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Lung cancer is the leading cause of cancer-related deaths in the world. The

most prevalent subtype, accounting for 85% of cases, is non-small-cell lung

cancer (NSCLC). Lung squamous cell carcinoma (LUSC) and lung adeno-

carcinoma (LUAD) are the most common subtypes. Despite recent

advances in treatment, the low 5-year survival rate of NSCLC patients (ap-

proximately 13%) reflects the lack of early diagnostic biomarkers and

incomplete understanding of the underlying disease mechanisms. We

hypothesized that integration of metabolomic, transcriptomic and genetic

profiles of tumours and matched normal tissues could help to identify

important factors and potential therapeutic targets that contribute to

tumorigenesis. We integrated omics profiles in tumours and matched adja-

cent normal tissues of patients with LUSC (N = 20) and LUAD (N = 17)

using multiple system biology approaches. We confirmed the presence of

previously described metabolic pathways in NSCLC, particularly those

mediating the Warburg effect. In addition, through our combined omics

analyses we found that metabolites and genes that contribute to haemosta-

sis, angiogenesis, platelet activation and cell proliferation were predomi-

nant in both subtypes of NSCLC. The important roles of adenosine

diphosphate in promoting cancer metastasis through platelet activation and

angiogenesis suggest this metabolite could be a potential therapeutic target.

1. Introduction

Lung cancer is the leading cause of cancer-related

deaths in the world. The most prevalent subtype,

accounting for 85% of cases of lung cancer, is non-

small-cell lung cancer (NSCLC). Within NSCLC, lung

squamous cell carcinoma (LUSC) and lung adenocar-

cinoma (LUAD) are the most prevalent subtypes,

accounting for approximately 75% of cases. Despite

major improvements in treatment options for NSCLC,

such as checkpoint inhibitors (anti-PD-1/PD-L1) and

targeted therapies (tyrosine kinase inhibitors in
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relation to epidermal growth factor receptor (EGFR),

anaplastic lymphoma receptor tyrosine kinase (ALK)

and ROS1 gene abnormalities), the 5-year survival rate

remains approximately 13% (Siegel et al., 2018). Poor

survival is due to lack of early diagnostic biomarkers

as well as the incomplete understanding of the under-

lying disease mechanisms.

Advances in genomics and genetics have enabled

improved characterization of molecular subtypes of

NSCLC. Lesions include EGFR mutation, and ALK

and ROS1 receptor fusion, which if present signifi-

cantly improves targeted treatment outcomes of cancer

patients. Besides these molecular mutations, abnormal

cellular metabolism is also a hallmark of lung cancer

(Hanahan and Weinberg, 2011). As with other types

of cancer, the metabolic profile of NSCLC has been

characterized by upregulation of key metabolic path-

ways such as glycolysis (Fahrmann et al., 2017), the

TCA cycle (Fan et al., 2009), Krebs cycle (Sellers

et al., 2015) and nucleotide metabolism (Moreno et al.,

2018). Unfortunately, specific metabolic biomarkers of

tumorigenesis and potential treatment targets are not

well established.

Although metabolomic profiles in NSCLC have

been characterized using plasma (Louis et al., 2017),

serum (Kumar et al., 2017) and sweat samples (Cal-

deron-Santiago et al., 2015), the number of investiga-

tions into metabolomic profiles in the tumours

themselves and their adjacent normal tissues is limited.

Amongst these studies, Rocha et al. (2015) studied

LUSC and LUAD tumours and found that in LUAD,

phospholipid and protein metabolism were dominant,

while glycolytic and glutaminolytic profiles were highly

activated in LUSC tumours. More recently, Moreno

et al. (2018) observed significant changes in glucose,

glutathione, lipid and nucleotide metabolism in

tumours in comparison with the normal tissues. So

far, Fahrmann et al. (2017) are the only investigators

to characterize and report potential interactions

between metabolites and transcriptomes in NSCLC. It

is important to note however that the transcriptomic

data used by Fahrmann et al. were not derived from

the same patients that underwent the metabolomic

assay.

Comprehensive investigations into the underlying

biochemical (metabolomic) and molecular (genomic

and genetic) perturbations that accompany tumorigen-

esis have not been performed previously. We hypothe-

sized that integration of the omics data would enable

the identification of important key factors that con-

tribute to tumorigenesis and factors that could be

potential therapeutic targets for the treatment of

NSCLC.

In this study, by combining metabolomic, genomic

and genetics profiles of tumours and matched adjacent

normal tissues of patients with LUSC (N = 20) and

LUAD (N = 17), we have been able to investigate the

relationships between metabolites, gene expression and

tumour genetic variants.

2. Materials and methods

2.1. Study cohort

Paired lung biopsy samples (tumour and adjacent nor-

mal tissue) were obtained from 37 patients diagnosed

with NSCLC. They are a subset of NSCLC patients

who had tumour resection at the Royal Brompton

Hospital between the years 2009 and 2011. All patients

gave written informed consent for research on bio-

banked tissue under the ethical approval given to the

RBH NIHR BRU Advanced Lung Disease Biobank

(NRES reference 10/H0504/9) and Brompton and

Harefield NHS Trust Diagnostic Tissue Bank (NRES

reference 10/H0504/29). The study methodologies fol-

lowed the standards set by the Declaration of Hel-

sinki.

Tissue samples had been specifically collected and

optimally stored (within 2 h after collection) for geno-

mics, with tissue for transcriptomics stored in RNAla-

ter (Qiagen, Crawley, UK) and tissue for genomic

DNA and metabolomics snap-frozen at the time of

surgical resection and archived at �80 °C. Tumour

histology and confirmation of histology subtype were

through pathology review (A. Nicholson) of haema-

toxylin and eosin-stained sections.

2.2. Metabolomics

Paired lung biopsy samples stored at �80 °C were sent

to Metabolon for metabolomic profiling, as described

previously (Moreno et al., 2018). Technical procedures

included sample preparation, QA/QC, liquid chro-

matography/mass spectrometry (LC/MS, LC/MS2),

GC/MS, accurate mass determination and MS/MS

fragmentation, data extraction and quality assurance,

compound identification and normalization.

