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Abstract

Yellow fever is a vector-borne disease endemic in tropical regions of Africa, where 90% of the

global burden occurs, and Latin America. It is notoriously under-reported with uncertainty aris-

ing from a complex transmission cycle including a sylvatic reservoir and non-specific symptom

set. Resulting estimates of burden, particularly in Africa, are highly uncertain. We examine two

established models of yellow fever transmission within a Bayesian model averaging framework

in order to assess the relative evidence for each model’s assumptions and to highlight possible

data gaps. Our models assume contrasting scenarios of the yellow fever transmission cycle in

Africa. The first takes the force of infection in each province to be static across the observation

period; this is synonymous with a constant infection pressure from the sylvatic reservoir. The

second model assumes the majority of transmission results from the urban cycle; in this case,

the force of infection is dynamic and defined through a fixed value of R0 in each province. Both

models are coupled to a generalised linear model of yellow fever occurrence which uses envi-

ronmental covariates to allow us to estimate transmission intensity in areas where data is

sparse. We compare these contrasting descriptions of transmission through a Bayesian frame-

work and trans-dimensional Markov chain Monte Carlo sampling in order to assess each mod-

el’s evidence given the range of uncertainty in parameter values. The resulting estimates allow

us to produce Bayesian model averaged predictions of yellow fever burden across the African

endemic region. We find strong support for the static force of infection model which suggests a

higher proportion of yellow fever transmission occurs as a result of infection from an external

source such as the sylvatic reservoir. However, the model comparison highlights key data

gaps in serological surveys across the African endemic region. As such, conclusions concern-

ing the most prevalent transmission routes for yellow fever will be limited by the sparsity of

data which is particularly evident in the areas with highest predicted transmission intensity. Our

model and estimation approach provides a robust framework for model comparison and pre-

dicting yellow fever burden in Africa. However, key data gaps increase uncertainty surrounding

estimates of model parameters and evidence. As more mathematical models are developed to

address new research questions, it is increasingly important to compare them with established

modelling approaches to highlight uncertainty in structures and data.
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Author summary

Yellow fever (YF) is notoriously under reported due to non-specific symptom spectrum

and the true burden is highly uncertain as a result of a complex transmission cycle. As

such, estimates surrounding YF burden are highly uncertain and the mechanisms behind

transmission are often unclear. We assess these mechanisms and the resulting uncertainty

by estimating two existing models of YF transmission within a product space framework.

This allows us to produce updated estimates of transmission intensity and to compare the

relative support for each model given the data. We find strong support for a model assum-

ing a static force of infection, approximating the constant infection pressure from the syl-

vatic reservoir of YF. We also highlight areas where data is sparse, often the same areas

estimated to have especially high transmission intensity. This is the first robust multi-

model approach to applied YF modelling and provides a framework that could be

extended to other disease models.

Introduction

Yellow fever (YF) is a vector-borne viral disease estimated to cause 78,000 deaths in Africa

alone [1]. It is endemic to both Latin America and Africa although as much as 90% of cases are

thought to occur in the latter. The disease has a wide spectrum of severity ranging from asymp-

tomatic infection to severe disease including jaundice and haemorrhaging [2]. Particularly in

milder cases, the disease is fairly non-specific and many individuals may be mistaken for hav-

ing other highly prevalent infections such as influenza or malaria.

The main urban vector of yellow fever transmission is Aedes aegypti, also a carrier of Den-

gue and Zika [3]. However, there are a number of intermediate and sylvatic vectors which link

the three main transmission cycles involving humans and non-human primates. The two

main transmission cycles are sylvatic, where infection occurs mainly in non-human primates

and is driven by tree-hole-breeding mosquitoes such as Aedes africanus, and urban, where

transmission is mainly in humans and is driven by Aedes aegypti [3, 4]. A third cycle cycle can

exist in the moist Savannah region of Africa when the tree-hole-breeding mosquito densities

reach high levels, infecting both humans and non-human primates. The various cycles have

different dynamics. When infection reaches urban settings, explosive outbreaks can occur due

to the high density of human hosts and mosquitoes. Yet, the consistent infection pressure

from the sylvatic reservoir of disease leads to speculation that many yellow fever cases arise as

a result of this cycle. Although, this pressure may vary temporally due to environmental fac-

tors. The third cycle, an intermediate form of transmission, affects humans living or working

in the jungle border areas and may exhibit dynamics of both extremes. This naturally leads to

questions concerning the optimal routes for controlling the disease.

