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ABSTRACT

Debris in Low Earth Orbit (LEO) poses a great risk to humanity’s access to space in the coming

years. Seemingly the only way to prevent a full scale catastrophe rendering LEO unusable is to

begin a series of active debris removal (ADR) missions.

An approach for designing a series of active debris removal missions is presented in this thesis.

This approach has multiple steps and begins with a large list of high risk, high mass debris objects.

The first stage of the planning process entails the use of clustering algorithms to partition a large

catalogue of orbits into groups of user defined sizes. It is shown that this operation is tantamount

to histogram analysis in non-Euclidean spaces. The second stage of the approach then solves

a dynamic traveling salesman problem to compute an order of visitation through each cluster.

Lastly, a novel trajectory optimization technique is presented, using Chebyshev polynomials to

approximate the dynamics of the system (rather than the states, which is typical). This technique

is then used to further optimize the solution of the dynamic traveling salesman problem in order to

arrive at a locally optimal solution to each multi-rendezvous problem.

ii



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Majji, and my committee members, Dr. Skelton, Dr.

Brown, and Dr. Junkins for their guidance and support throughout my time here.

Thank you to all of my friends here at Texas A&M for making this possible by being so bad

at smash and giving me moral victories when we played. Also for all the morning coffees, taco

Tuesdays and the late night discussions on flutter.

Most importantly thank you to my Mother and Father, who made this possible with all of their

love and support.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. INTRODUCTION AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. CLUSTERING AND THE DYNAMIC TRAVELING SALESMAN PROBLEM .. . . . . . . . . 5

2.1 Orbital Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Gravitational Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Standard K-Medoids Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Modified K-Medoids Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Generalized Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dynamic Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Departure Time Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summary and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Clustering and Routing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. CHEBYSHEV DYNAMICS APPROXIMATION METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The Optimal Control Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Chebyshev Dynamics Approximation Method (CDAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Brachistocrone Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Planar Earth to Mars Transfer Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



4. LONG TERM ACTIVE DEBRIS REMOVAL MISSION DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Clustering and Path Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Multi-Rendezvous Problem Using CDAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 State Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Constraint Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Dynamics Constraint Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. CONCLUSIONS AND FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



LIST OF FIGURES

FIGURE Page

2.1 Definition of Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 MKM vs. Optimal Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The Brachistochrone Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Error in Solutions: CDAM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Error in Solutions: GPM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Earth to Mars Transfer Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Errors in Solution: CDAM, Earth to Mars Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Errors in Solution: GPM, Earth to Mars Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Heat Map of Debris Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ∆V per Mission, Two Examples (Km/s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 ∆V Difference After Optimization (Km/s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Multiple Stage Optimal Control Problem Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Optimization of the Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Optimization of the p Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Optimization of the f Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Optimization of the g Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Optimization of the h Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Optimization of the k Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



LIST OF TABLES

TABLE Page

2.1 Standard K-medoids Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Modified K-Medoids Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Generalized Assignment Problem Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Before and After Departure Time Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Trajectory Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

The topic of Active Debris Removal (ADR) has gained significant attention over the past few

decades. As the number of objects in Low Earth Orbit (LEO) increases from year to year, we

come closer and closer to the "Kessler Syndrome" first described by Kessler and Cour-Palais [1] in

1978, leading to a point of no return in which the number of debris objects created from collisions

will exceed the number of objects decaying, eventually rendering LEO unusable. In order to

prevent this from becoming a reality two things need to be done. Firstly, the number of new

debris objects being put into LEO from launches needs to be reduced. However, this alone is not

enough to prevent the problem; studies have indicated that at least 5 large LEO debris objects must

be removed each year (along with a no further release scenario) in order to stabilize LEO for the

future [2]. The challenge of finding the most accessible debris objects to remove is a complex

problem in its own right. While more information about the large objects mus be obtained, a

routing strategy to schedule the visitation of the objects that are orbiting around the Earth is a key

challenge. The main questions tackled in this thesis are the following. If we have a list of objects

to take down, how do we divide this list into tractable missions, and how do we optimize the path

through each mission?

The problem of optimal multi-rendezvous mission design not only has applications to active

debris removal but is also important for potential satellite refueling missions or repair missions.

The problem that will be investigated in this thesis can simply be put as taking a large list of

high risk debris objects and planning successive missions to remove at least 5 objects per year

using either a low thrust or impulsive thrust retrieval satellite. The list of debris objects will be a

list of 640 objects retrieved from a collision analysis done by Brent Barbee [3].
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1.2 Overview

The problem of long term ADR can be split into a few distinct problems. Firstly the list of high

risk objects needs to separated into missions of a tractable size, throughout this thesis the process

of separation will be known as clustering. Secondly, each mission path will need to be optimized

for fuel efficiency; this optimization can be posed as a multiphase optimal control problem.

In the past, clustering has primarily been a tool of data scientists to group together similar

data into clusters. Similar methods can be used for a large set of debris objects in various orbits.

The difference in this clustering when compared to classical clustering is that each cluster will

represent a mission, meaning that the clusters will have a temporal order to them, complicating the

clustering problem itself. Additionally, each cluster will be restricted in size as there are only so

many objects that can be removed in a given mission.

In Chapter 2 of this thesis, the k-medoids clustering algorithm and the generalized assignment

problem (GAP), along with some GAP approximation algorithms, will be introduced. Knowledge

of these two topics proves important when developing an algorithm for mission clustering. Next,

a novel clustering algorithm, modified k-medoids (MKM), will be presented in order to solve this

problem for an arbitrary number of objects and an arbitrary number of missions.

After clustering, many distinct missions will be created, and the only thing left to do will be

to optimize the path and order for each mission. Firstly a Dynamic Traveling Salesman Problem

(DTSP) will be solved to determine an optimal order for the rendezvous’, the subsequent opti-

mization of the path can be posed as a multiphase optimal control problem. As with most optimal

control problems of this type (trajectory optimization problems) it is nearly impossible to solve

analytically, instead it is solved using a numerical method. Numerical methods in optimal control

are typically broken up into two types, direct and indirect, with the latter making use of the adjoint

equations and the former not [4]. A more in-depth discussion on the differences between the two

will be presented in Chapter 3.

In this thesis, a novel direct method called Chebyshev Dynamics Approximation Method,

shortened to CDAM, will be used to solve the multiphase trajectory optimization problem for each

2



mission. As with most direct methods, this method boils down to a nonlinear programming (NLP)

problem. The NLP solver SNOPT will be used to solve all NLP problems throughout this thesis

[5]. In Chapter 3, CDAM will be outlined and used to solve a few simple optimal control problems

including the Brachistochrone problem as well as the Earth Mars transfer problem, simply to give

the reader a taste of how it works and prove its validity. Next, in Chapter 4, a long term mission

using a list of 640 high risk satellites will be designed. Firstly, the clustering will be performed

and the DTSP will be solved for this list. Next, the multiphase optimal control problem will be

outlined and solved for a low thrust assumption.

Chapter 5 will discuss the conclusions and possible future work that can stem from this thesis.

1.3 Literature Review

Previous research into how to tackle the problem of ADR includes Missel et al. [6] who

optimized, using a genetic algorithm, the path for a rendezvous satellite. This optimization was

specific to a satellite that uses the capture and ejection of debris as a form a thrust.

Braun et al. [7] analyzed chemical vs. electric propulsion and each method’s feasibility for

single missions.

Barbee et al. [3] identified a group of high risk, high mass objects and used a series method

algorithm (minimum next step) to solve the traveling salesman problem. The objects found through

this collision analysis will be used in Chapter 4 of this thesis in order to demonstrate the techniques

developed.

Alfriend et al. [8] developed a Geo-Synchronous rendezvous strategy by developing and solv-

ing a traveling salesman problem; this approach will be modified and expanded upon in order to

account for geopotential perturbation in this thesis.

Cerf [9] found an optimal mission profile for a small set of debris objects using a simulated

annealing algorithm. The approach used by Cerf is similar to what will be used in this thesis,

specifically with regards to using a discretized cost matrix (which will be seen in Chapter 2);

however, Cerf’s optimization used a heuristic method and only involved 12 objects.

One glaring hole in all of this previous research is the lack of any mission design for a large

3



list of debris objects, when in reality many objects will have to be removed in order to prevent a

Kessler Syndrome from becoming a reality.

