51) we ob-

tain:



[
A
]︷ ︸︸ ︷[[

1
]

+
[−→

Γ ′
]]

[
B
]︷ ︸︸ ︷

−

[[
1
]

+
[←−

Γ ′
]]

[
Yn
][[

1
]
−
[−→

Γ ′
]]

︸ ︷︷ ︸[
C
]

[
Yn
][[

1
]
−
[←−

Γ ′
]]

︸ ︷︷ ︸[
D
]



[V +
n

]
[
V −n
]
 =

[v][
i
]
 (4.52)

The system above in (4.52) can be solved as in (4.53).
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[
V +
n

]
=

[[
B
]−1[

A
]
−
[
D
]−1[

C
]]−1[[

B
]−1[

v
]
−
[
D
]−1[

i
]]

[
V −n
]

=

[[
A
]−1[

B
]
−
[
C
]−1[

D
]]−1[[

A
]−1[

v
]
−
[
C
]−1[

i
]] (4.53)

Hence, the expressions in (4.53) will be substituted in (4.44) and (4.45) and give the

complete solutions inside section n where the source is embedded.

For computing the components V α
sβ(z|z′) and Iαsβ(z|z′) we apply (4.50). In the previous

notation, we defined the voltage on α = e, h TL excited by source type s = v, i located

on β = e, h TL. Note that the coupling between TLs via interface transformers result

in exciting both TLs due to any source. The expressions in (4.54)-(4.55) illustrates this

concept.

V α(z) = 〈V α
ie (z|z′), ie(z′)〉+ 〈V α

ih(z|z′), ih(z′)〉

+ 〈V α
ve(z|z′), ve(z′)〉+ 〈V α

vh(z|z′), vh(z′)〉
(4.54)

Iα(z) =〈Iαie(z|z′), ie(z′)〉+ 〈Iαih(z|z′), ih(z′)〉

+ 〈Iαve(z|z′), ve(z′)〉+ 〈Iαvh(z|z′), vh(z′)〉
(4.55)

4.1.3 Numerical Examples

Here, we study an example of planar layered structure that includes an anisotropic

conductive sheet. The idea is to validate the TL implementation discussed above against

the literatures before we proceed with our DGFs development. The magnetically biased

graphene surface conductivity model was presented in [27, 136–140]. This model will be

used in the following examples for demonstrating our solution on anisotropic graphene.
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The surface conductivity tensor components are given in (4.57)-(4.59). Under magnetic

bias, the Hall conductivities are introduced and hence the tensor conductivity takes the

form defined in (4.56). In Figure 4.4, an example of the surface conductivity of magneti-

cally biased graphene values vs frequency are shown.

σs =

σsd −σsh
σsh σsd

 = σ̃s (4.56)

(a) (b)

Figure 4.4: Tensor surface conductivity components vs frequency. The graphene parameters are:
B0 = 1 [T], µc = 0.2 [eV], τ = 0.5 [ps], vF = 106 [ms−1] and T = 300 [K].

σd = j
2σ0

π
L2$

∞∑
n=0

[
nF (Mn)− nF (Mn+1)− nF (−Mn) + nF (−Mn+1)

(Mn+1 −Mn)
[
(Mn+1 −Mn)2 −$2

]
+
nF (−Mn)− nF (Mn+1)− nF (Mn) + nF (−Mn+1)

(Mn+1 +Mn)
[
(Mn+1 +Mn)2 −$2

] ] (4.57)
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σh = sgn(B0)
2σ0

π
L2

∞∑
n=0

[
nF (Mn)− nF (Mn+1) + nF (−Mn)− nF (−Mn+1)

]
×
[

1

(Mn+1 −Mn)2 −$2
+

1

(Mn+1 +Mn)2 −$2

] (4.58)

Where:

$ = (ω − j2Γ)~ , Mn =
√
nL

L =
√

(2|eB0|~)vF , nF (E) =
1

1 + e(E−µc)/(kBT )

(4.59)

In the above, σ0 =
e2

4~
≈ 6.085337 × 10−5 [S], Γ =

1

2τ
is the phenomenological

scattering rate (~γc), Mn is the Landau level energy with index n, nF is the Fermi-Dirac

distribution.

4.1.3.1 Otto Configuration with Graphene

This configuration is an extension to the Otto configuration studied in Chapter 2. The

effect of magnetic bias on this configuration was highlighted in [136]. The graphene pa-

rameters are: B0 = 1 [T], µc = 0.5 [eV], τ = 3 [ps], vF = 106 [ms−1] and T = 300

[K]. The reflectivity components were computed using the methods above and compared

using the T-matrix definitions found in [3] for validation. This comparison is illustrated in

Figure 4.5.

Another comparison for various magnetic bias is demonstrated in Figure 4.6. It should

be understood that in all these results, the incident angle ϕi was ignored since the tensor

conductivity is invariant under rotation.
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Table 4.1: Otto configuration with magnetically biased graphene details.

Layer Thickness ε
Prism open 12

Air 5 [µm] 1
Graphene - -
Dielectric open 4

(a) (b)

Figure 4.5: Reflectivity for Otto configuration with graphene sheet at f = 1 [THz]. Results ob-
tained using the expression in (4.27). Results obtained using the formulation given in [3] (Circles).

(a) (b)

Figure 4.6: Reflectivity vs frequency at angle θi = 60◦. Note that Γeh and Γhe were multiplied
and divided by a factor of 2 respectively for comparison with reference results.
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4.2 Point Source Excitation

It is interesting to evaluate the fields due to point source in the presence of anisotropic

conductive sheets. The spectral domain DGFs can be extended for this scenario as in

(4.60)-(4.63) using the solution discussed above. These expressions were obtained by

considering that both TLs are excited simultaneously.

G̃
EJ

= −V e
ieûû− V e

ihûv̂ +
η0kρ
k0ε′z

V e
veûẑ − V h

ie v̂û− V h
ihv̂v̂ +

η0kρ
k0ε′z

V h
vev̂ẑ

+
η0kρ
k0εz

Ieieẑû+
η0kρ
k0εz

Ieihẑv̂ −
η2

0k
2
ρ

k2
0εzε

′
z

Ieveẑẑ −
η0

jk0ε′z
δ(z − z′)ẑẑ

(4.60)

G̃
HJ

= Ihieûû+ Ihihûv̂ −
η0kρ
k0ε′z

Ihveûẑ − Ieiev̂û− Ieihv̂v̂ +
η0kρ
k0ε′z

Ievev̂ẑ

− kρ
η0k0µz

V h
ie ẑû−

kρ
η0k0µz

V h
ihẑv̂ +

k2
ρ

k2
0µzε

′
z

V h
veẑẑ

(4.61)

G̃
EM

= V e
vhûû− V e

veûv̂ −
kρ

η0k0µ′z
V e
ihûẑ + V h

vhv̂û− V h
vev̂v̂ −

kρ
η0k0µ′z

V h
ihv̂ẑ

− η0kρ
k0εz

Ievhẑû+
η0kρ
k0εz

Ieveẑv̂ +
k2
ρ

k2
0µ
′
zεz

Ieihẑẑ

(4.62)

G̃
HM

= −Ihvhûû+ Ihveûv̂ +
kρ

η0k0µ′z
Ihihûẑ + Ievhv̂û− Ievev̂v̂ −

kρ
η0k0µ′z

Ieihv̂ẑ

+
kρ

η0k0µz
V h
vhẑû−

kρ
η0k0µz

V h
veẑv̂ −

k2
ρ

η2
0k

2
0µzµ

′
z

V h
ihẑẑ −

δ(z − z′)
jη0k0µ′z

ẑẑ

(4.63)

In general, the spatial domain DGFs should be computed using the 2D inverse FT

given in (4.64). Unfortunately, this type of integrals can’t be simplified using 1D SIs as for

the isotropic conductive sheets case generally. Similar 2D integrals were approximated in
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literature using techniques such as Spectral Domain Approximation (SDA) [141–145].

GPQ
αβ (ρ; z|z′) =

1

(2π)2

∫ 2π

0

∫ ∞
0

G̃PQ
αβ (kρ, ζ; z|z′)e−jkρρ cos(ζ−ϕ)kρdkρdζ (4.64)

However, our recommended method is to discretize the angular integral over ζ and

then treat the radial integral over kρ as SIs. Note that in this case, q =
π

ρ cos(ζ − ϕ)
(see

appendix C). The integral in ζ can be performed using Romberg integration to accelerate

the convergence [27]. This is shown more explicitly as in (4.65).

GPQ
αβ (ρ; z|z′) =

∫ 2π

0

F PQ
αβ (ζ; z|z′)dζ

F PQ
αβ (ζ; z|z′) =

1

(2π)2

∫ ∞
0

G̃PQ
αβ (kρ, ζ; z|z′)e−jkρρ cos(ζ−ϕ)kρdkρ

(4.65)

However, in the case of conductivity tensor invariant under rotation, the integrand func-

tion G̃PQ
αβ (kρ, ζ; z|z′) becomes independent from the spectral angle ζ , i.e., G̃PQ

αβ (kρ; z|z′),

except for the simple vector relations in Table B.1. Note that when using the expression in

(4.64), the Cartesian spectral DGFs take the forms in (B.7)-(B.15) with the spectral domain

components from (4.60)-(4.63). Fortunately, the anisotropic graphene surface conductiv-

ity tensor obeys this invariance property and hence the spatial DGFs can be reduced into

1D SIs. These new spatial domain DGFs are listed in (4.66)-(4.101).

GEJ
xx (ρ; z|z′) = −1

2
S0{V e

ie+V
h
ih}+

cos(2ϕ)

2
S2{V e

ie−V h
ih}−

sin(2ϕ)

2
S2{V e

ih+V h
ie} (4.66)
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GEJ
xy (ρ; z|z′) = −1

2
S0{V e

ih−V h
ie}+

cos(2ϕ)

2
S2{V e

ih+V h
ie}+

sin(2ϕ)

2
S2{V e

ie−V h
ih} (4.67)

GEJ
yx (ρ; z|z′) =

1

2
S0{V e

ih−V h
ie}+

cos(2ϕ)

2
S2{V e

ih+V h
ie}+

sin(2ϕ)

2
S2{V e

ie−V h
ih} (4.68)

GEJ
yy (ρ; z|z′) = −1

2
S0{V e

ie+V
h
ih}−

cos(2ϕ)

2
S2{V e

ie−V h
ih}+

sin(2ϕ)

2
S2{V e

ih+V h
ie} (4.69)

GEJ
xz (ρ; z|z′) =

η0

jk0ε′z
cos(ϕ)S1{kρV e

ve} −
η0

jk0ε′z
sin(ϕ)S1{kρV h

ve} (4.70)

GEJ
yz (ρ; z|z′) =

η0

jk0ε′z
sin(ϕ)S1{kρV e

ve}+
η0

jk0ε′z
cos(ϕ)S1{kρV h

ve} (4.71)

GEJ
zx (ρ; z|z′) =

η0

jk0εz
cos(ϕ)S1{kρIeie} −

η0

jk0εz
sin(ϕ)S1{kρIeih} (4.72)

GEJ
zy (ρ; z|z′) =

η0

jk0εz
sin(ϕ)S1{kρIeie}+

η0

jk0εz
cos(ϕ)S1{kρIeih} (4.73)

GEJ
zz (ρ; z|z′) = − η2

0

k2
0εzε

′
z

S0{k2
ρI

e
ve} −

η0

jk0εz
δ(ρ)δ(z − z′) (4.74)
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GHJ
xx (ρ; z|z′) =

1

2
S0{Ihie − Ieih} −

cos(2ϕ)

2
S2{Ihie + Ieih}+

sin(2ϕ)