2.2.1. Sample accessioning

Each sample received was accessioned into the Meta-

bolon Laboratory Information Management System

(LIMS) and was assigned by the LIMS a unique iden-

tifier, which was associated with the original source

identifier only. This identifier was used to track all
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sample handling, tasks, results, etc. The samples (and

all derived aliquots) were bar-coded and tracked by

the LIMS. All portions of any sample were automati-

cally assigned their own unique identifiers by the

LIMS when a new task was created; the relationship

of these samples was also tracked. All samples were

maintained at �80 °C until processed.

2.2.2. Sample preparation

The sample preparation process was carried out using the

automated MicroLab STAR� system from Hamilton

Company (Birmingham, UK). Recovery standards were

added prior to the first step in the extraction process for

QC purposes. Sample preparation was conducted using a

proprietary series of organic and aqueous extractions to

remove the protein fraction while allowing maximum

recovery of small molecules. The resulting extract was

divided into two fractions: one for analysis by LC and

one for analysis by GC. Samples were placed briefly on a

TurboVap� (Zymark, Hopkinton, MA, USA) to remove

the organic solvent. Each sample was then frozen and

dried under vacuum. Samples were then prepared for the

appropriate instrument, either LC/MS or GC/MS.

2.2.3. QA/QC

For QA/QC purposes, a number of additional samples

are included with each day’s analysis. Furthermore, a

selection of QC compounds is added to every sample,

including those under test. These compounds are care-

fully chosen so as not to interfere with the measure-

ment of the endogenous compounds. Tables 1 and 2

describe the QC samples and compounds. These QC

samples are primarily used to evaluate the process con-

trol for each study as well as aiding in the data cura-

tion.

2.2.4. Liquid chromatography/Mass spectrometry (LC/

MS, LC/MS2)

The LC/MS portion of the platform was based on a

Waters ACQUITY UPLC and a Thermo-Finnigan

LTQ mass spectrometer, which consisted of an ESI

source and linear ion-trap (LIT) mass analyser. The

sample extract was split into two aliquots, dried and

then reconstituted in acidic or basic LC-compatible

solvents, each of which contained 11 or more injection

standards at fixed concentrations. One aliquot was

analysed using acidic positive ion optimized conditions

and the other using basic negative ion optimized con-

ditions in two independent injections using separate

dedicated columns. Extracts reconstituted in acidic

conditions were gradient-eluted using water and

methanol both containing 0.1% formic acid, while the

basic extracts, which also used water/methanol, con-

tained 6.5 mM ammonium bicarbonate. The MS analy-

sis alternated between MS and data-dependent MS2

scans using dynamic exclusion.

2.2.5. Gas chromatography/Mass spectrometry (GC/

MS)

The samples destined for GC/MS analysis were redried

under vacuum desiccation for a minimum of 24 h

prior to being derivatized under dried nitrogen using

bistrimethyl-silyl-trifluoroacetamide. The GC column

was 5% phenyl, and the temperature ramp is from 40

to 300 °C in a 16-min period. Samples were analysed

on a Thermo-Finnigan Trace DSQ fast-scanning sin-

gle-quadrupole mass spectrometer using electron

impact ionization. The instrument was tuned and cali-

brated for mass resolution and mass accuracy on a

daily basis. The information output from the raw data

files was automatically extracted as discussed below.

Table 1. Description of Metabolon QC samples

Type Description Purpose

MTRX Large pool of human

plasma maintained by

Metabolon that has been

characterized extensively

Assure that all aspects of

Metabolon process are

operating within

specifications

CMTRX Pool created by taking a

small aliquot from every

customer sample

Assess the effect of a

nonplasma matrix on the

Metabolon process and

distinguish biological

variability from process

variability

PRCS Aliquot of ultrapure water Process Blank used to

assess the contribution to

compound signals from

the process

SOLV Aliquot of solvents used in

extraction

Solvent blank used to

segregate contamination

sources in the extraction

Table 2. Metabolon QC standards

Type Description Purpose

DS Derivatization

standard

Assess variability of derivatization for GC/

MS samples

IS Internal

standard

Assess variability and performance of

instrument

RS Recovery

standard

Assess variability and verify performance

of extraction and instrumentation
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2.2.6. Accurate mass determination and MS/MS

fragmentation (LC/MS, LC/MS/MS)

The LC/MS portion of the platform was based on a

Waters ACQUITY UPLC and a Thermo-Finnigan

LTQ-FT mass spectrometer, which had a LIT front

end and a Fourier transform ion cyclotron resonance

mass spectrometer back end. For ions with counts

greater than 2 million, an accurate mass measurement

could be performed. Accurate mass measurements

could be made on the parent ion as well as fragments.

The typical mass error was less than 5 p.p.m. Ions

with less than two million counts require a greater

amount of effort to characterize. Fragmentation spec-

tra (MS/MS) were typically generated in a data-depen-

dent manner, but if necessary, targeted MS/MS could

be employed, such as in the case of lower level signals.

2.2.7. Bioinformatics

The informatics system consisted of four major com-

ponents, the LIMS, the data extraction and peak-iden-

tification software, data processing tools for QC and

compound identification, and a collection of informa-

tion interpretation and visualization tools for use by

data analysts. The hardware and software foundations

for these informatics components were the LAN back-

bone, and a database server running Oracle 10.2.0.1

Enterprise Edition.

2.2.8. LIMS

The purpose of the Metabolon LIMS was to enable

fully auditable laboratory automation through a

secure, easy-to-use and highly specialized system. The

scope of the Metabolon LIMS encompasses sample

accessioning, sample preparation and instrumental

analysis and reporting and advanced data analysis. All

of the subsequent software systems are grounded in the

LIMS data structures. It has been modified to leverage

and interface with the in-house information extraction

and data visualization systems, as well as third-party

instrumentation and data analysis software.

2.2.9. Data extraction and Quality assurance

The data extraction of the raw mass spec data files

yielded information that could be loaded into a rela-

tional database and manipulated without resorting to

BLOB manipulation. Once in the database, the infor-

mation was examined, and appropriate QC limits were

imposed. Peaks were identified using Metabolon’s pro-

prietary peak integration software, and component

parts were stored in a separate and specifically

designed complex data structure.