Eradication of yellow fever is not feasible due to the sylvatic reservoir. However, there

exists a human vaccine which was developed in the 1930s and is estimated to have effective

protection that lasts a lifetime [5]. As such, control of the disease is possible and recent mass

vaccination campaigns have been found to reduce annual burden by 57% across the targeted

countries [1]. Yet assessing the impact of such an intervention will always be troubled by

uncertainty in the prevalence and dynamics of the disease.

A great deal of uncertainty is inherent in yellow fever modelling. The varying level of symp-

toms experienced by infected individuals lead to significant under or mis-reporting. This is

further complicated by the surveillance structures and remoteness of some of the communities

at risk from yellow fever. Furthermore, there is little data concerning the non-human primates
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who act as the environmental reservoir of the disease. The relationship between different pri-

mate species, mosquito types and the human hosts can vary the severity of transmission. Tack-

ling the uncertainty in model structures as well as parameters gives a start point from which to

begin quantifying the importance of transmission routes for this virus.

The uncertainty in yellow fever understanding leads to a number of challenges. In Africa,

little is known about YF in non-human primates (NHP); because of this, it is difficult to assess

how dynamics in NHP may affect epizootic events. Furthermore, the relative contribution of

different transmission cycles to the burden of YF in humans is unclear from the limited data

available. As a result, specific transmission-targeted intervention, which could allow for effec-

tive and cost-efficient control of the disease, is difficult to justify.

There have been several approaches to modelling YF, often without explicit assumptions

concerning the transmission cycles involved. Locally, Monath and Nisidi developed models to

assess the benefits of YF vaccination in Nigeria, finding it to be a cost-effective addition to the

enhanced programme of immunization (EPI) [6]. They assumed that infection in humans

occurred purely as a result of contact with the sylvatic reservoir; however they suggested a

background prevalence of immunity of 60% may preclude epidemic spread. Kraemer et al.

modelled the geographic spread of the YF outbreak in Angola and Democratic Republic of

Congo 2016 using human mobility data and a measure of vector suitability in order to priori-

tise districts for intervention. On a global scale, Shearer et al. modelled the vaccination cover-

age and then YF risk by incorporating distribution maps of reservoir and vector species as well

as habitat suitability [7, 8]. We focus on two models for transmission in Africa. The first is that

of Garske et al. which is used to inform and assess vaccination strategy from GAVI and the

Gates foundation [1]. This model assumes the force of infection is static resulting from a con-

stant infection pressure from the sylvatic reservoir and uses a generalised linear model of YF

occurrence to extrapolate transmission intensity to areas where data is sparse. Our second

focus model is that of Jean et al. which extends the work of Garske et al. to account for a form

of herd immunity [9]. In this case, infection is assumed to be human-human mediated by mos-

quitos thus representing only the urban transmission cycle. Both represent an extreme version

of yellow fever transmission; however, within our averaging framework, we will assess the rela-

tive evidence for each model formulation and thus compare the role of each transmission

cycle. This approach differs from Faria et al. who used genomic data as well as the age/ sex dis-

tributions of infected cases to find that a YF outbreak in Minas Gerais was mainly due to syl-

vatic transmission [10].

In this manuscript we shall detail the updated data sources and describe in brief the two

highlighted model structures for yellow fever in Africa [1, 9]. We shall then define a composite

model incorporating both model formulations and estimate it within a Bayesian framework to

evaluate key values of model selection such as Bayes factors. This will allow us to produce pre-

dictions incorporating both model approaches and the inherent uncertainty of multiple model

structures and parameters. This is the first rigorous multi-model approach applied to yellow

fever.

Materials and methods

Overview

As described in [1], we estimate a generalised linear model at locations where yellow fever was

reported from 1987 to 2017. This model predicts, for each location, the probability of at least

one yellow fever report over the observation period based on covariates such as the tempera-

ture or land cover type. Then, given a probability of detection for each country informed by

the mismatch between case reports and serology, the number of cases that would give rise to
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this probability of report is estimated. Finally, this number of infections is converted to either

a force of infection, λ, see [1], or a basic reproduction number estimate, R0, see [9]. Fig 1

shows the various data sources for both models.

Data

The models were estimated at the resolution of the first administrative unit, often called a

province. All data detailed below is resolved or aggregated at that level unless stated otherwise.

This resolution was optimal for the YF occurrence data, other inputs such as environmental

covariates were originally gridded.

