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ABSTRACT

The electric power grid uses a set of measuring and switching devices for its operations

and control. The data retrieved from the measuring instruments is assumed to be noisy, there-

fore a state estimator is used to estimate the correct values of state variables on which the

system can take control actions. The modern electric power grid is dependent on communica-

tion networks for transferring these measurements, which are susceptible to intrusions from

hackers. False data injection attacks (FDIA) are one of the most common attack strategies

where an intruder tries to trick the underlying control system of the grid to cause disruptions

without getting detected by native anomaly detection measures inbuilt in the state estimator.

The native anomaly detection mechanism relies on threshold and residual based measure to

flag a set of measurements as anomaly. Therefore, if the attack is devised in such a way

that the intrusion can be performed without significantly affecting the residual error of state

estimation it can go undetected. We propose a data augmented deep learning based solution

to detect such attacks in real time. We propose methods of generating realistic random and

targeted attack simulations on standard IEEE architectures and methods of detecting them

using deep learning models. We propose recurrent neural network (RNN) based architectures

to detect and locate FDIAs and devices compromised in real-time. For detection we propose

a supervised and an unsupervised method. Similarly, for location we propose a method to

find exact devices compromised which is less practical and then move on to a more feasible

and practical solution in supervised and unsupervised conditions.

Being an intrusion detection system it is critical to detect all attacks which means false

negatives should be penalized heavily, whereas false positives can be accommodated. There-

fore, we use recall as our primary performance metric and precision recall curve to find an

optimal threshold of probability score. In addition, we demonstrate how our approach is

better than a residual error and other previous detection models. We also compare the per-

formance of our models with increasing number of devices being compromised.
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FDIA False Data Injection Attacks

RNN Recurrent Neural Network

GRU Gated Recurrent Unit
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The electric power grid is a complex machinery involving multiple power generation

sources, transmission lines and distribution substations which needs continuous monitoring

for safe and reliable performance. This is done using a state estimator which helps to de-

termine the best state of the system through a set of measurements and system models. The

electric power grid has evolved immensely with time, and the modern smart grid uses an

integration of information and communication technologies (ICT) and supervisory control

and data acquisition (SCADA) for efficient remote monitoring and real-time control. These

ICT relies on common infrastructure like internet, mainly because of its ease of access and

distributed nature. Because of a common shared infrastructure, information flowing through

this network can be extracted and modified by hackers. Such cases have been seen in the

past like in Ukraine [1] an attacker opened circuit breakers to cause power outage by in-

truding into the SCADA system. Similarly, there have been instances of other attacks like

the STUXNET [2], Pivnichna [3]. Since the electric power grid is a cyber-physical system,

cyber-attacks can cause physical damage to the system. Common cybersecurity based ap-

proach, therefore, cannot help to secure the grid independently. Attacks can be of various

forms like time synchronization attack [4], Denial of Service Attack (DOS)[5] which cause

disruptions at the communication system while False Data Injection Attacks [6] (FDIA)

cause disruptions at the physical system level.

FDIAs can be introduced in a transmission system to trick the state estimator into pre-

dicting wrong states without getting detected [7]. For intruders to launch such an attack, they

need to know the complete configuration of the grid which appears to be highly unlikely, but

it has been proven that such attacks are possible even with localized partial information [8].

The network can be protected from such attacks by two methods: protection of critical mea-
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suring instruments and detection of attacks. Protection based methods try to find an optimal

set of measuring devices which need to be secured and put on an encrypted channel [9]. But

as the system starts getting larger, the number of devices to be secured starts growing which

is infrastructurally infeasible [10]. Detection based methods try to find anomalies in the

data received through the communication channel. Such methods depend on the real-time

correlation between data points or the temporal structure of the data to classify a new set

of measurements as anomalous. A significant drawback of this approach is that it does not

adapt well to changing patterns in transmission behavior over time. FDIAs are challenging

to detect using conventional residue based methods since they do not capture the spatial or

temporal structure of the measurement data available. These methods were traditionally built

to avoid bad data or severe measurement errors for DC state estimators where it is assumed

that bad data will necessarily lead to high residual error. However, with the current case of

FDIAs, we can ensure that bad data can be injected even by keeping low residual error. This

is a classic contextual anomaly detection problem.

Deep learning has shown significant promises in solving complex tasks and has been used

in pattern recognition problems like object detection, speech recognition, and anomaly de-

tection. Deep learning uses a data-driven approach where a function approximator is trained

using gradient descent over a given set of data points. The success of deep learning can be

attributed to the ability of neural networks to learn complex functions and the availability of

massive data-sets. Motivated by its application and success in the field of speech recognition,

time-series prediction, and anomaly detection, we explore how recurrent neural networks can

be applied to detect false data injection attacks in the electric power grid.

1.2 Literature Review

1.2.1 Defence Mechanisms

Since FDIAs are designed to bypass the bad data detection mechanism of the state es-

timator, a lot of innovative approaches have been studied in the past for capturing the spa-
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tial and temporal correlations in the data to detect anomalous measurements. A traditional

anomaly detection system can be designed as a prediction vs. real data problem [11]. In [12],

the authors proposed to use independent data like forecast and historical patterns to detect

anomalies. However, both of these methods depend on linear models; therefore, cannot be

expected to operate correctly to capture nonlinearities induced in complex AC state estima-

tion. They are also based on static thresholds which need to be carefully chosen and adapted

over time. In [13], a tree pruning based approximation algorithm is used to detect anomalies

in a graphical model. Inspired by various classical machine learning applications in cyber

intrusion, sensor networks, and image processing, researchers have tried to apply nearest

neighbor classifiers and other statistical classification techniques [14]. It is reasonable to

assume that the attack vector is sparse. Therefore, sparse matrix reconstruction methods can

be employed to identify devices compromised [15]. In [16], the authors assume that grad-

ually changing state variables will typically lead to a low-rank measurement matrix Z0 and

the attack matrix (attack vectors over time) is sparse. Therefore, the problem translates to a

matrix separation problem as:

min
Z0,A

Rank(Z0) + ∥A∥0, s.t. Za = Z0 +A (1.1)

which can be reformulated as a convex optimization problem as:

min
Z0,A
∥Z0∥∗ + λ∥A∥1, s.t. Za = Z0 +A (1.2)

∥Z0∥∗ is the nuclear norm of Z0, i.e., the sum of singular values of Z0. This kind of opti-

mization problem has been studied across the domains of compressive sensing and matrix

completion and can be solved using off the shelf optimization algorithms. The problem with

this approach is computational complexity because of its iterative nature [16]. The authors

also propose a faster way using low-rank matrix factorization where low-rank matrix Z0 is

represented as a product of two matrices: U and V . However, such methods are not full proof
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in defending against un-observable attacks [17]. Ozay et al. [18] formulated this anomaly

detection problem as a classification task where attacked and non-attacked scenarios are sep-

arately labeled in the training phase. The authors experimented with methods like Sparse

Logistic Regression, K-Nearest Neighbour (KNN) and Support Vector Machines (SVM) to

classify a given set of measurements. Logistic Regression tries to find a hyperplane that

separates the anomalous measurements from non-anomalous ones. This is only possible if

the measurements are linearly separable. KNN uses a majority voting approach to classify

features based on Euclidean distance. It is assumed that the Euclidean distance between

anomalous measurements and non-anomalous measurements will be significant. SVM is a

linear classifier that tries to find a hyperplane between two classes such that the distance

between the two classes is maximum. It also allows the transformation of the actual feature

space F into a high dimensional space S such that the features are linearly separable in S. A

complex task in this approach is finding the dimensionality of S. When analyzed, the perfor-

mance of these systems is impressive over the previous methods. However, these methods

are slow for large networks and are not scalable. Besides, all these approaches are strictly

supervised; therefore, the training data needed for these cases need to be extensive and cover

all attack scenarios.