2
S2{Ihih − Ieie} (4.75)

GHJ
xy (ρ; z|z′) =

1

2
S0{Ihih + Ieie} −

cos(2ϕ)

2
S2{Ihih − Ieie} −

sin(2ϕ)

2
S2{Ihie + Ieih} (4.76)

GHJ
yx (ρ; z|z′) = −1

2
S0{Ihih+ Ieie}−

cos(2ϕ)

2
S2{Ihih− Ieie}−

sin(2ϕ)

2
S2{Ihie+ Ieih} (4.77)

GHJ
yy (ρ; z|z′) =

1

2
S0{Ihie − Ieih}+

cos(2ϕ)

2
S2{Ihie + Ieih} −

sin(2ϕ)

2
S2{Ihih − Ieie} (4.78)

GHJ
xz (ρ; z|z′) = − η0

jk0ε′z
cos(ϕ)S1{kρIhve} −

η0

jk0ε′z
sin(ϕ)S1{kρIeve} (4.79)

GHJ
yz (ρ; z|z′) = − η0

jk0ε′z
sin(ϕ)S1{kρIhve}+

η0

jk0ε′z
cos(ϕ)S1{kρIeve} (4.80)

GHJ
zx (ρ; z|z′) =

1

jη0k0µz
sin(ϕ)S1{kρV h

ih} −
1

jη0k0µz
cos(ϕ)S1{kρV h

ie} (4.81)
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GHJ
zy (ρ; z|z′) = − 1

jη0k0µz
cos(ϕ)S1{kρV h

ih} −
1

jη0k0µz
sin(ϕ)S1{kρV h

ie} (4.82)

GHJ
zz (ρ; z|z′) =

1

k2
0µzε

′
z

S0{k2
ρV

h
ve} (4.83)

GEM
xx (ρ; z|z′) =

1

2
S0{V e

vh−V h
ve}−

cos(2ϕ)

2
S2{V e

vh+V h
ve}−

sin(2ϕ)

2
S2{V e

ve−V h
vh} (4.84)

GEM
xy (ρ; z|z′) = −1

2
S0{V e

ve + V h
vh}+

cos(2ϕ)

2
S2{V e

ve − V h
vh} −

sin(2ϕ)

2
S2{V e

vh + V h
ve}

(4.85)

GEM
yx (ρ; z|z′) =

1

2
S0{V e

ve+V
h
vh}+

cos(2ϕ)

2
S2{V e

ve−V h
vh}−

sin(2ϕ)

2
S2{V e

vh+V h
ve} (4.86)

GEM
yy (ρ; z|z′) =

1

2
S0{V e

vh−V h
ve}+

cos(2ϕ)

2
S2{V e

vh+V h
ve}+

sin(2ϕ)

2
S2{V e

ve−V h
vh} (4.87)

GEM
xz (ρ; z|z′) =

1

jη0k0µ′z
sin(ϕ)S1{kρV h

ih} −
1

jη0k0µ′z
cos(ϕ)S1{kρV e

ih} (4.88)
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GEM
yz (ρ; z|z′) = − 1

jη0k0µ′z
cos(ϕ)S1{kρV h

ih} −
1

jη0k0µ′z
sin(ϕ)S1{kρV e

ih} (4.89)

GEM
zx (ρ; z|z′) =

jη0

k0εz
sin(ϕ)S1{kρIeve}+

jη0

k0εz
cos(ϕ)S1{kρIevh} (4.90)

GEM
zy (ρ; z|z′) = − jη0

k0εz
cos(ϕ)S1{kρIeve}+

jη0

k0εz
sin(ϕ)S1{kρIevh} (4.91)

GEM
zz (ρ; z|z′) =

1

k2
0µ
′
zεz

S0{k2
ρI

e
ih} (4.92)

GHM
xx (ρ; z|z′) = −1

2
S0{Ihvh+Ieve}+

cos(2ϕ)

2
S2{Ihvh−Ieve}+

sin(2ϕ)

2
S2{Ihve+Ievh} (4.93)

GHM
xy (ρ; z|z′) =

1

2
S0{Ihve−V e

vh}−
cos(2ϕ)

2
S2{Ihve+Ievh}+

sin(2ϕ)

2
S2{Ihvh−Ieve} (4.94)

GHM
yx (ρ; z|z′) = −1

2
S0{Ihve−Ievh}−

cos(2ϕ)

2
S2{Iheve+Ievh}+

sin(2ϕ)

2
S2{Ihvh−Ieve} (4.95)
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GHM
yy (ρ; z|z′) = −1

2
S0{Ihvh+Ieve}−

cos(2ϕ)

2
S2{Ihvh−Ieve}−

sin(2ϕ)

2
S2{Ihve+Ievh} (4.96)

GHM
xz (ρ; z|z′) =

1

jη0k0µ′z
cos(ϕ)S1{kρIhih}+

1

jη0k0µ′z
sin(ϕ)S1{kρIeih} (4.97)

GHM
yz (ρ; z|z′) =

1

jη0k0µ′z
sin(ϕ)S1{kρIhih} −

1

jη0k0µ′z
cos(ϕ)S1{kρIeih} (4.98)

GHM
zx (ρ; z|z′) =

1

jη0k0µz
cos(ϕ)S1{kρV h

vh}+
1

jη0k0µz
sin(ϕ)S1{kρV h

ve} (4.99)

GHM
zy (ρ; z|z′) =

1

jη0k0µz
sin(ϕ)S1{kρV h

vh} −
1

jη0k0µz
cos(ϕ)S1{kρV h

ve} (4.100)

GHM
zz (ρ; z|z′) = − 1

η2
0k

2
0µzµ

′
z

S0{k2
ρV

h
ih} −

1

jη0k0µz
δ(ρ)δ(z − z′) (4.101)

Also, it is possible to obtain alternative form for the transverse components as follows:

GEJ
xx (ρ; z|z′) = − cos2(ϕ)S0{V e

ie} − sin2(ϕ)S0{V h
ih}+

cos(2ϕ)

ρ
S1{

V e
ie − V h

ih

kρ
}

+
sin(2ϕ)

2
S0{V e

ih + V h
ie} −

sin(2ϕ)

ρ
S1{

V e
ih + V h

ie

kρ
}

(4.102)
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GEJ
xy (ρ; z|z′) = −sin(2ϕ)

2
S0{V e

ie − V h
ih}+

sin(2ϕ)

ρ
S1{

V e
ie − V h

ih

kρ
}

− cos2(ϕ)S0{V e
ih}+ sin2(ϕ)S0{V h

ie}+
cos(2ϕ)

ρ
S1{

V e
ih + V h

ie

kρ
}

(4.103)

GEJ
yx (ρ; z|z′) = −sin(2ϕ)

2
S0{V e

ie − V h
ih}+

sin(2ϕ)

ρ
S1{

V e
ie − V h

ih

kρ
}

+ sin2(ϕ)S0{V e
ih} − cos2(ϕ)S0{V h

ie}+
cos(2ϕ)

ρ
S1{

V e
ih + V h

ie

kρ
}

(4.104)

GEJ
yy (ρ; z|z′) = − sin2(ϕ)S0{V e

ie} − cos2(ϕ)S0{V h
ih} −

cos(2ϕ)

ρ
S1{

V e
ie − V h

ih

kρ
}

−sin(2ϕ)

2
S0{V e

ih + V h
ie}+

sin(2ϕ)

ρ
S1{

V e
ie + V h

ie

kρ
}

(4.105)

GHJ
xx (ρ; z|z′) = −sin(2ϕ)

2
S0{Ihih − Ieie}+

sin(2ϕ)

ρ
S1{

Ihih − Ieie
kρ

}

+ cos2(ϕ)S0{Ihie} − sin2(ϕ)S0{Ieih} −
cos(2ϕ)

ρ
S1{

Ihie + Ieih
kρ

}
(4.106)

GHJ
xy (ρ; z|z′) = cos2(ϕ)S0{Ihih}+ sin2(ϕ)S0{Ieie} −

cos(2ϕ)

ρ
S1{

Ihih − Ieie
kρ

}

+
sin(2ϕ)

2
S0{Ihie + Ieih} −

sin(2ϕ)

ρ
S1{

Ihie + Ieih
kρ

}
(4.107)
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GHJ
yx (ρ; z|z′) = − sin2(ϕ)S0{Ihih} − cos2(ϕ)S0{Ieie} −

cos(2ϕ)

ρ
S1{

Ihih − Ieie
kρ

}

+
sin(2ϕ)

2
S0{Ihie + Ieih} −

sin(2ϕ)

ρ
S1{

Ihie + Ieih
kρ

}
(4.108)

GHJ
yy (ρ; z|z′) =

sin(2ϕ)

2
S0{Ihih − Ieie} −

sin(2ϕ)

ρ
S1{

Ihih − Ieie
kρ

}

+ sin2(ϕ)S0{Ihie} − cos2(ϕ)S0{Ieih}+
cos(2ϕ)

ρ
S1{

Ihie + Ieih
kρ

}
(4.109)

GEM
xx (ρ; z|z′) =

sin(2ϕ)

2
S0{V e

ve − V h
vh} −

sin(2ϕ)

ρ
S1{

V e
ve − V h

vh

kρ
}

+ cos2(ϕ)S0{V e
vh} − sin2(ϕ)S0{V h

ve} −
cos(2ϕ)

ρ
S1{

V e
vh + V h

ve

kρ
}

(4.110)

GEM
xy (ρ; z|z′) = − cos2(ϕ)S0{V e

ve} − sin2(ϕ)S0{V h
vh}+

cos(2ϕ)

ρ
S1{

V e
ve − V h

vh

kρ
}

+
sin(2ϕ)

2
S0{V e

vh + Ihve} −
sin(2ϕ)

ρ
S1{

V e
vh + V h

ve

kρ
}

(4.111)

GEM
yx (ρ; z|z′) = sin2(ϕ)S0{V e

ve}+ cos2(ϕ)S0{V h
vh}+

cos(2ϕ)

ρ
S1{

V e
ve − V h

vh

kρ
}

+
sin(2ϕ)

2
S0{V e

vh + V h
ve} −

sin(2ϕ)

ρ
S1{

V e
vh + V h

ve

kρ
}

(4.112)
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GEM
yy (ρ; z|z′) = −sin(2ϕ)

2
S0{V e

ve − V h
vh}+

sin(2ϕ)

ρ
S1{

V e
ve − V h

vh

kρ
}

+ sin2(ϕ)S0{V e
vh} − cos2(ϕ)S0{V h

ve}+
cos(2ϕ)

ρ
S1{

V e
vh + V h

ve

kρ
}

(4.113)

GHM
xx (ρ; z|z′) = − cos2(ϕ)S0{Ihvh} − sin2(ϕ)S0{Ieve}+

cos(2ϕ)

ρ
S1{

Ihvh − Ieve
kρ

}

− sin(2ϕ)

2
S0{Ihve + Ievh}+

sin(2ϕ)

ρ
S1{

Ihve + Ievh
kρ

}

(4.114)

GHM
xy (ρ; z|z′) =

sin(2ϕ)

2
S0{Ihvh − Ieve} −

sin(2ϕ)

ρ
S1{

Ihvh − Ieve
kρ

}

+ cos2(ϕ)S0{Ihve} − sin2(ϕ)S0{Ievh} −
cos(2ϕ)

ρ
S1{

Ihve + Ievh
kρ

}
(4.115)

GHM
yx (ρ; z|z′) = −sin(2ϕ)

2
S0{Ihvh − Ieve}+

sin(2ϕ)

ρ
S1{

Ihvh − Ieve
kρ

}

− sin2(ϕ)S0{Ihve}+ cos2(ϕ)S0{Ievh} −
cos(2ϕ)

ρ
S1{

Ihve + Ievh
kρ

}
(4.116)

GHM
yy (ρ; z|z′) = − sin2(ϕ)S0{Ihvh} − cos2(ϕ)S0{Ieve} −

cos(2ϕ)

ρ
S1{

Ihvh − Ieve
kρ

}

−sin(2ϕ)

2
S0{Ihve + Ievh} −

sin(2ϕ)

ρ
S1{

Ihve + Ievh
kρ

}

(4.117)

Note that the above spatial domain DGFs reduce to the isotropic case when removing
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the coupling between the TLs.