Yellow fever occurrence. A database of the provinces where outbreaks of yellow fever

have been reported was compiled from 1984 to 2017. This was informed by data from the

Fig 1. Diagram of models and data sources where R0 denotes the basic reproduction number and λ, the force of

infection. Circles denote a product of calculation or inference; square boxes denote data sources.

https://doi.org/10.1371/journal.pcbi.1007355.g001
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Weekly epidemiological record (WER), the WHO disease outbreak news (DON), the pub-

lished literature and internal WHO outbreak records.

Case-based surveillance for YF was established in 21 West and Central African countries

and is recorded in the yellow fever surveillance database (YFSD) held by the African regional

office of the World Health Organisation (AFRO). This database is designed to use a very broad

case definition (jaundice or haemorrhage with fever) to ensure high sensitivity (at the cost of

low specificity of suspected cases). That means that most reported cases are not due to YF and

only 1-2% will be lab-confirmed as YF. In addition to using the confirmed cases to inform the

occurrence of YF, we use the above data as a proxy for surveillance effort in each country.

Assuming an approximately constant incidence of the syndrome ‘fever with jaundice and/or

haemorrhage’, the per-capita incidence of reported suspected cases yields information on the

surveillance effort. We therefore aggregate this measure at country level and divide by the

national population to be used as a covariate in the generalised linear model.

Vaccination coverage. We use the methodology of Garske et al. with updated data sets to

estimate vaccination coverage [1]. This methodology is also described and visualised in finer

detail in the Polici shiny application where vaccine coverage is visualised at province level

from 1940 to 2050 for the 34 endemic countries in Africa. [11]. This data may also be down-

loaded for each country. The coverage is based historic data on large-scale mass vaccination

activities [12, 13], outbreak response campaigns as reported in the WHO weekly epidemiologi-

cal record and disease outbreak news [14, 15], recent preventive mass-vaccination campaigns

conducted as part of the yellow fever initiative [16] and routine infant vaccination reported by

the WHO/UNICEF estimates of national immunization coverage (WUENIC) [17].

Serological surveys. We use serological surveys to assess transmission intensity in specific

regions of the African endemic zone, the locations are displayed in Fig 2. Theses include pub-

lished and unpublished surveys [18–23]. The unpublished surveys were from various East Afri-

can countries performed between 2012 and 2015 as part of the YF risk assessment process

[24]. Of the published surveys, included in the estimation of Garske et al. and Jean et al. we

omit that of the Central African Republic as it may capture post-outbreak dynamics and thus

not represent the population serological status at steady state [9, 18, 25]. In the majority of sur-

veys, individuals who were known to have been vaccinated were excluded; however in south

Cameroon the vaccination status was unknown so we estimate an additional vaccination factor

[19]. This factor represents the probability that a vaccinated individual is included in the

study. Further summary characteristics of the surveys are included in the Table A in S1 Text.

Demographic data. For each country, the population size and age structure was obtained

from the UN World Population Prospects (UN WPP) [26]. These were then disaggregated

from the five- year age band into annual birth cohorts according to the method described in

[25]. We combine the estimates with spatial population distributions from LandScan 2014 [27]

in order to estimate the populations sizes at province level assuming the same age structure

across all provinces in a given country. Landscan provides population size estimates for

approximately 1 km square pixels. Combining these data sets we arrive at the total number of

individuals in each age group and province over time assuming that spatial distributions are

fairly static.

Environmental data. The generalised linear model includes environmental covariates to

account for the dependence of transmission on factors such as temperature and land cover.

These data sets specifically include the enhanced vegetation index (EVI), middle infra-red

reflectance (MIR), land cover types, rainfall estimates, temperature and altitudes [28–30].

These are gridded data at various resolutions, ranging from approximately 1km to 10km,

which we aggregated to province level by calculating the mean value weighted by the popula-

tion size at each grid cell.
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Models

Generalised linear model of yellow fever reports. This approach is common to both

models and described in full in [1]. The generalised linear model is estimated from occurrence

data which we assume to be binomially distributed. The model predictions, qi for each prov-

ince or first administrative unit, i, are given by

q ¼ 1 � expð� expðXbÞÞ ð1Þ

where X = Xij is the matrix of covariates used in the model, i denotes province and j denotes

covariate, and β is the vector of parameters to be estimated. Garske et al. used a complemen-

tary log-log link function in order to have a more realistic interpretation in terms of surveil-

lance quality when relating the GLM to transmission intensity, detailed later. The full list of

covariates assess is detailed in [1]; however, in this paper we examine only the best-fitting

model which incorporates aspects such as land cover type, temperature, surveillance quality,

population size, enhanced vegetations index and longitude. This is the same for both formula-

tions of the transmission model.

