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Analytical solutions for two-dimensional singly
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Abstract New analytical representations of the Stokes flows due to periodic ar-
rays of point singularities in a two-dimensional no-slip channel and in the half-plane
near a no-slip wall are derived. The analysis makes use of a conformal mapping
from a concentric annulus (or a disc) to a rectangle and a complex variable formula-
tion of Stokes flow to derive the solutions. The form of the solutions is amenable to
fast and accurate numerical computation without the need for Ewald summation
or other fast summation techniques.
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1 Introduction

There has been a resurgence of interest in the mathematical theory of Stokes
flows as a result of the multifarious problems arising in burgeoning fields such
as microfluidics, nonlinear electrokinetics, low-Reynolds-number swimming, su-
perhydrophobic surfaces and the study of active suspensions. In many situations
singularity theory is used to model complicated bodies, such as swimming microor-
ganisms or colloidal particles: a low-Reynolds-number swimmer, which is force- and
torque-free, is often modelled as a point stresslet [1]; Jeong & Moffatt [5] mod-
elled a pair of counter-rotating rollers beneath a free surface in a viscous fluid
by an irrotational point dipole. Suspensions, or swarms of microorganisms, re-
quire the introduction of many singularities to model the complicated interaction
mechanisms and it is common to consider flows comprising periodic arrays of the
fundamental singularities of Stokes flow.
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Hasimoto [6] was the first to consider doubly and triply periodic arrays of
Stokes singularities, recognising even then that the numerical computation of such
flows is not without difficulty. He introduced the idea of using Ewald summation
techniques to improve the numerical efficacy of computing such periodic flows.
Pozrikidis [14] reconsidered similar problems from the perspective of constructing
the basic Green’s functions needed in formulating boundary integral methods for
spatially periodic Stokes flows; in some cases, closed-form expressions for flows near
solid boundaries had been previously found [15]. In his monograph, Pozrikidis [13]
used standard Fourier transform techniques to solve for a periodic array of point
singularities in a two-dimensional channel and in the half-plane. Davis [3] used
Fourier transform techniques to solve various problems involving periodic arrays
of Stokeslets in a two-dimensional channel and in the half-plane, and investigated
the blocking properties of periodic arrays of wall-attached barriers. Work on im-
proving numerical methods for Stokes flows in multi-particle settings continues [9,
16] and extensions of these ideas to multi-particle interactions in confined geome-
tries have also been made [7]. Many of these methods rely on a splitting of the flow
into a local contribution for which rapidly decaying free-space analytical solutions
can be employed together with a global contribution whose effect is determined
numerically in an efficient way (either spectrally, or using an iterative scheme).

The present authors [2] have recently given analytical representations that
are amenable to fast numerical evaluation of the flows associated with doubly
periodic arrangements of point singularities of two-dimensional Stokes flow. They
used analytic function theory, a conformal mapping from a concentric annulus and
the so-called Schottky–Klein prime function associated with that annulus to derive
their new form of the solutions.

The present paper makes a basic theoretical contribution to the study of singly
periodic two-dimensional Stokes flows in a no-slip channel and in the half-plane
near a single no-slip wall. This paper can be viewed as a sequel to [2] where
doubly periodic arrays of Stokes flow singularities are considered. Here we focus
on singly periodic flows and, specifically, those generated by arrays of fundamental
singularities, i.e. the Stokeslet and the higher order singularities. By employing an
approach combining conformal mapping with a complex variable formulation of
Stokes flow, we show how a fast and accurate representation of such flows can
be derived without the need for the aforementioned “splitting” of the flow into
separate local and global contributions or any Ewald summation techniques. While
our results are limited to two dimensions, we believe they are valuable additions
to the basic mathematical theory of Stokes flow.

2 Stokes flows in two dimensions

Consider a region of incompressible fluid of viscosity η governed by the Stokes
equations

∇p = η∇2u, ∇ · u = 0, (1)

where u = (u, v) is the two-dimensional velocity field and p is the fluid pressure.
It is well-known [8] that an incompressible solution of the Stokes equations for the
velocity field (u, v) can be written in terms of a stream function ψ(x, y) with

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2)
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The stream function satisfies the biharmonic equation

∇4ψ = 0, (3)

where ∇2 is the two-dimensional Laplacian. The general solution of (3) can be
written

ψ = Im[zf(z) + g(z)], (4)

where f(z) and g(z) are analytic functions (which can have isolated singularities)
in the fluid region and are often referred to as Goursat functions [8]. These analytic
functions are related to physical quantities via

4f ′(z) =
p

η
− iω, −f(z) + zf ′(z) + g′(z) = u− iv, (5)

where ω is the fluid vorticity.
This connection with analytic functions is important because we propose to

harness the powerful mathematical results of analytic function theory to find ex-
pressions for the fundamental singularities of Stokes flows which can be evaluated
efficiently. Since we will consider singly periodic configurations with period l in the
x-direction and channel width h it is natural to non-dimensionalise lengths with
respect to the period width l, say.

