
Loss Aversion in an Agent-Based Asset Pricing Model

Radu T. Pruna1, Maria Polukarov2, Nicholas R. Jennings3

1School of Electronics & Computer Science, University of Southampton, UK
2 Department of Informatics, King’s College London, UK

3 Departments of Computing and Electrical and Electronic Engineering, Imperial College London, UK

Abstract

A well-defined agent-based asset pricing model able to match the widely observed properties of financial
time series is valuable for testing the implications of various biases associated with investors’ behaviour.
Extending one of the most successful models in capturing traders behaviour, we present a new behavioural
agent-based asset pricing model. Specifically, we introduce a well-known behavioural bias in the model,
loss aversion, and evaluate its implications. First, measuring how close the simulated time series are to its
empirical counterparts, we show that the model with loss aversion better matches and explains the properties
of real-world financial data, compared with the base model without the behavioural bias.

Secondly, we assess the impact of different levels of loss aversion not only on the agents’ switching
mechanisms, but also on the properties of the time series generated by the model. We demonstrate how
for different levels of the loss aversion parameter, the biased agents tend to be driven out of the market at
different points in time. Since even the simplest strategies have been shown to survive the competition in
an agent-based setting, we can link our findings with the behavioural finance literature, which states that
investors’ systematic biases lead to unexpected market behaviour, instabilities and systematic errors.

Finally, we provide an in-depth analysis of the simulated time series and show the resulting dynamics
replicate a rich set of the stylized facts including: absence of autocorrelation, heavy tails, volatility clustering
and conditional heavy tails of returns, long memory of absolute returns, as well as volume-volatility relations,
gain-loss asymmetry, power-law behaviour and long memory of volume.
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1. Introduction

A financial market is a broad term describing a marketplace where buyers and sellers participate in the trade
of various financial assets at prices that reflect supply and demand. Since its introduction in the sixties by
Samuelson (1965) and Fama (1970), from two rather different research perspectives, the Efficient Market
Hypothesis (EMH) has become one of the most influential ideas in modern financial markets. There are
weak and strong forms of the EMH, but when researchers refer to markets as being efficient, they usually
mean that asset prices and returns are the outcome of a competitive market consisting of rational traders
who try to maximise their returns. It postulates that prices reflect all available information, meaning that
they should adjust instantly and correctly to incorporate new information.

In contrast, Keynes (1937) questioned the completely rational valuation of the assets, arguing that
investors’ sentiment and psychology, the so-called animal spirits, play a significant role in financial markets.
The attacks on both theoretical and empirical sides of efficient markets ideas continued over the years,
with most of the debates regarding market efficiency and rationality remaining unresolved (for a survey
see, for example, Lo and MacKinlay (1988) and Lo (2007)). Full rationality requires all the agents to
have knowledge about the beliefs of all the other participants in the market, thus making it impossible in
a heterogeneous framework where traders have different expectations about future prices. On the other
hand, heterogeneity obviously complicates the market models, making their analytical tractability almost
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impossible. A computational approach is therefore suited for investigating the heterogeneous world, offering
a strong motivation for developing agent-based models of financial markets (Chen et al., 2012).

Generally speaking, agent-based models are systems in which a number of different agents interact
with each other and their environment (Wooldridge and Jennings, 1995). Specifically, we can view financial
markets as examples of evolutionary systems populated by agents with different trading strategies. Recently,
we have witnessed a transition in economics and finance from the rational agent approach to agent-based
markets populated by heterogeneous agents with bounded rationality (Hommes, 2006). In this context, the
term bounded rationality suggests that individuals are not capable of the optimization levels required by
full rationality. Instead, because of their limitations, market participants make choices that are satisfactory,
but not necessarily optimal (Simon, 1955). In the last decades, an increasing number of heterogeneous agent
models with bounded rationality have been introduced in the economics and finance literature (for recent
surveys see Chiarella et al. (2008); Hommes (2006); LeBaron (2006)). This comes as an alternative to the
rational expectations framework where all agents have fully, unbounded rationality.

Furthermore, models that rely on simple trading agents have proven themselves very efficient in generat-
ing important dynamics of real financial markets (Lux and Marchesi, 2000; Alfarano et al., 2005; Chiarella
et al., 2006). One of the most influential model frameworks, the fundamentalists vs. chartists (to be defined),
incorporates all the significant mechanisms of the markets, is capable of recreating their key properties and
is simple enough for analysis and computation. In these models, fundamentalists act as a stabilizing force
in the market and believe in the existence of a fundamental value. In contrast, chartists (also known as
technical analysts), forecast the future prices entirely by modelling historical data.1 They do not take
into consideration the market fundamentals and base their decisions on observed historical patterns in past
prices.

However, researchers do not only try to illustrate the basic mechanisms of the models, but also quantita-
tively recreate the statistical properties of financial markets. To this end, independent studies have revealed a
set of statistical properties common across different financial instruments, markets and time periods. These
so-called stylized facts (Cont, 2001) target a wide range of aspects in the market, from price series and
returns, to trading volume and volatility. Specifically, heterogeneous agent-based models (ABM) that use
simple trading strategies have successfully generated a rich set of key properties that match the dynamics of
asset prices in real financial markets (see Chen et al. (2012) for a review). They can provide useful insight
into the behaviour of individual agents and also on the effects that emerge from their interaction, making
the financial markets a very appealing application for agent-based modelling.

In recent years, a considerable focus has shifted from the econometric analysis of financial data towards
developing models of human psychology as it relates to financial markets (Shiller, 2003). Behavioural
finance follows the idea that investors behave according to their beliefs, which are updated based on new
information. In contrast to other theoretical frameworks, behavioural finance studies the nature of financial
judgements made by individuals and examines their consequences on the markets, while better understanding
the updating processes of human beliefs. Since market participants only have limited information and
restricted processing capabilities, they may have biases and deviate from rationality, which has, in turn,
a large impact on price changes. These biases, also known as mental heuristics (Tversky and Kahneman,
1974), offer an explanation for such deviations from rationality (Kahneman, 2011).

In more detail, behavioural finance studies the most relevant psychological aspects of investors’ decision
making. There are a wide range of factors to be considered, from situational or personality-related, to
entirely non-economic ones, associated to weather or other external events. Human decisions are the product
of emotion, habit, reason and instinct and how these factors interact with each other depends on time, place
and circumstances (Brennan and Lo, 2011). The main findings of behavioural finance are described in the
work of Thaler (2005), Shefrin (2002) and De Bondt (2005), to name a few.

However, even though these biases have been clearly observed in real life investors’ behaviour or identified
in laboratory experiments, examining their implications on the overall market is still a challenging topic.
Because of the high complexity of financial markets, it is almost impossible to assess the macro effects of a

1Surveys that brought to the attention of academics the use of technical analysis were conducted by Frankel and Froot
(1990a,b), Taylor and Allen (1992) and more recently by Gehrig and Menkhoff (2004).
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particularly interesting micro dynamic. For this reason, it is hard to directly quantify the impact of various
behavioural heuristics on the interaction between market participants or on the observed time series.