4



2. CLUSTERING AND THE DYNAMIC TRAVELING SALESMAN PROBLEM

In the first part of this chapter, the orbital dynamics used throughout this thesis and within

the clustering and dynamic traveling salesman problems will be derived. The generalized assign-

ment problem (GAP) and a clustering algorithm will then be introduced. The GAP is an NP-hard

problem that appears within the clustering algorithm and must be approximated as it can not be an-

alytically solved for a problem of this size. Using this clustering algorithm based on the K-medoids

clustering algorithm, the objects can be placed into distinct missions that occur within distinct time

periods, with the assumption being that they do not occur simultaneously but rather one right after

the other. Once the objects have been clustered into missions the visitation order within each mis-

sion must be determined. This will be done by solving a Dynamic Traveling Salesman Problem

(DTSP) using a variation of the Miller Tucker Zemlin algorithm for the static traveling salesman

problem [10].

2.1 Orbital Mechanics

The entirety of this section will deal not with the osculating orbital elements, which are the

exact orbital elements at a given time, but instead will deal with the mean orbital elements, these

are the orbital elements derived from a doubly averaged Hamiltonian function. These elements

are much easier to work with, and due to the fact that only J2 effects will be considered, the only

variations that occur end up being a secular variation of the right ascension of the ascending node

(RAAN).

2.1.1 Orbital Elements

For the purposes of this section, the classical Kepler elements will be introduced. In a future

section a different, nonsingular set of orbital elements will be introduced that are easier to work

with for that respective section. The classical Kepler elements are defined as follows, and can be

defined geometrically in Figure 2.1 [11].

5



a := Semi-Major Axis (2.1)

e := Eccentricity (2.2)

i := Inclination (2.3)

Ω := Right Ascension of the Ascending Node (2.4)

ω := Argument of Perigee (2.5)

ν := True Anomaly (2.6)

6



Figure 2.1: Definition of Orbital Elements

Figure 2.1 does not explicitly show the eccentricity. But it is defined the same as the eccentricity

for any arbitrary ellipse.

2.1.2 Gravitational Potential

The gravitational potential of the Earth is well known and commonly used. It is shown in

Equation 2.7 [11].

VEarth = −µ

r

[
1−

∞∑
n=2

Jn(
Re

r
)nPn(sin θ) +

∞∑
n=2

n∑
m=1

Pmn(sin θ)(
Re

r
)n(Cnm cosλ+ Snm sinλ)

]
(2.7)

However, for this problem we are only considering the J2 term as it is the most dominant of all

of the geopotential terms. Therefore, the gravitational potential of the Earth is shown below with

7



the substitution for the second Legendre polynomial already made in Equation 2.8.

VEarth = −µ

r
+

J2
2

µ

r
(
Re

r
)2(3 sin2 θ − 1) (2.8)

With the assumption of circular orbit, which can be justified as the objects in this thesis all

have eccentricities on the order of 10−2, and knowledge of θ in terms of the orbital elements. The

potential term is shown in Equation 2.9.

VEarth = −µ

a
+

J2
4

µR2
e

a3
[(1− 3 cos2 i)− 3(1− cos2 i) cos 2(ν + ω)] (2.9)

The average gravitation potential over a single orbit can be calculated by averaging out the fast

variable, in this case the true anomaly, ν, from Equation 2.9. This average gravitational potential

proves to be useful as the secular variations of the orbital elements can be extracted from it. The

averaged gravitational potential is shown in Equation 2.10.

V̄Earth = −µ

a
+

J2
4

µR2
e

a3
(1− 3 cos2 i) (2.10)

In order to calculate the variations of the orbital elements, it is beneficial to first convert to a set

of canonical orbital elements, the Delaunay Variables, which are defined in Equations 2.11-2.16

[12].

L =
√
µa (2.11)

G = L
√
1− e2 (2.12)

H = G cos i (2.13)

8



l = ν (2.14)

g = ω (2.15)

h = Ω (2.16)

Using this set of canonical elements will allow for the direct calculation of the orbital element

variations by a simple partial derivative. As it turns out, the only element that varies secularly due

to the J2 perturbations is the RAAN, Ω. The equation for this comes from the following, where K

is the Hamiltonian of the system.

ḣ = Ω̇ =
∂K

∂H
(2.17)

K = T + V̄Earth =
µ2

2L2
+

1

4
J2

µ4

L6
R2

e(1− 3
H2

G2
) (2.18)

Ω̇ = −3

2
J2(

Re

a
)2
√

µ

a3
cos i (2.19)

2.2 Clustering Algorithm

2.2.1 Standard K-Medoids Algorithm

The clustering algorithm developed in this section is an extension of the classical K-medoids

algorithm which is review in Table 2.1.
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Standard K-Medoids Algorithm

Input: A set, S, of n objects along with their attributes. The number, k of clusters that are

desired.

Output: k clusters that minimize the intra-cluster Euclidean distances.

1. Select k objects at random as the initial medoids.

2. Assign each object to its nearest (in terms of Euclidean distance) medoid.

3. Calculate the sum of all distances from each object in a cluster to its respective medoid.

4. Swap one medoid with one non-medoid at random.

5. Repeat steps 2 and 3.

6. If:

a. The total cost decreased, keep the swap and reset flag to zero.

b. The total cost increased, undo the swap and increment the flag.

7. Continue until flag reaches a designated number of maximum iterations.

Table 2.1: Standard K-medoids Algorithm

In order to apply the K-medoids algorithm to the problem at hand, it needs to be slightly

altered. First off, the number of objects in each cluster needs to be fixed in order to ensure that

each ADR mission formed removes a set number of objects. Additionally, the costs associated

with each cluster are not Euclidean distances, they are ∆V ′s associated with orbital transfers that

are calculated a priori.

In order to calculate the costs associated with the clusters we begin with a set of N objects in

elliptical orbits of arbitrary inclination, right ascension of the ascending node (RAAN), semi-major

axis, and eccentricity. Creating a matrix of these costs, where Cij represents the ∆V associated
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with going from object i to j, will prove useful for solving the DTSP. These costs (∆V s) between

orbits can be calculated in various ways. For the purposes of this thesis the cost matrix, C, will

be calculated as a four impulse transfer, the four impulses represent a circularizing maneuver,

an inclination change and an eccentricity matching maneuver shown in Equation 2.20. The four

impulse transfer ∆V is calculated using the ad hoc rule below where rp is periapsis and ra is

apoapsis.

Cij =

∣∣∣∣√ µ
rai

−
√

µ( 2
rai

− 1
ai
)

∣∣∣∣+ 2
√

µ
rai

√
1−cos(ii) cos(ij)−sin(ii) sin(ij) cos(Ωj−Ωi)

2

+

∣∣∣∣√µ( 2
rai

− 2
rai+raj

)−
√

µ
rai

∣∣∣∣+ ∣∣∣∣√µ( 2
raj

− 2
rai+raj

)−
√

µ( 2
raj

− 1
aj
)

∣∣∣∣ (2.20)

The phasing component of the rendezvous’ will not be addressed, as the ∆V associated with

phasing is typically far lower (as long as ample time is alloted for the maneuver) than for the other

portions of the rendezvous, i.e. inclination change, Hohmann transfer.

2.2.2 Modified K-Medoids Algorithm

The dynamic nature of the problem also needs to be accounted for in the sense that each cluster

represents a different mission occurring in a different timespan, and each timespan has different

costs associated with it. Additionally, within each timespan the objects are not stationary, their

orbital elements move according to Equation 2.19. To deal with this an average cost for each

timespan is calculated using a set of discretized cost matrices. The time step used for discretization

in this study is one day, but any reasonable time step can be used. Each cost matrix is calculated

according to Equation 2.20, with the orbital elements of the objects calculated at the specified

time. For a mission that spans n time steps, the average cost matrix is shown in Equation 2.22

using Simpson’s rule.

Ck
ij = Cij(tk) (2.21)
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C̄ := Average C over one mission span

C̄ =
3

8
Ĉ1 +

7

6
Ĉ2 +

23

24
Ĉ3 +

n−3∑
j=4

Ĉj +
23

24
Ĉn−2 +

7

6
Ĉn−1 +

3

8
Ĉn (2.22)

The coefficients in Equation 2.22 come directly from Simpson’s rule.