Generating all possible attack combinations for a large grid can be a challenging task.

Therefore, creating an extensive data-set for supervised training of anomaly detection algo-

rithms is not always feasible. Consequently, researchers have also proposed semi-supervised

methods for detection of FDIA. In [19], a correlation based FDIA detection mechanism has

been proposed. In this method, an operator needs to define a correlation sphere for various

meters in the network. A single meter might lie in multiple correlation-spheres. At every

iteration, correlations within a correlation-sphere are calculated, and if a considerable diver-

gence is found, then an anomaly is flagged. This approach ensures that the spatio-temporal

correlation between the measurements is preserved. This method is highly efficient in terms

of run-time complexity but would need huge effort in designing the correlation spheres man-
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ually. Also, this method will not allow adaptive change to network topology. Ozay et al.

[17] proposed a semi-supervised SVM [20] where the contribution of labeled and unlabeled

points are separately considered in the loss function. This kind of optimization problem

setting helps to address unseen cases and generalizes better.

A power system characteristic based approach has been tested in [21] where a strate-

gically selected set of devices are protected in order to make it impossible for an attacker

to introduce an FDIA. This is because FDIAs are possible with complete certainty only

if a certain number of devices are compromised [7]. The authors propose at finding the

measurement devices to be protected using a brute force search and a basic measurement

identification method. Another idea of detecting FDIAs is based on perturbation of line

impedance and comparing measurements with expected measurements [22, 23]. This idea is

based on the assumption that compromised measurement devices will not respond correctly

to perturbations indicating presence of FDIAs.

Another approach for anomaly detection is based on unsupervised methods where the

data-set is completely unlabeled for anomalies. Most of these methods rely on density based

algorithms to find an approximate density cluster of non-anomalous data points. The points

lying outside some margin of these density clusters are marked as anomalies [24]. For a

dynamic system like the power grid, non-anomalous points can exist in different forms of

density-clouds in an n-dimensional hyperspace which makes global density based detection

infeasible. Therefore, the authors in [24] proposed to use local anomaly detection algo-

rithms like Local Outlier Factor (LOF), Connectivity-based Outlier Factor (COF). Both of

these algorithms use KNN to find regional clusters. It is assumed that the density of non-

anomalous point clusters will be much higher than that of anomalous points, resulting in the

identification of anomalies. However, since these methods are based on a non-parameterized

algorithm, the run time complexity is high. In [24], the authors also proposed a Histogram-

based Outlier Score (HBOS). This method is very similar to Naive Bayes algorithm [25]

where the features are considered to be independent. For every feature, its histogram is con-
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structed and then weighted by the inverse height of its bins. This gives a density estimate

of all features. Since generating a histogram is faster than computing k neighbors for all

data points, this algorithm is faster and performs reasonably for anomaly detection tasks.

However, for application in electric power grid, the assumption of independence might hurt

the purpose since most of the features are highly correlated. One class SVM [26] is another

example of unsupervised anomaly detection where the classifier is trained to know what is

usual or non-anomalous. This helps to form a boundary region for general data and anything

lying outside those boundaries is flagged as an anomaly. But being a linear classifier, it is

sometimes challenging to find an optimal kernel which can construct the correct margins for

this method.

Artificial Neural Networks (ANN) have shown significant performance in representing

complex functions [27]. With the advent of Graphics Processing Units (GPUs) and avail-

ability of massive data-sets, neural networks have helped to solve complex problems in the

fields of object recognition [28], speech recognition [29] and anomaly detection [30]. Espe-

cially in anomaly detection, deep neural networks have been applied in many applications

like fraud detection, sensor network anomaly detection, video surveillance, log anomaly de-

tection and Internet of Things (IoT). Deep neural networks have been used in supervised

[31], semi-supervised [32] and unsupervised setting [33] in the past for anomaly detection.

Specifically for anomaly detection in spatially and temporally correlated data, direct super-

vision using classification networks and unsupervised methods using auto-encoders have

shown impressive results in the past. Applications of the same has been shown in detec-

tion of electricity theft [34, 35]. Generative methods like Generative Adversarial Networks

(GANs) [36] and Variational Auto-Encoders (VAEs) [37] have also been explored. Both of

them are unsupervised methods where neural networks are trained to learn the latent dis-

tribution of non-anomalous data. GAN uses a discriminator to judge whether a new set of

data points are different from the old set of data on which it was trained on. VAE uses the

reconstruction error of the test set of points to find anomalies. Since we are dealing with a
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contextual anomaly detection problem, we need to design a type of network that captures

temporal correlations well. The reason behind such an assumption is that the power flowing

through the grid follows a temporal structure. As mentioned earlier, we can use RNNs to

model temporal structures; in the following section, we will explain how RNNs are trained

and how improvements to classical RNN-cells can be achieved.

1.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been used in multiple time-series models in-

volving neural networks like stock price predictions, language models, etc. RNNs have a

memory component which can store previous inputs and outputs to predict the next state.

An RNN tries to map a sequence of inputs x ∈ x0, x1, ..., xt to a sequence of outputs

y ∈ y0, y1, ..., yT where T ≥ 1. Being a dynamic system, RNN-cells use a feedback mech-

anism to encode the temporal structure of the sequence so that subsequent outputs depend

on current inputs. This is done using a hidden state at every time-step which is considered

while computing the output at the next state. The following equations explain how outputs

and hidden states are computed at every time-step.

ht = tanh(Wh × ht−1 +Wi × xt) (1.3)

ot = sigmoid(Woht) (1.4)

Neural networks are trained using back-propagation algorithm. Back-propagation uses the

chain rule to propagate gradients of prediction error (loss) to adjust all weights of the network

[38]. For an RNN-cell, the outputs depend on its inputs and the previous hidden state. There-

fore, an RNN-layer is expanded into continuous RNN-cells connected end to end forming a

chain of fully connected layers as shown in Figure 1.1. When back-propagation is applied

on this unrolled chain, it is referred to as Back Propagation Through Time (BPPT) [38, 39].
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Figure 1.1: Unrolled RNN-cell

Let us assume the loss for a given input x and target output y is given as:

L(x, y) = −
∑
t

yt log ot (1.5)

where ot is a function of x. In order to perform gradient descent we calculate the gradient of

the loss with respect to Wh,Wo and Wi. For Wh we find the gradients as:

δL
δWh

=
∑
t

δL
δot
× δot

δht

× δht

δWh

=
∑
t

yt
ot
× δot

δht

× δht

δht−1

× δht−1

δWh

=
∑
t

yt
ot
× δot

δht

×
∏
k

δhk

δhk−1

× δh0

δWh

(1.6)

In a similar manner, gradients are calculated for Wo and Wi. It can be seen from the equation

1.6 that calculation of gradient involves calculating a product of gradients of all hidden states

with respect to their previous hidden states. This causes a problem of vanishing gradients

[40] in simple RNN based networks which nullifies the effect of initial inputs on the final

output. Alternatives like Gated Recurrent Units (GRU) [41] and Long Short Term Memory

8



Figure 1.2: GRU and LSTM Cells

(LSTM) [42] have been proposed to get rid of this problem. GRUs introduce the concept of

’context,’(ct) which is composed of a mixture of past context and a function of present input

as shown in equation 1.7.