On the other hand, a well-defined agent-based model able to match the properties of financial markets
is ideal for testing various behavioural and economical theories. We believe that the fields of agent-based
modelling and behavioural finance complement each other and can be used together to provide a deeper
understanding on the highly nonlinear economic systems. Not only can the agent-based framework serve as
a useful theoretical tool for verifying the findings from behavioural finance, but it can also provide insights
which are otherwise hard to observe in the real financial markets. Unfortunately, there are only a few models
in the literature that combine the findings of the two fields. In this paper, we present one such behavioural
agent-based model that incorporates an important bias in traders’ behaviour.

In more detail, we build on the well-known structural stochastic volatility model of Franke and Westerhoff
(2012), one of the most successful models in capturing the empirically observed traders’ behaviour (Barde
et al., 2015), to test the implications of loss aversion. This is one of the most researched behavioural heuristics
observed in real life investors and it was shown to effectively explain a number of financial properties of stock
returns (Barberis et al., 1999). Loss aversion offers an explanation to investors’ unwillingness to realise and
cut their loses. In other words, losses loom larger than gains (Tversky and Kahneman, 1991). In general, an
individual is loss averse if he or she dislikes symmetric 50-50 bets and, furthermore, the preference increases
with the size of the stakes. This concept applies when one is trying to avoid a loss even if it means accepting
a higher risk.

We can relate the present contribution to the work of Chiarella and He (2002, 2003), who show how asset
price dynamics are influenced by the relative risk attitudes of different types of investors. They depart from
previous models that assume that all agents have the same risk attitude and consider a more heterogeneous
world where agents are allowed to have different attitudes towards risk. Similar to their work, we relax the
assumption in the FW model that all agents are loss neutral and include the empirically proven concept of
loss aversion.

Our new setting is able to produce several interesting results that have not previously been seen in an
agent-based model. Specifically, we focus on the overall implications of loss aversion and make the following
contributions:

• Measuring how close a model is to its empirical counterparts, we demonstrate that introducing loss
aversion leads to a new behavioural model that matches the properties of financial time series to a
higher degree, compared with the model without loss aversion.

• We show that for certain degrees of loss aversion, the biased agents are driven out of the market. Since
even zero-intelligence strategies have been shown to survive the competition in an agent-based setting
(Ladley, 2012), we argue that it’s the behavioural bias that leads to this misbehaving in the market.

• We test the effects of different levels of loss aversion on the time series generated by the model. We
show that for various levels of loss aversion some of the biased agents disappear from the market and
the returns series generated by the model deviate from their normal behaviour, having an increased
peakiness and heaviness of the tails. We can relate these findings to the behavioural finance literature
by showing that investors’ biases lead to unexpected market behaviour, instabilities and systematic
errors.

• We are able to recreate the well-known stylized facts of volatility clustering, heavy tails and absence
of autocorrelation of returns. In addition, the conditional heavy tails in returns are matched for the
first time by an ABM and, for the first time in a 2-type design model, we match the volume-volatility
relations, gain-loss asymmetry, power-law behaviour and long memory of volume.

The remainder of the paper is organised as follows. We formally define the agent-based model in Section
2, followed by an estimation of its parameters in Section 3. In Section 4 we show that introducing loss
aversion leads to a model that better explains the properties of financial data. Furthermore, in Section 5
we discuss the model’s inner working and the impact of the loss aversion on the overall system. Next, in
Section 6, we present our results. We give a thorough econometric analysis of the time series generated by
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the agent-based model, integrating a wide range of tests and evidence that demonstrate the presence of new
stylized facts. Section 7 concludes.

2. Model formulation

In this section, we extend the fundamentalists vs. chartists asset pricing model of Franke and Westerhoff
(2012) (FW) to capture loss aversion, which is one of the most researched behavioural biases of investors.
In Section 2.1 we specify the model’s price adjustments, as they were set in the original FW setting. Next,
in Section 2.2 we define agents’ interactions, building on the FW model to accommodate the introduction
of loss aversion.

2.1. Price adjustments

The asset prices are determined by excess demand2, following some of the most prominent examples in
the literature (Beja and Goldman, 1980; Chiarella, 1992). Here, by excess demand we mean the absolute
positive or negative orders per trading period. The demand itself is kept as simple as possible, in the form
of the demand per average trader. For fundamentalists, the demand is inversely related to the difference
between the current price and the fundamental value. This is a natural choice since fundamentalists believe
that the price will eventually mean revert to its perceived fundamental value. In particular, at time t their
core demand Df

t is proportional to the gap pft − pt, where pt is the log price of the asset at time t, while pft
is the fundamental log value at time t. The fundamental value is considered to follow a geometric Brownian
motion with drift µp and volatility σp, whose values will be formally estimated together with all the other
model parameters. This modification was shown to overcome the stationary of price series generated by the
FW model (Pruna et al., 2016). Similarly, the core demand of the chartists’ group, Dc

t , is proportional to
the price changes they have just observed, (pt − pt−1), where pt and pt−1 are the log prices at time t and
t− 1, respectively.

The wide variety of within-group specifications are captured by noise terms added to each of the core
demands. These terms encapsulate the within-group heterogeneity and scale with the current size of the
group. Specifically, the noise is represented by two normally distributed random variables εft and εct for fun-
damentalists and chartists, respectively. In other words, one can think of the noise variables as a convenient
way of capturing the heterogeneity of markets populated by hundreds or thousands of different agents. Each
of the two noise terms are sampled at every iteration and added to the deterministic part of the demand,
leading to the total demand per agent within the corresponding group.

Thus, combining the deterministic and stochastic elements, we get the net demand of each group for the
asset in period t as

Df
t = φ(pft − pt) + εft εft ∼ N (0, σ2

f ) φ > 0, εf > 0, (1)

Dc
t = χ(pt − pt−1) + εct εct ∼ N (0, σ2

c ) χ ≥ 0, εc ≥ 0, (2)

where φ and χ are constants denoting the aggressiveness of traders’ demand and σft and σct are independent
noise variances.

The agents are allowed to switch strategies at each iteration, so their market fractions fluctuate over
time. Let nft and nct be fractions of fundamentalists and chartists in the market at time t, respectively.

