
HARDWARE INSTRUCTION BASED CRC32C, A BETTER ALTERNATIVE TO THE TCP

ONE’S COMPLEMENT CHECKSUM

A Thesis

by

SAURAV KUMAR SAHU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Pierce E. Cantrell
Committee Members, Srinivas Shakkottai

Krishna R. Narayanan
Andreas Klappenecker

Head of Department, Miroslav M. Begovic

August 2019

Major Subject: Electrical Engineering

Copyright 2019 Saurav Kumar Sahu

ABSTRACT

End-to-end data integrity is of utmost importance when sending data through a communication

network, and a common way to ensure this is by appending a few bits for error detection (e.g.,

a checksum or cyclic redundancy check) to the data sent. Data can be corrupted at the sending

or receiving hosts, in one of the intermediate systems (e.g., routers and switches), in the network

interface card, or on the transmission link. The Internet’s Transmission Control Protocol (TCP)

uses a 16-bit one’s complement checksum for end-to-end error detection of each TCP segment [1].

The TCP protocol specification dates back to the 1970s, and better error detection alternatives exist

(e.g., Fletcher checksum, Adler checksum, Cyclic Redundancy Check (CRC)) that provide higher

error detection efficiency; nevertheless, the one’s complement checksum is still in use today as part

of the TCP standard. The TCP checksum has low computational complexity when compared to

software implementations of the other algorithms. Some of the original reasons for selecting the

16-bit one’s complement checksum are its simple calculation, and the property that its computation

on big- and little-endian machines result in the same checksum but byte-swapped. This latter

characteristic is not true for a two’s complement checksum. A negative characteristic of one’s and

two’s complement checksums is that changing the order of the data does not affect the checksum.

In [2], the authors collected two years of data and concluded after analysis that the TCP checksum

“will fail to detect errors for roughly one in 16 million to 10 billion packets.” While some of

the sources responsible for TCP checksum errors have decreased in the nearly 20 years since this

study was published (e.g., the ACK-of-FIN TCP software bug), it is not clear what we would find

if the study were repeated. It would also be difficult to repeat this study today because of privacy

concerns. The advent of hardware CRC32C instructions on Intel x86 and ARM CPUs offers the

promise of significantly improved error detection (probability of undetected errors proportional to

2-32 versus 2-16) at a comparable CPU time to the one’s complement checksum.

The goal of this research is to compare the execution time of the following error detection al-

gorithms: CRC32C (using generator polynomial 0x1EDC6F41), Adler checksum, Fletcher check-

ii

sum, and one’s complement checksum using both software and special hardware instructions. For

CRC32C, the software implementations tested were bit-wise, nibble-wise, byte-wise, slicing-by-4

and slicing-by-8 algorithms. Intel’s CRC32 and PCLMULQDQ instructions and ARM’s CRC32C

instruction were also used as part of testing hardware instruction implementations. A comparative

study of all these algorithms on Intel Core i3-2330M shows that the CRC32C hardware instruction

implementation is approximately 38% faster than the 16-bit TCP one’s complement checksum at

1500 bytes, and the 16-bit TCP one’s complement checksum is roughly 11% faster than the hard-

ware instruction based CRC32C at 64 bytes. On the ARM Cortex-A53, the hardware CRC32C

algorithm is approximately 20% faster than the 16-bit TCP one’s complement checksum at 64

bytes, and the 16-bit TCP one’s complement checksum is roughly 13% faster than the hardware

instruction based CRC32C at 1500 bytes. Because the hardware CRC32C instruction is commonly

available on most Intel processors and a growing number of ARM processors these days, we argue

that it is time to reconsider adding a TCP Option to use hardware CRC32C.

The primary impediments to replacing the TCP one’s complement checksum with CRC32C are

Network Address Translation (NAT) and TCP checksum offload. NAT requires the recalculation of

the TCP checksum in the NAT device because the IPv4 address, and possibly the TCP port number

change, when packets move through a NAT device. These NAT devices are able to compute the new

checksum incrementally due to the properties of the one’s complement checksum. The eventual

transition to IPv6 will hopefully eliminate the need for NAT. Most Ethernet Network Interface

Cards (NIC) support TCP checksum offload, where the TCP checksum is computed in the NIC

rather than on the host CPU. There is a risk of undetected errors with this approach since the error

detection is no longer end-to-end; nevertheless, it is the default configuration in many operating

systems including Windows 10 [3] and MacOS. CRC32C has been implemented in some NICs to

support the iSCSI protocol, so it is possible that TCP CRC32C offload could be supported in the

future. In the near term, our proposal is to include a TCP Option for CRC32C in addition to the

one’s complement checksum for higher reliability.

iii

DEDICATION

To my parents and friends for their love, faith, encouragement, and emotional support without

which this thesis would have never completed.

iv

ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to my thesis advisor Dr. Pierce E. Cantrell for his

unwavering support throughout the duration of this research. His patience is really commendable.

He has always encouraged me to experiment with new things during the research. He has also pro-

vided me with most of the resources that helped me in conducting my research smoothly. Portions

of this research were conducted with the advanced computing resources provided by Texas A&M

High Performance Research Computing.

Once again, I would like to thank Dr. Cantrell for giving me the opportunity of being a Teaching

Assistant for ECEN 248 and ECEN 602. I really enjoyed interacting with several students during

the course of teaching, and it certainly enriched my grad school experience. Next, I would like to

offer my sincere thanks to Dr. Srinivas Shakkottai, Dr. Krishna R. Narayanan, and Dr. Andreas

Klappenecker for taking their valuable time to conduct my thesis defense and providing me with

pointers for further improvement. I would like to acknowledge the assistance that I had received

from Dr. Paul Gratz regarding the installation of 64-bit Gentoo Linux OS on Raspberry Pi Model

3B. I very much appreciate Katie Bryan and the University Writing Center for reviewing my thesis

document.

It is ultimately the friends who make the graduate school experience most enjoyable. I would

like to extend my heartfelt thanks to Abhijeet Sahu who has always inspired me throughout the

grad school journey. Thank you once again Abhijeet for standing by my side no matter what.

Special thanks to Tushar, Mahesh, Sai, Soumya, and Vijith for being awesome roommates and for

helping me with everything. Many thanks to Dharanidhar Bhai and Inderdeep for motivating me

to do exercise and pranayam. I am really thankful for all the resources and opportunities that I got

in Texas A&M University which enhanced my knowledge and made me a better person. Thanks

should also go to NTPC Ltd. for giving me the opportunity to pursue a master’s degree. Finally, I

would like to thank the Almighty and my parents for bearing with me.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Pierce E. Cantrell [advisor],

Dr. Srinivas Shakkottai and Dr. Krishna R. Narayanan of the Department of Electrical and Com-

puter Engineering and Dr. Andreas Klappenecker of the Department of Computer Science and

Engineering.

Most of the research work for the thesis was completed by me under the supervision of Dr.

Pierce E. Cantrell.

Funding Sources

Graduate study was partly supported by Teaching Assistantship and Research Assistantship

from Texas A&M University.

vi

NOMENCLATURE

API Application Programming Interface

BER Bit Error Rate

BSC Binary Symmetric Channel

CPU Central Processing Unit

CRC Cyclic Redundancy Check

FCS Frame Check Sequence

GCC GNU Compiler Collection

GF(2) Galois Field of two elements (0 and 1)

HD Hamming Distance

HW Hamming Weight

IP Internet Protocol

ISCSI Internet Small Computer System Interface

KiB Kibi Byte

LSb Least Significant bit

LSB Least Significant Byte

LUT Look up Table

MSb Most Significant bit

MSB Most Significant Byte

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NASM The Netwide Assembler

NAT Network Address Translation

vii

NIC Network Interface Controller

OS Operating System

OSI Open Systems Interconnection

PDU Protocol Data Unit

PRNG Pseudo Random Number Generators

PSTN Public Switched Telephone Network

Pud Probability of undetected error

RFC Request for Comments

SoC System-on-Chip

SCTP Stream Control Transmission Protocol

SSE Streaming SIMD Extensions

SIMD Single instruction multiple data

TCP Transmission Control Protocol

UDP User Datagram Protocol

XOR Exclusive-OR

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Motivation . 1
1.2 Overview and Organization. 3

2. BACKGROUND AND RELATED WORK . 5

2.1 Error Detection . 5
2.2 Error detection code effectiveness measures . 6

2.2.1 Hamming Distance . 6
2.2.2 Hamming Weight . 6
2.2.3 Probability of undetected error . 6

2.3 Literature Review . 7

3. CRC32C . 13

3.1 CRC Math . 13
3.2 Why CRC32C? . 15

4. CHECKSUM AND CRC ALGORITHMS . 17

4.1 One’s complement checksum. 17
4.1.1 One’s complement checksum with 16-bit data word . 17
4.1.2 One’s complement checksum with 32-bit data word . 18
4.1.3 One’s complement checksum with 64-bit data word . 19

ix

4.2 Fletcher-32 checksum . 20
4.3 Adler-32 checksum . 21
4.4 Cyclic Redundancy Check (CRC). 22

4.4.1 CRC32C bit-wise . 22
4.4.2 CRC32C nibble-wise . 23
4.4.3 CRC32C byte-wise . 24
4.4.4 CRC32C slicing-by-4 . 24
4.4.5 CRC32C slicing-by-8 . 26
4.4.6 CRC32C using Intel Intrinsics . 27
4.4.7 CRC32C using PCLMULQDQ and CRC32 instructions on Intel 28
4.4.8 CRC32C using CRC32 instruction on Intel and table-based recombination . . 29

5. RESEARCH METHODOLOGY . 31

6. RESULTS . 36

6.1 Benchmark study of checksum/ CRC algorithms on Intel CPUs . 36
6.2 Benchmark study of checksum/ CRC algorithms on ARM .. 45
6.3 Benchmark study of checksum/ CRC algorithms on IBM POWER7 50

7. CRC32C IN TCP THROUGH TCP OPTION . 54

8. SUMMARY AND CONCLUSIONS . 63

REFERENCES . 65

APPENDIX A. COMPARATIVE PERFORMANCE EVALUATION OF DIFFERENT CRC/
CHECKSUM ALGORITHMS . 71

x

LIST OF FIGURES

FIGURE Page

5.1 One’s complement checksum test case. 32

5.2 CRC32C test case . 33

5.3 Error bars showing 95% confidence interval for the average number of CPU cycles
per byte based on 1000 samples for CRC32C (using CRC32 and PCLMULQDQ
instructions) and TCP checksum with 64-bit word version on Intel Xeon CPU 34

6.1 Cycles/byte performance of CRC32C using Intel CRC32 and PCLMULQDQ in-
structions, Adler-32 checksum, Fletcher-32 checksum, and TCP one’s complement
checksum on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz . 36

6.2 Cycles/byte performance of CRC32C using Intel CRC32 and PCLMULQDQ in-
structions, Adler-32 checksum, Fletcher-32 checksum, and TCP one’s complement
checksum on Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz . 37

6.3 Cycles/byte performance of 16-bit word, 32-bit word, and 64-bit word variants of
the TCP checksum on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz with GCC
O3 optimization flag . 41

6.4 Cycles/byte performance of 16-bit word, 32-bit word, and 64-bit word variants of
the TCP checksum on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz with GCC
O1 optimization flag . 42

6.5 Cycles/byte performance of CRC32C using Intel Intrinsic, CRC32 and PCLMULQDQ
instructions, only CRC32 instruction on Intel(R) Xeon(R) CPU E5-2670 v2 @
2.50GHz . 43

6.6 Performance comparison of table-driven CRC32C and hardware instruction based
CRC32C on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz . 44

6.7 Performance comparison of naive bit-wise CRC32C vs table-driven CRC32C on
Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz . 45

6.8 Performance comparison of table-driven CRC32C and hardware instruction based
CRC32C on Raspberry Pi Model 3B (ARM Cortex-A53) with CPU max MHz:
1200 and CPU min MHz: 600 . 48

xi

6.9 Cycles/byte performance of CRC32C using hardware CRC32C instruction, Adler-
32 checksum, Fletcher-32 checksum, and TCP one’s complement checksum on
Raspberry Pi Model 3B (ARM Cortex-A53) with CPU max MHz: 1200 and CPU
min MHz: 600 . 49

6.10 Cycles/byte performance of slicing-by-8 CRC32C, Adler-32 checksum, Fletcher-
32 checksum, and TCP one’s complement checksum on IBM POWER7 with time-
base: 512000000 and clock: 4228MHz . 52

xii

LIST OF TABLES

TABLE Page

6.1 Comparative computational performance of different CRC32C and Checksum im-
plementations on Intel CPUs . 40

6.2 Comparative computational performance of different CRC32C and Checksum im-
plementations on Raspberry Pi Model 3B (ARM Cortex-A53). 47

6.3 Comparative computational performance of different CRC32C and Checksum im-
plementations on IBM POWER7. 51

7.1 Host TCP checksum offload and NAT condition check to use appropriate option-
data value in the TCP Alternate Checksum Request Option . 60

7.2 Final option-data value chosen based on the option-data values sent by the sender
and receiver in the TCP Alternate Checksum Request Option. 61

A.1 Comparative computational performance of different CRC32C and Checksum im-
plementations on Intel CPUs over different buffer sizes (with GCC optimization
flag O3) . 71

A.2 Comparative performance evaluation of different CRC32C and Checksum imple-
mentations on Raspberry Pi Model 3B (ARM Cortex-A53) over different buffer
sizes (with GCC optimization flag O3) . 76

A.3 Comparative performance evaluation of different CRC32C and Checksum imple-
mentations on IBM POWER7 over different buffer sizes (with GCC optimization
flag O3) . 80

A.4 Comparative performance evaluation of different one’s complement checksum im-
plementations on Intel Core i3-2330M and Xeon with GCC optimization flag O1. . . . 84

A.5 Effect of adding extra bytes to the buffer on Intel CPUs when computing CRC32C
using hardware instructions CRC32 and PCLMULQDQ . 85

A.6 Effect of adding extra bytes to the buffer on Intel CPUs when computing TCP one’s
complement checksum with 16-bit word . 86

xiii

1. INTRODUCTION

1.1 Motivation

The Transmission Control Protocol (TCP) is an end-to-end protocol that provides communica-

tion between processes running on end nodes. TCP also offers a connection-oriented and reliable

byte-stream service. It is because of this reliable and in-order delivery of a stream of bytes that the

application running on top of TCP does not have to worry about out-of-order or missing data pack-

ets. Moreover, the error detection algorithms operating in the different layers of the OSI (Open

Systems Interconnection) model provide the integrity of the header and the data. The 16-bit one’s

complement checksum, which is a relatively weak error detection scheme when compared to the

32-bit Cyclic Redundancy Check (CRC), is currently used to detect end-to-end errors at the re-

ceiving end of a TCP connection. If there are errors in a TCP segment, the hope is that the TCP

checksum will detect the error. Many applications simply rely on the existing TCP checksum to

provide data integrity and do not employ any additional application-level error detection.

Data corruption to a TCP segment can occur in the source node due to memory errors, software

errors in the TCP/IP stack, errors in the network interface controller (NIC), errors on the wire

while data is in transit, hardware errors in Ethernet switch, errors in intermediate router memory

or hardware, errors in the destination node NIC, or errors in memory or the TCP/IP stack running

on the end node. The Ethernet Frame Check Sequence (FCS) is a 32-bit CRC that detects errors in

frames received over a link. While the link-level CRC provides additional protection against layer-

2 errors, it is no substitute for end-to-end error detection. The IPv4 header checksum is responsible

for the protection of the header of IPv4 packets against errors. Following the end-to-end principle

of error detection, the two end nodes across the communication network can achieve a reliable data

transfer by sending a checksum calculated over the TCP header, pseudo header and the payload

data and then recalculating the same at the destination end to check for correctness. There may be

undetected errors, but many errors will be detected.

1

Stone et al. [2] have strongly urged that critical applications append application-level check-

sum to data in addition to the TCP checksum. The rationale behind their proposition is that the

TCP checksum does not offer sufficient protection against an undetected error. While the data of

[2] on TCP segments received with checksum errors is nearly 20 years old, there are a handful

of recent reports of undetected TCP checksum errors [4]. With the adoption of Jumbo Frames

carrying 9000 bytes of payload in the data center environment, the number of undetected errors is

bound to increase. TCP being central to most of the applications communicating over the Internet,

implementing a stronger error detection scheme in TCP itself is a preferred option.

Although many checksum techniques exist in the literature and a wide variety are in use in a

multitude of protocols, less information is available about their relative execution speeds in terms

of the number of CPU cycles per byte. Historically, for data integrity checking purpose for a

communication network, the CRC has not been used above the data link layer because it is com-

putationally expensive in software. Two notable exceptions above the link layer that use a 32-bit

CRC are the Internet Small Computer Systems Interface (iSCSI) [5] and the Stream Control Trans-

mission Protocol (SCTP) [6]. As new network protocols are constantly emerging, it is worthwhile

to know which checksum approach works best in a given processor configuration. Knowing both

the software and hardware instruction implementation schemes is therefore desirable to make a

better trade-off.

Among all the Intel processors, the ones based on the Nehalem microarchitecture were the first

to have a CRC32 instruction (uses Castagnoli polynomial 0x1EDC6F41) as part of the SSE4.2

instruction set [7]. The Nehalem Intel processors were released in 2008 [8], and subsequent

Intel processors support SSE4.2 including CRC32C. Modern ARM processors also have hard-

ware CRC32C instruction (uses Castagnoli polynomial 0x1EDC6F41) available in architecture

ARMv8.1-A (December 2014) and later. The CRC32C instruction is optionally supported in

ARMv8-A [9] as well. The Apple A12 Bionic, a system on a chip (SoC) present in iPhone XS,

XS Max, and XR has 64-bit ARMv8.3-A six-core CPU, which presumably support a hardware

CRC instruction. The Raspberry Pi 3 and modern Android devices like the Nexus 5X and Google

2

Pixel featuring ARMv8-A CPU have a CRC32 hardware instruction. The IBM POWER8 provides

hardware accelerated support for CRC32 using the vpmsum (vector polynomial multiply sum) in-

struction. We can make use of the hardware CRC32 instruction to compute the CRC of the header

and payload of a packet in emerging protocols, and possibly retrofit standard protocols like TCP

with CRC32 for significantly improved error detection performance.