Relating occurrence to transmission intensity. In both of the model formulations, the

transmission intensity produces an estimate of the number of infections in any year. As such

we may calculate the number of infections over the reporting period. If we can also calculate

Fig 2. Location of serological surveys used in the models. The colour intensity indicates number of studies covering

each province where grey = 0, pale blue = 1 and darker blue = 2 or more. Further details on serological surveys are

available in Table A in S1 Text [1, 9, 18–23]. Maps were produced from GADM version 2.0.

https://doi.org/10.1371/journal.pcbi.1007355.g002
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the probability of report, the number of infections will link transmission intensity and the

occurrence of yellow fever reports. First, we relate qi, the probability of at least one yellow fever

report in province i over the observation time to ninf,i, the number of infections in that prov-

ince, through a Poisson process for the detection on infection,

qi ¼ 1 � ð1 � riÞ
ninf;i

where ρi = ρc is the per country probability of detection which may be related to the GLM in

following way

ninf;i lnð1 � rcÞ ¼ � expðXbÞ:

Through the repeated taking of logarithms, the probability of detection may be written in

terms of the GLM coefficients and a baseline surveillance quality, b,

lnðninf;iÞ ¼ Xb � bc � b and lnð� lnð1 � rcÞÞ ¼ bc þ b ð2Þ

which is calculated separately using serological survey data from the left part of Eq 2.

Transmission intensity as a static force of infection. In the areas where serological sur-

vey data is available, it is possible to estimate the transmission intensity assuming certain infor-

mation about vaccination coverage and demography. In the first instance, Garske et al.

assumed transmission occurred as a static force of infection, hereby termed the λ model [1].

This formulation may be likened to the assumption that most Yellow Fever infection pressure

comes from the sylvatic reservoir and there are limited instances where infection reaches

urban environments to be sustained in the human and vector populations alone.

The force of infection is assumed to be the same for all age groups within a province over

time, so we may model the serological status of the population in age group u with force of

infection λ as the following,

SFðl; uÞ ¼ 1 � 1 �

X

a2u
ð1 � expð� laÞÞpa
P

a2upa

 !

1 �

X

a2u
vapa

P
a2upa

 !

ð3Þ

where pa denotes the proportion of the population of age a and va denotes the vaccination cov-

erage at age a.

Transmission intensity related to the basic reproduction number. Jean et al. developed

a formulation for the transmission dynamics of yellow fever that is based on the basic repro-

duction number [9]. Therefore, the model is dynamic and the force of infection may change

depending on population immunity. In contrast to the the λ model, the basic reproduction

number or R0 model assumes all infections are human-to-human, mediated through the main

urban vector of Yellow Fever, Aedes aegypti. The ramification of this assumption is that the

herd affects of any intervention measures will be captured by the R0 model and not by the λ
model.

The R0 model assumes that each province is at endemic equilibrium. Each year the endemic

equilibrium is maintained by the addition of new infections such that the fraction of suscepti-

ble population is equal to 1/R0. Thus,

Ninf ðtÞ ¼ max 0;PtotðtÞ SðtÞ �
1

R0

� �� �

;

where Ninf(t) is the number of infections in year t and Ptot(t) is the total population size in

year t.
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The immunity granted through vaccination is also incorporated into the model, reducing

the number of infections occurring in any one year. However, seropositivity due to vaccination

is included in only some of the serological studies. In this case, the natural and vaccinated sero-

logical status must be tracked separately and the resulting seroprevalence at age a in year t may

be modelled as

SR0
ða; tÞ ¼ 1 � i� v� ða; tÞ ð4Þ

where i− v−(a, t) denotes those individuals who are both uninfected and unvaccinated.

Model estimation

We wish to average the model predictions of disease burden whilst taking into account the

uncertainty in parameter estimates and model structure. As such, we would like to calculate

the probability of each model given the data and uncertain parameter estimates. We do this by

estimating the model evidence using Markov Chain Monte Carlo (MCMC) on the product or

composite space of the models using the method of Carlin and Chibb [31–35]. They wished to

develop a rigorous model selection, without affecting convergence, in the situation where the

dimension of the parameter space is not fixed [31]. This method not only gives us an estimate

of the model evidence but also allows us to calculate the Bayes factors and marginal posterior

distributions for each parameter.

Method in brief. We examine the full space of parameters for all models, y ¼ ðyR0
; ylÞ.