The total demand Dt is given by the equation:

Dt = nftD
f
t + nctD

c
t . (3)

Generally, Dt will be in disequilibrium. That is, the total demand of the agents will not add up to zero and
we will have an excess of either supply or demand. The actual market fractions will be determined by a
logit model (to be defined), that takes into consideration various factors that might make an agent switch
strategies (see Equation 9). Now, following some prominent examples in the literature (Farmer and Joshi,

2For an extensive empirical study on asset price changes caused by excess demand see Asparouhova et al. (2003).
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2002; Chiarella and He, 2003), a market maker is assumed to absorb the excess supply and provide any
excess demand. The market maker mediates the transactions between investors and provides liquidity. He
sets the price by supplying stock out of its inventory and raising the price if there is excess demand, while
accumulating stock and lowering the price when there is excess supply. Specifically, the market maker reacts
to the imbalance between demand and supply by proportionally adjusting the price with a constant factor
µ > 0.

Accordingly, the equation determining the price for the next period t+ 1 results from equations (1)-(3)
as

pt+1 = pt + µ[nft φ(pft − pt) + nctχ(pt − pt−1) + εt], (4)

εt ∼ N (0, σ2
t ), σ2

t = (nft σf )2 + (nctσc)
2. (5)

Equation (5) is derived as the sum of the two normal distributions from Equations (1) and (2), multiplied

by the market fractions nft , nct . The result is a new normal distribution with mean zero and variance equal
to the sum of the two single variances. The combined variance σt depends on the variations of the market
fractions of the fundamentalists and chartists. This random time-varying variance is a key feature of the
model, being termed the structural stochastic volatility of returns (defined as the log differences in prices)
in Franke and Westerhoff (2011).

2.2. Evolution of the market shares

To complete the model, it is necessary to set up the dynamics of the market fractions nft and nct . They
are predetermined within each period and change only from one period to the next one. In this section,
we modify the setting presented in the FW model to accommodate for our newly introduced behavioural
factors. Following the discrete choice approach (DCA) introduced by Brock and Hommes (1997), the two
market shares nst+1 (s = f, c) can be determined using the multinomial logit model. In the basic setting,

some payoff indices uct and uft are considered, usually derived from past gains of the two groups. The market

fractions can be expressed as nst+1 = exp(βust )/[exp(βu
f
t ) + exp(βuct)], where β is the intensity of choice.

Dividing both numerator and denominator by exp(βuft ), the market fraction of fundamentalists is given by

nft+1 = 1/{1 + exp[−β(uft − uct)]}.
Note that the difference in any utility variables, (uft −uct), can be viewed as a measure of relative attrac-

tiveness of fundamentalist trading. Hence, we may change the notation, making use of the attractiveness
level, at (Franke and Westerhoff, 2012), defined as the difference (uft − uct). The discrete choice approach is
then given by

nft+1 =
1

1 + exp(−βat)
, nct+1 = 1− nft+1. (6)

We normalize all the demand terms in the price rule (Equation (4)) by using a market impact µ = 0.01.
Moreover, we fix the intensity of choice β = 1, which is just a matter of scaling the attractiveness level of
fundamentalism, at. These values are suitable for modelling a daily time series.

Note that the market fractions are directly influenced by the attractiveness level. An increase in the
index at leads to an increase in the market share of the fundamentalists. For this reason, it is extremely
important to define the exact mechanism of the attractiveness level and all of its components.

The concept of loss aversion is linked to a level of wealth, from which we can derive the domains of gains
and losses (Tversky and Kahneman, 1992). In this context, the first principle that influences the agents’
choice of strategies is based on differential wealth. In detail, with respect to strategy s = f, c, let gst be the
short term capital gains that an average agent in this group could realise at time t. This is obtained from
the demand formulated at time t− 2 and executed at the price pt−1 of the next day. In general, a utility ust
obtained from these gains is defined as ust = gst + ηust−1, where η is a memory coefficient between 0 and 1.
Following the agents’ wealth definition of Franke and Westerhoff (2012), we consider a weighted average of
gst and ust−1 such that

gst = [exp(pt)− exp(pt−1)]Ds
t−2,

wst = ηwst−1 + (1− η)gst .
(7)
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Note that we replaced the utility symbol u with w to accommodate our interpretation. Furthermore, wst
represents the accumulated profits, discounted by the coefficient η < 1, that would have been earned by an
agent who had consistently followed strategy s on a daily basis. In other words, the accumulated wealth
attributed to a particular strategy is similar to a utility of performance and will be used by agents only
when considering their switching strategy.

According to prospect theory, loss aversion influences investors’ overall risk attitude, making them risk-
averse in the domain of gains but risk-seeking when the changes in wealth are perceived as losses (Tversky
and Kahneman, 1992). In more detail, an individual is loss averse if there is an asymmetry in how he or
she perceives gains and losses of the same magnitude. Specifically, losses loom larger than gains - that is,
people weigh losses more than gains of similar magnitude. Our implementation of loss aversion is slightly
different from prospect theory in the sense that agents are considering an asymmetry in wealth, instead of
expected terms. Here, we are not arguing that our model of loss aversion is the only, or even the best, way
to implement loss aversion. Rather, we introduce loss aversion in a way that can be supported by the overall
model’s definition, where wealth is similar to a utility of performance. Specifically, the agents choose their
strategies (chartism vs. fundamentalism) based on how well they have worked over time. In this context,
loss aversion is implemented in a way such that investors are affected by losses more than gains of the same
magnitude, which in turn influences their switching behaviour. That is, we modify the agents’ interactions
by introducing an asymmetric dependency on positive and negative payoffs. Therefore, loss averse agents
consider an asymmetric wealth function such as

vst =

{
wst if wst ≥ 0

λwst if wst < 0,
(8)

where λ is the loss aversion coefficient, s = f, c. Note that the asymmetric wealth, vst , is only relevant
for the attractiveness level, at, defined by Equation 9, when the performance of chartism is compared with
fundamentalism. Now, in their seminal paper, Tversky and Kahneman (1992) argue that people weigh losses
twice as much as gains of a similar magnitude, fixing the loss aversion coefficient at λ = 2.25. In Section 3 we
will see how different values of this influence the overall system and interaction between agents. Finally, we
introduce the first term in the attractiveness level at as being proportional to the difference in accumulated
wealth, (vft − vct ).

The second principle considered is based on one of the most empirically observed social factors in be-
havioural literature, known as herding (for a review see Bikhchandani and Sharma (2000)). This is the
investors’ tendency to follow the strategies of other traders. It is one of the essential irreducible elements
that an agent-based model of financial markets should posses (Alfi et al., 2009). The basic idea of herding is
that joining a group becomes more attractive the more adherents it already has. In our model, this principle
will be represented by a term proportional to the most recent difference between market fractions, (nft −nct).

The last term of the attractiveness level is based on a predisposition towards one of the two strategies.
This is simply expressed by a constant factor, α0, which is positive (negative) if there is a priori preference
toward fundamentalism (chartism). These three elements combined form the attractiveness level, formally
defined as

at = α0 + αn(nft − nct) + αw(vft − vct ), (9)

where α0 is the predisposition parameter, αn > 0 captures the herding parameter and αw > 0 measures the
influence of accumulated wealth.