The primary impediments to replacing the TCP one’s complement checksum with CRC32C are

Network Address Translation (NAT) and TCP checksum offload. NAT requires the recalculation of

the TCP checksum in the NAT device because the IPv4 address, and possibly the TCP port number

change, when packets move through a NAT device. These NAT devices are able to compute the new

checksum incrementally due to the properties of the one’s complement checksum. The eventual

transition to IPv6 will hopefully eliminate the need for NAT. Most Ethernet Network Interface

Cards (NIC) support TCP checksum offload, where the TCP checksum is computed in the NIC

rather than on the host CPU. There is a risk of undetected errors with this approach since the error

detection is no longer end-to-end; nevertheless, it is the default configuration in many operating

systems including Windows 10 [3] and MacOS. CRC32C has been implemented in some NICs to

support the iSCSI protocol, so it is possible that TCP CRC32C offload could be supported in the

future. In the near term, our proposal is to include a TCP Option for CRC32C in addition to the

one’s complement checksum for higher reliability.

1.2 Overview and Organization

This thesis explores widely utilized checksums in the literature including the following: one’s

complement Internet checksum, Fletcher checksum, Adler checksum, and CRC32C (Castagnoli

Polynomial 0x1EDC6F41 [10]). The CRC is not technically a checksum as it uses base two poly-

nomial division to calculate the remainder. However, the term checksum is generically used in the

literature. For the one’s complement checksum and CRC32C, we have examined both software and

hardware instruction implementations (i.e., add-with-carry instruction for one’s complement addi-

tion and the CRC32C instruction for CRC). We have done a comparative performance evaluation

of these algorithms to determine how many CPU cycles per byte each algorithm takes.

3

Our results show that a CRC32C implementation using a hardware instruction has the same

order of CPU cycles per byte as does the 16-bit one’s complement checksum. This opens up the

possibility of using CRC32C instead of the 16-bit one’s complement checksum for much stronger

error detection in TCP when the corresponding hardware instruction is available. We propose

using a TCP Option to negotiate the use of the hardware CRC. The enhanced error detection with

improved Hamming Distance (HD) and significantly lower probability of undetected error is well

worth the price of the extra 16 bits per TCP segment.

In Chapter 2, we introduce error detection describing some of the characteristics of the error

detection algorithms, and we review the literature. In Chapter 3, we introduce the theory behind

the CRC, and discuss why we recommend using CRC32C in TCP. We also state some of the useful

properties of the CRC.

Chapter 4 of this thesis explains the working details of all the algorithms that have been consid-

ered in this research (e.g., one’s complement checksum, Adler-32 checksum, Fletcher-32 check-

sum, and many variants of the CRC32C algorithms). We discuss the details of the benchmark

routine that we have used in our research in Chapter 5. We also discuss how we carried our tests

across different platforms. We present the experimental results in the Chapter 6. In Chapter 7,

we propose the use of a TCP Option in order to incorporate the CRC32C in TCP, and we finally

present our conclusions in the Chapter 8.

4

2. BACKGROUND AND RELATED WORK

2.1 Error Detection

Everything we transmit over the Internet is a string of zeroes and ones. A bit is said to be in

error when either it is flipped from one to zero or vice-versa. Bit errors show up occasionally due to

electrical interference or noise, switch/router memory errors, faulty Network Interface Controller

(NIC), etc. These errors need to be detected using some mechanism; otherwise, the data received

at the end node might be accepted in error. A checksum is used in TCP to preserve data integrity.

The checksum is calculated by summing up all the bytes or words taken from the stream of bytes,

and we send it as additional bits along with the data bits. The destination node recomputes the

checksum, and if it matches with the one that is received, then with some probability we would

infer that the received stream of bytes is error free. However, it is also possible that bit errors are

introduced in both the data and/or the checksum in such a way that the modified stream of bytes

sums up to a modified checksum leading to an undetected error. There is a trade-off among the

checksum algorithm’s computational complexity, number of bits used for the checksum field, and

the probability of undetected errors (Pud) [11].

CRC32 is used in Ethernet for error detection in the received frame. A 32-bit generator poly-

nomial is used to generate the CRC, which is appended as a trailer after the end of the message.

Mathematically, a CRC is generated by treating a stream of bits as a polynomial over GF(2) (i.e.

with the polynomial coefficients being 0 or 1) and dividing that polynomial by a generator poly-

nomial. The quotient of that division is discarded and the remainder is the desired Frame Check

Sequence (FCS). Validation of the FCS [12] is done by comparing the FCS calculated at the re-

ceiver end with the FCS that is received along with the rest of the data. If they do not match, then

an error has occurred, and the frame is treated as invalid. Based on experimental results, all of

the CRCs appear to be data independent; whereas, addition-based checksums, like the one’s com-

plement and Fletcher checksums, have shown data dependencies [11]. The CRCs are considered

5

data independent, because the error detection performance is not affected by the data-word values.

However, as the probability of undetected error is affected by the distribution of data-word values

for the addition-based checksums, they are considered data dependent [11].

2.2 Error detection code effectiveness measures

2.2.1 Hamming Distance

The Hamming Distance (HD) of an error detection algorithm is defined as the minimum num-

ber of bit errors required to convert one valid codeword into another valid codeword. A code is

said to detect n number of bit errors if the minimum HD between any two valid codewords is at

least n + 1. For example, an error detection code with HD=3 would be able to detect all possible

one and two-bit errors but would miss at least one three-bit error out of the entire space of three-bit

errors. Keeping the checksum size fixed, the Hamming Distance of the error detection code in

general depends on the length of the data. If we increase the length of the data, then the HD would

decrease.

2.2.2 Hamming Weight

For an error detection code, the Hamming Weight (HW) for a certain number of bits is equal

to the number of undetectable errors with that number of bits in error [11]. Assume that the length

of a sample codeword is 100 bits. The number of three-bit errors that could possibly occur is
(
100
3

)
= 100!

3!(100−3)!
= 161,700. Let us further assume that out of 161,700 different possible combinations

of three-bit errors, the error detection code fails to detect 5,000 of such three-bit errors. Therefore,

HW3 is equal to 5,000. If the HW is zero for some number of bits, then all the errors would be

detected for that number of bits.

2.2.3 Probability of undetected error

The probability of undetected error (Pud) for an error detection algorithm is the summation of

probabilities of each number of undetected bit errors. For example, if the codeword length is 10

6

bits and the minimum HD between any two valid codewords is 6, then

P ud =
HW 6(

10
6

) +
HW 7(

10
7

) +
HW 8(

10
8

) +
HW 9(

10
9

) +
HW 10(

10
10

)
This is true because all the 1-bit, 2-bit, 3-bit, 4-bit and 5-bit errors would be detected for our

example error detection code.

2.3 Literature Review

Stone et al. [2] in 2000 noted that “1 datagram in 7,500 passed the link-level CRC but failed the

TCP or UDP checksum.” They have conjectured that the data was corrupted somewhere in the in-

termediate systems (e.g., router) or in the source and destination nodes but not on the transmission

link as the link-level CRC would catch the overwhelming number of these errors. After analyzing

many Internet data traces, they have characterized different types of errors and their sources. “Do

not trust the hardware” was one of the highlighted points of their study. Finally, they have recom-

mended that the crucial applications should use an application-level checksum in addition to the

TCP checksum to better protect the valuable data. It would be interesting to repeat this study to see

if these error rates have decreased in the last 20 years, but these days the privacy concerns would

be difficult to overcome. Certainly error detection in computer system has improved in the last

20 years. For example, the PCI Express (PCIe) serial bus interconnecting the CPU and the NIC

includes a 32-bit CRC for error detection, and high performance Internet backbone routers now

support ECC memory. Nevertheless, there are still many places for errors outside the link layer to

occur.

Jones mentions an outage of Amazon’s S3 storage system in 2008 because of a single-bit cor-

ruption in some of the messages leading to server-to-server communication problems [4]. Manav

mentions Open Shortest Path First (OSPF) corrupted packets that successfully sneaked past the

CRC and IP checksum without getting caught and were delivered to the OSPF stack causing prob-

lems [13]. Jones also describes a bug in the veth kernel module that caused the packets corrupted

by a faulty Ethernet switch to be ignored and silently delivered to the applications in Twitter with-

7

out the TCP checksum being verified and rejected by software.

Saltzer, Reed, and Clark in their classic 1981 paper “End-to-end arguments in system design”

[14] make the case for “end-to-end check and retry.” They provide “a too-real example” to illustrate

their case.

An interesting example of the pitfalls that one can encounter turned up recently at

M.I.T.: One network system involving several local networks connected by gateways

used a packet checksum on each hop from one gateway to the next, on the assumption

that the primary threat to correct communication was corruption of bits during trans-

mission. Application programmers, aware of this checksum, assumed that the network

was providing reliable transmission, without realizing that the transmitted data was un-

protected while stored in each gateway. One gateway computer developed a transient

error in which while copying data from an input to an output buffer a byte pair was

interchanged, with a frequency of about one such interchange in every million bytes

passed. Over a period of time many of the source files of an operating system were

repeatedly transferred through the defective gateway. Some of these source files were

corrupted by byte exchanges, and their owners were forced to the ultimate end-to-end

error check: manual comparison with and correction from old listings [14].

Another real-world incident took place in May and June of 1980 when the failure of a sin-

gle chip on a Network Interface Card (NIC) resulted in false missile launch warnings being sent

from the North American Aerospace Defense Command (NORAD) in Colorado Springs to the Na-

tional Military Command Center (NMCC) in the Pentagon and the Strategic Air Command (SAC)

headquarter in Omaha [15] [16]. The NORAD incident, which did not result in WWIII thanks to

having humans in the decision loop, was due to “checksum offload.” While the original message

was generated correctly on a mainframe with Error Correcting Code (ECC) memory, the message

checksum was calculated in the communication interface board after the data had been corrupted

intermittently by the bad chip. Consequently, the corrupted message had a good checksum.

We seem to have forgotten some of the lessons from the past on the necessity of end-to-end

8

protection of data. In particular, TCP checksum offload and Network Address Translation (NAT)

both violate the end-to-end principle. NAT requires the recalculation of the TCP checksum in the

NAT device because the IPv4 address, and possibly the TCP port number change, when packets

move through a NAT device. These NAT devices are able to compute the new checksum incre-

mentally due to the properties of the one’s complement checksum. While this is clearly a violation

of the end-to-end principle, NAT will be a fact-of-life until IPv6 is universally adopted. The even-

tual transition to IPv6 will hopefully eliminate the need for NAT. The TCP checksum offload is

supported by most Ethernet NIC, and is therefore enabled by most operating systems where the

TCP checksum is computed in the NIC rather than on the host CPU. There is a risk of undetected

errors with this approach since the error detection is no longer end-to-end; nevertheless, it is the

default configuration in many operating systems including Windows 10 [3]. Foong et al. [17] in

2003 estimated that the TCP checksum offload saves about 10% CPU utilization when compared

to software checksum and copy. In our informal tests, TCP checksum offload in Windows 10 with

Gigabit Ethernet, when using the speedtest.net application connected to a campus server, resulted

in approximately 10% increase in throughput.

Request for Comments (RFC) 1071 [18] presents methods to efficiently compute the 16-bit

one’s complement checksum that is used in Internet Protocol version 4 (IPv4), TCP and the User

Datagram Protocol (UDP) for detecting errors. RFC 1071 also discusses how various checksum

properties can be exploited to speed up the checksum calculation. Several numerical examples

and CPU specific algorithms are also provided. The Motorola 68020 chip was reported to take

approximately 2.617 cycles/byte for summing random data taken 32 bits at a time. The appendix

in RFC 1071 characterizes the design features of the TCP checksum function. Several useful

properties of one’s complement addition are commutativity, associativity, existence of inverse and

identity element, and incremental modification.

RFC 1146 [19] describes the 8-bit and 16-bit Fletcher checksum algorithms and describes

a TCP Option mechanism to negotiate the use of these algorithms as an alternative to the 16-

bit one’s complement checksum for error detection. A TCP implementation not recognizing this

9

TCP Option should ignore it silently. However, as this TCP extension did not see widespread

deployment, it was moved to historic status per RFC 6247 [20].

The Adler-32 checksum algorithm is discussed in detail in RFC 2960 [21]. Initially, this check-

sum algorithm was used in the Stream Control Transmission Protocol (SCTP), which was designed

to carry Public Switched Telephone Network (PSTN) signaling messages over IP networks. How-

ever, later it was discovered that the Adler-32 checksum provides weak error detection for small

packets (for example less than 128 bytes), and it was later replaced with the CRC32C [6]. While

the Fletcher checksum performs the addition of a stream of bytes modulo 255 for 8-bit data word

and modulo 65535 for 16-bit data word, the Adler checksum does addition modulo 65521 (the

largest prime number below 65535) for 16-bit block sized data to avoid a possible large class of

16-bit errors that could go undetected [22].

RFC 3385 [5] attempts to find a stronger error detection algorithm for use in the iSCSI protocol.

It compares CRCs with Fletcher, Adler and weighted checksum algorithms with probability of

undetected error (Pud) being the main criteria. The authors have separately analyzed the behaviour

of the checksums in the presence of random independent single bit error and burst errors. They

have cited a paper from 1998 by Stone et al. [23] which shows that the TCP checksum performs

poorly on non-uniform real data. The authors of RFC 3385 have found that “for independent bit

errors, Pud of CRC is approximately 12,000 times better than the Fletcher checksum and 22,000

times better than the Adler checksum.” They ultimately recommended the use of CRC32C as the

error detection mechanism in the iSCSI since the CRC is data independent and offers a much lower

probability of undetected error.

Koopman [24] found a new set of 32-bit CRC generator polynomials that provides a better

Hamming Distance (HD) than the IEEE 802.3 32-bit CRC polynomial (0x82608EDB in the re-

versed reciprocal notation) for Ethernet MTU-sized frames. He has cleverly exploited some less

computationally expensive filtering algorithms to conduct an exhaustive search for 32-bit CRCs

with better error detection properties. He has studied the 32-bit CRC polynomial 0xBA0DC66B

that achieves HD=6 up to a data word length of 16,360 bits (greater than the 12,000 bit typical Eth-

10

ernet MTU sized frame) and HD=4 up to 114,663 bits (greater than the 72,000 bit Jumbo frame).

The IEEE 802.3 CRC32 polynomial (0x04C11DB7) achieves HD=4 up to 91,607 bits and HD=6

up to 268 bits; whereas, the CRC32C polynomial (0x1EDC6F41) achieves HD=4 up to 131,072

bits and HD=6 up to 5,243 bits [24].

Maxino et al. [11] studied the effectiveness of the following error detection algorithms: Ex-

clusive OR (XOR), Two’s complement addition, One’s complement addition, Adler checksum,

Fletcher checksum and CRCs. Their area of interest is embedded control networks and the follow-

ing metrics they used for comparing different checksum algorithms: the probability of undetected

random independent bit errors in a binary symmetric channel (BSC), Hamming Distance and the

probability of undetected burst errors. With the data dependent checksums (e.g., one’s complement

and two’s complement addition, Fletcher and Adler checksum), the authors have shown that the

maximum proportion of undetected errors occurs for random data that has an evenly distributed

zeroes and ones in each bit position in the data block. They have emphasized that a good CRC has

much better HD as compared to that of Adler and Fletcher checksum for a given length of data

and for the equally sized checksums. Moreover, they have found that an optimal CRC with a fewer

number of bits outperforms the Fletcher checksum (e.g, CRC-12 performs better than Fletcher-16

for every possible codeword length all the time). They have also noted that the CRC is more ben-

eficial to use as compared to the other checksums especially when the length of the codeword is

small. Finally, they have concluded that a good CRC polynomial should always be used whenever

computational resources are available.

Daugherty [25] evaluated the risk associated with disabling the iSCSI digest which is essen-

tially a 32-bit CRC. The iSCSI protocol transports the SCSI commands over the TCP/IP network

connecting the data storage centers, and it has a provision for optional header and data digests.

The author has expressed concern for the integrity of data in the absence of the iSCSI digest, as in

such a case the end-to-end error detection is looked after by substantially weaker TCP 16-bit one’s

complement checksum. Moreover, the data corruption that takes place during the Protocol Data

Unit (PDU) handover from TCP to iSCSI would go undetected if the iSCSI digest is not there.

11

They have mentioned that with iSCSI digests being enabled, the data transfer rate could go down

by 5-20% and it is the job of network admin to decide on a case-by-case basis if the data transfer

performance or the data itself is truly valuable.

Kounavis et al. [26] developed CRC slicing-by-4 and slicing-by-8 algorithms, which are soft-

ware based table driven CRC implementations based on the Sarwate algorithm [27]. These two

algorithms use precalculated look up tables of size 4 KiB (KibiByte) and 8 KiB respectively. The

slicing-by-4 algorithm is able to read four bytes of data at a time; whereas, slicing-by-8 can read

eight bytes of data at once. The CRC calculated over the first four or eight bytes is stored in an

accumulator. This accumulator value is used as the initial CRC value to calculate the CRC for the

next chunk of four or eight bytes and so on. They have reported that slicing-by-4 and slicing-by-8

algorithms are respectively two times and three times faster approximately than the Sarwate algo-

rithm that calculates CRC cumulatively over the bytes taking only one byte of data at a time using

a similar table look up approach.