2.2.10. Compound identification

Compounds were identified by comparison with library

entries of purified standards or recurrent unknown enti-

ties. Identification of known chemical entities was based

on comparison to metabolomic library entries of puri-

fied standards. As of this writing, more than 1000 com-

mercially available purified standard compounds had

been registered into LIMS for distribution to both the

LC and GC platforms for determination of their analyt-

ical characteristics. The combination of chromato-

graphic properties and mass spectra gave an indication

of a match to the specific compound or an isobaric

entity. Additional entities could be identified by virtue

of their recurrent nature (both chromatographic and

mass spectral). These compounds have the potential to

be identified by future acquisition of a matching purified

standard or by classical structural analysis.

2.2.11. Curation

A variety of curation procedures were carried out to

ensure that a high-quality data set was made available

for statistical analysis and data interpretation. The QC

and curation processes were designed to ensure accu-

rate and consistent identification of true chemical enti-

ties, and to remove those representing system artefacts,

misassignments and background noise.

Metabolon data analysts use proprietary visualiza-

tion and interpretation software to confirm the consis-

tency of peak identification amongst the various

samples. Library matches for each compound were

checked for each sample and corrected if necessary.

2.2.12. Normalization

For studies spanning multiple days, a data normaliza-

tion step was performed to correct variation resulting

from instrument interday tuning differences. Essentially,

each compound was corrected in run-day blocks by reg-

istering the medians to equal one (1.00) and normalizing

each data point proportionately (termed the ‘block cor-

rection’; Fig. 1). For studies that did not require more

than 1 day of analysis, no normalization is necessary,

other than for purposes of data visualization.

2.3. DNA and RNA extraction

Total genomic DNA was isolated from frozen tissue

samples using a phenol–chloroform nonkit extraction
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method and PLG tubes (reagents from Sigma-Aldrich,

Dorset, UK, unless otherwise specified). Briefly to each

tissue, resuspension buffer (0.075 M EDTA pH 8,

0.024 M NaCl, deionised distilled water) with 1% SDS

(final concentration) was added, and then, homoge-

nization was performed using the Qiagen TissueRup-

tor� and disposable probes (Qiagen). Following an

overnight 37 °C proteinase K digestion, phenol–chlo-
roform extractions were performed using phase-lock

gel tubes. After ethanol precipitation of the DNA

from the aqueous layer, DNA was pelleted by centrifu-

gation and air-dried at room temperature for 30 min

prior to resuspension in 250 lL 10 mM Tris (Qiagen

Elution Buffer). Yield and purity of genomic DNA

obtained were assessed using a NanoDrop ND-1000

spectrophotometer (NanoDrop; Thermo Scientific,

Wilmington, DE, USA). DNA was stored at �20 °C
until further use.

Total RNA was extracted from tissues (stored in

RNAlater) using the Qiagen RNeasy Fibrous Tissue

Midi Kit including the recommended homogenization

step with the Qiagen TissueRuptor� and disposable

probes (Qiagen). Yield and purity of total RNA

obtained were assessed using a NanoDrop ND-1000

spectrophotometer (NanoDrop; Thermo Scientific)

with RNA integrity determined by RNA integrity

number using a Bioanalyzer 2100 (Agilent Technolo-

gies, Santa Clara, CA, USA). RNA was stored at

�80 °C until further use.

2.4. Global gene expression: generation, quality

control and preprocessing

Global gene expression data for each extracted RNA

sample were generated using Affymetrix Human Gene

1.1ST arrays and the GeneTitan system following Affy-

metrix protocols (Affymetrix, Santa Clara, CA, USA).

Briefly 200 ng of RNA amplified sense-strand cDNA

was generated using the Ambion� WT Expression Kit

(Life Technologies, Carlsbad, CA, USA). This was then

fragmented and labelled using the Affymetrix Gene-

Chip� WT Terminal Labeling Kit (Affymetrix) before

hybridization onto the arrays and subsequent scanning

on the GeneTitan system. Poly-A RNA controls were

included as per Affymetrix’s recommendations. Quality

of the expression data generated was assessed through

arrayQualityMetrics (3.30.0) and the relative log expres-

sion and normalized unscaled standard errors metrics

calculated within the Bioconductor package Oligo

(1.38.0). The data used for this integrative analysis were

extracted from a subset of samples for which metabolo-

mic, transcriptomic and genetic profiles were generated.

Within this subset, no samples were identified by these

collective metrics as being potentially problematic, and

therefore, all 74 (37 pairs, tumour and normal) were

retained in downstream analyses. Raw expression data

for the samples were RMA-treated using Oligo (1.38.0)

and filtered. Specifically, transcript cluster (TC) inten-

sity was required to exceed the data set median in 1 or

more samples (Genefilter 1.56.0), and be designated

within the Affymetrix annotation (NetAffx build 36)

with a cross-hybridization potential of 1 (unique), a

nonmissing mRNA assignment and as part of the main

design probe set category. Together these filters yielded

18 717 TC. Gene annotations were collated from the

NetAffx build 36 and the Bioconductor package

hugene11sttranscriptcluster.db (8.5.0) as assembled

from public repositories. All the raw and normalized

data were deposited to GEO (accession number:

GSE134381).

2.5. Next-generation sequencing of a targeted

gene panel

A custom gene panel of 52 genes which was known to

have mutation hotspots in cancer was designed based

Day
1      2        3        4      5       6        7

Day
1      2        3        4      5       6        7

A B

Fig. 1. Visualization of metabolic data before (A) and after (B) normalization.
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on published literature (Swanton and Govindan, 2016)

(Berger et al., 2016; Campbell et al., 2016) and find-

ings from prior in-house whole-exome sequencing of a

set of 34 paired tumour and normal tissue NSCLC

samples. The study was not powered to detect effects

from rare mutations, but we sought for possible

insights with common mutations such as those affect-

ing TP53. The panel was designed using the Agilent

software SureSelect DNA Advanced Design Wizard,

based on the Human Genome February 2009 assembly

(GRCh37/hg19). The panel focuses on the exonic

regions of 52 genes that have been found recurrently

mutated in NSCLC (Table S2). Sequencing libraries

were prepared with the SureSelect QXT Target Enrich-

ment System (Agilent) for the Illumina Multiplexed

Sequencing platform (Illumina, San Diego, CA, USA)

according to the manufacturer’s instructions. Libraries

were sequenced on an Illumina NextSeq 550 auto-

mated sequencer. FASTQC software (version 0.11.5)