4.2.1 Numerical Examples

4.2.1.1 Half-Space with Graphene

In this example, we provide a validation for our implementation from the results in

[27]. A half-space of free-space with a graphene ribbon is considered. Assuming the

graphene sheet is placed at z = 0 [cm]. At frequency of f = 10 [GHz], we compute the

DGFs from a J source located at z′ = 5 [cm] along the graphene surface from the top

layer z = 0+ [cm]. The graphene parameters are: µc = 0.1 [eV], τ = 3 [ps], vF = 106

[ms−1], and T = 300 [K]. The surface conductivity vs the magneto-static bias is presented

in Figure 4.7. The DGFs results are shown in Figure 4.8.

Figure 4.7: Graphene surface conductivity vsB0, where σmin =
e

4~
. Notice that σo = −σh

for the sake of comparison with reference results.
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Figure 4.8: Electric fields DGFs for Hanson’s half-space configuration for various mag-
netic bias values. Results were validated against Hanson’s data samples (circles).

Another example is considered with different parameters. Here, the half-space media

are free-space and dielectric ε = 4 for top and bottom layers respectively. The frequency

of operation is f = 1 [THz] and the electric point source J is place at z′ = 0.5 [mm]

above the surface, i.e., in the free-space layer. The orientation of this Il = 1 [Am] electric

dipole is defined by the angles (30◦, 60◦). The observation is a vertical cut distant by ρ = 4

[mm] from the source point. The vertical cut is ranged between −10 [mm] and 10 [mm].

We have chosen two angles ϕ = 35◦ and 125◦ for the observation cuts. The electric fields

Cartesian components are illustrated in Figure 4.9.

4.2.1.2 Half-Space with Hyperbolic Graphene Metasurface

In this example, we consider a hyperbolic metasurface based on graohene ribbons

surrounded by air. The complete model for evaluating this structure is given in (5.33) and

(5.34). However, the values for the surface conductivity tensor were chosen according to
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(a)

(b)

Figure 4.9: Electric fields in half-space due to J dipole above anisotropic graphene (a)
ϕ = 35◦. (b) ϕ = 125◦. The graphene parameters are the same as Figure 4.4.
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[146] for comparison. For µc = 0.33 [eV]: σxx = 0.02+j0.57 [mS] and σyy = 0.02−j0.57

[mS]. For µc = 0.45 [eV]: σsxx = 0.0103 + j0.4558 [mS] and σsyy = 0.0353 − j0.7756

[mS]. The frequency of operation is f = 10 [THz]. The results consider a Vertical Electric

Dipole (VED) at z′ = λ0/50, while the observation is made at z = λ0/200 and ρ = λ0/5

against the azimuth angle ϕ. The DGF |GEJ
zz | results are shown in Figure 4.10 vs ϕ. Results

were computed for the first quadrant and mirrored.

(a) (b)

Figure 4.10: Electric fields vs ϕ due to VED above a hyperbolic metasurface. Solid lines are the
results computed using (4.64) and dashed lines are result obtained using COMSOL. The parameters
are: (a) µc = 0.33 [eV] and (b) µc = 0.45 [eV].

4.3 Plane Wave Excitation

In general, for spectral domain dyadic function f̃ , the field type F will take the fol-

lowing form in (4.118). Where E0 = Ei
θθ̂i + Ei

ϕϕ̂i, using the definitions in Chapter

2.
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F = −2E0 ·

[(
f̃uuϕ̂i − f̃uv cos(θi)θ̂i

)
ρ̂i +

(
f̃vuϕ̂i − f̃vv cos(θi)θ̂i

)
ϕ̂i

+

(
f̃zuϕ̂i − f̃zv cos(θi)θ̂i

)
ẑ

] (4.118)

For incident field from the top layer and using the above definitions, one can obtain the

fields as in (4.119) and (4.120). Note that for plane wave excitation ζ = ϕi. This means

that for ζ dependent anisotropic conductive sheets, the solution depends on the azimuth

incident angle ϕi. However, this might not be present for ansiotropic graphene sheets due

to the properties discussed previously in the tensor surface conductivity.

E = −2E0 ·

[(
V e
vhϕ̂i + V e

ve cos(θi)θ̂i

)
ρ̂i +

(
V h
vhϕ̂i + V h

ve cos(θi)θ̂i

)
ϕ̂i

− η1
ε1
εz

sin(θi)

(
Ievhϕ̂i + Ieve cos(θi)θ̂i

)
ẑ

] (4.119)

H = −2E0 ·

[
−
(
Ihvhϕ̂i + Ihve cos(θi)θ̂i

)
ρ̂i +

(
Ievhϕ̂i + Ieve cos(θi)θ̂i

)
ϕ̂i

+
1

η1

µ1

µz
sin(θi)

(
V h
vhϕ̂i + V h

ve cos(θi)θ̂i

)
ẑ

] (4.120)

4.3.1 Numerical Examples

For this scenario, we present the Otto configuration excited by both TM and TE inci-

dent plane waves using the formulations described here. The SPP mode is clear as shown

in Figure 4.11.
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(a)

(b)

Figure 4.11: Plane wave excitation for SPP mode in the Otto configuration. The media
parameters are listed in Table 4.2 and the frequency of operation is f = 1 [THz]. The
graphene parameters are: τ = 0.5 [ps], vF = 106 [ms−1] and T = 300 [K]. (a) B0 = 1.6
[T] and µc = 0.8 [eV] (b) B0 = 2.9 [T] and µc = 0.34 [eV].
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Table 4.2: Otto configuration with graphene details.

Layer Thickness [µm] ε
Prism open 8

Air 34 1
Graphene - -
Dielectric open 2

4.4 Far Fields Computation

The far fields computations are very important as mentioned previously. Here, we will

use the far fields to compare with the DGFs exact solution. This can be considered a

dependent validation for our results. Following the same procedure for isotropic case and

noticing the relations in Appendix B. This solution is given in (4.121)-(4.124). Also, we

set ζ = ϕ.

For z > z0 which corresponds to 0 ≤ θ ≤ π/2

E ∼ −jk1
e−jk1r

2πr
ejk1 cos(θ)z0

[(
V e
ieθ̂ + V h

ie cos(θ)ϕ̂

)
ρ̂+

(
V e
ihθ̂ + V h

ih cos(θ)ϕ̂

)
ϕ̂

− η1
ε1
ε′z

sin(θ)

(
V e
veθ̂ + V h

ve cos(θ)ϕ̂

)
ẑ

]
· IlkJejkρ·ρkJ

(4.121)

E ∼ jk1
e−jk1r

2πr
ejk1 cos(θ)z0

[(
V e
vhθ̂ + V h

vh cos(θ)ϕ̂

)
ρ̂−

(
V e
veθ̂ + V h

ve cos(θ)ϕ̂

)
ϕ̂

− 1

η1

µ1

µ′z
sin(θ)

(
V e
ihθ̂ + V h

ih cos(θ)ϕ̂

)
ẑ

]
·KlkM ejkρ·ρkM

(4.122)
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For z < zN which corresponds to π/2 ≤ θ ≤ π

E ∼ −jkN
e−jkNr

2πr
ejkN cos(θ)zN

[(
V e
ieθ̂ + V h

ie cos(θ)ϕ̂

)
ρ̂+

(
V e
ihθ̂ + V h

ih cos(θ)ϕ̂

)
ϕ̂

− ηN
εN
ε′z

sin(θ)

(
V e
veθ̂ + V h

ve cos(θ)ϕ̂

)
ẑ

]
· IlkJejkρ·ρkJ

(4.123)

E ∼ jkN
e−jkNr

2πr
ejkN cos(θ)zN

[(
V e
vhθ̂ + V h

vh cos(θ)ϕ̂

)
ρ̂−

(
V e
veθ̂ + V h

ve cos(θ)ϕ̂

)
ϕ̂

− 1

ηN

µN
µ′z

sin(θ)

(
V e
ihθ̂ + V h

ih cos(θ)ϕ̂

)
ẑ

]
·KlkM ejkρ·ρkM

(4.124)

4.4.1 Numerical Examples

In this example, the details of this configuration are described in Table 4.3 and illus-

trated in Figure 4.12. First, the far-fields were computed using (4.121)-(4.124). Then, the

exact fields were computed using (4.66)-(4.101) at distance r = 150λ0 from the sources

vs θ at two fixed cuts ϕ = 0◦ and 90◦. The results were computed by removing the r de-

pendency and normalized by k0. In Figure 4.13, the far fields due to excitation of electric

and magnetic dipoles were compared with the exact DGFs respectively using SIs.
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Table 4.3: 5-layers separated by magnetically biased graphene details. All materials are
non-magnetic.

Layer zn [µm] ε
0 open -
1 75 1
2 50 4
3 −50 6
4 −75 2
5 open 1

Figure 4.12: Illustration of the configuration in Table 4.3. The graphene parameters are
the same as in Figure 4.4.

Table 4.4: Details of 5-layers separated by magnetically biased graphene. All materials
are non-magnetic.

Layer Type Moment x′ [µm] y′ [µm] z′ [µm] θ0 [◦] ϕ0 [◦]
4 J 1 [Am] 100 0 −60 60 30
3 J 1 [Am] 50 150 30 45 45
3 M 150 [Vm] 100 100 −30 45 45
2 M 200 [Vm] 0 −100 60 45 −45
2 J 1 [Am] 100 0 60 60 0
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(a) (b)

(c) (d)

Figure 4.13: Far fields approximation (solid) vs exact SIs (circles) for the dipoles distribution in
Table 4.4 at f = 1 [THz].
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5. MODAL ANALYSIS FOR ANISOTROPIC CONDUCTIVE SHEETS

The modal analysis can be carried out by developing a DF similar to Chapter 3. In

contrast to the isotropic conductive sheets case, here the TLs are coupled and so the modes.

This means that the DF is one for all modes. Nevertheless, the DF and methods developed

for the anisotropic sheets case are more general and can be easily downgraded to the

simpler case discussed thoroughly for isotropic case. The CIM will be deployed in a

similar fashion to what was presented previously. Another important thing to mention

is the search in the complex domain. Here, DF is no longer a function of kρ only as

in isotropic case. But, when anisotropic conductive sheets are introduced, the DF is a

function of kρ and ζ . For this problem, we fix ζ and perform the same procedure for

searching kρ eigenvalues (zeros) using the CIM in complex kρ complex domain. One

should note that for anisotropic graphene surface conductivity tensor, DF is independent

of ζ as a special case. This will be emphasized in the numerical examples for this sections.

5.1 Dispersion Function

Following a similar approach to the one illustrated in Chapter 4, considering the fol-

lowing source-free solutions:

[
Vn(z)

]
=
[
P+
n (z)

][
V +
n

]
+
[
P−n (z)

][
V −n
]

[
In(z)

]
=
[
Yn
][[
P+
n (z)

][
V +
n

]
−
[
P−n (z)

][
V −n
]] (5.1)

Hence, it is possible to re-write these equations in the matrix form as:
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[Vn(z)
]

[
In(z)

]
 =

 [1] [
1
]

[
Yn
]
−
[
Yn
]

[P+

n (z)
] [

0
]

[
0
] [

P−n (z)
]

[V +

n

]
[
V −n
]
 (5.2)

Using the boundary conditions at z = zn−1, the T-matrix formulation becomes:

[V +
n

]
[
V −n
]
 =

[T11,n

] [
T12,n

]
[
T21,n

] [
T22,n

]

[V +

n−1

]
[
V −n−1

]
 (5.3)

Where the matrix elements are given in (5.4).