Therefore, we define a composite model containing all parameters and a model indicator, M.

The model indicator dictates which parameters are informed by the data at each iteration;

when the model indicator ‘selects’ model A, we term the parameters corresponding to model

A as activated. We sample the posterior of this composite model by proposing values of θ and

M, and accepting them with a probability proportional to the prior distributions of M and acti-

vated model parameters; the likelihood, and pseudopriors. Pseudopriors can be considered as

linking densities which are chosen to improve mixing between models and do not contribute

to the marginal likelihoods. They act as place holders for the parameters that are not currently

informed by the data and therefore only apply to inactivated parameters. In our models the

model-specific parameters describe the transmission intensity in the serological surveys,

namely λ and R0 estimates which may be activated or inactivated by M. The parameters that

are common to both models, such as the vaccine efficacy, are always informed by the data and

therefore always activated. These parameters do not have pseudopriors, see Fig 3 for links. The

resulting posterior samples of model indicator M will give us an indication of which model is

better supported by the data; the posterior samples of the shared parameters will indicate the

full uncertainty in estimates given the two formulations.

Theoretical background. We may describe our R0 and λ models as Bayesian models

defined by a joint probability distribution of data, D, and model parameters, θ:

pðD; yijMiÞ ¼ pðDjyi;MiÞpðyijMiÞ:

We define a mixture model of the two models where our parameter vector can take any value

from the Cartesian product of the individual parameter spaces [32]. Therefore, the full model

may be written as the following,

pðDjyÞ ¼ pðD; yjMlÞpðMlÞ þ pðD; yjMR0
ÞpðMR0

Þ

where p(Mi) is the prior for model i 2 (λ, R0) and pðMR0
Þ þ pðMlÞ ¼ 1. Given the above for-

mulation of the mixture model, the marginal likelihood for each model may be described with
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the following,

pðDjMiÞ ¼

Z

pðDjyi;MiÞpðyijMiÞdyi:

Note that the above is independent of the prior distribution p(θj|Mi), or pseudoprior, which

means that p(θj|Mi) may be chosen specifically to improve mixing and that we may calculate

the Bayes factors as the ratio of the two marginal likelihoods [31, 32].

We generate samples from the joint posterior distribution of the model parameters and

indicator using Metropolis-within-Gibbs where the joint posterior is given by,

pðM; yjDÞ / pðDjyi;MiÞpðyijMiÞpðyjjMiÞpðMiÞ:

Following Carlin and Chibb and, separately, Lodewyckx et al. [31, 32], we use a Gibbs sampler.

However, in both of the above, the likelihood, p(D|θi, Mi), could be sampled easily, whereas we

use a pseudo-likelihood assuming observations are independent, with form shown in Eq 6. As

such, where the likelihood occurs in the Gibbs sampling algorithm, we include a Metropolis-

Hastings step. This means that we propose new parameter values from a symmetric distribu-

tion which we then accept with a probability proportional to the likelihood and prior distribu-

tions at that point.

The steps for one iteration of this approach are as follows:

Fig 3. Diagram of model inference at one iteration. Aspects relating the λ model are contained in the blue box. There

are two main data sets that the models are estimated from, occurrence data, shown in white, and serological data,

shown in black. Elements contained within circles denote families of model parameters with the vaccine efficacy (Ve)

parameter common to both transmission model formulations. When a model is not activated (R0 in this figure) the

model-specific parameters are informed by pseudopriors, shown in purple. Solid arrows imply that the parameter is

being informed by that data source or pseudoprior in this iteration; dashed arrows imply that the parameter family is

currently not informed by that data source or pseudoprior in this iteration.

https://doi.org/10.1371/journal.pcbi.1007355.g003
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1. We sample new parameters given the current value of the model indicator from the condi-

tional distributions given by

pðyjjyi6¼j;M;DÞ /
pðDjyj;MjÞpðyjjMjÞ M ¼ Mj;

pðyjjMiÞ M ¼ Mi6¼j:

8
<

:

Inactivated parameters are sampled directly from their pseudopriors, p(θj|Mi). The pseu-

dopriors are set to proper distributions that have been fitted to the marginal posterior dis-

tributions of individual model runs.

Activated parameters are informed by the likelihood and prior distributions and so are

sampled using a Metropolis-Hastings step. As such, new values, denoted with a star, are

proposed from a multivariate normal transition kernel and accepted with probability pro-

portional to,

min 1;
pðDjy�j ;MjÞpðy

�

j jMjÞ

pðDjyj;MjÞpðyjjMjÞ

 !

