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Abstract
We review the concepts of temporal modes (TMs) in quantum optics, highlighting Roy Glauber’s
crucial and historic contributions to their development, and their growing importance in quantum
information science. TMs are orthogonal sets of wave packets that can be used to represent a
multimode light field. They are temporal counterparts to transverse spatial modes of light and play
analogous roles—decomposing multimode light into the most natural basis for isolating statistically
independent degrees of freedom. We discuss how TMs were developed to describe compactly various
processes: superfluorescence, stimulated Raman scattering, spontaneous parametric down conversion,
and spontaneous four-wave mixing. TMs can be manipulated, converted, demultiplexed, and detected
using nonlinear optical processes such as three-wave mixing and quantum optical memories. As such,
they play an increasingly important role in constructing quantum information networks.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum optics is built on the concept of photons, which may be
thought of as quantum particles or, more precisely, as excitations
of the electromagnetic field. Roy Glauber did more than anybody
to show us how to make the connection between these seemingly
disparate views of quantum light. In particular, he and his col-
laborators formulated the concepts of coherence in quantum
optics based on the mode structure and excitation of the quan-
tized field. As a part of this work, he introduced, with Titulaer,
the idea of ‘temporal modes,’ which are useful in describing the
properties of broad-band light such as ultrashort pulses.

This paper reviews the development of the concept of
‘temporal modes’ (TMs) in quantum optics. TMs are ortho-
gonal sets of wave packets that can be used to represent a
multimode light field. These modes are increasingly important

in the emerging fields of quantum information science and
technology, for use in synchronized networks for commu-
nication and distributed computing. For example, quantum
optical memories operate efficiently only if the temporal
shape of the incoming light pulse matches the ‘natural mode’
defined by the properties of the memory.

The paper begins with the historical development of
coherence in quantum optics, emphasizing Glauber’s crucial
contributions and the fact that the concept of spatial-temporal
modes played a role all along. The properties of super-
fluorescence and stimulated Raman scattering were shown to be
understood best using such modes as a basis. The idea of tem-
poral modes arises when the spatial-temporal modes can be
separated into spatial and temporal aspects, such as in a colli-
mated beam or in a waveguide. The optical interactions of
interest here are best understood by considering the coupling
between sets of oscillators, either all-optical or also involving
material systems. We classify these optical interactions as either
beam-splitter-like processes or gain-like processes. Examples of
beam-splitter-like processes include optical memories as well
as frequency conversion by sum-frequency generation, by
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difference-frequency generation, or by four-wave mixing. The
Schmidt-mode decomposition is used extensively to find the
joint (bipartite) sets of independent mode pairs in each of these
cases. We discuss the ability of pulsed frequency conversion to
be temporal-mode selective, a capability that holds promise for
applications in quantum information science and technology, as
it provides the ability to perform quantum measurements in a
temporal-mode basis. We next discuss gain-like processes, using
spontaneous parametric down conversion (SPDC) and two-
mode squeezing as prime examples. We conclude by empha-
sizing that the concept of temporal modes of the electromagnetic
field, introduced by Roy Glauber and his colleagues, has proven
to have significant utility both in fundamental quantum optics
and in future quantum photonic applications.

2. Temporal modes in quantum optics

Physicists began struggling seriously with the concept of
quantum coherence of electromagnetic (EM) modes following
the Hanbury-Brown and Twiss demonstration of stellar inter-
ferometry and the corresponding tabletop experiments devised
to clarify what was ‘going on.’ (Hanbury Brown and
Twiss 1956a) The concepts of spatial and temporal coherence
had to be explicated in detail in order to understand the statistics
of signals from the photoemissive light detectors being used in
these experiments. (Hanbury Brown and Twiss 1956b) These
efforts led, directly or indirectly, to Glauber’s masterful devel-
opment of quantum optical coherence theory (Glauber 1963) in
the context of significant work in this area by others, such as
Fano (1961), Sudarshan (1963) and Mandel and Wolf (1963).

For the purpose of studying freely propagating radiation,
EM modes are complete sets of solutions of the Maxwell
equations. Modes are defined conventionally in terms of four
degrees of freedom: one polarization and three spatial. The
most familiar mode decomposition employs monochromatic
solutions of the Maxwell equations, each with a frequency w,
which of course can be degenerate. The earlier heuristic
concept of field quantization, by Planck and Einstein, con-
sidered these modes as harmonic oscillators whose energies
were quantized in discrete amounts w . As the idea of the
‘photon’ became more prevalent, the usual practice was to

associate a given photon with a precise amount of energy w .
This kind of photon is a mathematical entity, very useful for
forming a set of complete basis states to solve theoretical
problems.

In the real world, the concept of a monochromatic photon
(excitation of the EM field) is never exactly valid. For example,
when an atom emits a photon spontaneously, the finite duration
of the exponentially shaped wave packet endows a spectral
width to the photon—roughly the inverse of the packet dura-
tion. Thus arises the idea of a photon ‘occupying’ a classically
defined spatial-temporal wave packet.

The precise idea of ‘spatial-temporal modes,’ as they are
now called, was introduced formally by Titulaer and Glauber
(1966), who showed that, for the purpose of field quantiza-
tion, modes need not be monochromatic. They wrote, ‘We
note that no restrictions whatever are placed upon the spectral
properties of the state ∣ ñ1phot ; any pure one-photon wave
packet will do, whatever its frequency distribution may be.’ In
a beam-like geometry, the four degrees of freedom may be
listed as one polarization, two spatial and one spectral; or as
one polarization, two spatial and one temporal (with a Fourier
transform connecting these two descriptions).

In the nineteen seventies the concept of spatial-temporal
modes (STMs) reemerged in analyzing experiments on
superfluorescence from collections of many two-level atoms
prepared in their excited states. (Skribanowitz et al 1973) see
figure 1(a). Again, as in the Hanbury-Brown and Twiss
experiments, the issue involved the statistics of quantum
optical fields, requiring understanding the compromise
between optical coherence and quantum fluctuations. (Gross
et al 1976, Gibbs et al 1977) In a series of papers, Glauber
and colleagues, notably Fritz Haake, used the so-called
operator Maxwell–Bloch equations to treat the coupling of the
quantized optical field to a spatially distributed set of atoms.
(Glauber and Haake 1978, Haake et al 1979)

While others pursued equivalent approaches at the time
(Polder et al 1979), Glauber and colleagues clearly empha-
sized the ‘dominance of long-wavelength fluctuations’ in the
superfluorescence process, which effectively selects from the
infinite variety of quantum vacuum or zero-point fluctuations
a subset that couples most strongly to the evolving atom-field
state. Treating superfluorescence from a long, thin medium so

Figure 1. (a) Spontaneous emission from a collection of excited-state atoms evolves into superfluorescence, showing fluctuations (b) in the
generated temporal pulse shapes. Figure (b) reprinted, with permission, from (Haake et al 1979). Copyright (1979) by the American Physical
Society.
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transverse spatial effects are unimportant, Haake et al (1979)
used a semiclassical stochastic model to simulate individual
superfluorescence pulses initiated by spontaneous emission.
Figure 1(b) shows their numerical simulations of several
optical pulses generated when a collection of atoms, all
initially in their excited states, freely evolves by spontaneous
and stimulated emission to create optical pulses much shorter
than the spontaneous lifetime.