(https://www.bioinformatics.babraham.ac.uk/projec

ts/fastqc) provided assessment of the quality of the

sequenced bases, and Phred scores were used to

exclude low-quality reads. Alignment against the

Human Reference Genome December 2013 assembly

(GRCh37/hg19) was performed using BWA mem (ver-

sion 0.7.15), and Genome Analysis Tool Kit (GATK)

(version 3.7) allowed local realignment around known

insertions. Further, VarScan (version 2.4.2) was used

for calling of somatic SNPs and indels by the analysis

of matched tumour–normal samples, and gene annota-

tion was obtained with Ensembl Variant Effect Predic-

tor (version 92). Filtering of annotated variants was

then carried out based on population-level frequency

(for known variants), gene-level annotation and clini-

cal impact. Variants were selected when they were

observed at ≥ 1% frequency in tumour, when they had

no associated frequencies in the dbSNP, 1000 Gen-

omes, NHBLI ESP, Exome Aggregation Consortium

and Genome Aggregation Database or when, if the

variant was known already in population-level data-

bases, its observed incidence was < 0.001. At the func-

tional impact level, only high and moderate variants

were selected, or low-impact variants when dbscSNVA

predicted score was > 0.6. In addition, CADD score

≥ 15 was used and correlated with SIFT and PolyPhen

prediction scores to predict potential protein-damaging

effects of missense variants. Suspected artefactual vari-

ants were manually checked using Integrated Genome

Viewer to discard potential false positives. Specifically,

variants were filtered out if the alternative allele did

not show an approximate 50% breakdown in sense

and antisense strands or if nearby nucleotides did not

match the reference allele, to distinguish from

sequencing noise. In addition, any SNV present �3

bases from an indel was assumed to be a misalign-

ment. Finally, all the variants (including high-allele

fraction variants) were checked manually on Muta-

tionTaster, COSMIC-3D and cBioPortal to exclude

polymorphic or known benign variants.

2.6. Statistical analysis

Paired Student’s t-tests were used to identify significant

metabolites between the tumours and their matched

normal tissue controls. Significant metabolites were

defined to have Benjamini and Hochberg (BH)-cor-

rected P-value ≤ 0.05 and fold change ≥ 1.5. Signifi-

cance analysis of microarray was used to determine

differentially expressed transcripts between the

tumours and matched controls. Significant transcripts

were defined to have false discovery rate (FDR) ≤ 0.05

and fold change ≥ 2.

2.7. Pathway and network analysis

Significant metabolites and transcripts were chosen

for pathway and network analysis using MetaboAna-

lyst (Chong et al., 2018). Enrichment analysis was

used to determine significant pathways from the pre-

defined metabolite sets using metabolite set enrich-

ment analysis (Xia and Wishart, 2010). For this

analysis, a list of metabolites with Human Metabo-

lome Database (HMDB) identifiers were used for

over-representation analysis (ORA) against the prede-

fined library of 99 metabolite sets based on normal

human metabolic pathways ( http://www.smpdb.ca).

The top 50 most significantly enriched metabolic

pathways were determined using ORA. The P-value

from ORA indicates the probability of seeing at least

a particular number of metabolites from a certain

metabolite set in a given compound list. MetaboAna-

lyst’s network explorer analysis was used to explore

relationships between the significant metabolites and

transcripts. For this analysis, lists of significant genes

and metabolites (including fold changes) from the

same group were used to examine gene–metabolite

interactions in search tool for interactions of chemi-

cals. These associations are based on co-mentions

highlighted in PubMed Abstracts including reactions

from similar chemical structures and similar molecu-

lar activities. Next, the metabolites and transcripts in

this network were analysed using Reactome (Fabre-

gat et al., 2018) pathway analysis. Cytoscape (Shan-

non et al., 2003) and InnateDB (Breuer et al., 2013)

were used to visualize genes and gene–metabolite net-

works.
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2.8. Weighted gene co-expression network

analysis (WGCNA)

Weighted gene co-expression network analysis (Lang-

felder and Horvath, 2008) was used to investigate the

relationship between transcripts and metabolites. Firstly,

Pearson’s correlation coefficients between all pairs of

transcripts were calculated to form a correlation matrix

of similarity. Next, a power (b) value of 6 was chosen to

raise the co-expression similarity. Co-expressed gene

modules, those with densely interconnected transcripts,

were generated by unsupervised hierarchical clustering.

The most highly interconnected modules with ≥ 35 genes

were identified using dynamic branch cut method. Next,

the correlation between module eigengene (value indi-

cates module membership of each transcripts in the mod-

ule) and key metabolites (traits) was calculated using the

GS function. The most significant modules were further

characterized by pathway and gene network analysis

using InnateDB and Cytoscape.

3. Results

Thirty-seven patients for whom pairs of tumour and

adjacent normal tissues had undergone metabolomic,

transcriptomic and genetic profiling were used for this

analysis. Of these samples, 17 patients were histologically

classified as LUSC and 20 were LUAD. Table 3 summa-

rizes the demographic characteristics of the cohort. The

male:female ratio was approximately 3 : 1 for both

NSCLC subtypes. The median age at operation was 73

(59–85) years and 69.5 (61–89) years in LUSC and

LUAD, respectively. Cancer stages (IA, IB, IIA, IIB and

IIIA) were evenly represented in both groups. Finally,

most patients were either current smokers or ex-smokers.

3.1. Differences and similarities in metabolomic

profiles between LUAD and LUSC

A total of 395 compounds were identified by metabolo-

mic analysis. In comparison with normal tissue, 136 and

148 metabolites with known HMDB identifiers were sta-

tistically different in the tumours of LUSC and LUAD,

respectively. Amongst these metabolites, 86 (43.4%)

were significantly different in both LUSC and LUAD

tumours when compared with their matched controls.