Gueron [28] has used Intel’s CRC32 instruction to transform the traditional latency-bound

CRC32C computations into throughput oriented ones so as to maximize the utilization of the hard-

ware in a pipelined fashion, achieving almost a three times increase in the computational perfor-

mance. He has cleverly used the fact that CRC32 instruction in the Intel instruction set has latency

of three clock cycles and throughput of just one clock cycle. Therefore, he carefully divides the

data buffer into three parts and calculates the CRC32C of these parts one by one in a round-robin

fashion avoiding the waiting time. Finally, he merges the results obtained from these three parts

with some shift and XOR (Exclusive OR) operations to obtain the final resultant CRC32C over the

entire buffer.

12

3. CRC32C

3.1 CRC Math

Cyclic Redundancy Check (CRC) is an error detection algorithm and the objective of the CRC

is to maximize the error detection probability using a fairly small number of redundant bits. For

example, Ethernet uses a 32-bit CRC polynomial 0x82608EDB to provide data integrity for a

frame extending well beyond 1500 bytes.

The message that we want to exchange between the sender and receiver can be represented as a

polynomial [29]. Let us assume that the message has (n+1) number of bits. We can represent this

message as an n-degree polynomial M(x). Suppose we want to send an 8-bit message 11010101.

Its corresponding polynomial representation would be as follows:

M(x) = x7 + x6 + x4 + x2 + 1

In order to calculate the CRC of this message, the source and destination node must choose a

common divisor polynomial (otherwise known as the generator polynomial) G(x) of degree k. Let

us choose G(x) to be x3 + x1 + 1 with k = 3. In binary form, this would be 1011. A well chosen

divisor polynomial can lead to detection of many different types of bit errors.

The message string needs to be appended with k number of zeroes before we perform the

modulo 2 division operation on the message string. Let us call this zero-padded message string

T (x). Now we need to do modulo 2 division of T (x) with G(x) and obtain the remainder. After

that, we need to subtract this remainder from T (x). This is the same as appending the remainder to

the original message string (M(x)), as the addition and subtraction operations are both Exclusive-

OR (XOR) in modulo 2 arithmetic. Now we can send the message string, appended with the

remainder, to the destination node. The receiver node can do the same modulo 2 division of the

received polynomial with G(x) and check the obtained remainder to see if it is zero. The zero

remainder shows that no errors have been introduced in the received polynomial. The receiver can

13

otherwise check the integrity of the received message by keeping the remainder (the CRC) aside

and calculating the remainder once again by doing modulo 2 division of the zero padded message

string T (x). If the calculated remainder matches with the remainder received, then with much

higher probability we can infer that the received message is error free.

Let us illustrate the modulo 2 division process with our example message string 11010101. The

chosen divisor string is 1011 and the zero-padded message string would be 11010101000.

1111011
—————–

1011)11010101000
1011
—————-

1100
1011
—————
1111
1011
————–
1000
1011
————-

111
000
———–
1110
1011
———–
1010
1011
———-

010
———-

After the modulo 2 division, we get 010 as remainder. If we append this to the message string,

we get 11010101010. This is what the sender needs to send to the receiver.

14

3.2 Why CRC32C?

CRC32C uses the 32-bit generator polynomial (Castagnoli polynomial) x32 +x28 +x27 +x26 +

x25 + x23 + x22 + x20 + x19 + x18 + x14 + x13 + x11 + x10 + x9 + x8 + x6 +1 [10]. In hexadecimal

form, we represent it as 0x1EDC6F41 and the binary representation is as follows:

1 0001 1110 1101 1100 0110 1111 0100 0001

Ignoring the first one from the left, if we reverse the above binary notation, then we get:

1000 0010 1111 0110 0011 1011 0111 1000

and its corresponding hex notation is 0x82F63B78. There exists two other notations as well;

reciprocal (0x05EC76F1) and reversed reciprocal (0x8F6E37A0).

The effectiveness of a CRC polynomial for a particular codeword length depends on the mini-

mum Hamming Distance (HD) that it provides among the codewords. The larger the minimum HD

at a certain codeword length, the better the CRC polynomial. The IEEE 802.3 CRC32 polynomial

(0x04C11DB7) achieves HD=4 up to 91,607 bits and HD=6 up to 268 bits; whereas, CRC32C

achieves HD=4 up to 131,072 bits and HD=6 up to 5,243 bits [24]. Therefore, CRC32C has better

error detection performance as compared to Ethernet CRC32.

Koopman [24] has recommended the use of 32-bit CRC polynomial 0xBA0DC66B in the

newer protocols for significantly improved error detection as it provides HD=4 up to 114,663 bits

and HD=6 up to 16,360 bits, and therefore it is much better than IEEE 802.3 CRC and CRC32C.

However, modern Intel processors have hardware instructions for CRC32C, and ARM processors

have hardware instructions for Ethernet CRC32 and CRC32C. Neither Intel nor ARM processor

has hardware accelerated support for computing Koopman CRC32. This is the primary reason why

we are recommending the use of CRC32C polynomial in order to perform hardware accelerated

CRC32 computation with better end-to-end error detection in TCP. The carry-less multiplication

15

based Koopman CRC32 computation would be more expensive.

CRC has some useful properties listed below:

• CRC is data independent because the relative positioning of bits in the data blocks does

not affect the error detection performance unlike the one’s complement checksum where the

simultaneous flipping of zero and one bits in the same bit position in the data block would

lead to an undetected error.

• CRC obeys linearity principle. Mathematically,

crc(a⊕ b⊕ c) = crc(a)⊕ crc(b)⊕ crc(c) (XOR)

crc(a · b · c) = crc(a) · crc(b) · crc(c) (carry-less multiplication)

• CRC with k-degree generator polynomial (G(x)) having non-zero coefficients for the terms

xk and x0 is able to detect all single bit errors.

• CRC with the generator polynomial having a factor with at least three terms is able to detect

all double bit errors.

• CRC with the generator polynomial having the factor (x + 1) is able to detect any odd number

of errors.

• CRC with k-degree generator polynomial is able to detect any burst error for which the burst

length is less than k number of bits. Many burst errors with the burst length greater than k

bits can also be detected [29].

The CRC32C polynomial exhibits all of these properties, and the probability of undetected

error is much better for CRC32C (approx. 2-32) as compared to the 16-bit one’s complement

checksum (approx. 2-16). If we consider the packet length to be around the Ethernet MTU size,

then CRCs are much more effective at such codeword length as compared to Fletcher and Adler

checksums [11].

16

4. CHECKSUM AND CRC ALGORITHMS

4.1 One’s complement checksum

Almost every modern computer uses two’s complement to represent the integers. In order to

perform one’s complement addition on a two’s complement system, we need to do end-around

carry, i.e., any overflows from the most significant bit need to be added to the least significant bits

[18].

One’s complement checksum can be incrementally modified. The CRC also could be poten-

tially modified incrementally (because of the linearity property) as stated in RFC 3385 [5]. How-

ever, the Internet Experiment Note (IEN) 45 by Bill Plummer, available as extended appendix to

RFC 1071 [18], states that CRC cannot be incrementally modified. One’s complement addition has

some useful properties like commutativity, associativity and byte order independence. As we take

the carry bit coming out from the Most Significant bit (MSb) into consideration by means of wrap

around and adding back to the Least Significant bit (LSb), the bit flips affecting pair of zeroes

and/or pair of ones in the MSb can be detected by one’s complement addition based checksum.

However, the two’s complement addition based checksum would not be able to detect this [18].

In this research, we have considered three versions of the one’s complement checksum algo-

rithm which are described here.

4.1.1 One’s complement checksum with 16-bit data word

By 16-bit word length, we mean 16-bit worth of data is taken at a time to perform the one’s

complement addition. The algorithm is really simple indeed. The adjacent bytes upon which

the algorithm intends to run are paired to form 16-bit (double byte) words, and then we do one’s

complement addition of these 16-bit words sequentially until we reach the end of the data buffer.

If we have odd number of bytes in our data buffer, then we need to pad a zero byte at the end to

make the total number of bytes in the buffer a multiple of 2. In a C program, this is typically done

via typecasting. On a little-endian machine, the buffer can be thought of as an array of 16-bit words

17

of the type uint16_t. At the instant when we are done checksumming all of the 16-bit words except

the last remaining byte, the pointer points to this last byte in the buffer. Now we can typecast the

buffer to the type uint8_t and add the last byte to the sum. This typecasting is needed to ensure that

all the Least Significant Bytes (LSBs) of the 16-bit words are summed together and similarly all

the Most Significant Bytes (MSBs) are added together. On a big-endian machine, we do not need

this sort of typecasting as the last byte would be automatically added to the MSB of the 16-bit sum.

Actually, in the C program, we store the sum in a 32-bit accumulator. The overflows from the

16-bit one’s complement addition is stored in the upper two bytes of this accumulator. At the end

of the entire checksumming process, we shift the content in the upper two bytes of the accumulator,

and add it to the lower two bytes of this accumulator. There may be an overflow one more time

resulting from this addition, and we need to follow the same process of shifting and adding the

upper two bytes to the lower two bytes of this accumulator to get the final sum. Finally, the sum

(accumulator) is inverted, and this inverted sum (typecasted to uint16_t) is returned as the output

of this algorithm.

4.1.2 One’s complement checksum with 32-bit data word

Here the consecutive bytes in the data buffer are clustered to form 32-bit (four byte) words.

The buffer can be interpreted as an array of 32-bit words of the type uint32_t. We do a one’s

complement sum of these 32-bit words while the length1 of the buffer is greater than or equal to

four. After each iteration of addition of 32-bit words, we decrement the length of the buffer by

four.

Once the remaining length of the buffer falls below four, we check to see if that length is greater

than or equal to two. If it is so, then we typecast the buffer to uint16_t type and add the next two

bytes directly to the previously calculated sum. Then we further decrement the buffer length by

two. If there is still a left out byte that needs to be taken care of, then we typecast the buffer to

uint8_t type, and add the last byte to the accumulated sum.

We can use 64-bit accumulator to hold the sum of the 32-bit words and the remaining two

1Buffer length is in bytes

18

byte and/or one byte words present in the buffer. To account for the overflows from the one’s

complement addition, that is stored in the upper four bytes of the accumulator, we need to add

those upper four bytes to the lower four bytes. This operation is called “folding”. Once again we

may get some overflow bits which we need to add to the least significant bits of the accumulator.

Finally, with the upper four bytes cleared off, the lower four bytes again need to be folded to get a

16 bit word and possibly some more carry bits. Every time we get carry bits, we have to perform

end-around carry. The 16-bit inverted sum is the final return value of this algorithm.

4.1.3 One’s complement checksum with 64-bit data word

Until now, we have not considered adding two 8-byte data words at a time. If we go for adding

two such 64-bit data words in a C program, we will loose the carry bit resulting from that addition

because we do not have access to the carry flag in the C programming language. Rather we can use

x86_64 assembly language, where we can take advantage of the “adc” (add with carry) instruction.

If the length of the data buffer and the CPU info, where the code would be deployed, is known

beforehand; then we can precisely optimize the code by exploiting techniques like “loop unrolling”

and “code vectorization”. Here we describe a generalized version of the algorithm.

First we check if the length of the buffer is greater than or equal to 32 bytes. If the buffer

length happens to be greater than 32, we add first 8 bytes of the buffer to the initialized value of

the sum (which is a zero for the TCP checksum). Using the adc instruction, we can then add the

next sequence of 8 bytes to the previous sum value and so on. We also decrement the length of the

buffer by 32 at the end of each iteration. The adc instruction takes into account the carry flag that

might have been set by a previous summation operation.

If the buffer length drops below 32, we check if it is greater than or equal to 16. If it is so, then

we add the sequentially present next two 8 bytes in the buffer in two steps taking carry bit into

consideration, and decrement the buffer length by 16. Then we check if the buffer length is greater

than or equal to 8. For the true case, we add the next contiguous 8 bytes to the accumulated sum

and decrement the length by 8. We check next if the buffer length is greater than or equal to 4,

and if true, we add the next 4 bytes in the buffer to the lower 4 bytes of the accumulated sum in a

19

64-bit register. Then we decrement the length of the buffer by 4. After that, we check if the buffer

length is greater than or equal to 2. If yes, then we add the next 2 bytes in the buffer to the lower 2

bytes of the accumulator. Finally, to see if there is still a byte that is left out, we check if the buffer

length is greater than 1. If the condition satisfies, then we add the remaining last one byte in the

buffer to the LSB of the accumulator.

Now we need to fold the 64-bit sum that is stored in the accumulator to a 16-bit sum value.

This folding process has already been described before. Finally, we invert the 16-bit sum, and

return that as the output of this algorithm.

4.2 Fletcher-32 checksum

In a one’s complement checksum, we add the consecutive 16-bit words one by one. If those

double byte words in the buffer interchange their position because of any hardware/software error,

then the one’s complement addition does not change as it is insensitive to the positioning of those

16-bit words in the buffer. The Fletcher checksum was introduced by John G. Fletcher to address

this particular issue of position sensitiveness of the bytes in the buffer [30].

The 32-bit Fletcher checksum is significantly better than the 16-bit one’s complement check-

sum because of two primary reasons. The first reason being 16-bit one’s complement checksum

value does not change with the swapping of 16-bit words within the buffer and hence the error

would go undetected. However, the Fletcher checksum would be able to detect those transposition

of 16-bit words in the buffer. Secondly, the 32-bit Fletcher checksum provides a checksum value

occupying 32 bits, and this means that the probability of undetected error (Pud) for any random data

would be about 1

232 . As the checksum size is only 16 bits in case of the 16-bit one’s complement

checksum, this checksum algorithm has about 1

216 probability of not detecting the error which is

much higher than that of the Fletcher checksum algorithm.

We have considered only the 32-bit Fletcher checksum in our work, although other variants

exist (e.g., Fletcher-16). The computational optimizations suggested by Nakassis [31] have also

been incorporated. The implementation details are widely available in the Internet, and we intend

to describe here the basic framework of the algorithm. For the 32-bit Fletcher checksum, the data

20

buffer is treated as an array of 16-bit words. Two running sums are computed, which are each of

size 16 bits. These sums are accumulated, however, in two 32 bit variables (e.g., sum0 and sum1)

that are initialized to zero. The following two summations are central to this algorithm.

sum0 = sum0 + *data++; sum1 = sum1 + sum0;

We perform the above two additions inside a loop where the loop iterates over 360 times if the

buffer length is greater than or equal to 360 number of 16-bit words. However, if the buffer length is

less than 360 double byte words, then the above two additions are performed that many times. The

rationale behind this is, there will not be any overflow from these two 32-bit accumulators (sum0

and sum1) until 360 iterations. So, after 360 iterations, we need to fold the 32-bit accumulated

sum values into 16-bit sums. If we still have more remaining 16-bit words in the buffer, then we

need to further execute the loop that many times, and fold the accumulated sums once again and

so on. Finally, we need to do the fold operation one more time to ensure that sum0 and sum1 do

not have any bits left (i.e. the carry) in their upper 16 bits. We return the concatenation of sum1

and sum0 as the 32-bit output. This is achieved by left shifting the sum1 by 16 bits and ORing

the result with sum0.

If there are N number of 16-bit words in the buffer (zero padding needed for odd buffer length

in bytes), then sum0 would contain data[0] + data[1] + ... + data[N-1], which

is nothing but the one’s complement addition of the 16-bit data words. The sum1 would contain

N.data[0] + (N-1).data[1] + ... + data[N-1].

4.3 Adler-32 checksum

While the Fletcher-32 checksum performs one’s complement addition modulo 65535, the Adler-

32 checksum uses a prime modulus (65521) [22]. It is very similar to Fletcher-32 checksum.

In this algorithm, we initialize sum0 to 1 and sum1 to 0. The modulo sums that we do in this

21

algorithm are as follows:

sum0 = (sum0 + *data++) mod 65521; sum1 = (sum1 + sum0) mod 65521;

Here the data is of type (unsigned char *) and the accumulators (sum0 and sum1) are of type

unsigned long. sum0 basically contains the sum of the bytes present in the buffer and sum1

contains the running sum of sum0. Because of the modulo operation, the sum0 and sum1 would

never be more than 16 bits. Once those two sums are computed over the entire length of the buffer,

we now concatenate sum1 with sum0 and return that as output. This concatenation can be done

by left shifting the sum1 by 16 bits and adding it to sum0.

The Adler-32 checksum is much better than 16-bit one’s complement checksum for the same

reasons why the Fletcher-32 checksum is better than 16-bit one’s complement checksum as men-

tioned before. Since the Adler-32 checksum uses a prime modulus, the hope is that it will catch

certain patterns of error that the Fletcher-32 checksum would miss otherwise [11].

4.4 Cyclic Redundancy Check (CRC)

The CRC algorithm dates back to the 1960s [32]. There are many tutorials and guides available

[33] [34] [35] that have extensively discussed hardware (shift register based) and software imple-

mentations of the CRC algorithm. Here we present only those algorithms that we have included

in our research work. In each of these algorithms, we have used CRC32C (Castagnoli Polynomial

0x1EDC6F41) and the “reflected bit order” for both the input and the resultant CRC. Also the ini-

tial CRC value is 0xFFFFFFFF and the final XOR value is 0xFFFFFFFF. We have used reflected

look up table (LUT) in the table driven algorithms.

4.4.1 CRC32C bit-wise

In this algorithm, the first byte in the buffer is bit reflected (destination[7 : 0] ← source[0 :

7]), left shifted by 24 bits and XORed with the initial CRC value. Next, within a loop, we check

if the most significant bit of the resulting CRC is set. If it is set, then we left shift the CRC by 1

bit and XOR with the CRC32C polynomial. Otherwise, we just left shift the CRC by 1 bit. We

22

continue this checking of CRC most significant bit set condition until we pop out 8 most significant

bits of the running CRC. Once we have done checking this, we decrement the length of the buffer

and increment the buffer pointer to point to the next byte in the buffer.