The amplitude fluctuations in superfluorescence are an
example of a macroscopic quantum-noise effect. The pulses
emitted by such processes are random—each realization
produces a different pulse. Nevertheless, the set of pulses
shown in figure 1(b) can each be represented as a super-
position of a fairly small number of underlying orthogonal
STMs acting as a mode basis, each weighted by a random
amplitude. The dominance of long-wavelength fluctuations in
superfluorescence gives rise to the idea of spatial-temporal
modes as a natural basis for describing such processes, in that
a smaller set of modes is needed when using such STMs than
if using monochromatic modes.

In fact, the TM description affords the most compact
means of representing a (classical) stochastic process of this
kind. The Karhunen–Loève Theorem posits that any complex
random process (analytic signal), e.g. the electric field ( )E t ,
with a positive definite correlation function averaged over an
ensemble, ( ) ( ) ( )¢ = á ¢ ñC t t E t E t, ,* can be expressed in terms
of its eigenfunctions, ( )f t ,i with weights that are uncorrelated
random variables. (Saleh 1977) Thus, if ( ) ( )å f= ¥

E t a t ,
j j j

with the temporal mode functions orthogonal in the time
domain and the mode amplitudes uncorrelated, i.e. á ñ =a aj i*

dá ña a ,j j ij* then the mode functions are defined by:

( ) ( ) ( ) ( )ò f f¢ ¢ ¢ = á ñC t t t t a a t, d , 1j j j j
* * *

where á ña aj j* is the mean energy in a given temporal mode.
This set of functions provides the most efficient means to
represent such a time non-stationary random process, since it
ensures that the mean square error between the actual field
and a finite sum over the modes is minimized.

An even clearer example of STMs that arises naturally in
the evolution of a quantum optical field coupled to an ampli-
fying medium is stimulated Raman scattering (SRS). Jan
Mostowski and colleagues adapted the Glauber–Haake quant-
um formalism to the problem of SRS, beginning a new era in
the study of fluctuations and coherence in Raman scattering,
helping push the concept of temporal modes to prominence.
(Mostowski and Raymer 1981, Raymer and Mostowski 1981).
For review see (Raymer and Walmsley 1990).

In SRS, all atoms (or molecules) begin in their ground
states and a strong laser pulse couples this ground state, via
inelastic light scattering, to a state lying energetically just
above the ground state, for as long as the laser pulse is pre-
sent. See figure 2. In effect, SRS is analogous to super-
fluorescence, with the novelty that the laser pulse acts as an
ON–OFF switch for the radiative emission. Thus, a short
enough laser pulse leads to the emission of a ‘Stokes-Raman’
pulse in a single, fixed STM (rather than a sum of STMs as in
the superfluorescence case). (Raymer et al 1982) If the

scattering medium has a long, thin (pencil-like) shape, thus
negating transverse propagation effects, the quantum field
operator at the medium’s exit face at z=L can be approxi-
mated using a single naturally favored STM, denoted ( )L tv , ,j

and photon creation and annihilation operators:

ˆ ( ) ˆ ( ) ˆ ( ) ( )†µ +L t A L t A L tE v v, , , , 2j j j j*

where the operators satisfy the standard boson commutation

[ ˆ ˆ ]†
=A A, 1.j j Because the STMs are functions of only time in

this case, they were called ‘temporal coherence modes’
(Walmsley and Raymer 1986), or simply ‘temporal modes’
(TM). (Raymer et al 1989).

Because both the field and the atoms begin in their
ground states, the statistics of the quantum vacuum or zero-
point fluctuations determine the statistics of the generated
Raman pulse. Consistent with the known properties of the
quantum vacuum, the generated Raman pulse has Gaussian
statistics and so can be modeled semi-classically as a single
TM weighted by a complex Gaussian random variable A:

( ) ( ) ( ) ( )µ +L t A L t A L tE v v, , , . 3j j* *

Thereby, each short Raman pulse is predicted to have a
constant optical phase throughout its duration, although that
phase (the argument of the complex number A) is uniformly
random and unpredictable shot to shot. And the pulse energy,
in this approximation, is predicted to be:

∣ ∣ ( )µW A 42

proportional to the time integral of ∣ ( )∣L tv , .j
2 Given that A

has a Gaussian probability density, it is immediately clear that
the probability density of the pulse energy is exponential
(Raymer et al 1982)

( ) ¯ ( ¯ ) ( )/= á ñP W W W Wexp . 5

Such a probability density was observed in SRS from a
hydrogen molecular gas, as shown in figure 3(a), illustrating a
macroscopic quantum effect, in that the mean number of
photons in these pulses was 1010 while the fluctuations in the
number are full-scale. (Walmsley and Raymer 1983).
In addition, the uniform phase distribution was verified by
measuring the relative phase of interference patterns
created by combining on a screen Raman pulses from two
independent hydrogen-gas sources, as shown in figure 3(b).
(Kuo et al 1991)

Figure 2. Raman process, in which atoms or molecules in their
ground states scatter light inelastically, leaving them in an excited
state.
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When the laser pulses driving the Raman scattering are
longer than the coherence time of the medium, a sum of TMs,
each with a Gaussian random amplitude, is excited in the SRS
pulse, leading to shot-to-shot temporal-shape fluctuations on a
fast time scale, as shown in figure 4(a). (Raymer et al 1989)
Analogous quantum fluctuations were also seen in the shot-
to-shot spectrum of the Raman pulse. (MacPherson et al
1988, Walmsley 1992)

The TMs relevant to this process are determined by
finding the ‘modes’ of the Raman process, several of which
are shown in figure 4(b). (Raymer et al 1985, Walmsley and
Raymer 1986, Raymer et al 1989) The method for deter-
mining them is based on finding the eigenfunctions of the

two-time (or two-frequency) field correlation function, as is
commonly done in the Karhunen–Loève and Mercer expan-
sions in classical coherence theory. (Saleh 1977, Wolf 1982,
Wolf and Agarwal 1984) The application to composite sys-
tems, such as the Stokes pulse and the material excitation in
Raman scattering, uses a generalization of these approaches—
the Schmidt expansion—in which the relevant modes—the
Schmidt modes—are eigenfunctions of the various self- and
cross-correlation functions. We therefore refer to all such
modes as ‘Schmidt modes’.

In consequence of the temporal-spectral multimode nat-
ure of the Raman pulse, the total pulse energy is effectively a
sum of exponentially distributed random variables, leading to

Figure 3. (a) Raman scattering pulse energy probability density, (b) relative phases between successive Raman pulses. Figures (a), (b)
reprinted, with permission, from (Walmsley and Raymer 1983, Kuo et al 1991). Copyright (1983, 1991) by the American Physical Society.

Figure 4. (a) Temporal-shape fluctuations of Stokes pulses, (b) temporal modes for Stokes process. Figures (a), (b) reprinted, with permission,
from (Raymer et al 1989) Copyright (1989) by the American Physical Society.
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a non-exponential probability density. (Raymer et al 1985,
Walmsley and Raymer 1986).

There are many more recent examples of temporal modes
in quantum optics—from spontaneous parametric down
conversion to quantum memories—and these will be descri-
bed in the following. First, however, we explain the simplest
mathematics of EM field quantization in terms of TMs.