[
T11,n

]
=

1

2

[
Θ−n
][[

1
]

+
[
Qn

]
+
[
Zn

][
σ̃sn−1

]]
[
T12,n

]
=

1

2

[
Θ−n
][[

1
]
−
[
Qn

]
+
[
Zn

][
σ̃sn−1

]]
[
T21,n

]
=

1

2

[
Θ+
n

][[
1
]
−
[
Qn

]
−
[
Zn

][
σ̃sn−1

]]
[
T22,n

]
=

1

2

[
Θ+
n

][[
1
]

+
[
Qn

]
−
[
Zn

][
σ̃sn−1

]]
(5.4)

Where
[
Qn

]
=
[
Zn

][
Yn−1

]
. This can take the classical T-matrix form also as follows:

[
T11,n

]
=

1

2

[
τn−1,n

]−1[
Θ−n
][[

1
]

+
[
Ωn−1,n

][
σ̃sn−1

]]
[
T12,n

]
=

1

2

[
τn−1,n

]−1[
Θ−n
][[

Γn−1,n

]
+
[
Ωn−1,n

][
σ̃sn−1

]]
[
T21,n

]
=

1

2

[
τn−1,n

]−1[
Θ+
n

][[
Γn−1,n

]
−
[
Ωn−1,n

][
σ̃sn−1

]]
[
T22,n

]
=

1

2

[
τn−1,n

]−1[
Θ+
n

][[
1
]
−
[
Ωn−1,n

][
σ̃sn−1

]]
(5.5)
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The overall T-matrix for the N -layers can be written as follows:

[V +
N

]
[
V −N
]
 =

[
TN
]
. . .
[
T2

]︸ ︷︷ ︸[
T
]

[V +
1

]
[
V −1
]
 (5.6)

In this case, we would like to apply the notations in (5.7) to identify the T-matrix

elements. These notations will be used in this section to describe various DFs.

[V +
N

]
[
V −N
]
 =

[α] [
γ
]

[
δ
] [

β
]

[V +

1

]
[
V −1
]
 (5.7)

5.2 S-Matrix Formulation

As stated previously, the stable S-matrix formulation can be applied in order to com-

pute the overall T-matrix [147]. Thus, it can be shown that:

[
S
]

=

[−→Γ ] [←−τ ][−→τ ] [←−
Γ
]
 (5.8)

Hence, the equivalent T-matrix elements might be computed using the numerically

stable S-matrix elements with the TL solution described above.

[α] [
γ
]

[
δ
] [

β
]
 =

 [−→τ ]−1 −
[−→τ ]−1[←−

Γ
]

[−→
Γ
][−→τ ] [←−τ ]− [−→Γ ][−→τ ]−1[←−

Γ
]
 (5.9)

In contrast to the isotropic case, each type of termination requires a special treatment

to satisfy the boundary conditions associated with it. The following examples explain this

process and covers the most common case.
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5.2.1 Open/Open Structures

In this case,
[
V +
N

]
=
[
V −1
]

=
[
0
]
. This results in:

[
0
]

=
[
α
][
V +

1

]
[
V −N
]

=
[
δ
][
V +

1

] (5.10)

Hence, the proposed DF is given in (5.11).

Y h
NZ

e
1 det

([
α
])

= 0 (5.11)

An important example is the half-space. In this case, the explicit expression for the DF

becomes:

[
Ze

1 + Ze
2 + Ze

1Z
e
2 σ̃

s
uu

][
Y h

1 + Y h
2 + σ̃svv

]
− Ze

1Z
e
2 σ̃

s
uvσ̃

s
vu = 0 (5.12)

This agrees with the expressions found in [27, 132]. However, we note that for the

half-space scenario if k1 = k2 = k, one should use the expressions in (5.13) to avoid a

spurious zero at kρ = k.

[
2 + Zeσ̃suu

][
2Y h + σ̃svv

]
− Zeσ̃suvσ̃

s
vu = 0 (5.13)

Note that from (5.10) the solutions for
[
V +

1

]
are defined once kρ value has been defined

since
[
α
]

is defined. Thus, by choosing suitable value for either V e+
1 or V h+

1 allows

computing the corresponding modal field profile from (5.1). The solution for
[
V +

1

]
is

simply the null-space N
([
α
])

[148, p. 94].

[
α
][
V +

1

]
=
[
0
]

(5.14)
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In the case of free-space surrounding an anisotropic conductive sheet, it is possible to

derive the following dispersion relation from (5.13).

k0kz

[
4+η2

0

(
σsxxσ

s
yy − σsxyσsyx

)]
+ 2η0k

2
0

(
σsxx + σsyy

)
− 2η0

[
k2
xσ

s
xx + k2

yσ
s
yy + kxky

(
σsxy + σsyx

)]
= 0

(5.15)

We demonstrate this expression since it has appeared in the literature for comparison

[24, 132, 149]. The disadvantage of the DF in (5.15) is that it is based on kx and ky,

which over complicates the search in the complex domain in contrast to kρ and ζ domain.

However, it is possible to specialize this DF for anisotropic graphene tensor conductivity

σs = σd(x̂x̂+ ŷŷ)− σh(x̂ŷ − ŷx̂) as in (5.16).

Ak4
ρ +Bk2

0k
2
ρ −Bk4

0 = 0 (5.16)

Where,

A = 4η2
0σ

2
d

B =
[
4 + η2

0

(
σ2
d + σ2

h

)]2

− 4A
(5.17)

Hence, the kρ solutions are:

kρ = k0

√
−B ±

√
B2 + 4AB

2A
(5.18)

In (5.18), the square roots are defined to reflect kρ on the required Riemann sheet.1

Another special case is the hyperbolic metasurface with surface conductivity tensor of

1Modern computer languages default is Re[
√
z] ≥ 0.
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σs = σsxxx̂x̂+ σsyyŷŷ. In this case, the DF is a function of kρ and ζ as in (5.19).

Ak4
ρ +Bk2

0k
2
ρ + Ck4

0 = 0 (5.19)

Where,

A = 4η2
0b

2

B = a2 − 8η2
0bc

C = 4η2
0c

2 − a2

a = 4 + η2
0σ

s
xxσ

s
yy

b = σsxx cos2(ζ) + σsyy sin2(ζ)

c = σsxx + σsyy

(5.20)

Hence, for fixed ζ , the kρ solutions are:

kρ = k0

√
−B ±

√
B2 − 4AC

2A
(5.21)

5.2.2 Open/PEC Structures

In this case,
[
V +
N

]
= −

[
V −N
]
. Also,

[
V −1
]

=
[
0
]
. This results in:

[
V +
N

]
=
[
α
][
V +

1

]
−
[
V +
N

]
=
[
δ
][
V +

1

] (5.22)

Hence, the proposed DF is given in (5.23).
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Y h
NZ

e
1 det

([
α
]

+
[
δ
])

= 0 (5.23)

Similarly, one can compute
[
V +

1

]
as the null-space of N

([
α
]

+
[
δ
])

:

([
α
]

+
[
δ
])[
V +

1

]
=
[
0
]

(5.24)

An important example is the half-space. In this case, the DF becomes:

[
Ze

1 cos(Θe
2) + jZe

2(1 + Ze
1 σ̃

s
uu) sin(Θe

2)
][
Y h

2 cos(Θh
2) + j(Y h

1 + σsvv) sin(Θh
2)
]

+ Ze
1Z

e
2 σ̃

s
uvσ̃

s
vu sin(Θe

2) sin(Θh
2) = 0

(5.25)

5.2.3 Open/PMC Structures

In this case,
[
V +
N

]
=
[
V −N
]
. Also,

[
V −1
]

=
[
0
]
. The results in:

[
V +
N

]
=
[
α
][
V +

1

]
[
V +
N

]
=
[
δ
][
V +

1

] (5.26)

Hence, the proposed DF is given in (5.27).

Y h
NZ

e
1 det

([
α
]
−
[
δ
])

= 0 (5.27)

Similarly, one can compute
[
V +

1

]
as the null-space of N

([
α
]
−
[
δ
])

:

([
α
]
−
[
δ
])[
V +

1

]
=
[
0
]

(5.28)

An important example is the half-space. In this case, the DF becomes:
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[
jZe

1 sin(Θe
2) + Ze

2(1 + Ze
1 σ̃

s
uu) cos(Θe

2)
][
jY h

2 sin(Θh
2) + (Y h

1 + σ̃svv) cos(Θh
2)
]

− Ze
1Z

e
2 σ̃

s
uvσ̃

s
vu cos(Θe

2) cos(Θh
2) = 0

(5.29)

5.3 Modal Fields Profile

The field distribution can be computed using the solution above down-looking and

up-looking. Here, the following procedure is recommended for its simplicity, but with-

out excluding the other approaches. In layer 1, only leaving waves are allowed. From

these relations, one can evidently find
[
V +

1

]
while

[
V +

1

]
=
[
0
]
. Note that, in practical

implementation it is not possible to numerically compute the null space because the cor-

responding kρ eigenvalues won’t lead to exactly 0 determinant. For example, consider the

open/open structure where det
([
α
])

= 0. Hence, it is possible to assign a non-zero value

for V e+
1 and then V h+

1 = −α11

α12

V e+
1 is assigned. After computing the fields profile, one

can normalize the total field with a suitable choice. Thus, the solutions in layer 1 are given

in (5.30).

[
V1(z)

]
=
[
P+

1 (z)
][
V +

1

]
[
I1(z)

]
=
[
Y1

][
P+

1 (z)
][
V +

1

] (5.30)

For the layers below layer 1 (n > 1), the down-looking solutions are applied. By

enforcing the boundary condition in (4.11) at the interface z = z1, the value of
[
V −2
]

is

given as in (5.31) and (5.32). Where
[←−
D 2

]
=
[
Θ+

2

][←−
Γ 2

][
Θ+

2

]
for clarity. As discussed

in Chapter 3, the voltages and currents solutions are separate.

For voltages:
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[
V −2
]

=

[[
1
]

+
[←−
D 2

]]−1[
V +

1

]
(5.31)

For currents:

[
V −2
]

= −
[[

1
]
−
[←−
D 2

]]−1[[
Z2

]([
Y1

]
+
[
σ̃s1
])][

V +
1

]
(5.32)

Given the value of
[
V −2
]
, the down-looking solution can be used as described earlier

for the remaining layers n > 1.

5.4 Numerical Examples

5.4.1 Parallel Plate Waveguide (PPWG)

The configuration illustrated in Figure 5.1 [74, 150] is to be studied for modal anal-

ysis using the methods developed in this chapter. The CIM will be applied to new DFs

developed here. In this example, the graphene parameters were taken from Figure 4.4.

Figure 5.1: A PPWG filled with a dielectric. In this example SiO2 has been chosen where
the spacing is d = 100 [nm]. The external magnetic field bias is applied in the z direction
in addition to the external electric field bias indicated by µc.

The modes found at f = 1 [THz] are presented in Table 5.1. Note that all modes are

coupled TM and TE. Also, regardless of the symmetry in this structure, using PEC and

PMC bisections in order to detect even and odd modes, respectively, is not applicable.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: kρ eigenvalues vs frequency for modes in the PPWG configuration with ε = 4. (a)
and (b) Proper and improper slow waves. (c) and (d) Lossy proper and leaky waves are almost
identical. (e) and (f) Proper mode very close to free-space wavenumber.
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This is observed by the two modes in Table 5.1, since improper modes on sheets II and III

only leak into substrate or cladding layers but not both at the same time. The third proper

mode is very close to the free-space wavenumber which demonstrates the reliability of

CIM.2

Table 5.1: kρ values for PPWG in Figure 5.1 for ε = 3.9.