Now we again bit reflect this byte, shift it left by 24, XOR it with the running CRC, and then

the checking of MSb set condition ensues as described earlier. By the time we cover all the bytes

present in the buffer, we would get our final CRC which needs to be bit reflected (destination[31 :

0] ← source[0 : 31]). This final bit reflected CRC also needs to be XORed with the final XOR

value. As XORing a variable with all 1s is same as inverting the variable, we can go for inverting

the final bit reflected CRC instead of doing the XOR. This inverted bit reflected CRC is the final

return value of this algorithm.

This algorithm is considered naive; as it only takes into account one bit at a time, does multiple

operations just for this one bit and then moves on to the next bit. This algorithm is therefore very

inefficient.

4.4.2 CRC32C nibble-wise

This algorithm takes 4 bits of the input data at a time, and uses a reflected look up table having

16 number of 32-bit entries to find the CRC. As the nibble (4-bits) can be anything from 0000

(0x0) to 1111 (0xF), we have total 16 number of entries in the LUT. The entries are basically

CRC[0x00], CRC[0x10], CRC[0x20], .., CRC[0xF0]. Here we present an example that

shows how to calculate the CRC32C2 of a byte using the nibble-wise algorithm.

CRC[0x73] = CRC[(CRC[0x3] ^ 0x7) & 0x0F] ^ (CRC[0x3] >> 4)

In the above equation, CRC[0x3] is actually mapped to CRC[0x30] which is the fourth entry in

the look up table used over here.

Using this nibble-wise algorithm, we can significantly improve the speed of calculating the

CRC of the input data bytes compared to the bit-wise algorithm. We need 22x24 = 64 bytes of

storage space to hold the look up table, and it is completely worth it given the enhanced error

2The terms CRC and CRC32C have been used interchangeably

23

detection performance that we get with CRC32C.

4.4.3 CRC32C byte-wise

Here we directly take a byte at a time into consideration in order to calculate the intermediate

value of CRC. Hence, this algorithm is significantly more computationally efficient as compared

to the bit-wise and nibble-wise algorithms. The data buffer is treated as a sequence of bytes. We

need to do table look ups to find the CRCs of the individual bytes in the buffer. The table that

we have used in our work is the reflected look up table, where each input byte is bit reflected and

their corresponding CRCs are also bit reflected. The initial CRC value and the final XOR value are

both 0 for each of the entries in the table. This reflected LUT, for the byte-wise algorithm, has 256

entries (each 32-bit wide). So, the table size is 22x28 = 1 KiB.

The first byte in the buffer is XORed with the LSB of the initial CRC value to get an 8-bit

number. This 8-bit value is used as an index to find the corresponding entry in the table. The initial

CRC is right shifted by 8. The resulting value is XORed with the reflected CRC value (that we

found from the previous table look up) to get the intermediate CRC for our first byte in the buffer.

Then we decrement the buffer length and increment the buffer pointer. Now we XOR the next

byte in the buffer with the LSB of the previously calculated intermediate CRC. This gives us the

index to look up the corresponding CRC value in the table. The previously calculated intermediate

CRC (for the first byte) is right shifted by 8, and then XORed with the CRC (found from the LUT)

to give the intermediate CRC. By this step, we have processed two bytes in the buffer. For the

subsequent bytes, we need to follow the same routine again. Once we are done with all the bytes

in the buffer, the last CRC value that we get needs to be inverted, and is returned as the output of

this algorithm. Since we have used the reflected look up table in this byte-wise algorithm, we do

not need any further bit reflection of the final CRC value.

4.4.4 CRC32C slicing-by-4

The byte-wise algorithm, even though performs much better when compared to the bit-wise

algorithm, is still not that efficient. Because, these days, typical word size in a system is 32 bits

24

or 64 bits. So, if we can process 32 bits or 64 bits at a time, then the performance would improve

significantly.

In the slicing-by-4 algorithm, we use a table of size 4x256 with each entry being of size 32

bits. Hence, the total space needed to store the table is 22x28x22 = 4 KiB. This table makes use of

the linearity property of the CRC. Let us visualize this. Let us assume a four byte data value be

0x01 0x02 0x03 0x04. Following the linearity principle of CRC,

CRC[0x01 0x02 0x03 0x04] =

CRC[0x01 0x00 0x00 0x00] ^

CRC[0x00 0x02 0x00 0x00] ^

CRC[0x00 0x00 0x03 0x00] ^

CRC[0x00 0x00 0x00 0x04]

CRC[0x00 0x00 0x00 0x04] is same as CRC[0x04] as the leading zeroes do not affect the

CRC value. Similarly, CRC[0x00 0x00 0x03 0x00] is same as CRC[0x03 0x00], and

CRC[0x00 0x02 0x00 0x00] is equivalent to CRC[0x02 0x00 0x00]. We can look up

these CRC values in the look up table (LUT) as follows:

CRC[0x00 0x00 0x00 0x04] = LUT[0][4]

CRC[0x00 0x00 0x03 0x00] = LUT[1][3]

CRC[0x00 0x02 0x00 0x00] = LUT[2][2]

CRC[0x01 0x00 0x00 0x00] = LUT[3][1]

Here, we have denoted the look up table as LUT[4][256] which is a two-dimensional array

with 4 number of rows (0 to 3) and 256 number of columns (0 to 255). LUT[0][4] is row-0 and

column-4 entry in the look up table, and it gives the CRC32C value for the byte 0x04. For the byte

value 0x03, that is left shifted by 8, we need to find the row-1 and column-3 entry in the look up

table in order to calculate the CRC32C. Now, we can observe a pattern in looking up entries in

the look up table. For the MSB of a 4 byte entity, we need to look up the row number 3 and use

the MSB value as an index to find the corresponding column entry. That entry would give us the

25

CRC32C value for the MSB of a 4 byte number. Similarly, for the other bytes of a 4 byte entity,

we can find their CRC32C values by appropriately referring to the look up table.

In order to calculate the final CRC32C value for the entire buffer, we need to treat the buffer

as an array of 4 byte entities. If the buffer length is not a multiple of 4, then the remaining 1 to 3

bytes can be taken care of by the byte-wise CRC32C algorithm. To begin with, first we take the

starting 4 bytes of the buffer, and then use the look up table as described above to find the CRC.

Then we increment the buffer pointer to point to the next 4 bytes and XOR it with the CRC value

(calculated before) for the first 4 bytes in the buffer. The resulting 4 byte value is split into 4 parts

so as to index into the look up table appropriately and calculate the CRC. By this step, we have

finished processing the first 8 bytes in the buffer. This is how we can continue processing the next

bytes present in the buffer. Once we are done calculating the final CRC, we need to invert it and

return as the output of the slicing-by-4 algorithm.

4.4.5 CRC32C slicing-by-8

To increase the computational efficiency even further, we can treat the buffer as an array of 8

byte values. If the buffer size is not a multiple of 8, then the remaining bytes could be handled

using the standard byte-wise CRC32C algorithm. The slicing-by-8 algorithm is very similar to

slicing-by-4. In slicing-by-8, we use a look up table of size 8x256 with each entry being 32 bits

wide. The total space that the look up table occupies would be 23x28x22 = 8 KiB. For a sample 8

byte data, 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08, we can calculate the CRC following the

linearity principle of CRC as follows:

CRC[0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08] =

CRC[0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00] ^

CRC[0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00] ^

CRC[0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00] ^

CRC[0x00 0x00 0x00 0x04 0x00 0x00 0x00 0x00] ^

CRC[0x00 0x00 0x00 0x00 0x05 0x00 0x00 0x00] ^

CRC[0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x00] ^

26

CRC[0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00] ^

CRC[0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08]

We can represent the look up table as LUT[8][256], and use the byte values to index into the

look up table as follows:

CRC[0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x08] = LUT[0][8]

CRC[0x00 0x00 0x00 0x00 0x00 0x00 0x07 0x00] = LUT[1][7]

CRC[0x00 0x00 0x00 0x00 0x00 0x06 0x00 0x00] = LUT[2][6]

CRC[0x00 0x00 0x00 0x00 0x05 0x00 0x00 0x00] = LUT[3][5]

CRC[0x00 0x00 0x00 0x04 0x00 0x00 0x00 0x00] = LUT[4][4]

CRC[0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00] = LUT[5][3]

CRC[0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00] = LUT[6][2]

CRC[0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00] = LUT[7][1]

The pattern similar to that used in slicing-by-4 is employed here to look up the CRC value of a

byte. The index value depends on the position of the byte within the 8 byte entity and the byte

value as well.

Once we are done handling all the 8 byte entities and possibly some left out bytes present in

the buffer, we will get the final CRC value. Then we need to XOR it with 0xFFFFFFFF (same as

inverting) and the resulting value is what we return as the output of this algorithm.

4.4.6 CRC32C using Intel Intrinsics

Intel Intrinsics provide C++ application programming interfaces (APIs) which use assembly

instructions at their core [36]. These intrinsics are also expanded inline and therefore, the function

call overhead is eliminated. They improve the code readability, as the programmer does not di-

rectly code the assembly instructions. SSE4.2 instruction set added the CRC32 instruction for the

very first time [37]. On an Intel system, we can check for the presence of CRC32 instruction by

executing the CPUID instruction with EAX = 1, and after that we can check to see if the bit 20 of

ECX is set or not.

27

The CRC32 instruction takes two operands. The destination operand holds the initial CRC

value and the source operand points to the buffer on which the CRC32C value needs to be calcu-

lated. The computed CRC value is stored in the destination operand. While the source operand can

be a memory location or a register, the destination operand needs to be a 32-bit or a 64-bit register.

We have 8-bit, 16-bit, 32-bit and 64-bit variants of the hardware CRC32 instruction that uses the

Castagnoli Polynomial 0x1EDC6F41. Further details of the CRC32 instruction can be found in

the SSE4 programming reference [7].

The algorithm that computes CRC32C with Intel Intrinsics uses the following built-in func-

tions: _mm_crc32_u64, _mm_crc32_u32, _mm_crc32_u16 and _mm_crc32_u8. First, we try to

divide the input data buffer into 8 byte chunks, and use _mm_crc32_u64 in a loop to calculate the

CRC of 8 bytes of data at a time. We accordingly increment the buffer pointer as well. We can

then use _mm_crc32_u32 (if the buffer length is greater than or equal to 4) to calculate the CRC

of the next 4 bytes of data. If the remaining length of the buffer is still greater than or equal to 2,

then we use _mm_crc32_u16 to take care of the next 2 bytes of data. The last but one byte can be

taken care of by the built-in function _mm_crc32_u8, and we get our final CRC value. This final

CRC value needs to be inverted and is returned as the output of this algorithm.

4.4.7 CRC32C using PCLMULQDQ and CRC32 instructions on Intel

The white paper [37] by Gopal et al. provides a detailed discussion of the implementa-

tion of the CRC32C algorithm on Intel processors using the hardware instructions CRC32 and

PCLMULQDQ. Here we try to present the key features of this algorithm.

The algorithm cleverly uses the fact that “CRC32 instruction has a latency of 3 clock cycles

and a throughput of 1 clock cycle.” This means, if we use the CRC32 instruction to calculate

the CRC32C of the data byte-by-byte or multi byte word-by-word, then the subsequent bytes or

words in the buffer have to wait for at least 3 clock cycles in order for the CRC computation on the

previous byte or word to finish first. This CRC32 instruction has been described in the previous

algorithm.

We divide the buffer into three parts such that we can process 8 bytes of data at a time, starting

28

from these three offsets, in parallel. This parallelized CRC computation is done to improve the

overall throughput of the process. Once we get the individual CRC values of these three segments,

we need to recombine these CRCs to get a resultant CRC.

In this algorithm, the recombination step is done using the PCLMULQDQ instruction. As we

calculate the CRC values of the three parts of the buffer beginning at three different offsets, we

get the CRC values at three different offsets as well. The CRC values of the first two parts of the

buffer need to be shifted to the right so as to align with the CRC value of the last part of the buffer.

Using the carry less multiplication, we can shift those 2 CRC values to the right. In addition to

shifting the CRC values to the right, the carry less multiplication also increases the size of shifted

CRC values to 64 bits. So, we need to calculate again the CRC of each of these shifted values, and

then XOR the results together with the CRC value calculated on the last part of the buffer that is

already there in its correct position. This is how we obtain the resultant CRC of those three parts

of the buffer via the recombination step.

If we still have some remaining bytes in the buffer that have not been processed, then we can

start processing the rest of the buffer 8 bytes at a time. Once the remaining buffer length becomes

smaller than 8 bytes, we can process the next 4 bytes of data at a time (if the buffer length is greater

than or equal to 4). The remaining 2 bytes and/ or 1 byte of data can be taken care of by the 16-bit

and/ or 8-bit version of the CRC32 instruction. The final CRC value needs to be inverted, and is

returned as the output of this algorithm.

4.4.8 CRC32C using CRC32 instruction on Intel and table-based recombination

Mark Adler has provided a code (specific to Intel CPUs supporting SSE4.2 CRC32 instruction)

on Stack Overflow that computes the CRC32C of the input data buffer using the hardware CRC32

instruction [38]. Fundamentally, this code is very similar to the previous algorithm where we

divide the buffer into 3 parts, calculate the CRCs independently, and recombine them at the end to

obtain the resultant CRC.

The code provided by Adler also divides the input data into three large parts, and calculates the

CRCs of those three parts independently using the 64-bit variant of the hardware CRC32 instruc-

29

tion (crc32q). However, this code recombines those CRCs with differing offsets via the table look

up method instead of using the PCLMULQDQ (carry less multiplication) instruction. The size of

this look up table is 22x28x22 = 4 KiB. This look up table holds the CRCs for the bytes that have

been appropriately left shifted by a fixed large value. The CRC value that we calculate for the first

part of the buffer (let us say crc0) and for the second part of the buffer (let us say crc1), needs to be

aligned with the CRC value obtained from the third part of the buffer (let us say crc2). To achieve

this, the code first aligns crc0 with crc1. This is done by segregating the four bytes that make up

crc0, looking up the CRC values corresponding to these bytes, and XORing them together. After

this step, whatever we get aligns perfectly with crc1 and hence can be XORed directly with crc1.

At this point, whatever 32-bit value we have now needs to be aligned with crc2 and we can follow

the same procedure again. At the end, we get the final CRC value of those three parts of the buffer

taken together.

This code also tries to divide the buffer into three small parts if the remaining buffer length is

not suitably large. The final CRC value obtained in the last step, as described above, is considered

as the initial CRC value here. Then, the code calculates the CRCs of these three small parts of the

buffer independently, and recombines them at the end to get the resultant CRC of those three small

parts taken together. To achieve this, it uses one more look up table of size 22x28x22 = 4 KiB.

So, in total, Adler’s code uses 8 KiB worth of space to store the LUTs. The look up table used

over here carries the CRCs of the bytes that have been left shifted by a fixed small value. We can

calculate the CRCs of the three individual small parts of the buffer, and recombine them at the end

just like the way we did for the three larger parts of the buffer.

After all these steps, if we are still left with some data bytes in the buffer, then the CRC is

calculated in a linear fashion (8-byte at a time, and then 1-byte a time). The final CRC value

obtained is inverted, and is considered as the return value of this algorithm.

30

5. RESEARCH METHODOLOGY

Our objective is to benchmark the variety of checksum and CRC algorithms found in the lit-

erature and to make a recommendation for improved end-to-end error detection in TCP using the

algorithm that best meets the needs of both the source and destination node.

First, we tried to analyze how all the different checksum and CRC algorithms work. Many of

the CRC algorithm implementations found in the Internet have not taken the reflected bit order

and the reflected CRC into account correctly [39] [40] [41]. Those implementations did not pass

the test routine that we have created with specific use cases. We have referred to many GitHub

repositories available in the Internet to get a fair idea about the standard benchmarking practices

[42] [43] [44].

We used C and Assembly language programs to test the checksum and CRC implementations.

All the codes have been tested on 64-bit platforms only. The compilers and assemblers that we

used are gcc, nasm and yasm. We did not program any new checksum algorithms. Rather, we

referred to several of the checksum implementations available in the literature (open source) since

these algorithms are well known in the area of communications and networking. Wherever we

found errors or inconsistencies with respect to these implementations, we made necessary changes

so as to properly calculate the iSCSI CRC32C. We developed a custom benchmark routine that

calculated the number of CPU cycles per byte that each of the checksum and CRC algorithms

require for execution. This benchmark method is targeted to meet the objective that we have set at

the very beginning, and hence it takes into consideration some specific buffer sizes of interest and

some selected algorithms.

The execution time of the CRC algorithm is independent of the data because the data word val-

ues do not affect the CRC computation time. In contrast, the execution time of the one’s comple-

ment addition-based checksum algorithms is dependent on the data, e.g., the 16-bit TCP checksum

has to implement end-around carry whenever there is a carry from the most significant bit. So,

if we get such overflow (carry) while doing the one’s complement addition of certain data word

31

values, then more execution time would be required. Hence, we chose to use random source of

data like /dev/urandom which serves as pseudorandom number generators (PRNG). This random

data served as the input buffer for the algorithms under consideration. In each iteration inside a

loop, we read a fixed number of bytes (e.g., 641, 128, 256, .., 15002, .., 90003, .., 65536) from the

file /dev/urandom, and stored them in a buffer. Then, we passed the buffer pointer, the length of

the buffer and the initial value of the checksum (or CRC) to the checksum or CRC algorithm that

is currently being tested.

To check the correctness of an algorithm, we created test cases where we provided some fixed-

length specific sequence of bytes as input, and we also supplied the expected checksum or CRC

value for these sequence of bytes. We calculated this expected checksum value by hand, and we

obtained the expected CRC value using the reference [45]. Our test routine called each of the

checksum and CRC algorithms, and ran these test cases for each of them. The success/failure

information was printed on the console.