3. Temporal modes theory—discretizing the
continuum

The concept of temporal modes can be understood most simply
in cases where light is traveling in a beam-like geometry, or in
a waveguide such as an optical fiber. (Blow et al 1990) Then
diffraction can be either nonexistent or at least negligible, and
we can focus on the longitudinal propagation of the EM field in
a coordinate labeled z. For a single polarization, the field
operator in free space has a positive-frequency part:

ˆ ( ) ˆ ( ) ( )( ) ( )/ /ò w w e w= w+ - -E z t a, i d 2 e , 6t z c
0

i

where c is the speed of light. The monochromatic-mode anni-
hilation and creation operators satisfy the boson commutator
[ ˆ ( ) ˆ ( )] ( )†w w d w w¢ = - ¢a a, . A linear superposition of these

creation operators defines a discrete photon creation operator ˆ†
Aj

ˆ ( ) ˆ ( ) ( )† †ò w w w=A f ad . 7j j

If a set of orthogonal weight functions ( )wfj is used to
define a set of such creation operators, then the new operators

obey the standard boson commutation relation [ ˆ ˆ ]†
d=A A, .j k jk

Here orthogonality is defined by ( ) ( )ò w w w d=f fd ,j k jk* and

completeness by ( ) ( ) ( )å w w d w w¢ = - ¢f f .
j j j* Then each ˆ†

Aj

creates one excitation in a particular TM denoted as ( )v z t, ,j

defined by (Titulaer and Glauber 1966)

( ) ( ) [ ( )] ( )/ /ò w w e w w= - -v z t f t z c, i d 2 exp i . 8j j0

These TMs serve as a mode basis for the field operator via
(Titulaer and Glauber 1966)

ˆ ( ) ˆ ( ) ( )( ) å=+E t A v z tr, , , 9
j

j j

where we used the inverse relation ˆ ( ) ( ) ˆåw w=a f A ,
j j j which

follows from the completeness condition.
The TMs have the curious property of being non-ortho-

gonal under the usual spatial overlap integral:

( ) ( ) ( )ò ¹ ¹v z t v z t z for j k, , d 0 . 10j k*

Nonorthogonality is a consequence of the factor w in
equation (8), making it a nonunitary transformation. For-
tunately, when the modes of interest are composed only of
spectral components centered reasonably close to a central
carrier frequency, the modes are very nearly orthogonal. This
holds for pulses with durations even as brief as a few optical

cycles. Within this approximation the functions ( )v z t,j form
an orthogonal basis for representing the spatial-temporal
structure of the EM field within a given narrow spectral band.
In this case, the temporal modes in the time domain are
proportional to the Fourier transforms of the ( )wf ,j denoted

as ˜ ( )f t .j

In noninteracting free-space propagation, there is no
preferred basis choice. An example of such a set of ortho-
gonal TMs is the set of Hermite–Gaussian functions, and their
spectral equivalents, a few of which are illustrated in figure 5.

Temporal modes are a basis for the classical Maxwell
equations, and form their own Hilbert space with properties
that have analogs to the quantum state space of excitations.

Although it is tempting to call ( )v z t,j the ‘state’ of the
photon, such language can be misleading if used without care.
(Smith and Raymer 2007) In particular, it does not easily
apply to quantum states of the field beyond individual pho-
tons. (Lamb 1995, Van Enk 2005) In this sense, a mode,
including a temporal mode, is like a ‘container’ into which
arbitrary states can be placed.

As stated earlier, a one-photon state of a given TM is

∣ ˆ ∣ ( )†
ñ = ñA1 vac , 11j j

where ∣ ñvac is the vacuum state of all EM modes.
A given TM may also be excited into a Glauber coherent

state:

∣ ( ˆ ˆ )∣ ( )†
a a añ = - ñA Aexp vac 12j j j*

or into a squeezed-vacuum state:

∣ ( ˆ ˆ )∣ ( )†
x x xñ = - ñA Aexp vac . 13j j j

2 2
*

Similar expressions may be written for multi-mode
excitations, leading, for example, to quantum entanglement
between excitations in different field modes.

The key point of this approach is that the continuously
infinite collection of monochromatic modes has been replaced
by a countably infinite set of discrete modes, only a small
number of which may be needed to describe a particular
situation. Further details of the STM construction, including

Figure 5. Examples of a basis set of temporal modes. left: Temporal
fields, middle: Spectral amplitudes, right: Spectral intensities.
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the three-dimensional treatment, are expounded in (Titulaer
and Glauber 1966, Smith and Raymer 2007).

4. Bipartite oscillator interactions

When two quantum-oscillator systems are coupled, their joint
state may become nonseparable and may therefore be used as
an entangled-state resource for quantum information. Both
oscillator systems may be optical field modes, or one may be
an optical field and the other a large collection of weakly
excited atoms or molecules whose collective excitation can be
approximated as an effectively harmonic system with equal
energy-level spacings. Examples of the latter include atomic
‘spin waves’ in low-density vapors and vibrational excitation
waves (optical or acoustic phonons) in materials—molecular
gases, liquids or solids. The spin-wave case is important in
many realizations of optical quantum memories implemented
through ‘slow light’ or electromagnetically induced trans-
parency. (Boller et al 1991, Fleischhauer and Lukin 2000, Liu
et al 2001) In the case of molecular gases or solids, such
delocalized vibrations can be created by collective Raman
scattering, for example. (Simon et al 2010, Lee et al 2011)

It is useful to think in terms of scattering processes,
illustrated in figure 6. The ‘systems’ may be optical or mat-
erial. The ‘pumps’ are typically laser light pulses that create
coupling and provide energy to or take energy from the
system. Sets of initial (input) mode operators ( ˆ ˆ )a b,n n evolve
to final (output) mode operators ( ˆ ˆ )c d, .n n In figure 6(a) both
systems are optical fields, which interact through a ‘passive’
nonlinear-optical medium, whose state does not change, dri-
ven by one or more pumps. In figure 6(b) one system is
optical, while the other is an ‘active’ medium, whose state
may change during the interaction.

There are two classes of bipartite oscillator interactions:
beam-splitter-like processes and gain-like processes. A beam-
splitter-like process is inherently background free. That is, if
both of the oscillators are initially in their ground (vacuum)
states, they remain so. And if one or both oscillators are
excited initially, then these excitations can be swapped

between them. The simplest example is represented by the
two-mode transformation relating input and output operators
(choosing transmission and reflection amplitudes t r, to be
real):

ˆ ˆ ˆ ˆ ˆ ˆ ( )t r r t= - = +a c d b c d, , 14

where t r+ = 1.2 2 Note that there is no mixing of creation
and annihilation operators, so there is no squeezing or
spontaneous generation of photons.

Figure 7 illustrates examples of beam-splitter-like pro-
cesses. Figure 7(a) through 7(d) correspond to figure 6(a),
while figure 7(e) is an example of the process in figure 6(b),
where the medium’s state changes. These processes are dis-
cussed in more detail below.

In the Heisenberg picture, the operators evolve but the
state does not. For example, if a single-photon state
ˆ ∣ ∣ ∣† ñ = ñ ña vac 1 0ab a b representing a single excitation in sys-
tem a, and no excitation in system b, is incident on an
ordinary optical beam splitter, so that the two systems are two
optical modes, as in figure 6(a), the two systems are coupled.
The state expressed in terms of the output-mode operators is

∣ ∣ ( ˆ ˆ ) ∣ ∣ ∣ ∣ ∣
( )

† †t r t rñ ñ = - ñ = ñ ñ - ñ ñc d1 0 vac 1 0 0 1 ,
15

a b cd c d c d

where we used the fact that the vacuum remains invariant
under the beam-splitter transformation. This state shows that
the single-photon excitation is shared by the two outgoing
modes, whose fields are now in an entangled state. (Van
Enk 2005) equation (15) can be viewed as merely a ‘classical’
mode transformation, which in quantum theory amounts to a
(global) change of basis. If, instead, one of the systems is a
material one, as in figure 6(b), then the states ∣ ∣ñ ñ0 , 1b b (as
well as ∣ ∣ñ ñ0 , 1d d) indicate zero or one material excitation in
that system.