Mode Sheet Symmetry kρ/k0

1 I PEC 40.16214062233− j19.69890451728
2 I PMC 1.131049672685− j0.119504968174
3 I PEC 1.000000303047− j0.000000000700
4 II,III N/A 40.02117391407− j19.49162447793
5 II,III N/A 1.000274565367− j0.000098059060
6 IV PEC 39.83786798739− j19.27844230550
7 IV PMC 1.772139187042 + j0.534064618718

5.4.2 Otto Configuration with Graphene

Here, we simply present the modes associated with the configuration from Chapter 4

in Table 4.2. The slow waves associated wit the SPP mode are listed in Table 5.2 and the

modal field distributions are illustrated in Figure 5.3.

Table 5.2: kρ values for Otto configuration SPP modes with graphene biasing (a) and (b)
from Figure 4.11.

Sheet Parameters kρ/k0

I (a) 1.4824055875891− j0.0000362410786
II (a) 1.4801298442195− j0.0174223787339
I (b) 1.4512217625886− j0.0002372631349
II (b) 1.4331753377130− j0.0535973672169

2For computations near branch point, double loop integrals through the four Riemanns sheets were
applied rather than point-wise product.
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(a) (b)

Figure 5.3: Modal field distributions for proper modes from Table 5.2. The TM and TE modal
fields are results that correspond to parameters sets (a) and (b), respectively, from Figure 4.11. TM
(TE) mode means that SPP mode can be excited by incident TM (TE) plane wave as discussed in
Chapter 4.

5.4.3 6-Layers with Graphene

In this example we analyze the 6-layers configuration shown in Figure 5.4 [151]. Here,

we are not interested in the functionality of this configuration, but rather we want to use it

for demonstrating our modal analysis method. The configuration consists of five graphene

sheets in air with equal spacings. The graphene parameters are the same as in the previous

example. A list of modes on sheet I where β > 1 is given in Table 5.3. In Figure 5.5,

the modal fields distributions are presented for mode 2 from Table 5.3. Notice that in

this mode, the current in the middle sheet is zeros since the mode is odd. Such a modal

distribution is prone to numerical stability issues which our formulation doesn’t suffer

from.

In addition to the previous results, we present the modes migration curves vs frequency

in Figure 5.6. Also, some modal fields distributions for higher modes are illustrated in

Figure 5.7 and 5.8.
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Figure 5.4: Configuration of five graphene sheets in SiO2 and separated equally by d = 25
[µm].

Table 5.3: kρ values for the 6-layers configuration in Figure 5.4 on sheet I.

Mode kρ/k0

1 1.063104622058− j11.09915363510
2 1.123738389711− j0.082692335335
3 1.729012984730− j0.458318070691
4 1.982696873515− j4.765645228475
5 2.188960952399− j0.656805485873
6 2.768029748582− j4.872998511452
7 2.847667872106− j1.380227152956
8 3.492139379646− j1.860936644723
9 3.975620626139− j2.075321163496
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Modal fields profiles for the odd mode kρ/k0 = 1.123738389711−j0.082692335335
on Sheet I. Results were normalized to the maximum magnitude of the total field while H-fields
were multiplied by η0. (a), (c) & (e) E-fields. (b), (d) & (f) H-fields.
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(a) (b)

Figure 5.6: Dispersion curves for the modes in between f = 0.5 [THz] and 1.5 [THz] in the
Figure 5.4 configuration.

(a) (b)

Figure 5.7: Modal field distributions for mode 8 from Table 5.3.
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(a) (b)

Figure 5.8: Modal field distributions for mode 9 from Table 5.3.

5.4.4 Graphene Hyperbolic Metasurface

Another example is metasurface based on isotropic graphene periodic ribbons of width

W and period L in the x direction. The overall behavior of this structure corresponds to

anisotropic conductive sheet using the EMT [132, 149, 152]. This results in the following

diagonal surface conductivity tensor:

σs =

σsxx 0

0 σsyy

 (5.33)

σsxx =
σgσcL

Wσc + gσ
, σsyy =

σgW

L
(5.34)

Where, σc =
jωε0εeffL

π
ln
[

csc
(πg

2L

)]
and g = L − W . Also, σg is the isotropic

graphene surface conductivity in (2.30). In our example, the surrounding media are free-

space and hence the effective dielectric constant εeff = 1. From Figure 5.9, it is clear that

this structure exhibits a hyperbolic behavior indicated by the sign difference between σsxx
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and σsyy. In this example, the DF is dependent on the spectral angle ζ which corresponds to

the transverse direction of propagation, i.e., ζ = ϕ. This means that each mode transverse

propagation constant is dependent on the angle ζ and for that reason, we may apply the

search vs ζ . This metasurface supports SPP mode as shown in the results from applying

our method as illustrated in Figure 5.10. These results resemble isofrequency contours of

the quasi-TM SPP mode.

Figure 5.9: Effective anisotropic surface conductivity components vs W for graphene
metasurface at f = 10 [THz].
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(a) (b)

Figure 5.10: SPP transverse wave number kρ = β − jα vs ζ for the graphene hyperbolic meta-
surface (normalized by k0), at f = 10 [THz] and L = 50 [nm]. The transverse propagation angle
is represented by ζ.

114



6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

In this work, we have demonstrated a systematic solution for the EM problem of pla-

nar layered media comprising multiple anisotropic 2D conductive sheets at the interfaces.

The work was mainly divided into two major topics, namely fields evaluation and modal

analysis. The problem was treated through the TL analogy of stratified media by imple-

menting the coupling effect between TM and TE fields due to the anisotropic sheets. The

methods developed here were demonstrated in plenty of numerical examples for practical

planar layered structures. The scientific contributions from this work were published in

the following papers [153–156].

6.2 Recommendations For Future Work

The journey of scientific research is endless, and the current answers only lead to new

questions and quests. Thus, we can summarize our recommendations for future works on

this topic in the following points:

• This work only focused on developing the necessary tools to study planar layered

structures that include anisotropic conductive sheets. But on the other hand, less

attention was given to the practical applications that can be utilized from the ex-

traordinary optical properties of the 2D materials. This can be another research

objective for future works.

• Another problem that was encountered during this study is the evaluation of the

2D integrals that appeared in (4.64). This integral was computed using Romberg

integration, but this treatment is computationally expensive. Further research on

this topic is needed in the light of the spectral domain poles using the modal analysis
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techniques from this work.

• An important topic that was not covered here is the formulation of scattering prob-

lem in this environment. Many practical structures consist of a scattering problem

and require solving an integral equation. Hence, it is required to present a suitable

integral equation associated with our new TL solution even though it may not be too

difficult to obtain.

• Another interesting problem for future research is the excitation of 1D or 2D pe-

riodic structures made of conductive sheets. Such a structure was mentioned as a

hyperbolic metasurface in Chapter 5, and it was handled using the effective homog-

enized surface conductivity tensor. This problem can be treated by extending the TL

model into infinite TLs spaced equally in the spectral domain. This results in infinite

sums to represent the TL quantities and solutions. One aspect of this problem is the

evaluation of EM fields due to aperiodic dipole excitation.

• Finally, we suggest extending this work for general anisotropic media. The biaxial

media with principal axes rotated in the transverse direction as in (6.1) can be treated

by coupled TLs with an eigenvalue problem to determine the vertical propagation

constants kz. The TL approach is more powerful than other techniques and this

topic deserves more investigation. This special case of general anisotropy is still

applicable in many practical structure, e.g., the excitation of Dyakonov waves [157].

µ =


µxx µxy 0

µyx µyy 0

0 0 µzz

 , ε =


εxx εxy 0

εyx εyy 0

0 0 εzz

 (6.1)
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APPENDIX A

TRANSMISSION LINE SOLUTION

The complete TL solution is obtained via TLGFs and should include a source embed-

ded in the TLs. Assuming the source in section m, our solution consists of two types:

source-free for sections n 6= m and source-excited for section n = m. In addition to

that, the source-free solution is divided into down-looking n > m and up-looking n < m

solutions. The benefit of this approach will become clear as we proceed in the solution.

A.0.1 Source-Free Solution (n 6= m)

According to the problems in (2.13), it is possible to postulate the solutions in (A.1)

and (A.2) inside section n ∈ [1, N ]. This solution assumes that section n is source-free as

illustrated in Figure A.1. Also, the TL type α symbol is omitted for simplicity.

Figure A.1: A source-free section n, where zn ≤ z ≤ zn−1.
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Vn(z) =

V
+
n (z) = V +

n [e−jkzn(z−z′) +
−→
Γ ′ejkzn(z−z′)] , z > z′

V −n (z) = V −n [ejkzn(z−z′) +
←−
Γ ′e−jkzn(z−z′)] , z < z′

(A.1)

In(z) =

I
+
n (z) = YnV

+
n [e−jkzn(z−z′) −

−→
Γ ′ejkzn(z−z′)] , z > z′

I−n (z) = −YnV −n [ejkzn(z−z′) −
←−
Γ ′e−jkzn(z−z′)] , z < z′

(A.2)

Where zn ≤ z′ ≤ zn−1 and Zn = Y −1
n . Also

−→
Γ n =

−→
Γ (zn−1) and

←−
Γ n =

←−
Γ (zn). The

relations in (A.3) and (A.4) will be used in the next sections.

−→
Γ (z) =

−→
Γ ′ej2kzn(z−z′)

←−
Γ (z) =

←−
Γ ′ej2kzn(z′−z)

(A.3)

And

−→
Γ ′ =

−→
Γ ne

−j2kzn(zn−1−z′)

←−
Γ ′ =

←−
Γ ne

−j2kzn(z′−zn)

(A.4)

A.0.1.1 Down-Looking Case (n > m)

In this case, we choose z′ = zn−1. Thus, for z > zn, the following solution is consid-

ered:

Vn(z) = V −n e
−jΘn [ejkzn(z−zn) +

←−
Γ ne

−jkzn(z−zn)]

ZnIn(z) = −V −n e−jΘn [ejkzn(z−zn) −
←−
Γ ne

−jkzn(z−zn)]

(A.5)

Also, the impedance definition can be expressed as (A.6).
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←−
Z n(z) = −Vn(z)

In(z)
= Zn

1 +
←−
Γ ne

−j2kzn(z−zn)

1−
←−
Γ ne−j2kzn(z−zn)

(A.6)

The reflection coefficient
←−
Γ n can be obtained from the definition in (A.7), where Zs

n =

1

σsn
.

←−
Γ n =

[←−
Z n+1(zn)||Zs

n

]
− Zn(zn)[←−

Z n+1(zn)||Zs
n

]
+ Zn(zn)

(A.7)

Applying the conditions in (2.18) and (2.19), the following relations are obtained:

V −n+1 =
[1 +
←−
Γ n]e−jΘn

[1 +
←−
Γ n+1e−j2Θn+1 ]

V −n =←−τ nV
−
n (A.8)

Note that the overall transmission coefficient←−τ =
∏N−1

n=1
←−τ n.

←−
Γ n =

[Γn+1,n − Ωn+1,nσ
s
n] + [1− Ωn+1,nσ

s
n]
←−
Γ n+1e

−j2Θn+1

[1 + Ωn+1,nσsn] + [Γn+1,n + Ωn+1,nσsn]
←−
Γ n+1e−j2Θn+1

(A.9)

Where Θn = kzndn = kzn(zn−1 − zn), Γi,j =
Zi − Zj
Zi + Zj

, and Ωi,j = [Yi + Yj]
−1.