3. Estimation of the model’s parameters

In this section we discuss the formal numerical estimation of the model’s parameters, using one of the
most prominent methods from the literature, the method of simulated moments (MSM) (see e.g. (Gilli and
Winker, 2003; Chen and Lux, 2018). An agent-based model is not supposed to mimic the exact economy
or financial markets, but rather it should explain some of the most important stylized facts of financial
markets, making this estimation method suitable for our purposes. This technique is based on an objective
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Table 1: Model parameters

φ χ σf σc α0 αn αw µp σp η
1.00 0.912 0.733 1.760 2.127 1.277 2679 0.014 0.17 0.987

function that is optimised across the set of model’s parameters (φ, χ, σf , σc, α0, αn, αw). The method refers
to a set of statistics, also known as moments, arising from the simulations. The basic idea is that these
moments should be close to their empirical counterparts, with the distance between them being captured
by the objective function.

In this paper, we calibrate our behavioural model using the same dataset of T=6866 daily observations
of the Standard and Poor (S&P 500) stock market index from January 1980 to mid-March 2007, as per
the FW model. The estimation was conducted such that the four most discussed statistical properties of
empirical financial data are matched. These include absence of autocorrelation in raw returns, heavy tails,
volatility clustering and long memory.

In order to conduct the quantitative analysis, the four stylized facts were measured using a number of
summary statistics, or moments. The first moment considered is the first-order autocorrelation coefficient
of raw returns. It needs to be close to zero, so that it agrees with the empirical findings on this matter
(Bouchaud and Potters, 2003; Cont et al., 2014). This will limit the chartists’ price extrapolations of the
most recent price changes. Furthermore, if the model generates coefficients that are insignificant, all the
autocorrelations at longer time lags will vanish too.

The remaining three moments are dealing with the volatility of returns. First of all, the model should
suitably scale the overall volatility, thus limiting the general noise brought by the two variances σf and σc.
The mean value of the absolute returns is considered. Next, the heavy tail is measured by the Hill tail index
of the absolute returns, at the upper 5% level. The long memory effects are captured by the autocorrelation
function (ACF) of the absolute returns up to a lag of 100 days. In particular, the autocorrelation decays as
we increase the lag, without becoming insignificant. The entire profile has to be matched and is sufficiently
well represented by six different lag coefficients (τ = 1, 5, 10, 25, 50, 100) (Franke and Westerhoff, 2012).

Thus, the model is evaluated on the basis of nine moments (the Hill estimator, volatility, first order
autocorrelation of the raw returns and the autocorrelation at lags τ = 1, 5, 10, 25, 50, 100 for the absolute
returns), summarized in a (column) vector m = (m1, ...,m9)′ (the prime denotes transposition). According
to the MSM, they have to come as close as possible to their equivalent empirical moments, memp, calculated
on the daily S&P 500 stock market index.

The distance between the two vectors m and memp is defined as a quadratic function given by

J = J(m,memp;W ) = (m−memp)′W (m−memp). (10)

The weight matrix W accounts for the moments’ sampling variability and its determination is crucial
for the model’s parameters. The idea is that the higher the sampling variability of a given moment i, the
larger the differences between mi and memp

i that can still be considered insignificant. Moreover, the matrix
W should support possible correlations between single moments. One obvious choice for W is the inverse
of an estimated variance-covariance matrix Σ̂ of the moments (Franke, 2009),

W = Σ̂−1. (11)

The covariances in Σ̂ are estimated by a bootstrap procedure used to construct additional samples from
the empirical observations. Here, we depart from the block bootstrap usually used in the literature (Winker
et al., 2007) and use a new bootstrap method which was shown to overcome the joint-point problem (for
more details see Franke and Westerhoff (2016)). Specifically, we sample single days and, associated with
each of them, the history of the past few lags required to calculate the lagged autocorrelations. For a
good representation, the bootstrap method is repeated 5000 times, obtaining a distribution for each of the
moments.

Going back to the estimation problem, we are interested in the set of parameters that minimise the
distance function J from Equation (10). Repeated simulations are carried out, in search of the set of
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parameters that minimise the associated loss. To this end, let θ be the vector of parameters and m = m(θ;S)
denote the moments to which a vector θ gives rise. Let ma(θ, S) denote the moment vector obtained by
simulating the model with a parameter vector θ over S periods on the basis of a random seed a = 1, 2....
The parameter estimates on a random seed a, denoted θ̂a, are the solution of the following minimisation
problem,

θ̂a = argmin
θ

J [ma(θ;S),memp
T ], (12)

where memp
T is the moment vector for the empirical S&P 500 data.

Although one may think that a simulation over S = 68660 days provides a large sample to base the
moments on, the variability arising from such different samples is still considerable. Hence, we run a
Monte Carlo method by carrying out a great number of estimations (a = 1000) and choosing the one with

the median loss. The parameter set θ̂ giving this associated loss will be our representative estimation.
Specifically, using Equation (12) we have θ̂ = θ̂ã, where ã is such that Ĵ ã is the median of {Ĵa}1000a=1 and

Ĵa = J [ma(θ̂a;S),memp
T ], with a = 1, . . . , 1000. The minimised loss,

Ĵ = J [mã(θ̂;S),memp
T ] = 7.178 (13)

corresponds to the final parameter vector θ̂ resulting from the estimation (see Table 1). Note that the drift
and volatility of fundamental price refer to a yearly time scale.

4. Model evaluation

In this section we are interested in assessing the quality of the moment matching achieved by our model with
loss aversion compared to the some model without the behavioural bias. After a straightforward estimation
has given us the numerical values for the model’s parameters, we investigate if it would be rejected by real
data. This way we demonstrate one of the central objectives of an agent-based financial model, namely how
good it is at matching and explaining the properties of real world data.

In more detail, we use two different ways of measuring the model’s goodness-to-fit. In Section 4.1 a
p-value is derived, showing that the model with loss aversion generates data that has a higher chance of
being mistaken to a real-world time series than the same model without loss aversion. Secondly, in Section
4.2 we take into account how often the simulated returns yield properties that are contained within their
empirical confidence intervals. Here, using a second quantitative measure we demonstrate that introducing
loss aversion in agents’ behaviour leads to a model that better matches the statistics of empirical data.

4.1. Moment-specific p-value

We start with the bootstrapped moments of empirical returns, previously used to derive an estimated
variance-covariance matrix of the moments. The large sample of B = 5000 vectors obtained (m1,m2, ...,mB)
can now be used to apply the loss function to them, thus obtaining an entire frequency distribution for J .
From this, we can get a critical value of J and evaluate our model numerical simulations against it. The
idea is that such a bootstrapped distribution proxies the one of a hypothetical real-world data generation
process. Therefore, if a model-generated return series and its moments have a value of J within the range
of the bootstrapped J , we would not be able to differentiate it from a real-world time series. Accordingly,
accounting for the rare events with a 5% significance level, a simulated return series will be considered
inconsistent with the real-world data if its J-value exceeds the 95% quantile of the bootstrapped J .