Figure 5.1: One’s complement checksum test case

In our benchmark routine, we did not change any CPU scheduler parameters. Also, we did not

1Representative of ACK only frame payload size
2Standard Ethernet MTU
3Jumbo frame payload size

32

Figure 5.2: CRC32C test case

change the default scheduling priority of the process. Furthermore, we did not alter the default

scheduling policy. Though the Linux kernel has provisions to specify the CPU affinity sets for a

process, we did not modify that either. We could have suitably changed all these parameters to

get better results. But we did not do that just to get the worst case (upper bound) values for our

benchmark. The algorithms that perform better in such an unprivileged scenario are expected to

perform better in a privileged scenario of running them as a kernel-level thread.

We ran our benchmark routine on Intel (Intel Core i3-2330M and Intel Xeon), ARM (Raspberry

Pi 3 Model B) and PowerPC (POWER7) systems. We made use of the rdtsc instruction for the

benchmark study on the Intel processor. The rdtsc (read time stamp counter) instruction is used to

read the current time-stamp counter variable, which is a 64-bit variable, into the registers (edx:eax)

[46]. The TSC (time stamp counter) is incremented every CPU tick. For example at 1MHz CPU,

the TSC is incremented by 106 per second.

We read a certain number of bytes from our random data source in each iteration with an

exponentially increasing step size, stored the data bytes in a buffer, and then recorded the TSC

value before and after the checksum or CRC calculation on that buffer. This is how we were able

to get a good approximation of the number of cycles consumed by the actual running checksum or

CRC algorithm. Dividing that by the number of bytes in the buffer gave us our desired performance

metric which is “number of CPU cycles per byte.” Based on this criterion, we compared different

33

software and hardware instruction implementations of the checksum or CRC algorithms of interest.

For each buffer size, we ran the CRC or checksum algorithms 1000 times each. We recorded

the average number of CPU cycles per byte that these algorithms took for all those different buffer

lengths. We used this information to build tables and plot graphs in Chapter 6. Based on the

standard deviation data, we also calculated the 95% confidence interval for these average number

of CPU cycles per byte values that we got for different algorithms at different buffer sizes. The

following figure shows that with 95% confidence, the average number of CPU cycles per byte for

the CRC32C (CRC32 + PCLMULQDQ) algorithm with 64 bytes buffer size is between 1.2 and

1.26 based on 1000 samples. Similarly, we can see that the average number of CPU cycles per byte

for the TCP checksum (64-bit word version) with 1500 bytes buffer size varies between 0.248 and

0.248 (sample mean is 0.248, and margin of error is 0.000242) with 95% confidence.

Figure 5.3: Error bars showing 95% confidence interval for the average number of CPU cycles
per byte based on 1000 samples for CRC32C (using CRC32 and PCLMULQDQ instructions) and
TCP checksum with 64-bit word version on Intel Xeon CPU

On ARM system, we used cntvct_el0 (Counter-timer Virtual Count register) to get the 64-bit

34

virtual count value. Then we used the mrs instruction to move the content of this 64-bit register

into a local variable which was later accessed in our program. This count value was recorded

before and after the checksum or CRC calculation on the buffer in order to know how many CPU

cycles were approximately used by the algorithm itself to run. For each buffer size, we ran all the

CRC or checksum algorithms 1000 times each, and then we took the mean of these 1000 number

of cycles per byte values to get the average number of CPU cycles per byte that these algorithms

took for all the different buffer lengths.

On the PowerPC system, the Time Base (TB) is a 64-bit register whose value is incremented

periodically. It provides a long period counter value. We used the mftb instruction to read the

Time Base, and stored it in a local variable. This Time Base register value was recorded before

and after the checksum or CRC calculation to know the approximate number of CPU cycles used

by the algorithm alone to execute. We ran all the CRC or checksum algorithms 1000 times each

for all the buffer sizes in order to get the average number of CPU cycles per byte used by different

algorithms at different buffer lengths.

For all the buffer sizes of interest, we also injected some extra bytes into the buffer (e.g., adding

one extra byte to a 64 byte buffer) to have some bytes in the memory that does not align nicely

with the word boundaries (word, double-word or quad-word), and we calculated the CPU cycles

per byte for the different checksum and CRC algorithms with these odd buffer sizes.

35

6. RESULTS

6.1 Benchmark study of checksum/ CRC algorithms on Intel CPUs

The following graph shows the comparative computational performance of different CRC32C

and checksum algorithms discussed in Chapter 4. The processor model used for this evaluation

is an Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz running Ubuntu 16.04 LTS, which supports

both CRC32 and PCLMULQDQ instructions. A table showing the number of CPU cycles used per

data byte (over different data buffer sizes) for different CRC32C and checksum implementations

is given in Appendix A.1.

Figure 6.1: Cycles/byte performance of CRC32C using Intel CRC32 and PCLMULQDQ instruc-
tions, Adler-32 checksum, Fletcher-32 checksum, and TCP one’s complement checksum on In-
tel(R) Core(TM) i3-2330M CPU @ 2.20GHz

Figure 6.1 shows that the CRC32C computation using CRC32 and PCLMULQDQ instructions

is 38% faster than TCP one’s complement checksum at 1500 bytes, and 72% faster at a buffer

36

size of 9000 bytes. When the buffer length is small (e.g., 64 bytes), the TCP one’s complement

checksum is 11% faster than CRC32C.

Figure 6.2 shows the same performance measurement done on an Intel(R) Xeon(R) CPU E5-

2670 v2 @ 2.50GHz running Linux kernel 2.6.32-754.14.2.el6.x86_64. This system also supports

both the CRC32 and PCLMULQDQ instructions.

Figure 6.2: Cycles/byte performance of CRC32C using Intel CRC32 and PCLMULQDQ instruc-
tions, Adler-32 checksum, Fletcher-32 checksum, and TCP one’s complement checksum on In-
tel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz

The Adler-32 and Fletcher-32 checksums are slower than CRC32C and the TCP one’s com-

plement checksum. This was found to be true for both the Intel CPUs. We can see in the above

graph that CRC32C is 48% faster than TCP one’s complement checksum at 1500 bytes, and 73%

faster for a 9000 byte buffer size. When the buffer length is small (e.g., 64 bytes), the TCP one’s

complement checksum is 28% faster than CRC32C. We also found that the cycles per byte values

for the Intel Xeon CPU are better when compared to the Intel Core i3-2330M across all buffer

sizes and for all the checksum/ CRC algorithms that we have considered in our research.

37

Gopal et al. in an Intel white paper [37] report that for large buffer sizes (greater than 1024

bytes), the CRC32C computation using hardware instructions CRC32 and PCLMULQDQ takes

approximately 1.16-1.2 cycles/Qword, which translates to 0.145-0.15 cycles/byte. They have also

computed the CRC32C with hardware instruction CRC32 and table-based recombination, and for a

fixed buffer size of 1024 bytes, they found the resulting cycles/Qword value to be marginally better

than that of CRC32C with PCLMULQDQ based recombination. On the Intel Core i3-2330M,

we found that CRC32C calculation using CRC32 and PCLMULQDQ takes approximately 0.15

cycles/byte for buffer sizes greater than or equal to 8192 bytes, which matches Gopal’s result for

the higher range. For 1024 bytes, the CRC32C calculation using CRC32 and PCLMULQDQ takes

approximately 0.26 cycles/byte on the Intel Core i3-2330M. Also we found that, CRC32C with

CRC32 and table-based recombination performs better than PCLMULQDQ-based recombination

for 64 and 128 byte buffer sizes. For buffer sizes greater than or equal to 256 bytes, CRC32C

computation with CRC32 instruction and PCLMULQDQ-based recombination method is faster

than that with table-based recombination method.

In another Intel white paper [47], Gopal et al. have tabulated the results for different variants of

the iSCSI CRC32C computation with 512, 1024, 2048, and 4096 byte buffers. They have reported

that the CRC32C calculation using PCLMULQDQ-based recombination takes 0.15 cycles/byte for

a 1024 byte buffer, the CRC32C with table-based recombination takes 0.14 cycles/byte for a 1024

byte buffer, and a serial implementation of CRC32C takes 0.38 cycles/byte for a 1024 byte buffer.

Gueron [28] has reported that CRC32C computation with the division of buffer into three parts

followed by table-based or PCLMULQDQ based recombination is almost 2.5 times faster than the

linear approach (8 byte-by-8 byte, then byte-by-byte) of computing CRC32C. Kounavis et al. [26]

have reported that the slicing-by-8 CRC32C algorithm takes 2.39 cycles/byte for large buffer size,

when the data buffer and the table are initially warm. Our results are in close agreement with the

results from these papers. On the Intel Core i3-2330M for a buffer size of 1024 bytes, we found

that the CRC32C calculation with CRC32 and PCLMULQDQ instruction takes 0.255 cycles/byte,

the CRC32C with table-based recombination takes 0.355 cycles/byte, and a serial implementation

38

of CRC32C (using Intel Intrinsic) takes 0.554 cycles/byte. We also found that the CRC32C using

hardware instructions CRC32 and PCLMULQDQ is almost 2.5 times faster in comparison to the

CRC32C using Intel Intrinsic for a 1500 byte buffer size. The slicing-by-8 CRC32C algorithm

takes approximately 2.27 cycles/byte for a 1500 byte buffer size as can be seen in Fig. 6.6.

Table 6.1 presents a side-by-side comparative view of the performance of different checksum

and CRC algorithms in terms of the number of CPU cycles/byte taken by these algorithms on

both the Intel CPUs. We have used GCC optimization flag O3 to get these cycles/byte values for

different algorithms. Three different buffer sizes of interest were considered (64, 1500, and 9000

bytes). We chose these specific buffer sizes because 64 byte is a representative size for TCP ACK-

only frame; whereas, 1500 byte and 9000 byte buffer sizes represent the standard Ethernet MTU

and Jumbo frame payload sizes respectively. On both the Intel CPUs, the CRC32C using hardware

instructions CRC32 and PCLMULQDQ outperformed the TCP one’s complement checksum for

the buffer sizes greater than or equal to 256 bytes.

39

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

64 160 109
crc32c bit-wise 1500 121 101

9000 120 101
64 17.8 14.9

crc32c nibble-wise 1500 17.3 14.3
9000 17.3 14
64 10.4 7.8

crc32c byte-wise 1500 9.45 7.03
9000 9.43 7.01
64 4.5 3.53

crc32c slicing-by-4 1500 3.51 2.61
9000 3.47 2.56
64 3.14 2.66

crc32c slicing-by-8 1500 2.27 1.72
9000 2.21 1.65
64 1.23 1.04

crc32c Intel Intrinsic 1500 0.538 0.462
9000 0.509 0.437

crc32c (crc32 64 1.25 1.23
+ pclmulqdq based 1500 0.211 0.168

recombination) 9000 0.151 0.128
crc32c (crc32 64 1.15 1.03
+ table-based 1500 0.37 0.279

recombination) 9000 0.202 0.17
64 2.76 2.37

Adler-32 1500 1.31 1.1
9000 1.29 1.06
64 1.95 1.52

Fletcher-32 1500 1.18 0.972
9000 1.12 0.944
64 1.29 1.04

one’s comp 16-bit word 1500 0.275 0.227
(in C) 9000 0.207 0.174

64 1.38 1.04
one’s comp 32-bit word 1500 0.285 0.23

(in C) 9000 0.214 0.174
64 1.13 0.964

one’s comp 64-bit word 1500 0.292 0.248
(in x86_64 assembly) 9000 0.259 0.222

Table 6.1: Comparative computational performance of different CRC32C and Checksum imple-
mentations on Intel CPUs

40

The 16-bit word and 32-bit word variants of the one’s complement checksum took an almost

identical number of CPU cycles per byte for the buffer sizes greater than or equal to 1024 bytes

as can be seen in Fig. 6.3. Surprisingly, we observed that the computational performance of both

the 16-bit word and 32-bit word variants of the one’s complement checksum surpassed that of the

64-bit word variant of the TCP checksum for buffer sizes greater than or equal to 1024 bytes.

Figure 6.3: Cycles/byte performance of 16-bit word, 32-bit word, and 64-bit word variants of the
TCP checksum on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz with GCC O3 optimization flag

After seeing the above results, which were contrary to our expectation (and the results in [48]

described later) that the 64-bit word version of the one’s complement checksum would perform

better than the 16-bit and 32-bit word variants, we tried changing the GCC optimization flag from

O3 to O1. With GCC O1 optimization, we got the results that we had initially expected which are

shown in Fig. 6.4. The 64-bit word version of one’s complement checksum is approximately 2.5

times faster than the 16-bit word variant and approximately 1.3 times faster than the 32-bit word

variant for buffer sizes greater than or equal to 1024 bytes.

41

Figure 6.4: Cycles/byte performance of 16-bit word, 32-bit word, and 64-bit word variants of the
TCP checksum on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz with GCC O1 optimization flag

Lockless Inc. has published an article where they have calculated the time taken by different

versions of the one’s complement checksum algorithm for different buffer sizes [48]. They have

reported that the 16-bit word version of the TCP checksum takes approximately 0.819 ns/byte for

a 64 byte buffer and 0.642 ns/byte for a 1024 byte buffer; whereas, the 64-bit word version takes

approximately 0.27 ns/byte for a 64 byte buffer and 0.17 ns/byte for a 1024 byte buffer [48]. Garcia

[49] in a blog titled “Fast checksum computation” has reported results for 64-bit word assembly

language version of the one’s complement checksum algorithm. The ns/byte values (translated

from the cycles/byte values) that we obtained for the different versions of the one’s complement

checksum (with GCC optimization flag O1) are in close agreement with these results. From the

table in A.4, we can see that the 16-bit word variant of the one’s complement checksum takes

approximately 0.95 ns/byte for a 64 byte buffer and 0.34 ns/byte for a 1024 byte buffer; whereas,

the 64-bit word version takes approximately 0.49 ns/byte for a 64 byte buffer and 0.14 ns/byte for

a 1024 byte buffer on Intel Core i3-2330M. We can also see from the table that the 16-bit and 32-

bit word versions of the one’s complement checksum (implemented in C) performed better with

42

GCC O3 optimization flag than O1. However, the performance of 64-bit word version of the one’s

complement checksum (implemented in x86_64 assembly) is almost the same with both the O3

and O1 flags.

Figure 6.5 shows the comparative performance of the hardware instruction based CRC algo-

rithms. The CRC32C is computed in a linear fashion (8 byte-by-8 byte, then 4 byte-by-4 byte,

followed by byte-by-byte) without any recombination overhead using the Intel Intrinsic. However,

the version using CRC32 and PCLMULQDQ instructions explicitly divides the buffer into three

parts in order to judiciously use the three clock cycle latency of the CRC32 instruction. From

Fig. 6.5 and table 6.1, we can see that the CRC32C using hardware instructions CRC32 and

PCLMULQDQ is approximately 2.5 times faster in comparison to the CRC32C using Intel Intrin-

sic for a 1500 byte buffer size. Gueron [28] has similarly reported that the CRC32C algorithm with

CRC32 and PCLMULQDQ instructions achieves almost a speed up of factor 3 as compared to the

serial computation of CRC32C for a sufficiently large buffer size.

Figure 6.5: Cycles/byte performance of CRC32C using Intel Intrinsic, CRC32 and PCLMULQDQ
instructions, only CRC32 instruction on Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz

43

Figure 6.6 shows how the software-based table-driven CRC32C algorithms (byte-wise, slicing-

by-4, and slicing-by-8) performed in comparison to the hardware instruction based CRC32C. As

expected, the CRC32C byte-wise algorithm was the slowest followed by slicing-by-4 and slicing-

by-8. For large buffer size, the slicing-by-4 CRC32C is approximately 2.7 times faster than the

byte-wise algorithm, and the slicing-by-8 CRC32C is approximately 4.3 times faster than the byte-

wise algorithm. The slicing-by-8 CRC32C algorithm takes approximately 2.27 cycles/byte for

1500 byte buffer size as can be seen in Fig. 6.6.

Figure 6.6: Performance comparison of table-driven CRC32C and hardware instruction based
CRC32C on Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz

The naive bit-wise algorithm performed poorly, as expected, in comparison to the byte-wise,

slicing-by-4, and slicing-by-8 CRC32C algorithms, as is evident in Fig. 6.7.

Also, we added a few extra bytes to make the buffer sizes odd, and we computed the number of

CPU cycles/byte for all the different checksum and CRC algorithms with these odd buffer sizes. In

the Appendix, we have given tables specifically for CRC32C using hardware instructions (CRC32

44

Figure 6.7: Performance comparison of naive bit-wise CRC32C vs table-driven CRC32C on In-
tel(R) Core(TM) i3-2330M CPU @ 2.20GHz

and PCLMULQDQ) and TCP one’s complement checksum with 16-bit word. From the tables in

A.5 and A.6, it can be seen that with larger buffer sizes (e.g., 1500 and 9000 bytes for both of the

algorithms), there is little variation in the number of CPU cycles/byte when we added different

number of extra bytes to those buffer sizes.

6.2 Benchmark study of checksum/ CRC algorithms on ARM

We have repeated the performance comparisons of different checksums and CRC algorithms on

an ARM system that supports the hardware CRC32C instruction (Raspberry Pi Model 3B, ARM

Cortex-A53, quadcore ARMv8 CPU). In order to do the measurements on ARM, we used the

aarch64 generic timer register cntvct_el0 [43]. This is a 64-bit virtual timer count register, and it

holds the virtual count value which is incremented at a rate of 19.2 MHz for our particular system.