Gu = σ(Wu[ct−1, xt])

Gr = σ(Wr[ct−1, xt])

c̃t = tanh(Wc[Gr ∗ ct−1, xt])

ct = Gu ∗ c̃t + (1−Gu) ∗ ct−1

(1.7)

If Gu is zero ∀ t, a direct path of information flow can be drawn from the first input to the

last context. Since Gu is controlled by trainable weights Wu, we can expect the network to

learn the optimal mixture for capturing long term dependencies. GRUs have become lately

popular primarily due to the ease in training them and lesser memory consumption over

LSTM. This is because LSTMs maintain different update and forget gates. Update gates are

used to tune c̃t and forget gates are used to calibrate ct−1. Basically, in LSTMs contribution

of parameters at t and t − 1 are independent. The block diagrams of GRU and LSTM cells

are shown in Figure 1.2

GRUs and LSTMs are the fundamental blocks of our temporal models. Another impor-

tant concept used in semi-supervised anomaly detection neural network is ’auto-encoders.’
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Figure 1.3: Sequence to Sequence Auto-Encoder

We will take a look into auto-encoders and ways to train them in the following section.

1.2.3 Auto-Encoder and Attention

In a semi-supervised setting, a neural network is trained on non-anomalous data to com-

press input measurements into an encoded state. The encoded state is used to predict the

input measurements using a decoder. This mechanism is called an auto-encoder [43]. Since

we are dealing with temporal correlations, it will be correct to use a sequence to sequence

model as auto-encoder. In a classical sequence to sequence auto-encoder model [44], the

encoder encodes the entire sequence in its hidden state at the last time step. This hidden

state is then fed into a decoder to predict the input sequence. The architecture is illustrated

in Figure 1.3. The decoder uses the current hidden state (ht) and output (ot) to predict the

previous hidden state (ht−1)and output(ot−1). In RNN (GRU, LSTM) it is expected that the

hidden state or context at time t encodes the entire time series. But in practice, this is not

always true. In a power system, it can be ideal to assume that there exists a monotonic tem-

poral correlation, i.e., the past influences the future. Therefore, the model should be able to

encode past measurements (x0, x1, ...xt−1) with equal importance as present measurements
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Figure 1.4: Implementation of Attention in Sequence to Sequence Model

(xt). This is achieved with the help of attention [45]. Attention mechanism was developed

for machine translation where a one to one relationship between inputs and outputs do not

exist. n words in a source language can correspond to p words in a target language. Addition-

ally, the arrangement of words might also change. Attention allows us to draw a correlation

between input and output sequences by weighing the contribution of every input sequence

element to every output sequence element. Figure 1.4 illustrates implementation of atten-

tion in a sequence to sequence model. This version of attention is called global attention.

For this model, output at time-step n depends on both the past and the future inputs of the

sequence i.e. On = f(xi, hi) where i ∈ (0, t), where t is the input sequence length. But

for a real time system, inputs can only have past and present values. Therefore, monotonic

attention is used in such cases. Monotonic attention [46] represents a causal system where

On = f(xi, hi) where i ∈ (0, n). For a power system analysis, monotonic attention can help

to find the importance of past measurements in predicting the present measurements.
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1.3 Anomaly Detection Metrics

Generally for binary classification tasks like anomaly detection, common metrics for

judging the performance of a model are Accuracy, Precision, Recall, F1-Score, ROC-AUC

and Precision-Recall curve [47]. Since the frequency of anomalies is much lesser than that

of non-anomalous conditions, therefore, there is an inherent class imbalance in the data-set.

Hence, metrics like accuracy will not be a good evaluation parameter, while precision and

recall can be good parameters. Precision captures the correctness of all positively classified

points whereas recall captures the ratio of the number of positive classification and total

positive points present. Being an anomaly detection system, we need to have very high recall

and can trade off with precision. F1-score is calculated by the harmonic mean of precision

and recall. ROC-AUC and Precision-Recall curve both help to find an optimal threshold for

classification.

1.4 Roadmap

Moving forward we will discuss about FDIA generation and implementation algorithms

in Chapter 2. Then will be discussing our proposed methodologies of detection and location

of attacks along with the pros and cons of each of them in Chapter 3. We will discuss

our experimental setup and observations in Chapter 4 followed by conclusion and possible

extensions of our methods in Chapter 5
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2. GENERATION OF ATTACKS

The basic concept behind FDIAs is very simple [7], i.e., to generate an attack vector a

such that:

z + a = H(x+ c) + ϵ (2.1)

where c is the change in states induced due to the attack vector, z ∈ IRn×1 is the actual mea-

surement vector from n devices, x is the state vector corresponding to correct measurements

and H is the system defination matrix. We have experimented on the generation of two types

of FDIAs: Random and Targeted Attacks.

2.1 Attack Generation Algorithms

2.1.1 Random Attacks

One of the simplest attacks is random attack where an attacker with access to a fixed

set of compromised measuring devices tries to bias random state variables from a random

probability distribution. The following derivation shows why such an attack is possible [7].

x̂a = (HTΣH)−1HTΣza

= (HTΣH)−1HTΣ(z + a)

= x̂+ (HTΣH)−1HTΣa

(2.2)

Here, x̂ represents the state vector under normal conditions and x̂a represents the state vector

under attack, H is the system definition matrix, Σ corresponds to the allowed margin of error

for every measurement. za = z+a represents the attacked measurements values received by
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the state estimator, where z is the actual measurement and a is the attack vector.

||za −Hx̂a|| = ||z + a−H(x̂+ (HTΣH)−1HTΣa)||

= ||z −Hx̂+ a−H(HTΣH)−1HTΣa||

= ||z −Hx̂+ a−H(HTΣH)−1HTΣHc||

= ||z −Hx̂+Hc−Hc||

= ||z −Hx̂||

(2.3)

Such an attack is possible straight away if the attacker has access to all the measuring

instruments. However, it is tough to get hold of all the measuring devices in a network. As

a result, we cannot choose any random attack vector. Let Imeter = {i1, ..., ik} be the set of

indices of the k meters the attacker has access to. Therefore, a = (a1, ..., am)
T with ai = 0

for i /∈ Imeter [7]. In order to find one such attack vector we define a projection matrix

P = H(HTΣH)−1HTΣ (2.4)

From the previous equation we can derive the following relations:

a−H(HTΣH)−1HTΣa = 0

Pa = Ia

(P − I)a = 0

Ba = 0

(2.5)

Therefore, an attacker needs to find a non zero attack vector a such that Ba = 0 and

ai = 0 for i /∈ Imeter. Let us represent

a = (0, 0, ..., a1, 0, 0..., a2, 0, ..., a3, ...ak...)
T

B = (..., bi1...bi2, ...bik...)
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where ai is the attack corresponding to the ith meter for i ∈ Imeter and bi is the column

vector in B corresponding to the index of ai in a. Therefore, we define B′ = (bi1, bi2, ..., bik)

and a′ = (a1, a2, ..., ak) such that Ba = 0. If the rank of B is less than k, then there can be

infinitely many solutions to Ba = 0. According to Meyer [48] a′ can be determined as:

a′ = (I −B′−1B′)d (2.6)

where d is some random non-zero vector. If rank of B′ is greater than or equal to k, then

there is only one unique solution to Ba = 0 i.e., a = 0. Therefore, it can also be logically

inferred that the probability of generating a random attack increases if we have access to

more meters [7].