In contrast, in a gain-like process, there is the possibility
of stimulated emission or scattering. Therefore, spontaneous
emission is also present, meaning that even if there is no
initial excitation in either of the oscillator systems, they can
become excited. (Caves 1982) A familiar example is a laser
amplifier. It will emit light into an output mode even if there

Figure 6. Nonlinear optical process, with two oscillator systems evolving from initial (input) to final (output) conditions in the presence of
laser ‘pump’ pulses. (a) represents optical parametric processes where the medium ends up in the same state in which it began; (b) represents
a light-matter coupling that leaves the medium in a state different than it started.
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is no input—this process is termed amplified spontaneous
emission (ASE). ASE is usually considered as background
noise, which for single-excitation input states can be
substantial.

Gain-like processes are described by the well-known
two-mode squeezing transformation, studied by Mollow and
Glauber (1967a, 1967b), among others. This leads to the
input–output relation:

ˆ ˆ ˆ ˆ ˆ ˆ ( )† †m n m n= + = +a c d b d c, , 16

where m n- = 1,2 2 which mixes creation and annihilation
operators. This transformation arises from an effective
Hamiltonian of the form ˆ ˆ ˆ ˆ ˆ† †e e= - +H cd c di i , where e
depends on the pump powers and medium parameters. For
example, the vacuum evolves, to leading order, to

( )
∣ ∣ ( ˆ ) ∣ ∣ ∣ ∣ ∣ ∣e eñ ñ  - ñ ñ » - ñ ñ + ñ ñ +

17
H0 0 exp i 0 0 1 0 0 1 1 ...,c d c d c d c d

2

where we have taken  to be unity for simplicity. This
expression illustrates the fact that such processes generate
excitations spontaneously. In this case, the numbers of exci-
tations in the two output modes are equal, and the super-
position of these correlated photon-number components means
that the state describing the joint system is non-separable.

For systems with more than two input and output modes, it
is important to identify which modes interact via these inter-
actions, and how the resulting excitations are distributed
throughout the multimode oscillator systems. Most impor-
tantly, we want a concise way to specify which modes become
entangled with which other modes. Is the entanglement
bipartite or multipartite? A temporal-mode analysis answers
these questions, in several different contexts, discussed next.

5. Quantum frequency conversion

A prime example of a beam-splitter-like process is quantum
frequency conversion (FC), which occurs when the state of a
given spectral region (or ‘band’), for example red, is transferred
all or in part to a band centered at a different frequency, say
blue. (Kumar 1990) Because quantum evolution is unitary, the
states in these two bands are actually swapped. A simple way
to visualize this process is to consider a rapidly moving mirror
or beam splitter, which blue-shifts light reflected from the
‘front’ of the beam splitter and red-shifts light reflected from

the ‘back.’ (Raymer et al 2010) Because the frequency shifts
are equal and opposite, if the reflectively is 100% the colors
defining the modes are ‘swapped’ while their quantum states
are preserved. For example, if the input is the Fock state
∣ ∣ñ ñ3 2 ,red blue it can be transformed into ∣ ∣ñ ñ2 3 .red blue In the case
of partial FC, the same input state can be transformed into an
entangled state containing components in which the five pho-
tons are distributed differently between the two colors. In both
cases, the number of photons in the two signal fields is pre-
served while the energy is not (the additional energy is pro-
vided by the time-non-stationary linear coupling—the moving
beamsplitter in the above example).

Quantum frequency conversion across large frequency
shifts was first implemented using nonlinear-optical sum-fre-
quency generation, as illustrated in figure 7(b). (Huang and
Kumar 1992) A pump laser pulse, shown as green, loses a
photon, whose energy is added to that of the red photon,
creating a blue photon. A similar process—difference-fre-
quency generation—is shown in figure 7(c), where the signal
photon gives up some energy, decreasing its frequency. (Ding
and Ou 2010) More flexible FC across large or small frequency
shifts can be achieved using nonlinear-optical four-wave mixing
in third-order nonlinear materials such as silica glass, as illu-
strated in figure 7(d). (McKinstrie et al 2005) Two pump fields
interact with the signal to increase or decrease the input pho-
ton’s frequency by the difference of the two pumps’ fre-
quencies, as first reported using photonic-crystal optical fiber by
McGuinness et al (2010a, 2010b). For quantum FC over very
small frequency ranges (100 GHz), direct phase modulation
by an electrooptic crystal can be used. (Wright et al 2017)

The details of the nonlinear optical process depend on the
temporal shape of the laser pulse or pulses used to drive the
process as well as the phase-matching conditions defined by
the medium’s dispersion. In general, FC between bands is not
complete but partial, and the process is described using a
generalization of equation (14); for review see (Raymer et al
2010, Christ et al 2013)

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( )
( )

ò ò
ò ò

w w w w w w w w w

w w w w w w w w w

= ¢ ¢ ¢ + ¢ ¢ ¢

= ¢ ¢ ¢ + ¢ ¢ ¢

a G c G d

b G c G d

, d , d

, d , d ,

18

ac ad

bc bd

where ˆ ( )wa and ˆ ( )wc refer to one frequency band (say ‘red’)
and ˆ ( )wb and ˆ ( )wd refer to the other band (‘blue’). The Green
functions Gij are elements of a unitary transformation, and

Figure 7. (a) Ordinary beam splitter, and four beam-splitter-like processes: frequency conversion by: (b) sum-frequency generation;
(c) frequency conversion by difference-frequency generation; (d) frequency conversion by four-wave mixing; (e) and optical memory.
Solid lines are ‘real’ states and dotted lines are ‘virtual’ states. The conjugates of these processes are also beam-splitter-like processes.
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thus obey, for example

{ ( ) ( )

( ) ( )} ( ) ( )
ò w w w w w

w w w w d w w

¢ ¢ ¢

+ ¢ ¢ = -

G G
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ad ad

1 2

1 2 1 2

*

*

The method of temporal modes leads to the clearest and
most compact description of FC. Performing a Schmidt
(Mercer) decomposition of each of the Green functions that
describe the FC process, a derivation similar to the ‘Bloch–
Messiah theorem’ (Braunstein 2005) leads to important rela-
tionships between their forms (Raymer et al 2010)

( ) ( ) ( )
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( ) ( ) ( ) ( )

å

å

å

å

w w t w w
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bd

n
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n
n n n

bc

n
n n n

*
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Rather than needing eight separate sets of Schmidt-
mode functions, just four such sets are sufficient to describe
the dynamics, as a result of the constraints imposed by
unitarity. The coefficients act like beam-splitter amplitudes,
with tn playing the role of a transmission coefficient (not
changing the color) and rn the corresponding reflection
coefficient (changing the color), for each TM. For example,

( ) ( )r w w¢W vn n n* refers to the process in which a photon in the
temporal mode ( )w¢vn within the initial frequency band is
converted into a photon in the mode ( )wVn in the final band,
with probability r .n

2 And ( ) ( )t w w¢V vn n n* refers to the process
in which a photon in the mode ( )w¢vn is converted into a
photon in the temporal mode ( )wVn in the same frequency
band, with probability t .n

2

Using this Bloch–Messiah–Schmidt decomposition, as
we will call it, the input and output operators in equation (18)
are expressed as:

