
EVALUATION OF HARDWARE-BASED DATA FLOW INTEGRITY

A Thesis

by

ABHIJITH REDDY RACHALA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Co-Chair of Committee, Shaoming Huang
Committee Member, Narasimha Annapareddy
Head of Department, Miroslav M. Begovic

August 2019

Major Subject: Computer Engineering

Copyright 2019 Abhijith Reddy Rachala

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/237702362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Computer security is a very critical problem these days, as it has widespread consequences in

case of a failure of computer systems security, like desktop machines, mobile phones, tablets and

Internet of Things (IoT) devices. Usually, attackers try to find vulnerabilities in the target systems

and by exploiting these vulnerabilities, they launch an attack, thereby achieving their malicious

goal.Software data attacks modify the intended control/data flow in a program that is unprotected.

Control data attacks are executed by exploiting buffer overflows or string vulnerabilities to over-

write a return address, a function pointer or some other information about control data. Non-control

data attacks exploit similar vulnerabilities to overwrite security critical data without changing the

intended control-flow in the program. Data flow integrity ensures that the flow of data in a program

at runtime is permitted by the data flow graph.

The main objective of the thesis is to implement a hardware-based data flow integrity technique

and check for vulnerabilities on a target application. This implementation is achieved by referenc-

ing a data flow graph against which the runtime data flow of a program is checked. DFI checking

is integrated into existing processor with most changes in hardware going to the load/store unit

and the arithmetic unit. In gem5, this is realised by modifying source code of the simulator at

instruction level to monitor each load/store instruction on the target application and check if there

are any data flow violations and check the overhead caused by the modification of gem5 source

code to integrate DFI checking with existing CPU models on gem5. From experiments results,

we measured the performance overhead to be up to 14.5%. We also roughly estimate the extra

hardware required for this implementation on real hardware.

ii

DEDICATION

To my parents

iii

ACKNOWLEDGMENTS

It is my honor and privilege to have pursued my graduate studies at Texas A&M University. I

am grateful to many people for their support during this journey. Firstly, I would like to express

my sincere gratitude to my advisor, Dr. Jiang Hu for steering my endeavor in academic research

through his guidance, patience and understanding. His trust and encouragement helped me to think

beyond the normal conventions from time to time and to gave me the freedom to experiment with

different ideas, which proved very beneficial in carrying out my research. I would sincerely thank

my co-advisor, Dr. Jeff Huang, for his persistent optimism and motivation. I feel fortunate to

receive directions from both of my advisors without which this thesis would be impossible. It

was truly an honor to have research advisors and mentors like them. I would like to thank Dr.

Narasimha Reddy for being a part of my thesis committee and providing continuous constructive

feedback on my thesis.

I am very thankful to my colleague in the project, Lang Feng, for sharing his knowledge and

ideas for my project. His constant inputs and feedback helped me whenever I was stuck in the

project. I am also grateful to Erick Carvajal and Gino Chacon for assisting me when I started

off with gem5 and sharing their experiences working with gem5, this helped me grasp the gem5

environment quicker.

I wish to thank the Department of Electronics and Computer Engineering at Texas A&M Uni-

versity for providing the opportunity and resources to fulfill my academic ambition.

I am obliged to all my friends for helping me keep my life in context. I would like to thank my

family for their undetering support, encouragement and faith in me.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Jiang Hu, and Profes-

sor Narasimha Reddy from the Department of Electrical and Computer Engineering (ECE), and

Professor Jeff Huang of the Department of Computer Science and Engineering (CSE).

Tools used in the research, namely gem5 and SVF tools are open source tools developed by

third parties. Usage of these tools have been duly cited in the thesis.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was partly supported by a scholarship from the ECE department at Texas A&M

University.

v

NOMENCLATURE

DFI Data Flow Integrity

CFI Control Flow Integrity

SVF Static Value Flow

CDI Core Debug Interface

CPU Central Processing Unit

ISA Instruction Set Architecture

CPI Cycles Per Instruction

DFG Data Flow Graph

CFG Control Flow Graph

RDS Reaching Definition Set

RDT Reaching Definition Table

TPIU Trace Port Interface Unit

PC Program Counter

LUT Look Up Table

HDFI Hardware-Assisted Data Flow Isolation

ALM Adaptive Logic Module

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION . 1

1.1 Runtime Verification . 2
1.2 Security . 3
1.3 Monitoring Techniques . 4

2. RELATED WORK . 8

3. BACKGROUND . 10

3.1 Software data flow integrity . 10
3.2 About gem5 . 11

3.2.1 MemObjects . 11
3.2.2 Ports . 12

3.2.2.1 Atomic/Timing/Functional accesses. 12
3.2.3 Packets . 12

3.3 Static Value Flow (SVF) . 13
3.4 Instrumentation . 14

4. IDEA & IMPLEMENTATION . 16

4.1 Objective. 16
4.2 Idea . 16
4.3 Static Analysis. 17

vii

4.4 Detailed DFI Explanation. 19
4.5 Hardware-based DFI Checking. 22

5. EXPERIMENTAL SETUP & RESULTS . 25

5.1 Experimental Setup . 25
5.2 Results . 27

6. CONCLUSION . 37

REFERENCES . 38

viii

LIST OF FIGURES

FIGURE Page

4.1 Flow Chart for obtaining instrumented binary . 18

4.2 Sample code . 20

4.3 Data Flow Graph for the sample code. 20

4.4 Enforced (allowed) Data Flow for each variable . 21

4.5 Execution Path 1 for sample code . 21

4.6 Execution Path 2 for sample code . 22

4.7 Simulation environment for gem5 . 23

5.1 gem5 configuration used . 26
5.2 Simulated time comparison for 1 million instructions . 28

5.3 Simulated time comparison for 10 million instructions . 28

5.4 Simulated time comparison for 50 million instructions . 29

5.5 Simulated time comparison for 100 million instructions . 29

5.6 Simulated time comparison for 500 million instructions . 30

5.7 Comparison of number of writes for 1 million instructions . 32

5.8 Comparison of number of writes for 10 million instructions . 32

5.9 Comparison of number of writes for 50 million instructions . 33

5.10 Comparison of number of writes for 100 million instructions . 33

5.11 Comparison of number of writes for 500 million instructions . 34

ix

LIST OF TABLES

TABLE Page

5.1 gem5 system configuration . 25

5.2 Benchmarks with descriptions . 27

5.3 Overall average time overhead(% increase for modified CPU) . 30

5.4 Average time overhead for Write (% increase for modified CPU). 31

5.5 Summary of number of writes(% change for modified CPU). 34

x

1. INTRODUCTION

Security has been extensively researched in the field of general-purpose computers and com-

munication systems, which lead to many advances in cryptographic algorithms and security proto-

cols. Even though such advances in security measures provide a very concrete reason for securing

computing systems, recent trends have made it very clear that most attacks target weaknesses in a

system’s implementation [1]. The 2005 U.S. President’s Information Technology Advisory Com-

mittee (PITAC) report stated: "Commonly used software engineering practices permit dangerous

errors, such as improper handling of buffer overflows, which enable hundreds of attack programs

to compromise millions of computers every year" [2].