2.1.2 Targeted Attacks

In a targeted attack, the attacker wants to control particular state variables. We can rep-

resent one such attack mathematically as follows:

Istates = {i1, ..., ik} where k < n (2.7)

Which denotes the state variables to be attacked. The objective of the attacker is to inject an

attack state vector c such that x̂bad = x̂ + c where c = (...c1, ..., ck...)
T . We consider two

cases of attacks over here: a constrained case and an unconstrained case. A constrained case

is one where we assume that the injected attack does not affect any other state apart from

the targets. In the unconstrained case, it is assumed that the attacker does not care about the

impact of his attack on other state variables apart from his targets.

2.1.2.1 Constrained Attacks

In constrained attacks, the attacker already knows the change needed to be introduced

in the state variables (c) and the other state variables aren’t supposed to be affected in any

manner. Therefore, we define c = (0, ..., c1, 0, ..., ck, 0) where ci denotes the state variables,
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we want to change. The attack vector can be directly determined according to the equation

a = Hc [49]. The generated attack vector is then compared with the measuring devices that

are compromised, if all the non-zero entries in a are accessible then an attack is possible.

2.1.2.2 Unconstrained Attacks

In an un-constrained attack an attacker aims to generate an attack vector a [49] such that

1. a = Hc

2. ai = 0∀i /∈ Imeter

3. c = (...c1, ..., ck...)
T

Such an attack vector is derived as follows:-

a = Hc

a =
∑

i/∈Istates

hici +
∑

j∈Istates

hjcj

a = Hscs + b

a− b = Hscs

Hs(H
T
s Hs)

−1HT
s (a− b) = Hs(H

T
s Hs)

−1HT
s Hscs

Hs(H
T
s Hs)

−1HT
s (a− b) = a− b

(Hs(H
T
s Hs)

−1HT
s − I)a = (Hs(H

T
s Hs)

−1HT
s − I)b

Bsa = Bsb

(2.8)

where,

b = impact of attack states

Bs = Hs(H
T
s Hs)

−1HT
s − I

Hs = H[:,j]∀j /∈ Istates
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Next a subset of columns is derived from B for the indices for which i ∈ Imeter as B like

in the random attacks scenario. Therefore, as derived earlier B′
sa

′ = Bsb [49]. The attacker

can solve for a and finally derive an attack vector for the targeted attack. However, it is not

guaranteed that an attack vector would be possible from any random set of compromised

meters.

2.2 Attack Generation and Storage

Using the two types of attack formation algorithms mentioned above, we generate a

database of attacked and non-attacked scenarios. The simulation uses real-world power con-

sumption data to generate measurements and the intrusion state of these devices at each time

step. The attack data is stored along with the state variables under attack and the devices

compromised. This is treated as the training data for our deep learning models.

In an ideal power system, attacks are rare. Also, it is highly unlikely that in all scenarios

where attacks are possible, the attacker has access to all measurement units. Once an attack

is introduced, it can stay for a variable amount of time. Therefore, while generating simu-

lations, we consider these factors in choosing the frequency, duration, and location of these

attacks. We have created cases to select a fraction of random devices parameterized by k

from n measuring devices (k ∈ 0.1, 0.2, 0.3, 0.4, 0.5). Similarly, we have assigned a prob-

ability (p) of the grid being under attack where p ∈ [0, 0.2) and we have kept each attack

live for a random number of samples (t ∈[5,10]). This provides a huge range of possible

combinations to store in our database of attacks. The algorithm used to generate these attack

data-sets is described in Algorithm 1. For targeted attacks, it might not be possible to gen-

erate an attack vector for random combinations of compromised meters. Hence, we try to

find the change in the state vector, i.e., c that can be induced by having access to the selected

measuring devices. We use the same vector as targets.

17



Algorithm 1 Generation of Attacks
1: procedure GENERATEATTACK(attackType,measurements, devices)
2: for i in range(sizeOf(measurements)) do
3: options← [0.1, 0.2, 0.3, 0.4, 0.5]
4: k ← choice(options, 1)
5: p← random(0, 1)
6: t← randomInt(5, 11)
7: hacked← choice(devices,int(k × sizeOf(devices))
8: if p < 0.2 then
9: for j in range(t) do

10: z ← measurements[i]
11: if attackType ̸= "random" then
12: a, target← getTargetAttack(hacked, t)
13: zNew ← z + a
14: saveRecords(zNew, hacked, target)
15: else
16: a← getRandomAttack(hacked, t)
17: zNew ← z + a
18: saveRecords(zNew, hacked)
19: end if
20: j+ = 1, i+ = 1
21: end for
22: else
23: z ← measurements[i]
24: saveRecords(z)
25: end if
26: end for
27: end procedure
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3. DETECTION AND LOCATION

The critical contribution of this thesis is the detection and location of intrusions for

FDIAs. Detection corresponds to informing a system operator, or the state estimator about

an FDIA and location aims at identifying the devices which have been compromised. We

propose a few approaches in the detection and location of FDIAs.

3.1 Detection

We propose a few approaches to finding the cases when an attack is introduced in the

system. These approaches are based on sequence to sequence models. As discussed earlier,

RNNs help to encode sequences in a condensed latent space. This property can be exploited

to detect intrusions as well. Intrusion detection for a spatially and temporally correlated

system like the electric power grid using RNNs can be done using a completely supervised

approach or an unsupervised approach. We have implemented a variant of both the methods

and compared their performance and feasibility.

3.1.1 Fully Supervised Global Detector

As mentioned earlier, the detection of FDIAs can be modeled as an anomaly detection

problem. This is because attacks are generally sparse vectors [16] added to the actual mea-

surements violating the temporal structure of the data. Therefore, a sequence model should

be able to detect such anomalous patterns. We use a GRU based many to one sequence to

Figure 3.1: Architecture of Fully Supervised Global Detector Network
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sequence model, which takes in measurements over a window of length k from time-steps

[t−k, t] to predict whether the measurements at time-step t is anomalous or not. The system

architecture is shown in Figure 3.1. We believe the temporal structure of the dynamic power

system is captured by the weights Wh. Wi captures the effect of individual measurements

on the latent space. For a power system the latent space can be imagined as a compressed

version of the state vector and Wi captures the impact of every measurement on the latent

space h. The final hidden state is passed through a linear layer Wo which compresses hidden

state vector ht ∈ IRh×1 to IR1×1. Finally, we use a sigmoid function to compute a probability

score that corresponds to an attack being present at time-step t.