3 Fundamental singularities of Stokes flow

In this section we present the representations for the Goursat functions for the fun-
damental singularities of Stokes flow. We focus here on the Stokeslet, stresslet, force
quadrupole, along with some irrotational (or “source”) singularities and higher-
order singularities can be treated similarly. More details on the derivation of these
expressions, as well as the associated velocity fields are presented in the recent
paper [2] by the authors. By the linearity of the Stokes equations the singularities
below can be superposed to form singularities of more complicated type.

3.1 Free-space Stokeslet

A Stokeslet at z0 corresponds to f(z) and g′(z) locally having the form

f(z) = µ log(z − z0) + analytic function,

g′(z) = −µ log(z − z0)− µz0
z − z0

+ analytic function,
(6)

where µ ∈ C and the strength of the Stokeslet is −8πηµ.

3.2 Free-space stresslet

A stresslet at z0 corresponds to f(z) and g′(z) locally having the form

f(z) =
µ

z − z0
+ analytic function,

g′(z) =
µz0

(z − z0)2
+ analytic function,

(7)

where µ ∈ C determines the strength of the stresslet.
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3.3 Free-space force quadrupole

A force quadrupole at z0 corresponds to f(z) and g′(z) locally having the form

f(z) =
µ

(z − z0)2
+ analytic function,

g′(z) =
2µz0

(z − z0)3
+ analytic function,

(8)

where µ ∈ C determines the strength of the quadrupole.

3.4 Source singularities

If f(z) and g′(z) have the local form near z0 given by

f(z) = analytic function,

g′(z) =
µ

z − z0
+ analytic function,

(9)

then, if µ ∈ R we say that there is a source/sink at z0 (with an associated mass
flux given by 2πµ). If µ ∈ iR we say that there is a rotlet at z0 (which exerts a
torque on the fluid of strength dictated by the modulus of µ).

A (source) dipole at z0 corresponds to

f(z) = analytic function,

g′(z) = − µ

(z − z0)2
+ analytic function,

(10)

where the parameter µ determines the strength of the dipole.
A (source) quadrupole at z0 corresponds to

f(z) = analytic function,

g′(z) = − 2µ

(z − z0)3
+ analytic function,

(11)

where the parameter µ determines the strength of the quadrupole.

4 Conformal mapping

To study singly periodic arrays of singularities, we will exploit the conformal map-
ping

z = Z(ζ) ≡ −i log ζ. (12)

This map transplants the annulus ρ < |ζ| < 1 to a period rectangle in the z = x+iy
plane occupying the region

0 ≤ x ≤ 2π = l, 0 ≤ y ≤ − log ρ = h, (13)

as illustrated in Fig. 1. Changing the x-period simply requires multiplication of
(12) by the appropriate real factor. Under this conformal map, the unit circle
|ζ| = 1 corresponds to 0 ≤ x ≤ l, y = 0, the inner circle |ζ| = ρ corresponds to
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Fig. 1: Conformal mapping from the annulus ρ < |ζ| < 1 in ζ-plane to the period rectangle in
the physical z-plane occupying the region 0 ≤ x ≤ 2π = l, 0 ≤ y ≤ − log ρ = h.

0 ≤ x ≤ l, y = h and the interval [ρ, 1] (in ζ-plane) to the vertical sides of the
period window x = 0, l, 0 ≤ y ≤ h.

The key idea of our approach is to show that analytical expressions, with fast
convergence properties, for the fundamental singularities of periodic Stokes flow
can be derived in terms of the variable ζ. It is then a simple matter, if required,
to re-express the final results as functions of z using the relation

ζ = eiz (14)

which follows from (12).
The representative point singularity in the fundamental period rectangle (Fig.

1) is located at z0 and has a preimage at ζ0 such that

z0 = Z(ζ0) = −i log ζ0. (15)

5 Periodic Stokes singularity arrays in a channel

Consider a two-dimensional channel −∞ < x <∞, 0 ≤ y ≤ h and a periodic array
of point singularities at z = z0 + nl, n ∈ Z, with 0 < Re[z0] < l, 0 < Im[z0] <
h. Figure 2 shows a schematic of the configuration. This problem can be solved
using standard Fourier transform techniques (Pozrikidis [13]), but we will give an
alternative derivation, and form, of the solution by extending the ideas given in
the previous sections.