A U.S. Department of Homeland Security 2006 Draft, "Security in the Software Lifecycle,"

states the following: The most critical difference between secure software and insecure software

lies in the nature of the processes and practices used to specify, design, and develop the software

. . . correcting potential vulnerabilities as early as possible in the software development lifecycle,

mainly through the adoption of security-enhanced process and practices, is far more cost-effective

than the currently pervasive approach of developing and releasing frequent patches to operational

software [3].

Irrespective of how rigorous the verification of software at development phase is, it is very dif-

ficult to detect all errors during development. Therefore, formal and informal checking of specified

properties against executing systems or programs is a topic that has been explored from quite some

time (prominent examples of this are dynamic typing in software, or fail-safe devices or watch-

dog timers in hardware). System security can be compromised either through the execution of

programs that originate from untrusted or unknown sources, or through the corruption of binaries

while they are being downloaded or stored on a system [4]. Attacks on software try to exploit

buffer overflows and format string vulnerabilities in order to write data to unintended locations.

Techniques like Control Flow Integrity (CFI) and Data Flow Integrity (DFI) are enforced to pre-

vent these attacks. DFI computes a data-flow graph using static analysis, and it instruments the

1

program to ensure that the flow of data at runtime is allowed by the data-flow graph [5]. In this

thesis, a hardware based approach to DFI is explored and implemented on gem5. The rest of the

thesis is organized as follows. In this section (Section 1), we further give a brief introduction about

runtime verification, the importance of security in systems and the need for techniques like CFI

and DFI. In Section 2, some previous work in this domain are introduced. In Section 3, a detailed

background is given which is necessary to understand the idea of this thesis better. In Section 4,

the main idea of the thesis, that is, the hardware implementation of DFI on gem5 is explained in

detail. Section 5 introduces the experimental setup and discusses the experiments run and results

obtained. Finally, a summary is provided in Section 6.

1.1 Runtime Verification

Runtime verification is a computing system analysis and execution approach based on extract-

ing information from a running system and using it to detect and possibly respond to observed

behaviors which satisfy or violate intended properties [6] . Runtime verification specifications are

usually expressed in trace predicate formalisms, such as finite state machines, regular expressions,

context-free patterns, linear temporal logics, etc., or extensions of these. This allows for a less

ad-hoc approach than normal testing [6]. However, any monitoring mechanism in an executing

system is considered runtime verification, including verifying against test oracles and reference

implementations.

Runtime verification can be used for a wide variety of applications, like security and safety

policy monitoring, verification, debugging, testing, validation, profiling, fault protection, recov-

ery etc. Runtime verification evades the complexity of traditional formal verification techniques,

like model checking and theorem proving, by analyzing only one or a few execution traces and

by working directly with the actual system. Therefore, it scales up relatively well and gives more

confidence in the analysis results but at the expense of less coverage. Moreover, runtime verifica-

tion can be made an integral part of the target system, monitoring and guiding its execution during

deployment [6].

Formal or informal checking of specified properties against executing systems or programs is

2

a topic that has been explored from quite some time, whose precise roots are hard to identify.

The termi runtime verification was formally introduced through the name of a 2001 workshop

aimed at addressing problems at the boundary between formal verification and testing. Writing

test cases for large code bases is a very tedious and time consuming task. Moreover, some errors

may not be detected during development. Early contributions to automate verification have been

made at the NASA Ames Research Center by Klaus Havelund and Grigore Rosu to archive high

safety standards in spacecrafts, rovers and avionics technology. They proposed a tool to verify

specifications in temporal logic and to detect race conditions and deadlocks in Java programs by

analyzing single execution paths [6].

The field of runtime verification methods can be broadly classified into:

• The system can be monitored during the execution itself (online) or after the execution, for

example in form of log analysis (offline).

• The verifying code is integrated into the system or is provided as an external entity.

• The monitor can report violation or validation of the desired specification.

1.2 Security

As mentioned earlier, recent trends have shown that most attacks target weaknesses in a sys-

tem’s implementation [1]. Therefore, it is now a commonly agreed fact that a secure system imple-

mentation is as critical to a system’s overall security as the strength of the theoretical security mea-

sures employed [1]. As a result, in recent years there has been an increasing awareness that security

at various stages of system design process, including system architecture and hardware/software

implementation, needs to be considered. Execution of programs/applications originating from un-

known or untrusted sources and corruption of binaries when they are being downloaded or stored

on a system are the reasons a system’s security is compromised. Executing a code that has been

obtained from a trusted source also doesn’t ensure safe execution. Even a trusted code can be

hijacked at run time, therefore the original code may not be malicious by intent but it can be ma-

nipulated by attackers and can result in destructive or harmful behavior. There are multiple ways to

3

execute a security attack. Software security exploits take advantage of weaknesses in code [operat-

ing system , middleware, applications] that is already present in the system. Amongst these, buffer

overflow attacks, which exploit the lack of bounds checking in C/C++ programs, have emerged

as one of the most common forms of security violations [1]. Many embedded systems are mobile

devices with small form factors that may be passed around in the hands of adversaries for a period

of time is sufficient to launch such attacks. The outcome of such attacks is especially dangerous

when they are used to subvert programs that have special privileges, e.g., access to sensitive data

or system resources [1]. Even in the embedded system domain, a recent trend has been a sharp

increase in embedded software content in order to support increasing end-user functionality and

performance requirements [4]. With complexity of software increasing and times-to-market get-

ting reduced, many software bugs and vulnerabilities may go undetected during the design phase.

With increased connectivity, embedded systems are now able to automatically download and in-

stall software, which exposes these systems to malicious programs and in turn making them easy

targets for attackers.

1.3 Monitoring Techniques

In this section, monitoring techniques like CFI and DFI are explained and we give an idea

about why such checking is needed. Control-flow integrity is a general term for computer security

techniques which prevent a wide variety of malware attacks from redirecting the flow of execution

of a program [7]. CFI is used to monitor and control instruction flow transitions like branches

and jumps and make sure they adhere to the intended reference design. Through this software

execution can be stopped from executing malicious code which could result in corruption of an

application or a system. The CFI security policy checks that the control flow of a program must

follow a path of defined by the a Control-Flow Graph (CFG), which is determined prior to the

program execution (using static analysis).

CFI stops control attacks by guaranteeing that the control flow remains within the control-flow

graph intended by the design. Every instruction that is the target of an allowed control-flow trans-

action is assigned a unique identifier, and to make sure that only valid targets are allowed checks are

4

inserted before control-flow instructions [8]. Any program typically has two types of control-flow

transfers: direct or indirect. Direct transfers have a fixed target and they do not need any enforce-

ment checks. However, indirect transfers, such as branch instructions, function calls and returns,

take a dynamic target address as argument. As the target address could be modified/controlled by

an attacker because of a vulnerability, CFI checks to ensure that its unique identifier matches the

list of known and allowable target identifiers of the particular instruction [8].