This network is trained on anomalous (ot = 1) and non anomalous data (ot = 0) gener-

ated by Algorithm 1. We have assumed that the probability of the grid being under attack is

far less than that of normal operating conditions. For 0-1 prediction tasks, binary cross en-

tropy loss is the best maximum likelihood estimator [50]. Since neural networks are trained

on empirical loss minimization, the predictor might not even predict anomalies at all be-

cause of their infrequent nature. We avoid such a condition from happening by weighing the

loss function so that miss in predicting anomalies (false negatives) are penalized more than

miss in predicting normal operating conditions (false positives). The loss function for our

classification model is described in equation 3.1, where a is the penalty multiplier for false

negatives. Since neural networks are trained using mini-batch stochastic gradient descent,

a possible option is to sample anomalous states more often while constructing mini-batches

to ensure an equal distribution of anomalies for the network to learn. But this will skew the

actual distribution of anomalous states, therefore, inducing an incorrect bias in the model.

L(y, ŷ) = − 1

N

∑
N

a× y log(ŷ) + (1− y)log(1− ŷ) (3.1)
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3.1.1.1 Data Preparation and Training

Since this is a sequence to sequence model, we need to prepare mini-batches of time-

series and the corresponding state of the system for the last time-step of the sequence. We

use a rolling window of fixed length to create the training pairs. The inputs are measurements

over a time window and the output corresponds to the state of the system at the last time-step

of the window. The model is trained using mini-batch gradient descent by an ADAM [51]

optimizer. To ensure that the model does not overfit on the training data we use dropouts

[52]. Dropouts randomly drops neural connections between layers making the model robust

to noise. It also prevents the neural network to get over reliant on specifics neurons, therefore

helping in regularization.

3.1.2 Unsupervised Global Detector

Generation of extensive training data covering all attack scenarios is tricky. With increas-

ing grid sizes the range of possible attacks that can be introduced by varying the combination

of compromised devices is very large. It is practically infeasible to cover all attack scenarios.

Unsupervised methods, on the other hand, do not need labeled training data. Therefore, there

is no need for generating massive training datasets.

We propose an auto-encoder based sequence to sequence model. As mentioned earlier,

an auto-encoder comprises of two parts: the encoder and the decoder. The encoder computes

a latent representation of the entire sequence in a condensed form. This is decoded by the

decoder to restore the original input sequence. The auto-encoder is expected to learn a di-

mensionality reduction function for the encoder and a restoration function for the decoder.

The idea behind using this kind of a structure is that the model can learn inter-dependencies

between measurements in the encoder to find an optimal hidden state and that can be restored

using decoder parameters. Since we are dealing with an over-determined system, therefore,

we can assume that restoration of measurements from a compressed hidden state is tractable.

But as mentioned earlier, a vanilla sequence to sequence auto-encoder might not be able to
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Figure 3.2: Architecture Explaining Sequence to Sequence Auto-Encoder with Monotonic
Attention

model long term dependencies. Therefore, we use monotonic attention in our sequence to

sequence auto-encoder. Monotonic attention helps the decoder to learn the importance of

every past state to a given output state. This model is trained on non-anomalous data, to

minimize the mean reconstruction loss. The optimization function is shown in equation 3.2,

where D represents the decoder function and E denotes the encoder function.

min
θD,θE

1

t

∑
t

(zt − ẑt)
2

s.t. ẑt = D(θD, E(θE, zt, zt−1, ..., z0))

(3.2)

We train this network until reconstruction error is very close to zero. This ensures that

our model is fully aware of what normal conditions look like and how measurements are

correlated to one another. We hypothesize that for anomalous data, i.e., when an attack vector

is added to actual measurements, the reconstruction error will be high. This is because FDIA

vectors are normally sparse; hence the encoded representations should not be significantly
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affected. This would make the decoded measurements ẑt appear similar to non-attacked

measurements zt instead of zt + a. It can be seen from Figure 3.2 that the output ẑt is a

function of et and ht. et is a function of attention vector at and (h0, h1, ..., ht). Therefore, it

might appear that the attention vector might force the contribution of the encoder to zero and

completely pass the inputs at each time instance with an identity mapping to the output. In

other words, it might appear that the attention weights W t
ai = 0,∀i ̸= t and W t

ai = 1, if i =

t; while the encoder hidden vector weight Wh = 0. However, while training we decode

the entire sequence with the help of a GRU decoder and combining previous outputs along

with present inputs. We can ensure that the contribution of the encoder is not nullified i.e.,

Wh ̸= 0.

3.1.2.1 Data Preparation, Training, and Inference

Since this is a unsupervised method, we do not need labeled attacked and non-attacked

cases. Instead, we train the auto-encoder only on non-attacked data. Since it is a sequence

to sequence auto-encoder while training we use the same sequences of a fixed length as

input and target as illustrated in Figure 3.2. To prepare the training sequences, we use a

rolling window of a fixed sequence length for all the measurements. The RNN-decoder uses

previously decoded outputs at every time-step for computing the output for the next time-

step. We use forced training by feeding actual targets at each time-step instead of predictions.

Practically this helps the network to converge faster and has lower reconstruction error.

While inference, we are not concerned about the outputs at time-step (0, t− 1]. We only

care about the outputs at the last time-step t. We find the reconstruction error by calculating

the mean squared error between the input measurements at time-step t and the corresponding

output of the auto-encoder. If the reconstruction error is above a given threshold, we flag it

as an anomaly. We will explain the idea behind estimating the threshold later. Another

significant difference from the training step is that during inference, we use the predictions

from the auto-encoder as true measurements to replace anomalous measurements. This helps

to keep the sanctity of the detection mechanism for the subsequent time-steps.
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One approach to decide the threshold for classification of anomalies can be decided by

the mean (µ) and standard deviation (σ) of reconstruction error under ideal operating con-

ditions. We can use statistical confidence based approach where we can assume the recon-

struction error (L) to follow a normal distribution and flag values outside some multiples (k)

of standard deviation from the mean as anomalies as shown in Equation 3.3. k can be varied

to plot a precision-recall curve, and an optimal threshold can be determined.

|L− µ| > k × σ → 1

|L− µ| <= k × σ → 0

(3.3)

Another approach might be to train another function approximator in a supervised setting

on reconstruction error using the training data used in the fully supervised case. Since we

want to study the results for a completely unsupervised setting, therefore, moving forward,

we will not be considering this approach.

3.2 Location

So far we have seen how a global detection mechanism using auto-encoders and strictly

supervised methods are realized. In this thesis, we take a step forward to locate the points of

intrusion and find compromised devices. This will not just help in protecting the power grid

from FDIAs but also help to ensure proper functioning without disruptions by ignoring the

compromised measurements for state estimation. Also, it will help to identify possible points

of intrusion, therefore, help operators to take protective measures to secure most vulnerable

nodes.

3.2.1 Unsupervised Location

We have already mentioned that the predictions of the auto-encoder should be very close

to usual grid operating conditions even if in the last time-step an intrusion exists. Therefore,

the reconstruction error can be a good indication of the actual attack vector injected. But

since the auto-encoder has some function approximation error, we cannot expect the recon-
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struction error to be an accurate estimate of attack vector. Instead, we can use a threshold

based detection method to classify devices as attacked or unattacked based on their respective

reconstruction errors. All the measurements are represented in their per unit values. There-

fore, based on grid conditions, the variance of each measurement would be unique, which

makes it challenging to have a global threshold for classification. Thus, we use the mean and

standard deviation of the approximation error for each measurement device separately un-

der ideal operating conditions. Based on these mean and standard deviations, we decide the

classification thresholds of classifying each device as compromised. Similar to the previous

case an optimal threshold can be found using equation 3.3 and precision-recall curve. Also,

many other methods can be considered to classify anomalies based on reconstruction error,

but we moved forward with the simplest architecture and studied its performance.