5.1 Periodic array of Stokeslets in a channel

Consider a periodic array of Stokeslets each of strength given by −8πηµ for some
µ ∈ C. The representative Stokeslet in the fundamental period rectangle shown
in Fig. 1 is located at z0 and has a preimage at ζ0 related to z0 via (15). An
important step is to introduce the functions

F (ζ) ≡ f(Z(ζ)), G(ζ) ≡ g′(Z(ζ)), (16)



6 Darren Crowdy, Elena Luca
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z0 z0 + lz0 − l

Fig. 2: A periodic array of point singularities at points z = z0 +nl, n ∈ Z, with 0 < Re[z0] < l,
0 < Im[z0] < h, in a two-dimensional channel −∞ < x <∞, 0 ≤ y ≤ h.

where ′ here denotes differentiation with respect to the argument of the function.
Now let

F (ζ) = a log ζ + µ log(ζ − ζ0) + F̂ (ζ),

G(ζ) = −a log ζ − µ log(ζ − ζ0) +
λ

ζ − ζ0
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+ Ĝ(ζ),

(17)

where F̂ (ζ) and Ĝ(ζ) are analytic and single-valued in the annulus ρ < |ζ| < 1
and the constants λ and a are to be found. With this ansatz, we have

F ′(ζ)

Z ′(ζ) = iζ

[
a

ζ
+

µ

ζ − ζ0
+ F̂ ′(ζ)

]
= ia+

iµζ

ζ − ζ0
+ iζF̂ ′(ζ) (18)

and, hence, the complex velocity field expressed in terms of variable ζ is

u− iv = −a log |ζ|2 − µ log |ζ − ζ0|2 + i log |ζ|2
[
F ′(ζ)

Z ′(ζ)

]
− F̂ (ζ) + Ĝ(ζ) +

λ

ζ − ζ0
,

(19)

where we have used that zf ′(z) = i log ζ[F ′(ζ)/Z ′(ζ)]. By the choice of the ansatz,
u− iv is invariant as ζ 7→ ζe2πi and this corresponds to the periodicity of the veloc-
ity field along the channel. A local analysis of the singularity of u− iv necessitates
that we choose

λ = µζ0 log |ζ0|2, (20)

in order to ensure that the singularity at ζ0 has the required form.
The no-slip condition on |ζ| = 1 becomes

−F̂ (ζ) + Ĝ(ζ) = µ log |ζ − ζ0|2 −
µζ0 log |ζ0|2

ζ − ζ0
, (21)

while the no-slip condition on |ζ| = ρ is

−F̂ (ζ) + Ĝ(ζ)− log ρ2
[
ζF̂ ′(ζ)

]
− (a+ a) log ρ2

= µ log |ζ − ζ0|2 −
µζ0 log |ζ0|2

ζ − ζ0
+
µζ log ρ2

ζ − ζ0
.

(22)
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For |ζ| = 1, conditions (21) and (22) can be written in the form

−F̂ (ζ−1) + Ĝ(ζ) =
∞∑

n=−∞
dnζ

n,

−F̂ (ρζ−1) + Ĝ(ρζ)− log ρ2[ρζF̂ ′(ρζ)]− (a+ a) log ρ2 =
∞∑

n=−∞
enζ

n,

(23)

where we have introduced the following Laurent expansions of known functions:

∞∑
n=−∞

dnζ
n = µ log |ζ − ζ0|2 −

µζ0 log |ζ0|2

ζ − ζ0
,

∞∑
n=−∞

enζ
n = µ log |ρζ − ζ0|2 −

µζ0 log |ζ0|2

ρζ − ζ0
+
µρζ log ρ2

ρζ − ζ0
,

(24)

where the Schwarz conjugate w(ζ) of a function w(ζ) is defined by w(ζ) ≡ w(ζ).
The coefficients {dn, en|n ∈ Z} can be determined explicitly by computing the
relevant Laurent expansions. Alternatively, they can be computed numerically
using Fast Fourier transforms. Using local expansions, we find

dn = −µ(ζ0)n/n, n ≥ 1,

d−n = −(ζ0)n(µ/n+ µ log |ζ0|2), n ≥ 1,

d0 = 0

(25)

and

en = ρn(ζ0)−n[µ(log |ζ0|2 − log ρ2)− µ/n], n ≥ 1,

e−n = −µρn(ζ0)−n/n, n ≥ 1,

e0 = 2Re[µ] log |ζ0|2.

(26)

The Laurent expansions (24) converge rapidly as can be seen from (25)–(26):
|dn| = |d−n| = O(|ζ0|n) for n ≥ 1, where |ζ0| < 1 and |en| = |e−n| = O(|ρ/ζ0|n)
for n ≥ 1, where |ρ/ζ0| < 1. Therefore, the coefficients of the series are given by
powers of ζ0 and ρ/ζ0 (and their complex conjugates) with exponents that depend
on n so the convergence of the sums is rapid.