Moreover, we cannot consider the minimised J functions from Equation 12 since they were obtained
over a simulation horizon S that is 10 times longer than the bootstrapped returns. For a more meaningful
comparison to their values, the J-values should come from a model simulation of same length T = 6866.
To this end, we perform a Monte Carlo experiment and repeat the simulations many times, giving rise to a
distribution of model-generated J-vales that can be compared with the bootstrapped ones.
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Table 2: Empirical moments and their 95% confidence intervals

v mean r AC-1 v AC-1 v AC-5 v AC-10 v AC-25 v AC-50 v AC-100 Hill
Measured 0.713 0.019 0.184 0.215 0.156 0.126 0.109 0.070 3.299
Lower bound 0.648 -0.003 0.093 0.150 0.103 0.072 0.030 0.004 3.054
Upper bound 0.788 0.044 0.241 0.239 0.181 0.148 0.107 0.068 3.976

In more detail, let mb = mb(rempt )Tt=1 be the bootstrapped moments given by the empirical returns.

Furthermore, let θ̂ be the estimated vector of a model’s parameters, giving rise to Monte Carlo moment
simulations m = mc(θ, T ), c=1,...,5000. The two frequency distributions of J-values are given by

Bootstrap : J [mb((rempt )Tt=1)]5000b=1

MonteCarlo : J [mc(θ̂, T )]5000c=1 .
(14)

We can now compare the performance of our model with loss aversion with the FW model without loss
aversion. After obtaining the critical value J0.95 of the bootstrapped loss function, we calculate its analogous
quantile in the two simulated distributions. While for the FW model without loss aversion J0.95 corresponds
to its 31.06% quantile, introducing loss aversion with a coefficient λ = 2.25 in agents’ behaviour leads to
a higher 32.76% quantile (see Table 3). For a clear summary of the general moment matching we can say

that the model has a p-value of 32.76%, with respect to parameters θ̂ from Table 1, the data of the S%P
500 index, and the specific nine moments that we have chosen. In other words, in almost one third of the
simulations it is not possible to reject our model. Moreover, the introduction of loss aversion leads to a
higher p-value.

4.2. Moment coverage ratios

The previous section the model evaluation was based on the values of the objective function J . Now, we can
use a more direct way to assess the degree of moment matching of a model, which also accounts for single
moments, first described by Franke and Westerhoff (2012). In order to do this, we derive a confidence interval
for the empirical moments from the bootstrapped ones (m1, ...,mB), presented in Table 2. Intuitively, a
simple qualitative assessment of a given return series is that it cannot be rejected as being incompatible
with the data if all of its moments are contained in the confidence intervals.

However, since the sample variability of a single simulation is not sufficient to evaluate the model as a
whole, we employ another Monte Carlo estimation. This leads to a so-called coverage ratio, defined as the
percentage of Monte Carlo runs for which a single moment, or all moments jointly, are contained in their
confidence intervals. As before, we are mainly interested in assessing the implications of loss aversion and we
compute the moment coverage ratios for the model with loss aversion and the one without it. The central
joint coverage ratios and individual ones are presented in Table 3.

In order to put this in a more quantitative perspective, consider the event sampling moments from a real
world data generating process that fall into their confidence intervals. If we account for the fact that there
exists certain dependence between them and only some are independent (say r AC-1, Hill, v Mean, v AC-1
and v AC-100) then a true data generating process would have a joint MCR of 0.955 = 77.4%. Using this
as a conservative benchmark against our Monte Carlo ratio, the model without loss aversion corresponds to
an effective MCR of 27.4/77.4 = 35.40%, and the model with loss aversion to an effective MCR of 37.05%.

We should note that all these statements are based on asymptotic theory. It is unclear if the confidence
intervals we derived are a good representation of the ones appropriate for small samples of a true data
generating process. Under this constraint, we have used the bootstrapped empirical returns to get more
information about the small sample properties. Once more, taking the 5000 bootstrap samples, we compute
the joint MCR for them and use this as a benchmark against which we can measure our models’ ratios
(in percentage points). The result is a ratio of 51.80%, which is considerably lower than the hypothetical
reference of 77.4%. On the other hand, the 51.80% is higher than the MCRs of the models, as expected.
Now, the most obvious way to relate our models’ MCR to that of the bootstrap is to express them as a
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Table 3: Model evaluation
Model without LA Model with LA

p-value 31.06 32.76
joint MCR 27.40 28.68
% of joint MCR {rempt } 52.89 55.37
v mean 83.10 82.64
r AC-1 70.34 70.34
v AC-1 99.30 99.36
v AC-5 66.76 68.74
v AC-10 85.78 86.12
v AC-25 81.76 82.72
v AC-50 79.3 80.78
v AC-100 78.42 78.94
Hill 95.8 95.48

fraction of it. This is done in the third row of Table 3. Referring to these statistics, we see that the model
with loss aversion reaches a level of 55.37%, higher than the 52.89% of the same model without loss aversion.

Nonetheless, this measure is probably an overestimation of a more appropriate relative coverage statistic
and should not be taken too literally (Franke and Westerhoff, 2012). In any case, irrespective of the measure
we refer to, the degree of the model’s ability to match the statistics of real data is remarkable, with a plus
for the one with loss aversion demonstrated by both the p-value and the coverage ratio (Table 3).

5. Behavioural implications

We now turn to explore the qualitative measures that demonstrate the existence of the most important
stylized facts of financial markets. An in-depth analysis of the price, returns, volatility and volume series
generated by the behavioural model will be performed in Section 6. The numerical parameters used for all
the simulations are given in Table 1. Moreover, the loss aversion parameter is fixed at λ = 2.25, as reported
by Tversky and Kahneman (1992).

In Figure 1 we present a simple run of the model over 6867 days, covering the same time span as the
empirical data used in estimating the model’s parameters. A quick visual inspection of the simulated price
series and the majority index, defined as the difference in market fractions nf − nc, plotted in Figures 1
(a) and (b), respectively, reveals a high market fraction of chartism when the price (pt) deviates from its

fundamental value (pft ). On the other hand, the fundamentalists increase in number when the price gets
closer to the fundamental value. This behaviour is obvious from the model definition. The wealth element
in the attractiveness level equation makes fundamentalism more appealing when the price moves towards
its fundamental value, making it a profitable strategy. An increasing number of fundamentalists begin to
dominate the market and their actions start the mean reverting process of the price towards the fundamental
value. As the current price gets too close to the fundamental value, fundamentalism is no longer attractive
or profitable, making the agents switch to chartism. The herding element takes over, leading to a majority
fraction of chartism, whose actions will move the price away from the fundamental value.