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( ) ˆ ( )
( )

† † †

† † †

å å

å å

w w w w

w w w w

= =

= =

a A V b B W

c C v d D w

in: ,

out: , ,

21

n
n n

n
n n

n
n n

n
n n

where ˆ ˆ ˆ ˆ† † † †A B C D, , ,n n n n are discrete bosonic operators
for the TMs defined by the FC process, obeying
[ ˆ ˆ ]† d=A A, ,n m nm etc. The remarkable feature of this decom-
position is that every FC interaction occurs only between two
input TMs and two output TMs, represented by the beam-
splitter relations, analogous to equation (14):

ˆ ˆ ˆ ˆ ˆ ˆ ( )t r r t= - = +A C D B C D, . 22n n n n n n n n n n

Thereby, a FC process couples TMs before and after
conversion in a strictly pair-wise manner, greatly simplifying
the original continuous-frequency description. That is, if a
photon comes into the FC process in a particular TM of one
color, it will be converted to a particular TM of the other
color. The TMs within a band do not mix in the process. By

careful design of the physical configuration (for example, the
phase and group velocities of the waves in the nonlinear
medium) it is possible to arrange that any input TM is mapped
perfectly to the corresponding output TM at the upconverted
(or downconverted) frequency.

Because FC is beam-splitter-like, it is fundamentally
background free, and preserves the quantum state of the light.
(Tanzilli et al 2005, McGuinness et al 2010a, Rakher et al
2010) It therefore provides a significant functionality for
quantum information science. (Raymer and Srinivasan 2012,
Brecht et al 2015)

6. Quantum optical memory

Another important beam-splitter-like process is quantum
optical memory: a means of storing coherently the state of a
traveling optical mode in a stationary collection of atoms or
molecules. The state could be a Fock state, a coherent state, a
squeezed state, or a superposition of any of these, provided
the maximum number of photons is much less that the
number of atoms or molecules, so that the harmonic oscillator
approximation holds for the storage medium. Later the same
state can be ‘read out’ into a newly generated optical pulse.
The read-in and read-out processes are controlled by the
pump pulse(s). (Lukin 2003, Cirac et al 2004, Kaczmarek
et al 2018) For example, a memory based on far-off-
resonance Raman scattering is shown in figure 7(e); a single-
photon wave packet (blue) is absorbed while a photon is
added to the pump pulse, leaving the medium in a state with
one excitation distributed coherently throughout the medium.
(Nunn et al 2007) The pump pulse, being strong and coher-
ent, is negligibly affected. Here, too, the concept of TMs
plays a powerful role, as we now explain.

The optical memory that is most closely analogous to
quantum frequency conversion, discussed above, is Brillouin
scattering. This process is similar to Raman scattering, but
involves acoustic phonons in a crystal, glass or liquid med-
ium, which propagate at the speed of sound. (Garmire 2018)
Zhu et al pointed out that optical pulses can be transferred
coherently into the material vibrations, creating an optical
memory. (Zhu et al 2007) The interaction Hamiltonian for
Brillouin scattering is formally the same as for sum or dif-
ference-frequency generation, so the operator transformation
is the same as in equation (18), where here the operators
( ˆ ˆ )b d,n n refer to the medium, and ( ˆ ˆ )a c,n n refer to the optical
signal field, as in figure 6(b). Therefore, we point out, the
ensuing TM analysis in equations (20)–(22) again hold.

Raman scattering, which involves optical, rather than
acoustic, phonons in the medium, was described using TMs in
(Raymer et al 1982, Raymer et al 1989, Wasilewski and
Raymer 2006) In this case a slight change of formalism is
needed because the phonon excitation in the medium does not
propagate (the group velocity is zero for atomic spin waves or
molecular or solid-state optical phonons). For the material
excitation, the analog of the TM for an optical field is a
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longitudinal spatial mode of the medium. Otherwise the
mathematics is similar to that of the FC process: the state of
the incoming optical field TM can be ‘written’ into the
corresponding spatial mode of the medium, thus creating a
quantum memory. (Nunn et al 2007).

The transformation is still beam-splitter-like, as there is no
gain or squeezing. Define ˆ ( )c t0, as the incident field annihi-
lation operator at z=0, and ˆ ( )d z, 0 the medium’s initial col-
lective annihilation operator at t=0, before interaction;
likewise ˆ ( )a L t, is the outgoing field operator and ˆ ( )b z T, the
medium’s final operator after interaction. Then solutions of the
Heisenberg-picture equations of motion can be represented by
(Wasilewski and Raymer 2006, Nunn et al 2007):

ˆ ( ) ( ) ˆ ( )

( ) ˆ ( )

ˆ ( ) ( ) ˆ ( )

( ) ˆ ( ) ( )

ò

ò

ò

ò
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a L t G t t c t t

G z t d z z

b z T G z t c t t

G z z d z z

, , 0, d

, , 0 d

, , 0, d

, , 0 d . 23

T
ac

L
ad

T
bc

L
bd

0

0

0

0

Here we work explicitly in the space-time variables, rather than
the frequency variable as in the FC examples above, and the
transformation is in the ‘forward’ rather than the inverse sense.
Again, the Green functions together comprise a unitary trans-
formation, analogous to a beam-splitter transformation (no
mixing of creation and annihilation operators).

In this case the Bloch–Messiah–Schmidt decomposition
yields a set of Schmidt modes that are mixed in space and time
variables: ( ) ( )( ) ( )y yt t,n n

in out to describe the time dependence of
input and output optical fields, and ( ) ( )( ) ( )j jz z,n n

in out to
describe the initial and final spatial distributions of the col-
lective material excitation. The four mixed space-time Green
functions can be expressed in terms of the Schmidt modes
analogously to equation (20). And the output/final operators
ˆ ( )a L t, and ˆ ( )b z T, can be expressed analogously to
equation (21), again with the beam-splitter-like relation
between initial and final operators, of the form equation (22).

Again, a good way to think about these scenarios is that
the dynamics (in the Heisenberg picture) amount only to a
mode transformation, now for both fields and medium

vibrations, equivalent to the same transformations that occur
in the classical Maxwell equations and classical multimode
oscillator theory. A unique set of field-and-medium modes
can be obtained via the Bloch–Messiah–Schmidt decom-
position, which set has the property that it is the one in which
each mode is connected to as few others as is possible. The
quantum field obeys the standard bosonic commutation rela-
tions among mode creation and annihilation operators.

7. Temporal-mode demultiplexing in beam-splitter-
like processes

An important aspect of pulsed frequency conversion is that it
is temporal-mode selective, as first pointed out for four-wave
mixing by McGuinness et al (2011). It was proposed by
Eckstein et al (2011) for the case of three-wave mixing that,
given the shape(s) of the driving laser pulse(s), the set of
Schmidt coefficients lj can be designed such that only one
coefficient l0 is large while the rest are close to zero. This
occurs in the limiting case that the Green functions are
separable, then only one pair of TMs are coupled; the rest
pass through the FC process unscathed. Light in the input
mode is converted to the output mode with probability ρ0

2, and
vice versa. Figure 8 illustrates this process, which Silber-
horn’s group demonstrated and named a ‘quantum pulse gate’
or QPG. (Brecht et al 2014) A high-efficiency version of
the QPG was proposed and demonstrated in (Reddy and
Raymer 2018). Other groups have further analyzed, demon-
strated, and refined the development of the QPG, and dis-
cussed its applications in quantum information science.
(Huang and Kumar 2013, Reddy et al 2013, Reddy et al
2015, Shahverdi et al 2017) For reviews, see (Brecht et al
2015, Ansari et al 2018).