The next step is to consider the Laurent series expansions

F̂ (ζ) =
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

Ĝ(ζ) =
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
.

(27)

Without loss of generality, the constant term in the expansion of F̂ (ζ) can be
set equal to zero owing to an additive degree of freedom in the specification of
f(z). Remarkably, the Laurent series (27) can be substituted into (23) and their
unknown coefficients found explicitly. The constant terms in (23) give

G0 = d0, G0 − log ρ2(a+ a) = e0 (28)
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which implies that

Re[a] =
d0 − e0
4 log ρ

. (29)

Note that the imaginary part of a can be set to zero because making the transfor-
mation f(z) 7→ f(z) + bz for some b ∈ R clearly does not affect the velocity field
(5). This corresponds to adding the term −ib log ζ to F (ζ), expressed in terms of
variable ζ. It follows that we can take

a =
d0 − e0
4 log ρ

. (30)

Equating coefficients of the other powers of ζ produces the equations

−ρnHn +Gn = dn,

−Fn + ρnKn = d−n,

−Hn + ρnGn − nρn log ρ2Fn = en,

−ρnFn +Kn + n log ρ2Hn = e−n, n ≥ 1.

(31)

This system can be manipulated to find

Fn =
nρn log ρ2en + ρn(1− ρ2n)e−n − nρ2n log ρ2dn − (1− ρ2n)d−n

(1− ρ2n)2 − n2ρ2n(log ρ2)2
, n ≥ 1.

(32)
The remaining coefficients needed to evaluate F̂ (ζ) and Ĝ(ζ) then follow by back
substitution:

Gn =
−nρ2n log ρ2Fn − ρnen + dn

(1− ρ2n)
, Hn =

Gn − dn
ρn

, Kn =
Fn + d−n

ρn
, n ≥ 1.

(33)
It should be clear that substitution of the explicit form (32) into (33) will lead to
explicit expressions for all these coefficients although we have avoided displaying
those formulas here.

In summary, the Goursat functions for a periodic array of Stokeslets in a chan-
nel with one at z0 in the principal period window and having strength given by
−8πηµ are

F (ζ) = a log ζ + µ log(ζ − ζ0) +
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

G(ζ) = −a log ζ − µ log(ζ − ζ0) +
λ

ζ − ζ0
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
,

with a =
d0 − e0
4 log ρ

, λ = µζ0 log |ζ0|2,

(34)

where coefficients {Fn, Hn, Gn,Kn|n ∈ N} and G0 are given by (28), (32) and
(33) in terms of (25)–(26). Figures 3 and 4 show the fast decay of the Laurent
expansion terms (27) and indicate that only a few terms are required in general
to provide accurate values of the flow field variables.
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Fig. 3: Decay of the Laurent expansion terms Fnζn+Hn(ρ/ζ)n and Gnζn+Kn(ρ/ζ)n, n ≥ 1,
given by expressions (27), for parameters l = 2π, ζ = e−1, ζ0 = 0.6 and different channel
heights: (a) h = π/2, (b) h = π and (c) h = 2π.
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Fig. 4: Decay of the Laurent expansion terms Fnζn+Hn(ρ/ζ)n and Gnζn+Kn(ρ/ζ)n, n ≥ 1,
given by expressions (27), for parameters l = 2π, h = π, ζ = e−1 and different locations for
the principal point Stokeslet: (a) ζ0 = 0.1, (b) ζ0 = 0.5 and (c) ζ0 = 0.9.
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Davis [3] presented solutions to various problems involving distributions of
Stokeslets in an unbounded domain, as well as in a two-dimensional channel, with
a view to understanding the blocking properties of periodic arrays of wall-attached
barriers. We have verified numerically that the associated flow field found above
agrees with the solutions found by Davis [3].

As a separate check, yet another new method for solving the problem of a peri-
odic array of point singularities in a channel geometry is summarized in Appendix
A. That method is based on a novel transform approach to biharmonic boundary
value problems recently described by the authors [10]; it provides a quasi-analytical
solution to the problem in that it reduces determination of the Goursat functions
to the solution of a small linear system whose coefficients are given by explicit
integrals. The solutions presented above have been verified numerically against
the latter solutions.

Figure 5 shows the streamline patterns for a singly periodic array of Stokeslets
of different strengths µ = eiφ, φ = 0, π/8, π/4, 3π/8, π/2 and parameters l = 2π,
h = 2, z0 = π− i log(0.7) which is the location of the principal point Stokeslet. The
graphs show the streamline topology transition between φ → π/2 and φ = π/2
(other singularities behave similarly) and the appearance of Moffatt eddies [12].
Figure 6 shows the streamline patterns for a singly periodic array of Stokeslets of
strength µ = i for different channel heights h = 0.7, 1, 1.9, 2.1, 3 and parameters
l = 2π, z0 = π − i log(0.7).