Hierarchical clustering analysis showed a distinct profile

in the tumour samples in relation to the controls

(matched normal tissue) for both subtypes (Fig. S1).

Consistent with prior reports, our metabolite enrich-

ment analysis revealed over-representation of metabolites

involved in gluconeogenesis, Warburg effect, glycolysis

and nucleotide metabolism in both tumour subtypes

(Fig. 2). The common metabolites that were involved in

these pathways were D-glucose, fructose 6-phosphate, L-

lactic acid, phosphoenolpyruvic acid, 3-phosphoglyceric

acid, fructose 1,6-bisphosphate, guanosine diphosphate,

ADP, glucose 6-phosphate and 2-phospho-D-glyceric

acid, L-glutamic acid, L-malic acid, succinic acid, phos-

phoenolpyruvic acid, fructose 1,6-bisphosphate and 6-

phosphogluconic acid. Only two metabolites (1-heptade-

canoyl-glycero-3-phosphocholine and 1-C14:0-lysophos-

phatidylcholine betaine) were significantly different

between LUSC and LUAD tumours in direct compar-

ison between these groups (Unpaired T test comparison

of metabolites between LUSC and LUAD tumours).

3.2. Transcriptomic profile analysis

In comparison with the matched normal tissues, there

were 1979 and 931 transcripts differentially expressed

in the LUSC and LUAD tumours, respectively. Reac-

tome pathway analysis was performed to determine

over-represented pathways that were involved with

these transcripts. We found that transcripts involved in

cell cycle were the most over-represented in both

tumour subtypes (Fig. 3A). The p53 signalling path-

way and its key elements such as CDK2NA, CHEK2,

CDK4, CCNE1, CCNB3, TP53AIP1, IGFBP3, SER-

PINB5, GTSE1 and TP73 were highly upregulated in

Table 3. Social and pathological characteristics of the cohort. BMI:

body mass index; DDR2: discoidin domain receptor tyrosine kinase 2

Characteristics LUSCN = 17 LUADN = 20

Gender (female, %) 5 (29.4%) 7 (35%)

Age at the time of

operation

73 (59–85) 69.5 (61–89)

Cancer stage IA: 6 IA: 5

IB: 3 IB: 6

IIA: 2 IIA: 3

IIB: 3 IIB: 2

IIIA: 3 IIIA: 4

DDR2 gene

mutations

Not tested: 15

Wild-type: 2

Not tested: 20

EGFR gene

mutations

Not tested: 12

Wild-type: 5

Not tested: 6

Wild-type: 13

Mutant: 1

ALK fusion Not tested: 12

No: 5

Not tested: 6

No: 13

Yes: 1

Smoking status Current smoker: 6

Ex-smoker: 11

Current smoker: 6

Ex-smoker: 10

Never smoke: 3

BMI 26 (19–35) 26.5 (21–35)

Exposure to asbestos Yes: 0No: 6

Unknown: 11

Yes: 3

No: 4

Unknown: 13

2412 Molecular Oncology 13 (2019) 2406–2421 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Multi-omics profile of non-small-cell lung cancer L. T. Hoang et al.



LUSC tumours when compared with their matched

normal tissue controls (Fig. 3B) but not in LUAD

tumours (Fig. 3C). We noticed that although glycolysis

was significantly altered in metabolomic data in both

LUSC and LUAD, the transcripts involved in this

pathway were different.

3.3. Integration of transcriptomic and

metabolomic data

Next, we investigated the interaction between significant

metabolites and transcripts using MetaboAnalyst. For

LUSC, 153 metabolites and 1979 transcripts that were

expressed at significantly different levels in the tumours

formed a network with 162 nodes (transcripts and

metabolites) and 232 edges (known interactions)

(Fig. 4A). The expression pattern of the transcripts in

this network is shown in Fig. S2. Similarly, a network of

85 nodes and 116 edges was formed between the signifi-

cant metabolites (N = 168) and transcripts (N = 931) in

LUAD tumours (Fig. 4B). Network analysis by Cytos-

cape showed ADP, cyclin GMP, histamine, guanosine

diphosphate and L-glutamic acid to be the hub metabo-

lites for both the LUSC and LUAD networks.

Pathway analysis of the LUSC and LUAD networks

by Reactome (summarized in Tables 4 and 5, respec-

tively) revealed that haemostasis and platelet activation

pathways were over-represented in the tumours of both

LUSC (N = 29 metabolites and transcripts) and LUAD

(N = 26) subtypes. Metabolites significantly involved in

these biological processes were ADP, arachidonic acid,

Cyclic guanosine monophosphate (cGMP), FAD and

guanine diphosphate, and significantly involved tran-

scripts were ANGPT1, PDE2A, A2M, VWF, GNG1,

GNG14, GYPC, F8, CAV1, CFD, ITGAL, ITGA2 HGF,

SELP, SELE, SELL OLR1, MGLL, OLR1, F10, CD36

and TRPC6. In addition, we found that transcripts

involved in cell cycle regulation (BRCA1, MSH2, PCNA,

CD6, MCM3, MCM6 and BIRC5) were over-represented

and more abundant in LUSC tumours but not in LUAD

tumours. The fold change of these genes was colour-

coded and is shown in Fig. 4. Survival analysis ( www.km

plot.com) using published data showed that expression

level of PED2A and ANGPT1 was not associated with

survival outcome in patients with LUSC. In contrast, in

LUAD, high expression level of PDE2A was associated

with poorer survival while high expression of ANGPT1

was associated with better survival outcome (Fig. 4).