Using this approach, we can detect intrusions and locate devices compromised at the

same time using the same model. Since it is trained on ideal grid operation data, we do not

need an extensive set of simulated attack data to train it. Also, it can help the state estimator

with approximately correct measurements in case of long intrusions, thereby facilitate nor-

mal grid operations. The only problem we believe might occur is in choosing the correct

hyper-parameters like the hidden layer size, sequence length.

3.2.2 Supervised Location with Localized Measurements

All the approaches discussed so far work on a global idea where all measurements are

considered together for predicting the state of the system. We also assume the power grid

network configuration to be fixed. This restrains our model from being flexible to network

architectures. If the network architecture changes, we need new training data to train our

model to adapt to the latest measurement values. Since we are discussing a more practical

solution, locating specific devices sounds a critical step but it might not be the most practical

one. Instead, if we aim at identifying anomalies strictly on the measurement devices con-

nected to a given bus independently, it can be a reasonable estimate of the location intrusions.

Therefore, each bus can maintain its copy of the model trained for a particular configuration
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on the measurement devices connected to it. If all the devices connected to a given bus are

compromised, it will be highly unlikely of the model to predict an anomaly going just by the

spatial correlations. Therefore, we need to consider temporal patterns in the data as well for

developing our model. In case only a few devices connected to a bus are compromised, the

spatial characteristics can also play a role in the identification of anomalies. But overall, the

model needs to rely more on the temporal structure.

We use a similar approach of using an RNN based detection mechanism as discussed in

the fully supervised global detection method above. The only difference here is the input

vector and the size of the dimension of the hidden state. Since we do not depend a lot on

the spatial correlations, we do not compress the input measurements into a latent vector to

encode the spatial relationships between them as in the previous case.

3.2.3 Unsupervised Location with Localized Measurements

Similar to training local supervised models for detecting intrusions at every bus we can

also adopt an unsupervised approach. In this method, we train the attention based auto-

encoder only on the measurement devices connected to a particular bus. This allows every

bus to maintain its own model, therefore, solving the problem with scalability. As done in the

case of detection, we use the reconstruction error of the auto-encoder to classify intrusions

on every bus independently.

But, this approach might face some problems when most of the devices connected to a

given bus are compromised. This is because the reconstruction error in that case will not be

high. The reason behind it is that for unsupervised global detection using auto-encoder we

assumed that the attack vector is sparse, therefore, the contribution of attack will not skew

the outputs from the auto-encoder and they will be close to normal operating conditions.

However, in the localized case the input measurements can all be under attack, therefore,

the attack vector does not stay sparse any more. Such a case might occur when most of the

devices on a given bus are compromised.
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4. EXPERIMENTS AND OBSERVATIONS

4.1 Data Generation and Test Cases

For a realistic study of grid conditions under attack and non-attacked scenarios, we gath-

ered real-world power consumption data. This data is used on an IEEE 14-bus case (Figure

4.1). to compute AC power flow and measurements of all 39 devices available from standard

MATPOWER simulation. We gather all this data as our baseline ideal grid operating condi-

tions. An example for Bus 1 is shown in Figure 4.2. In the next step, we generate attacks

on these ideal operating conditions using the algorithm discussed in Chapter 2. For targeted

attacks, it was observed that under many combinations of compromised devices, the attack

was not feasible. Therefore, we used random attacks as a case of targeted attacks where

the targets were the state variables affected by a given random attack vector. Thus our final

problem translates to detecting and locating any random attack. Also, we can claim that all

attacks are a subset of random attacks. Therefore, if we can detect random attacks correctly,

we should be able to identify other kinds of attacks as well. As mentioned earlier, we use

multiple levels of intrusion starting from 10% to 50% of devices getting compromised. For

each of these intrusion levels, we generate 250, 000 points of attack data to extensively cover

all possible scenarios.

4.2 Detection

For the fully supervised model, we use 500000 (100000 from each level of intrusion)

data points as the training set and 125000 (25000 from each level of intrusion) points as the

validation set. After every epoch on the training set, the validation loss is computed on the

validation set. If the validation loss is lesser than previously calculated validation losses,

then the model is saved. The model is trained for 200 epochs. Then the inference is run

individually on the remaining 125000 points from each level of intrusion data. As discussed

1source: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-14-bus-system
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Figure 4.1: IEEE 14-Bus System (reprinted from 1)
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Figure 4.2: Ideal Grid Operating Conditions for Bus 1
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Figure 4.3: ROC Curve and Precision-Recall Curve
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Number of devices compromised 4 8 12 16 20
ROC-AUC 0.9932 0.9902 1.0000 1.0000 1.0000

Recall 0.9940 0.9903 1.0000 1.0000 1.0000
Precision 0.9840 0.9807 1.0000 1.0000 1.0000
F1-Score 0.9890 1.0000 1.0000 1.0000 1.0000

Table 4.1: Detection using Fully Supervised Approach

Figure 4.4: Metrics for Fully Supervised Detection

earlier, the output of the model gives the probability of an attack being present at the last

time-step. But the threshold for classification needs to be calculated. This is done using the

precision-recall curve (Figure 4.3), which we can tune based on our expectation of precision

and recall from the model. Since we want our recall to be high, therefore we chose a recall

threshold of 0.99. The results are shown in Table 4.1 and Figure 4.4. The unsupervised

auto-encoder is trained on the entire baseline ideal grid operation data. A similar approach

in storing model checkpoints is adopted as in the previous case. We also find the mean and

standard deviation of total reconstruction error for the training data to help us to find the

correct threshold for classifying the test set. At inference, we use the reconstruction loss

from the auto-encoder and use multiple thresholds to plot the precision-recall curve to get an
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Number of devices compromised 4 8 12 16 20
ROC-AUC 0.9114 0.9657 0.9998 0.9986 0.9992

Recall 0.8229 0.9313 0.9995 1.0000 1.0000
Precision 1.0000 1.0000 1.0000 0.9891 0.9944
F1-Score 0.9028 0.9644 0.9998 0.9945 0.9972

Table 4.2: Detection using Unsupervised Approach

Figure 4.5: Metrics for Unsupervised Detection

optimal threshold of classification finally. The results are shown in Table 4.2 and Figure 4.5.

In [7] the authors mention a minimum number of devices that need to be compromised

in order to successfully execute an attack with 100% probability. For our case that critical

number is 14 which is more than 30% of devices compromised. It can be observed that both

our detection methods can identify FDIAs when more than 30% of the devices are compro-

mised with almost 100% accuracy. It can be observed that the unsupervised method does not

perform as good as the supervised method when less number of devices are compromised.

This might be because when less number of devices are compromised the attack vector gen-

erated does not cause significant deviations from expected behavior in the system, therefore
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Number of devices compromised 4 8 12 16 20
ROC-AUC 0.8676 0.8811 0.8768 0.8815 0.8792

Recall 0.7357 0.7801 0.7636 0.8095 0.8129
Precision 0.7260 0.7036 0.5830 0.6629 0.7392
F1-Score 0.6819 0.7103 0.6491 0.6261 0.6648

Table 4.3: Location Specific to Device using Unsupervised Approach

reconstruction error is low. For cases where around 40-50% devices are compromised both

methods perform perfectly. When compared to native error based detection methods(Recall

= 0.1) both these methods outperform all of them. We have also compared our performance

in detection with other methods which have tried before and have found ours significantly

better, especially when more devices are compromised.