In addition, Figure 1 (c) plots the accumulated wealth, wt, of the two classes of traders. We can
observe that when the actual price comes closer to the fundamental value the fundamentalists are more
profitable, while the chartists make bigger profits when prices move away from the perceived fundamental
value. Finally, the fourth panel in Figure 1 demonstrates the implications of these irregular switches in
the agents’ strategies on returns. Note that the volatility or swings in chartists’ wealth is expected to be
higher than for fundamentalists, since they have a greater variability in demand. Similarly, by comparing
Figures 1 (b) and (d) we observe that the level of returns during a chartism domination exceeds its level in a
fundamentalism regime. Therefore, it appears that normal sequences of returns are interrupted by outbursts
of increased volatility, when the majority of agents are chartists.
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(a) Log prices

(b) Majority index

(c) Wealth

(d) Returns

Figure 1: Simulated price series, fundamental price series, majority index, wealth and returns over 6867 time periods.
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Figure 2: Fundamentalists’ market fraction comparison via Monte-Carlo simulations for WHP, WHP-LA and WHP-LA-C
models.

Clearly, our agent-based model is able to produce the real life dynamics of both price and return series.
By inspecting Figure 1, we can observe the apparent randomness of the data, similar to what we witness in
the real financial markets. However, our aim here is not just replicate the real life dynamics, but use such a
model to test the implications of loss aversion. In the next section we will show how this behavioural bias
influences the interactions between agents and the results reproduced by our model.

5.1. Impact of loss aversion

In order to assess the impact of loss aversion to the interaction between agents, we perform a more in-
depth analysis of the market fractions. For an accurate comparison, we consider 3 models that differ
just in this respect. Namely, we compare our previously described behavioural model with loss aversion
with the same model but without this bias in agents’ behaviour. In particular, we look at the market
fractions for three models, all having the switching mechanism dependent on wealth (W), herding (H) and a
priori predisposition towards one of the two strategies (P). The first model to consider has the behavioural
presence of loss aversion only for chartists (WHP-LA-C), the second model considers both fundamentalists
and chartists loss aversion (WHP-LA) and the third one doesn’t have the loss aversion bias at all (WHP).

For a more robust comparison, we perform a Monte Carlo analysis considering 1000 simulation runs
for WHP, WHP-LA and WHP-LA-C models and look at the fundamentalists’ market fraction (nf ) results,
reported in Figure 2. As we have mentioned earlier, the market fractions stay at the ends of the interval,
with the market being controlled by either chartists or fundamentalists, at different points in time. For all
three models, we observe the market is heavily dominated by the fundamentalists (nf median = 0.99) with
sudden disruptions of chartism, nf < 0.1 in more than 10% of the simulations.

At first glance, the market fractions appear to be similar in our three models, WHP, WHP-LA and
WHP-LA-C. However, a closer look at the ends of the interval reveals major differences between the three
settings. While fundamentalists never disappear from the market (nf > 0), we notice that for WHP-LA-C
model, the chartists can be driven out of the market 3. Indeed, the fundamentalists tend to occupy the
entire market (nf → 1) in quite a few cases. In addition, over a median simulation of T = 6867 time

3Note that for any positive finite level of the intensity of choice parameter β, a non-zero fraction of both classes of agents
will always be in the market. However, in a setting where the market moves against the loss averse chartists for an extended
period of time, they will completely overestimate their wealth and its effect on them. Therefore, their perceived level of wealth
will be much lower than the actual one (see Equation 8). In turn, this leads to big differences in opinion that determine the
attractiveness level in Equation 9 and the market fractions in Equation 6. The exponential function from Equation 6 will then
tend to zero and the fundamentalists’ fraction nf will tend to 1. In such cases, we say that the chartists are driven out of the
market.
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(a) Fundamentalists market fractions (b) Fundamentalists domination

(c) Kurtosis (d) Hill tail index

Figure 3: Impact of loss aversion parameter on agents’ interactions and returns.

periods (days), the market is occupied by fundamentalists 9.53% of the time. In contrast, for the WHP or
WHP-LA models, the chartists almost never fully disappear from the market (nf → 1 in less than 1.2%
of the simulations). Since the only difference between the three settings is the loss aversion for chartists,
we conclude that it is this behavioural bias that pushes these agents entirely out of the market. This is
an interesting result since even zero intelligence strategies, where agents buy or sell randomly, have been
shown to survive the competition in agent-based settings (Ladley, 2012). Therefore, in the complex setting
of financial markets, where strategies compete with each other, a behavioural bias can be powerful enough
to push the agents out of the market.

Note that so far we have kept the loss aversion parameter λ equal to 2.25, as it is reported by prospect
theory literature. With this level of aversion we have seen that if just one type of agents are biased (WHP-
LA-C model), they tend to disappear from the market. However, when we make all agents loss averse
(WHP-LA model), the effects induced by this heuristic are not strong enough to produce major disruptions
in the model. That is because of agents’ demands making their wealth change continuously from positive
to negative levels. With almost half of time making or losing money, the effects of loss aversion are not
prominent.

Given this, it is interesting to determine what levels of loss aversion are required to produce any effects
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on agents’ interactions. To this end, we build on our previous work (Pruna et al., 2016) and vary the
magnitude of the loss aversion parameter in both WHP-LA and WHP-LA-C models to test its impact not
only on agents’ market fractions, but also on the system’s macro dynamics. Accordingly, we increase the
loss aversion parameter from Equation (8), considering equally spaced values in the interval λ ∈ [0, 6]. In
Figure 3 (a) we plot the loss aversion parameter (λ) against the median value of the fundamentalists’ market
fraction (nf ) for both WHP-LA and WHP-LA-C. Observe how rapidly the fundamentalists’ market fraction
increases with the increase of our loss aversion parameter. Specifically, if λ > 2 the chartists usually occupy
less than 0.5% of the market.

To analyse the actual impact of the loss aversion parameter on the agents’ interaction in greater detail,
we look at the end intervals of the market fractions. To this end, Figure 3 (b) plots the median percentage
of the simulations that see the chartists completely disappearing from the market (nf → 1). It is clear that
more and more chartists are being thrown out of the market as their loss aversion parameter increases. In
the case of WHP-LA-C model, where just the chartists are biased, the 5% threshold is hit at λ = 2.43.
Hence, the interesting dynamics appear for a loss aversion parameter close to the value of 2.25 reported by
Tversky and Kahneman (1992). At this level, the fundamentalist occupy the market 11.94% of the time, or
approximately 3.25 years of the 27 years simulation time.