3.4. Transcriptome–metabolite interactions

revealed by WGCNA

To investigate correlations between gene expression

and the level of metabolites, all the samples (N = 74)

Fig. 2. Metabolite enrichment analysis. Significant variation of metabolites in LUSC and LUAD tumours in comparison with matched normal

tissues (adjusted P-value ≤ 0.05, fold change ≥ 1.5). The top 50 most significant enriched pathways from 136 metabolites in LUSC (A) and

148 metabolites in LUAD (B) are shown. Similar enrichment profiles are seen in LUSC and LUAD tumours with the predominance of

pathways affecting gluconeogenesis, the Warburg effect, glycolysis, pentose phosphate pathway and phosphatidylcholine biosynthesis.
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and their normalized expression data (N = 18 717

transcripts) were included in WGCNA. We identified

11 highly co-expressed gene modules and calculated

their correlation with key metabolites from the gene–
metabolite interaction network (ADP, histamine, glu-

tathione, cyclin GMP, guanosine diphosphate and L-

A

Pathway
LUSC

–log(P.value)
LUAD

–log(P.value)

Cell cycle 5.9 2.4

ECM-receptor interac�on 5.1 3.1

p53 signaling pathway 4.1 0.7

Alcoholism 3.1 1.3

Drug metabolism - cytochrome P450 3.0 1.5

Cell adhesion molecules (CAMs) 2.5 2.5

Tyrosine metabolism 2.4 1.4

Glycolysis / Gluconeogenesis 2.1 0.3

Dilated cardiomyopathy 2.1 1.9

Complement and coagula�on cascades 2.0 1.5

Phenylalanine metabolism 2.0 0.6

Fanconi anemia pathway 1.9 0.4

Ether lipid metabolism 1.7 1.4

Rheumatoid arthri�s 1.7 0.5

Pathways in cancer 1.7 1.0

Arachidonic acid metabolism 1.5 0.6
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Fig. 3. Reactome pathway analysis of significant transcripts. Significantly different transcript abundances in LUSC (N = 1979) and LUAD

tumours (N = 931). The top 15 over-represented pathways in LUSC (A) are shown. The level of significance is indicated by the intensity of

red on the �log10 scale P-value. Cell cycle and ECM-receptor interaction signalling are the most significant in both LUSC and LUAD.

However, p53 signalling is only significantly upregulated in LUSC tumours (B) and not in LUAD tumours (C). Genes that were found to be

differentially expressed in the tumours in comparison with normal tissues are shown in red (more abundant) or green (less abundant).

Genes that were found not to be significant are shown in grey.

A B

Fig. 4. Metabolite–transcript interactions. MetaboAnalyst results for the interactions between the significant metabolites and transcripts in

LUSC and LUAD. For LUSC, 153 metabolites and 1979 transcripts that were significant in the tumours form a network with 162 nodes

(transcripts and metabolites) and 232 edges (A). Similarly, for LUAD tumours a network of 85 nodes and 116 edges is formed between the

significant metabolites (N = 168) and transcripts (N = 931) (B). Network analysis by Cytoscape showed ADP, cyclin GMP, histamine,

guanosine diphosphate and L-glutamic acid as hub metabolites in both LUSC and LUAD. Genes (cycle) and metabolites (square) that were

found to be more abundant in the tumours are shown in red with those less abundant shown in blue. The size of the nodes represents the

degree of connectedness of genes or metabolites in the networks.
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glutamic acid). The turquoise (2696 genes), blue

(n = 1821) and green (n = 214) modules were signifi-

cantly correlated with the level of ADP, glutamate,

histamine, GDP-fructose, 30-AMP and 50-AMP.

Functional analysis of the turquoise module by

Reactome (Table S1) showed an over-representation of

cell cycle-related genes, such as genes that encode pro-

teins for the G2/M checkpoint, mitotic processes, M

phase and DNA repair-related genes. The transcripts in

this gene module were expressed at a higher level in the

tumour tissues of both LUAD and LUSC, with the

greatest expression observed for LUSC tumours

(Fig. 5). InnateDB gene network analysis (visualized

by Cytoscape) revealed a highly connected gene net-

work with 2088 nodes and 10 415 edges. Network anal-

ysis identified BRAC1, HDAC1, PCNA, CDK1, EZH2

and SOX2 as being the hub genes. When overlaid with

statistical analysis, we found that these hub genes were

only significantly more abundant in LUSC tumours

(Fig. 6A) but not in LUAD tumours (Fig. 6B) relative

to their matched normal tissue controls.

The green module was negatively correlated with the

level of the key metabolites and included genes that

were less abundant in tumours and dominant with

genes involved in haemostasis and the platelet activa-

tion pathway.

3.5. Targeted sequencing of a custom cancer

gene panel

Amongst the 52 genes of the panel, alterations found

in 26 were shown to harbour variants. The variants

frequencies are summarized in Fig. 7. TP53 (p53 sig-

nalling pathway) was the most frequently mutated in

our cohort (78% and 53% in LUSC and LUAD,

respectively). Genes of cell cycle progression such as

CDKN2A and RB1 were more frequently mutated in

LUSC tumours. We did not see any effects of these

common variants on individual metabolites.

4. Discussion

Energy metabolism is widely known to be aberrant in

cancer (Hanahan and Weinberg, 2011), but detailed

understanding of the metabolomics in NSCLC is lim-

ited. Differences in the metabolic profile between sub-

types of NSCLC and its interactions with

transcriptomics and genetic variant data in the same

individuals have not previously been investigated. In

this study, by integrating different types of these omics

data, we were able to discover novel insights that were

not detected when these data sets were analysed inde-

pendently. Most importantly, metabolites and genes

Table 4. The top 24 most significant pathways of the metabolite–transcript interaction network for LUSC tumours

Pathway name #Entities found #Entities total Entities ratio EntitiesP-value EntitiesFDR

Signal amplification 7 42 0.003 4.88E-06 0.004

ADP signalling through P2Y purinoceptor 1 6 29 0.002 7.03E-06 0.004

Metabolism of nucleotides 15 254 0.018 1.15E-05 0.004

Cyclin A/B1/B2-associated events during G2/M transition 6 32 0.002 1.22E-05 0.004