Where the Ĉ matrix is the cost matrix discretized at each timestep (typically 1 day in this

paper). This series of average cost matrices is then input into the modified K-Medoids algorithm

for ADR mission design, shown in Table 2.2.
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Modified K-Medoids Algorithm

Input: A set, S, of n debris objects along with their attributes. The number, k, of objects

per cluster that is desired. The set of average cost matrices, C̄m, n / k matrices in total.

Output: n / k clusters with k objects each that minimize the intra-cluster costs. Each

subsequent cluster represents a mission in subsequent time spans.

1. Select n / k objects at random as the initial medoids. The order of these medoids

represents which mission timespans they are associated with and therefore which average

cost matrix to use for each medoid.

2. Solve a Generalized Assignment Problem using the medoids as bins and the respective

∆V s as the cost. The Generalized Assignment Problem will be discussed in the next

section.

3. Calculate the sum of all ∆V s from each object to its respective medoid.

4. Swap one medoid with one non-medoid at random.

5. Repeat steps 2 and 3.

6. If

a. The total cost decreased, keep the swap and reset flag to zero.

b. The total cost increased, undo the swap and increment the flag.

7. Continue until flag reaches a designated number of maximum iterations.

Table 2.2: Modified K-Medoids Algorithm

This algorithm depends on the solution of another problem (the Generalized Assignment Prob-

lem, GAP) which will be introduced in the next subsection. Like the classical K-Medoids algo-

rithm, this modified algorithm does a good job of converging to a local optimum and is relatively
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simple and quick. However, this local optimum may differ from the global optimum in a non-

insignificant way. The only true way to find the global optimum is with a branch-and-bound

algorithm, which for large data sets like this is not feasible. Additionally, the local optimum that is

converged to depends nearly entirely on the choice of initial medoids (even more so for this modi-

fied algorithm due to each cluster representing a different timespan), with some choices leading to

significantly better intra-cluster costs.

2.2.3 Generalized Assignment Problem

As mentioned before, the generalized assignment problem, GAP, is a problem that appears

within the clustering problem, and solving it well and efficiently is an important part of clustering.

GAP can be described as the following: Placing m objects into N bins, where each assignment of

object i into bin j has a cost associated with it cij and each bin, j has a capacity pj , in order to

minimize the sum of the assignment costs. In the classic GAP the objects have weights, or sizes,

associated with them such that some objects fill bins more than other. The GAP is described in the

form of a linear program in Equation 2.23 [13].

pj = Capacity of Bins

wij = Weight of object i when placed into bin j

cij = Cost of object i when placed into bin j

xij = Assignment Matrix

xij ∈ {0, 1}

min
m∑
i=1

N∑
j=1

cijxij (2.23)

Within the scope of this problem the parameters defined above are the following: The bins

themselves are the medoids chosen at a specific iteration. The capacity of the bins is the number

of debris objects chosen to be in each mission. The weight of the objects will simply be set to one.

The cost associated with placing object i into bin j is the ∆V requirement to transfer from object

i to object j.
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The GAP is known to be an NP-hard problem [14] and therefore cannot reasonably be solved

for a sufficiently large problem. Instead, in this application an approximation to the problem will

be used in order to ensure solvability. The approximation used for the purposes of this thesis is first

defined in Martello and Toth’s 1990 book on the multiple knapsack problem [15]. The algorithm

is described in Table 2.3.

GAP Approximation Algorithm

Input: Cost matrix Cij .

Output: Assignment matrix Xij .

1. Calculate the difference between the minimum cost and second minimum cost of as-

signment for each object.

fi = min(C[i, :])−min2(C[i, :])

2. While there is still room within a cluster, assign max(f) to the cluster with the mini-

mum cost. If that cluster is full, assign it to the next open cluster with minimum cost.

Table 2.3: Generalized Assignment Problem Approximation

2.3 Dynamic Traveling Salesman Problem

Once the objects have been clustered into missions of a set size, N , the mission paths must

be defined. Though the final optimization will be treated as an optimal control problem in the

proceeding section, the order that the objects will be visited as well as a good initial guess for the

optimization must be found. In order to do this each mission will be treated as a dynamic traveling

salesman problem (DTSP) as the objects being visited are continuously being perturbed due to the
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mass distribution of the Earth, for this problem this will be assumed to be caused completely by the

J2 term of Earth’s gravitational potential and the RAAN is assumed to change based on Equation

2.19.

Similar to the clustering of the objects, the DTSP will be solved by discretizing the cost matrix

with a time step of 1 day. Each transfer, of which there are N − 1 is then placed into an evenly

distributed timeslot based on the length of the mission. For example, for a 240 day mission con-

taining 4 transfers each timeslot will be 60 days long. The minimums of all Cij’s for each 60 day

time slot is then taken to create a 3D cost tensor, where Ck
ij is the solution to the four impulse

transfer from the previous section from orbit i to orbit j at time step k (i.e. the kth transfer being

performed). The algorithm used is a modification of the Miller-Tucker-Zemlin algorithm for the

static traveling salesman problem. This algorithm, which transcribes the problem into a mixed

integer convex program (MICP) is shown in Equations 2.24-2.30 [10].

X := Matrix of transfers

Xij =
0, no transfer from i to j

1, a transfer occurs from i to j

k = Starting point of TSP

m = max Ck, kth row of C matrix. Represents the final rendezvous point

N∑
i=1

Xij = 1 ∀ j ̸= k (2.24)

N∑
i=1

Xik = 0, Starting point has no entry (2.25)

N∑
j=1

Xij = 1 ∀ i ̸= m (2.26)

N∑
j=1

Xmj = 0, Final point has no exit (2.27)
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Xii = 0 ∀ i (2.28)

Additionally, in order to ensure that the solution is a single path, the following constraint must

be met.

ui − uj +NXij ≤ N − 1 ∀ i ̸= j (2.29)

Where N is the number of objects being solved for, and u is a vector of arbitrary integers. With

all of these constraints, the minimum ∆V solution can be found by minimizing the following

min
N∑
i=1

N∑
j=1

CijXij (2.30)

This algorithm has been modified in order to take into account the dynamic effects present in

the problem. The modified algorithm, which also transcribes the problem into a mixed integer

convex program is shown in Equations 2.31-2.38. The algorithm was found to work reasonably

well for DTSP’s with 25 or fewer objects.

Xk := Matrix for transfer number k

X̄ :=
N−1∑
k=1

Xk

q = Starting point of TSP

m = max Ck
q , qth row of C matrix. Represents the final rendezvous point

N−1∑
i=1

N−1∑
j=1

Xk
ij = 1 ∀ k = 1 : (N − 1) (2.31)

N∑
i=1

X̄ij = 1 ∀ j ̸= q (2.32)

N∑
i=1

X̄iq = 0, Starting point has no entry (2.33)
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N∑
j=1

X̄ij = 1 ∀ i ̸= m (2.34)

N∑
j=1

X̄mj = 0, Final point has no exit (2.35)

X̄ii = 0 ∀ i (2.36)

To ensure that the X matrices are sequential (X1 is the first transfer, etc.) we introduce the

constraint.

Xk − (X(k+1))T = 0 (2.37)

With all of these constraints, the minimum ∆V solution can be found by minimizing the fol-

lowing in the program.

min
N∑
i=1

N∑
j=1

N−1∑
k=1

Ck
ijX

k
ij (2.38)

This is run for all possible start objects, q, and the minimum value is taken.

2.4 Departure Time Optimization

The method, described in the previous section, used to order the objects within a mission is

clearly suboptimal. In order to simplify the problem each transfer is pigeonholed into four distinct

time slots, for example, for a 240 day mission with 4 transfers the first transfer occurs in the first

60 days, the next transfer the next 60 days and so on. This means that two transfers cannot occur

within the same timeslot, though the optimal solution may require this.

With the use of a few reasonable assumptions this problem can be transformed into a con-

strained nonlinear optimization problem solved by a sequential quadratic programming (SQP) al-

gorithm available in a variety of commercial software. In this development Mathwork’sTM Opti-

mization ToolboxTM is used [16]. The most important assumptions made are the following: Firstly,

the plane change is assumed to be the most costly portion of the maneuver; secondly, it is assumed

that the order found using the dynamic traveling salesman algorithm is the optimal order.