On the other hand, when we make all agents biased in the WHP-LA model, we observe how chartists
disappear from the market at larger values of loss aversion. In this case, the 5% level is hit at λ = 3.10.
It is important to note that even when all agents are considered to be biased (not reported here in detail),
the chartists don’t survive the competition. Moreover, the chartists disappearance is not a rare event,
the fundamentalist occupying the market 12% of the simulation time of 6966 periods. Interestingly, the
fundamentalists always stay in the market, dominating it. Even when we consider a model with biased
fundamentalists and unbiased chartists, the fundamentalists market fractions still dominate the market and
chartists survive, similar to what we see in the WHP model.

We now turn our attention to the implications of loss aversion on the simulated returns series produced
by our behavioural models. In Figure 3 (c) we plot the kurtosis of returns for different levels of loss aversion.
We observe how for our WHP-LA and WHP-LA-C models, the kurtosis rapidly increases as the loss aversion
parameter becomes larger. Moreover, in both cases the kurtosis stabilises at a value around 2.2 for all λ > 1.
However, while for WHP-LA we see an increase of kurtosis of 10%, for the WHP-LA-C model the kurtosis
has a 50% increase from 1.40 to 2.20.

Furthermore, in Figure 3 (d) we consider the Hill tail index of absolute returns as a function of the loss
aversion parameter. This provides a quantitative measure of the heaviness of the tail for the distribution of
returns. The Hill index stabilises around a value of 3.60 for a loss aversion parameter λ > 1, experiencing a
considerable 18% decrease for the WHP-LA-C model.

As we have demonstrated, loss aversion can have a considerable impact on our behavioural agent-based
model. On one hand, if only the chartists are loss averse, even the standard value of λ = 2.25 is powerful
enough to drive them out of the market. On the other hand, if both fundamentalists and chartists are
biased, the same effect is observed when we employ a sufficiently larger loss aversion parameter (λ > 3.10).
Overall, the number of chartists disappearing from the market grows as we increase the magnitude of loss
aversion. These results are in line with behavioural finance literature arguing that investors’ systematic
biases can lead to unexpected market behaviour, with deviations from efficiency and rationality. Finally, we
have shown that loss aversion has an impact on the distribution of returns, increasing their peakiness and
the heaviness of the tails.

6. Stylized Facts

In this section we explore the statistical properties generated by our WHP-LA model, keeping the loss
aversion parameter fixed at the usual value λ = 2.25. We show that our behavioural model matches a rich
set of empirically observed stylized facts, demonstrating one of the main objectives of ABM. An in-depth
analysis of the time series generated by the model will be performed. First, we demonstrate the existence
of the most discussed properties, namely the absence of autocorrelations, heavy tails, volatility clustering
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(a) Autocorrelation function (b) Returns distribution

(c) Volatility corrected returns distribution (d) Aggregate Gaussianity

Figure 4: Returns’ stylized facts.

and long memory. Moreover, our model is able to match some of the less discussed stylized facts such as
conditional heavy tails, aggregate Gaussianity, gain-loss asymmetry, volume power-law, long memory and
volume-volatility relations.

6.1. Absence of autocorrelations, volatility clustering, long memory and heavy tails

The lack of predictability of price series is one of the most distinctive characteristics of financial time series,
closely related to the property stating that price movements do not exhibit any significant autocorrelation
(Cont, 2001). The absence of autocorrelations can be easily observed by plotting the ACF of raw returns
(see Figure 4a), demonstrating that price changes are not autocorrelated.

However, the absence of autocorrelations does not rule out the possibility of non-linear dependencies of
returns. When analysing financial time series, volatility measured as non-linear representations of returns
exhibit a much higher positive autocorrelation that persists over time. This is a quantitative signature
of volatility clustering: large price variations are more likely to be followed by large price variations, as
observed in Figure 1 (d). In the ACF of absolute returns plotted in Figure 4 (b), we observe a positive
autocorrelation that persists over time, indicating the presence of volatility clustering.

In addition, we can test the presence of volatility clustering by investigating how well a standard
GARCH(1,1) model fits the returns. In Figure 5 (a) and (b) we plot the residuals time series of our simulated
and empirical returns, their autocorrelations and partial autocorrelations and the QQ and Probability plots
comparing the distribution of returns with a normal distribution. Both residuals are similar to white noise,
having no significant autocorrelation. However, there is obvious conditional heteroskedasticity (conditional
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(a) Simulated returns (b) Empirical returns

Figure 5: Residuals time series analysis.

Table 4: Excess kurtosis and skewness as we increase the time lags at which returns are computed.

time lag 1 10 25 50 100
kurtosis 2.32 1.94 1.42 0.95 0.56
skewness -0.0046 0.0026 0.0349 0.038 0.0763

volatility) that the model has not captured. The shapes of the QQ and Probability plots indicate that the
processes are close to normality but with heavy tails.

A further property closely related to volatility clustering is the long memory effect, specifically addressing
the decay in the ACF of absolute returns. We usually say that a process exhibits long memory if it has a
slow decay, similar to a hyperbolic function. One way of observing the decay in the ACF of volatility is by
fitting a power law of the form A/rα. We notice that a fit can be obtained, with an exponent α = 0.476
(see Figure 4 (a)), in line with empirical studies (Cont, 2001).

Next, we study the distribution of returns (see Figure 4 (b)) and observe its deviations from the normal
distribution. Our simulated returns, similarly to the ones of real financial assets, are bell shaped but contain
more mass in the peak and tails than normal. Specifically, an excess kurtosis of 2.35 implies a peakiness
bigger than normal and a slow asymptotic decay of the probability density function. This non-normal decay
is the so-called heavy tail (LeBaron and Samanta, 2005).

6.2. Conditional heavy tails and aggregate Gaussianity

In this section, we consider further properties observed in financial time series that are rarely matched by
agent-based models. We begin with the so-called conditional heavy tails of returns. It states that even
after correcting returns for volatility clustering (e.g. via GARCH-type models), the residuals time series
still has heavy tails (Cont, 2001). However, the tails are less heavy than the unconditional distribution.
A visual representation of the property can be observed in Figure 4 (c), where we plot the distribution of
the residual returns after correcting for volatility clustering via a GARCH(1,1) model. Compared with the
normal distribution superimposed on it, we see that the residuals of returns have a higher peak and longer
tails, confirmed by an excess kurtosis of 0.60. At the same time, the tail is less heavy than the one of raw
returns.

Clearly, the distribution of returns has excessive kurtosis and heavy tails, with higher peak than the
normal distribution and power law tails. However, this behaviour changes as we increase the time scale
over which returns are calculated. Specifically, the distribution of returns changes its shape, becoming
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(a) Investment horizon distribtion for a return level
|ρ| = 2.5%. The insert is the optimal investment
horizon τ∗ρ for positive and negative levels of re-
turns

(b) Volume distribution

(c) Volume autocorrelation function (d) Volume-volatility relations. Cross correlation
between volatility measured as absolute retuns
(blue) and squared returns (green) and volume dis-
tribution.