With significant increase in defense solutions against control-flow attacks, exploits which focus

on modifying control-flow from memory errors become difficult because these defense solutions

have been deployed widely. Alternatively, attacks targeting non-control data do not require chang-

ing the application's control flow during an attack. Although such data-oriented attacks can be

harmful to systems and can cause significant damage, not many systematic methods to automat-

ically construct them from memory errors have been developed [9]. Attackers usually execute

arbitrary malicious code to exploit vulnerabilities in memory. This enables them to use the victim

program in order to cause damage to a system and further leak some data from the system. Many

of these attacks typically modify a program's control flow by exploiting memory errors. However,

such attacks, which focus on modifying control-flow, including code injection and code-reuse

attacks, can be prevented by using efficient defense mechanisms such as CFI [10] [11], data execu-

tion prevention (DEP), and address space layout randomization (ASLR) [12]. In recent times, such

defense solutions have become practical and are being adopted universally in commodity operat-

ing systems and compilers, as a result executing control-oriented attacks have become increasingly

difficult.

However, attacks which modify control-flow are not the only malicious way to exploit memory

errors. Memory errors also enable attacks through corrupting non-control data, a well-known

result from Chen et al [13] . In general, non-control data attacks are collectively referred to as

data-oriented attacks, which allow attackers to modify the program's data or cause the program to

accidentally leak secret/sensitive data. Several recent high-profile vulnerabilities have highlighted

the intensity and seriousness of these attacks. In a recent exploit on Internet Explorer (IE) 10,

5

it has been shown that changing a single byte - specifically the Safemode flag - is sufficient to

run arbitrary code in the IE process [9]. The Heartbleed vulnerability is another example where

sensitive data from an SSL-enabled server could be leaked without modifying the control-flow of

the application [14]. Although data-oriented attacks are very well understood, most of the known

attacks are just corruption of non-control data.

Data flow subversion at runtime is a common step of abundant security attacks . Despite previ-

ous research on techniques to prevent such attacks, they are still among the most critical security

attacks and software is likely to remain vulnerable to them in the future [15]. This can be attributed

to the fact that there is a lack of general and platform-independent specification and enforcement of

DFI, unclear hypothesis and assumptions and vulnerability-based mitigation techniques. These all

result in less precision in the enforcement techniques with possibility of circumvention, and make

their evaluations and effectiveness measurements harder [15]. These attacks violate Data Flow

Integrity (DFI) that imposes restrictions on runtime data flows that are to be allowed by program

data flow graph. DFI is firstly defined in [5] informally and its definition was more according to

a specific implementation than a general definition. However, previous works do not have a more

general implementation independent and platform-independent specification of the policy with ex-

plicit assumptions such as an expressive formal study on DFI. In security, to specify policies and

evaluate enforcement techniques, it is very important to identify assumptions [15]. Therefore, it is

very important and necessary to make proper and clear assumptions and well-defined because an

attacker that can invalidate assumptions can also bypass the enforcement. Since in security any set

of assumptions is likely to be incomplete, clarifying them makes it simpler to extend or improve

the specification and enforcement of a desired policy by completing the list of assumptions, or

providing their satisfactions instead of just assuming them in further researches [15].

A brief introduction of the functioning of DFI is given here, in later sections a more detailed

explanation of DFI is given. DFI enforces a policy on the data-flow observed at runtime. It ensures

that a program must follow a data-flow graph generated via a static analysis at compile time. An

instrumentation pass on the program adds checks before each read instruction to ensure that they

6

do not read a corrupted data. The static analysis uses reaching definition analysis which is a data-

flow analysis technique that gives for each read instruction reading a variable, a set of instructions

that could have last defined(written to) this variable. For each read instruction the analysis is

performed, and each write instruction that defines a variable is assigned an unique identifier. Then,

an instrumentation pass adds checks before each write instruction to update a table mapping an

address being written to and the last identifier having written a value at that address. In addition,

the instrumentation adds checks before each read instruction. It fetches the identifier mapped with

the address it is reading the value from, and it ensures that the identifier is in the set of reaching

definitions found thanks to the static analysis.

The above mentioned methodology for DFI is the main idea for our hardware based data flow

integrity implementation. Using static analysis, we obtain the reaching definition set. The reaching

definition set is a set of permissible writes for each memory position which is obtained using the

reaching definition analysis. Reaching definition for a given instruction is a previous instruction

whose target variable can be assigned to the given one without any assignment in between. After

instrumentation of target application, to obtain identifier information, the application is monitored

at runtime to ensure it follows the data flow defined by the reaching definition set. Experiments

show a performance overhead of about 14.5% for a processor integrated with DFI monitoring

system.

7

2. RELATED WORK

From quite some time, many different methods and ideas for monitoring computer security

have been proposed. The basic common principle among all these methods is that they monitor the

execution behavior of a program (e.g., control-flow or data-flow) running on the machine to find

symptoms of attacks. Among the proposed monitoring schemes, software-based ones are known

for their adaptability on the commercial products, but there have been concerns that they may

suffer from non negligible runtime overhead [5] [16]. Usually, hardware-based solutions are well

known for their high performance. However, most of these hardware solutions have an inherent

problem in that they usually introduce drastic changes to the internal processor architecture [17].

More recent ones have tried to minimize such modifications by employing designs with dedicated

external hardware security monitors in the system [18] [19]. However, such approaches have some

overhead which is caused by communication between the host and the external monitor. Another

previous work which focuses on DFI implementation in hardware is the HDFI (Hardware-Assisted

Data-flow Isolation). The main objective of HDFI is to prevent malicious attacks from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data [20]. This is achieved by making

two changes to the design: the ISA extension and the memory tagger. The paper also introduces

some optimizations to reduce overhead. HDFI was originally implemented by extending the RISC-

V instruction set architecture (ISA) and instantiating it on a Xilinx evaluation board (FPGA) [20].

Initial work in this project involved a solution that relies on external hardware for security mon-

itoring, but unlike the others, this method solves the communication overhead problem by using a

dedicated interface called the core debug interface (CDI), which is readily available in most com-

mercial processors for debugging. The CoreSight interface on ARM processors was the interface

that was employed as CDI on our initial FPGA setup. The system is built simply by plugging the

monitoring hardware into the processor via CDI, precluding the need for altering the processor

internals. First, this FPGA prototype setup was used to implement CFI. The experimental results

on FPGA prototype showed us promising results, with external hardware monitors efficiently per-

8

form monitoring tasks with negligible performance overhead. This improved performance can be

mainly attributed to use of CDI, which helps reduce communication costs substantially. Later, for

the implementation of DFI, a modular discrete event driven computer system simulator, gem5 was

chosen. This was done to explore the feasibility and effectiveness of the gem5 platform to per-

form DFI checking. The focus of the thesis is this implementation of hardware based Data Flow

Integrity technique on gem5. The software DFI implementation in [5] is another work which is

closely related to the current implementation. More details about the original DFI work [5] and

our implementation of hardware-based DFI are discussed in further sections. We give some back-

ground about the software DFI paper in Section 3 and discuss our implementation on hardware in

Section 4.

9

3. BACKGROUND

In this section, we give some background about the DFI implementation in [5], as it is the main

basis of our work. Then we provide some background about the tools and analysis methods used

in this implementation of hardware-based Data Flow Integrity. First a brief introduction to gem5

is given, followed by an overview of Static Value Flow (SVF) analysis tool and then finally the use

of instrumentation in this implementation is explained.