Since the plane change is the most costly maneuver the sum of all of these plane change costs
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can be minimized. The sine of half of the plane change angle is given by Equation 2.39. Addi-

tionally, the cost of an impulsive plane change transfer for a circular orbit is given in Equation

2.40

sin
γ

2
=

√
1− cos i1 cos i2 − sin i1 sin i2 cos (Ω2 − Ω1) (2.39)

∆V = 2

√
µ

a
sin (

γ

2
) (2.40)

By minimizing the sum of all plane change costs we can minimize the total cost of the path.

Additionally, it is desirable to constrain the time between transfers to be above a certain value, δt,

this value is the user-defined time needed to reasonably perform phasing, proximity operations and

removal.

Using all of this information the nonlinear program shown in Equation 2.41 can be developed

where m is the duration of the mission, N is the number of transfers and δt is the time allotted for

proximity operations and deorbiting/refueling.

min
∑N

i=1

[
2
√

µ
ai
sin (γi

2
)
]

sin γi
2
=

√
1− cos ii cos ii+1 − sin ii sin ii+1 cos (Ωi+1 + Ω̇i+1ti − Ωi − Ω̇iti)

s.t. t1 ≥ 0

tN ≤ m

ti+1 ≥ ti + δt ∀ i = 2 : N − 1

(2.41)

Implementing this program with a reasonable initial guess (the departure times output from the

dynamic TSP algorithm) has a significant impact on the ∆V of the mission. Table 2.4 shows the

before and after fuel requirements for an example mission (5 objects, 240 days) is shown below.
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Transfer Num-
ber

∆V Before Opti-
mization

Departure
Time

∆V After Opti-
mization

Departure
Time

1 886.4 m/s 1 days 882.2 m/s 0.000123 days
2 83.9 m/s 88 days 79.5 m/s 88.27 days
3 225.2 m/s 180 days 67.5 m/s 198.97 days
4 148 m/s 238 days 146.2 m/s 236.73 days

Table 2.4: Before and After Departure Time Optimization

2.5 Summary and Results

2.5.1 Clustering and Routing Example

In order to get a better understanding of the performance of the clustering algorithm and the

dynamic traveling salesman problem, a small example will be shown using all of the techniques

developed in this chapter. A small subset of 12 randomly generated LEO satellites, with a variety

of orbital elements, are clustered using MKM and the paths within each respective cluster will

be optimized. This clustering process will be compared to one done via a brute force approach,

where the cost associated with every possible combination of clusters and paths is calculated using

the same discretized cost matrices that the clustering algorithm and DTSP use. The minimum

cost combination is then determined to be the optimal. Figure 2.2 shows the the solution using

the techniques covered in this chapter, MKM followed by the solution of the dynamic traveling

salesman problem and the departure time optimization compared to the solution using the brute

force approach.

20



Figure 2.2: MKM vs. Optimal Clustering

Looking at the plots it is clear that they are very similar. Cluster 3 is identical between the two

and the first two clusters only have one object switched between the two. The resulting costs of

the two are 22.1 Km/s and 24.3 Km/s for the globally optimal solution and the MKM solution,

respectively. This is only a 10 percent overall difference between the two. Unfortunately it is not

certain how this difference will grow with the scale of the problem.

2.5.2 Summary

Three techniques that, when used in conjunction, can begin the process of designing a set of

active debris removal missions have been outlined in this chapter. After a risk analysis is performed

to create a list of high risk debris objects, these techniques can be used. Firstly the objects will

be separated into missions based on the user’s specifications, varying the number of objects in

the missions and the mission lengths; this is done using the MKM clustering algorithm. Next,

the dynamic traveling salesman problem is solved for each of the missions in order to determine

the optimal path and create a reasonable initial guess on the departure times. Using this path and

the initial guess on departure times, the departure time nonlinear program optimization can be

performed. The resulting mission profiles are reasonable for a 4 impulse transfer. However, these

mission profiles can be used as initial guesses for a superior trajectory optimization technique

which will be introduced in the next chapter.

21



3. CHEBYSHEV DYNAMICS APPROXIMATION METHOD

3.1 The Optimal Control Problem

Optimal control is a rich field whose surface could not even be scratched in the pages of this

thesis. Instead, the discussion will begin with a general form of an optimal control problem for a

dynamic system, also known as Bolza form [17]. Consider, below, a dynamic system, written as

ẋ = f(x(t),u(t), t) (3.1)

with x ∈ R → Rn being a vector function of the states and u being a vector function of control

variables u(t) ∈ R → Rm, used to drive the system in order to achieve a desirable performance.

The goal of driving the system in a certain direction is twofold: The first is to minimize a specific

cost function, such as the general Bolza form of the cost function below

J = Φ(x(tf ),u(tf )) +

∫ tf

t0

L(x(t),u(t), t)dt (3.2)

where L is the Lagrange term and Φ is the Mayer term [17]; The second is to meet a set of equality

and/or inequality constraints, which can be encompassed by the following.

ulowerbound ≤ u(t) ≤ uupperbound (3.3)

h(x(t),u(t), t) ≤ 0 (3.4)

g(x(tf ), tf ) = 0 (3.5)

Following the classical path of Calculus of Variations [18] the Hamiltonian function of the

system can be written as.
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H = L+ λTf (3.6)

Where λ is a vector of Lagrange multipliers known as the costates. The first order optimality

conditions for finding an optimal control for a problem where the control is unconstrained are

derived from the calculus of variations [17] and shown below.

ẋ = HT
λ (3.7)

λ̇ = HT
x (3.8)

0 = Hu (3.9)

While satisfying the boundary conditions.

x(t0) = x0 (3.10)

Ψ(xf , tf ) = 0 (3.11)

In addition to these we have two equations for when the variation of the final state and the

variation of the final time are non-zero (i.e. δxf and δtf ).

λ(tf ) =
∂Φ

∂x(tf )
+ νT ∂Ψ

∂x(tf )
(3.12)

H(tf ) +
∂Φ

∂(tf )
+ νT ∂Ψ

∂(tf )
= 0 (3.13)

Along with extra conditions based on interior point constraints and control constraints there

are also second order conditions that need to be satisfied to ensure sufficiency of the candidate
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minimizing trajectories. However these will not be covered here.

3.2 Chebyshev Dynamics Approximation Method (CDAM)

Many real-world optimal control problems are very difficult to solve analytically. The adjoint

equations and necessary conditions become quite unwieldy and difficult to solve, owing to their

sensitivity with respect to variations in initial conditions. Further, the open loop solutions typically

need the recalculation of the initial conditions of the adjoint functions when the parameters and

initial conditions of the dynamical system are changed. Therefore, many of these problems are

solved numerically. The numerical solutions are especially important to provide a nominal path

for control of nonlinear dynamical systems. Feedback control can then be invoked to stabilize

the equilibrium point determined by such an open-loop solution. Direct computation of feedback

control laws for nonlinear systems to optimize a performance function typically involves the solu-

tion of a hyperbolic partial differential equation (PDE) called the Hamilton Jacobi Bellman (HJB)

equation [19]. The solution of the HJB PDE in high dimensions is also an involved process for

most general problems of dynamic optimization. For computation of open-loop solutions to prob-

lems one does not need to solve the HJB PDE. In trajectory optimization, most numerical methods

can be grouped into two categories: direct methods and indirect methods [4].

Direct methods often involve discretizing the optimal control problem such that the states and

controls are piecewise interpolating polynomials or a single global polynomial. This discretized

problem can be transformed into a nonlinear program with the dynamics being formed into con-

straints at the discretization points, the path constraints and boundary conditions can also be ap-

plied as constraints in the nonlinear optimization problem, this process is known as transcription

[4]. The nonlinear program is set up in such a way as to minimize the discretized cost function.

Indirect methods involve looking at the necessary conditions for optimality and attempting to meet

them using a numerical scheme. This means that the adjoint equations must be derived, which

depending on the problem may be unreasonably difficult [20]. Though indirect methods are often

more accurate than direct methods they are sensitive to the choice of certain requisite parameters

for optimization and require the derivation of the adjoint equations. For these reasons the method

24



being introduced and used during this thesis will be a direct method, however, it can be extended

and used as an indirect method

The field of direct transcription for solving optimal control problems has flourished in the past

20 years or so, with numerous methods being developed. A survey of these methods would be a

paper in its own right, so they will not all be reviewed here. But two of the most popular and pow-

erful methods involve discretizing using Curtis-Clenshaw quadrature [21] and Gauss quadrature

[22]. The solution to the states and controls are then found using a basis of Lagrange interpolating

polynomials at these points.