So, we start with
←−
Γ N =

←−
Z N − ZN
←−
Z N + ZN

and then compute
←−
Γ N−1, . . . ,

←−
Γ 1. Where

←−
Z N =

←−
Z N(zN). Typical values for

←−
Γ N are 0, −1, and 1 for open, PEC, and PMC terminations,

respectively.

Also, note that Vn(zn) can be obtained from (A.8) if n > m + 1. If n = m + 1,

assuming the source at section m, thus V −n =
Vm(zm)

1 +
←−
Γ ne−j2Θn

. The reflection coefficient

relation in (A.9) can be derived directly from (A.6) which is more convenient.

A.0.1.2 Up-Looking Case (n < m)

For this case, we choose z′ = zn. Thus, for z < zn−1, the following solution is

considered:
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Vn(z) = V +
n e
−jΘn [e−jkzn(z−zn−1) +

−→
Γ ne

jkzn(z−zn−1)]

ZnIn(z) = V +
n e
−jΘn [e−jkzn(z−zn−1) −

−→
Γ ne

jkzn(z−zn−1)]

(A.10)

Similarly, the impedance and reflection coefficient relations are given in (A.11) and

(A.12) respectively.

−→
Z n(z) =

Vn(z)

In(z)
= Zn

1 +
−→
Γ ne

j2kzn(z−zn−1)

1−
−→
Γ nej2kzn(z−zn−1)

(A.11)

−→
Γ n =

[−→
Z n−1(zn−1)||Zs

n−1

]
− Zn(zn−1)[−→

Z n−1(zn−1)||Zs
n−1

]
+ Zn(zn−1)

(A.12)

Similarly, applying the conditions in (2.18) and (2.19), and following the procedure for

n > m, the voltage and reflection coefficient relations are obtained in (A.13) and (A.14).

V +
n−1 =

[1 +
−→
Γ n]e−jΘn

[1 +
−→
Γ n−1e−j2Θn−1 ]

V +
n = −→τ nV

+
n (A.13)

Note that the overall transmission coefficient −→τ =
∏N

n=2
−→τ n.

−→
Γ n =

[Γn−1,n − Ωn−1,nσ
s
n−1] + [1− Ωn−1,nσ

s
n−1]
−→
Γ n−1e

−j2Θn−1

[1 + Ωn−1,nσsn−1] + [Γn−1,n + Ωn−1,nσsn−1]
−→
Γ n−1e−j2Θn−1

(A.14)

We start with
−→
Γ 1 =

−→
Z 1 − Z1
−→
Z 1 + Z1

and then compute
−→
Γ 2, . . . ,

−→
Γ N . Where

−→
Z 1 =

−→
Z 1(z0).

Typical values for
−→
Γ 1 are 0,−1, and 1 for open, PEC, and PMC terminations respectively.

Note that Vn(zn−1) can be obtained from (A.13) if n < m−1. If n = m−1, assuming

the source at section m, thus V +
n =

Vm(zm−1)

1 +
−→
Γ ne−j2Θn

. The previous expressions reduce into

the simple TL relations after applying σs = 0.
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A.0.2 Source-Excited Solution (n = m)

The differential equations in (2.13) suggest two types of sources: series voltage and

shunt current sources as depicted in Figure A.2. The procedure for obtaining a solution

inside the section which contains a point source at z′ is taken from [106, p. 107]. Here,

the voltages and currents take the forms given in (A.1) and (A.2). The jump conditions at

z = z′ are then enforced as in (A.15) in order to obtain the complete solution defined by

V +
n and V −n .

Figure A.2: A source-excited section n. Where zn ≤ z′ ≤ zn−1 represents the source
location.

V +
n (z′)− V −n (z′) = v

I+
n (z′)− I−n (z′) = i

(A.15)

After enforcing the jump condition, we obtain:
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 [1 +
−→
Γ ne

−j2kzn(zn−1−z′)] −[1 +
←−
Γ ne

−j2kzn(z′−zn)]

Yn[1−
−→
Γ ne

−j2kzn(zn−1−z′)] Yn[1−
←−
Γ ne

−j2kzn(z′−zn)]


V +

n

V −n

 =

v
i

 (A.16)

Which results in the definitions of V +
n and V −n in (A.17). Where we defined Dn =

1−
←−
Γ n
−→
Γ ne

−j2Θn .

V +
n =

1

2Dn

[(
1−
←−
Γ ne

−j2kzn(z′−zn)
)
v +

(
1 +
←−
Γ ne

−j2kzn(z′−zn)
)
iZn

]
V −n =

1

2Dn

[(
1−
−→
Γ ne

−j2kzn(zn−1−z′)
)
v +

(
1 +
−→
Γ ne

−j2kzn(zn−1−z′)
)
iZn

] (A.17)

In our solutions, only one excitation will exist in the TL. So, either v = 1 and i = 0

for series voltage source or v = 0 and i = 1 for shunt current source. Thus, for arbitrary

voltage and current sources v(z) and i(z), it is possible to define the convolution integral

in (A.18) in order to obtain the voltage and current in the TL.

V (z) = 〈Vi(z|z′), i(z′)〉+ 〈Vv(z|z′), v(z′)〉

I(z) = 〈Ii(z|z′), i(z′)〉+ 〈Iv(z|z′), v(z′)〉
(A.18)

Finally, the TL differential equation solutions in the source-excited section are sum-

marized in (A.19) after some algebraic manipulations.
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Vv(z|z′) =
1

2
[±e−jkzn|z−z′| + 1

Dn

4∑
r=1

(−1)rR(r)
n e−jkznζ

(r)
n ]

Iv(z|z′) =
Yn
2

[e−jkzn|z−z
′| − 1

Dn

4∑
r=1

R(r)
n e−jkznζ

(r)
n ]

Vi(z|z′) =
Zn
2

[e−jkzn|z−z
′| +

1

Dn

4∑
r=1

R(r)
n e−jkznζ

(r)
n ]

Ii(z|z′) =
1

2
[±e−jkzn|z−z′| − 1

Dn

4∑
r=1

(−1)rR(r)
n e−jkznζ

(r)
n ]

(A.19)

Where the coefficients R(r)
n and ζ(r)

n
1 are defined in (A.20)-(A.23).

R(1)
n =

←−
Γ n

R(2)
n =

−→
Γ n

R(3)
n =

←−
Γ n

−→
Γ n

R(4)
n =

←−
Γ n
−→
Γ n

(A.20)

ζ(1)
n = (z + z′)− 2zn

ζ(2)
n = 2zn−1 − (z + z′)

(A.21)

For a shunt current source:

ζ(3)
n = 2dn + (z − z′)

ζ(4)
n = 2dn − (z − z′)

(A.22)

1The symbol r was used to indicate ray number. This solution can be visualized as multiple rays includ-
ing direct and reflected rays [13].
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For a series voltage source:

ζ(3)
n = 2dn − (z − z′)

ζ(4)
n = 2dn + (z − z′)

(A.23)

Also, the following reciprocity relations are evident as in (A.24).

Vi(z|z′) = Vi(z
′|z)

Iv(z|z′) = Iv(z
′|z)

Vv(z|z′) = −Ii(z′|z)

(A.24)

144



APPENDIX B

CARTESIAN COMPONENTS FOR SPATIAL DGFS

In this appendix we present some useful general expressions used to derive DGFs and

far-filed components.

B.1 Spectral to Spatial Domain Conversions

Considering the following relations:

1

2π

∫ π

−π
cos(nξ)e−jkρρ cos(ξ−ϕ)dξ = (−j)nJn(kρρ) cos(nϕ)

1

2π

∫ π

−π
sin(nξ)e−jkρρ cos(ξ−ϕ)dξ = (−j)nJn(kρρ) sin(nϕ)

(B.1)

Thus, the inverse FT can be expressed in terms of SIs.

F−1{cos(nξ)f̃(kρ)} = (−j)n cos(nϕ)Sn{f̃(kρ)}

F−1{sin(nξ)f̃(kρ)} = (−j)n sin(nϕ)Sn{f̃(kρ)}
(B.2)

S2{f̃(kρ)} =
2

ρ
S1{k−1

ρ f̃(kρ)} − S0{f̃(kρ)} (B.3)

In order to express the DGFs in Cartesian coordinates system, the vector relations in

Figure 2.2 are used to obtain the expressions in (B.4). Where cos(ζ) =
kx

kρ
and sin(ζ) =

ky

kρ
.
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û = cos(ζ)x̂+ sin(ζ)ŷ

v̂ = − sin(ζ)x̂+ cos(ζ)ŷ

(B.4)

Thus, combining all the previous properties and the vector definitions into (2.22)-

(2.25), we obtain the relations in (B.5) and the inverse FTs can be summarized as in Table

B.1. The computation of SIs is discussed in Appendix C.

F−1{cos2(ζ)f̃(kρ)} =
1

2
S0{f̃(kρ)} −

cos(2ϕ)

2
S2{f̃(kρ)}

F−1{sin2(ζ)f̃(kρ)} =
1

2
S0{f̃(kρ)}+

cos(2ϕ)

2
S2{f̃(kρ)}

F−1{sin(ζ) cos(ζ)f̃(kρ)} =
sin(2ϕ)

2
S2{f̃(kρ)}

(B.5)

The previous derivation considered a point source at ρ = 0. For arbitrary location of

source, the following replacements can be applied: ρ −→ % =
√

(x− x′)2 + (y − y′)2

and ϕ −→ φ = tan−1
[y − y′
x− x′

]
. The reader is reminded that the previous treatment is

subject to boundary conditions between layers which has not been presented yet. The

analysis of the spectral domain dyadic components are summarized below:
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Table B.1: Summary of inverse FT properties using SI expressions.

f̃(kρ) F−1{f̃(kρ)}

f̃(kρ) S0{f̃(kρ)}

cos(ζ)f̃(kρ) −j cos(ϕ)S1{f̃(kρ)}

sin(ζ)f̃(kρ) −j sin(ϕ)S1{f̃(kρ)}

cos2(ζ)f̃(kρ) cos2(ϕ)S0{f̃(kρ)} − ρ−1 cos(2ϕ)S1{k−1
ρ f̃(kρ)}

sin2(ζ)f̃(kρ) sin2(ϕ)S0{f̃(kρ)}+ ρ−1 cos(2ϕ)S1{k−1
ρ f̃(kρ)}

sin(ζ) cos(ζ)f̃(kρ)
1

2
sin(2ϕ)S0{f̃(kρ)} − ρ−1sin(2ϕ)S1{k−1

ρ f̃(kρ)}

ûû = cos2(ζ)x̂x̂+ sin(ζ) cos(ζ)(x̂ŷ + ŷx̂) + sin2(ζ)ŷŷ

ûv̂ = sin(ζ) cos(ζ)(−x̂x̂+ ŷŷ) + cos2(ζ)x̂ŷ − sin2(ζ)ŷx̂

v̂û = sin(ζ) cos(ζ)(−x̂x̂+ ŷŷ)− sin2(ζ)x̂ŷ + cos2(ζ)ŷx̂

v̂v̂ = sin2(ζ)x̂x̂− sin(ζ) cos(ζ)(x̂ŷ + ŷx̂) + cos2(ζ)ŷŷ

ûẑ = cos(ζ)x̂ẑ + sin(ζ)ŷẑ

v̂ẑ = − sin(ζ)x̂ẑ + cos(ζ)ŷẑ

v̂û = cos(ζ)ẑx̂+ sin(ζ)ẑŷ

ẑv̂ = − sin(ζ)ẑx̂+ cos(ζ)ẑŷ

(B.6)