3.1 Software data flow integrity

Software data flow integrity was proposed in [5]. The main idea is to have a reference DFG

against which the runtime data flow of a program is checked. DFG is obtained using static analysis

methods and is used as reference for verifying DFI for an application executed on the processor.

According to the implementation proposed by [5], data flow integrity enforcement has three phases.

The first phase uses starts with computing a data-flow graph for the vulnerable program, using

static analysis. The second phase instruments the program to guarantee that the data-flow at run-

time is allowed by the data-flow graph. The third (last) phase runs the instrumented program and

raises an exception if data-flow integrity is violated. To enforce data-flow integrity at run-time, this

implementation uses instrumentation on the program to compute definition that actually reaches

every use at run time. It maintains a table with the identifier of the last instruction to write to each

memory position.The table is updated before every write and to prevent the attacker from tampering

with the table. Each time a check is performed to find out if the identifier of the instruction that

wrote the value being read is an element of the set computed during the static analysis [5]. If it

is not, an exception is raised. Taking these implementation details from the software based work,

we propose a hardware based implementation in which DFI checking is inbuilt in to the processor

and doesn’t require any external hardware and interfaces to do so. The software DFI paper [5]

proposes some optimizations in software, but all those optimizations haven’t been implemented in

our design, only the basic idea of data flow integrity is pursued.

10

3.2 About gem5

Implementation of this DFI checking is done on gem5 simulator. The gem5 simulator is a mod-

ular platform for computer-system architecture research, encompassing system-level architecture

as well as processor microarchitecture. gem5 provides four interpretation-based CPU models: a

simple one-CPI CPU, a detailed model of an in-order CPU, and a detailed model of an out-of-order

CPU [21]. These CPU models use a common high-level ISA description. gem5 supports multiple

ISAs. Any configuration of the above-mentioned CPU models can be used in conjunction with

one of the supported ISAs. The current ISAs supported on gem5 are x86, ARM, Alpha, RISC-V,

SPARC. We use the simple CPU model and x86 ISA.

To achieve the objectives mentioned above, gem5 source code must be modified. gem5 consists

of SimObjects, SimObjects are wrapped C++ objects that are accessible from Python configura-

tion scripts. Python configuration scripts control gem5 and these scripts define the system we want

to model. Using these Python configuration files, Simobject parameters are set, these parameters

define the processor and memory system configuration and hierarchy. To enable our main objec-

tives of obtaining execution data and performing checks, corresponding Simobjects are modified

in the gem5 source code. Most components used in any configuration like CPU, memory buses

and memory controllers etc. are MemObjects. The MemObject class extends the ClockedObject

and obtains its master and slave ports with the help of accessor functions. The ClockedObject class

extends the SimObject with a clock and accessor functions to relate ticks to the cycles of the object

[22]. Some important components for understanding gem5 are explained below.

3.2.1 MemObjects

All objects within a memory system inherit from MemObject. The MemObject class adds the

pure virtual functions getMasterPort and getSlavePort which returns a port corresponding to the

given name. This interface is used to connect memory objects together.

11

3.2.2 Ports

Ports are used to interface memory objects to each other. They will always come in pairs and

we refer to the other port object as the peer. A master port always connects to a slave port, with the

master initiating requests, and the slave providing responses. Every memory object has to have at

least one port to be useful [22].

3.2.2.1 Atomic/Timing/Functional accesses

There are three types of accesses supported by the ports.

1. Timing - Timing accesses are the most detailed access. They reflect our best effort for

realistic timing and include the modeling of queuing delay and resource contention. Once a

timing request is successfully sent, at some point in the future the device that sent the request

will get a response [22]. We use the timing accesses in our experiments as is it gives us the

most practical timing details.

2. Atomic - Atomic accesses are faster than detailed access. They are used for fast forwarding

and warming up caches and return an approximate time to complete the request without

any resource contention or queuing delay. When an atomic access is sent the response is

provided when the function returns [22].

3. Functional - Like atomic accesses functional accesses happen instantaneously, but unlike

atomic accesses they can co-exist in the memory system with atomic or timing accesses.

Functional accesses are used for things such as loading binaries, examining/changing vari-

ables in the simulated system, and allowing a remote debugger to be attached to the simulator

[22].

3.2.3 Packets

A Packet is used to encapsulate a transfer between two objects in the memory system . This

is in contrast to a Request where a single Request travels all the way from the requester to the

ultimate destination and back, possibly being conveyed by several different packets along the way

12

[22]. Read access to many packet fields is provided via accessor methods which verify that the

data in the field being read is valid. A packet contains the following all of which are accessed by

accessors to be certain the data is valid:

• The address. This is the address that will be used to route the packet to its target and to

process the packet at the target. It is typically derived from the request object’s physical

address.

• The size. Again, this size may not be the same as that of the original request, as in the cache

miss scenario.

• A pointer to the data being manipulated

– get() and set() methods are used to manipulate the data in the packet.

• A list of Packet Command Attributes associated with the packet

• A pointer to the request

3.3 Static Value Flow (SVF)

• SVF: SVF is a tool that enables scalable and precise inter procedural Static Value-Flow

analysis for C programs by leveraging advances in sparse analysis [23].

• LLVM : LLVM is a library for programmatically creating machine-native code. A developer

uses the API to generate instructions in a format called an intermediate representation, or

IR. LLVM can then compile the IR into a standalone binary, or perform a JIT (just-in-time)

compilation on the code to run in the context of another program, such as an interpreter for

the language [24].

• Clang : It is a front end to the LLVM compiler and is designed to compile C, C++, Objective-

C, and Objective-C++ to machine code. Apple is the primary developer of clang [25].

13

Static value-flow analysis resolves both the data and control dependences of a program. It

was initially adopted in software debugging [26], [27] and optimising compilers [28], [29] by

providing explicit definition-use relations of program variables. This fundamental technique has

subsequently been used widely for program analysis and verification in many open-source and

commercial tools [23].

SVF is a static tool that enables scalable and precise interprocedural dependence analysis for

C and C++ programs. SVF allows value-flow construction and pointer analysis to be performed

iteratively, thereby providing increasingly improved precision for both [23].

To find the reaching definition set for an application, SVF is used. Initial work used Program

Counter as identifier for an instruction, but for larger applications a better way to find reaching

definition set was required. SVF is a static tool that enables scalable and precise interprocedural

dependence analysis for C and C++ programs [23]. SVF constructs reaching definition set us-

ing Node ID as identifier for instructions. Implementation was modified accordingly to perform

checking using Node ID instead of Program Counter. In order to relate an instruction (in our

case load/store) with Node ID, we use code instrumentation. We use the information obtained

through Code Instrumentation and generate instrumented binaries/executable. Reaching definition

set and instrumented binary are inputs to perform checking. Reaching Definition Set acts as ref-

erence/specification for the DFI checking. Executable is application to be run on CPU model on

gem5 or the workload for the gem5 simulation.