And, given that optical memory is governed by the same
underlying equations of motion as FC, it too should be TM
selective. Indeed, early theories of optical memory recognized
this fact to a certain extent, although usually not emphasized.
(Cirac et al 2004, Novikova et al 2007, Gorshkov et al 2007)
The case of far-off-resonant Raman memory, discussed
above, was discussed explicitly in the context of TM selec-
tivity by Nunn et al (Nunn et al 2007) Namely, given the
physical parameters of the Raman medium and the temporal

Figure 8. The quantum pulse gate (QPG). Temporal-mode selectivity and demultiplexing by: (a) all-optical frequency conversion,
(b) medium-based optical memory.
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shape of the pump pulse, only a single TM component of an
arbitrary input signal pulse is trapped and stored in the
memory, as illustrated in figure 8(b). At the same time, the
information about which TM the light originally occupied is
‘erased,’ allowing a new TM identity to be assigned to it upon
subsequent readout. In this way the memory acts not only as a
selective ‘pulse gate’ on read-in but also as a mode trans-
former on readout. TM-selective storage and transformation
in a quantum memory have been demonstrated. For example,
a Raman memory in a warm atomic caesium vapour has
shown efficient storage of a temporal 0th-order Hermite–
Gaussian pulse with an inter-modal contrast of nearly 9 dB.
(Hird et al 2018) Further, the readout was into a 1st or 3rd
-order Hermite–Gaussian pulse. Indeed a ‘modal tomography’
of the memory showed that it could convert between four
such modes with fidelity of over 90%.

Temporal mode selectivity enables a very important
functionality—TM multiplexing. In general, multiplexing of
optical modes is a necessary operation in classical and
quantum information systems. Familiar examples are: wave-
length-division multiplexing or time-domain multiplexing in
telecom systems, transverse-spatial-mode multiplexing by
holographic gratings, and polarizing beam splitters for
separating two orthogonal light polarizations. Pulsed FC and
optical memory can both serve as multi-channel ‘polarizing
beam splitters’ for a given set of TMs. Because FC is formally
equivalent to a multichannel beam splitter, any linear-optics
operations that can be done using beam splitters can also be
done using FC, thereby providing a ‘complete framework for
quantum information science,’ as pointed out in (Brecht et al
2015).

8. Photon pair generation and squeezing

Zeldovich et al (1969) presented a quantum mechanical
treatment of spontaneous parametric down conversion
(SPDC), the process by which single high-frequency (‘blue’)
photons are annihilated in a nonlinear optical crystal, spon-
taneously creating pairs of lower-frequency (‘red’) photons,
as illustrated in figure 9. In the next decades, SPDC became a
workhorse of quantum optics, because it creates quantum
correlations and entanglement in the generated light, enabling
studies of the Bell inequalities and the generation of ‘her-
alded’ photons, meaning that the detection of one of the pair
of photons indicates the presence of the second photon in a
separate beam. (Hong and Mandel 1985, Shih and
Alley 1986, Ghosh and Mandel 1987, Hong et al 1987,
Franson 1989) The preparation of a specific TM and spatial
mode by this process is also possible, with careful design of
the downconverter. (Grice et al 2001, Garay-Palmett et al
2007, Mosley et al 2008a, Cohen et al 2009, Brecht et al
2015, Ansari et al 2018)

For SPDC pumped by short laser pulses, the most
effective analysis is based on a temporal mode decomposi-
tion. (Law et al 2000) To model SPDC in a ‘traveling-wave’

geometry, we denote the (scaled) field operators by

ˆ ( ) ˆ ( ) ( )( ) ( )/ò w w=a a
w+ - -E z t a, d e 24t z ci

for a = 1, 2, where for simplicity we omitted any fre-
quency-dependent prefactor /w ei 2 0 in the integral of
equation (6). In the limit of weak excitation of the down-
converted field, the joint state of the two systems can be
written as a generalization of equation (17):

∣ ∣

˜ ( ˜ ) ˆ ( ) ˆ ( ˜ )∣ ( )† †ò ò
e

e w w w w w w

Yñ @ - ñ

+ Y ña a

1 vac

d d , vac , 25

2

1 2

where ( ˜ )w wY , is the normalized ‘two-photon amplitude,’ and
∣ ( ˜ )∣e w wY ,2 2 is the joint probability for detecting one quant-

um in each system with frequencies ˜w w, , respectively. Note
the perfect correlation of excitation numbers—if one system
contains an excitation then both do.

In general, the two-photon amplitude is not factorable in
frequency ( ( ˜ ) ( ) ( ˜ )w w w wY ¹ f g, ), indicating spectral entan-
glement of the pair of photons, since the two-photon state is
not then separable. The extent and character of the non-
separability can be best understood using a ‘Schmidt,’
‘Mercer,’ or singular-value decomposition (SVD) (Law et al
2000):

( ˜ ) ( ) ( ˜ ) ( )åw w l y w f wY =, , 26
j

j j j

where ( ) ( ˜ )y w f w,j j are ortho-normal sets of ‘Schmidt
modes’ for systems 1 and 2, respectively, with associated
‘singular values’l .j If ( ˜ )w wY , is separable, meaning only one
singular value is nonzero, then there is no spectral entangle-
ment between the systems.

In analogy to equation (7), we define TM creation
operators by

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† † † †ò òw y w w w f w w= =A a B ad , d 27j j j j1 2

and these obey the standard boson commutation relations for
creation and annihilation operators, [ ˆ ˆ ]† d=A A, ,j k jk etc. In
terms of the Schmidt-mode operators, the joint state is
expressed as:

∣ ∣ ˆ ˆ ∣ ( )† †åe e lYñ = - ñ + ñA B1 vac vac , 28
j

j j j
2

illustrating that the doubly-continuous frequency degree of
freedom has been discretized into correlated sets of TMs.

Figure 9. Spontaneous parametric down conversion (SPDC) process.
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The field operators equation (24) can also be expressed
in terms of the Schmidt modes, defining the temporal modes

in the time domain as: ( ) ( )ò w y w= w-u t d ej
t

j
i and ( ) =v tj

( )ò w f ww-d e ,t
j

i which gives:

ˆ ( ) ˆ ( ) ( )( ) †
/å= -

+
E z t A u t z c, 29

j
j j1

ˆ ( ) ˆ ( ) ( )( ) †
/å= -

+
E z t B v t z c, 30

j
j j2

Thus, the correlation (entanglement) that is distributed in
a seemingly complicated manner across the spectral con-
tinuum has been identified as existing only between pairs of
discrete temporal modes. The TMs are defined uniquely by
the photon-pair generation process itself. Importantly, in
typical cases only a small number (say one to ten) TM pairs
are required to capture the two-photon state, in contrast to the
very much larger number of monochromatic frequency
modes.