5.2 Periodic array of stresslets in a channel

Following similar steps, we find that the Goursat functions for a periodic array of
torque-free stresslets in a channel with local behaviour (7) at z0 in the principal
period window are

F (ζ) = a log ζ +
iµζ0
ζ − ζ0

+
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

G(ζ) = −a log ζ +
χ

ζ − ζ0
+

ν

(ζ − ζ0)2
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
,

with a =
d0 − e0
4 log ρ

, χ = iµζ0[2Im[z0]− 1], ν = 2iµζ20 Im[z0].

(35)

Coefficients {Fn, Hn, Gn,Kn|n ∈ N} and G0 are given by (28), (32) and (33) in
terms of coefficients {dn, en|n ∈ Z} which are now given by

dn = −iµ(ζ0)n, n ≥ 1,

d−n = iµ(ζ0)n[1− 2nIm[z0]], n ≥ 1,

d0 = 0

(36)

and

en = −iµρn(ζ0)−n[1 + n(2Im[z0] + log ρ2)], n ≥ 1,

e−n = iµρn(ζ0)−n, n ≥ 1,

e0 = 2 Im[µ].

(37)
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Fig. 5: Streamline patterns for a periodic Stokeslet in a channel in a period window for different
strengths µ. The principal period window is 0 ≤ x ≤ l = 2π, 0 ≤ y ≤ h = 2. The principal
point Stokeslet is located at z0 = π − i log(0.7) and its strength is µ = eiφ, (a) φ = 0, (b)
φ = π/8, (c) φ = π/4, (d) φ = 3π/8 and (e) φ = π/2.
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Fig. 6: Streamline patterns for a periodic Stokeslet in a channel in a period window for different
channel heights h = 0.7, 1, 1.9, 2.1, 3. The principal period window is 0 ≤ x ≤ l = 2π, 0 ≤ y ≤ h.
The principal point Stokeslet is located at z0 = π − i log(0.7) and its strength is µ = i.
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It turns out that the full analysis just summarized can be bypassed by noticing
that the Goursat functions f(z) and g′(z) for the periodic array of stresslets can
be derived from those of Stokeslets by computing the parametric derivatives (cf.
[4]):

f(z) 7→ −∂f(z)

∂z0
, g′(z) 7→ −∂g

′(z)

∂z0
. (38)

To verify that, we apply the parametric derivatives (38) in (6) and obtain

f(z) =
µ

z − z0
+ analytic function,

g′(z) =
µz0

(z − z0)2
− µ

z − z0
+ analytic function.

(39)

The first terms in f(z) and g′(z) correspond to a stresslet of strength µ at z0 given
by (7), while the second term in g′(z) corresponds to an additional source/sink
and/or rotlet singularity. Since our aim is to find expressions for a periodic array
of torque-free stresslets without any other induced flow, we can first use (38) in
(34), where

∂

∂z0
=
∂ζ0
∂z0

∂

∂ζ0
= iζ0

∂

∂ζ0
, (40)

and, then, subtract terms associated to the simple pole in g′(z). This alternative
approach gives identical expressions to (35)–(37).

5.3 Periodic array of force quadrupoles in a channel

Consider now the problem of a periodic array of force quadrupoles in a channel.
In this problem too the full analysis can be bypassed by noticing that the Goursat
functions f(z) and g′(z) for this problem can be derived from those associated
with an array of torque-free stresslets by computing the parametric derivatives:

f(z) 7→ ∂f(z)

∂z0
, g′(z) 7→ ∂g′(z)

∂z0
. (41)

Following similar steps as previously, or using the parametric derivatives (41),
we find that the Goursat functions for a periodic array of force quadrupoles in a
channel with local behaviour (8) at z0 in the principal window to are given by

F (ζ) =
β

ζ − ζ0
+

γ

(ζ − ζ0)2
+
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

G(ζ) =
δ

ζ − ζ0
+

ε

(ζ − ζ0)2
+

κ

(ζ − ζ0)3
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
,

with β = −µζ0, γ = −µζ20 , δ = 2µζ0[1− Im[z0]],

ε = 2µζ20 [1− 3Im[z0]], κ = −4µζ30 Im[z0].

(42)
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The coefficients {Fn, Hn, Gn,Kn|n ∈ N} and G0 are again given by (28), (32) and
(33) in terms of coefficients {dn, en|n ∈ Z} which, in this case, are

dn = −nµ(ζ0)n, n ≥ 1,

d−n = 2nµ(ζ0)n[nIm[z0]− 1], n ≥ 1,

d0 = 0

(43)

and

en = −nµρn(ζ0)−n[2 + n(2Im[z0] + log ρ2)], n ≥ 1,

e−n = −nµρn(ζ0)−n, n ≥ 1,

e0 = 0.