3.4 Instrumentation

Instrumentation is a process through which certain instructions are inserted to an existing ex-

ecutable/program to obtain extra internal information from the program, in order to have a better

understanding about the execution of the program. Instrumentation is broad term which can in-

corporate code tracing, profiling, debugging/exception handling, performance counters and data

logging. In this implementation, retrieving the unique instruction identifier is very important as

the identifier is used for checking the dynamic data flow of an application/program at run time. As

previously mentioned, initial implementation used PC as the identifier but this was good only for

14

small programs where DFG could be constructed manually. But for larger applications, SVF anal-

ysis is used for constructing the reaching definition set. The tool uses Node IDs as the identifier for

instructions and constructs the RDS. Corresponding changes were made to the DFI checking logic

in gem5. To accommodate for these changes, the Node IDs should be able to be retrieved from the

binary(application) at run time. This is solved by instrumenting the program binary and inserting

instructions in to the binary such that the identifier can be obtained by the DFI checking logic in

gem5.

15

4. IDEA & IMPLEMENTATION

4.1 Objective

The main objective of this thesis is to present a simple hardware based technique that prevents

control and non-control data attacks by enforcing data flow integrity. It computes a data flow graph

using static analysis, and it instruments the program to ensure that the flow of data at runtime is

allowed by the data flow graph [5]. As with any real time verification system the main steps in-

volved are 1) to collect and store trace data without loss (information useful to perform checking)

and 2) use the data and perform relevant checking (like control-flow or data-flow). In this sec-

tion, first a brief idea about the implementation is given, then the method of static analysis we

followed is explained. Further, the concept of DFI is explained with a simple example and then the

implementation of the DFI checking on gem5 is presented.

4.2 Idea

The main idea is to have a reference DFG against which the runtime data flow of a program is

checked. DFG is obtained using static analysis methods and is used as reference for verifying DFI

for an application executed on the processor.

• Information/data extraction from the processor: One of the most important aspect for per-

forming hardware based DFI or CFI is to obtain run time execution data from the processor.

Execution data like Program Counter, data in each instruction and address of the data in an

instruction are very crucial for the verification to be done. After acquiring the data required

for checking, the next step is to store/move data without any loss. In case of an FPGA, trace

data is obtained through a debug module like ARM CoreSight or Intel PT, which provide

a wide range of operations to get execution time trace data. They also have specialised in-

terfaces like TPIU (Trace Port Interface Unit) on CoreSight, which is used to connect and

transfer trace data to external modules. For gem5, run time data is obtained by modifying

source code to place data on the bus and makes it available to the module which needs this

16

data to perform DFI checking.

Once the data required for checking is available, depending on the type of instruction (read or

write) different course of actions are taken to perform DFI checking. This data could be fetched

from memory or is directly fetched from the bus when it is being transmitted to another unit, it

depends on the data we want. As part of instrumentation, identifiers for every read and write

instructions are stored and can be accessed at run time to check for the intended data flow using

the reference DFG/Reaching definition set (RDS) obtained using static analysis.

• For every store (write), the identifier for that instruction is stored in a dynamic table (called

reaching definition table). This table is updated with the identifier for the most recent write

for every variable. This dynamic table is stored in memory.

• For a load (read) instruction, whenever a value is read, the identifier of that read instruction

is looked up in the reference table. Then the latest write identifier to that variable (which is

stored in Reaching Definition Table) is searched for in the set of valid writes to that variable.

If the identifier is present in the RDS, then the data flow integrity is not violated, if not then

there is a DFI violation.

4.3 Static Analysis

Static analysis is used to obtain the reaching definition set, which gives us the set of allowable

writes when a particular variable is read. This is done offline and the product of the static analysis

is used as reference data for the runtime execution of DFI checking performed on gem5.

The main steps involved in static analysis are:

1. SVF analysis

• Generate bitcode file

– Convert source to bitcode: The source needs to be compiled with Clang to generate

the bitcode(.bc) files

17

Figure 4.1: Flow Chart for obtaining instrumented binary

– Link bitcode files: Links all (.bc) file into a large single (.bc) file through LLVM

Gold plugin

• Generate Reaching Definition Set

– By using options present in the SVF tool, we obtain identifiers (called Node IDs

in this case) of instructions and reaching definition set for the program using these

Node IDs as identifiers. In this stage, we also generate the .wpa file.

2. Instrumentation

• We next obtain the wpa.ll file on which instrumentation is performed. The purpose of

instrumenting the program is to get the Node ID of every load and store instruction,

these Node IDs are used as identifiers later for DFI checks at execution time

• The number of instructions in a small program are usually low and instrumentation for

these programs can be performed manually, but for a benchmark which has millions of

instructions it is not feasible or sensible to perform manual instrumentation. Therefore,

a python script is used which uses the generated reaching definition set and the wpa.ll

18

file as input to generate an instrumented .ll file

3. Executable/binary generation

• Using llvm options, a new bitcode file is generated for the instrumented .ll file which is

further used to generate the instrumented executable file.

This process is followed for every program/application/benchmark and the flowchart in Figure 4.1

shows a concise flowchart to explain this process.

4.4 Detailed DFI Explanation

The idea of Data flow integrity as proposed in [5] is explained with an example. Figure 4.2

shows a simple piece of code which will be used to explain the idea of data flow integrity. The

sample code has a few reads and writes to certain variables x, y and z. Values are written for

variable x on lines 1 and 5 and for variable y on line 2. The value of x is read on line 8 and

z is written on line 8. The illegal operation on line 6 represents a malicious write on x inserted

at run time. This code has two execution paths because of the if loop. Figure 4.3 shows the

data flow graph for the sample code. D1 is the identifier for the write on x in line 1, D2 is the

identifier for the write on y in line 2, D3 is the identifier for write on x in line 5 and D4 is the

identifier for write on z in line 8. These identifiers are important for the construction of a DFG

and the reaching definition set. The reaching definition set acts as a reference for the dynamic DFI

checking. Another important component for DFI checking is the Reaching Definition Table (RDT)

which holds the identifier for the most recent write to a particular memory address (variable).

Figure 4.4 shows enforced DFG/Reaching Definition Set.

19

Figure 4.2: Sample code

Figure 4.3: Data Flow Graph for the sample code

20

Figure 4.4: Enforced (allowed) Data Flow for each variable

In Figure 4.5, the execution path (Execution Path 1) is shown for when the ‘if’condition is not

met. In this path, we have a read on variable x in line 8. The most recent write to x is on line 1 i.e

D1. D1 is present in the reaching definition set in Figure 4.4, hence this is a valid scenario and is

allowed by the DFG.

Figure 4.5: Execution Path 1 for sample code

Next, we look at the other execution path (Execution Path 2) shown in Figure 4.6, when the

‘if’condition is met. Here, the writes on X occur at lines 1(D1), 5(D3), 6. But the write at line 6 is

not allowed by the reaching definition set, represented by the identifier D_illegal. This is the most

21

recent write on x before being read on line 8 but as it is not present in the reaching definition set, it

is an illegal operation. As a result, we say that Data Flow Integrity is violated in this case.

Figure 4.6: Execution Path 2 for sample code

4.5 Hardware-based DFI Checking

In this section, the implementation of the DFI checking mechanism introduced in section 4.4 is

explained with respect to the gem5 simulator. Even though the main idea is the same, the way data

required to perform DFI is obtained and how it is stored and used changes. As shown in Figure

4.1, the instrumented binary and reaching definition set are obtained through static analysis and

these files are used as inputs for simulations in the gem5 environment (Figure 4.7).