The method being described in this chapter, however, differs from these two. Instead of es-

timating the states using a basis of polynomials, the derivatives of the states (i.e. the dynamics)

are estimated using a set of basis polynomials. In the case of CDAM this is done with a set of

Chebyshev polynomials at discretization points that are equal to the roots of these Chebyshev

polynomials. The first step in using this method is to discretize the optimal control problem.

3.2.1 Discretization

The Chebyshev polynomials are useful as they are orthogonal on the interval τ ∈ [−1, 1]

therefore the first step will be to scale time to fit this interval in order to preserve orthogonality.

This is done with the relation

t =
(tf − t0)τ + (tf + t0)

2
(3.14)

The integral form of the dynamics (which is equivalent to the differential form in equation 3.1),

x(t) = x(t0) +

∫ t

t0

f(x(τ),u(τ), τ)dτ (3.15)

Will be exploited and satisfied at all of the Chebyshev node points, pk, where pk can be defined

as follows where N is the order of the largest polynomial being used for approximation.

pk = cos

(
2k − 1

2N
π

)
(3.16)
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The roots of the Chebyshev polynomials are useful for discretization for two main reasons.

Firstly, the polynomials are discretely orthogonal at these points, a property useful for polynomial

approximation, and secondly is the location of these discretization points. They are bunched up

near the boundaries of the domain [−1, 1], making it easier to approximate the boundary conditions

more accurately.

The enforcement of the dynamics at each of the Chebyshev node points is done by first approx-

imating rates of the states in the following way: The state rates function ẋ(x(t),u(t), t) will be

approximated as a set of Chebyshev polynomials.

fi(x(t),u(t), t) ≈ f̃i(x(t),u(t), t) = ˜̇xi(t) =
2

(tf − t0)

N∑
k=0

αkTk (3.17)

Here N is a chosen parameter for the number of nodes, which is equal to the number of poly-

nomials, to be used. αk represents the coefficients of the basis functions and the Tk represents the

Chebyshev polynomials of order k. Now a very convenient property of Chebyshev polynomials

can be used. This is the fact that the integral of a Chebyshev polynomials is the sum of Chebyshev

polynomials itself [23].

∫
Tk =

1

2
(
Tk+1

k + 1
− Tk−1

k − 1
), ∀ k ≥ 2 (3.18)

Integrals of these polynomials can then easily be computed by right multiplying by a matrix of

easily computed values. For example.

∫ t

−1

[ T0 . . . Tk ] =
(
[ T0(t) . . . Tk+1(t) ]− [ T0(−1) . . . Tk+1(−1) ]

)
J (3.19)
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J =



0 1
4

0 . . . 0

1 0 −1
2

. . . 0

0 1
4

0 . . . 0

0 0 1
6

. . . 0

...
...

...
...

...

0 0 0 . . . 1
2N


(3.20)

Using equations 3.19 and 3.20 we can then determine an approximation of the states which

will be exact in terms of the approximated dynamics, ˜̇xi. This is done with the integration ma-

trix, therefor both the states and the state dynamics are parameterized using the α optimization

coefficients. The equations for state i at discretization point tk is as follows.

xi(tk) ≈ x̃i(tk) = αT ((T (tk)− T (−1))J ) + xi0 (3.21)

The controls for the problem can then be approximated the same way that the dynamics were

approximated, as a series of Chebyshev polynomials.

ui(t) ≈ ũi(t) =
N∑
k=0

βkTk (3.22)

Using these approximations for the states and the controls the dynamic constraints for the

nonlinear programming problem can be formed by enforcing the approximated dynamics to be

equal to the dynamics evaluated by plugging the approximated states into the dynamics function.

˜̇xk = f(x̃(tk), ũ(tk), tk) (3.23)

Additionally, the cost function can be calculated using similar integration rules and Fejer’s

quadrature rule [24]. Fejer’s quadrature rule is a methodology to calculate the integral of a function

discretized at the roots of the Chebyshev Polynomials of the first kind, the exact situation that

occurs here. The Mayer term, JM , and the Lagrange term, JL, of the cost function are calculated
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as follows.

JM = Φ(x̃(tf ), ũ(tf )) (3.24)

x̃i(tf ) = αT ((T (1)− T (−1))J ) + xi0 (3.25)

ũi(tf ) =
N∑
k=1

βkTk(1) (3.26)

JL =
tf − t0

2

∫ 1

−1

L(x̃(t), ũ(t), t)dt (3.27)

JL =
tf − t0

2
wTL(x̃(t), ũ(t), t) (3.28)

The constraints in equations 3.3, 3.4, and 3.5 can also be represented by the approximated

states and controls as constraints in the nonlinear program used to solve this problem.

It is important to note the novelty of the proposed method when compared to the set of methods

known as pseudospectral methods. Typically pseudospectral methods use a differentiation matrix

in order to enforce the dynamics, rather than an integration matrix like the one shown. It is usually

better, with respect to numerical procedures, to integrate rather than to differentiate. Additionally,

the enforcement of the dynamics occurs at the state rate level, as shown in Equation 3.23 rather

than the state level.

The process of solving a nonlinear programming problem involves the computation of the

Jacobian matrix, the gradients of the objective function and the constraints with respect to the

optimization variables. Some solvers give the option of numerically solving for the Jacobian,

however this process is often much slower than supplying an analytic Jacobian. The partials of

each of the states, state derivatives and controls with respect to the optimization parameters are

shown in the proceeding equations.
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∂x̃(tk)

∂α
= (T (tk)− T (−1))J ) (3.29)

∂ ˜̇x(tk)

∂α
=

2

(tf − t0)
T (tk) (3.30)

∂ũ(tk)

∂β
=

2

(tf − t0)
T (tk) (3.31)

These partial derivatives are necessary in the computation of the Jacobian. In conjunction with

these, the partial derivatives of the dynamics and other constraints themselves (which are unique

to the problem) will be needed in order to develop the Jacobian.

Many commercial solvers are readily available that can solve these nonlinear programs. The

two used most frequently in this thesis are Matlab’s fmincon and SNOPT developed by UC San

Diego and Stanford University [5].

3.3 Example Problems

In this section, two example problems are solved using the CDAM method. The solutions will

be compared to those attained using the Gauss Pseudospectral method, a method often used for

trajectory optimization problems [22], in order to compare the methodologies. The first problem

will be the Brachistochrone problem. This problem has an analytic optimal solution which allows

for an easier measure of how good the solution truly is. The second problem will be the planar

Earth to Mars orbital transfer problem with a free final orbit angle.

In both of these cases the problems are solved as direct trajectory optimization problems,

largely ignoring the optimality conditions. Additionally, the nonlinear programming solver be-

ing used in all cases will be Stanford’s SNOPT optimizer. And for both of these problems the

analytic Jacobian will be provided to the optimizer for speed and consistency reasons.
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3.3.1 Brachistocrone Problem

The brachistocrone problem is one of the earliest problems solved using the calculus of varia-

tions . The problem objective is simple; what is the optimal path that a frictionless object can take

down a ramp in order to reach a given lateral position using only gravity in a minimum time, the

problem can be seen in Figure 3.1.

Figure 3.1: The Brachistochrone Problem

The equations of motion for the brachistochrone problem are [22]

ẋ =
√

2gy cosϕ (3.32)

ẏ =
√
2gy sinϕ (3.33)

Where g is the acceleration due to gravity. With initial conditions being

y(0) = 0, x(0) = 0 (3.34)
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and the terminal constraint

x(tf ) = L (3.35)

In accordance with the previous section, the dynamics are approximated with a set of Cheby-

shev polynomials as

˜̇y(tk) =
2

tf
zT
1 T (tk) (3.36)

˜̇x(tk) =
2

tf
zT
2 T (tk) (3.37)

The z1 and z2 vectors are the coefficients to be optimized in the nonlinear program, in addition

to the final time which is minimized. Just like the state dynamics, the control variable, ϕ is also

represented in the same way.