Normally, it varies in the range 1-50 MHz from system to system [43]. The system counter clock

frequency was read from cntfrq_el0 register (a 64-bit register), and was found to be 19200000 Hz

(19.2 MHz). We used the following command to determine the system’s CPU frequency to be

45

1200 MHz.

sudo cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

Originally, the Raspberry Pi came with a 32-bit Raspbian OS, and on doing “cat /proc/cpuinfo”

it showed the model name as ARMv7 Processor rev 4 (v7l). We could not detect the CRC32C in-

struction. Later, we installed a 64-bit Gentoo Linux Operating system (OS) on the Raspberry Pi,

and used the gcc compiler flag “-march=armv8-a+crc” to enable the hardware CRC32C instruction

(polynomial 0x1EDC6F41) which is supported on some ARMv8-A CPUs. This CRC32C instruc-

tion calculates the CRC32C of the buffer in a similar manner to Intel’s CRC32 instruction. The

ARM CRC32C instruction uses the reflected bit order for both the input data bytes as well as for the

final CRC32C value. This CRC32C instruction has 8-bit, 16-bit, 32-bit, and 64-bit variants. ARM

has another instruction named CRC32 which uses the Ethernet CRC32 polynomial 0x04C11DB7,

and we have not considered that instruction in our work.

Table 6.2 shows the comparative computational performance measurement done on the Rasp-

berry Pi Model 3B with ARM Cortex-A53 (aarch64 architecture) running Linux for the buffer

sizes 64, 1500, and 9000 bytes. The actual cycle values that we got by reading the cntvct_el0 reg-

ister value before and after the checksum/ CRC computation were converted to cycles/byte using

the CPU frequency. We have used GCC optimization flag O3 to get these cycles/byte values for

different algorithms over different buffer sizes. A more complete table A.2 shows the number of

CPU cycles used per data byte over different data buffer sizes for different CRC32C and checksum

implementations.

46

CRC32C/ Checksum Algorithms Data buffer size (in bytes) No. of CPU cycles per byte
64 173.75

crc32c bit-wise 1500 163.125
9000 161.875
64 38.687

crc32c nibble-wise 1500 33.375
9000 33.312
64 20.875

crc32c byte-wise 1500 18.937
9000 18.812
64 18.125

crc32c slicing-by-4 1500 8
9000 7.937
64 10.5

crc32c slicing-by-8 1500 5.744
9000 5.537
64 3.537

crc32c (serial usage 1500 1.187
of crc32c) 9000 1.087

64 8.187
Adler-32 1500 4.087

9000 3.787
64 9.875

Fletcher-32 1500 6.5
9000 6.375
64 4.256

one’s comp 16-bit word 1500 1.05
(in C) 9000 0.831

64 5.506
one’s comp 32-bit word 1500 0.981

(in C) 9000 0.856
64 4.112

one’s comp 64-bit word 1500 1.487
(in C) 9000 1.369

Table 6.2: Comparative computational performance of different CRC32C and Checksum imple-
mentations on Raspberry Pi Model 3B (ARM Cortex-A53)

47

Cavalcanti [50] has compared the performance of the CRC32 algorithm (with hardware CRC32

instruction used in a linear manner 4 byte-by-4 byte, followed by byte-by-byte) to the C program

implementation of the zlib slicing-by-4 CRC32 algorithm [51] on an ARMv8 SoC. He found that

the hardware instruction based CRC32 is almost 6 times faster than the slicing-by-4 CRC32. We

can see in Fig. 6.8 that the serial computation of CRC32C with hardware CRC32C instruction is

approximately 7.4 times faster than the CRC32C slicing-by-4 algorithm, and 5 times faster than

the CRC32C slicing-by-8 algorithm.

Figure 6.8: Performance comparison of table-driven CRC32C and hardware instruction based
CRC32C on Raspberry Pi Model 3B (ARM Cortex-A53) with CPU max MHz: 1200 and CPU
min MHz: 600

The CRC32C algorithm that we have tested on ARM computes the CRC32C linearly (8 byte-

by-8 byte, followed by 4 byte-by-4 byte, and byte-by-byte). For ARM, we could not find an

implementation similar to the one on Intel where the buffer is divided into 3 parts to speed up

the CRC32C calculation. Fig. 6.9 shows the performance comparison of different checksum and

CRC algorithms in terms of the number of CPU cycles/byte taken by these algorithms on the ARM

48

CPU. Serial computation of CRC32C on ARM using hardware CRC32C instruction is faster than

the 16-bit word version of one’s complement TCP checksum for buffer sizes up to 256 bytes.

The hardware instruction based CRC32C algorithm is approximately 20% faster than the 16-bit

TCP one’s complement checksum at 64 bytes, and the 16-bit TCP one’s complement checksum is

roughly 13% faster than the hardware instruction based CRC32C at 1500 bytes. For buffer sizes

greater than 256 bytes, the 16-bit word version of one’s complement checksum is approximately

1.3 times faster than the serial computation of CRC32C. Nevertheless, the two algorithms offer

similar performance. Consequently, using the CRC32C instruction on ARM systems with TCP will

offer significantly enhanced error detection performance and similar computational performance

compared to the TCP one’s complement checksum.

Figure 6.9: Cycles/byte performance of CRC32C using hardware CRC32C instruction, Adler-32
checksum, Fletcher-32 checksum, and TCP one’s complement checksum on Raspberry Pi Model
3B (ARM Cortex-A53) with CPU max MHz: 1200 and CPU min MHz: 600

49

6.3 Benchmark study of checksum/ CRC algorithms on IBM POWER7

We also did the comparative computational performance evaluation on IBM PowerPC system.

We used a POWER7 system with ppc64 architecture. This particular system has a model name

“IBM,8246-L2T”, and has Time Base of 512000000. The mftb instruction is used to read the Time

Base (TB), which is a 64-bit register [52]. This register contains an unsigned integer of 64-bit,

which increments at the rate of 512 MHz in our particular system. The clock frequency however

showed 4228 MHz when we executed the command “cat /proc/cpuinfo”. The mftb instruction is

used before and after the checksum or CRC algorithm to know how many cycle counts (corre-

sponding to the difference in the Time Base value) were used by the algorithm alone to execute

[43]. The PowerPC architecture does not specify a relationship between the frequency at which

the Time Base is updated and other frequencies, such as the CPU clock or bus clock in a PowerPC

system [52]. The manual [52] also states that the Time Base update frequency is not required to be

constant.

Table 6.3 shows the comparative computational performance measurement done on the IBM

POWER7 (ppc64 architecture) running Linux for the buffer sizes 64, 1500, and 9000 bytes. The

actual cycle values, that we got by reading the Time Base register value before and after the check-

sum/ CRC computation, were scaled up appropriately corresponding to the CPU frequency. We

have used GCC optimization flag O3 to get these cycles/byte values for different algorithms over

different buffer sizes. A more exhaustive table A.3 shows the number of CPU cycles used per data

byte over different data buffer sizes for different CRC32C and checksum implementations.

50

CRC32C/ Checksum Algorithms Data buffer size (in bytes) No. of CPU cycles per byte
64 360.866

crc32c bit-wise 1500 346.002
9000 161.027
64 17.754

crc32c nibble-wise 1500 15.855
9000 15.689
64 11.396

crc32c byte-wise 1500 10.074
9000 9.909
64 7.977

crc32c slicing-by-4 1500 5.879
9000 5.764
64 5.904

crc32c slicing-by-8 1500 3.295
9000 3.096
64 3.113

Adler-32 1500 2.106
9000 1.99
64 2.882

Fletcher-32 1500 2.023
9000 1.949
64 1.759

one’s comp 16-bit word 1500 0.462
(in C) 9000 0.416

64 1.594
one’s comp 32-bit word 1500 0.745

(in C) 9000 0.706
64 2.246

one’s comp 64-bit word 1500 1.016
(in C) 9000 0.958

Table 6.3: Comparative computational performance of different CRC32C and Checksum imple-
mentations on IBM POWER7

51

The comparative computational performance of different checksum and CRC algorithms on an

IBM POWER7 system running Linux kernel 3.10.0-957.12.2.el7.ppc64 can be seen in Fig. 6.10.

Since we did not have access to a POWER8 system which supports the vector polynomial multi-

ply sum (vpmsum) instruction for accelerating the CRC32 calculation; we just chose slicing-by-8

CRC32C algorithm, which is one of the best software based table-driven CRC32C algorithms, for

the benchmark. For large buffer sizes, the 16-bit word version of the one’s complement checksum

algorithm is almost 7.4 times faster than the CRC32C slicing-by-8 on the POWER7 CPU, and 9.8

times faster than the CRC32C slicing-by-8 on Intel Xeon CPU.

Figure 6.10: Cycles/byte performance of slicing-by-8 CRC32C, Adler-32 checksum, Fletcher-32
checksum, and TCP one’s complement checksum on IBM POWER7 with timebase: 512000000
and clock: 4228MHz

For the POWER8 architecture, Blanchard has compared the performance of the slicing-by-8

CRC32 algorithm to CRC32 using the vpmsum instruction over 32 KiB of input data and posted

the results in his GitHub repository crc32-vpmsum [53]. He conducted the test on a 4.1 GHz

POWER8 system and found that the CRC32 with vpmsum instruction takes up approximately

52

0.07 cycles/byte. He has also mentioned that the CRC32 computation, accelerated with vpmsum

instruction, is about 41 times faster than the slicing-by-8 algorithm. This implies that the slicing-

by-8 CRC32 takes approximately 3.058 cycles/byte on POWER8. We can see in figure 6.10 that

slicing-by-8 CRC32C takes roughly 3.09 cycles/byte on POWER7 for large buffer sizes.

Since the POWER7 CPU that we have used in our research has different parameters as com-

pared to the POWER8 CPU used by Blanchard (with unknown timebase information), we would

not be able to directly compare his results with the results that we have found. However, we can

see in Fig. 6.10 that for large buffer sizes (e.g., 9000 byte), the 16-bit word version of one’s com-

plement checksum algorithm is almost 7.4 times faster than the slicing-by-8 CRC32C algorithm,

and Blanchard’s results [53] suggest that the vpmsum accelerated CRC32 is almost 41 times faster

than the slicing-by-8 CRC32C algorithm on POWER8. So, we can make an educated guess that

the vpmsum accelerated CRC32 would computationally outperform the TCP one’s complement

checksum on POWER8.

53

7. CRC32C IN TCP THROUGH TCP OPTION

For an IP datagram, the TCP segment is the payload and it is encapsulated inside the IP data-

gram. The TCP segment consists of the TCP header and data. The TCP segment looks as follows

[1] [54]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data

Offset

Reserved

0 0 0

N

S

C

W

R

E

C

E

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window Size

Checksum Urgent Pointer

Options Padding

TCP

Header

Data

The Data Offset field is a 4-bit entity. This field gives the number of 32 bit (4 byte) words

present in the TCP header [1]. It indicates where the data portion starts with respect to the start

of the TCP header. The TCP header, including all the TCP Options, must always be an integral

multiple of 32 bits, and the TCP Option field is limited to a maximum of 40 bytes.

Once the mandatory 20 byte TCP header ends, the TCP Options begin from there. In terms of

length, the TCP Options are multiples of 8 bits. The TCP Option can be of two types [1]: one with

a single byte of option-kind, and the other variant has a single byte of option-kind followed by a

single byte of option-length, and then followed by one or more bytes of the actual option-data. The

option-length field contains the sum total of the size (in bytes) of option-kind, option-length, and

the option-data fields.

Originally, TCP had only three TCP Options: End of option list, No-Operation, and Maximum

54

Segment Size [1]. TCP Window Scale, Selective Acknowledgments (SACK) and Timestamps

Options were added later as extensions to TCP in order to further improve performance. Here, we

propose the use of CRC32C to replace the TCP one’s complement checksum using a previously

proposed TCP Option.

RFC 1146 [19] proposed the use of a TCP Alternate Checksum Option in the early 1990s.

However, in the year 2011, RFC 6247 [20] reclassified RFC 1146 to historic status since RFC

1146 had not seen any widespread deployment. We can potentially revive RFC 1146 and include

the CRC32C as one of the alternate checksum algorithms. RFC 1146 had defined three different

option-data values for three different checksums as follows: 0 for TCP Checksum, 1 for an 8-bit

Fletcher’s algorithm, and 2 for a 16-bit Fletcher’s algorithm.

Since there is already a provision for a TCP Alternate Checksum Request Option and the TCP

Alternate Checksum Data Option in RFC 1146 [19], we propose to suitably tailor these options in

order to retrofit the existing (though now obsolete) TCP Options with CRC32C. As 0, 1 and 2 had

already been defined as option-data values in the TCP Alternate Checksum Request Option, we

can use the next available value, which is 3, as the option-data value corresponding to the CRC32C

algorithm. The TCP Alternate Checksum Request Option, with the proposed CRC32C algorithm,

looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Kind = 14 Length = 3 Data = 3

We propose to use the option-data field in the TCP Alternate Checksum Data Option to store

the two least significant bytes of the calculated CRC32C value, and the Checksum field in the TCP

header to carry the two most significant bytes of the CRC32C value. The option-length field in

the TCP Alternate Checksum Data Option should always contain 4, as the option-data field in the

TCP Alternate Checksum Data Option will always carry the two LSBs of the calculated CRC32C

value, and the option-kind and option-length fields are 1 byte each. For example, if the calculated

55

CRC32C turns out to be 0x12345678, then the TCP Alternate Checksum Data Option with the

proposed CRC32C algorithm looks as follows:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind = 15 Length = 4 Data = 0x5678

In an Internet-Draft (now expired), Biswas [55] has proposed the use of CRC32C in TCP using

a TCP Option. However, he has explicitly recommended the use of CRC32C for Jumbo frames

only, and has mentioned that the Ethernet CRC is sufficient to protect the Ethernet MTU sized

frames. Also, he has proposed to eliminate the pseudo header field while calculating the CRC32C

of a TCP segment, and the reason being the pseudo header content gets checked three times already

(in Ethernet CRC, IP header checksum, and TCP checksum). He has mentioned two approaches

to negotiate the use of CRC32C in TCP. In the first approach, he has proposed to put the entire

4 bytes of the calculated CRC32C in the TCP option-data field, and in the second approach, he

has proposed to use the TCP Alternate Checksum Option (as described in RFC 1146). However,

we chose to go with his second approach; as with his first approach (uses 6 bytes in total for TCP

Option), we would be able to do only 2 SACK blocks (18 bytes) along with Time Stamp Option (10

bytes), and CRC32C Option (6 bytes). With his second approach, we can potentially do 3 SACK

blocks (26 bytes), Time Stamp Option (10 bytes), and TCP Alternate Checksum Data Option (4

bytes) altogether utilizing all the 40 bytes of the TCP Option field. We propose to use CRC32C

for TCP segments (carrying data and/ or ACK) of all sizes and to also include the pseudo header

in the TCP CRC32C calculation [56].

To calculate the CRC32C, we need to consider the 12 byte TCP pseudo header (with the same

meaning from the original TCP checksum computation) along with the TCP segment. Biswas [55]

has assumed that for the CRC32C computation to proceed, all the data (over which the CRC32C

would be computed) needed to be present in a contiguous manner. However, the CRC32C can

be potentially calculated incrementally. So, with an initial CRC value of 0xFFFFFFFF, first the

CRC32C of the TCP pseudo header can be computed. The resulting CRC value can be used as

56

initial CRC value to calculate the CRC32C of the TCP header followed by data. The Checksum

field in the TCP header, and the option-data field in the TCP Alternate Checksum Data Option

are set to 0 before we start computing the CRC32C of the TCP segment. Once we calculate the

CRC32C, we store the CRC32C value as described earlier.

Things become complicated with Network Address Translation (NAT), which is a common

practice these days in the small office/home office environment and in the enterprise environment,

e.g., Texas A&M University uses NAT for Wi-Fi connections. Hence, we need to reconsider the

use of TCP Option to calculate the CRC32C of a TCP segment behind a NAT device. In the basic

NAT model, the source IP address of the outgoing packets (originated behind the NAT device)

needs to be changed from the private IP address of the initiator host (behind the NAT device) to

the routable IP address of the NAT device. Similarly, for the incoming packets, the destination

IP address needs to be changed from the routable IP address of the NAT device to the private IP

address of the actual destination host [57]. Things become even more complicated for the Network

Address Port Translation (NAPT) model, where the source TCP/UDP port may also need to be

changed for the outbound packets, and the destination TCP/UDP port may need to be changed

for the inbound packets along with the inevitable source and destination IP address translations

[57]. Because of these IP address/port translations, the TCP checksum is recomputed (modified

incrementally) in the NAT devices, which is why the NAT devices violate the end-to-end princi-

ple. If we use CRC32C instead of one’s complement checksum in TCP, then the CRC32C needs

to be recomputed in the NAT devices from the start of the new pseudo header (after the address

translation), followed by the modified TCP header (because of possible port translation) and data,

and this would take more time when compared to the TCP checksum incremental modification.

So, with NAT, we propose to calculate the CRC32C of the TCP data only along with calculating

the standard TCP checksum over the entire TCP segment (including the pseudo header) in the end

hosts. The NAT device now just needs to recompute the TCP checksum, and it need not calculate

the CRC32C again (as the data has not changed). The destination host upon receiving the TCP

data can compute the CRC32C on it so as to verify with the received CRC32C value which was

57

calculated just on the TCP data. A TCP segment would be discarded if either or both the CRC32C

and one’s complement checksum were in error. Previously, we have used “3” as the option-data

value in the TCP Alternate Checksum Request Option corresponding to the CRC32C algorithm

that calculates the CRC32C over the TCP pseudo header, followed by the TCP header and data.