(44)

5.4 Periodic array of dipoles and quadrupoles in a channel

The Goursat functions f(z) and g′(z) for a periodic array of dipoles can be derived
from those of Stokeslets (34) by computing the mixed parametric derivatives:

f(z) 7→ ∂2f(z)

∂z0∂z0
, g′(z) 7→ ∂2g′(z)

∂z0∂z0
. (45)

where
∂2

∂z0∂z0
= ζ0ζ0

∂2

∂ζ0∂ζ0
. (46)

The Goursat functions for a periodic array of dipoles in a channel with local
behaviour (10) at z0 in the principal period window are

F (ζ) =
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

G(ζ) =
µζ0
ζ − ζ0

+
µζ20

(ζ − ζ0)2
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
.

(47)

Again, the coefficients {Fn, Hn, Gn,Kn|n ∈ N} and G0 are given by (28), (32) and
(33) in terms of coefficients {dn, en|n ∈ Z} which are given by

dn = 0, n ≥ 1,

d−n = −nµ(ζ0)n, n ≥ 1,

d0 = 0

(48)

and

en = −nµρn(ζ0)−n, n ≥ 1,

e−n = 0, n ≥ 1,

e0 = 0.

(49)
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Similarly the Goursat functions f(z) and g′(z) for a periodic array of quadrupoles
can be derived from those of torque-free stresslets (35) by computing the mixed
parametric derivatives:

f(z) 7→ − ∂
2f(z)

∂z0∂z0
, g′(z) 7→ −∂

2g′(z)

∂z0∂z0
. (50)

The Goursat functions for a periodic array of quadrupoles in a channel with local
behaviour (11) at z0 in the principal period window are

F (ζ) =
∞∑
n=1

Fnζ
n +

∞∑
n=1

Hn

(
ρ

ζ

)n
,

G(ζ) =
iµζ0
ζ − ζ0

+
3iµζ20

(ζ − ζ0)2
+

2iµζ30
(ζ − ζ0)3

+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+
∞∑
n=1

Gnζ
n +G0 +

∞∑
n=1

Kn

(
ρ

ζ

)n
(51)

with coefficients {Fn, Hn, Gn,Kn|n ∈ N} and G0 given by (28), (32) and (33) in
terms of coefficients {dn, en|n ∈ Z}:

dn = 0, n ≥ 1,

d−n = −in2µ(ζ0)n, n ≥ 1,

d0 = 0

(52)

and

en = in2µρn(ζ0)−n, n ≥ 1,

e−n = 0, n ≥ 1,

e0 = 0.

(53)

6 Periodic singularity arrays in the half-plane

In the limit where the upper wall of the channel becomes distant from the lower
wall we encounter the situation of a periodic array of Stokes singularities in the
upper half plane near an infinite straight wall and it is useful to consider this
situation too since it arises in many physical modelling situations (e.g. [11]).

Consider a periodic array of point singularities at z = z0 + nl, n ∈ Z, with
0 < Re[z0] < l, Im[z0] > 0, in the upper half-plane −∞ < x < ∞, y ≥ 0. Figure
7 shows a schematic of the configuration. While the problem can be solved using
standard Fourier transform techniques [13], we give an alternative derivation, and
form, of the solution by extending the ideas given in the previous sections.
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0 x

y

l

z0 z0 + lz0 − l

Fig. 7: A periodic array of point singularities at points z = z0 + nl, n ∈ Z in the upper
half-plane −∞ < x <∞, y ≥ 0.

6.1 Periodic array of Stokeslets in the upper half-plane

Consider a periodic array of Stokeslets each of strength given by −8πηµ for some
µ ∈ C. The representative Stokeslet in the fundamental period semi-strip shown
in Fig. 7 is located at z0 and has a preimage at ζ0 with z0 = z(ζ0) = −i log ζ0.
The same conformal mapping (12) is employed, but now we take the limit ρ→ 0
so that the preimage domain in the unit disc in the parametric ζ plane. The unit
circle |ζ| = 1 is transplanted to the no-slip wall along the x axis. In this section the
relevant functions F (ζ) and G(ζ) can all be expressed in closed form as log-rational
functions.