ϕ̃(tk) = zT
3 T (tk) (3.38)

For the NLP in this problem the optimization parameters, z1, z2 and z3 need to have an initial

guess. In this implementation the guess for z1 is [1 0 ... 0], the guess for z2 is [1 0 ... 0] and

the guess for z3 is a vector of zeros. The first two guesses can be interpreted as lines for the state

variables.

The states themselves can be derived by directly integrating the dynamics equations.

ỹ(tk) = zT
1 ((T (tk)− T (−1))J ) + y(0) (3.39)

x̃(tk) = zT
2 ((T (tk)− T (−1))J ) + x(0) (3.40)

The dynamics constraints for this problem are then simply written from these equations. Ad-
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ditionally, there is a bound constraint at the final time.

˜̇y(tk) =
√
2gỹ(tk) cos ϕ̃(tk) (3.41)

˜̇x(tk) =
√

2gỹ(tk) sin ϕ̃(tk) (3.42)

x̃(tf ) = zT
2 ((T (1)− T (−1))J ) + x(0) = L (3.43)

The number of constraints is dependent on the number of nodes used in the discretization

process. If there are N nodes then each dynamics equation has N constraints associated with it,

therefore for this problem there exists 2N + 1 constraints. Additionally, there exists an analytical

solution to this problem.

ϕ(t) =
π

2
− wt (3.44)

w =

√
πg

4L
(3.45)

x(t) =
2L

π

(
wt− sin (2wt)

2

)
(3.46)

y(t) =
2L

π
(sin (wt))2 (3.47)

tf =

√
πL

g
(3.48)

The NLP solution found using CDAM, where g = 1, L = 1 is compared to this analytical

solution for a variety of different nodes, between 10 and 50, in Figure 3.2.
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Figure 3.2: Error in Solutions: CDAM Method

Clearly the convergence properties of the states are better than those for the control. With

overall convergence being relatively slow. Specifically, as the number of nodes increases the con-

vergence begins to slow down. However, this problem is unique in the fact that the costate, λy,

is infinite at initial time, a fact that separates this problem from other problems and can lead to

convergence issues.

In order to assess the validity of this method it is to be compared to a solution derived from

the Gauss Pseudospectral Method. All parameters are the same as were before. The Gauss Pseu-

dospectral Method will not be covered here, but the reader may look at the Ph.D. dissertation of

Benson [22] for more information. In Figure 3.3 the errors associated with the states and controls

with respect to the analytic solution are shown.
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Figure 3.3: Error in Solutions: GPM Method

It is clear that for this particular problem CDAM has a better performance than the Gauss

pseudospectral method. This will not always be the case; additionally, an NLP using GPM will

typically be faster to solve as the jacobian matrix that results from GPM is sparser than the one in

CDAM, leading to fewer operations, especially if the NLP solver is well optimized for speed.

Different problems will result in results of varying accuracies and convergence speeds. In the

next subsection the planar Earth to Mars transfer problem will be analyzed using both CDAM and

GPM.

3.3.2 Planar Earth to Mars Transfer Problem

The planar Earth to Mars transfer problem has many variations, the one solved in this section

is the following: find the trajectory that matches Mars’ orbital elements at a specific rendezvous

time and minimizes the fuel used. The problem can be seen in Figure 3.4. The dynamics for this

planar orbital problem are as follows.

ṙ = u (3.49)
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u̇ =
v2

r
− µ

r2
+ ur (3.50)

v̇ = −uv

r
+ uθ (3.51)

θ̇ =
v

r
(3.52)

Where r is the radius, u is the radial velocity, v is the tangential velocity, θ is the angle traversed,

and uθ and ur are the thrust magnitudes in the tangential and radial directions, respectively. The

initial conditions, based on an initial circular orbit, are

r(0) = 1, u(0) = 0, v(0) = 1, θ(0) = 0 (3.53)

Figure 3.4: Earth to Mars Transfer Problem

The final conditions for this problem also correspond to a circular orbit, at Mars’ radius.
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r(tf ) = 1.524, u(tf ) = 0, v(tf ) =

√
1

1.524
(3.54)

θ(tf ) will be a free variable while tf will be fixed to be 180 days. Since the problem is com-

pletely non-dimensional the final time is changed as follows.

tf =
180 days

58.13 days
= 3.0965 (3.55)

Unlike the Brachistochrone problem, the planar Earth to Mars transfer problem as described

here has no analytical solution. In order to assess the accuracy of both the GPM and CDAM

solutions, each will be compared to a solution obtained from an indirect shooting method. The

costate dynamics, derived from the first order optimality conditions in equation 3.8 are

λ̇r = −λu(−
v2

r2
+

2

r3
) (3.56)

λ̇u = −λr +
λvv

r
(3.57)

λ̇v = −2λuv

r
+

λvu

r
− λθ

r
(3.58)

λ̇θ = 0; (3.59)

ur = −λu, uθ = −λv (3.60)

Using CDAM, the state dynamics, controls and states are approximated in the same way as the

Brachistochrone problem using the Chebyshev polynomials

˜̇r(tk) =
2

tf
zT
1 T (tk) (3.61)
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˜̇u(tk) =
2

tf
zT
2 T (tk) (3.62)

˜̇v(tk) =
2

tf
zT
3 T (tk) (3.63)

˜̇θ(tk) =
2

tf
zT
4 T (tk) (3.64)

r̃(tk) = zT
1 ((T (tk)− T (−1))J ) + r(0) (3.65)

ũ(tk) = zT
2 ((T (tk)− T (−1))J ) + u(0) (3.66)

ṽ(tk) = zT
3 ((T (tk)− T (−1))J ) + v(0) (3.67)

θ̃(tk) = zT
4 ((T (tk)− T (−1))J ) + θ(0) (3.68)

ũr(tk) = zT
5 T (tk) (3.69)

ũθ(tk) = zT
6 T (tk) (3.70)

The dynamics constraints can then be formed as in equation 3.23. The terminal conditions

in equation 3.54 will also be incorporated into the NLP as constraints. Finally the minimization

function can be formed using Fejer’s quadrature rule [24].

J = wT (ũ2
r + ũ2

θ) (3.71)
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Figure 3.5 shows the maximum difference between the solution obtained from the indirect

method (with optimality conditions satisfied to 10−11) and the CDAM method.

Figure 3.5: Errors in Solution: CDAM, Earth to Mars Transfer

Once again the CDAM solution increases in accuracy as the number of nodes, interestingly

enough the solutions using an odd number of nodes are often better than using an even number.

Also, as in the brachistochrone problem the accuracy of the optimal state is better than the accuracy

of the optimal control profile. In addition to the errors in the CDAM solution the plot of errors in

the GPM solution is shown in Figure 3.6.
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Figure 3.6: Errors in Solution: GPM, Earth to Mars Transfer

The convergence using the Gauss Pseudospectral method is quite troubling. The solutions for

GPM for a small number of nodes is much more accurate than the solution found using CDAM. The

accuracy found using the small number of nodes would lead one to believe that the implementation

is correct. It is still not understood what is making this convergence so much worse than the

convergence from the brachistochrone problem. One interesting thing to note, however, is that the

solution does eventually begin to converge. After running the Gauss Pseudospectral method with

150 nodes, the error in radius comes down to 10−8 and the errors in controls come down to 10−5.

3.4 Summary

A novel, Chebyshev polynomial based, direct trajectory optimization method has been outlined

in the section. Its merit has been shown by solving two classic optimal control problems, with a

comparison being made to the Gauss Pseudospectral Method. The method is shown to work well

for the problems given, both in terms of accuracy and specifically in terms of convergence, where

it performs more consistently for the two problems with respect to GPM. With its merits being

proven, CDAM will be the method used to solve the multi-rendezvous problem outlined in the
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next chapter in order to find the optimal path between debris objects.
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4. LONG TERM ACTIVE DEBRIS REMOVAL MISSION DESIGN

Using the techniques developed in Chapters 2 and 3 an optimal design approach for a long term

ADR mission can now be defined. For the purposes of this thesis, the two line element sets for a list

of 640 debris objects located in Low Earth Orbit, LEO, are used; this list was developed through a

collision analysis done in the following paper [3]. A heat map of these high risk objects is shown

in Figure 4.1. First the clustering, DTSP and departure time optimization are performed. Then

the Chebyshev Dynamics Approximation Method is developed for the multi-rendezvous problem,

andis used to optimize each of the missions even further, producing a trajectory and control profile

for each of the missions.