For hosts behind a NAT device, we propose to use the next available value, which is 4, as the

option-data value in the TCP Alternate Checksum Request Option corresponding to the CRC32C

algorithm that calculates the CRC32C of the TCP data only. With NAT, the TCP Alternate Check-

sum Request Option looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Kind = 14 Length = 3 Data = 4

For hosts behind a NAT device, we propose to use the option-data field in the TCP Alter-

nate Checksum Data Option to store the entire four bytes of the calculated CRC32C value, and

the Checksum field in the TCP header will carry the regular TCP checksum value. The option-

length field in the TCP Alternate Checksum Data Option now should always be 6, as the size of

option-data field in the TCP Alternate Checksum Data Option is always 4, and the option-kind

and option-length fields are 1 byte each. For example, if the calculated CRC32C turns out to be

0x12345678, then the TCP Alternate Checksum Data Option with the proposed CRC32C algo-

rithm to be used with NAT looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Kind = 15 Length = 6 Data = 0x12345678

TCP checksum offloading is commonly done these days even though the practice differs from

vendor to vendor [58] [59]. With checksum offload, we are basically relying on the network inter-

face card (NIC) hardware to perform the checksum computation, and it therefore saves CPU time.

58

The fast hardware instruction based implementations of the CRC32C on different platforms can

be used to compute the CRC32C of a TCP segment (including the pseudo header) in the normal

fashion, and we can put those 4 bytes of CRC32C inside a TCP Option. The standard TCP check-

sum value (calculated via checksum offloading) will be stored in the Checksum field of the TCP

header. We need to define a new option-data value in the TCP Alternate Checksum Request Option

corresponding to the CRC32C algorithm that calculates the CRC32C of the entire TCP segment

including the pseudo header. We can use the next available value, which is 5, as the option-data

value in the TCP Alternate Checksum Request Option for the CRC32C algorithm that calculates

the CRC32C of the entire TCP segment including the pseudo header. So, with TCP checksum

offload, the TCP Alternate Checksum Request Option looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Kind = 14 Length = 3 Data = 5

For hosts doing TCP checksum offload, we propose to use the option-data field in the TCP

Alternate Checksum Data Option to store the entire four bytes of the calculated CRC32C value,

and the Checksum field in the TCP header will carry the regular TCP checksum value which is

calculated via checksum offload. The option-length field in the TCP Alternate Checksum Data

Option now should always be 6, as the size of option-data field in the TCP Alternate Checksum

Data Option is always 4, and the option-kind and option-length fields are 1 byte each. For example,

if the calculated CRC32C turns out to be 0x12345678, then the TCP Alternate Checksum Data Op-

tion with the proposed CRC32C algorithm to be used with TCP checksum offload looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Kind = 15 Length = 6 Data = 0x12345678

59

There can be different combinations of the host with respect to TCP checksum offload and host

behind a NAT device. The following table summarizes which option-data value to choose in the

TCP Alternate Checksum Request Option corresponding to different scenarios. The host should

choose the appropriate TCP Alternate Checksum Data Option corresponding to the chosen TCP

Alternate Checksum Request Option.

Host Scenario Option-data value in
TCP checksum offload enabled Host behind a NAT device the TCP Alternate Checksum

? ? Request Option
No No 3
No Yes 4
Yes No 5
Yes Yes 4

Table 7.1: Host TCP checksum offload and NAT condition check to use appropriate option-data
value in the TCP Alternate Checksum Request Option

Based on the types of host scenarios presented in Table 7.1, there can be nine possible combi-

nations of option-data values in the TCP Alternate Checksum Request Option for the sender and

receiver. For all the different combinations, the final option-data value that the sender chooses is

shown in Table 7.2. For example, if the sender opts for 3 as the option-data value in the TCP

Alternate Checksum Request Option and the receiver responds with the option-data value 4, then

the sender should select 4 as the final option-data value in the TCP Alternate Checksum Request

Option and should use the corresponding CRC32C algorithm in the TCP Alternate Checksum Data

Option from the first non-SYN segment onwards.

The actual negotiation mechanism to use the CRC32C is identical to the method described

in RFC 1146. At the time of connection establishment, the TCP Alternate Checksum Request

Option, with option-data value equal to 3, can be sent by the sender in the SYN segment. If the

acknowledging receiver also sends the TCP Alternate Checksum Request Option, with option-data

value equal to 3 in the SYN-ACK segment, then the CRC32C (calculated over the entire TCP

60

Option-data value in TCP Final option-data
Alternate Checksum Request Option sent by: value chosen

Sender Receiver
3 3 3
3 4 4
3 5 5
4 3 4
4 4 4
4 5 4
5 3 5
5 4 4
5 5 5

Table 7.2: Final option-data value chosen based on the option-data values sent by the sender and
receiver in the TCP Alternate Checksum Request Option

segment including the pseudo header) would be used from this point onwards during the data

transfer phase via the TCP Alternate Checksum Data Option. The TCP segment with SYN or RST

flag set must use the regular TCP checksum as prescribed in RFC 1146. As per RFC 1122, any

TCP implementation not recognizing these TCP Options should silently ignore it. Consequently,

an end station proposing CRC32C must receive a TCP Alternate Checksum Request Option in

response, or it must use the standard TCP checksum. Although we have implicitly assumed IPv4

everywhere, the CRC32C can be used over IPv6 as well. We just need to use the TCP pseudo

header corresponding to IPv6 [60], in order to calculate the CRC32C value as described earlier.

Presumably, the end hosts will check if the hardware CRC32C or a carry-less mod2 multiply

instruction is available with them or not, if the TCP checksum offload is enabled or not, and if

they are behind a NAT device or not. Then accordingly they should choose the right option-data

value in the TCP Alternate Checksum Request Option in the SYN segment during the connection

establishment phase.

In the future, if hardware instructions are available for even better CRC32 polynomials (e.g.,

the Koopman polynomial 0xBA0DC66B that offers HD=6 at MTU=1500 bytes), then the CRC32

with those polynomials can be added to the list of alternate checksum algorithms, and can be used

61

in a similar fashion to calculate the CRC32 of a TCP segment.

62

8. SUMMARY AND CONCLUSIONS

We presented benchmarks of many variants of addition-based checksums and CRC algorithms

in this thesis. We developed a benchmark routine that tested the implementations of all these

algorithms for their correctness. We also calculated the number of CPU cycles per byte for each of

these algorithms in order to compare them based on their computational performance.

Today, all the Intel CPUs have hardware CRC32 and PCLMULQDQ (carry less multiplication)

instructions which potentially can be used to efficiently calculate the CRC32C of a TCP segment.

A growing number of modern ARM processors also have the hardware CRC32C instruction. As

the CRC32C algorithm has found its utility in some of the major applications (iSCSI, SCTP, Btrfs,

ext4), we are expecting that all the ARM processors will have the hardware CRC32C instruction in

the next few years. The ARMv8.1-A architecture specification from 2014 made the CRC instruc-

tion mandatory. Other architectures (e.g., POWER8, IBM Z Series, SPARC) have also facilitated

CRC32 hardware acceleration with a carry less multiplication instruction.

The one’s complement checksum is still in use today in TCP, some 40 years after it was orig-

inally incorporated into IP, TCP, and UDP. While there have been papers and RFCs proposing

stronger TCP error detection algorithms and ways to accomplish this using a TCP Option, none of

these efforts have led to a change in the TCP checksum. The advent of hardware CRC instructions

in most of the standard computer architectures, which provide better performance than the existing

TCP checksum algorithm, offers the opportunity to reconsider using a TCP Option for CRC32C-

based error detection. Our results show that on Intel Core i3-2330M, the CRC32C hardware

instruction implementation is approximately 38% faster than the 16-bit TCP one’s complement

checksum at 1500 bytes and the 16-bit TCP one’s complement checksum is roughly 11% faster

than the hardware instruction based CRC32C at 64 bytes. On ARM Cortex-A53, the hardware

CRC32C algorithm is approximately 20% faster than the 16-bit TCP one’s complement check-

sum at 64 bytes, and the 16-bit TCP one’s complement checksum is roughly 13% faster than the

hardware instruction based CRC32C at 1500 bytes. Given that, many applications work on top

63

of TCP, and they depend on TCP to provide data integrity; it is time to reconsider a TCP Option,

as discussed in this research, to use the hardware instruction based CRC32C in TCP in order to

achieve much better end-to-end error detection performance.

64

REFERENCES

[1] J. Postel, “Transmission Control Protocol,” RFC 793, RFC Editor, September 1981. http:

//www.rfc-editor.org/rfc/rfc793.txt.

[2] J. Stone and C. Partridge, “When the CRC and TCP checksum disagree,” SIGCOMM Comput.

Commun. Rev., vol. 30, pp. 309–319, Aug. 2000.

[3] “Hardware Only (HO) features and technologies | Microsoft Docs.” https://docs.

microsoft.com/en-us/windows-server/networking/technologies/

hpn/hpn-hardware-only-features, November 2018.

[4] E. Jones, “How both TCP and Ethernet checksums fail.” https://www.evanjones.

ca/tcp-and-ethernet-checksums-fail.html, October 2015.

[5] D. Sheinwald, J. Satran, P. Thaler, and V. Cavanna, “Internet Protocol Small Computer Sys-

tem Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum Considerations,” Tech.

Rep. RFC3385, RFC Editor, Sept. 2002.

[6] J. Stone, R. Stewart, and D. Otis, “Stream Control Transmission Protocol (SCTP) Checksum

Change,” Tech. Rep. RFC3309, RFC Editor, Sept. 2002.

[7] Intel R© SSE4 Programming Reference, July 2007.

[8] “White Paper: Intel R© Next Generation Microarchitecture (Nehalem).” https://www.

intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf.

[9] “ARM Information Center.” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.dui0801g/awi1476352818103.html.

[10] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic redundancy-check codes

with 24 and 32 parity bits,” IEEE Transactions on Communications, vol. 41, pp. 883–892,

June 1993.

65

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://docs.microsoft.com/en-us/windows-server/networking/technologies/hpn/hpn-hardware-only-features
https://docs.microsoft.com/en-us/windows-server/networking/technologies/hpn/hpn-hardware-only-features
https://docs.microsoft.com/en-us/windows-server/networking/technologies/hpn/hpn-hardware-only-features
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801g/awi1476352818103.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801g/awi1476352818103.html

[11] T. Maxino and P. Koopman, “The Effectiveness of Checksums for Embedded Control Net-

works,” IEEE Transactions on Dependable and Secure Computing, vol. 6, pp. 59–72, Jan.

2009.

[12] “IEEE standard for ethernet,” IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-2012), pp. 1–

4017, March 2016.

[13] M. Bhatia, “Catching Corrupted OSPF Packets!.” https://routingfreak.

wordpress.com/2011/03/01/catching-corrupted-ospf-packets/,

March 2011.

[14] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,” ACM

Trans. Comput. Syst., vol. 2, pp. 277–288, Nov. 1984.

[15] R. M. Gates, From the Shadows: The Ultimate Insider’s Story of Five Presidents and How

They Won the Cold War. Simon & Schuster, 2007.

[16] “Causes of False Missile Alerts: The Sun, the Moon and a 46-Cent Chip.” https://www.

nytimes.com/2018/01/13/us/false-alarm-missile-alerts.html.

[17] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier, “TCP performance

re-visited,” in 2003 IEEE International Symposium on Performance Analysis of Systems and

Software. ISPASS 2003., pp. 70–79, March 2003.

[18] R. Braden, D. Borman, C. Partridge, and W. W. Plummer, “Computing the Internet check-

sum,” RFC 1071, RFC Editor, September 1988. http://www.rfc-editor.org/

rfc/rfc1071.txt.

[19] J. Zweig and C. Partridge, “TCP alternate checksum options,” RFC 1146, RFC Editor, March

1990. http://www.rfc-editor.org/rfc/rfc1146.txt.

[20] L. Eggert, “Moving the Undeployed TCP Extensions RFC 1072, RFC 1106, RFC 1110, RFC

1145, RFC 1146, RFC 1379, RFC 1644, and RFC 1693 to Historic Status,” RFC 6247, RFC

Editor, May 2011. http://www.rfc-editor.org/rfc/rfc6247.txt.

66

https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://www.nytimes.com/2018/01/13/us/false-alarm-missile-alerts.html
https://www.nytimes.com/2018/01/13/us/false-alarm-missile-alerts.html
http://www.rfc-editor.org/rfc/rfc1071.txt
http://www.rfc-editor.org/rfc/rfc1071.txt
http://www.rfc-editor.org/rfc/rfc1146.txt
http://www.rfc-editor.org/rfc/rfc6247.txt

[21] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,

L. Zhang, and V. Paxson, “Stream Control Transmission Protocol,” RFC 2960, RFC Editor,

October 2000. http://www.rfc-editor.org/rfc/rfc2960.txt.

[22] L. P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification version 3.3,” RFC

1950, RFC Editor, May 1996. http://www.rfc-editor.org/rfc/rfc1950.txt.

[23] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance of checksums and CRCs

over real data,” IEEE/ACM Transactions on Networking, vol. 6, pp. 529–543, Oct 1998.

[24] P. Koopman, “32-bit cyclic redundancy codes for Internet applications,” in Proceedings In-

ternational Conference on Dependable Systems and Networks, (Washington, DC, USA),

pp. 459–468, IEEE Comput. Soc, 2002.

[25] J. Daugherty, “Understanding iSCSI Digests:.”

[26] M. E. Kounavis and F. L. Berry, “Novel Table Lookup-Based Algorithms for High-

Performance CRC Generation,” IEEE Transactions on Computers, vol. 57, pp. 1550–1560,

Nov. 2008.

[27] D. V. Sarwate, “Computation of cyclic redundancy checks via table look-up,” Commun. ACM,

vol. 31, pp. 1008–1013, Aug. 1988.

[28] S. Gueron, “Speeding up CRC32c computations with Intel CRC32 instruction,” Information

Processing Letters, vol. 112, pp. 179–185, Feb. 2012.

[29] L. L. Peterson and B. S. Davie, Computer Networks: a systems approach, pp. 97–102. Mor-

gan Kaufmann, 2012.

[30] J. Fletcher, “An arithmetic checksum for serial transmissions,” IEEE Transactions on Com-

munications, vol. 30, pp. 247–252, January 1982.

[31] A. Nakassis, “Fletcher’s error detection algorithm: How to implement it efficiently and how

to avoid the most common pitfalls,” SIGCOMM Comput. Commun. Rev., vol. 18, pp. 63–88,

Oct. 1988.

67

http://www.rfc-editor.org/rfc/rfc2960.txt
http://www.rfc-editor.org/rfc/rfc1950.txt

[32] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Proceedings of the IRE,

vol. 49, pp. 228–235, Jan 1961.

[33] R. Williams, “A Painless Guide to CRC Error Detection Algorithms.” http://www.

ross.net/crc/download/crc_v3.txt, August 1993.

[34] T. V. Ramabadran and S. S. Gaitonde, “A tutorial on CRC computations,” IEEE Micro, vol. 8,

pp. 62–75, Aug 1988.

[35] M. Barr, “CRC Series, Part 3: CRC Implementation Code in C/C++.” https://

barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code,

January 2000.

[36] “Intrinsics | Intel R© C++ Compiler 19.0.” https://software.intel.com/en-us/

cpp-compiler-developer-guide-and-reference-intrinsics, April

2019.

[37] “Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction.”

https://www.intel.com/content/dam/www/public/us/en/documents/

white-papers/crc-iscsi-polynomial-crc32-instruction-paper.

pdf, April 2011.

[38] M. Adler, “Implementing SSE 4.2’s CRC32C in software.”

https://stackoverflow.com/questions/17645167/

implementing-sse-4-2s-crc32c-in-software, July 2013.

[39] S. Reifegerste, “CRC Calculation.” http://www.zorc.breitbandkatze.de/crc.

html.

[40] S. Brumme, “Fast CRC32.” https://create.stephan-brumme.com/crc32/,

November 2011.

[41] B. Even, “crcbench.” https://github.com/baruch/crcbench/, April 2014.

68

http://www.ross.net/crc/download/crc_v3.txt
http://www.ross.net/crc/download/crc_v3.txt
https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intrinsics
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intrinsics
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://stackoverflow.com/questions/17645167/implementing-sse-4-2s-crc32c-in-software
https://stackoverflow.com/questions/17645167/implementing-sse-4-2s-crc32c-in-software
http://www.zorc.breitbandkatze.de/crc.html
http://www.zorc.breitbandkatze.de/crc.html
https://create.stephan-brumme.com/crc32/
https://github.com/baruch/crcbench/

[42] “Intel CRC Benchmark Application.” https://github.com/intel/soft-crc, Jan-

uary 2017.

[43] “Benchmark.” https://github.com/google/benchmark.

[44] F. Toth, “Highly optimized CRC32C lib and benchmark.” https://github.com/

htot/crc32c, November 2017.

[45] B. Molkenthin, “Sunshine’s Homepage - Online CRC Calculator Javascript.” http://

www.sunshine2k.de/coding/javascript/crc/crc_js.html, May 2015.

[46] Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Combined Volumes: 1, 2A,

2B, 2C, 2D, 3A, 3B, 3C and 3D, 2016.

[47] “Choosing a CRC polynomial and associated method for Fast CRC Computa-

tion on Intel R© Processors.” https://pdfs.semanticscholar.org/b01a/

0f242ce5537d806feefeff17cf72cc257946.pdf, August 2012.

[48] “The TCP/IP Checksum.” https://locklessinc.com/articles/tcp_

checksum/.

[49] D. P. Garcia, “Fast checksum computation.” https://blogs.igalia.com/dpino/

2018/06/14/fast-checksum-computation/, June 2018.

[50] A. Cavalcanti, “Using ARMv8 CRC32 specific instruction.” https:

//chromium.googlesource.com/chromium/src.git/+/

35988c821c051a57e30c76f9fcd87b7b677bd9bd, November 2017.

[51] M. Adler, “zlib CRC32.” https://github.com/madler/zlib/blob/master/

crc32.c, January 2017.

[52] PowerPC Operating Environment Architecture, Book III, Version 2.02, January 2005.

[53] A. Blanchard, “Accelerated CRC32 for POWER8 using vpmsum instructions.” https://

github.com/antonblanchard/crc32-vpmsum, February 2015.