The Cartesian components of spectral domain dyadic function f̃ can be expressed as
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follows:

f̃xx = f̃uu cos2(ζ) + f̃vv sin2(ζ)− sin(ζ) cos(ζ)(f̃uv + f̃vu) (B.7)

f̃xy = f̃uv cos2(ζ)− f̃vu sin2(ζ) + sin(ζ) cos(ζ)(f̃uu − f̃vv) (B.8)

f̃yx = f̃vu cos2(ζ)− f̃uv sin2(ζ) + sin(ζ) cos(ζ)(f̃uu − f̃vv) (B.9)

f̃yy = f̃uu sin2(ζ) + f̃vv cos2(ζ) + sin(ζ) cos(ζ)(f̃uv + f̃vu) (B.10)

f̃xz = f̃uz cos(ζ)− f̃vz sin(ζ) (B.11)

f̃yz = f̃uz sin(ζ) + f̃vz cos(ζ) (B.12)

f̃zx = f̃zu cos(ζ)− f̃zv sin(ζ) (B.13)

f̃zy = f̃zu sin(ζ) + f̃zv cos(ζ) (B.14)

f̃zz = f̃zz (B.15)

Assuming the dyadic f independent of the spectral angle ζ . After applying the inverse

FT properties f becomes:
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fxx =
1

2
S0{f̃uu + f̃vv} −

cos(2ϕ)

2
S2{f̃uu − f̃vv}+

sin(2ϕ)

2
S2{f̃uv + f̃vu} (B.16)

fxy =
1

2
S0{f̃uv − f̃vu} −

cos(2ϕ)

2
S2{f̃uv + f̃vu} −

sin(2ϕ)

2
S2{f̃uu − f̃vv} (B.17)

fyx =
1

2
S0{f̃vu − f̃uv} −

cos(2ϕ)

2
S2{f̃uv + f̃vu} −

sin(2ϕ)

2
S2{f̃uu − f̃vv} (B.18)

fyy =
1

2
S0{f̃uu + f̃vv}+

cos(2ϕ)

2
S2{f̃uu − f̃vv} −

sin(2ϕ)

2
S2{f̃uv + f̃vu} (B.19)

fxz = −j cos(ϕ)S1{f̃uz}+ j sin(ϕ)S1{f̃vz} (B.20)

fyz = −j sin(ϕ)S1{f̃uz} − j cos(ϕ)S1{f̃vz} (B.21)

fzx = −j cos(ϕ)S1{f̃zu}+ j sin(ϕ)S1{f̃zv} (B.22)

fzy = −j sin(ϕ)S1{f̃zu} − j cos(ϕ)S1{f̃zv} (B.23)
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fzz = S0{f̃zz} (B.24)

Alternative expressions for transverse components in terms of S0 and S1 only are given

below:

fxx = cos2(ϕ)S0{f̃uu}+ sin2(ϕ)S0{f̃vv} −
cos(2ϕ)

ρ
S1{

f̃uu − f̃vv
kρ

}

+
sin(2ϕ)

ρ
S1{

f̃uv + f̃vu
kρ

} − sin(2ϕ)

2
S0{f̃uv + f̃vu}

(B.25)

fxy = cos2(ϕ)S0{f̃uv} − sin2(ϕ)S0{f̃vu} −
cos(2ϕ)

ρ
S1{

f̃uv + f̃vu
kρ

}

− sin(2ϕ)

ρ
S1{

f̃uu − f̃vv
kρ

}+
sin(2ϕ)

2
S0{f̃uu − f̃vv}

(B.26)

fyx = cos2(ϕ)S0{f̃vu} − sin2(ϕ)S0{f̃uv} −
cos(2ϕ)

ρ
S1{

f̃vu + f̃uv
kρ

}

− sin(2ϕ)

ρ
S1{

f̃uu − f̃vv
kρ

}+
sin(2ϕ)

2
S0{f̃uu − f̃vv}

(B.27)

fyy = sin2(ϕ)S0{f̃uu}+ cos2(ϕ)S0{f̃vv}+
cos(2ϕ)

ρ
S1{

f̃uu − f̃vv
kρ

}

− sin(2ϕ)

ρ
S1{

f̃uv + f̃vu
kρ

}+
sin(2ϕ)

2
S0{f̃uv + f̃vu}

(B.28)
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B.2 Spatial Domain DGFs for Isotropic Sheets

The explicit expressions for the space-domain DGFs for isotropic conductive sheets

were derived using the methods in Chapter 2 are listed below:

GEJ
xx (ρ; z|z′) = − cos2(ϕ)S0{V e

i } − sin2(ϕ)S0{V h
i }+

cos(2ϕ)

ρ
S1{

V e
i − V h

i

kρ
} (B.29)

GEJ
xy (ρ; z|z′) = GEJ

yx (ρ; z|z′) = −sin(2ϕ)

2
S0{V e

i −V h
i }+

sin(2ϕ)

ρ
S1{

V e
i − V h

i

kρ
} (B.30)

GEJ
xz (ρ; z|z′) =

η0

jk0ε′z
cos(ϕ)S1{kρV e

v } (B.31)

GEJ
yy (ρ; z|z′) = − sin2(ϕ)S0{V e

i } − cos2(ϕ)S0{V h
i } −

cos(2ϕ)

ρ
S1{

V e
i − V h

i

kρ
} (B.32)

GEJ
yz (ρ; z|z′) =

η0

jk0ε′z
sin(ϕ)S1{kρV e

v } (B.33)

GEJ
zx (ρ; z|z′) =

η0

jk0εz
cos(ϕ)S1{kρIei } (B.34)

GEJ
zy (ρ; z|z′) =

η0

jk0εz
sin(ϕ)S1{kρIei } (B.35)
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GEJ
zz (ρ; z|z′) = − η2

0

k2
0εzε

′
z

S0{k2
ρI

e
v} −

η0

jk0εz
δ(ρ)δ(z − z′) (B.36)

GEM
xx (ρ; z|z′) = −GEM

yy (ρ; z|z′) =
sin(2ϕ)

2
S0{V e

v − V h
v } −

sin(2ϕ)

ρ
S1{

V e
v − V h

v

kρ
}

(B.37)

GEM
xy (ρ; z|z′) = cos2(ϕ)S0{V h

v }+ sin2(ϕ)S0{V e
v }+

cos(2ϕ)

ρ
S1{

V e
v − V h

v

kρ
} (B.38)

GEM
xz (ρ; z|z′) =

1

jk0η0µ′z
sin(ϕ)S1{kρV h

i } (B.39)

GEM
yx (ρ; z|z′) = cos2(ϕ)S0{V e

v }+ sin2(ϕ)S0{V h
v } −

cos(2ϕ)

ρ
S1{

V e
v − V h

v

kρ
} (B.40)

GEM
yz (ρ; z|z′) = − 1

jk0η0µ′z
cos(ϕ)S1{kρV h

i } (B.41)

GEM
zx (ρ; z|z′) = − η0

jk0εz
sin(ϕ)S1{kρIev} (B.42)

GEM
zy (ρ; z|z′) =

η0

jk0εz
cos(ϕ)S1{kρIev} (B.43)
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GHJ
xx (ρ; z|z′) = −GHJ

yy (ρ; z|z′) = −sin(2ϕ)

2
S0{Ihi −Iei }+

sin(2ϕ)

ρ
S1{

Ihi − I iv
kρ

} (B.44)

GHJ
xy (ρ; z|z′) = cos2(ϕ)S0{Ihi }+ sin2(ϕ)S0{Iei } −

cos(2ϕ)

ρ
S1{

Ihi − Iei
kρ

} (B.45)

GHJ
xz (ρ; z|z′) = − η0

jk0ε′z
sin(ϕ)S1{kρIev} (B.46)

GHJ
yx (ρ; z|z′) = − cos2(ϕ)S0{Iei } − sin2(ϕ)S0{Ihi } −

cos(2ϕ)

ρ
S1{

Iei − Ihi
kρ

} (B.47)

GHJ
yz (ρ; z|z′) =

η0

jk0ε′z
cos(ϕ)S1{kρIev} (B.48)

GHJ
zx (ρ; z|z′) =

1

jk0η0µz
sin(ϕ)S1{kρV h

i } (B.49)

GHJ
zy (ρ; z|z′) = − 1

jk0η0µz
cos(ϕ)S1{kρV h

i } (B.50)

GHM
xx (ρ; z|z′) = − cos2(ϕ)S0{Ihv } − sin2(ϕ)S0{Iev}+

cos(2ϕ)

ρ
S1{

Ihv − Iev
kρ

} (B.51)
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GHM
xy (ρ; z|z′) = GHM

yx (ρ; z|z′) = −sin(2ϕ)

2
S0{Ihv − Iev}+

sin(2ϕ)

ρ
S1{

Ihv − Iev
kρ

} (B.52)

GHM
xz (ρ; z|z′) =

1

jk0η0µ′z
cos(ϕ)S1{kρIhi } (B.53)

GHM
yy (ρ; z|z′) = − sin2(ϕ)S0{Ihv } − cos2(ϕ)S0{Iev} −

cos(2ϕ)

ρ
S1{

Ihv − Iev
kρ

} (B.54)

GHM
yz (ρ; z|z′) =

1

jk0η0µ′z
sin(ϕ)S1{kρIhi } (B.55)

GHM
zx (ρ; z|z′) =

1

jk0η0µz
cos(ϕ)S1{kρV h

v } (B.56)

GHM
zy (ρ; z|z′) =

1

jk0η0µz
sin(ϕ)S1{kρV h

v } (B.57)

GHM
zz (ρ; z|z′) = − 1

k2
0η

2
0µzµ

′
z

S0{k2
ρV

h
i } −

1

jk0η0µz
δ(ρ)δ(z − z′) (B.58)

B.3 Far Field Relation

For far field computations, we need to evaluate the expression r̂ × ẑ × f̃ .

ẑ × f̃ =


−f̃vu −f̃vv −f̃vz

f̃uu f̃uv f̃uz

0 0 0

 (B.59)
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Since, û = sin(θ)r̂ + cos(θ)θ̂ = ρ̂ and v̂ = ϕ̂, we can conclude that:

r̂ × ẑ × f̃ =−
(
f̃uuθ̂ + f̃vu cos(θ)ϕ̂

)
ρ̂−

(
f̃uvθ̂ + f̃vv cos(θ)ϕ̂

)
ϕ̂

−
(
f̃uzθ̂ + f̃vz cos(θ)ϕ̂

)
ẑ

(B.60)
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APPENDIX C

SOMMERFELD INTEGRAL EVALUATION

The SI defined in (2.27) can be evaluated numerically. This appendix illustrates this

computation procedure. A complete review on this topic can be found in [95]. In general,

the SI can be defined on the real axis as in (C.1). But, this integral can be spitted into three

parts as in (C.2).

k''ρ

k'ρ

Figure C.1: The real axis integral defined with a detour into the first quadrant for Ia.

I =

∫ ∞
0

G̃(kρ; z|z′)Jn(kρρ)kρdkρ (C.1)

(∫ a

0

+

∫ b

a

+

∫ ∞
b

)
G̃(kρ; z|z′)Jn(kρρ)kρdkρ = Ia + Ib + I∞ (C.2)

Where a = k0 max(
√
µnεn) [8, p. 114] and d = 0.001k0 (arbitrary choice). Those

are typical choices for this integral. Since G̃(kρ; z|z′) has a singularity at branch points

kρ = k1, kN and may contain poles on the real axis, we have to indent the integration
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path as shown in Figure C.1. The detour can be parameterized using the real variable t as

follows:

kρ = t+ jd sin(
πt

a
)

dkρ =

[
1 + j

πd

a
cos(

πt

a
)

]
dt

(C.3)

Where t takes the real values 0 ≤ t ≤ a. For kρ > a, we simply return to the real axis

with kρ = t. The Bessel’s zeros are at ζi for i = 0, 1, 2, . . . , etc. The Bessel’s zeros can

be found from exact values tables in [158] or McMahon approximation for higher zeros

[159]. Thus, Ia and Ib are defined and can be computed using any suitable quadrature,

e.g., Clenshaw-Curtis [160]. The tail integral I∞ can be approximated with bounded error

using the extrapolation:

I∞ =
∞∑
n=0

un (C.4)

un =

∫ xn+1

xn

G̃(kρ; z|z′)Jn(kρρ)kρdkρ (C.5)

This can be extrapolated by sequence acceleration techniques such Levin Sidi [161,

162] or Weighted Averages (WA) by Mosig and Michalski [95, 163, 164]. The extrapo-

lation scheme (recursive formula) is given in (C.6) which is based on Richardson’s ex-

trapolation [165]. Alternatives to the WA such as Padé approximants [166, 167] were also

investigated, but the accuracy is much lower than the method described here.