Figure 4.1: Heat Map of Debris Objects
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4.1 Clustering and Path Optimization

The first task in this process is the clustering and optimization demonstrated in Chapter 2.

The missions to be designed have the following characteristics: Each will be a maximum of 240

days, with each being launched immediately following the previous; Also each mission recovers 5

debris objects creating a total of 128 missions. An important fact here is that the capture and deorbit

process has not been accounted for in these missions. After clustering the DTSP is solved for each

mission. Figure 4.2 shows the resulting ∆V for each mission from two separate solutions using

the MKM algorithm. Two solutions were created as there is some randomness when initializing

the algorithm. This causes different local optima to be reached depending on the initialization.

Figure 4.2: ∆V per Mission, Two Examples (Km/s)

The average ∆V values for the two sets are 1.965 Km/s and 1.991 Km/s, respectively. While

there are some missions within each set that are unreasonable, the vast majority are, with 122

and 119 missions that require less than 4 Km/s, respectively. The ∆V values can be decreased,

however, with the use of the departure time optimization.

Figure 4.3 shows the differences in ∆V for each mission from one of the clustering solutions

in Figure 4.2 after the departure time optimization algorithm was used.
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Figure 4.3: ∆V Difference After Optimization (Km/s)

Before the departure time optimization the average ∆V per mission was 1.991 Km/s, post opti-

mization the ∆V per mission is now 1.52 Km/s, that indicates nearly a 25 percent decrease, which

is significant. The procedure outlined thus far represents a reasonable solution to the impulsive

multiple mission multi-rendezvous problem. However, this solution can also be used as an initial

guess for a low thrust multi-rendezvous trajectory optimization algorithm which will be described

in the next section.

4.2 Multi-Rendezvous Problem Using CDAM

In this section the optimal control problem describing the multi-rendezvous problem will be

outlined with all constraints and minimization functions. Next, the optimal control problem will

be transcribed into a nonlinear program using the CDAM approach outlined in Chapter 3. Using

the initial guesses from the previous section this nonlinear program will be solved and all results

will be shown for the missions.
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4.2.1 State Definitions

The first step in defining this optimal control problem is to define the state dynamics. The

states that were used for the clustering and DTSP problems suffered from a fatal flaw, they are

undefined for an eccentricity of 0 and they are undefined for an inclination angle of zero. For these

reasons it is useful to find a set of elements which are nonsingular. To do this, combinations of

classical elements are found whose variational equations do not depend on a non circular or non-

zero inclination orbit. The states that result from this search, and the ones used for this problem

are known as the modified equinoctial elements. The element definitions are shown in Equations

4.1-4.6, where a, i, e, ω,Ω, ν are the classical Kepler elements. [25]

p = a(1− e2) (4.1)

f = e cos (ω + Ω) (4.2)

g = e sin (ω + Ω) (4.3)

h = tan (
i

2
) cosΩ (4.4)

k = tan (
i

2
) sinΩ (4.5)

L = ν + ω + Ω (4.6)

Equations 4.7-4.12 show the dynamics of the modified equinoctial elements.

ṗ = 2
p

w

√
p

µ
at (4.7)
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ḟ =

√
p

µ
(ar sinL+

((w + 1) cosL+ f)at
w

− (h sinL− k cosL)gan
w

) (4.8)

ġ =

√
p

µ
(−ar cosL+

((w + 1) sinL+ g)at
w

+
(h sinL− k cosL)fan

w
) (4.9)

ḣ =

√
p

µ

s2an cosL

2w
(4.10)

k̇ =

√
p

µ

s2an sinL

2w
(4.11)

L̇ =
√
µp(

w

p
)2 +

1

w

√
p

µ
(h sinL− k cosL)an (4.12)

w, s, r and the accelerations at, ar, an are defined as follows.

w = 1 + f cosL+ g sinL (4.13)

s =
√
1 + h2 + k2 (4.14)

r =
p

w
(4.15)

at = ut − 12µJ2
Re2

r4
(h sinL− k cosL)(h cosL+ k sinL)

s4
(4.16)

ar = ur − 3µJ2
Re2

2r4
(1− 12

(h sinL− k cosL)2

s4
) (4.17)

an = un − 6µJ2
Re2

r4
(1− h2 − k2)(h sinL− k cosL)

s4
(4.18)
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In these acceleration equations the u portion refers to the acceleration due to spacecraft thruster

whereas the rest is due to J2 effects.

The dynamics shown here are completely nonsingular for any combination of inclination and

eccentricity.

4.2.2 Cost Function

The cost function for the optimal control problem can now be defined in Equation 4.19.

J =

∫ tf

t0

uTu (4.19)

u = [ut ur un]

4.2.3 Constraint Definitions

As this is a multi-rendezvous problem it is best described as a multiple stage optimal control

problem. This multiple stage problem can best be described in Figure 4.4. For a problem involving

5 objects there are four distinct stages. Each stage is simply a transfer from one object to another,

each transfer, i, begins at time t−i and ends at t+i . The time between t0 and t−1 is simply a coasting

period as t0 may not be the optimal time for departure. The same is true for the time between

t+4 and tf . Additionally, the time between t+i and t−i+1 is for phasing, deorbiting operations and

coasting until the next optimal departure time is reached.
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Figure 4.4: Multiple Stage Optimal Control Problem Layout

With the multiple stages of this optimal control problem being defined, a slew of constraints

can now be defined. Equations 4.20 and 4.21 refer to the path constraints that will apply to all

stages of the optimal control problem.

r(t) > Re (4.20)

√
u2
n + u2

r + u2
t ≤ umax (4.21)

This parameterization of the controls can prove problematic, however, as the Jacobian for this

constraint and also the Jacobian for the performance index (which will both be evaluated at every

step of the optimization) will be equal to Equation 4.22

∂J

∂un

=
un√

u2
n + u2

r + u2
t

(4.22)

If at any point the value of the thrust becomes zero, this Jacobian will become undefined lead-

ing to poor performance of the optimization or even a failed optimization. For this reason the

controls will be parameterized instead as a magnitude and a unit vector as in Equation 4.23 with

the constraints in Equations 4.24 and 4.25.
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ur = umu1; ut = umu2; un = umu3 (4.23)

um ≤ umax (4.24)

u2
1 + u2

2 + u2
3 = 1 (4.25)

Bound constraints and interior constraints also apply to the various times associated with the

problem. Equations 4.26 show these constraints.

x(t+i ) = xj(t
+
i ) (4.26)

In this equation the x(t+i ) represents the first 5 states (not including the fast variable, which

will not be matched at each transfer) at time t+i . xj(t
+
i ) represents the first 5 states of debris object

j at time t+i . By enforcing these constraints at the end of each transfer window for each object the

rendezvous’ can be achieved.

Though all of the constraints and the minimization function have been defined there are still

a few important decisions to be made in how this problem will be represented using the CDAM

method. The simplest way seems to be the following: Each stage of the optimal control problem

will be discretized, in accordance with Chapter 3, separately, essentially creating j optimal control

problems for j transfers. This is done in order to increase the number of nodes in the areas where

they are necessary, which is when the controls are active. In coast phases the controls are inactive,

meaning that the states and controls are discontinuous throughout the entire mission, making the

problem with only a single discretization throughout the entire mission difficult to solve. All of the

"separate" optimal control problems are, however, solved simultaneously, along with the departure

and arrival times which will also be optimized according to the constraints shown in Equations

4.27-4.30, where j is the number of transfers that occur.
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t0 ≤ t−1 (4.27)

t−i ≤ t+i (4.28)

t+i ≤ t−i+1 − ϵ (4.29)

t+j ≤ tf (4.30)

Here ϵ is parameter representing the approximate amount of time required for phasing and

servicing, this value should be a conservative value allowing ample time.

4.2.4 Design Choices

There is one more design choice that must be made that is crucial to many optimal control

problems solved by a trajectory optimization scheme. This would be choosing coefficients in

order to non-dimensionalize the problem. Scaling the problem in the proper way is important

for the optimization process. Specifically, it is crucial since the values of some states have larger

magnitudes than others. For example the state, p, in the modified equinoctial elements has a much

larger magnitude than the other states, having a value in the thousands of Kilometers range, with

all of the other states being on the order of 1. This means that when Jacobians are calculated

for variations the constraints involving p, the values will be thousands of times larger than other

Jacobians, leading the optimization to favor these constraints and enforce them earlier and to a

higher degree, greatly degrading the optimization process. For these reasons the following two

values will be used in order to non-dimensionalize distance as well as time [26].