The changes that have been made in the gem5 simulator source code can be mapped roughly to

some components on a real processor. As major changes in the source code have been done in the

read and write handling methods, the changes on a processor would be mapped to a load-store unit,

which is a specialized execution unit which is responsible for the execution of all load and store

instructions. In addition, for any arithmetic operations required for checking can be performed in

22

the integer execution unit or the ALU. Hence, most of the changes in this implementation are in

the load/store unit or the ALU, when mapped to real hardware on CPU. Further, the current system

configuration is very basic and doesn’t have out of order execution, a branch predictor, a prefetcher

or a cache memory hierarchy. In a system with all the previously mentioned components, the

overhead could be further reduced.

Figure 4.7: Simulation environment for gem5

gem5 has a flexible hierarchy and structure for CPU, Memory system, Bus and other peripher-

als. For designing different CPU models, there are a wide range of options available on gem5 but

for adding extra checking logic like the one we need for DFI or CFI, the source code has to be mod-

ified. Going in to the details of the implementation, the DFI verification logic has to be added at

the most appropriate location in the gem5 source code. The most challenging part about modifying

23

gem5 source code is to explore the source code and find the right place to add the checking logic,

without disturbing the normal functioning of the gem5 environment. Initial trials involved trying to

obtain run time information like Data, address, Program counter and instruction type from existing

modules/objects on gem5, but this information couldn’t be transferred over different memory ob-

jects for reuse. Then, the source code was modified in accordance with the requirements we need

for obtaining and using the run time information from the system. The verifying code is added in

the CPU module and the read and write functions which process read and write packets in a gem5

simulation are the main targets for code addition/modification.

In this implementation, we use reaching definitions analysis to construct a reaching definition

set, which acts as a reference for the run-time checking. This file is loaded at run time and used for

every future read and write reference. For each value read by an instruction, a set of instructions

that may write the value are computed. The analysis relies on the same assumptions that existing

compilers rely on to implement standard optimizations. These are precisely the assumptions that

attacks violate and data-flow integrity enforcement detects when they are violated [5]. Next, a

reaching definition table is used to store the identifier (Node ID in this case) for the most recent

write to every address (variable). Initially, the program counter was used as the identifier for

instructions, but this was feasible only for smaller programs. Subsequently, for running larger

workloads and constructing reaching definition set for these programs we used SVF analysis and

instrumentation. Using the idea mentioned in Section 4.2, the Reaching Definition Table and the

Reaching Definition Set are used to implement the DFI checking. The main logic of checking

remains the same as the example explained in Section 4.4. Whenever there is a store instruction,

the RDT is updated for that variable with the latest identifier. When there is a load instruction, the

the identifier present in the RDT for that variable is picked and it is looked up in the RDS. If the

identifier is not present, a Data Flow violation has occurred.

24

5. EXPERIMENTAL SETUP & RESULTS

5.1 Experimental Setup

As mentioned earlier, we use the gem5 simulator to perform DFI checking and execute sim-

ulations to obtain different parameters. The system configuration for the gem5 CPU model used

for simulations is shown in Figure 5.1. We use a TimingSimple CPU model as defined in gem5.

The TimingSimpleCPU is the version of SimpleCPU that uses timing memory accesses. It stalls

on cache accesses and waits for the memory system to respond prior to proceeding [30]. The Tim-

ingSimpleCPU is derived from the BaseSimpleCPU, and implements the same set of functions. It

defines the port that is used to hook up to memory, and connects the CPU to the cache. It also

defines the functions which are required for handling the response from memory to the accesses

sent out. This CPU model can be used with or without a cache hierarchy. In the absence of caches,

the CPU ports for icache (Instruction Cache) and dcache (Data Cache) are directly connected to

a bus. In our case, the dcache port from CPU is connected to a memchecker. The memchecker

provides debug options for reads and writes in the processor and proves helpful for debugging any

errors on the data port of the CPU and it also provides additional information for reads and writes.

A system wide memory bus is used for communication between the CPU and memory. Next, a

memory controller is created and connected to the memory bus. For this system, a simple DDR3

controller is used and it is responsible for the entire memory range of the system.

The parameters set for the experimental setup are shown below in Table 5.1. Simulations are

gem5 CPU Model Timing Simple
Width 64 bits
Memory Hierarchy No caches used
ISA x86
Frequency 1GHz/2GHz
gem5 Memchecker Used on data port

Table 5.1: gem5 system configuration

25

Figure 5.1: gem5 configuration used

run on SPEC CPU2006 benchmark suite. The SPEC CPU 2006 benchmark is SPEC’s industry-

standardized, CPU-intensive benchmark suite, stressing a system’s processor, memory subsystem

and compiler [31]. This benchmark suite consists of the SPECint benchmarks and the SPECfp

benchmarks. The SPECint 2006 benchmark contains 12 different benchmark tests and the SPECfp

2006 benchmark contains 19 different benchmark tests. We select 6 integer benchmarks shown in

Table 5.2 from SPEC CPU 2006 suite and run simulations on these benchmarks [31]. The limit

on number of benchmarks used for simulations is that the SVF tool cannot compute the reaching

definition set and generate the bitcode file which is used for obtaining the instrumented executable

for a benchmark.

26

Benchmark Application Description

401.bzip2 Compression
Performs compression and decompression on inputs

at different compression levels

445.gobmk
Artificial Intelligence:

Go

Plays the game of Go, a simply described but deeply

complex game

456.hmmer Search Gene Sequence
Protein sequence analysis using profile hidden

Markov models (profile HMMs)

462.libquantum
Physics / Quantum

Computing

Simulates a quantum computer, running Shor’s

polynomial-time factorization algorithm

464.h264ref Video Compression
A reference implementation of H.264/AVC, encodes

a videostream using 2 parameter sets

429.mcf
Combinatorial Opti-

mization

Vehicle scheduling. Uses a network simplex algo-

rithm to schedule public transport

Table 5.2: Benchmarks with descriptions

5.2 Results

Using the setup and benchmarks mentioned in Section 5.1, simulations were run on gem5

for different number of instructions to get a good idea about the time overhead, instruction type

behaviour over a different range. These experiments were done for both, an unmodified gem5 CPU

and the modified gem5 CPU which has the DFI checking built-in. Figures 5.2 - 5.6 show the results

for all the simulations run on different benchmarks. As expected, there is some time overhead in

case of the modified CPU because it performs additional DFI checking on every read and write.

For every benchmark and for the different number of instructions simulated, we see that there is

some increase in simulated time. The difference between the unmodified and modified CPU is

measured to calculate the time overhead. The time overhead on an average comes to up to 14.5%.

27

Figure 5.2: Simulated time comparison for 1 million instructions

Figure 5.3: Simulated time comparison for 10 million instructions

28

Figure 5.4: Simulated time comparison for 50 million instructions

Figure 5.5: Simulated time comparison for 100 million instructions

A summary of all the simulations and the time overhead for the modified gem5 CPU is pre-

sented in Table 5.3. The columns are for the the number of instructions simulated (1 million, 10

29

Figure 5.6: Simulated time comparison for 500 million instructions

million etc.) and the corresponding values for each benchmark shows the percentage increase in

time to simulate the respective number of instructions on the modified gem5 CPU.