Again we introduce the functions F (ζ) and G(ζ) defined in (16). Let

F (ζ) = µ log(ζ − ζ0) + ε log(1− ζ0ζ) +
κ

1− ζ0ζ
+ λ, (54)

where constants ε, κ and λ are to be found. In terms of functions of the ζ variable
the no-slip boundary condition on the wall z = z takes the form

−F (1/ζ) + Z(ζ)

[
F ′(ζ)

Z ′(ζ)

]
+G(ζ) = 0, (55)

where we have that ζ = 1/ζ on |ζ| = 1; this implies that

G(ζ) = F (1/ζ)−Z(ζ)

[
F ′(ζ)

Z ′(ζ)

]
. (56)

It remains to find the unknown constants ε, κ and λ. These follow by insisting
that u − iv is invariant as ζ 7→ ζe2πi which corresponds to the periodicity of the
velocity field and by ensuring that the singularity of u− iv at ζ0 has the required
form. It is found that

ε = −µ, κ = µ log |ζ0|2, λ = −κ. (57)



Two-dimensional singly periodic Stokes flow 17

In summary, the Goursat functions for a periodic array of Stokeslets in the
upper half-plane with one at z0 in the principal period window and having strength
given by −8πηµ are

F (ζ) = µ log(ζ − ζ0)− µ log(1− ζ0ζ) +
κ

1− ζ0ζ
− κ,

G(ζ) = −µ log(ζ − ζ0) + µ log(1− ζ0ζ) +
κζ0
ζ − ζ0

+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
.

(58)

As expected, these expressions coincide with those obtained by taking ρ → 0 in
the solutions presented in §5 (which corresponds to the limit h→∞).

6.2 Periodic array of stresslets in the upper half-plane

Following similar steps or taking parametric derivatives as shown in §5, we find
that the Goursat functions for a periodic array of torque-free stresslets in the upper
half-plane with local behaviour (7) at z0 in the principal period window are

F (ζ) =
iµζ0
ζ − ζ0

+
β

1− ζ0ζ
+

γ

(1− ζ0ζ)2
− iµ,

G(ζ) =
χ

ζ − ζ0
+

ν

(ζ − ζ0)2
− iµ

1− ζ0ζ
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
+ iµ,

with β = iµ[2Im[z0] + 1], γ = −2iµIm[z0],

χ = iµζ0[2Im[z0]− 1], ν = 2iµζ20 Im[z0].

(59)

6.3 Periodic array of force quadrupoles in the upper half-plane

The Goursat functions for a periodic array of force quadrupoles in the upper half-
plane with local behaviour (8) at z0 in the principal period window are

F (ζ) = − µζ0
ζ − ζ0

− µζ20
(ζ − ζ0)2

+
β

1− ζ0ζ
+

γ

(1− ζ0ζ)2
+

δ

(1− ζ0ζ)3
,

G(ζ) =
ε

ζ − ζ0
+

κ

(ζ − ζ0)2
+

λ

(ζ − ζ0)3
+

µ

1− ζ0ζ
− µ

(1− ζ0ζ)2
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
,

with β = −2µ[1 + Im[z0]], γ = 2µ[1 + 3Im[z0]], δ = −4µIm[z0],

ε = 2µζ0[1− Im[z0]], κ = 2µζ20 [1− 3Im[z0]], λ = −4µζ30 Im[z0].

(60)

6.4 Periodic array of dipoles and quadrupoles in the upper half-plane

The Goursat functions for a periodic array of dipoles in the upper half-plane with
local behaviour (10) at z0 in the principal period window are

F (ζ) = − µ

1− ζ0ζ
+

µ

(1− ζ0ζ)2
,

G(ζ) =
µζ0
ζ − ζ0

+
µζ20

(ζ − ζ0)2
+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
.

(61)
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The Goursat functions for a periodic array of quadrupoles in the upper half-
plane with local behaviour (11) at z0 in the principal period window are

F (ζ) = − iµ

1− ζ0ζ
+

3iµ

(1− ζ0ζ)2
− 2iµ

(1− ζ0ζ)3
,

G(ζ) =
iµζ0
ζ − ζ0

+
3iµζ20

(ζ − ζ0)2
+

2iµζ30
(ζ − ζ0)3

+ i log ζ

[
F ′(ζ)

Z ′(ζ)

]
.

(62)

7 Discussion

New analytical representations for a wide range of Stokes flows due to periodic
arrays of point singularities in a two-dimensional no-slip channel and in a half-
plane near a wall have been given. The solutions are given explicitly as functions
of a parametric ζ variable. If preferred, in all cases, the solutions can be expressed
directly in terms of the variable z = x+ iy on use of (14).

We have shown that the associated Laurent expansion terms (for the channel
geometry) decay rapidly which suggests that only a few terms are, in general, re-
quired to provide accurate and efficient computations. The analytical expressions
presented here can be used to model Stokes flow problems in singly periodic ge-
ometries; for example, one can model a flow past a periodic array of wall-attached
straight barriers in a channel or in the half-plane [3], or the flow induced by cilia
sheets [11].
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A Transform method

We briefly discuss how to extend a novel transform approach to biharmonic boundary value
problems for both polygonal and circular domains recently described by the authors in [10] to
reappraise the problem of a periodic array of point singularities in a channel geometry thereby
offering an alternative to the solutions given in §5.