69

https://github.com/intel/soft-crc
https://github.com/google/benchmark
https://github.com/htot/crc32c
https://github.com/htot/crc32c
http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
https://pdfs.semanticscholar.org/b01a/0f242ce5537d806feefeff17cf72cc257946.pdf
https://pdfs.semanticscholar.org/b01a/0f242ce5537d806feefeff17cf72cc257946.pdf
https://locklessinc.com/articles/tcp_checksum/
https://locklessinc.com/articles/tcp_checksum/
https://blogs.igalia.com/dpino/2018/06/14/fast-checksum-computation/
https://blogs.igalia.com/dpino/2018/06/14/fast-checksum-computation/
https://chromium.googlesource.com/chromium/src.git/+/35988c821c051a57e30c76f9fcd87b7b677bd9bd
https://chromium.googlesource.com/chromium/src.git/+/35988c821c051a57e30c76f9fcd87b7b677bd9bd
https://chromium.googlesource.com/chromium/src.git/+/35988c821c051a57e30c76f9fcd87b7b677bd9bd
https://github.com/madler/zlib/blob/master/crc32.c
https://github.com/madler/zlib/blob/master/crc32.c
https://github.com/antonblanchard/crc32-vpmsum
https://github.com/antonblanchard/crc32-vpmsum

[54] N. Spring, D. Wetherall, and D. Ely, “Robust Explicit Congestion Notification (ECN) Signal-

ing with Nonces,” RFC 3540, RFC Editor, June 2003.

[55] A. Biswas, “Support for Stronger Error Detection Codes in

TCP for Jumbo Frames.” https://tools.ietf.org/html/

draft-ietf-tcpm-anumita-tcp-stronger-checksum-00, May 2010.

[56] D. P. Reed, “Purpose of pseudo header in TCP checksum.” http://www.postel.

org/pipermail/end2end-interest/2005-February/004616.html, Febru-

ary 2005.

[57] P. Srisuresh and K. Egevang, “Traditional ip network address translator (traditional nat),”

RFC 3022, RFC Editor, January 2001.

[58] J. Chase, “Checksum Offloading.” https://www2.cs.duke.edu/ari/trapeze/

freenix/node7.html, August 1999.

[59] “TCP checksum offload.” https://www.ibm.com/support/knowledgecenter/

en/ssw_aix_71/com.ibm.aix.performance/tcp_checksum_offload.

htm.

[60] S. E. Deering and R. M. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”

RFC 2460, RFC Editor, December 1998. http://www.rfc-editor.org/rfc/

rfc2460.txt.

70

https://tools.ietf.org/html/draft-ietf-tcpm-anumita-tcp-stronger-checksum-00
https://tools.ietf.org/html/draft-ietf-tcpm-anumita-tcp-stronger-checksum-00
http://www.postel.org/pipermail/end2end-interest/2005-February/004616.html
http://www.postel.org/pipermail/end2end-interest/2005-February/004616.html
https://www2.cs.duke.edu/ari/trapeze/freenix/node7.html
https://www2.cs.duke.edu/ari/trapeze/freenix/node7.html
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.performance/tcp_checksum_offload.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.performance/tcp_checksum_offload.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.performance/tcp_checksum_offload.htm
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt

APPENDIX A

COMPARATIVE PERFORMANCE EVALUATION OF DIFFERENT CRC/ CHECKSUM

ALGORITHMS

Table A.1: Comparative computational performance of different CRC32C and Checksum imple-
mentations on Intel CPUs over different buffer sizes (with GCC optimization flag O3)

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

64 160 109
128 126 110
256 122 103
512 121 102

1024 120 101
1500 121 101

crc32c bit-wise 2048 129 101
4096 131 101
8192 125 101
9000 120 101

16384 119 101
32768 119 101
65536 120 100

64 17.8 14.9
128 17.5 14.4
256 17.4 14.3
512 17.6 14.1

1024 17.4 14.1
1500 17.3 14.3

crc32c nibble-wise 2048 17.3 14
4096 17.3 14.1
8192 17.2 14
9000 17.3 14

16384 17.3 14
32768 17.3 14
65536 17.3 14

64 10.4 7.8
128 9.87 7.39
256 9.61 7.18

71

Table A.1: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

512 9.47 7.11
1024 9.48 7.05
1500 9.45 7.03

crc32c byte-wise 2048 9.44 7.1
4096 9.4 7.02
8192 9.43 7.01
9000 9.43 7.01

16384 9.41 7.02
32768 9.41 7.01
65536 9.42 7

64 4.5 3.53
128 4.12 3.07
256 3.84 2.81
512 3.62 2.67

1024 3.55 2.61
1500 3.51 2.61

crc32c slicing-by-4 2048 3.51 2.58
4096 3.48 2.56
8192 3.47 2.56
9000 3.47 2.56

16384 3.47 2.55
32768 3.47 2.54
65536 3.46 2.54

64 3.14 2.66
128 2.74 2.19
256 2.57 1.94
512 2.34 1.88

1024 2.3 1.72
1500 2.27 1.72

crc32c slicing-by-8 2048 2.23 1.68
4096 2.22 1.66
8192 2.2 1.66
9000 2.21 1.65

16384 2.2 1.65
32768 2.19 1.64
65536 2.18 1.64

64 1.23 1.04
128 1.01 0.734

72

Table A.1: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

256 0.702 0.584
512 0.601 0.507

1024 0.554 0.469
1500 0.538 0.462

crc32c Intel Intrinsic 2048 0.543 0.461
4096 0.514 0.444
8192 0.508 0.442
9000 0.509 0.437

16384 0.504 0.435
32768 0.504 0.434
65536 0.504 0.433

64 1.25 1.23
128 0.868 0.714
256 0.49 0.401
512 0.333 0.272

1024 0.255 0.194
crc32c (crc32 1500 0.211 0.168

+ pclmulqdq based 2048 0.191 0.152
recombination) 4096 0.164 0.138

8192 0.156 0.13
9000 0.151 0.128

16384 0.146 0.126
32768 0.147 0.122
65536 0.146 0.121

64 1.15 1.03
128 0.753 0.673
256 0.569 0.5
512 0.475 0.413

1024 0.355 0.256
crc32c (crc32 1500 0.37 0.279
+ table-based 2048 0.315 0.222

recombination) 4096 0.23 0.175
8192 0.208 0.169
9000 0.202 0.17

16384 0.184 0.16
32768 0.156 0.134
65536 0.153 0.129

64 2.76 2.37

73

Table A.1: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

128 1.96 1.69
256 1.6 1.37
512 1.43 1.19

1024 1.33 1.11
1500 1.31 1.1

Adler-32 2048 1.29 1.07
4096 1.29 1.04
8192 1.28 1.06
9000 1.29 1.06

16384 1.3 1.05
32768 1.3 1.05
65536 1.31 1.05

64 1.95 1.52
128 1.72 1.33
256 1.39 1.1
512 1.28 1.04

1024 1.17 0.997
1500 1.18 0.972

Fletcher-32 2048 1.16 0.965
4096 1.13 0.949
8192 1.12 0.943
9000 1.12 0.944

16384 1.11 0.935
32768 1.11 0.934
65536 1.11 0.933

64 1.29 1.04
128 0.801 0.623
256 0.533 0.408
512 0.379 0.287

1024 0.31 0.248
1500 0.275 0.227

one’s comp 16-bit word 2048 0.251 0.206
(in C) 4096 0.225 0.186

8192 0.208 0.176
9000 0.207 0.174

16384 0.202 0.171
32768 0.198 0.168

74

Table A.1: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

65536 0.199 0.167
64 1.38 1.04

128 0.845 0.681
256 0.61 0.458
512 0.428 0.309

1024 0.331 0.26
1500 0.285 0.23

one’s comp 32-bit word 2048 0.266 0.211
(in C) 4096 0.232 0.187

8192 0.209 0.178
9000 0.214 0.174

16384 0.204 0.17
32768 0.2 0.168
65536 0.2 0.166

64 1.13 0.964
128 0.696 0.644
256 0.483 0.406
512 0.361 0.306

1024 0.31 0.261
1500 0.292 0.248

one’s comp 64-bit word 2048 0.284 0.24
(in x86_64 assembly) 4096 0.269 0.229

8192 0.262 0.223
9000 0.259 0.222

16384 0.256 0.22
32768 0.254 0.218
65536 0.253 0.218

75

Table A.2: Comparative performance evaluation of different CRC32C and Checksum implemen-
tations on Raspberry Pi Model 3B (ARM Cortex-A53) over different buffer sizes (with GCC opti-
mization flag O3)

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

64 173.75
128 169.375
256 166.875
512 165

1024 162.5
1500 163.125

crc32c bit-wise 2048 162.5
4096 162.5
8192 161.875
9000 161.875

16384 161.875
32768 161.25
65536 161.25

64 38.687
128 37.937
256 33.437
512 33.875

1024 33.375
1500 33.375

crc32c nibble-wise 2048 33.5
4096 33.5
8192 33.187
9000 33.312

16384 33.25
32768 33.25
65536 33.187

64 20.875
128 19.812
256 19.875
512 19.875

1024 19.062
1500 18.937

crc32c byte-wise 2048 18.937
4096 18.875
8192 18.75
9000 18.812

76

Table A.2: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

16384 18.75
32768 18.75
65536 18.75

64 18.125
128 9.937
256 9.625
512 8.437

1024 8.375
1500 8

crc32c slicing-by-4 2048 8.062
4096 7.875
8192 7.875
9000 7.937

16384 7.875
32768 7.875
65536 7.875

64 10.5
128 8.687
256 7.5
512 6.156

1024 5.637
1500 5.744

crc32c slicing-by-8 2048 5.606
4096 5.562
8192 5.5
9000 5.537

16384 5.369
32768 5.394
65536 5.356

64 3.537
128 2.344
256 1.687
512 1.412

1024 1.225
crc32c (serial usage 1500 1.187

of crc32c) 2048 1.131
4096 1.094
8192 1.1

77

Table A.2: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

9000 1.087
16384 1.094
32768 1.081
65536 1.069

64 8.187
128 5.925
256 4.844
512 4.637

1024 4.225
1500 4.087

Adler-32 2048 4
4096 3.856
8192 3.812
9000 3.787

16384 3.769
32768 3.756
65536 3.737

64 9.875
128 7.187
256 6.687
512 6.437

1024 6.562
1500 6.5

Fletcher-32 2048 6.562
4096 6.437
8192 6.375
9000 6.375

16384 6.375
32768 6.375
65536 6.312

64 4.256
128 2.594
256 1.787
512 1.275

1024 1.031
1500 1.05

one’s comp 16-bit word 2048 0.906
(in C) 4096 0.881

78

Table A.2: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

8192 0.844
9000 0.831

16384 0.837
32768 0.825
65536 0.806

64 5.506
128 3.181
256 2.069
512 1.394

1024 1.125
1500 0.981

one’s comp 32-bit word 2048 0.956
(in C) 4096 0.856

8192 0.862
9000 0.856

16384 0.831
32768 0.831
65536 0.812

64 4.112
128 3.025
256 2.137
512 1.744

1024 1.531
1500 1.487

one’s comp 64-bit word 2048 1.456
(in C) 4096 1.344

8192 1.362
9000 1.369

16384 1.356
32768 1.337
65536 1.319

79

Table A.3: Comparative performance evaluation of different CRC32C and Checksum implemen-
tations on IBM POWER7 over different buffer sizes (with GCC optimization flag O3)

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

64 360.866
128 353.434
256 354.26
512 347.653

1024 347.653
1500 346.002

crc32c bit-wise 2048 346.002
4096 345.176
8192 344.35
9000 161.027

16384 161.027
32768 161.027
65536 161.027

64 17.754
128 17.176
256 16.598
512 16.268

1024 16.02
1500 15.855

crc32c nibble-wise 2048 16.103
4096 15.855
8192 15.772
9000 15.69

16384 15.69
32768 15.607
65536 15.607

64 11.396
128 10.818
256 10.405
512 10.157

1024 10.075
1500 10.075

crc32c byte-wise 2048 9.992
4096 10.075
8192 9.827
9000 9.909

16384 9.744

80

Table A.3: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

32768 9.662
65536 9.496

64 7.977
128 7.06
256 6.458
512 6.103

1024 5.929
1500 5.88

crc32c slicing-by-4 2048 5.83
4096 5.789
8192 5.764
9000 5.764

16384 5.747
32768 5.756
65536 5.813

64 5.904
128 4.922
256 4.137
512 3.625

1024 3.353
1500 3.295

crc32c slicing-by-8 2048 3.204
4096 3.138
8192 3.105
9000 3.097

16384 3.088
32768 3.08
65536 3.08

64 3.113
128 2.585
256 2.32
512 2.172

1024 2.106
1500 2.106

Adler-32 2048 2.073
4096 2.056
8192 1.99
9000 1.99

81

Table A.3: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

16384 1.974
32768 1.957
65536 1.965

64 2.882
128 2.486
256 2.263
512 2.254

1024 2.04
1500 2.023

Fletcher-32 2048 1.998
4096 1.965
8192 1.949
9000 1.949

16384 1.941
32768 1.941
65536 1.949

64 1.759
128 0.983
256 0.678
512 0.552

1024 0.475
1500 0.462

one’s comp 16-bit word 2048 0.443
(in C) 4096 0.425

8192 0.417
9000 0.416

16384 0.414
32768 0.41
65536 0.41

64 1.594
128 1.255
256 0.974
512 0.842

1024 0.769
1500 0.746

one’s comp 32-bit word 2048 0.735
(in C) 4096 0.716

8192 0.707

82

Table A.3: Continued...

CRC32C/ Checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes)

9000 0.706
16384 0.703
32768 0.701
65536 0.699

64 2.246
128 1.643
256 1.272
512 1.115

1024 1.024
1500 1.016

one’s comp 64-bit word 2048 0.991
(in C) 4096 0.966

8192 0.958
9000 0.958

16384 0.95
32768 0.95
65536 0.941

83

Table A.4: Comparative performance evaluation of different one’s complement checksum imple-
mentations on Intel Core i3-2330M and Xeon with GCC optimization flag O1

One’s complement checksum Algorithms Data buffer size No. of CPU cycles per byte:
(in bytes) Intel Core i3-2330M Intel Xeon

64 2.09 1.68
512 0.837 0.733

one’s comp 16-bit word 1024 0.755 0.661
(in C) 1500 0.72 0.632

9000 0.668 0.579
64 1.12 1.13

512 0.504 0.437
one’s comp 32-bit word 1024 0.412 0.367

(in C) 1500 0.392 0.335
9000 0.343 0.297
64 1.08 0.967

512 0.353 0.304
one’s comp 64-bit word 1024 0.301 0.26
(in x86_64 assembly) 1500 0.287 0.251

9000 0.26 0.222

84

Table A.5: Effect of adding extra bytes to the buffer on Intel CPUs when computing CRC32C
using hardware instructions CRC32 and PCLMULQDQ

CRC32C/ Data buffer size No. of extra bytes No. of CPU cycles per byte:
Checksum Algorithms (in bytes) added to the buffer: Intel Core Intel Xeon

i3-2330M
0 1.25 1.23
1 1.35 1.29
2 1.27 1.25

64 3 1.53 1.32
4 1.33 1.06
5 1.28 1.1
6 1.38 1.17
7 1.65 1.33
0 0.211 0.168
1 0.213 0.169
2 0.213 0.169

crc32c (crc32 1500 3 0.214 0.171
+ pclmulqdq 4 0.213 0.167

based recombination) 5 0.217 0.201
6 0.211 0.168
7 0.214 0.17
0 0.151 0.128
1 0.152 0.127
2 0.151 0.128

9000 3 0.154 0.128
4 0.154 0.128
5 0.152 0.13
6 0.152 0.129
7 0.151 0.128

85

Table A.6: Effect of adding extra bytes to the buffer on Intel CPUs when computing TCP one’s
complement checksum with 16-bit word

CRC32C/ Data buffer size No. of extra bytes No. of CPU cycles per byte:
Checksum Algorithms (in bytes) added to the buffer: Intel Core Intel Xeon

i3-2330M
0 1.29 1.04
1 1.34 1.09
2 1.3 1.09

64 3 1.27 1.08
4 1.37 1.08
5 1.37 1.08
6 1.44 1.09
7 1.35 1.09
0 0.275 0.227
1 0.378 0.228
2 0.274 0.226

one’s comp 1500 3 0.277 0.227
16-bit word 4 0.268 0.222

(in C) 5 0.274 0.223
6 0.27 0.237
7 0.274 0.224
0 0.207 0.174
1 0.21 0.174
2 0.208 0.175

9000 3 0.209 0.18
4 0.208 0.175
5 0.208 0.175
6 0.206 0.175
7 0.205 0.177

86

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation
	Overview and Organization

	Background and Related Work
	Error Detection
	Error detection code effectiveness measures
	Hamming Distance
	Hamming Weight
	Probability of undetected error

	Literature Review

	CRC32C
	CRC Math
	Why CRC32C?

	Checksum and CRC Algorithms
	One's complement checksum
	One's complement checksum with 16-bit data word
	One's complement checksum with 32-bit data word
	One's complement checksum with 64-bit data word

	Fletcher-32 checksum
	Adler-32 checksum
	Cyclic Redundancy Check (CRC)
	CRC32C bit-wise
	CRC32C nibble-wise
	CRC32C byte-wise
	CRC32C slicing-by-4
	CRC32C slicing-by-8
	CRC32C using Intel Intrinsics
	CRC32C using PCLMULQDQ and CRC32 instructions on Intel
	CRC32C using CRC32 instruction on Intel and table-based recombination

	Research Methodology
	Results
	Benchmark study of checksum/ CRC algorithms on Intel CPUs
	Benchmark study of checksum/ CRC algorithms on ARM
	Benchmark study of checksum/ CRC algorithms on IBM POWER7

	CRC32C in TCP through TCP Option
	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX Comparative performance evaluation of different CRC/ checksum algorithms