An example of TM pairs is shown in figure 10, for SPDC
of a sub-ps laser pulse in a 0.8 mm-long second-order non-
linear optical crystal. (Law et al 2000) In this case, the values
of the four largest singular values, corresponding to the TMs
shown in the figure, were 0.65, 0.19, 0.067, 0.028, respec-
tively, with the remaining values even smaller, indicating that
only five or six Schmidt modes are sufficient to capture the
essence of this bipartite state. Experiments have demonstrated
means to control the number of TM pairs created in SPDC.
(Brecht et al 2015, Ansari et al 2018) Further, it is possible to
filter single photons using a cavity, at the same time as they
are stored by this means. This enables creation of a bright
single-photon source by means of temporal multiplexing:
single-photon pulses are generated in a single TM, using a
repeat-until-success protocol, storing the successful events,
then releasing them on demand. (Kanda et al 2015)

SPDC is a gain-like process in that spontaneous and
stimulated emission are present. As the pump strength is
increased, more and more photon pairs can be generated,
leading to ‘twin beam’ generation, named as such because
both beams (the oscillator systems) contain equal numbers of
photons. This process is also called two-mode squeezing, as
the difference of the amplitudes of the beams carries a
reduced level of quantum fluctuations. (Mollow 1973) Early
experiments observed evidence of twin-beam generation in
the reduced fluctuations (noise) of the difference of the two
beam’s intensities. (Heidmann et al 1987, Aytür and Kumar
1990) Those experiments observed noise reduction in the
radio-frequency (rf) spectrum of the intensity at frequencies
typically in the 10 MHz range.

A reduction in the relative fluctuation of energy of two
whole pulses (rather than an rf spectral component) was
observed by Smithey et al (1992). To achieve this result, each
entire pulse was predominantly excited in a single temporal
mode (in this case defined by a short coherent ‘seed’ pulse).

In such cases, where the gain is high, perturbation theory
no longer holds, and the analysis becomes far more compli-
cated. The TMs that are defined in the low-gain limit by

equation (26) are not the same as the TMs that govern the
high-gain case. Pulse propagation and amplification leads to
distortions of the TMs for high gain. (Christ et al 2013,
Quesada and Sipe 2015) Nevertheless, strong two-mode
squeezing in predominantly single TMs has been observed in
experiments with up to 20 photon pairs (Harder et al 2016).

9. Measurements based on TMs

An important recent innovation is the ability to perform
quantum measurements in a temporal-mode basis. (Eckstein
et al 2011, Huang and Kumar 2013, Brecht et al 2014, Brecht
et al 2015, Reddy and Raymer 2018) Measurements on
optical fields usually consist of absorption of optical energy
into a material and the subsequent measurement of electric
currents, which may be, for example, from photoexcited
charges or from an altered superconducting current. Typi-
cally, a spatially extended photodetector absorbs energy from
an optical field over a particular bandwidth, with a char-
acteristic response time. It is important to take into account
how the detector responds to different modes of the optical
field, especially in cases where these are not the same as the
modes into which information is encoded in the quantum light
field, or the natural modes of the detector. This is particularly
important for quantum optical sensing and imaging, and
applies also to quantum communications and even quantum
computation and simulation.

Huang and Kumar proposed using a series of QPGs to
separate spatially an incoming field into its TM components,
each of which can be detected directly with a photodetector.
(Huang and Kumar 2013) This obviates the need for coherent
detection facilitated by the addition of a strong coherent local
oscillator field, which creates added noise in the form of shot
noise. This capability may open new possibilities for multi-
state quantum key distribution or for information transmission
in photon-starved environments, such as deep-space com-
munications. (Banaszek et al2019)

The measurement outcome of an ideal photodetector is
proportional to the integrated intensity ˆ ˆ( ) ( )- +E Ef f of the field:

ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )( ) ( )ò= ¢ ¢ ¢ ¢
-¥

- +
 t t R t t E t E td , , 31

t

f f

where ( )¢R t t, is the temporal response function of the
detector to an impulsive input (we have suppressed the spatial
dependence of the detector for clarity), and ˆ ( )( ) ¢+E tf is the
field filtered by a device such as a fast temporal shutter, a
narrow spectral filter, or by a frequency converter or quantum
memory that can select a particular spatial-temporal mode.
This filtered field is related to the input field by:

Gˆ ( ) ( ) ˆ ( ) ( )( ) ( )
òt t=+ +

E s s E sd , , 32f in

where G( )t s, is the response function of the linear filter
device, related directly to the Green functions discussed
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earlier. Consider an input field of the form in equation (29):

ˆ ( ) ˆ ( ) ( )( ) †
å=

+
E t A u t , 33

j
j jin

where the ( )u tj are the natural modes of the signal as deter-
mined by the source physics.

How can a detector be made sensitive to the field in one
isolated signal TM, say ( )u t ,J while ignoring all other TMs? To
achieve such mode isolation would require that the filter function
be separable: G( ) ( ) ( )t y tµs u s, ,J J where at this point ( )y tJ

could be an arbitrary function. This ‘separability condition’ is
consistent with a filter function written as a Mercer expansion

G( ) ( ) ( ) ( )åt l y t=s u s, , 34
j

j j j

with only the =j J coefficient being nonzero, that is l d= .j jJ

Typically, a linear filter is not separable in this way, however
coherent filters such as pulsed frequency conversion or quantum
memory can achieve it, leading to mode-selective detection, as
discussed earlier. Such filters must be time-nonstationary, that is,
time-varying relative to an external clock.

The most common linear filter types cannot be perfectly
selective with respect to the TMs defined by a pulsed source
of light. For example, consider a fast temporal shutter, which
simply multiplies the signal by a gate function ( )tg , con-
structed as:

G( ) ( ) ( ) ( )t t d t= -s g s, . 35

Figure 10. The first four Schmidt-mode pairs for a typical SPDC process. From (Law et al 2000).

12

Phys. Scr. 95 (2020) 064002 M G Raymer et al



The filtered field is then

ˆ ( ) ( ) ˆ ( ) ( )( ) †
åt t t=+E g A u . 36f

j
j j

In this case, the shutter will pass some portion of all signal
modes, since all occupy the same time domain. The detector’s
mean output will then be (assuming a long integration time):

ˆ ˆ ˆ ( )∣ ( )∣ ( ) ( )

( )

†
òå t t t t tá ñ = á ñ
-¥

¥
 A A R t g u ud , .

37
i j

i j i j
,

2 *

In the case that ( )∣ ( )∣t tR t g, 2 is approximately constant
over the duration of the TMs (so a shutter with a long opening
window and a photodetector that responds much slower than
the duration of the TMs themselves), the detector operator

reduces to: ˆ ˆ ˆ ˆ†
å å= = A A n .

j j j j j That is, the photo-

detector registers the total number of photons incident on it
from all temporal modes.

A second example is a time-stationary spectral filter, such
as a spectrometer, with G( ) ( )t t= -s g s, . This situation is
complementary to the shutter case, and the filter will pass
some portion of all signal modes, since all occupy the same
frequency domain.

One particularly important scenario is the characteriza-
tion of single-photon pulses. The procedures used for this task
lie at the heart of important protocols in, for example,
quantum key distribution, and in linear optical operations that
may be used in communications and simulation.

The way in which a single photon occupies the TM
modes (or indeed any set of basis modes for the optical field)
makes a difference to the outcome of measurements that are
made on the light. Without careful design of the detector,
certain properties (such as purity) may be imputed to the state
of the light that are not in fact the case.

Consider, for instance, the common arrangement for
measuring the properties of single photons: light is input to a
2-by-2 network (e.g. a beam splitter), as in figure 11(a), at the
outputs of which are two photodetectors.