Sk+1
n =

S
(k)
n+1 − η

(k)
n S

(k)
n

1− η(k)
n

, n, k ≥ 0 (C.6)
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Considering q =
π

ρ
and xn = b+ nq. These parameters are extracted from the asymp-

totic behavior of the Bessel’s functions. Also, ηn =
ωn+1

ωn
. A typical value for µ is 2.

η(k)
n = ηn

( xn
xn+1

)µk
(C.7)

Several transformations can be used as in (C.8). And the final value is I∞ = S
(0)
n .

ωn =



un , t-transformation

un+1 , d-transformation

xnun , u-transformation
unun+1

un − un+1

, v-transformation

(C.8)

C.1 Numerical Examples

The following examples from [95] are presented in Figure C.2-C.4 for demonstration.

The examples in (C.9) of semi-infinite integrals from [168] which include Bessel’s func-

tions integrands are evaluated numerically via WA method using t-transformation. The

numerical results are listed in Table C.1.

∫ ∞
0

x2J0(x)dx = −1∫ ∞
0

ln
√

(1 + x2)J1(x)dx ' 0.421024438240708333∫ ∞
0

1− e−x

x ln(1 +
√

2)
J0(x)dx = 1

(C.9)

The final example to demonstrate here is the famous Sommerfeld identity in (C.10)

[8, p. 66] which is a typical example of SIs. Where kz =
√
k2 − k2

ρ defined on the top

Riemman sheet from Figure 2.7.

158



2 4 6 8 10 12 14 16 18 20

Number of terms

0

2

4

6

8

10

12

14

16

L
ev

in
-S

id
i 

(S
q

u
ar

es
),

 M
o

si
g

-M
ic

h
al

sk
i 

(C
ir

cl
es

)

t-transform

Figure C.2: Relative error for the sum
∑∞

i=0

(−1)i√
i+ 1

' 0.604898643421630, where µ = 2.
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Figure C.3: Relative error for the sum
∑∞

i=0

(4/5)i+1

i+ 1
= ln(5), where µ = 2.
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Figure C.4: Relative error for the sum
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1

(i+ 1)2
=
π2

6
, where µ = 1.

Table C.1: Comparison of the numerically evaluated answers for the integrals in (C.9).

Integral Numerical approximation No. of iterations
1 −0.999999999999925 15
2 0.421024438240708 18
3 1.000000000000000 15
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e−jkr

r
=

∫ ∞
0

e−jkz |z|J0(kρρ)
kρ
jkz

dkρ (C.10)
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Figure C.5: Relative error for the Sommerfeld identity in (C.10).
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APPENDIX D

CAUCHY INTEGRATION METHOD

The analytic function f(z) withN roots inside a simple contourC can be defined using

a polynomial PN(z) and an analytic function g(z) that has no zeros inside the contour C.

Thus, we define:

f(z) = PN(z)g(z) (D.1)

From the method developed by Delves and Lyness [68] it is possible to define PN(z)

as follows:

PN(z) =
N∑
k=0

σN−kz
k (D.2)

This can be proven using Newton’s identities. In order to evaluate the coefficients, we

first define the moments µk as follows:

µk =
1

2πj

∮
c

zk
f ′(z)

f(z)
dz , k = 0, . . . , N (D.3)

It can be shown that µ0 = N using argument principle [169, p. 268]. Then, It is

possible to compute the coefficients σk as follows:

σk =
−1

k

[
µk +

k−1∑
j=1

σk−jµj

]
, k = 1, . . . , N (D.4)

Where σ0 = 1 and the zeros of f(z) are the roots of the polynomial PN(z) given in

(D.2) after computing the coefficients from (D.4). The search contour must be simple,

bounded and shouldn’t cross any zero. An example for the search strategy in illustrated in
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Figure D.1 must be applied in computer implementation [170].

C

Adjusted

contour

Zero on the

initial contour

Sub-contours

Zeros

Figure D.1: Search strategy for contourC. In this illustration, the maximum number of ze-
ros Nmax = 4. This algorithm is applied in order to improve the accuracy of computations
[4, 5].

The derivative of f(z) can be computed exactly using the AutoDiff_R2015b

package available in MATLAB [171]. The final step is to polish the results using the New-

ton– Raphson or Muller method [165, Chapter. 6] in order to obtain machine accuracy as in

(D.4).1 We highly recommend Muller method over Newton-Raphson since it is derivative-

free with a guaranteed convergence. The numerical integral can performed using adaptive

quadrature such as quadgk from MATLAB. As stated previously, the contour C shouldn’t

cross any zeros in order for this method to work. Hence, a spike detection is needed when

applying the contour integral such as the technique in [172]. Nevertheless, the MATLAB

1The initial guess would be the values obrained from CIM.
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quadgk has a built-in detection for unbounded integrals which sends a warning. In this

case, the original size of the contour C is increased by a small percentage in all directions.

General guidelines are found in [4, 109, 173, 174]. Note that for N ≤ 4, the roots are

exactly known [175, p. 23].

D.1 Numerical Examples

An example is considered from [176, p. 58] for the following function f(z) = z2(z −

2)2[e2z cos(z) + z3− 1− sin(z)]. The results of this example are listed in Table D.1 where

γ = {z ∈ C : |z| = 3}. Note that the trivial solution 0 was included for the sake of

completeness.

Table D.1: Zeros for example 1 after applying Muller method for polishing the initial
results.

z1 −0.46071411972897 + j0.62542776934777
z2 −0.46071411972897− j0.62542776934777
z3 0.00000000000000 + j0.00000000000000
z4 1.66468286974552 + j0.00000000000000
z5 2.00000000000000 + j0.00000000000000

Another example is taken from [177]. Here, the transcendental equation f(z) =

PN(z)g(z) is given in (D.5). The search contour was chosen as a circle γ = {z ∈ C :

|z| = 6}. The results after applying Muller method for polishing are summarized in Table

D.2 where the repeated roots are removed.

PN(z) = (z − 0.2)3(z − 0.2 + j0.5)(z − 0.2− j0.5)(z − 0.9)2

g(z) = (z − 2)(z − 3)(z − 4)(z − 5)e5z3+2z4+z5
(D.5)
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Table D.2: Zeros for example 2 . The growing exponential e5z3+2z4+z5 was omitted.

z0 5.00000000000000 + j0.00000000000000
z1 4.00000000000000 + j0.00000000000000
z2 3.00000000000000 + j0.00000000000000
z3 2.00000000000000 + j0.00000000000000
z4 0.90000000000000 + j0.00000000000000
z5 0.90000000000000− j0.00000000000000
z6 0.20000000000000− j0.50000000000000
z7 0.20000000000000 + j0.50000000000000
z8 0.20000000000000 + j0.00000000000000

D.2 Double Loop Integral

In this part, we explain how a double loop integral used in Cauchy Integration Method

(CIM) around a branch point will not result in a spurious zero if the function of interest

f(z) doesn’t become zero at the branch point zb. First, we illustrate the double loop

integral for a function with two Riemann sheets, e.g., f(z) =
√
z where zb = 0. Then, we

demonstrate the argument principle on two types of functions: f(zb) = 0 and f(zb) 6= 0.

The latter is expected to produce the correct results. The argument principle given in (D.6)

computes the number of zerosN surrounded by a simple contourC in the complex domain

[169, p. 268].

N =
1

2πj

∮
C

f ′(z)

f(z)
dz (D.6)

Considering the integrals I1 and I2 defined in Figure D.2. Note that the double loop

integral is equivalent to I1 +I2−
(
B1 +B2

)
. If the branch point is not included, the double

loop is equivalent to I1 + I2.
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Branch cut

I1I2

(a)
Branch cut

B2 B1

Double

loop

(b)

Figure D.2: The definition of double loop integral from the integrals I1 + I2. For example, I1 is
performed on the top Riemann sheet while I2 on the bottom sheet. (b) The equivalent integral.

D.3 Computing The Double Loop Integral

Here, we demonstrate the result of applying the double loop integral defined above

when the contour C surrounds the branch point on two scenarios: f(z) =
√
z and f(z) =

√
z + g(z) where g(0) 6= 0. Thus, we compute the integrals B1 and B2 illustrated in

Figure D.2. Hence, we substitute z = δejθ and then we take limδ→0{B1 +B2}. Moreover,

crossing the branch cut corresponds to replacing
√
z with −

√
z.

D.3.1 Scenario I: f(z) =
√
z

For top sheet:

N =
1

2πj
lim
δ→0

∮
C

1/2

(
√
z)(
√
z)
dz =

1

2
(D.7)

For bottom sheet:

N =
1

2πj
lim
δ→0

∮
C

1/2

(−
√
z)(−

√
z)
dz =

1

2
(D.8)
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Hence, from (D.7) and (D.8) we obtain N =
1

2
+

1

2
= 1 which indicates a spurious

zero.

D.3.2 Scenario II: f(z) =
√
z + g(z)

Here, we have f(0) 6= 0 since g(0) 6= 0, but also the branch cut discontinuity from
√
z

still exist.

For top sheet:

N =
1

2πj
lim
δ→0

∫ 2π

0

[ 1

2
√
δejθ

+ g′(δejθ)

√
δejθ + g(δejθ)

jδejθ

]
dθ = 0 (D.9)

For bottom sheet:

N =
1

2πj
lim
δ→0

∫ 2π

0

[ −1

2
√
δejθ

+ g′(δejθ)

−
√
δejθ + g(δejθ)

jδejθ

]
dθ = 0 (D.10)

Hence, from (D.9) and (D.10) we obtain N = 0 which indicates no spurious zero. A

generalization for this results can be done for the following form:

f(z) = zp + g(z) (D.11)

In this case, the number of zeros becomes:

N =

0, p ≥ 0

2p, p < 0
(D.12)

The above argument was suggested by Prof. David R. Jackson from the University of

Houston, TX.
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D.4 Dispersion Function

The Dispersion Function (DF) for the simplest planar layered structure is the half-space

in given (D.13). Where kz1 =
√
k2

1 − k2
ρ and kz2 =

√
k2

2 − k2
ρ.

f(kρ) =
kz1
ε1

+
kz2
ε2

(D.13)

Since k1 6= k2, we expect kz1(k1) 6= kz2(k1) and vice versa, this means that our DF

will behave like f(z) in scenario II discussed above. Note that if k1 = k2 in the half-space

example, this means that the configuration is a homogeneous medium and therefore the

root at k corresponds to plane wave solution which is the only supported mode in this

case. For general configurations with more than two layers (even if the top and bottom

media are the same) the overall DF will also behave like f(z) in scenario II. This has been

carefully considered in the proposed DFs.

From the above discussions we conclude that the double loop integral will not produce

a spurious zero according to our DF definition. Another treatment for the double loop inte-

gral was given by Smith in [107, 113]. One should note that this result can be generalized

for four Riemann sheets. Hence, the loop will cross the four sheets in the manner.
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