Nucleobase catabolism 11 139 0.010 1.29E-05 0.004

Platelet activation, signalling and aggregation 16 293 0.021 1.52E-05 0.004

Class A/1 (rhodopsin-like receptors) 20 438 0.031 1.74E-05 0.004

G alpha (i) signalling events 23 557 0.040 1.95E-05 0.004

Haemostasis 29 812 0.058 2.30E-05 0.004

Signal transduction 75 3158 0.226 2.75E-05 0.004

Cell cycle, mitotic 23 570 0.041 2.79E-05 0.004

DNA strand elongation 6 38 0.003 3.17E-05 0.004

P2Y receptors 5 23 0.002 3.30E-05 0.004

Activation of ATR in response to replication stress 6 39 0.003 3.66E-05 0.004

GPCR ligand binding 24 629 0.045 4.47E-05 0.004

Cell cycle 25 682 0.049 5.84E-05 0.005

Nucleotide-like (purinergic) receptors 5 28 0.002 8.30E-05 0.007

Mitotic G1-G1/S phases 11 173 0.012 9.08E-05 0.008

G alpha (q) signalling events 14 274 0.020 1.05E-04 0.008

MAPK1/MAPK3 signalling 14 280 0.020 1.31E-04 0.010

Purine catabolism 7 74 0.005 1.70E-04 0.012

GPCR downstream signalling 38 1344 0.096 1.81E-04 0.012

FGFR1c and Klotho ligand binding and activation 3 7 0.001 1.89E-04 0.012

Cell surface interactions at the vascular wall 13 256 0.018 1.96E-04 0.012
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involved in haemostasis and platelet activation were

prominent in both LUSC and LUAD tumours. The

key roles of ADP, cGMP, GDP, histamine, glu-

tathione and L-glutamic acid in the gene–metabolite

interaction network suggest they may have significant

and important roles in disease mechanisms. In addi-

tion, cell cycle checkpoint genes (PCNA, BRAC1,

CD6, MCM3, MCM6 and BIRC5) and genes of the

p53 signalling pathway (CDK2NA, CHEK2, CDK4,

CCNE1, CCNB3, TP53AIP1, IGFBP3, SERPINB5,

GTSE1 and TP73) were strongly activated in LUSC

but not in LUAD tumours. The higher mutation fre-

quency of TP53 in LUSC suggests interaction between

these factors in this lung cancer subtype.

The limitation of our study was the relatively small

sample size and lack of functional validations. How-

ever, the major strength of the study in comparison

with the previous publications is the ability to inte-

grate different omics data sets from tumours and the

adjacent normal tissues from the same patients. These

data sets allowed us to discover new insights into the

interaction between the data sets and reveal new

insights into the disease mechanism that was missed

when these data sets were analysed separately.

An increased incidence of thromboembolic disease

and haemostatic abnormalities is often observed in

patients with cancer. There is considerable evidence

that the haemostatic system is involved in the growth

and spread of malignant disease. Platelets, beyond

their role in haemostasis, may sustain tumorigenesis

and metastasis via direct interaction with cancer and

stromal cells and by the release of platelet products

(Ballerini et al., 2018). Significant variation in the

metabolites and transcripts identified by our study

may therefore contribute to thromboembolic disease

and metastasis of NSCLC.

Amongst the key metabolites, adenosine diphosphate

(ADP), a pro-angiogenic regulator and platelet agonist, is

produced by cancer cells and by activated platelets. ADP

is required for adhesion of platelets to cancer cells

(Mitrugno et al., 2019), inducing platelet activation and

aggregation through the purinergic P2Y1 and P2Y12

receptors. P2YR12 represents a potential target for an

anticancer therapy due to its involvement in platelet-

cancer cell crosstalk, and P2YR12-mediated platelet acti-

vation has been demonstrated to promote metastasis in

mouse model of melanoma (Zhu et al., 2017). It has been

previously speculated that manipulation of ADP and/or

Table 5. The top 24 most significant pathways of the metabolite–transcript interaction network for LUAD tumours

Pathway name

#Entities

found

#Entities

total

Entities

ratio

EntitiesP-

value EntitiesFDR

Haemostasis 26 812 0.058 1.95E-09 2.85E-06

Platelet activation, signalling and aggregation 15 293 0.021 2.19E-08 1.60E-05

Platelet degranulation 9 137 0.010 2.30E-06 0.0011

Response to elevated platelet cytosolic Ca2+ 9 144 0.010 3.43E-06 0.0011

MAPK1/MAPK3 signalling 12 280 0.020 3.80E-06 0.0011

Vasopressin regulates renal water homoeostasis via

aquaporins

6 52 0.004 5.26E-06 0.0013

RAF/MAP kinase cascade 11 273 0.020 1.73E-05 0.0023

G alpha (q) signalling events 11 274 0.020 1.79E-05 0.0023

MAPK family signalling cascades 12 331 0.024 2.00E-05 0.0023

Integrin alphaIIb beta3 signalling 5 39 0.003 2.01E-05 0.0023

Integrin signalling 5 39 0.003 2.01E-05 0.0023

DCC-mediated attractive signalling 4 19 0.001 2.09E-05 0.0023

Nucleobase catabolism 8 139 0.010 2.19E-05 0.0023

Aquaporin-mediated transport 6 68 0.005 2.37E-05 0.0023

FGFR1c and Klotho ligand binding and activation 3 7 0.001 2.97E-05 0.0027

Purine catabolism 6 74 0.005 3.78E-05 0.0032

Phosphorylation of Emi1 3 8 0.001 4.41E-05 0.0036

Signalling by moderate kinase activity BRAF mutants 5 48 0.003 5.35E-05 0.0038

Cell surface interactions at the vascular wall 10 256 0.018 5.49E-05 0.0038

G alpha (i) signalling events 15 557 0.040 5.56E-05 0.0038

Paradoxical activation of RAF signalling by kinase inactive

BRAF

5 49 0.004 5.89E-05 0.0039

Neurofascin interactions 3 9 0.001 6.24E-05 0.0039

GPCR downstream signalling 25 1344 0.096 8.26E-05 0.0048

Platelet aggregation (plug formation) 5 53 0.004 8.49E-05 0.0048
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its receptor could limit cancer-associated thrombosis

(Murugappa andKunapuli, 2006). Our data are consistent

with the hypothesis that NSCLC tumours could promote

their growth through platelet-mediated angiogenesis.