The Goursat functions can be represented by

f(z) = fs(z) + fR(z), g′(z) = g′s(z) + g′R(z), (63)

where fs(z), g′s(z) are related to the point singularity at z0 (for example, for a point stresslet
at z0, they are given by (7)) and fR(z), g′R(z) are the correction functions to be found. The
functions fR(z), g′R(z) are analytic and single-valued in the fluid region and they have the
following integral representations [10]:

fR(z) =
1

2π

 4∑
j=1

∫
Lj

ρj(k)eikzdk

 , g′R(z) =
1

2π

 4∑
j=1

∫
Lj

ρ̂j(k)eikzdk

 , (64)

where Lj , j = 1, 2, 3, 4 are oriented rays from 0 in the spectral k-plane [10] and ρj(k), ρ̂j(k),
j = 1, 2, 3, 4 are the spectral functions defined by

ρ1(k) =

∫ l

0
fR(z)e−ikzdz, ρ2(k) =

∫ l+ih

l
fR(z)e−ikzdz,

ρ3(k) =

∫ ih

l+ih
fR(z)e−ikzdz, ρ4(k) =

∫ 0

ih
fR(z)e−ikzdz,

(65)
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and

ρ̂1(k) =

∫ l

0
g′R(z)e−ikzdz, ρ̂2(k) =

∫ l+ih

l
g′R(z)e−ikzdz,

ρ̂3(k) =

∫ ih

l+ih
g′R(z)e−ikzdz, ρ̂4(k) =

∫ 0

ih
g′R(z)e−ikzdz.

(66)

The spectral functions satisfy the so-called global relations:

4∑
j=1

ρj(k) = 0,

4∑
j=1

ρ̂j(k) = 0, for k ∈ C. (67)

The analysis of the boundary and periodicity conditions allows us to deduce relations
between the spectral functions. We omit the details and report the key expressions; these are:

−ρ1(−k)−
∂[kρ1(k)]

∂k
+ ρ̂1(k) + lfR(l)e−ikl = R1(k), (68)

ρ4(k) + eiklρ2(k) + d q(k) = R2(k), (69)

−e2khρ3(−k)−
∂[kρ3(k)]

∂k
+ 2khρ3(k) + ρ̂3(k) + r(k) = R3(k), (70)

−iklρ4(k) + ρ̂4(k) + eiklρ̂2(k)− lfR(0) + lfR(ih)ekh + d q(k) = R4(k), (71)

where d ∈ C is a constant and

R1(k) ≡
∫ l

0
[fs(z)− zf ′s(z)− g′s(z)]e−ikzdz, (72)

R2(k) ≡
∫ 0

ih
[−fs(z) + fs(z + l)]e−ikzdz, (73)

R3(k) ≡
∫ ih

l+ih
[fs(z)− (z − 2ih)f ′s(z)− g′s(z)]e−ikzdz, (74)

R4(k) ≡
∫ 0

ih
[lf ′s(z)− g′s(z) + g′s(z + l)]e−ikzdz (75)

and

q(k) ≡
∫ 0

ih
e−ikzdz, r(k) = −ihfR(ih)ekh − (l − ih)fR(l + ih)e−ik(l+ih). (76)

Addition of (68) and (70) and use of (67),(69),(71) gives, after some algebra,

ρ1(k) =
2khW (k)− (e2kh − 1)W (−k)

4[sinh2(kh)− k2h2]
, (77)

where W (k) contains ρ4(k), ρ̂4(k), fR(0), fR(ih), d and known quantities. The spectral function
ρ1(k) is analytic everywhere in the complex k-plane which means that its numerator in (77)
must vanish at zeros of its denominator in the k-plane, i.e. we must require

2khW (k)− (e2kh − 1)W (−k) = 0, for k ∈ Σ1 ≡ {k ∈ C| sinh2(kh)− k2h2] = 0}, (78)

together with conditions at k = 0 following from (77). Next, we use the series representations

fR(z) =
∑
m

amTm(z), gR(z) =
∑
m

bmTm(z), along z = iy, y ∈ [0, h], (79)

where am, bm ∈ C are unknown coefficients and Tm(z) are basis functions (e.g. Fourier, Cheby-
shev), and truncate the sums in (79) to finite number of terms. Then, we formulate a linear
system for the unknown coefficients am, bm, parameter d and their complex conjugates. The
linear system comprises conditions (78) evaluated at as many points in the set Σ1 as needed,
together with conditions at k = 0. Once the unknowns are computed from the solution of the
truncated linear system, the spectral functions ρ4(k) and ρ̂4(k) can be found. The remain-
ing spectral functions can be found by back substitution into (68)–(71), and therefore the
correction functions fR(z) and g′R(z) can be computed.
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