:

2. We sample the model indicator given the new values of the parameters from the conditional

distributions denoted by

pðMijy;DÞ / pðDjyi;MiÞpðyijMiÞpðyjjMiÞpðMiÞ:

This is completed as a Metropolis-Hasting step with new model indicator value proposed

from symmetric distribution (in our case, either model is chosen with equal probability)

and accepted with a probability proportional to the ratio of the conditional distributions of

the new and old model indicator.

Finally, we may approximate the posterior probability of each model as the proportion of

iterations accepted for that model, ie.

p̂ðMkjDÞ ¼
Number of iterations spent on Mk

Total number of iterations
: ð5Þ

Specific formulation. Our two model formulations retain the generalised linear model of

yellow fever occurrence which is used to extrapolate transmission intensity across the entire

African endemic region. To estimate this, we use binary occurrence data to produce the fol-

lowing likelihood,

ln LGLM ¼
X

i

ðyi lnðqiÞ þ ð1 � yiÞ lnð1 � qiÞÞ;

where yi denote yellow fever reports in province i over the observation period and qi is the pre-

dicted probability of a report given by Eq 1. We estimate the GLM with MCMC and a Metrop-

olis-Hasting step based on an adaptive proposal distribution.

The difference between the λ and R0 model formulations occurs when predicting seroprev-

alence. However, the serological study likelihoods have the same general form. The positive

samples are assumed to be binomially distributed so we have the following pseudo-log-
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likelihood,

ln LSERO ¼
P

u ln
ntot;u

npos;u

 !

SMðT; uÞ
npos;uð1 � SMðT; uÞÞ

ntot;u

 !

; ð6Þ

where SM(T, u) denotes the seroprevalence predicted by model M 2 (λ, R0) for age group u
and transmission type T 2 (λ, R0) given by Eqs 3 and 4; ntot,u and npos,u denote the total num-

ber of samples and positive samples in the data respectively.

As we have overlapping parameters which will be activated irrespective of the value of the

model indicator, we only need to define pseudopriors for the parameters that differ between

models i.e., R0 and λ. We choose the pseudopriors to be approximations of the individual

model posterior predicted values from previous MCMC runs, see the appendix for all distribu-

tions. These are calculated using the package fidistr in R assuming the posteriors of individual

model runs are normally distributed, see supplementary material for fits. We adjust the vari-

ance of these fitted distributions in order to ease mixing between the two models as the pseu-

dopriors do not affect the marginal posterior distributions of the models. This was performed

by adjusting a scaling factor for the standard deviation for the R0 pseudoprior to ensure that

the values of the pseudopriors applied to the median values of the posterior outputs of both

models have a difference close to zero.

Each model has a prior which may affect the mixing between models and the final posterior

model probability. As such, we choose this to be such that each model is activated relatively

frequently to ensure efficient sampling of the parameter space. We examined the posterior

probabilities given either value of the model indicator and adjusted the model prior informa-

tion such that the difference was minimal. In our case, and primarily due to the difference in

model likelihood for the median posterior value of each parameter taken from initial individ-

ual model estimation runs, the model prior for the λ model is πλ = exp(−10). The model prior

for the R0 is pR0
¼ 1 � pl. The final Bayes factors will take into account the prior model proba-

bilities in the following way:

BR0l
’
p̂ðMR0

jDÞpl
p̂ðMljDÞpR0

: ð7Þ

Bayesian model averaging

Once we have estimated the model evidence and approximated the Bayes factors, we may pro-

duce average disease burden predictions given both of our models. We aim to predict the bur-

den of yellow fever in the African endemic zone for the year 2018 which may be calculated

using the posterior predicted distribution of the risk of a yellow fever report and either the pos-

terior distributions for λ or R0 in the serological survey areas. We consider a pool of possible

predictions from both model formulations to arrive at the average model prediction. We sam-

ple from the combined pool of model predictions proportional to each model’s evidence

under the assumption that the model priors are equal. To calculate this, we use our Bayes fac-

tor estimates and the following formula:

~pðMR0
jDÞ ¼

BR0 ;l

1þ BR0 ;l

; ð8Þ

where ~pðMR0
jDÞ is the R0 model evidence under the assumption of equal model priors. We

also sample the model predictions proportional to the model evidence where the model priors

are as we have defined them; the results of which can be found in the supplementary material.
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Results

We shall first detail the outcome of the estimation for each model and then combine the full

predicted distributions to calculate the transmission intensity across the African endemic

region and thus the disease burden.