This arrangement is used in several different ways to
determine the characteristics of quantum light beams. Indeed,

the first experiments in which single TMs were measured
made use of this device, in a configuration known as balanced
homodyne detection (BHD). See figure 11(b). In that case, the
quantum pulse is sent into one of the input ports, and a strong
classical light pulse (the local oscillator) into the second. The
measurement then consists of the difference in the photon
numbers registered at each of the photodetectors, which can
be represented by the operator

ˆ ˆ ˆ ( )
( ) ( )
å åµ -
Î Î

 n n , 38
j

j
k

kBHD
1 2

where the first sum is over modes in port 1 and the second
over those in port 2. The outcome of this measurement is a
sample from the ensemble representing the in-phase ampl-
itude of the light in the TM that matches exactly the temporal
shape of the local oscillator pulse. Thus homodyne detection
acts as a coherent filter for the TM of choice. (Raymer et al
1995) The ability to isolate and detect light in a single TM
enabled the first experiments demonstrating quantum state
tomography. (Smithey et al 1993) Tomography of quantum
states is an important tool in quantum information science.
(Lvovsky and Raymer 2009)

The same arrangement without any LO and the ancillary
input port, and where the measurement is now the intensity
correlation of the outputs, represented by the operator that is
the product of the total photon number operators at each
output port:

ˆ ˆ ˆ ( )
( ) ( )
å åµ
Î Î

 n n . 39
j

j
k

kco
1 2

See figure 11(c). Note that this measurement operator
assumes the detector can resolve photon numbers, though the
experiment is often done with ‘click’ detectors, registering
only the presence or absence of photons. This arrangement is
named for its inventors Hanbury-Brown and Twiss (HBT),
who first used it for stellar intensity interferometry. The
intensity correlation is now commonly used to test the purity
of single photons. If a single-photon state to be tested is sent
to one of the input ports of the network, with vacuum at the
other, then the HBT measurement is proportional to ( )( )g 0HBT

2

of the input light. This quantity is zero for single photons,

Figure 11. (a) 2×2 network for characterization of quantum light. The photodetectors at the output resolve photon number in principle,
although the resolution need not be at the single-photon level for some applications. (b) In balanced homodyne detection (BHD) the
registered signal is the difference in the photon numbers measured by the two photodetectors, when the quantum pulse enters one port of the
network and a strong classical light pulse in a single TM enters the second. (c) In the Hanbury Brown and Twiss (HBT) and the Hong–Ou–
Mandel (HOM) arrangements the signal is the product of the two photon numbers, proportional to the intensity correlation at the output of the
network. For HBT one input port is empty, whereas for HOM both ports have quantum light inputs. Often these inputs are two independent
single photons.
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since only one of the detectors will receive any light for such
an input, so then there can be no intensity at the other. The
product of the two intensities is thus zero.

Since the measurement does not access coherences
between the different photon-number sectors of the state
impinging upon it, then without loss of generality, the state
can be written for the purposes of this detection setup as a
mixture:

ˆ ˆ ( )år r= p , 40
n

n n

where ˆ ˆ ∣ ∣ ˆ†r = ñáa avac vacn n n is a single-photon state in TM n
and pn is its probability. The measurement outcome in the

single-photon case is ˆ ( ˆ ˆ )rá ñ = = Tr 0,co co consistent
with the expected HBT result, ˆ( ) µ á ñ =g 0.HOM

2
co

However, in the case when two uncorrelated single
photons are sent to two distinct beam-splitter inputs, the state
is a direct product:

ˆ ˆ ˆ ( )
( ) ( )
å år r p r= Ä
Î Î

p 41
n a

n n
m b

m m

and the apparatus now measures the Hong–Ou–Mandel
interference between the two input photons. The outcome of
this measurement is (Mosley et al 2008b)

ˆ ( ˆ ˆ ) ( )år pá ñ = = - Tr p1 . 42
n

n nco co

Thus, if the two input photons are in exactly the same
TM, then the interference is complete and the outcome is
consistent with ( ) =g 0.HOM

2 If however the photons are in
different TMs, then the interference is incomplete, and the
HOM ‘visibility’ ( ( )- g1 HOM

2 ) is reduced. Indeed, this is a
signature of the so-called ‘distinguishability’ of the photons.
But that is not the only important characteristic.

If, for instance, the photons are in identical states of more
than one mode but are in mixed states, the interference visi-
bility is reduced proportionally to the degree of mixedness (in
fact the purity of each of the input photon states) so that

( )> >g1 0.HOM
2 The impurity of the state here is due entirely

to the single photon occupying more than one mode, and not
at all due to there being some possibility of more (or less)
than one photon in each of the input states.

The important point to note is that the HBT and HOM
measurements measure the purity of the state in two different
degrees of freedom—‘mode space’ versus ‘number space’—
and the latter is not simply a measure of the degree to which
two photons are identical. Even two photons in exactly the
same mixed state will not give perfect interference. The
physical basis for this is simply that in a mixed state,
the probability that the two photons are in exactly the same
TM on any given run is less than one.

10. Summary, Conclusions

The concept of temporal modes (TMs) of the electromagnetic
field, introduced by Roy Glauber and his colleagues, has
proven to have significant utility both in fundamental quant-
um optics and in future quantum photonic applications. TMs

are a useful and efficient way to describe non-stationary
random processes, such as those arising in the quantum
processes of light emission through both nonlinear optical
scattering and fluorescence processes. The mode functions
themselves depend on the process (in fact its field correlation
function, which is described by the appropriate Green func-
tion) and so are optimally adapted to the underlying physics,
and the field is constructed from these functions with weights
that are uncorrelated random variables.

Because TMs form an orthogonal and complete set, they
are also useful for coding information. In fact, since they
overlap both in time and frequency, they are the most com-
pact way of packing information into a particular domain of
chronocyclic (time-frequency) phase space. A primary
application may be in cases were the signals being transmitted
is in the ‘photon-starved’ regime, such as future embodiments
of deep-space communication as from a distant spacecraft to
Earth. (Banaszek et al 2019)

Making full use of TMs poses some questions and
challenges. These include discovering: which applications
truly benefit from using TMs; how to multiplex and demul-
tiplex large numbers of TMs; how to create arbitrary super-
positions of them across multiple Fock subspaces of the
quantum field state space; and how to carry out such opera-
tions efficiently in an integrated-optics platform and across a
wide range of wavelengths.

In this article, we have sketched a brief history of how
the TM concept has been applied to pulsed quantum
processes, following Glauber’s original idea. Further, we have
shown how the ideas have a broad application to many
varieties of quantum light sources, including super-
fluorescence, stimulated Raman scattering, parametric
downconversion and four-wave mixing. This broad range
indicates the wide applicability of the concept, as well as its
practical uses.

Making the most of TMs demands a means to generate
them, manipulate them and detect them. The ability to change
one into an arbitrary superposition of others and back again is
critical. We have described the physics of quantum light
sources, some of which can be used to generate states of a
specified superposition of TMs. These sources can be adapted
to give ‘pure’ single photons in a single designed TM. Recent
research has shown how the TMs can be demultiplexed and
manipulated by a device called a ‘quantum pulse gate,’ which
can be implemented in various different ways using nonlinear
optical processes. Finally, TMs can be detected, and indeed
fully characterized, by means of suitable arrangements of
photodetectors (which are not intrinsically TM sensitive)
together with QPGs, filters and ancillary light beams,
including classical ones. We have given a model for detecting
TMs using photon-number-resolving detectors, showing how
mixedness in both modes and in photon number impacts a
number of common measurement configurations.

The burgeoning field harnessing TMs for useful appli-
cations draws on the long history of these fascinating objects,
and in that sense, Glauber’s legacy continues. As we move
toward broadband quantum networking using light, we
anticipate that TMs will become of increasing utility.
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