1mn 10mn 50mn 100mn 500mn
401.bzip2 16.45 1.88 15.87 9.01 9.68
445.gobmk 5.34 8.06 16.78 17.03 17.21
456.hmmer 3.02 5.45 7.01 4.96 5.61
462.libquantum 21.83 24.80 25.06 25.10 25.11
464.h264ref 17.30 10.66 11.92 12.38 13.25
429.mcf 3.62 10.50 9.63 9.52 15.76
Average 11.26 10.23 14.38 13.00 14.44

Table 5.3: Overall average time overhead(% increase for modified CPU)

As mentioned in Section 3.3, our implementation uses instrumentation to obtain information

about the identifiers for every load and store. For a better understanding of the overhead caused by

the modifications made to gem5 source code, further analysis of timing information was performed.

As mentioned earlier, the handleWritePacket method in the CPU source code contains the most

30

crucial changes for the DFI checking. Hence, we measured the average simulated time it takes to

perform a write taking into account the extra checking code. The simulations were repeated for all

benchmarks for CPU models with and without the modifications and the average simulation ticks

were measured for executing the write method. Average percentage increase in simulation ticks

for the write method is shown in Table 5.4.

Benchmark % increase
401.bzip2 46.94
445.gobmk 133.09
456.hmmer 25.51
462.libquantum 0.46
464.h264ref 19.60
429.mcf 19.27
Average 40.81

Table 5.4: Average time overhead for Write (% increase for modified CPU)

In addition to the measuring the time overhead, we also compare the number of writes for each

benchmark in both the cases (modified and unmodified CPU). This is made to check the effect of

instrumentation in the case of modified CPU, for which instrumented benchmark binaries are used.

As explained in previous sections, the instrumentation in our case adds additional writes (stores)

to the binary to store information of the instruction identifier for every read and write. As a result,

we expect the number of writes to increase in the simulations for the instrumented binaries that are

run on the modified CPU. In the figures 5.7 to 5.11, the number of writes for both the cases are

shown. As we can observe in the figures below, for simulations of any number of instructions and

for every benchmark, we see an increase in the number of writes as expected. This, as mentioned

before, is due to the fact that we instrument the program binary with store instructions.

31

Figure 5.7: Comparison of number of writes for 1 million instructions

Figure 5.8: Comparison of number of writes for 10 million instructions

32

Figure 5.9: Comparison of number of writes for 50 million instructions

Figure 5.10: Comparison of number of writes for 100 million instructions

33

Figure 5.11: Comparison of number of writes for 500 million instructions

In table 5.5, a summary is provided to show the percentage increase in number of writes for

each benchmark and for simulations run for different number of instructions (mn in the table rep-

resents millions). The overall trend is that as number of read, writes increase the the number of

writes increase in the case of the instrumented binary as a result of the extra stores used to store

the information of the instruction identifier for DFI checking.

1mn 10mn 50mn 100mn 500mn
401.bzip2 53.58 4.80 99.55 255.58 686.50
445.gobmk 56.95 8.87 75.74 93.48 116.43
456.hmmer -0.75 39.42 103.13 96.06 106.37
462.libquantum 138.92 73.15 96.26 94.54 141.44
464.h264ref 3.78 12.83 7.72 6.99 180.68
429.mcf 134.48 163.44 166.02 166.34 166.61
Average 64.50 50.42 91.40 118.83 233.00

Table 5.5: Summary of number of writes(% change for modified CPU)

34

Even though this implementation was done on gem5 simulator, we try to provide an idea about

the extra hardware that might be required for making these changes on FPGA hardware. For

this we use previous knowledge from our implementations of similar checking methodologies on

FPGAs. In a collaborative work where we implemented CFI on an Altera FPGA, the required

number of ALMs were in the range of 18,000-32,000 for different benchmarks. ALM stands for

adaptive logic module in Altera FPGA, which is the basic element of FPGA and similar to LUT

(Lookup Tables). As the checking logic for DFI is of similar complexity to CFI, we estimate the

hardware requirement to be in the order of tens of thousands ALMs. Fur further understanding,

we also estimate the approximate number of additional gates required for our implementation. We

take the maximum count of 32,000 LUT/ALMs for this estimation. As per the calculations in

[32], every LUT is equivalent to 6 2-input ASIC NAND gates. With this assumption, we calculate

the number of gate required for our design as 32000*6, which is equal to 192,000 (nearly 0.2

million). In order to compare how this number stands against number of gates in a typical modern

processor, we compare it with a Intel Core i7 processor (nearly 450-500 million gates). The number

of gates in our design is about 0.2 million and as a percentage increase when compared with

a typical processor, it comes to about 0.044%. Please note that we have taken a conservative

number of around 450-500 million gates in a modern processor, processors these days have a

much higher number of gates and as result, our design will account for a lower percentage than the

figure(0.044%) mentioned above. In addition, we estimate the memory requirement of storing the

Reaching definition set and reaching definition table to be in the order of hundreds of megabytes.

Owing to differences in hardware,operating system and compiler, it is not very straightforward

to perform a detailed quantitative comparison with existing techniques. But we can use published

results obtained using the same benchmark suite (SPEC) to put our overhead in perspective. As

mentioned earlier, the overall average overhead for our implementation is about 10-15% for the

selected benchmarks, and the average overhead due to the DFI checking logic is 40.8%. We

compare the overhead numbers of a few previous works to our implementation, keeping in mind

that these may be not be very accurate because of the factors mentioned above. The software

35

DFI implementation in [5] introduces two variants of DFI, interproc DFI and intraproc DFI. As

per the published results, the average overhead for interproc DFI is 104% and for intraproc DFI,

it is 43%. Further, other published results from older works are shown in [5]. Compared to the

software DFI overhead, Program Shepherding [33] and CFI[34] have lower overhead but these

techniques fail to detect data-oriented attacks. The overhead of either variant of software DFI is

significantly lower than the overhead incurred by a state-of-the-art C bounds checker:CRED [35],

which incurs an overhead of nearly 300% in bzip2 and 100% in gzip [35].The overhead of software

implementations of taint checking [16] [36] is also significantly higher, for example, TaintCheck

[16] ran bzip2 37.2 times slower than without instrumentation [5].

Another previous work, HDFI [20] by Song et al., takes a hardware based approach to data flow

isolation. The goal of HDFI is to prevent attackers from exploiting memory corruption vulnerabil-

ities to tamper/leak sensitive data. To achieve this goal, they leverage data-flow integrity [5]. The

average overhead for their implementation is 21.7%, which after optimizations can be reduced to

about 1-2%. These numbers presented above are just to give a perspective of overhead in different

previous related works, the implementation details and methodologies in each of them is different

but the basic idea of protecting software from security attacks remains the same.