4.3 Location

Earlier we mentioned how the same unsupervised global detector could be used to find

the specific devices that have been compromised. We use the same model trained for de-

tection and find the mean and standard deviation of estimation error for every measurement

separately on ideal operation data. We used multiples of the standard deviation to make

the precision-recall curve and find the correct threshold of classification. While evaluating

the performance of the model we use metrics for each measurement device separately and

then take the median performance indicators as our final outputs. Taking median might be

misleading if there are measurements which have not been affected by attacks in any case.

Therefore, we eliminate all such meters which have not been attacked in test data points.

The evaluation is individually run for all 250000 points for every level of intrusion, and the

results are shown in Table 4.3 and Figure 4.6.

It can be seen that the performance of this model in precisely locating the attacked de-

vices is not as good as in the case of detection. But we don’t have a baseline to compare our

performance because this is the first attempt at locating the devices compromised. As dis-

cussed earlier, locating exact devices might not be necessary for finding points or regions of
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Figure 4.6: Metrics for Unsupervised Location Precise to Device

Number of devices compromised 4 8 12 16 20
ROC-AUC 0.9142 0.9173 0.9302 0.9184 0.8956

Recall 0.8286 0.8775 0.8647 0.8449 0.7987
Precision 0.9231 0.9236 0.9147 0.9205 0.9539
F1-Score 0.8733 0.8358 0.8890 0.8811 0.8694

Table 4.4: Clustered Location using Unsupervised Approach

intrusion because of the over-determined nature of the system. Therefore another alternative

can be checking the performance of the model by clustering devices by the buses they are

connected to. The performance results are shown in Table 4.4 and Figure 4.7. This method

of clustering devices by the buses they are connected to helped to improve the performance

of the auto-encoder by 10%.

Finally, we used the fully supervised case of locating compromised buses. We train indi-

vidual models on each bus separately, which enables each of those models to be independent

and therefore can adapt to local changes in network architecture. A critical thing to be noted

here is that the model pertaining to a given bus uses measurements only from the devices

connected to that bus. After training models for all the buses, we take the median score after
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Figure 4.7: Metrics for Clustered Location using Unsupervised Approach

Number of devices compromised 4 8 12 16 20
ROC-AUC 0.9812 0.9927 0.9977 0.9991 0.9995

Recall 0.9405 0.9692 0.9819 0.9877 0.9964
Precision 0.8525 0.8500 0.8500 0.8500 0.8500
F1-Score 0.8943 0.9057 0.9112 0.9137 0.9174

Table 4.5: Clustered Location using Supervised Approach

eliminating the buses that are not affected at all in the test dataset. The metrics are shown in

Table 4.5 and Figure 4.8.

It can be observed locating compromised devices is a more challenging task than detec-

tion of FDIAs. We can also observe that clustered location using the supervised approach

is much better than that of the unsupervised approach. In addition as the number of devices

grow the unsupervised approach start deteriorating in performance. This might be because

the when larger number of devices are compromised there is a high probability that all de-

vices connected to a given bus will be compromised. This will cause the reconstruction error

to be low. The supervised model has been trained on cases where all the devices connected

to a bus has been compromised, therefore the supervised method performs better than the
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Figure 4.8: Metrics for Clustered Location using Supervised Approach

unsupervised model.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we discussed the application of deep neural networks for the identification

of FDIAs in the electric power grid and the location of affected devices. We proposed a

strictly supervised method of detection of attacks for which we simulated attacks on real-

world power consumption data. We observed that the performance on test data was better

than previously proposed methods by roughly 14% [53]. We also found that the performance

of our model improved as more devices were compromised. We also noted the problems

with this approach regarding the generation of training data for larger systems. Next, we

proposed an unsupervised model based on a sequence to sequence auto-encoder which is

trained on data representing ideal operating conditions of the grid. This model uses the

spatio-temporal properties of grid measurement data of the past time-steps to predict the

expected measurements for the current time-step. This novel idea does not need extensive

training data and performs at par with the fully supervised case. We extended the same

approach to locate the devices that are compromised and found that it performs reasonably

well. We also found that although these methods were performing well, they might not adapt

well to changing grid architectures and sizes. Therefore, we proposed a localized approach

for detection and location of FDIAs which gives every bus to have its own model dependent

on local measurement devices. This makes the system more sustainable. Besides, we also

found that the median location performance was reasonable as well.

5.1 Immediate Extensions

The next step should be to test the proposed methodologies on larger power system cases.

Another important study can be how model complexity is affected by the size of the power

system. We can also check the performance of our models on contingency cases.

Another immediate extension can be using the auto-encoder on sub-grids or local patches

of the grid. Since the system is over-determined, such local pools of measurement devices
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can be created which can help to train an auto-encoder and use mutual information for correct

re-construction as done for the global case.

5.2 Future Work

We can explore better attack generation algorithms using neural networks like Generative

Adversarial Networks (GANs) so that the detector is robust to smarter attacks as well.

Another possible approach to anomaly detection in such spatiotemporally correlated data

can be using convolutional neural networks (CNNs). The power grid network graph can be

encoded in an adjacency matrix form, and the measurements can represent channels for every

filled cell in the matrix. Since the adjacency matrix will be sparse, and a dense representation

can be learned for this matrix which can further be decoded to the sparse form and the

reconstruction error can be an estimate of intrusion.

38



REFERENCES

[1] D. Alert, “Analysis of the cyber attack on the ukrainian power grid,” 2016.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy,

vol. 9, no. 3, pp. 49–51, 2011.

[3] L. Streltsov, “The system of cybersecurity in ukraine: principles, actors, challenges,

accomplishments,” European Journal for Security Research, vol. 2, no. 2, pp. 147–

184, 2017.

[4] Z. Zhang, S. Gong, A. D. Dimitrovski, and H. Li, “Time synchronization attack in smart

grid: Impact and analysis,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 87–98,

2013.

[5] L. R. Phillips, B. Tejani, J. Margulies, J. L. Hills, B. T. Richardson, M. J. Baca, and

L. Weiland, “Analysis of operations and cyber security policies for a system of co-

operating flexible alternating current transmission system (facts) devices.,” tech. rep.,

Sandia National Laboratories, 2005.

[6] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false data injection

attacks against modern power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4,

pp. 1630–1638, 2017.

[7] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estima-

tion in electric power grids,” ACM Transactions on Information and System Security,

vol. 14, pp. 1–33, May 2011.

[8] X. Liu and Z. Li, “Local topology attacks in smart grids,” IEEE Transactions on Smart

Grid, vol. 8, no. 6, pp. 2617–2626, 2017.

[9] G. Chaojun, P. Jirutitijaroen, and M. Motani, “Detecting false data injection attacks in

ac state estimation,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2476–2483,

39



2015.

[10] Y. Zhou and Z. Miao, “Cyber attacks, detection and protection in smart grid state esti-

mation,” in 2016 North American Power Symposium (NAPS), pp. 1–6, IEEE, 2016.

[11] A. H. Yaacob, I. K. Tan, S. F. Chien, and H. K. Tan, “Arima based network anomaly

detection,” in 2010 Second International Conference on Communication Software and

Networks, pp. 205–209, IEEE, 2010.