An increase in haemostasis and platelet activation is

supported by the downregulation of genes known to

have inhibitory effect on haemostasis, such as PDE2A

and ANGPT1. Platelets contain two cyclic adenosine

monophosphate (cAMP) phosphodiesterases (PDEs)

(PDE3A and PDE2A) that regulate the level of cAMP,

a major platelet activation inhibitor. A recent study

showed that the expression level (transcript) of PDE2A

was significantly correlated with a microRNA called

miR-139, which is located within the intron of the

PDE2A gene. In primary NSCLCs, decreased expres-

sion of miR-139 was significantly associated with dis-

tant lymph node metastasis and histological

invasiveness (lymphatic invasion and vascular inva-

sion). The downregulation of PDE2A expression could

therefore contribute to the increased risk of metastasis.

ANGPT1 (encoding ANG1) is released upon platelet

activation. In a mouse model, angiopoietin-1/Tek sig-

nalling plays important roles in maintaining vascular

integrity to limit metastasis (Michael et al., 2017). Pre-

vious studies have shown downregulation of ANGPT1

in 80–95 % of oral squamous cell carcinomas (Jung

et al., 2015). It is possible therefore that downregula-

tion of ANGPT1 may contribute to abnormal clotting

in patients with NSCLC. Published data showed that

LUAD patients with lower expression of ANGPT1

had poorer survival in comparison with those with

high ANGPT1 expression.

Adenosine diphosphate may additionally inhibit

endothelial cell proliferation by inducing cell cycle

arrest in the S phase (Chen et al., 2018; Schafer et al.,

2006). This inhibitory effect of ADP, acting through

the P2Y1 receptor, on cell proliferation has been

observed in the mesothelioma cancer cell line ZL55.

We also found that the key elements of p53 signalling

pathway (such as CDKN2A together with other

Fig. 5. Transcriptome–metabolite interactions revealed by WGCNA. Correlation of WGCNA module eigengenes is shown with the key

metabolites from the gene–metabolite interaction network. Gene modules turquoise (2696 genes), blue (N = 1821) and green (N = 214)

were most significantly correlated with the level of the metabolites. Pearson’s correlation coefficients are shown, with red representing

positive and blue representing reversed correlation. The numbers in these boxes show actual correlation coefficient (top) and BH-adjusted P-

value (bottom). ME, module eigengene.
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tumour suppressor genes such as BRCA1, MSH2,

PCNA and MCM3) were not only silent in LUAD

compared to LUSC tumours but were identical

between LUAD tumours and their matched normal

tissue. The effects of mutations in TP53 are complex,

and gain-of-function effects are common (Schulz-Hed-

dergott and Moll, 2018). P53 affects multiple cellular

processes, blocking cancer progression by inducing cel-

lular growth arrest, promoting DNA repair and

enabling programmed cell death. Therefore, we

hypothesize that the increased production of ADP by

cancer cells or activated platelets may provoke activa-

tion of the p53 signalling pathway. Although we

observed higher mutation rates of TP53 in patients

with LUSC, due to the scope of our study, we was

unable to validate the effect of these mutations on the

expression of p53 signalling pathway in the cohort.

Finally, the contradictory biological functions (pro-

moting angiogenesis and metastasis and inhibiting cell

proliferation) and wide range of physiological effects

of ADP in cancer progression suggest the importance

of a balanced equilibrium between haemostasis, plate-

let activation and cell proliferation in the outcome of

NSCLC and warrant further studies to provide more

insights into these mechanisms.

We observed reduced levels of histamine, cGMP

and GDP in tumours, which were negatively

correlated with ADP. Histamine may be a crucial

mediator in cancer development and progression. Its

effects vary across cell types and depend on the bal-

ance between different receptor subtypes and its con-

centration within the tumour microenvironment

(Massari et al., 2017; Stoyanov et al., 2012). His-

tamine levels in the plasma of NSCLC patients were

found significantly decreased when compared with

healthy controls (Della Rovere et al., 2006), consis-

tent with our results. Although cigarette smoking is

a possible confounder of the relationship between

histamine and LUSC and LUAD (Della Rovere

et al., 2006), only 12 out of 37 subjects were current

smokers.

GTP metabolism is a main source of the RNA and

DNA required for cancer cell proliferation. The

transformation of GTP to GDP or vice versa is

decided by either GTPase activating proteins or GTP

exchange factors on their bounded GTPases and G

proteins. A higher level of GDP but not GTP was

accompanied by downregulation of GPCR-related

genes (GNG11 and GNA14) in the tumours of both

LUSC and LUAD. This perhaps indicates inactive

forms of the GTPase and G proteins in the tumours.

This finding suggests that NSCLC cells may have

alternative strategies to promote proliferation and

metastasis. cGMP is an important intracellular signal

Fig. 6. Turquoise gene module network and ontology analysis. Functional analysis by Reactome of the turquoise module showing over-

representation of genes in cell cycle, including G2/M checkpoints, mitotic, M phase and DNA repair. InnateDB gene network analysis

visualized by Cytoscape shows hub genes that were significantly more abundant in LUSC (A) but not in LUAD tumours (B) relative to

matched normal tissue. Each node represents a gene. The size of a node corresponds to number of interactions of a gene to other genes in

the network. Genes that were significantly differentially expressed in the tumours in comparison with the normal matched tissues are

shown in red (more abundant) or blue (less abundant). Genes that were not differentially expressed are shown in grey.

2418 Molecular Oncology 13 (2019) 2406–2421 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Multi-omics profile of non-small-cell lung cancer L. T. Hoang et al.



transduction molecule with both pro- and anticancer

effects (Dhayade et al., 2016; Tinsley et al., 2009).

For instance, cGMP has been shown to inhibit ADP-

induced platelet-mediated angiogenic responses in the

adenocarcinomic human alveolar epithelial cell line

(A549) (He et al., 2017).

Because of our relatively small sample size, further

studies are required to confirm the physiological

impact of ADP, histamine, cGMP and GDP in

NSCLC. Similarly, the relatively small sample size

may have limited our power to relate variants associ-

ated with these metabolites.

5. Conclusions

In conclusion, our integrative analysis of metabolomic,

transcriptomic and genomic data has discovered that

metabolites and genes that contribute to angiogenesis

and cell proliferation are predominant in both sub-

types of NSCLC. The known important roles of ADP

in promoting platelet activation and angiogenesis and

in inhibiting cell proliferation suggest this metabolite

and its receptors could be potential therapeutic targets

for the treatment of NSCLC.
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