Distance = Re = 6378.137, T ime = 2π

√
R3

e

µ
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After normalizing using these values µ becomes 4π2 and the radius of the Earth normalizes to

1.

4.2.5 Dynamics Constraint Expressions

With all of the boundary constraints, path constraints and design choices for the multi-rendezvous

problem already being flushed out the only step left is to define the dynamics constraint expressions

for the optimal control problem as they were defined in Chapter 3.

Assuming that N nodes are used for each of the j transfers there will a total of 10j(N +

1) values to optimize. This number comes from the fact that there are 10 distinct states being

approximated, those would be the 6 orbital element dynamics and the 4 control parameters, there

are N+1 parameters to be optimized for each of these states as N nodes involved N+1 coefficients

of Chebyshev Polynomials. All of the approximations can be seen in Equations 4.31-4.40.

˜̇pi(t) =
2

tf
zT
piT (t); ∀ i = 1− > j (4.31)

˜̇fi(t) =
2

tf
zT
fiT (t); ∀ i = 1− > j (4.32)

˜̇gi(t) =
2

tf
zT
giT (t); ∀ i = 1− > j (4.33)

˜̇hi(t) =
2

tf
zT
hiT (t); ∀ i = 1− > j (4.34)

˜̇ki(t) =
2

tf
zT
kiT (t); ∀ i = 1− > j (4.35)

˜̇Li(t) =
2

tf
zT
LiT (t); ∀ i = 1− > j (4.36)
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ũmi(t) = zT
umiT (t); ∀ i = 1− > j (4.37)

ũ1i(t) = zT
u1iT (t); ∀ i = 1− > j (4.38)

ũ2i(t) = zT
u2iT (t); ∀ i = 1− > j (4.39)

ũ3i(t) = zT
u3iT (t); ∀ i = 1− > j (4.40)

With these approximations being defined, the integration identity for Chebyshev polynomials

shown in Equation 3.18 can now be used for Equations 4.31-4.36 in order to find the state approx-

imations. With all of the states and controls defined properly for the CDAM method, the dynamics

constraints themselves can now be detailed. These constraints are the same as the ones in Equa-

tion 3.23 and are shown once again in Equation 4.41 and are applied to all 6 states at each of the

discretization nodes.

˜̇xk = f(x̃(tk), ũ(tk), tk) (4.41)

Lastly is the question of forming the cost function in a way that can be coded into the nonlinear

program. This is done using Fejer’s quadrature rule [24]. This cost is shown in Equation 4.42 as a

sum of the costs associated with each transfer.

j∑
i=1

t+i − t−i
2

wT ˜umi
2 (4.42)

4.2.6 Results

With all of the constraint expressions defined for the multi-rendezvous problem, it can now be

solved. Similar to Section 2, the missions that will be solved using this method are the via a colli-
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sion analysis [3]. The missions will be those resulting from the clustering and dynamic traveling

salesman problem analysis. Additionally, the times found using the departure time optimization

will be used as the initial guesses for the departure times t−i in the trajectory optimization ap-

proach. The initial guesses for the arrival times t+i , however, will be estimated as 6 hours after the

departure times; this will prove problematic later. To reiterate once again the missions will be 240

days long each, with a minimum 24 hour service/deorbit time ϵ between transfers. The maximum

acceleration, chosen somewhat arbitrarily, used in the optimization is 0.05m
s2

. This is equivalent to

a 500 kg satellite with a 25 Newton thruster. The NLP solver for is SNOPT, a Fortran based solver

with a Matlab interface [5].

As mentioned, the initial guess for the arrival times are simply guesses based on the departure

times and based on experience of using the trajectory optimization method with various values of

thrust. The optimization proves to be quite sensitive to this initial guess (and all initial guesses).

Because of this fact some of the did not successfully converge during the optimization process.

However, the ones that did converge led to a decrease in overall ∆V . Table 4.1 shows one of the

successfully optimized missions.

Transfer Num-
ber

∆V Departure Time Arrival Time

1 112.2 m/s 42.517 days 42.643 days
2 96.2 m/s 44.315 days 44.430 days
3 185.8 m/s 70.346 days 70.465 days
4 385.3 m/s 108.431 days 108.568 days

Table 4.1: Trajectory Optimization Results

Overall, only about 50 percent of the missions defined actually converged using the trajectory

optimization method. This is with poor initial guesses on arrival times and poor initial guesses

on the controls. The initial guesses for the controls were simply set to zero, however this can be

improved. By knowing the location of the ascending and descending node of one orbit with respect
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to the next, the control guess can be formed into a function that peaks at each of these nodes, as

these are the most efficient times to change planes and the times that the successfully converged

missions had the largest thrust magnitudes. It is anticipated that with better initial guesses for these

values, the number of successfully converged missions would increase. For the missions that did

converge, the average ∆V decreased slightly, which is nice to see (this will not always be true as

the initial solution was an impulsive thrust assumption). The average ∆V previously was 1.3213

Km/s, while the ∆V from the trajectory optimization method was 1.2904 Km/s. Figures 4.5-

4.10 shows a plot of the controls and states for one of the transfers of one of the mission designs.

Figure 4.5: Optimization of the Controls
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Figure 4.6: Optimization of the p Element

Figure 4.7: Optimization of the f Element
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Figure 4.8: Optimization of the g Element

Figure 4.9: Optimization of the h Element
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Figure 4.10: Optimization of the k Element

One interesting thing to note is when the vehicle decides to thrust. The thrust spikes that

are occurring in the normal direction coincide with the ascending and descending nodes of the

rendezvous satellite with respect to the target satellite.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

A set of techniques that, when put together, can be used to develop a long-term active debris

removal missions, have been developed. If given a large list of debris objects, they can be clus-

tered using the MKM clustering algorithm, intracluster paths can be found by solving a dynamic

traveling salesman problem and the overall trajectory can be optimized via a direct trajectory op-

timization method. And this is what has been done; using all of these techniques a long term

mission was developed from a list of 640 debris objects in Low Earth Orbit. Additionally, through

this work, a novel direct trajectory optimization technique has been born in the form of CDAM,

which seemingly works well for a variety of different problems.

There are still a few unanswered questions, though. Firstly, can a superior GAP approxima-

tion algorithm be developed to assist with the clustering process. Secondly, and possibly more

importantly, can the number of missions in which CDAM successfully converges to a locally op-

timal solution be increased. One promising path forward with respect to this problem will be to

investigate better methods for determining an initial guess for the NLP, specifically for the controls.

5.2 Future Work

There is quite a bit of work and further research that still needs to be done regarding all of the

techniques shown in this thesis. By no means is what is presented in this thesis the end all be all

with respect to active debris removal.

The Chebyshev trajectory optimization method in particular is something that can and should

be developed further. Like many other pseudospectral methods similar to it, there is most likely

a way to estimate costates during the nonlinear programming process. The Gauss Pseudospectral

Method, the method directly compared to the Chebyshev method here, has the ability to do this

with reasonable success for certain problems. The ability to estimate costates would lead to the

ability to use these solutions as initial guesses for a more accurate indirect method. In addition to
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costate estimation, it would certainly be beneficial to compare the method to more than just the

GPM, methods like the Legendre Pseudospectral Method and others. Not only should this method

be compared to more methods, it should be compared using a variety of different problems. At the

moment the only problems that have been compared are either trivial or extremely difficult; the

trivial problems being the brachistochrone and the Earth Mars transfer, whereas the difficult one is

the multi-rendezvous problem.

Additionally, an important thing that should be considered in future work is uncertainties, par-

ticularly with respect to orbital dynamics. The clustering algorithms, DTSP and the trajectory

optimization method all made use of idealized versions of the dynamics. Each made the assump-

tion that J2 was the only form of perturbations, when in reality there are many more perturbations;

in fact, the dynamics of an object in space is not completely known and there are always uncer-

tainties involved. For this reason it would be beneficial to analyze how these uncertainties affected

the results of each of the optimization techniques.
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