Figure 6: Gain-loss asymmetry and volume related stylized facts.

more like the normal distribution. This stylized fact, known as the aggregate Gaussianity (Cont, 2001),
can be observed in Figure 4 (d), where we plot the distribution of returns calculated for different time lags
(τ = 1, 10, 25, 50, 100). Note how the distribution of returns becomes more like the normal one as we increase
the time lags, with their excess kurtosis decreasing (see Table 4).

6.3. Gain-loss asymmetry

In order to obtain a deeper understanding of the fluctuations of prices and returns, Simonsen et al. (2002)
proposed a different kind of approach involving inverse statistics. In the analysis of financial data, the
inverse question can be formulated as follows: For a given return on an investment, what is the typical
time span needed to obtain this return. Specifically, the gain/loss asymmetry of returns states that while
the maximum of inverse statistics for a positive level of returns occurs at a specific time, the maximum for
the same negative level of returns appears earlier (Jensen et al., 2003) . For the first time in agent-based
modelling, we will match this stylized fact with a 2-type design model.

In more detail, let ±ρ be the level of return, where the positive or negative sign corresponds to a gain
or a loss, respectively. It is kept fixed and one looks for the shortest waiting time after t, τ±ρ(t), for which
the returns is above or below the predefined ±ρ. The distribution of waiting times for gains τ+ρ, and loses
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τ−ρ, is denoted p(τ±ρ) and corresponds to a fixed return level ρ. Such a distribution typically goes through
a maximum τ∗ρ , called the optimal investment horizon (Simonsen et al., 2002).

In Figure 6 (a) we plot the probability distribution function, p(τ±ρ), of waiting times τ±ρ, with a return
level ρ = 2.5%. We can observe the asymmetry between simulated investment horizon distributions. In
particular, for a negative level of return, there is a higher probability to short investment horizons, as
compared to what is observed for the positive one. On average, while the optimal investment time for
a negative return of ρ = −2.5% is 20 days, for the same level of positive returns we obtain an optimal
investment time of 23 days.

6.4. Volume power-law, long memory and volume-volatility relations

We now turn our attention to volume, yet another highly discussed financial topic. Some of the empirical
quantitative properties related to volume include a power-law behaviour, long memory and correlation to
volatility. We will demonstrate all these stylized facts with our behavioural model. We define the volume
at time t as the total absolute demand at t of both fundamentalists and chartists. In Figure 6 (b) we can
see that the volume distribution has a bigger decay than the exponential distribution superimposed on it,
indicating a power-law behaviour. Moreover, an excess kurtosis of 6.036 reinforces this behaviour.

In Figure 6 (c) we plot the autocorrelation function of volume. We observe a power-law decay with an
exponent 0.457. The slow decay is a clear presence of long-memory of volume. Another widely used method
for testing the long memory effect is by using the Hurst exponent. We obtain the value of 0.68 for the Hurst
exponent of the distribution of simulated volume, in line with most empirical studies reporting a vale in the
interval [0.5− 1] for long memory processes. Finally, the dependence between volatility and volume traded
has been noticed and documented across different financial instruments at different time scales. Specifically,
the relationship between the two market descriptors can be observed via the cross correlation function. In
Figure 6 (d) we observe a significantly positive cross correlation between volatility and volumes. This means
that a small (large) trading volume is accompanied by a small (large) change in volatility. It is important to
note that all measures of volatility are positively correlated with volume and that the dependence remains
significant as we increase the time lag.

7. Conclusions

Heterogeneous agent-based models that rely on simple trading strategies have proven themselves very efficient
in generating important dynamics of real financial markets. Indeed, the fundamentalists vs. chartists models
have been shown to successfully capture empirically observed traders’ behaviour. Moreover, a well-defined
agent-based model able to match the financial markets’ common properties is an important tool for testing
various behavioural and economical theories and understanding how they influence the interactions between
agents and prices.

In this paper, we described, evaluated and extended one of the most successful approaches in capturing
real-life market dynamics. We presented a new behavioural model of asset pricing where the agents are loss
averse. In the new setting, we observed major differences in the movements of the agents’ market fractions
compared to unbiased scenarios. Specifically, for certain levels of loss aversion, the biased chartists tend
to be driven out of the market at different points in time. Additionally, by comparing the statistics of
the base model without loss aversion and our new behavioural model, we have demonstrated how certain
levels of this bias change the distribution of returns, leading to a more pronounced volatility clustering
and a distribution of returns with higher peaks and heavier tails. Therefore, we can link our findings with
the behavioural finance literature, which states that investors’ systematic biases lead to surprising market
behaviour, instabilities and errors.

Furthermore, the main objective of agent-based financial modelling is to propose an alternative to the
apparent randomness of financial markets, trying to explain the most important properties of financial data.
Specifically, we are interested in simple structures that can reproduce the empirical findings to a high degree
and which are quantitatively close to the real ones. Trying to measure how close a model is to its empirical
counterparts, we make use of two different statistics. First, the distance between their summary statistics
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(moments) is measured by a quadratic loss function. For the second, we used the concept of (joint) moment
coverage ratio. Here, with the help of Monte Carlo runs, we count the number of times where all the
simulated statistics are contained in the empirical confidence intervals. This can be seen as a quantitative
measure of how may often the data from a model and the real market cannot be told apart. With a p-value
of 31.06% and a coverage ratio of 55.37%, the introduction of loss aversion improves the degree to which
the model explains the real data, compared to the same model without loss aversion.

We offer both a quantitative and a qualitative analysis of the simulated asset price series, its returns,
volume traded and volatility. We provide a wide range of tests and arguments and demonstrate the presence
of a rich set of stylized facts including absence of autocorrelations, heavy tails, conditional heavy tails,
volatility clustering, long memory of returns, aggregate Gaussianity, gain-loss asymmetry, volume power
law, long memory and volume-volatility relations. By doing so, our behavioural model is the first one to
match such a rich set of the stylized facts.

For future work, we would like to apply loss aversion in a setting that models individual agents instead of
considering the state-of-the-art representative agent scenario. Furthermore, we will investigate the relation-
ship between the stationarity of returns and the method of estimating the model’s parameters. Moreover,
we are interested in investigating how other behavioural factors such as the disposition effect, gossip or
waves of optimism and pessimism influence the way agents interact with each other. To this end, we make
use of well-defined agent-based models to test the impact of various behavioural biases on the market. Un-
fortunately, the high complexity of the real financial markets makes it impossible to test such implications
directly on them. By employing agent-based models, we offer an alternative to the apparent randomness
of the markets, detecting the consequences of different biases and heuristics, which otherwise cannot be
identified.
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