36

6. CONCLUSION

Overall, from the results obtained from the experiments run on the modified CPU supporting

DFI checking, we can conclude that the changes introduced have a certain time overhead which is

of the order of 10-15%. Focusing closely on only the overhead caused by writes (as write method

has the DFI verification logic), we see that the overhead is roughly about 40% as compared to the

gem5 CPU system with no changes. As expected, modified CPU system has more writes because

of the code instrumentation and DFI checks on every load and store instruction in the CPU but will

make sure that data flow integrity is not violated in the application (benchmark in this case). Also

it is estimated that this can be achieved with a decent amount of extra hardware cost. For this, we

provide an estimated based on both approximate number of LUTs and gates that may be required

when our design is implemented in real hardware.

37

REFERENCES

[1] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted run-time monitoring

for secure program execution on embedded processors,” IEEE Transactions on Very Large

Scale Integration Systems, vol. 14, no. 12, pp. 1295–1308, 2006.

[2] “President’s information technology advisory committee, cybersecurity: A crisis of prioriti-

zation, executive office of the president, national coordination office for information tech-

nology research and development.” https://www.nitrd.gov/Pitac/reports/

20050301_cybersecurity/cybersecurity.pdf, 2005.

[3] J. Ransome and A. Misra, “The importance of software security.” http:

//www.ittoday.info/ITPerformanceImprovement/Articles/

2013-12RansomeMisra.html, 2013.

[4] K. Rahimunnisa, A. S. A., and K. T.S., “Hardware assisted address monitoring system,” in

IEEE International Conference on Computer Engineering and Applications, vol. 1, pp. 537–

541, 2010.

[5] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,” in

USENIX Symposium on Operating Systems Design and Implementation, pp. 147–160, 2006.

[6] Wikipedia contributors, “Runtime verification — Wikipedia, the free encyclopedia,” 2019.

[7] Wikipedia contributors, “Control-flow integrity — Wikipedia, the free encyclopedia,” 2019.

[8] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Overcoming

control-flow integrity,” in IEEE Symposium on Security and Privacy, pp. 575–589, 2014.

[9] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic generation of data-oriented

exploits,” in USENIX Conference on Security Symposium, pp. 177–192, 2015.

[10] M. Abadi, M. Budiu, and U. Erlingsson, “Control-flow integrity,” in ACM Conference on

Computer and Communication Security, pp. 340–353, 2005.

38

https://www.nitrd.gov/Pitac/reports/20050301_cybersecurity/cybersecurity.pdf
https://www.nitrd.gov/Pitac/reports/20050301_cybersecurity/cybersecurity.pdf
http://www.ittoday.info/ITPerformanceImprovement/Articles/2013-12RansomeMisra.html
http://www.ittoday.info/ITPerformanceImprovement/Articles/2013-12RansomeMisra.html
http://www.ittoday.info/ITPerformanceImprovement/Articles/2013-12RansomeMisra.html

[11] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou, “Prac-

tical control flow integrity and randomization for binary executables,” in IEEE Symposium on

Security and Privacy, pp. 559–573, 2013.

[12] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation: an efficient approach to

combat a broad range of memory error exploits,” in USENIX Conference on Security Sympo-

sium, 2003.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data attacks are realistic

threats,” in USENIX Conference on Security Symposium, pp. 12–12, 2005.

[14] Wikipedia contributors, “Heartbleed — Wikipedia, the free encyclopedia,” 2019.

[15] T. Ramezanifarkhani and M. Razzazi, “Principles of data flow integrity: Specification and en-

forcement,” Institute of Information Science Journal of Information Science and Engineering,

vol. 31, pp. 529–546, 03 2015.

[16] J. Newsome, “Dynamic taint analysis for automatic detection, analysis, and signature gen-

eration of exploits on commodity software,” in The Internet Society Annual Network and

Distributed System Security Symposium, 2005.

[17] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information flow architecture

for software security,” in ACM/IEEE Annual International Symposium on Computer Archi-

tecture, pp. 482–493, 2007.

[18] J. Lee, I. Heo, Y. Lee, and Y. Paek, “Efficient security monitoring with the core debug in-

terface in an embedded processor,” ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 1,

pp. 8:1–8:29, 2016.

[19] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic information flow tracking

with a dedicated coprocessor,” in IEEE International Conference on Dependable Systems

Networks, 2009.

[20] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek, “HDFI: Hardware-

assisted data-flow isolation,” in IEEE Symposium on Security and Privacy, pp. 1–17, 2016.

39

[21] J. Lowe-Power, “Simobjects in the memory system.” http://learning.gem5.org/

book/part2/memoryobject.html. gem5 Tutorial 0.1 documentation.

[22] “General memory system.” http://www.gem5.org/General_Memory_System.

gem5 source code documentation.

[23] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in llvm,” in ACM Interna-

tional Conference on Compiler Construction, pp. 265–266, 2016.

[24] “The llvm compiler infrastructure.” https://llvm.org/. Maintained by the llvm-admin

team.

[25] M. Wilson, “An introduction to clang.” https://www.ics.com/blog/

introduction-clang, 2013.

[26] M. Weiser, “Program slicing,” in IEEE International Conference on Software Engineering,

pp. 439–449, 1981.

[27] M. Weiser, “Programmers use slices when debugging,” Commun. ACM, vol. 25, no. 7,

pp. 446–452, 1982.

[28] B. Steffen, J. Knoop, and O. Rüthing, “The value flow graph: A program representation for

optimal program transformations,” in European Symposium on Programming, 1990.

[29] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use

in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, 1987.

[30] “Simplecpu.” http://www.m5sim.org/SimpleCPU. gem5 Tutorial 0.1 documenta-

tion.

[31] “SPEC CPU 2006.” https://www.spec.org/cpu2006/. Copyright 1995 - 2019

Standard Performance Evaluation Corporation.

[32] M. Posner, “How many ASIC gates does it take to fill an FPGA.”

https://blogs.synopsys.com/breakingthethreelaws/2015/02/

how-many-asic-gates-does-it-take-to-fill-an-fpga/, 2015.

40

http://learning.gem5.org/book/part2/memoryobject.html
http://learning.gem5.org/book/part2/memoryobject.html
http://www.gem5.org/General_Memory_System
https://llvm.org/
https://www.ics.com/blog/introduction-clang
https://www.ics.com/blog/introduction-clang
http://www.m5sim.org/SimpleCPU
https://www.spec.org/cpu2006/
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/

[33] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution via program shepherd-

ing,” in USENIX Conference on Security Symposium, pp. 191–206, 2002.

[34] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity principles, im-

plementations, and applications,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, pp. 4:1–4:40,

2009.

[35] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow detector,” in The Internet

Society Annual Network and Distributed System Security Symposium, pp. 159–169, 2004.

[36] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham, “Vigi-

lante: End-to-end containment of internet worms,” in ACM Symposium on Operating Systems

Principles, pp. 133–147, 2005.

41

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Runtime Verification
	Security
	Monitoring Techniques

	Related Work
	Background
	Software data flow integrity
	About gem5
	MemObjects
	Ports
	Atomic/Timing/Functional accesses

	Packets

	Static Value Flow (SVF)
	Instrumentation

	Idea & Implementation
	Objective
	Idea
	Static Analysis
	Detailed DFI Explanation
	Hardware-based DFI Checking

	Experimental Setup & Results
	Experimental Setup
	Results

	CONCLUSION
	REFERENCES