Estimation of the GLM for YF occurrence

The generalised linear model provides a close quantitative and qualitative fit to the data as

shown by Fig 4. Stability of the chains was assessed both visually through examination of the

trace plots and comparison of the whole and partial chain densities, see S1 Text for figures.

Additionally, the Raftery diagnostic was used to assess the number of iterations required to

accurately estimate the quantiles of the parameters [36, 37]. All estimation and analyses were

performed in R version 3.4.4 [38].

Estimation of the transmission models

The transmission models were estimated together through the product space MCMC method,

as such we arrive at marginal posterior distributions for all parameters. In the case of the spe-

cific transmission parameters, λ and R0, these posteriors are independent and so we separate

the samples by which model was activated. However, the parameters for vaccine efficacy and

vaccine coverage factor for south Cameroon are shared between the models; as such, we

include all samples for these parameters to account for uncertainty in model structure in these

estimates. The posterior distributions for these shared parameters are shown in Fig C in S1

Text and all other trace plots and distributions can be found in the appendix. Fig 5 shows the

Fig 4. Geographical distribution of yellow fever occurrence. Presence/ absence of yellow fever over 30 year period by province where white indicates

absence and brown, presence (a). Median model predictions of the probability of at least one report of yellow fever (b). Countries not considered endemic for

yellow fever are shown in black. The AUC of the shown fit is 0.9157. Maps were produced from GADM version 2.0.

https://doi.org/10.1371/journal.pcbi.1007355.g004

Quantifying model evidence for yellow fever transmission routes in Africa

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007355 September 23, 2019 12 / 18

https://doi.org/10.1371/journal.pcbi.1007355.g004
https://doi.org/10.1371/journal.pcbi.1007355


posterior predictive distributions for all serological surveys for both transmission models. In

the majority of situations, both the λ and R0 models give a similar qualitative fit to the data.

However, there are notable differences in COD zones 1 to 3 where the R0 model fails to predict

the first data point.

Bayes factors

The Bayes factors are approximated using Eq 7. We defined the prior probability of the λ
model as exp(−10) in our specific formulation of the inference, therefore the only additional

consideration is the posterior model probability of each model. The approximate posterior

probability of the R0 model is approximately 0.0675 [0.0691, 0.0706] where the confidence

interval is provided from a 1,000 bootstrap samples of the model indicator chain [32]. This

leads to a log Bayes factor of -12.60 [-12.63,-12.58] for the R0 model indicating strong evidence

for the static transmission force of infection model.

Bayesian model average predictions

We sample from the posterior distributions of all models to produce estimates of the transmis-

sion intensity across the African endemic region, with median values shown in Fig 6. We take

1,000 samples of the posterior for the GLM parameters and use these with 1,000 samples of the

transmission models.

The transmission models are then sampled proportional to their model evidence under the

assumption of equal priors, see Eq 8. In this case, the R0 model is sampled with probability

3.37×10−6, so essentially all 1,000 predictions shown in Fig 7 are obtained from the λ model.

Fig 5. Posterior predictive distributions of seroprevalence for each of the included serological studies. Predictions from the λ model are shown in blue and

from the R0 model, red; paler red and blue regions indicate the 95% credible interval of the predictions. The data is shown with black dots with binomial 95%

confidence ranges shown with black whiskers.

https://doi.org/10.1371/journal.pcbi.1007355.g005
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We also consider the case where the model priors are as we defined, πλ = exp(−10), the result-

ing burden predictions are shown in Fig K in S1 Text.

Discussion

We have presented a framework to assess model evidence for two transmission models for yel-

low fever in Africa. We have used these two models in conjunction with a model of relative

Fig 6. Estimated transmission intensity across the African endemic region for yellow fever. Median posterior estimates of the GLM and transmission model

parameters are used to calculate either (a) force of infection or (b) R0 across the African endemic region. Countries not considered endemic for yellow fever are

shown in grey. Maps were produced from GADM version 2.0.

https://doi.org/10.1371/journal.pcbi.1007355.g006

Fig 7. Disease burden estimates for 2018 with equal model priors. 1,000 predictions of the burden in 2018 across the African endemic zone on log10 scale. The

probability an infection is severe is drawn from a beta distribution with shape parameters 6.4 and 44.6 [39]. Predictions are drawn from each transmission model

proportional to the model evidence under the assumption of equal model priors where pink points come from the λ model and blue points, from the R0 model.

https://doi.org/10.1371/journal.pcbi.1007355.g007
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risk of yellow fever reports to estimate transmission intensity across the African endemic

region. We were then able to produce average model predictions of the burden across the

region according to each model’s evidence.