[12] A. Ashok, M. Govindarasu, and J. Wang, “Cyber-physical attack-resilient wide-area

monitoring, protection, and control for the power grid,” Proceedings of the IEEE,

vol. 105, no. 7, pp. 1389–1407, 2017.

[13] S. Bi and Y. J. Zhang, “Graphical methods for defense against false-data injection at-

tacks on power system state estimation,” IEEE Transactions on Smart Grid, vol. 5,

no. 3, pp. 1216–1227, 2014.

[14] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Smart attacks in smart grid communication

networks,” IEEE Communications Magazine, vol. 50, no. 8, pp. 24–29, 2012.

[15] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Sparse attack

construction and state estimation in the smart grid: Centralized and distributed models,”

IEEE Journal on Selected Areas in Communications, vol. 31, no. 7, pp. 1306–1318,

2013.

[16] L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih, and Z. Han, “Detecting false data

injection attacks on power grid by sparse optimization,” IEEE Transactions on Smart

Grid, vol. 5, no. 2, pp. 612–621, 2014.

[17] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Machine learning

methods for attack detection in the smart grid,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 27, no. 8, pp. 1773–1786, 2016.

40



[18] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Smarter secu-

rity in the smart grid,” in 2012 IEEE Third International Conference on Smart Grid

Communications (SmartGridComm), pp. 312–317, IEEE, 2012.

[19] Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, and L. Song, “Bad

data injection in smart grid: attack and defense mechanisms,” IEEE Communications

Magazine, vol. 51, no. 1, pp. 27–33, 2013.

[20] O. Chapelle, V. Sindhwani, and S. S. Keerthi, “Optimization techniques for semi-

supervised support vector machines,” Journal of Machine Learning Research, vol. 9,

no. Feb, pp. 203–233, 2008.

[21] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. J. Overbye,

“Detecting false data injection attacks on dc state estimation,” in Preprints of the First

Workshop on Secure Control Systems, CPSWEEK, vol. 2010, 2010.

[22] K. R. Davis, K. L. Morrow, R. Bobba, and E. Heine, “Power flow cyber attacks and

perturbation-based defense,” in 2012 IEEE Third International Conference on Smart

Grid Communications (SmartGridComm), pp. 342–347, IEEE, 2012.

[23] K. L. Morrow, E. Heine, K. M. Rogers, R. B. Bobba, and T. J. Overbye, “Topology

perturbation for detecting malicious data injection,” in 2012 45th Hawaii International

Conference on System Sciences, pp. 2104–2113, IEEE, 2012.

[24] U. S. Goldstein M, “A comparative evaluation of unsupervised anomaly detection al-

gorithms for multivariate data,” PLoS ONE, vol. 11, no. 4, 2016.

[25] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001 Workshop

on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46, 2001.

[26] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-

mating the support of a high-dimensional distribution,” Neural Computation, vol. 13,

no. 7, pp. 1443–1471, 2001.

41



[27] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of artificial neural networks. MIT

press, 1997.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Advances in Neural Information Processing Systems,

pp. 1097–1105, 2012.

[29] J. Li, V. Lavrukhin, B. Ginsburg, R. Leary, O. Kuchaiev, J. M. Cohen, H. Nguyen,

and R. T. Gadde, “Jasper: An end-to-end convolutional neural acoustic model,” arXiv

preprint arXiv:1904.03288, 2019.

[30] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv

preprint arXiv:1901.03407, 2019.

[31] R. Chalapathy, E. Z. Borzeshi, and M. Piccardi, “An investigation of recurrent neural

architectures for drug name recognition,” arXiv preprint arXiv:1609.07585, 2016.

[32] D. Wulsin, J. Blanco, R. Mani, and B. Litt, “Semi-supervised anomaly detection for eeg

waveforms using deep belief nets,” 2010 Ninth International Conference on Machine

Learning and Applications, 2010.

[33] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep learning for

unsupervised insider threat detection in structured cybersecurity data streams,” in Work-

shops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[34] M. Ismail, M. Shahin, M. Shaaban, E. Serpedin, and K. Qaraqe, “Efficient detection

of electricity theft cyber attacks in ami networks,” in 2018 IEEE Wireless Communica-

tions and Networking Conference, WCNC 2018, vol. 2018-April, pp. 1–6, Institute of

Electrical and Electronics Engineers Inc., 6 2018.

[35] M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qaraqe, and E. Serpedin, “Deep

recurrent electricity theft detection in ami networks with random tuning of hyper-

parameters,” in 2018 24th International Conference on Pattern Recognition (ICPR),

pp. 740–745, IEEE, 2018.

42



[36] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsu-

pervised anomaly detection with generative adversarial networks to guide marker dis-

covery,” in International Conference on Information Processing in Medical Imaging,

pp. 146–157, Springer, 2017.

[37] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruc-

tion probability,” Special Lecture on IE, vol. 2, pp. 1–18, 2015.

[38] R. J. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent,” Back-

propagation: Theory, Architectures, and Applications, vol. 433, 1995.

[39] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recur-

rent neural networks,” Neural Computation, vol. 1, no. 2, pp. 270–280, 1989.

[40] Y. Bengio, P. Simard, P. Frasconi, et al., “Learning long-term dependencies with gradi-

ent descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–

166, 1994.

[41] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical

machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[43] Y. S. Chong and Y. H. Tay, “Abnormal event detection in videos using spatiotemporal

autoencoder,” in International Symposium on Neural Networks, pp. 189–196, Springer,

2017.

[44] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” in Advances in Neural

Information Processing Systems, pp. 3079–3087, 2015.

[45] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

43



[46] C. Raffel, M.-T. Luong, P. J. Liu, R. J. Weiss, and D. Eck, “Online and linear-time

attention by enforcing monotonic alignments,” in Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 2837–2846, JMLR. org, 2017.

[47] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informedness,

markedness and correlation,” 2011.

[48] C. D. Meyer and C. Meyer, Matrix analysis and applied linear algebra. Society for

Industrial and Applied Mathematics, 2000.

[49] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, “On false data-injection

attacks against power system state estimation: Modeling and countermeasures,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, pp. 717–729, Mar. 2014.

[50] S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a function

of several independent variables,” Biometrika, vol. 54, p. 167, June 1967.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:

a simple way to prevent neural networks from overfitting,” The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[53] A. Ayad, H. E. Farag, A. Youssef, and E. F. El-Saadany, “Detection of false data in-

jection attacks in smart grids using recurrent neural networks,” in 2018 IEEE Power &

Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, IEEE,

2018.

44


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Introduction
	Literature Review
	Defence Mechanisms
	Recurrent Neural Networks
	Auto-Encoder and Attention

	Anomaly Detection Metrics
	Roadmap

	Generation of Attacks
	Attack Generation Algorithms
	Random Attacks
	Targeted Attacks
	Constrained Attacks
	Unconstrained Attacks


	Attack Generation and Storage

	Detection and Location
	Detection
	Fully Supervised Global Detector
	Data Preparation and Training

	Unsupervised Global Detector
	Data Preparation, Training, and Inference


	Location
	Unsupervised Location
	Supervised Location with Localized Measurements
	Unsupervised Location with Localized Measurements


	EXPERIMENTS AND OBSERVATIONS
	Data Generation and Test Cases
	Detection
	Location

	CONCLUSION AND FUTURE WORK 
	Immediate Extensions
	Future Work

	REFERENCES