We found strong support for the static force of infection model with a Bayes factor of

2.95 ×105 (95% CrI [2.95 ×105, 2.95 ×105]). This suggests that for the currently included sero-

logical surveys, there is more support for the static force of infection model. This could be due

to unsuitability of the R0 model for the type of data we have access to or the sparsity of the data

itself; however, it could also indicate the relative validity of assumptions concerning yellow

fever transmission in Africa.

Whilst the models we compare have some similar structure, the intrinsic assumptions in

each differ. We have omitted one serological survey, from the Central African Republic, that

was included in the original estimation of both transmission models as it may not represent

the population level immunity at steady state [1, 9, 18]. When this survey was included, the

support for the R0 model decreased, suggesting that the assumption of constant transmission

intensity disproportionally hampers the R0 model. The R0 model also assumes that each prov-

ince is at endemic equilibrium. This assumption may be too strong in East Africa where very

low values of R0 are estimated. It also leads to some years where there are no new infections in

certain provinces, see COD zones 1 to 3 in Fig 5 and in the burden predictions in Fig K in S1

Text. Furthermore, changes to the demography could affect the endemic equilibrium making

the R0 less flexible than the static force of infection model. Finally, by fitting the same model

indicator over all locations, we implicitly assume that the relative support for each model is

spatially invariant. As such, this could penalise areas where the R0 is better supported.

The example of COD zones 1-3 suggests that the disparity between models is being driven

by specific locations. In these situations, the population level immunity is close to herd immu-

nity, leading to years of zero infections in the R0 model when vaccine coverages are higher; a

behaviour never seen in the λ model. As both models are designed to assess long-term disease

burden, this behaviour is smoothed over the timespan; however, when comparing specific age

groups in serological profiles, the differences can be seen. This behaviour leads to large differ-

ences in pseudo- log- likelihood for some age groups in the serology, leading to the large mag-

nitude of the Bayes factor. It also means that the Bayes factor is dependant on the included

studies.

If our model assumptions were directly comparable, then we may conclude that the λ
model provides a stronger representation of yellow fever transmission in Africa. This would

suggest transmission occurring as a result of a constant pressure from the sylvatic reservoir

may be responsible for more occurrence reports than human to human transmission (medi-

ated by mosquitoes). This would be consistent with the dynamics seen for the ongoing Nige-

rian yellow fever outbreak, but not for the 2016 Angola outbreak [9]. However, the way in

which we incorporate the available data into our model may contribute to the relative support.

Untangling the relative contribution of transmission routes may not be feasible with our

current data sets. Our results are limited by the number of compared transmission models and

the sparse data set on which to compare them. We could counter the first issue by introducing

further transmission models that bridge the two approaches. However, the second issue will

limit how any new models may be estimated. We have utilised occurrence data and serological

studies. To show occurrence, we take cases and outbreak reports only, discarding the relative

magnitude of outbreaks, as we expect any reports to be a large underestimate of the actual

prevalence of the disease. This may indirectly favour the static force of infection model as

infections are assumed to be unconnected. In the serological studies, there are key gaps, partic-

ularly in West Africa where transmission is estimated to be highest. The absence of informa-

tion is this region both increases the uncertainty in our estimates and may mean we omit areas
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where urban transmission plays a greater role. One of the benefits of the framework we use is

accounting for some of the uncertainty arising from these data gaps. Yet, we can not ensure

that both models will be affected equally.

Our framework for model comparison and averaging may be extended to other models

given they share data sources. We have presented a method for dealing with pseudo-likeli-

hoods within a product space estimation format. This leads to posterior estimates of model

parameters and model evidence whilst accounting for uncertainty in model structure. We find

strong evidence for a model with constant infection pressure from an external source, validat-

ing proposals that yellow fever is sustained in a sylvatic reservoir. However these results are

limited by the small number of models compared and the sparse data available. New studies

and data collection, particularly serological data in West Africa, could reduce uncertainty and

alter the current model evidence. As an increasing number of models are developed for disease

transmission, rigorous comparison accounting for uncertainty in parameter estimates and

model structure is vital in order for us to unpack the relative importance of transmission

dynamics. We present one avenue of model comparison and highlight areas of uncertainty

both in yellow fever modelling and available yellow fever data.

Supporting information

S1 Text. Supporting text. Additional data and estimation figures as well as further explanation

of the main text.

(PDF)
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